
AUTONOMOUS DISTRIBUTED SERVICE SYSTEM:
CONCEPT, DESIGN AND IMPLEMENTATION

By

Kashif Iqbal
 2000-NUST-BIT-211

Project Supervisor
Dr. Farooq Ahmad

Project Report in partial fulfillment of the requirements for the award of
Bachelor of Science degree in Information Technology (BIT)

In

NUST Institute of Information Technology (NIIT)
National University of Sciences and Technology (NUST)

Rawalpindi, Pakistan
(2004)

Library
Highlight

 ii

Certified that the contents and form of thesis entitled “Autonomous Distributed
service system: Concept, Design and Implementation” submitted by Kashif Iqbal
have been found satisfactory for the requirement of the degree.

Supervisor: ___________________________
Associate Professor (Dr. H Farooq Ahmad)

Member: __________________________________

 Professor (Dr. Arshad Ali)

Member: __________________________________

 Associate Professor (Mr. Shahzad Khan)

Member: __________________________________

 Lecturer (Mr. Mohammad Aatif)

Member: __________________________________
 Lecturer (Mr. Zaheer Abbas Khan)

 iii

DEDICATION

In the name of Allah, the Most Beneficent, the Most Merciful

To my dear
 Family especially to my Mother,

 iv

ACKNOWLEDGEMENTS

I am deeply beholden to my supervisor Associate Professor Dr. H Farooq Ahmad

for his continuous assistance, inspiration, and patience. I am highly gratified to

Professor Dr. Arshad Ali for his continuous and valuable suggestions and guidance,

especially for the provision of all kinds of facilities throughout my thesis work. His

ability of management and foresightedness trained me a lot of things which will be

more helpful for me in my practical life.

I would like to express my gratitude to Mr. Shahzad Khan (Faculty member), Mr.

Mohammad Aatif (Faculty member) and Mr. Zaheer Abbas Khan (Faculty member)

for their valuable implications and comments to improve this dissertation.

I am highly thankful to all of my professors especially, Mr. Shahzad Khan,

whom had been guiding and supporting me through out my course and research work.

Their knowledge, guidance and training enabled me to carry out this research work I

would also like to show gratitude to Dr. Hiroki Suguri, Comtec, Japan for his valuable

suggestions.

I would like to offer my admiration to all my classmates, and my seniors who

had been supporting, helping and encouraging me throughout my thesis project

especially, Mr. Abdul Ghafoor, Mr. Mujahid ur Rehman and Mr. Nasir Rasul. I am

especially thankful to Mobeena Jamshed who had been working sincerely with me in

development of this architecture.

I would like to offer my thanks to all of my colleagues in CERN research lab,

whom have had some input or influence over the course of my research. I am also

indebted to system administration for their help and support.

I would like to offer appreciation to my parents for their vision and commitment

to make me learn from my babyhood, and other family members for their

encouragement and support, especially my uncle Dr. Liaqat Ali.

 v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS..VII
ABSTRACT... XI
1 INTRODUCTION ..13
2 SERVICE ORIENTED ARCHITECTURE...17

2.1 SOFTWARE ARCHITECTURE IN GENERAL .. 17
2.2 BRIEF HISTORY OF SOFTWARE DESIGN... 18
2.3 THE NEED FOR SERVICE-ORIENTED ARCHITECTURE .. 19
2.4 THE SERVICE-ORIENTED APPROACH .. 20

2.4.1 Use-Based Solely Published Contract ... 20
2.4.2 Network Addressable Interface ... 21
2.4.3 Stresses Interoperability .. 21
2.4.4 Dynamic Discovery and Invocation... 21

2.5 WEB SERVICES: A TYPICAL SERVICE ORIENTED ARCHITECTURE ... 22
2.5.1 Introduction ... 22
2.5.2 Generic Web service Architecture ... 23

2.5.2.1 The Web services Platform ...23
2.5.2.2 SOAP ..25
2.5.2.3 UDDI (Universal Description, Discovery and Integration Service)25
2.5.2.4 WSDL (Web services Description Language) ..27

3 GRID COMPUTING..29
3.1 INTRODUCTION ... 29
3.2 DIFFERENCE BETWEEN GRID COMPUTING, CLUSTER COMPUTING AND THE WEB:................ 31
3.3 GRID SERVICES ... 31
3.4 SEMANTIC GRID.. 33
3.5 SEMANTIC WEB FOR GRID INFRASTRUCTURE ... 34

3.5.1 Semantic Grid services .. 34
3.5.2 Information integration ... 35

3.6 SEMANTIC WEB FOR GRID APPLICATIONS .. 37
3.6.1 Provenance, Quality, Trust and Proof... 38

CHAPTER 4 ...41
4 SOFTWARE AGENTS AND MULTI-AGENT SYSTEMS ...41

4.1 INTRODUCTION ... 41
4.2 INTELLIGENT AGENTS... 45
4.3 CLASSIFICATION ... 46
4.4 ACL.. 48

4.4.1 Overview of FIPA ACL.. 49
5 LITERATURE REVIEW ..51

CHAPTER 6 ..56
6 SYSTEM ARCHITECTURE ..56

6.1 ARCHITECTURAL COMPONENTS.. 56
6.1.1 DAML-S Matchmaker.. 56
6.1.2 DAML-S... 57
6.1.3 Grid Index Service... 60

 vi

6.1.3.1 Uses/Benefits of the Index Service ...63
6.2 ARCHITECTURE: CONCEPT AND DETAILS .. 64

6.2.1 Concept.. 64
6.2.2 Synergy of Technologies.. 66
6.2.3 Architectural Details ... 67

7 IMPLEMENTATION ..70
7.1 PHASE I – BACKGROUND STUDY, REQUIREMENTS IDENTIFICATION AND SOLUTION............. 70
7.2 PHASE II – ARCHITECTURE ... 70
7.3 PHASE III – FORMULATION OF METHODOLOGY .. 70
7.4 PHASE IV – TEST BED FORMATION ... 70
7.5 PHASE V – INTEGRATION .. 71

7.5.1 Integration of Agents and Web services .. 71
7.5.2 Integration of Agents and Grid services.. 72
CHAPTER 8... 73

8 MATERIALS AND METHODS ...73
8.1 APPROACH .. 73
8.2 TOOLS... 73

8.2.1 Apache-Axis... 73
8.2.2 JAX-RPC ... 76
8.2.3 OGSA, OGSI and Globus Toolkit 3 ... 78
8.2.4 Agent Development Framework .. 79

9 RESULTS AND DISCUSSION ...81
CHAPTER 10 ..85

10 FUTURE WORK..85
10.1 PHASE VI – UNIVERSAL ACCESSIBILITY ... 85
10.2 PHASE VII – AUTONOMY .. 85
10.3 PHASE VIII – APPLICATION DEVELOPMENT.. 85

11 CONCLUSIONS...86
12 REFERENCES ...87
13 APPENDIX..90

13.1 PUBLICATIONS .. 90
13.2 TUTORIALS AND GUIDES:.. 91

 vii

LIST OF ABBREVIATIONS

OGSA Open Grid services Architecture

OGSI Open Grid services Infrastructure

DAML-S DARPA Agent Markup Language for Services

DAML-OIL DARPA Agent Markup Language – Ontology Inference Layer

WSDL Web service Description Language

XML Extensible Markup Language

JADE Java Agent Development Framework

FIPA Foundation for Intelligent Physical Agents

UDDI Universal Description and Discovery Integration

SOAP Simple Object Access Protocol

CORBA Common Object Resource Broker Architecture

Java RMI Java Remote Method Invocation

IDL Interface Definition Language

NASSL Network Accessible Service Specification Language

WDS Well-Defined Service

HTTP Hyper Text Transfer Protocol

HTTPS Secure HTTP

LDAP Lightweight Directory Access Protocol

XSD XML Schema Definition

ACL Agent Communication Language

 viii

MAS Multi-Agent System

KQML Knowledge Query Manipulation Language

SL Semantic Language

JMS Java Messaging Service

JAX-RPC Java API for XML-RPC

RPC Remote Procedural Call

GSI Grid Security Infrastructure

GT3 Globus Toolkit 3

GRAM Grid Resource Allocation Manager

RFT Reliable File Transfer

B2B Business to Business

WWW World Wide Web

IT Information Technology

PCs Personal Computers

RDF Resource Description Framework

P2P Peer to Peer

QoS Quality of Service

WSFL Web service Flow Language

OWL Ontology Web Language

AI Artificial Intelligence

SOA Service Oriented Architectures

EJBs Enterprise Java Beans

GWSDL Grid Web service Description Language

 ix

GSDL Grid service Description Language

TCP/IP Transmission Control Protocol/ Internet Protocol

SAX Simple API for XML

DOM Document Object Model

JAXP Java API for XML Processing

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

SAAJ SOAP with attachment API for JAVA

API Application Programming Interface

MIME Multi-purpose Internet Mail Extensions

OS Operating System

GUI Graphical User Interface

IIOP Internet Inter-ORB Protocol

ORB Object Resource Broker

MTS Message Transport Service

DF Directory Facilitator

AMS Agent Management System

SSL Secure Socket Layer

XSL XML Stylesheet Language

WSDL Web service Description Language

 GASS Globus Access to Secondary Storage

GSDL Grid service Description Language

 x

LIST OF FIGURES

FIGURE 1: UDDI OPERATIONS AND THEIR DETAILED DESCRIPTION .. 26
FIGURE 2: SEMANTIC GRID .. 34
FIGURE 3: COMPOSITION OF GLOBUS TOOLKIT.. 61
FIGURE 4: AUTONOMOUS SEMANTIC GRID .. 65
FIGURE 5: AUTONOMOUS DISTRIBUTED SERVICE SYSTEM ARCHITECTURE ... 69
FIGURE 6: RELATIONSHIP BETWEEN OGSA, OGSI AND GT3 .. 78

 xi

ABSTRACT

In both e-business and e-science, we often need to integrate services across

distributed, heterogeneous, dynamic “virtual organizations” formed from the disparate

resources within a single enterprise and/or from external resource sharing and service

provider relationships. This integration is technically challenging because of the need

to achieve various levels of quality of service (QoS) when running on top of different

native platforms and under dynamic workload conditions. We present an Autonomous

Distributed Service System Architecture that addresses these challenges. Building on

concepts and technologies from the Semantic Web, Multi-Agent Systems, Grid and

Web services communities, this architecture put together a proposition made to cope

with heterogeneous and continuously changing needs of information processing,

service provision and utilization in dynamically evolving environment to meet these

requirements. Autonomous Distributed Services Architecture also define agents’

capabilities in terms of Web services Description Language (WSDL), so that agents

can describe and advertise themselves in UDDI (Universal Description Discovery &

Integration) as and when required.

There is an inherent communication gap between software agents and other

service oriented architectures (SOA) like Web services and Grids, due to different

communication protocols, service descriptions, schema definitions and message

structures they use. These issues are addressed in thesis where we have proposed a

new way of communication and registration of Agent Services in Grid environment.

 xii

Regarding the implementation of proposed architecture, both Grid and Web services

are successfully invoked using Software Agents developed in JADE. In addition to this

task, registering of a Web service in the Grid index service is also achieved

successfully so that Web services could be accessed in Grid environment.

 13

CHAPTER 1

1 INTRODUCTION

Computers are fulfilling an increasingly diversified set of tasks in our society.

They assume saliently many key jobs and assist us in managing numerous tasks in our

daily life. In one or the other form, they process, and provide us information. Many

researchers agree that information age is rapidly replacing industrial era.

There have been three major stages in human history. The first stage is said to be

the agrarian base, and the economy of this stage was dependent upon the agricultural

activity, but with little knowledge. Industrial revolution, which is coming to end now,

was the first major change. The economic success of the era had been based on mass-

production and quality of the products. Lastly the third era is the age of information

technology and services. In this era, information and knowledge are becoming focus of

the economic activity of the entire world. This phase has changed the economic,

political and cultural values on global scale. This change has forced state-controlled

economy to a free economy oriented towards abundant supply and diversity. Global

information systems, such as the Internet, are no longer just pathways for digital data

rather they generate and process information to create knowledge for commercial

activity, education business and research. For the first time, in the history of human

kind, non-material resources such as software and information services have become

new raw materials and real wealth of knowledge-base society. [19]

 14

Now that we have discussed the new era, namely Information age, we need to

explore what new opportunities and challenges are emerging in the near future, in the

Internet economy called Electronic commerce (e-commerce). The Internet traffic is

distributed as follows: 60 percent for business, 27 percent for research, 8 percent for

administration, 5 percent for education. These percentages are likely to change in favor

of corporate sector, which is making use of the Internet to penetrate markets around

the globe and for interchange with customers. In 1995, Forester Research predicted

that the worldwide users of Internet would be 34.9 million in 1998 but the actual

number became in excess of 100 million users. In 1995, Jupiter communications

predicted US$3.1billion in business-to-consumer revenue for e-commerce by 1998 but

the actual figure turned US$13billion. Successful e-commerce requires rapid

adaptation and excellent timing for service providers and users, simultaneously.

However, the electronic commerce on the Internet is at the stage of infancy. It opens

up vast opportunities but a number of fundamental challenges are to be met to bring it

into mature discipline of business.

Distributed system is the backbone of information services on the Internet.

However, rapidly evolving and highly diversified world of information services

requires huge information processing capacity and service provision on the Internet

time scale. But the state of the art of distributed systems is human dominated

administered, which cannot meet Internet time scale and quality of service for e-

commerce. A critical prerequisite for distributed system technology to comply with the

new challenge is that it must be completely self-tuning with autonomous adaptation to

evolving workload with “zero” human administration [19].

 15

As we know that the Internet was originally designed to share the information

between a small numbers of users, with no quality of service requirements. However,

due to the emergence of e-commerce, there is an urgent need to change fundamental

philosophy of the underlying system. Information services have become mission

critical as heavy loss may result if the system does not provide required functionality

and resources to achieve QoS under changing conditions, such as changing workload.

The system needs to provide guaranteed quality of services at application levels, not at

low level like guaranteed packet delivery. There are different concerns in quality of

service, such as timeliness, reliability, and fault tolerance for information service

utilization and provision.

A system is called a high-assurance system, when heterogeneous and changing

requirement levels of QoS are satisfied. In addition to quality of service, we identify

that users have two more basic views of customization and situation regarding

information services utilization but these do not exist on the current information

service systems as well. Consequently, using information services on the Internet is

frustrating experience for most of the users. Many information services on the Internet

return poor results- inconsistent, arbitrarily inaccurate or completely irrelevant data or

the performance is so poor that the whole service becomes useless. We conclude that

current information service systems on the Internet do not provide guaranteed quality

of services, customization and situation based information services. There is urgent

need for new models for information services for e-commerce in the Internet. If the

research community fails to provide necessary technology and framework, the success

of e-commerce may be delayed or even may become questionable.

 16

This fosters an urgent need to design an information service system with high-

assurance that provides information services to meet the above-mentioned

requirements.

The rest of this thesis is arranged as follows. Next chapter gives an overview of

Software Oriented Architectures in general and Web services in particular. Chapter 3

and chapter 4 cover various aspects of Grid Computing and Multi-Agent Systems

including autonomous service discovery/invocation through software agents and

application of Semantic Web technologies for Grid infrastructure and applications.

Chapter 5 explains the requirements and need that are identified for Autonomous

Distributed Service System after consulting related work and literature. Chapter 6

explains the architectural details of the system including its architectural components

and concept. Chapter 7 and Chapter 8 will address the list of experiments which are

carried out in the form of phases to test various research hypothesis and tools and

technologies which are used to carry out experiments respectively. Chapter 9 describes

the various outcomes of implementation carried out and on the basis of which

conclusions are drawn. In the end Chapter 10 defines some future tasks followed by

conclusions, reference and appendix section.

 17

CHAPTER 2

2 SERVICE ORIENTED ARCHITECTURE

With the introduction of Web services over the last year or so, there has been a

renewed interest in service-oriented architecture (SOA). An SOA is an architecture

that has special properties. It is an architecture made up of components and

interconnections that stress interoperability and location transparency. The term

service has been used for more than two decades. For example, leading transaction

monitoring software has used the term "service" in the early 1990s. Many client-server

development efforts in the 90s used the term "service" to indicate the ability to make a

remote method call. Web services have given the term service more prominence in the

last few months. Services and service-oriented architectures are really about designing

and building systems using heterogeneous network addressable software components.

2.1 SOFTWARE ARCHITECTURE IN GENERAL

Before getting too far into the details of SOA, the term software architecture

needs to be defined. Software architecture is a fairly new practice in the field of

software engineering. The software architecture of a system consists of the large-

grained structures of the software. It describes the components of the system and how

those components interact at a high level. The interactions between components are

called connectors. The configuration of components and connectors provide both a

structural and a behavioral view of the system.

 18

2.2 BRIEF HISTORY OF SOFTWARE DESIGN

Over the last four decades, the practice of software development has gone

through several different development methods. Each method shift was made in part to

deal with greater levels of software complexity. The way we have managed

complexity is to continuously invent coarser grained constructs, such as functions,

classes, and components. We can think of these constructs as software "black boxes".

A software black box hides its implementation by providing controlled access to

its behavior and data through an interface. Think of it as a software integrated circuit.

At a fine level of granularity, we use objects to hide behavior and data. At a coarser

level of granularity, we use components to do the same. Having information hiding

only at the object level works well for small systems, and it allows us to create

constructs in software that map onto the real world objects.

A problem arises when we try to group a large number of objects together.

Although access to the objects is controlled through their interfaces, the granularity at

the object level still makes dependencies between them difficult to control in a large

system.

Introducing the component concept gives us a better way of managing these

dependencies in large systems. A component is a smaller group of objects working

together to provide a system function. For example, a claim, automobile and a

claimant object can work together in a claims component to provide the claim function

for a large insurance application. The claim component becomes another black box at

the level of a large system function. The claim and automobile objects are not known

 19

to any other part of the system, except for the claim component. This means that no

other part of the system can become dependent on these objects since they are

completely hidden.

This is the point we are at today in software development. Technologies such as

Enterprise Java Beans, .NET and CORBA are effective ways of implementing

components. The method of component-based development has allowed developers to

create more complex, higher quality systems faster than ever before because we have a

better way of managing complexities and dependencies within a software system.

2.3 THE NEED FOR SERVICE-ORIENTED
ARCHITECTURE

Now that all of these heterogeneous components have developed, for one system

or another, we need to be able to use them together. But there is a problem: developers

built some components using EJB, some CORBA, and many of the resources we need

for our systems are on mainframe computers running COBOL. Using Enterprise Java

Beans requires that method invocation be done via RMI and CORBA uses IIOP. Many

times the component is located across the Internet, behind a firewall and the message

cannot get through. Although each has tried to be interoperable with the other, small

inconsistencies cause developers a lot of pain when trying to figure it all out.

In addition, even if these problems lack, the components still have to know too

much about each other. For example, if I want to use a Claims component, I have to

know not only what transport and payload type to use, I also need to know exactly

where it is. I also need to have intimate knowledge about its interface so that if the

 20

interface changes, I have to change the way I call it. Since these components have

network addressable interfaces and the number of clients can be large, this creates

dependencies on an enormous scale. So what will be the solution to this problem?

2.4 THE SERVICE-ORIENTED APPROACH

A service is behavior that is provided by a component for use by any other

component based only on the interface contract. A service has a network-addressable

interface. A service stresses interoperability and a service may be dynamically

discovered and used.

Web services consist of four technologies in combination that provides an

implementation of an SOA. You can use Web services to provide all of the properties

necessary to build a service. Web services include HTTP as the primary network

protocol, SOAP/XML for the payload format and UDDI for service registry, and

WSDL to describe the service interfaces.

However, a service-oriented architecture does not require Web services. An SOA

is a design and a way of thinking about building software components.

2.4.1 Use-Based Solely Published Contract

Contract design between components is a critical activity in a service-oriented

architecture. The difference between a public interface and a published interface

comes into play. A public interface is an interface that can be used by components

within a system. The public interfaces of a component are easier to change, because

they are only used by known clients. A published interface is one that is exposed to the

 21

network and may not be changed so easily, because the clients of the published

interface are not known. The difference is analogous to an intranet-based site only

accessible by employees of the company and an Internet site accessible by anyone.

Languages and tools have not stepped up yet to enforcing this concept, but it is

important to understand the distinction when building published service interfaces.

2.4.2 Network Addressable Interface

A service must have a network addressable interface. This means that a client on

a network must be able to invoke a service. A service may be configured for use by a

component in the same machine. However, the service must also support a network

configuration.

2.4.3 Stresses Interoperability

A service-oriented architecture, first and foremost, stresses interoperability. It

means that each component must provide an interface that can be invoked through a

payload format and protocol that is understood by all of the potential clients of the

service.

2.4.4 Dynamic Discovery and Invocation

A service must be dynamically discovered. This means that a third party

mechanism must be used to find the service. Hard coding of a machine location is not

consistent with a service-oriented approach. [31]

 22

2.5 WEB SERVICES: A TYPICAL SERVICE ORIENTED
ARCHITECTURE

Web services is emerging as the enabling technology that bridges decoupled

systems across various platforms, programming languages and applications. They are

“self-contained, self-describing modular applications” (Martin 2001) and

interoperability among these applications is ensured through the use of standards such

as SOAP, XML, and WSDL. Web services standards define the format of the message,

specify the interface to which a message is sent, describe conventions for mapping the

contents of the message into and out of the programs implementing the service, and

define mechanisms to publish and discover Web services interfaces. The specification

to publish and discover Web services on the Internet is defined as Universal

Description, Discovery, and Integration (UDDI). [22]

2.5.1 Introduction

Previous attempts at distributed computing (CORBA, Distributed Smalltalk, Java

RMI) have yielded systems where the coupling between various components in a

system is too tight to be effective for low-overhead, ubiquitous B2B e-business over

the Internet. These approaches require too much agreement and shared context among

business systems from different organizations to be reliable for open, low-overhead

B2B e-business.

Meanwhile, the current trend in the application space is moving away from

tightly coupled monolithic systems and towards systems of loosely coupled,

 23

dynamically bound components. Systems built with these principles are more likely to

dominate the next generation of e-business systems, with flexibility being the

overriding characteristic of their success. Service (application) integration becomes the

innovation of the next generation of e-business, as businesses move more of their

existing IT applications to the Web, taking advantage of e-portals and e-marketplaces

and leveraging new technologies, such as XML.

The Web services architecture describes principles for creating dynamic, loosely

coupled systems based on services, but no single implementation. There are many

ways to instantiate a Web service by choosing various implementation techniques for

the roles, operations, and so on described by the Web services architecture.

Various environmental aspects must also be considered when designing Web

services. For example, the security requirements for services brokers will vary

depending upon the deployment environment. Most intranet deployments have

minimal security requirements but in situations where high-value B2B transactions are

conducted, much higher security may be necessary. An approach is to take a risk-

assessment view of security and design brokers to provide different levels of

information based upon an environment's security infrastructure. [2]

2.5.2 Generic Web service Architecture

2.5.2.1 The Web services Platform

So what is the Web service platform? The basic platform is XML plus HTTP.

HTTP is a ubiquitous protocol, running practically everywhere on the Internet. XML

provides a meta-language in which you can write specialized languages to express

 24

complex interactions between clients and services or between components of a

composite service. Behind the facade of a web server, the XML message gets

converted to a middleware request and the results converted back to XML.

If we think that access and invocation are only the bare bones (this would be like

saying CORBA is only IDL plus remote procedure calls). What about the platform

support services -- discovery, transactions, security, authentication and so on -- the

usual raft of services that make a platform a platform? That's where we step up to the

next level.

The Web needs to be augmented with a few other platform services, which

maintain the ubiquity and simplicity of the Web, to constitute a more functional

platform. The full-function Web services platform can be thought of as XML plus

HTTP plus SOAP plus WSDL plus UDDI. At higher levels, one might also add

technologies such as XAML, XLANG, XKMS, and XFS -- services that are not

universally accepted as mandatory.

Below is a brief description of the platform elements. It should be noted that

while vendors try to present the emergent Web services platform as coherent, it's really

a series of in-development technologies. Often at the higher levels there are, and may

remain, multiple approaches to the same problem.

• SOAP (remote invocation)

• UDDI (trader, directory service)

• WSDL (expression of service characteristics)

• XLANG/XAML (transactional support for complex web transactions involving

multiple Web services)

 25

• XKMS (XML Key Management Specification) - ongoing work by Microsoft

and Verisign to support authentication and registration

2.5.2.2 SOAP

SOAP is a protocol specification that defines a uniform way of passing XML-

encoded data. In also defines a way to perform remote procedure calls (RPCs) using

HTTP as the underlying communication protocol. SOAP arises from the

realization that no matter how nifty the current middleware offerings are, they need a

WAN wrapper. Architecturally, sending messages as plain XML has advantages in

terms of ensuring interoperability. The middleware players seem willing to put up with

the costs of parsing and serializing XML in order to scale their approach to wider

networks. [35] Submitted in 2000 to the W3C as a Note by IBM, Microsoft, UserLand,

and DevelopMentor, the further development of SOAP is now in the care of the W3C's

XML Protocols Working Group. This effectively means that SOAP is frozen and

stable until such time as the W3C Working Group delivers a specification.

2.5.2.3 UDDI (Universal Description, Discovery and Integration Service)

UDDI provides a mechanism for clients to dynamically find other Web services.

Using a UDDI interface, businesses can dynamically connect to services provided by

external business partners. A UDDI registry is similar to a CORBA trader, or it can be

thought of as a DNS service for business applications. A UDDI registry has two kinds

of clients: businesses that want to publish a service (and its usage interfaces), and

clients who want to obtain services of a certain kind and bind programmatically to

them. The table below is an overview of what UDDI provides. UDDI is layered over

 26

SOAP and assumes that requests and responses are UDDI objects sent around as

SOAP messages. A sample query is included below.

Information Operations Detailed information
(supported by lower-level
API)

White pages: Information
such as the name, address,
telephone number, and
other contact information
of a given business

Publish: How the provider
of a Web service registers
itself.

Business information:
Contained in a
BusinessEntity object,
which in turn contains
information about services,
categories, contacts, URLs,
and other things necessary
to interact with a given
business.

Yellow pages: Information
that categorizes businesses.
This is based on existing
(non-electronic) standards

Find: How an application
finds a particular Web
service.

Service information:
Describes a group of Web
services. These are
contained in a
BusinessService object

Green pages: Technical
information about the Web
services provided by a
given business.

Bind: How an application
connects to, and interacts
with, a Web service after
it's been found

Binding information: The
technical details
necessary to invoke a
Web service. This
includes URLs,
information about
method names, argument
types, and so on. The
BindingTemplate object
represents this data.

Service Specification
Detail: This is metadata
about the various
specifications implemented
by a given Web service.
These are called tModels in
the UDDI specification

Figure 1: UDDI Operations and their Detailed Description

 27

There is no near-term plan in UDDI to support full-featured discovery (e.g.

geography-limited searches or bidding and contract negotiation supported by vendors

like eLance). UDDI expects to be the basis for higher level services supported by some

other standard. There are plans for UDDI to support more complex business logic,

including support for hierarchical business organizations. UDDI has fairly broad

support; IBM, Ariba, and Microsoft are driving it. It's not yet an open standard. [37]

2.5.2.4 WSDL (Web services Description Language)

WSDL provides a way for service providers to describe the basic format of Web

service requests over different protocols or encodings. WSDL is used to describe what

a Web service can do, where it resides, and how to invoke it. While the claim of

SOAP/HTTP independence is made in various specifications, WSDL makes the most

sense if it assumes SOAP/HTTP/MIME as the remote object invocation mechanism.

UDDI registries describe numerous aspects of Web services, including the binding

details of the service. WSDL fits into the subset of a UDDI service description. [36]

WSDL defines services as collections of network endpoints or ports. In WSDL

the abstract definition of endpoints and messages is separated from their concrete

network deployment or data format bindings. This allows the reuse of abstract

definitions of messages, which are abstract descriptions of the data being exchanged,

and port types, which are abstract collections of operations. The concrete protocol and

data format specifications for a particular port type constitute a reusable binding. A

port is defined by associating a network address with a reusable binding; a collection

 28

of ports define a service. And, thus, a WSDL document uses the following elements in

the definition of network services:

• Types -- a container for data type definitions using some type system

(such as XSD).

• Message -- an abstract, typed definition of the data being

communicated.

• Operation -- an abstract description of an action supported by the

service.

• Port Type -- an abstract set of operations supported by one or more

endpoints.

• Binding -- a concrete protocol and data format specification for a

particular port type.

• Port -- a single endpoint defined as a combination of a binding and a

network address.

• Service -- a collection of related endpoints.

So, in simple terms, WSDL is a template for how services should be described

and bound by clients.

 29

CHAPTER 3

3 GRID COMPUTING

3.1 INTRODUCTION

WWW has facilitated unprecedented ways of speedy global information sharing.

The Grid technologies build on this by allowing facilitating the global sharing of not

just information, but also of tangible assets (computational and data-storage resources)

to be used at a distance. E-mail and WWW provide basic mechanisms that allow

communities that span states, countries and continents to work together. But what if

they could link their data, computers and other resources into a single virtual office? -

Grid seeks to make this possible by providing the protocols, services and software

development kits needed to enable flexible, controlled resource sharing on a large

scale.

At the heart of Grid is the concept of virtual organization. It is a dynamic

collection of individuals, institutions and resources bundled together in order to share

resources as they tackle common goals. This resource sharing is not primarily file

exchange, but rather direct, controlled (i.e. within the authorization, security,

copyright, etc. restrictions) access to computers, software, data and other resources, as

is required by a range of collaborative problem-solving and resource-brokering

strategies emerging in industry, science and engineering.

Grid computing is an innovative approach that leverages existing IT

infrastructure to optimize compute resources and manage data and computing

 30

workloads. According to Gartner, "a grid is a collection of resources owned by

multiple organizations that is coordinated to allow them to solve a common problem."

Gartner further defines three commonly recognized forms of grid:

• Computing grid - multiple computers to solve one application problem

• Data grid - multiple storage systems to host one very large data set

• Collaboration grid - multiple collaboration systems for collaborating on a

common issue.

Grid computing is not a new concept but one that has gained recent renewed

interest and activity for a couple of main reasons:

1. IT budgets have been cut, and grid computing offers a much less expensive

alternative to purchasing new, larger server platforms.

2. Computing problems in several industries involve processing large volumes of

data and/or performing repetitive computations to the extent that the workload

requirements exceed existing server platform capabilities.

Some of the industries that are interested in grid computing include:

• life sciences,

• computer manufacturing,

• industrial manufacturing,

• financial services, and

• Government.

 31

3.2 DIFFERENCE BETWEEN GRID COMPUTING,
CLUSTER COMPUTING AND THE WEB:

Cluster computing focuses on platforms consisting of often homogeneous

interconnected nodes in a single administrative domain.

 Clusters often consist of PCs or workstations and relatively fast networks

 Cluster components can be shared or dedicated

 Application focus is on cycle-stealing computations, high-throughput

computations, distributed computations

 Web focuses on platforms consisting of any combination of resources and

networks which support naming services, protocols, search engines, etc.

• Web consists of very diverse set of computational, storage, communication,

and other resources shared by an immense number of users

• Application focus is on access to information, electronic commerce, etc.

Grid focus on ensembles of distributed heterogeneous resources used as a

platform for high performance computing

• Some grid resources may be shared, other may be dedicated or reserved

• Application focus is on high-performance, resource-intensive applications

3.3 GRID SERVICES

Grid middleware should enable new capabilities to be constructed dynamically

and transparently from distributed services. In order to engineer new Grid applications

it is desirable to be able to reuse existing components and information resources and to

assemble and co-ordinate these components in a flexible manner. Partly for this reason

 32

the Grid is moving away from a collection of protocols to a service-oriented approach:

the Open Grid services Architecture (OGSA) [34]. This unites Web services with Grid

requirements and techniques.

The Grid’s requirements mean that Grid services extend Web services

considerably. Grid service configurations are:

• dynamic and volatile A consortium of services (databases, sensors, compute

servers) participating in a complex analysis may be switched in and out as they

become available or cease to be available;

• ad-hoc. Service consortia have no central location, no central control, and no

existing trust relationships;

• large. Hundreds of services could be orchestrated at any time;

• long-lived. A simulation could take weeks.

These requirements make strenuous demands on fault tolerance, reliability,

performance and security. Whereas Web services are presumed to be available and

stateless, Grid services are presumed to be transient and stateful.

Grid services are broadly organised into four tiers:

1. Fabric (security, data transport, certification, remote access, network

monitoring, ownership and digital watermarking, authentication);

2. Base (resource scheduling, data access, event notification, metadata

management, provenance, versioning);

3. High Level (workflow, database management, personalisation);

4. Application (a gene sequence alignment, a Swiss-Prot database, a gene finding

algorithm).

 33

Each tier relies on metadata. To achieve the flexible assembly of Grid services

requires information about the functionality, availability and interfaces of the various

services. Service discovery and brokering uses metadata descriptions. Service

composition is controlled and supported by metadata descriptions. Metadata is the key

to achieving the Grid services vision.

The Grid technologies build on Web allows facilitating the global sharing of not

just information, but also of tangible assets (computational and data-storage resources)

to be used at a distance. Grid seeks to make this possible by providing the protocols,

services and software development kits needed to enable flexible, controlled resource

sharing on a large scale.

Semantic Grid is an initiative to develop effective methods for enabling such

complex resource sharing. The key to this is an infrastructure where all resources,

including services, are adequately described in a form that is machine-processable, i.e.

knowledge is explicit - in other words, the goal is to provide semantic interoperability,

based on the technologies of Semantic Web.

3.4 SEMANTIC GRID

Until very recently the Grid and the Semantic Web communities were separate,

despite the convergence of their respective visions. Both have a need for

computationally accessible and sharable metadata to support automated information

discovery, integration and aggregation. Both operate in a global, distributed and

changeable environment.

 34

The Semantic Web base services can be Grid Base Services. The Semantic Web

fabric is the means by which the Grid could represent metadata: both for Grid

infrastructure, driving the machinery of the Grid fabric, and its base and high level

services, and for Grid applications, representing the knowledge and operational know-

how of the application domain.

Figure 2: Semantic Grid1

3.5 SEMANTIC WEB FOR GRID INFRASTRUCTURE

3.5.1 Semantic Grid services

The description of a service is essential for automated discovery and search,

selection, matching, composition and interoperation, invocation and execution

monitoring. This choice depends on service metadata. Classification of services based

on the functionality they provide has been widely adopted by diverse communities as

an efficient way of finding suitable services, e.g. UDDI. Reasoning over service

descriptions has a role to play when classifying and matching services. In Condor a

matching mechanism is used to choose computational resources. In an architecture

1 http://www.semanticgrid.org

 35

where the services are highly volatile, and configurations of services are constantly

being disbanded and re-organised, knowing if one service is safely substitutable by

another is essential.

At the time of writing, the current state of describing Grid services through

semantics is by using the names assigned the portType and serviceType elements of a

WSDL document, linked to a specification document. Bringing together the Semantic

Web and Web services has already attracted attention. DAML+OIL has been explored

in myGrid. The myGrid service ontology extends the DAML-S ontologies. Service

classifications are more expressive than UDDI’s simple hierarchies and services are

queried and matched by subsumption reasoning over the service descriptions.

However, Grid services dynamically create and destroy service instances, have soft

state registration and form long-lived service configurations. How this affects the way

Semantic Web technologies can describe and discover Grid services is a challenge yet

to be adequately addressed.

3.5.2 Information integration

Complex questions posed by scientists require the fusion of evidence from

different, independently developed and heterogeneous resources. In biology, for

example, the hundreds of data repositories in active service have different formats,

interfaces, structures, coverage. The Web and the Data Grid guarantee a certain level

of interoperability in retrieving and accessing data. The next level of interoperability is

not just making data available, but understanding what the data means so that it can be

 36

linked in appropriate and insightful ways, and providing automated support for this

integration process.

Scientists typically link resources in two ways:

1. Workflow orchestration: Process flows, or workflows coordinating and

chaining services using a systematic plan, are the manifestation of in silico

experiments, allowing us to represent the e-Scientist’s experimental process

explicitly;

2. Database integration: dynamic distributed query processing, or the creation of

integrated databases through virtual federations or warehouses.

Information mediation is not restricted to traditional scientific databases.

Computational resources are discovered, allocated and disbanded dynamically and

transparently to the user. The problem of mediation between different Grid compute

resource brokering models, such as Unicore and Globus, closely resembles mediation

between two database schemas.

Semantic Web and Database technologies offer great possibilities. A common

data model for aggregating results drawn from different resources or instruments could

use RDF. Domain ontologies for the semantic mediation between database schema, an

application’s inputs and outputs, and workflow work items could use

DAML+OIL/RDF(S). Domain ontologies and rules can be used for constraining the

parameters of machines or algorithms, and inferring allowed configurations. Execution

plans, workflows and other combinations of services benefit from reasoning to ensure

the semantic validity of the composition.

So we can use Semantic Web services for:

 37

• The classification of computational and data resources, performance metrics,

job control; schema integration, workflow descriptions;

• Typing data and service inputs and outputs;

• Problem solving selection and intelligent portals;

• Infrastructure for authentication, accounting and access management.

Turning this around, we can envisage that the Base and Application services of

the Semantic Web are implemented as Grid services.

3.6 SEMANTIC WEB FOR GRID APPLICATIONS

The ultimate purpose of the Grid is to support knowledge discovery. The

Semantic Web is often presented as a global knowledge base. Consider a scenario: A

scientist posing the question “what ATPase superfamily proteins are found in mouse?”

might get the answers (a) The protein accession number from the Swiss-Prot database

she has permission to access; (b) InterPro is a pattern database but needs permission

and payment. (c) Attwood’s project is in nucleotide binding proteins (ATPase

superfamily proteins are a kind of nucleotide binding protein); (d) Smith published a

new paper on something similar in Nature Genetics two weeks ago; (e) Jones in your

lab already asked this question last week.

A scientist may be advised of equipment or algorithm parameter settings, helped

to choose and plan appropriate experiments and resources based on her aims and

shared best practice, and ensure that conclusions are not drawn that are not fully

justified by the techniques used. These are all applications of, or for, the Semantic

 38

Web, and include personalised agents or services, semantic portals onto services,

recommender systems and a variety of other knowledge services.

The scientific community has embraced the Web. The result is commonly

publication of information without accompanying accessibility. Many resources have

simple call interfaces without APIs or query languages and only “point and click”

visual interfaces. Scientific knowledge is often embodied in the literature and in free

text “annotations” attached to raw data. The presumption that a scientist will read and

interpret the texts makes automatic processing hard and is not sustainable given the

huge amount of data becoming available. The Semantic Web is about making the

computationally inaccessible accessible and to automate information discovery.

3.6.1 Provenance, Quality, Trust and Proof

Both the results and the way they are obtained are highly valued. Where data

came from, who created it, when, why and how was it derived is as important as the

data itself for user and service provider. These are applications of the Proof, Trust and

Digital Signatures of the Semantic Web. In molecular biology, data is repeatedly

copied, corrected and transformed as it passes through numerous databases. Published

data is actively curated automatically and by hand. Complex assemblies of programs

create results from base data. Annotating results with commentaries, linking results

with their sources, asserting which parameters were used when running an algorithm

and why, are possible applications of Semantic Web and database technologies.

Assertions are also qualitative. Scientific knowledge is contextual and

opinionated. Contexts change and opinions disagree. New information may support or

 39

contradict current orthodoxy leading to a revision of beliefs. Inferences on assertions

can give new knowledge but inferences must be exposed or else the scientist will not

use them. Dealing with multiple (diverging) assertions over resources, and inference

engines capable of tolerating discrepancies, is a challenge of the Semantic Web.

So Semantic Web services can be for:

• annotating results, workflows, database entries and parameters of analyses

with: personal notes, provenance data, derivation paths of information,

explanations or claims;

• linking in silico and ‘at the bench’ experimental components: literature, notes,

code, databases, intermediate results, sketches, images, workflows, the person

doing the experiment, the lab they are in, the final paper;

• describing people, labs, literature, tools and scientific knowledge.

Scientific knowledge is replicated and archived for safe-keeping. It is essential to

be able to recall a snapshot of the state of understanding at a point in time in order to

justify a scientific view held at that time. This raises questions: What does it mean to

garbage collect the ‘Semantic Grid’, and how do we recover a snapshot?

Grid services come and go, which is why event notification is a Grid base

service. As data collections and analytical applications evolve, keeping track of the

impact of changes is difficult. Scientists rerun their queries if base data changes or new

knowledge questions the underlying premise of an analysis. Mistakes or discredited

information are propagated and difficult to eliminate. The ontologies and rules change.

When an ontology changes in line with new beliefs, this does not wipe the old

inferences that no longer hold (and how do we propagate those changes?). They must

 40

continue to co-exist and be accessible. Monitored events and items can be described

using ontologies; database triggers can implement the notification mechanism. [33]

 41

CHAPTER 4

4 SOFTWARE AGENTS AND MULTI-AGENT
SYSTEMS

4.1 INTRODUCTION

In computer science, as in any other science, several new ideas, concepts and

paradigms emerged over time and became the “Big idea” or “Big excitement” of the

discipline. The ‘90s brought the concept of agents in computer science and this term is

now as fashionable as object-oriented was in the ‘80s or artificial intelligence in the

‘70s. Being fashionable means that anyone who wants to be “en vogue” will use it, that

maybe more expectation than needed will be put in the new concept and that there is

the great risk of having an overused word.

Then why agents in computer science and do they bring us anything new in

modeling and constructing our applications? The answer is definitively YES and the

papers in this volume contribute to justify this answer.

It would certainly not be an original thing to say that the notion of agent or

agency is difficult to define. There are an important number of papers on the subject of

agent and multi-agent system definition and a tremendous number of definitions for

agents, ranging from one line definitions to pages of agent attribute descriptions. The

situation is somehow comparable with the one encountered when defining artificial

intelligence. Why was it so difficult to define artificial intelligence and why is it so

difficult to define agents and multi-agents systems, when some other concepts in

 42

computer science, as object-oriented, distributed computing, etc., were not so resistant

to be properly defined.

The answer is that the concept of agent, as the one of artificial intelligence,

steams from people, from the human society. Trying to emulate or simulate human

specific concepts in computer programs is obviously extremely difficult and resists

definition.

More than 30 years ago, computer scientists set themselves to create artificial

intelligence programs to mimic human intelligent behavior, so the goal was to create

an artifact with the capacities of an intelligent person. Now we are facing the challenge

to emulate or simulate the way human act in their environment, interact with one

another, cooperatively solve problems or act on behalf of others, solve more and more

complex problems by distributing tasks or enhance their problem solving

performances by competition.

Artificial intelligence (AI) put forward high expectations and the comparison of

actual achievements with the initial hopes brought some disappointment. But AI

contributed computer science with some very important methods, concepts, and

techniques that strongly influenced other branches of the discipline, and the results

obtained by AI in real world applications are far from being negligible.

As many researchers think that agents and multi-agent systems will be one of the

landmark technologies in computer science of the years to come, that will bring extra

conceptual power, new methods and techniques, and that will essentially broaden the

spectrum of our computer applications. The technology has the chances to compensate

 43

the failures of AI just because this new paradigm shifts from the single intelligent

entity model to the multi-intelligent entity one, which is in fact the true model of

human intelligence acting.

One possible question about agents can be if there is any difference between a

computer program and a computational agent. To answer this question, we shall

examine some agent definitions and identify the most relevant features of agents. One

primary characteristic that differentiate agents from an ordinary program is that the

agent must be autonomous. Several definitions of agents include this characteristic, for

example:

• “Most often, when people use the term ‘agent’ they refer to an entity that functions

continuously and autonomously in an environment in which other processes take

place and other agents exist.” (Shoham, 1993);

• “An agent is an entity that senses its environment and acts upon it” (Russell, 1997);

• “The term agent is used to represent two orthogonal entities. The first is the agent’s

ability for autonomous execution. The second is the agent’s ability to perform

domain oriented reasoning.” (the MuBot Agent);

• “Intelligent agents are software entities that carry out some set of operations on

behalf of a user or another program, with some degree of independence or

autonomy, and in so doing, employ some knowledge or representation of the user’s

goals or desires.” (the IBM Agent);

 44

• “An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, in pursuit of its own agenda and so as

to effect what it senses in the future.” (Franklin, Gasser, 1997).

Although not stated explicitly, Russell’s definition implies the notion of

autonomy as the agent will act in response to perceiving changes in the environment.

The other four definitions explicitly state autonomy. But all definitions add some other

characteristics, among which interaction with the environment is mentioned by most.

Another identified feature is the property of the agent to perform specific tasks on

behalf of the user, coming thus to the original sense of the word agent, namely

someone acting on behalf of someone else.

One of the most comprehensive definitions of agents is the one given by

Wooldridge and Jennings (1995) in which an agent is:

• “ A hardware or (more usually) a software-based computer system that enjoys the

following properties: autonomy - agents operate without the direct intervention of

humans or others, and have some kind of control over their actions and internal

state; social ability - agents interact with other agents (and possibly humans) via

some kind of agent-communication language; reactivity: agents perceive their

environment and respond in a timely fashion to changes that occur in it; pro-

activeness: agents do not simply act in response to their environment, they are able

to exhibit goal-directed behavior by taking initiative.”

Social dimension: Comparing the definitions above, we may identify two main trends

in defining agents and agencies. Some researchers consider that we may talk and

 45

define an agent in isolation, while some others view agents mainly as entities acting in

a collectively of other agents, therefore the multi-agent system (MAS) paradigm. Even

if we stick to the single agent type of definition it is rather difficult to expect that an

agent will exist only as a stand alone entity and will not encounter other agents (be

they artificial or human) in its environment. Personal agents, or information agents,

which are not mainly supposed to collectively work to solve problems, will certainly

have much to gain if interacting with other agents and soon, with the wide spread of

agent technology, will not even be able achieve their tasks in isolation. Therefore, the

social dimension of an agent is one of its essential features.

Mobility: Some researchers consider mobility as being one of the characteristic

features of computational agents but mobility is an aspect connected mainly to

implementation or realization, for software agents and hardware ones, respectively,

and may be included in the capacities of interacting with the environment. [1]

4.2 INTELLIGENT AGENTS

Although almost all of the above characteristics of agents may be considered as

sharing something with intelligent behavior, researchers have tried to define a clear cut

between computational agents and intelligent agents, sliding in the world of agents the

much searched difference between programs and intelligent programs. From one point

of view, it is clear that, if in the design of an agent or multi-agent system, we use

methods and techniques specific to artificial intelligence then the agent may be

considered intelligent. For example, if the agent is able to learn from examples or if its

 46

internal representation is knowledge-based, we should see it as an intelligent agent. If

the agent has an explicit goal to pursue and it uses heuristics to select the best

operations necessary to achieve its goal, it then shares one specific feature of AI

programs and may be considered intelligent. But is this all that intelligence implies in

the world of artificial agents or did this new paradigm bring some new characteristics

to artificial intelligence?

To apply the model of human intelligence and human perspective of the world, it

is quite common in the community of artificial intelligence researchers to characterize

an intelligent agent using mentalistic notions such as knowledge, beliefs, intentions,

desires, choices, commitments, and obligation (Shoham, 1993). One of the most

important characteristics of intelligent agents is that they can be seen as intentional

systems, namely systems “whose behavior can be predicted by the method of

attributing belief, desires and rational acumen” (Dennett, 1987). As Shoham points

out, such a mentalistic or intentional view of agents is not just another invention of

computer scientists but is a useful paradigm for describing complex distributed

systems. The complexity of such a system or the fact that we can not know or predict

the internal structure of all components seems to imply that we must rely on animistic,

intentional explanation of system functioning and behavior. We thus come again to the

idea presented in the beginning: try to apply the model of human distributed activities

and behavior to our more and more complex computer-based artifacts.

4.3 CLASSIFICATION

 47

We could thus view the world of agents as being categorized as presented bellow:

 Cognitive agents

Computational agents ⊃ Intelligent agents

 Reactive agents

Among computational agents we may identify also a broad category of agents,

which are in fact nowadays the most popular ones, namely those that are generally

called software agents (or weak agents, as in Wooldridge and Jennings, 1995, to

differentiate them from the cognitive ones, corresponding to the strong notion of

agent): information agents and personal agents. An information agent is an agent that

has access to one or several sources of information, is able to collect, filter and select

relevant information on a subject and present this information to the user. Personal

agents or interface agents are agents that act as a kind of personal assistant to the user,

facilitating for him tedious tasks of email message filtering and classification, user

interaction with the operating system, management of daily activity scheduling, etc.

Last, but not least as predicted for the future, we should mention emotional

agents (called also believable agents). Such agents aim at further developing the

import of human-like features in computer programs, trying thus to simulate highly

specific human attributes such as emotions, altruism, creativity, giving thus the illusion

of life. Although at present they are mainly used in computer games and entertainment

in general, it is believed that such agent models might contribute at developing the

general concept of computational agents and further evolve our problem solving

capabilities.

 48

4.4 ACL

Multiagent systems (MAS) represent one of the most promising technological

paradigms for the development of distributed, open and intelligent software systems.

Moreover agent technology is beginning to be used to produce real solutions to real

business problems. However, typically agent based systems have been implemented

with adhoc solutions (communication languages, protocols, and so on) to meet the

specific requirements of the application. In this respect a need rises for standards

governing structure of and communication between heterogeneous agent communities.

Now the challenge is to have our agent talk to any other agent, not just to our own. The

obvious solution is a common language - ideally, all the agents that implement the

common language will be mutually intelligible. Such a common language needs an

unambiguous syntax, so the agents can all parse sentences the same way. It should

have a well-defined semantics or meaning, so the agents can all understand sentences

the same way. It should be well known, so different designers can implement it and so

it has a chance of encountering another agent who knows the same language. And it

should have the expressive power to communicate the kinds of things agents may need

to say to one another. This is a nontrivial list of requirements. Coming up with an

unambiguous syntax is the easiest. Being well known is not so much a technical as a

political requirement on a language— committees and consortia are expected to ensure

that their results will be widely adopted. Ensuring the expressive power of a language

is potentially very difficult, but a lot of good ideas can be borrowed from the study of

 49

human language. That leaves the question of meaning—this seems to be the most

difficult problem with the current ACLs. [4]

4.4.1 Overview of FIPA ACL

FIPA’s agent communication language, like KQML, is based on speech act

theory: messages are actions or communicative acts, as they are intended to perform

some action by virtue of being sent. The FIPA ACL specification consists of a set of

message types and the description of their pragmatics—that is, the effects on the

mental attitudes of the sender and receiver agents. The specification describes every

communicative act with both a narrative form and a formal semantics based on modal

logic. It also provides the normative description of a set of high-level interaction

protocols, including requesting an action, contract net, and several kinds of auctions.

FIPA ACL is superficially similar to KQML. Its syntax is identical to KQML’s

except for different names for some reserved primitives. Thus, it maintains the KQML

approach of separating the outer language from the inner language. The outer language

defines the intended meaning of the message; the inner, or content, language denotes

the expression to which the interlocutors’ beliefs, desires, and intentions, as described

by the meaning of the communication primitive, apply. KQML has been criticized for

using the term performative to refer to communication primitives. In FIPA ACL, the

communication primitives are called communicative acts, or CAs for short. Despite the

difference in naming, KQML performatives and FIPA ACL communicative acts are

the same kind of entity. The FIPA ACL specification document claims that FIPA ACL

(like KQML) does not make any commitment to a particular content language. This

 50

claim holds true for most primitives. However, to understand and process some FIPA

ACL primitives, receiving agents must have some understanding of Semantic

Language, or SL. [5] [7]

 51

CHAPTER 5

5 LITERATURE REVIEW

The convergence of computers and telecommunication has enhanced the

processing and transmission of information from one location to other on the globe.

The World Wide Web (WWW) popularized enormously the markup languages

(HTML primarily) that allow the file content to be enriched with additional meta-

information. The most important aspect of this meta-information is the connectivity

that a file maintains with other files that are related to it. This gave rise to the global

hyperlinked environment that exists over the Internet and that is typically referred to as

the WWW. The web started out supporting human interactions with textual data and

graphics. But text based web does not support software interactions very well,

especially transfers of large amount of data. Web service architectures build on

standardized taxonomies and vocabularies that exhibit little flexibility and

expressiveness restricts the usability of Web services mostly to human users rather

than machine agents. For the latter, one would need Web service description languages

that support semi-structured data, constraints, types and inheritance.

The Web is now evolving into a medium for providing a wide array of e-

commerce, business-to-business, business-to-consumer and other information based

services. Service-driven architectures promise a new paradigm providing an extremely

flexible approach for building complex information systems. However, at the current

moment, service architectures go little way beyond standardized remote procedure

 52

calls and textual directories to locate and describe a service provider based on human

intervention. But rapidly evolving and highly diversified world of information services

requires huge information processing capacity and service provision on the Internet

time scale. A critical prerequisite for distributed system technology to comply with the

new challenge is that it must be completely self-tuning with autonomous adaptation to

evolving workload with “zero” human administration. Clearly applications, executing

on behalf of providers and users, in such an environment have the following

requirements, which make obligatory to change the way currently the web is operating.

• Components that coordinate through negotiation in highly complex and

dynamic environment

• Resource availability on supply demand basis

• Visibility of services on large and public scale

Currently Web service technology around UDDI, WSDL, and SOAP does not

yet provide a mature technology. Elements need to be added around document

structures, semantics of data, business logics, message exchange sequences, and

formalization. Combining Ontology technology with workflow approaches is required

to enrich Web service technology enabling their use in mission-critical applications.

Mechanized support is needed in discovering services and their offer is required.

Currently, nearly all of this work is done manually which seriously hampers the

scalability of electronic commerce. A Web service discovery framework that goes

beyond simple key-word-based registration means providing full-fledged Semantic

Web-driven service discovery has to be defined based on approaches such as XML,

 53

XML Schema, RDF(S), DAML+OIL, and OWL. Bringing Web service for E-

commerce to its full potential requires a Peer-to-Peer (P2P) or Grid approach

combined with Semantic Web technology.

Web was originally designed to share information among small number of users

but now information services are becoming more mission critical as heavy loss may

result if the system does not provide required functionality and resources to achieve

QoS under changing conditions, such as changing workload. The system needs to

provide guaranteed quality of services at application levels, not at low level like

guaranteed packet delivery. A system is called a high-assurance system, when

heterogeneous and changing requirement levels of QoS are satisfied. Current

information service systems on the Internet do not provide guaranteed quality of

services, customization and situation based information services. There is urgent need

for new models for information services for e-commerce in the Internet. If the research

community fails to provide necessary technology and framework, the success of e-

commerce may be delayed or even may become questionable.

This fosters an urgent need to design an information service system with high-

assurance that provides information services to meet the above-mentioned

requirements. Autonomous distributed service system is a proposition made to cope

with heterogeneous and continuously changing needs of information processing,

service provision and utilization in dynamically evolving environment to meet these

requirements. The proposed distributed system architecture is based on synergy of

software agents integrated with Web services and Grid computing to bring high-

assurance of services through supply-demand basis.

 54

Grid computing has two aspects that make it differ from older meta-computing

and distributing computing efforts. One is the scale of the data handled. Other is the

use of computing sources and data sources that are not controlled by the user or his

organization. To achieve both, a dynamic way to define and use a computer or data

service is required. This is the goal of the OGSA effort. Similarly, data and resources

should be defined in a way that is understandable and usable by the target user

community. This is the goal of "ontologies", part of the Semantic Web effort.

Our vision of the integration of agents with Web services and Grid computing is

to lay foundation for a self-regulating system, for e-business realization. In

Autonomous Semantic Grid, Web services and Grid (OGSA) will provide an open

system for dynamic resource sharing and agents will be the provider or consumer of

resources while acting as proxy for humans (autonomy). Ontologies will bridge the

gap between agents and Grid by bringing semantics into Grid. The whole system will

build upon sheer trust among the entities i.e. (Service Providers and Service

consumers).

The concept that agents can be closely aligned with that of a Web service, is like

that an agent can be described as a Web service and discovered using a standard

mechanism such as UDDI. XSD is expressive enough to describe ontologies, and

through validation process, ontology-based pattern-matching can be implemented in

order to adapt UDDI to the sort of searching that is required to find an agent service.

Using WSDL gives the agent the ability to describe and to advertise its capabilities.

Agent Web service descriptions and its terms, which are expressed using ontologies as

a semantic enhancement to WSDL and UDDI, enable dynamic discovery and

 55

invocation of services by software through common terminology and shared meaning.

This is a vital property in an open system such as the Grid. We are working to look at

the orchestration of agent services and Grid services, based on workflow languages

such as WSFL and XLANG. This will allow us to study the suitability of WSDL for

describing semantically composable agent services. Such an orchestration activity can

make heavy usage of ontology based metadata about the quality of service offered by

agents, for which we consider formalisms such as OWL, DAML-S and RDF. The

integration of agent technology and ontologies with both Web and Grid services will

make significant impact on the use of services and the ability to extend programs to

more efficiently perform tasks for users with less human intervention.

Bringing Web services for e-commerce to its full potential requires a Peer-to-

Peer (P2P) or Grid approach combined with Semantic Web technology. Both Semantic

Web and Semantic Grid initiatives build heavily on the utilization of ontologies. In our

proposed architecture various computer programs would next depict from these

ontologies, the necessary knowledge in order to enable the most effective resource

sharing over a Grid. The integration of agent technology and ontologies can make

significant impact on the use of Web services or Grid services and the ability to extend

programs to more efficiently perform tasks for users with less human intervention. all

these technologies point up that unifying these research areas and bringing to fruition a

Web teaming with complex, "intelligent" agents is both promising and practical,

although a number of research challenges still remain. The pieces are coming together,

and thus, the Semantic Web and Semantic Grid of agents is no longer a science fiction

future. It is a practical application on which to focus current efforts.

 56

CHAPTER 6

6 SYSTEM ARCHITECTURE

6.1 ARCHITECTURAL COMPONENTS

6.1.1 DAML-S Matchmaker

The Matchmaker is also a Web service that helps make connections between

service requesters and service providers. The Matchmaker serves as a "yellow pages"

of service capabilities. The Matchmaker allows users and/or software agents to find

each other by providing a mechanism for registering service capabilities. Registration

information is stored as advertisements. When the Matchmaker agent receives a query

from a user or another software agent, it searches its dynamic database of

advertisements for agents that can fulfill the incoming request. Thus, the Matchmaker

also serves as a liaison between a service requester and a service provider.

Our DAML-S Matchmaker employs techniques from information retrieval, AI,

and software engineering to compute the syntactical and semantic similarity among

service capability descriptions. The matching engine of the matchmaking system

contains five different filters for namespace comparison, word frequency comparison,

ontology similarity matching, ontology subsumption matching, and constraint

matching. The user configures these filters to achieve the desired tradeoff between

performance and matching quality.

 57

6.1.2 DAML-S

Web services are defining a new paradigm for the Web in which a network of

computer programs becomes the consumers of information. The growing infrastructure

for Web services is based on SOAP and WSDL assumes XML as unifying language to

guarantee Web services interoperability. XML guarantees syntactic interoperability by

providing a standard for a common syntax that is shared across the Web, with the

result that Web services can parse each other message, verify whether they adhere to

the expected formats, and locate each piece of information within the message.

Unfortunately, the two Web services do not have any means to extract the meaning of

the messages exchanged. The two Web services are in the awkward position of

understanding the structure of each other message, but not understanding the content

of those messages. The limitation requires programmers to hardcode Web services

with information about their interaction partners, the messages that they exchange and

the interpretation of the messages that they receive. The result is a set of rigid Web

services that cannot reconfigure dynamically to adapt to changes without direct human

intervention.

Ideally, we would like Web services to act autonomously, to require the minimal

human intervention as possible. Web services should be able to register autonomously

with infrastructure Registries such as UDDI, in addition they should use the

infrastructure Registries to locate providers of services that they need, and finally, they

should be able to transact with these Web services sending them information formatted

in a way that they can understand, and be able to interpret the information that they

 58

receive as a response. Autonomous Web services not only minimize the human

intervention by automating interaction with other Web services, allowing programmers

to concentrate on application development, but also they should be able to recover

from failures more efficiently by automatically reconfiguring their interaction patterns.

For example, if one of their partners is failing or it is becoming unreliable, they may be

able to find other more reliable partners, similarly, if a new and cheaper, or anyway

better, provider comes on line, Web services should be able to switch to work with the

new provider.

Autonomous Web services need to be able to find partner Web services, in order

to do that they need to be able to describe and register their own capabilities with

public registries, as well as locate other Web services with specified capabilities.

Capability information is crucial for Web services to locate each other on the bases of

the services that they provide rather than on the bases of their name or of the name of

the company that deploy the Web service. In addition, a Web service should have

information on how to interact with the provider, which means that it should know the

interaction protocol of the provider, and binding information. Most crucially, this

information should allow the requesting Web services as well as the provider to

decode the information exchanged, so it should specify not only the format of the

messages to exchange or the remote procedures to call, but also the semantic type of

the information to exchange. This view is embraced by DAML-S which defines

DAML ontology for the description of Web services that attempts to bridge the gap

between an infrastructure of Web services based essentially on WSDL and SOAP, and

 59

the Semantic Web. In other words, DAML-S bridges the gap between the specification

of the format of the information to be exchanged and the specification of its meaning.

DAML-S assumes a view of Web services that is wildly shared in the

community. It assumes that a transaction between Web services involves at least three

parties: a provider of the service, a requester of the service, and some infrastructure

component such as UDDI that facilitates the location of the provider and possibly

facilitates the transaction between provider and requester. Furthermore, DAML-S

allows for a flexible assignment of roles in which a Web service can be both, a

provider in a transaction and a requester in another, and also it allows for a role switch

within the same transaction. DAML-S is constructed in three modules that provide a

description of different aspects of Web services. The first one, called Profile, is an

abstract description of the Web service and of the transformation it implements

described as a transformation from the inputs the Web service requires to the outputs it

generates. The second module is the Process Model that characterizes the Web service,

specifically; it describes the interaction flow with the Web service, what function is

produced by each step. The third module, called Grounding, specifies how the

input/outputs of each step are mapped on WSDL specifications of messages that the

two Web services exchange.

DAML-S provides all the information Web services need to interact on the Web.

DAML-S supports discovery by allowing Web services to describe their capabilities in

the Service Profile so that they can be matched with requests of capabilities. DAML-S

capability description and the capability matching, extends the UDDI registry allowing

Web services to register their own capabilities and to locate providers of the

 60

functionality they seek. Once the provider is located, the requesting agent can use the

Process Model and the Grounding to interact with the provider. The Process Model

describes the interaction workflow of the provider so the requester can derive what

information the provider needs at any given time. Through the Grounding the requester

compiles the messages to exchange with the provider.

6.1.3 Grid Index Service

Grid technologies enable large-scale sharing of resources within groups of

individuals and/or institutions. In these settings, the discovery, characterization, and

monitoring of resources, services, and computations are challenging problems due to

the considerable diversity, large numbers, dynamic behavior, and geographical

distribution of the entities in which a user might be interested. Consequently,

information services are a vital part of any Grid software or infrastructure, providing

fundamental mechanisms for discovery and monitoring, and hence for planning and

adapting application behavior.

The Globus Project is developing the fundamental technologies needed to build

these computational Grids. Globus research focuses not only on the issues associated

with building computational Grid infrastructures, but also on the problems that arise in

designing and developing Grid-based applications.

The Globus Project provides software tools that make it easier to build

computational Grids and Grid-based applications. These tools are collectively called

the Globus Toolkit. The Toolkit is used by many organizations to build computational

Grids that can support their applications.

 61

The composition of the Globus Toolkit can be pictured as the following three

pillars. Security is the foundation common to all three pillars.

The first pillar of the Globus Toolkit provides Resource Management, which

involves the allocation of Grid resources. It includes such packages as the Globus

Resource Allocation Manager (GRAM) and Globus Access to Secondary Storage

(GASS).

Figure 3: Composition of Globus Toolkit2

The second pillar of the Globus Toolkit is for Information Services, which

provide information about Grid resources and are the focus of this document. Such

services include the GT3 Index Service.

The third pillar of the Globus Toolkit is for Data Management, which involves

the ability to access and manage data in a Grid environment. This involves such

utilities as GridFTP and the Reliable File Transfer (RFT) service, which are used to

move files between Grid-enabled devices.

2 http://www.globus.org/ogsa/releases/final/docs/infosvcs/indexsvc_overview.html#ISandGT

 62

In the context of the Globus Toolkit, Information Services have the following

requirements:

• A basis for configuration and adaptation in heterogeneous environments

• Uniform, flexible access to static and dynamic information

• Scalable, efficient access to data

• Access to multiple information sources

• Decentralized maintenance

As part of this information infrastructure, the Index Service uses an extensible

framework for managing static and dynamic data for Grids built using the Globus

Toolkit 3.0. The functionality provided includes the following:

• Dynamic service data creation and management via Service Data Provider

programs

• Aggregation of service data from multiple instances

• Registration of Grid service instances

The Globus Toolkit 3.0 is based on Open Grid service Architecture (OGSA)

mechanisms. OGSA integrates Grid computing and Web services technologies by

using the Web services Description Language (WSDL) to achieve self-describing,

discoverable services and interoperable protocols, with extensions to support multiple

coordinated interfaces and change management. Within OGSA, everything is

represented as a Grid service: a Web service that provides a set of well-defined

interfaces and that follows specific conventions. The interfaces address discovery,

dynamic service creation, lifetime management, notification, and manageability; the

conventions address naming and upgradeability.

 63

These Grid services are not only a static set of persistent services; they can also

be transient service instances such as a query against a database, a data mining

operation, a network bandwidth allocation, a running data transfer, and an advance

reservation for processing capability. There may be one or more instances of a

particular Grid service.

6.1.3.1 Uses/Benefits of the Index Service

Each Grid service instance has a set of service data associated with it, and this

data is represented in a standardized way. There is also a standard operation for

retrieving this service data from individual Grid service instances, as well as standard

interfaces for registering information about Grid service instances.

Discovery often requires instance-specific, perhaps dynamic information.

Service data offers a general solution in that every service must support some common

service data, and may support any additional service data desired.

The Index Service does not beget specific data types. The types of data available

from the Index Service for queries instead depend on how the Service is configured;

that is, what sorts of Service Data Provider programs it uses to aggregate data.

The Index Service provides the following key capabilities:

• An interface for connecting external Service Data Provider programs to service

instances

The Index Service provides a standard mechanism for dynamic generation of service

data via external programs. These external provider programs can be the core

providers that are part of GT3 or user-created, custom providers.

 64

• A generic framework for aggregation of service data

Service data coming in from various Service Data Provider programs can be

aggregated in different ways and indexed to provide efficient query processing. The

Index Service also provides a standard mechanism for registration, polling, and

notification/subscription of service data.

• A Registry of Grid services

A set of available Grid services is maintained in a Registry. A Registry allows for

soft-state registration of Grid services, in that a set of services can be registered and

periodically updated as required. A Registry then can be used to support query or

other operations on a given service. [25]

6.2 ARCHITECTURE: CONCEPT AND DETAILS

6.2.1 Concept

The main concern of the information service system in the past has been to

efficiently retrieve from enormous repositories the relevant information for a particular

request. Due to the emergence of mission critical applications, such as e-commerce,

the main focus of our research on information service system is to provide high

assurance in information services to satisfy users’ and providers’ requirements as

outlined in the previous chapters. We abstract the system based on the following two

concepts: [22]

• Resources: The system can be viewed as a collection of resources. Resources may

be physical, such as hardware, networks, and logical resources such as software, a

piece of document and so on.

 65

• Services: Resources either individually or in combination of more than one resource

offer services.

In the system, we identify two co-existing active entities:

• Service Provider (SP) is the provider of services as well as resources as resources

are consumed as a service.

• User is the consumer of services and resources.

Service provider and user may be human, an organization or a software

component, which may poses negotiating capabilities. In order to provide high-

assurance of services in dynamically changing environment, the system needs to

assure functional as well as non-functional requirements i.e. QoS in continuously

evolving environment of the system.

Figure 4: Autonomous Semantic Grid

The abstraction of the system based on resources and services, and

conceptualizing providers and users as actors provides the foundation to meet the

 66

requirements of autonomous distributed service system, as will be made clear in the

section 6.2.3, on the system architecture. [22]

6.2.2 Synergy of Technologies

Grid computing has two aspects that make it differ from older meta-computing

and distributing computing efforts. One is the scale of the data handled. Other is the

use of computing sources and data sources that are not controlled by the user or his

organization. To achieve both, a dynamic way to define and use a computer or data

service is required. This is the goal of the OGSA effort. Similarly, data and resources

should be defined in a way that is understandable and usable by the target user

community. This is the goal of "ontologies", part of the Semantic Web effort.[22]

Our vision of the integration of agents with Web services and Grid computing is

to lay foundation for a self-regulating system, for e-business realization as shown in

Figure 3.

In Autonomous Semantic Grid, Web services and Grid (OGSA) will provide an

open system for dynamic resource sharing and agents will be the provider or consumer

of resources while acting as proxy for humans (autonomy). Ontologies will bridge the

gap between agents and Grid by bringing semantics into Grid. The whole system will

build upon sheer trust among the entities i.e. (Service Providers and Service

consumers).

The concept that agents can be closely aligned with that of a Web service, is like

that an agent can be described as a Web service and discovered using a standard

mechanism such as UDDI. XSD is expressive enough to describe ontologies, and

 67

through validation process, ontology-based pattern-matching can be implemented in

order to adapt UDDI to the sort of searching that is required to find an agent service.

Using WSDL gives the agent the ability to describe and to advertise its capabilities.

Agent Web service descriptions and its terms, which are expressed using ontologies as

a semantic enhancement to WSDL and UDDI, enable dynamic discovery and

invocation of services by software through common terminology and shared meaning.

This is a vital property in an open system such as the Grid. We are working to look at

the orchestration of agent services and Grid services, based on workflow languages

such as WSFL and XLANG. This will allow us to study the suitability of WSDL for

describing semantically composable agent services. Such an orchestration activity can

make heavy usage of ontology based metadata about the quality of service offered by

agents, for which we consider formalisms such as OWL, DAML-S and RDF. The

integration of agent technology and ontologies with both Web and Grid services will

make significant impact on the use of services and the ability to extend programs to

more efficiently perform tasks for users with less human intervention. [22]

6.2.3 Architectural Details

The system architecture approach attempts to identify key principles and layers

of abstractions for interactions between actors and resources to provide services on

supply demand basis to meet requirements. The system realization strategy builds on

and reuses as much of the architectural foundations in related standards and emerging

technologies as possible.

 68

Resource virtualization is the fundamental tenet that leads toward sharing of

resources on supply and demand basis. Providers willing to share resources use

mechanisms to publish them along with the terms of usage, and users discover the

required resources using some mechanism. Resources can be aggregated dynamically

to complete a task to provide a service. Alternatively the task may be executed in

distributed way on some resources, and then integrated into a single service, if

required. Consequently, software developer may not know at design time the type or

the number of nodes the application will execute on.

Inspired from Autonomous Decentralized System (ADS) concept, we define an

Autonomous Distributed Service System that assures continuous service provision and

utilization on supply-demand basis with the following two principles:

• Autonomy: active entities of the system are self-regulatory, and can manage their

behavior.

• Adaptability: system is capable to adapt itself in response to dynamic working

conditions.

In Autonomous Distributed Service System architecture both Web services and

Grid services would be described in such a way that agent can consume them while

exploiting their description. But some protocol transformations will be required in

order to make it possible for agents to communicate with Web or Grid services while

using SOAP, as a communication protocol. Likewise, agent services can be made

available in Web or Grid world by describing them through WSDL and their

ontologies by using XSD.

 69

Agent Platform

Figure 5: Autonomous Distributed Service System Architecture

The sole perception behind the availability of Web and Grid services in agent

world and agent services in Grid and Web environment (as shown in figure 1) is to

keep this architecture flexible and compatible up to a level where it can work with both

existing as well as emerging technologies. We have sought related areas that could

provide concepts, technology, and standards to reuse or adapt to Autonomous

Distributed Service Systems` realization. Web services, Grid computing, and Software

agents provide useful basis for the proposed system. [22]

DAML-S Matchmaker

SL/ACL

Service
Requestor
(Agent or

Web client)

Autonomous Service
Discovery/Invocation

Grid service

Web service

WSDL

Agent Services
SOAP

Indexing
Service

Communication
Module

DAML-S Matching
Engine

DAML-S/Index
Service Translator

Shared
Ontologies

Agent
Service

 70

CHAPTER 7

7 IMPLEMENTATION

7.1 PHASE I – BACKGROUND STUDY,
REQUIREMENTS IDENTIFICATION AND
SOLUTION

During this phase the following tasks were planned:

 Identification of requirements for future applications

 Problem areas

 What would be the possibilities for solution?

7.2 PHASE II – ARCHITECTURE

During the architecture phase various architectural components had been studied

in order to find the correct proposition which will full fill the requirements identified

in the previous phase. Detailed architecture and various architectural components are

already explained in Chapter 6.

7.3 PHASE III – FORMULATION OF METHODOLOGY

At the end of this phase a complete methodology for the project was formulated.

All the major tools and technologies were explored and on the basis of results a test

bed was formed. Details related to methodology will be covered in the following

chapter.

7.4 PHASE IV – TEST BED FORMATION

 71

During this phase different toolkits and platforms were configured in order to

provide a test bed for experiments. The tools, platforms and technologies which are

going to be used in experiments, are explained in Chapter 8.

7.5 PHASE V – INTEGRATION

Phase V was further divided into two sub-phases:

1. Integration of Agents and Web services

2. Integration of Agents and Grid services

7.5.1 Integration of Agents and Web services

The goal of this sub-phase was to somehow bridge the communication gap

between agent system and Web services. While Web services use the SOAP protocol

and agents use FIPA Agent communication language, it is important that some kind of

gateway will be provided in between that can interpret messages passed between

multi-agent and Web services world.

The first choice can be the implementation of SOAP-based calls in agents willing

to communicate with Web services but experience with this approach reveals that this

will increase the complexity of the code at client side and it will be difficult for a client

to communicate with several Web services.

Then a proxy agent was created by analyzing the WSDL interface provided by

the Web service and after deploying that agent in JADE platform it can accept client

agent requests to call a Web service, invokes the appropriate operation of the Web

service, and send the results back to client agent. Now the advantage with this

 72

approach is that instead of implementing SOAP calls, what client agent needs to do is,

to send an appropriate formed agent message to the agent wrapping the Web service.

7.5.2 Integration of Agents and Grid services

Integration of Agents with Grid services have never been done before. But with

OGSA, as discussed earlier that Web services standards have been integrated with

Grid computing, so it becomes obvious that if we can integrate Agents and Web

services then in principle integration of agents with Grid services is quite possible

using same tools and techniques. This was the hypothesis which was tested in this sub

phase.

Every Grid service is a Web service but reverse is not true as Grid service

implement some interfaces which provide them some capabilities like (factory service,

transient behavior, lifetime management etc) which Web services lack. Another thing

is current Web services conform to WSDL 1.1 standard, while Grid services use

GWSDL for Grid service description. But WSDL 1.2 will incorporate all the features

of GWSDL as well.

These issues made it slightly challenging to integrate Agents and Grid using the

same techniques which were used for Web services. But with slight manipulations,

careful observations and analysis of intermediate results, finally the objectives were

accomplished.

 73

CHAPTER 8

8 MATERIALS AND METHODS

8.1 APPROACH

Divide and conquer approach will be followed during the whole life cycle of the

project. As seen in previous section the whole project is divided and subdivided in

work packages and sub phases respectively. Experimentation will be carried out to test

our hypothesis and implementation will be done for the development of new tools and

application.

8.2 TOOLS

8.2.1 Apache-Axis

Apache Axis is an implementation of the SOAP ("Simple Object Access

Protocol"). SOAP is a lightweight protocol for exchange of information in a

decentralized, distributed environment. It is an XML based protocol that consists of

three parts: an envelope that defines a framework for describing what is in a message

and how to process it, a set of encoding rules for expressing instances of application-

defined data types, and a convention for representing remote procedure calls and

responses.

Axis is essentially a SOAP engine -- a framework for constructing SOAP

processors such as clients, servers, gateways, etc. The current version of Axis is

 74

written in Java, but a C++ implementation of the client side of Axis is being

developed. [29]

But Axis isn't just a SOAP engine -- it also includes:

• a simple stand-alone server,

• a server which plugs into servlet engines such as Tomcat, extensive support for

the Web service Description Language (WSDL)

• emitter tooling that generates Java classes from WSDL.

• some sample programs, and

• a tool for monitoring TCP/IP packets.

Axis now delivers the following key features:

• Speed. Axis uses SAX (event-based) parsing to achieve significantly greater

speed than earlier versions of Apache SOAP.

• Flexibility. The Axis architecture gives the developer complete freedom to

insert extensions into the engine for custom header processing, system

management, or anything else you can imagine.

• Stability. Axis defines a set of published interfaces which change relatively

slowly compared to the rest of Axis.

• Component-oriented deployment. You can easily define reusable networks of

Handlers to implement common patterns of processing for your applications, or

to distribute to partners.

• Transport framework. We have a clean and simple abstraction for designing

transports (i.e., senders and listeners for SOAP over various protocols such as

 75

SMTP, FTP, message-oriented middleware, etc), and the core of the engine is

completely transport-independent.

• WSDL support. Axis supports the Web service Description Language, version

1.1, which allows you to easily build stubs to access remote services, and also

to automatically export machine-readable descriptions of your deployed

services from Axis.

• extensive support for the Web service Description Language (WSDL)

• emitter tooling that generates Java classes from WSDL.

• some sample programs, and

• a tool for monitoring TCP/IP packets.

Axis now delivers the following key features:

• Speed. Axis uses SAX (event-based) parsing to achieve significantly greater

speed than earlier versions of Apache SOAP.

• Flexibility. The Axis architecture gives the developer complete freedom to

insert extensions into the engine for custom header processing, system

management, or anything else you can imagine.

• Stability. Axis defines a set of published interfaces which change relatively

slowly compared to the rest of Axis.

• Component-oriented deployment. You can easily define reusable networks of

Handlers to implement common patterns of processing for your applications, or

to distribute to partners.

• Transport framework. We have a clean and simple abstraction for designing

transports (i.e., senders and listeners for SOAP over various protocols such as

 76

SMTP, FTP, message-oriented middleware, etc), and the core of the engine is

completely transport-independent.

• WSDL support. Axis supports the Web service Description Language, version

1.1, which allows you to easily build stubs to access remote services, and also

to automatically export machine-readable descriptions of your deployed

services from Axis.

8.2.2 JAX-RPC

The Java API for XML-based RPC (JAX-RPC) enables Java technology

developers to develop SOAP based interoperable and portable Web services. JAX-

RPC provides the core API for developing and deploying Web services on the Java

platform. [30]

Developer Benefits

 Portable and interoperable Web services

 Ease of development of Web services endpoints and clients

 Increased developer productivity

 Support for open standards: XML, SOAP, and WSDL

 Standard API developed under Java Community Process

 Support for tools

 RPC programming model with support for attachments

 Support for SOAP message processing model and extensions

 Secure Web services

 Extensible type mapping

 77

Developers use the standard JAX-RPC programming model to develop SOAP

based Web service clients and endpoints. A Web service endpoint is described using a

Web services Description Language (WSDL) document. JAX-RPC enables JAX-RPC

clients to invoke Web services developed across heterogeneous platforms. In a similar

manner, JAX-RPC Web service endpoints can be invoked by heterogeneous clients.

JAX-RPC requires SOAP and WSDL standards for this cross-platform

interoperability. JAX-RPC is about Web services interoperability across heterogeneous

platforms and languages. This makes JAX-RPC a key technology for Web services

based integration.

JAX-RPC requires SOAP over HTTP for interoperability. JAX-RPC provides

support for SOAP message processing model through the SOAP message handler

functionality. This enables developers to build SOAP specific extensions to support

security, logging and any other facility based on the SOAP messaging. JAX-RPC uses

SAAJ API for SOAP message handlers. SAAJ provides a standard Java API for

constructing and manipulating SOAP messages with attachments. JAX-RPC provides

support for document based messaging. Using JAX-RPC, any MIME encoded content

can be carried as part of a SOAP message with attachments. This enables exchange of

XML document, images and other MIME types across Web services. JAX-RPC

supports HTTP level session management and SSL based security mechanisms. This

enables developers to develop secure Web services. More advanced SOAP message

level security will be addressed in the roadmap of JAX-RPC technology.

 78

8.2.3 OGSA, OGSI and Globus Toolkit 3

The Globus Toolkit is a software toolkit that allows us to program grid-based

applications. The third and latest version of the toolkit is based on something called

Grid services. Before defining Grid services, we're going to see how Grid services are

related to a lot of acronyms you've probably heard (OGSA, OGSI ...), but aren't quite

sure what they mean exactly. The following diagram summarizes the major players in

the Grid service world:

Figure 6: Relationship between OGSA, OGSI and GT33

Grid services are defined by OGSA. The Open Grid services Architecture

(OGSA) aims to define a new common and standard architecture for grid-based

applications. Right at the center of this new architecture is the concept of a Grid

service. OGSA defines what Grid services are, what they should be capable of, what

3 http://www.casa-sotomayor.net/gt3-tutorial/start/key/ogsa_ogsi.html

 79

types of technologies they should be based on, but doesn't give a technical and detailed

specification (which would be needed to implement a Grid service).

Grid services are specified by OGSI. The Open Grid services Infrastructure is a formal

and technical specification of the concepts described in OGSA, including Grid

services.

The Globus Toolkit 3 is an implementation of OGSI. GT3 is a usable

implementation of everything that is specified in OGSI (and, therefore, of everything

that is defined in OGSA).

Grid services are based on Web services. More specifically we can say that Grid

services are an extension of Web services. [28]

8.2.4 Agent Development Framework

JADE (Java Agent Development Framework) is a software framework fully

implemented in Java language. It simplifies the implementation of multi-agent systems

through a middle-ware that claims to comply with the FIPA specifications and through

a set of tools that supports the debugging and deployment phase. The agent platform

can be distributed across machines (which not even need to share the same OS) and the

configuration can be controlled via a remote GUI. The configuration can be even

changed at run-time by moving agents from one machine to another one, as and when

required. The only system requirement is the Java Run Time version 1.2.

The communication architecture offers flexible and efficient messaging, where

JADE creates and manages a queue of incoming ACL messages, private to each agent;

agents can access their queue via a combination of several modes: blocking, polling,

 80

timeout and pattern matching based. The full FIPA communication model has been

implemented and its components have been clearly distincted and fully integrated:

interaction protocols, envelope, ACL, content languages, encoding schemes,

Ontologies and, finally, transport protocols. The transport mechanism, in particular, is

like a chameleon because it adapts to each situation, by transparently choosing the best

available protocol. Java RMI, event-notification, and IIOP are currently used, but more

protocols can be easily added and integration of SMTP, HTTP and WAP has been

already scheduled. Most of the interaction protocols defined by FIPA are already

available and can be instantiated after defining the application-dependent behaviour of

each state of the protocol. SL and agent management ontology have been implemented

already, as well as the support for user-defined content languages and Ontologies that

can be implemented, registered with agents, and automatically used by the framework.

JADE has also been integrated with JESS, a Java shell of CLIPS, in order to exploit its

reasoning capabilities.

JADE is being used by a number of companies and academic groups, both

members and non-members of FIPA, such as BT, CNET, NHK, Imperial College,

IRST, KPN, University of Helsinky, INRIA, ATOS and many others. It has been

recently made available under Open Source License. [27]

 81

CHAPTER 9

9 RESULTS AND DISCUSSION

The results based on the prototype implementation of proposed system

architecture are listed:

1. WSDL (and GWSDL) are better than starting from an interface language (such

as Java or IDL). As they are semantically richer and offer more control.

2. WSDL is not rich enough to specify the semantics of the composition or of the

interaction protocol needed for composition. In contrast to WSDL, DAML-S,

rather than describing Web services in terms of their ports or the messages that

they receive, it describes the capabilities of Web services in terms of the

abstract function that they provide, their Process Model and the Grounding,

which describes how services interact. So, WSDL and DAML-S are

complementary to each other: DAML-S provides the abstract information

about composition of operations and information exchange, while WSDL

describes how such abstract information is mapped into actual messages and

how these messages are transmitted.

3. Service Data is a structured collection of information that can be associated to a

Grid service or a Web service; it facilitates the process of service discovery by

providing query support over it by the client. But while automating the process

of service discovery by entities like software agents, this service data cannot be

mapped and shared between two negotiating agents to provide context

 82

matching. So, ontologies should be used to define service characteristics like

that of DAML-S profile which provides both provenance and non-functional

information about a service and it can be mapped and shared as well.

4. The wrapper (proxy) agent approach for each web or Grid service is not a

scalable solution in long run. As it introduces extra overhead in terms of

communication traffic and SOAP calls. What would be ideal is that Agents and

their services can be made accessible through some global registry like Grid

Index Service. So, that they can communicate on the same level as Web or

Grid services are doing.

The Semantic Web should enable access not only to content but also to services

on web. Users and software agents should be able to invoke, discover, compose and

monitor web resources offering particular services and having particular properties.

OWL-S (former DAML-S) supplies Web service providers with a core set of markup

language constructs for describing the properties and capabilities of their Web services

in unambiguous, computer-interpretable form. OWL-S markup of Web services will

facilitate the automation of Web service tasks including automated Web service

discovery, execution, interoperation, composition and execution monitoring. The

extensibility elements of WSDL allow for a straightforward means of using OWL-S

and WSDL together. This, in turn, allows service developers to take advantage of the

complementary strengths of these two specification languages. [24]

OGSI is concerned primarily with creating, addressing, inspecting, and managing

the lifetime of stateful Grid services [Physiology]. The OGSI version 1.0 specification

[OGSI-Spec], released in July 2003, defines a Grid service to be a Web service that

 83

conforms to a set of conventions (interfaces and behaviors) that define how a client

interacts with a Grid service. These conventions and other OGSI mechanisms

associated with Grid service creation and discovery, provide for the controlled, fault

resilient, and secure management of the distributed and often long-lived state that is

commonly required in advanced distributed applications.

Since development started on OGSI in early 2002, the Web services world has

evolved significantly. Specifically, a number of new specifications and use patterns

have emerged that simplify and clarify the ideas expressed in OGSI. The following

briefly outlines this evolution.

WS-Addressing provides transport-neutral mechanisms to address Web services.

Specifically, WS-Addressing specification defines XML elements to identify Web

service endpoints and to include endpoint identification in messages. This specification

enables messaging systems to support message transmission through networks that

include processing nodes such as endpoint managers, firewalls, and gateways in a

transport-neutral manner. The end point reference information provides not only the

address of Web service itself, but can also serve to identify state instances “behind” the

service by using endpoint reference properties.

Although less central to the WS-Resource definition, WS-MetaDataExchange

provides a collection of mechanisms for obtaining information about a published

service, such as its WSDL description, XML Schema definitions and any other policy

information necessary to use the service.

Since WS-Addressing and WS-MetaDataExchange provide several capabilities

that are also defined OGSI, it is beneficial to exploit those Web services specifications

 84

rather than maintaining a specification that defines the same functionality

redundantly.[5]

 85

CHAPTER 10

10 FUTURE WORK

10.1 PHASE VI – UNIVERSAL ACCESSIBILITY

There are two sub-phases in Phase VI:

1. Tool Development for the description of Agent services using WSDL, so that

they can be published in any globally accessible registry mechanism, like Grid

Index Service.

2. Agents Service Discovery/Invocation through some globally accessible index

service like Grid Index Service using service Ontologies like DAML-S.

10.2 PHASE VII – AUTONOMY

Phase VII will be consisting two sub-phases:

1. Autonomous and Intelligent Agents can search Discover and Consume/Invoke

Web, Grid and Agent Services.

2. Integration of DAML-S match-maker module with UDDI.

10.3 PHASE VIII – APPLICATION DEVELOPMENT

Development of an application that require autonomous resource Discovery/Invocation

through negotiation, based on supply and demand in highly dynamic, heterogeneous

and resource intensive environments e.g. Human Genome Decoding.

 86

11 CONCLUSIONS

Grid computing is a promising emerging technology that is growing in

mindshare and relevance in both industry and society. But future Grid applications’

requirements enforce new architectures to be built on top of Grid e.g. bringing Web

services for e-commerce to its full potential requires a Peer-to-Peer (P2P) or Grid

approach combined with Semantic Web technology. Both Semantic Web and Semantic

Grid initiatives build heavily on the utilization of ontologies. In our proposed

architecture various computer programs would next depict from these ontologies, the

necessary knowledge in order to enable the most effective resource sharing over a

Grid. The integration of agent technology and ontologies can make significant impact

on the use of Web services or Grid services and the ability to extend programs to more

efficiently perform tasks for users with less human intervention. Our experience with

all these technologies point up that unifying these research areas and bringing to

fruition a Web teaming with complex, "intelligent" agents is both promising and

practical, although a number of research challenges still remain. The pieces are coming

together, and thus, the Semantic Web and Semantic Grid of agents is no longer a

science fiction future. It is a practical application on which to focus current efforts.

Nonetheless; in addition to ontologies, alternative methods must be developed, as

development and maintenance of ontologies is extremely complex and resource

consuming and ontologies suffer from problems related to the intrinsic complexity.

 87

12 REFERENCES

[1]. Introduction to Multi-Agent Systems, International Summer School on Multi-

Agent Systems, Bucharest, 1998, Adina Magda Florea, “Politehnica” University

of Bucharest, Email: adina@cs.pub.ro

[2]. A Web services Primer,, by Venu Vasudevan April 04, 2001

[3]. Michael N. Huhns, Munindar P. Singh, "Conversational Agents", IEEE Internet

Computing, March-April 1997, pp. 73-75.

[4]. J. Mayfield, Y. Labrou and T. Finin, "Desiderata for Agent Communication

Languages," in: Working Notes of the AAAI Spring Symposium Series, pp. 122-

127, Stanford University, 1995.

[5]. From Open Grid services Infrastructure to WSResource Framework: Refactoring

& Evolution, Version 1.0, 2/12/2004, Karl Czajkowski, Don Ferguson (IBM), Ian

Foster (Globus Alliance / Argonne National Laboratory), Jeff Frey (IBM), Steve

Graham (IBM), Tom Maguire (IBM), David Snelling (Fujitsu Laboratories of

Europe), Steve Tuecke (Globus Alliance / Argonne National Laboratory)

[6]. http://www.cs.umbc.edu/kqml/

[7]. http://www.cselt.it/fipa/

[8]. Tim Finin, Richard Fritzson, Don McKay and Robin McEntire, "KQML as An

Agent Communication Language ", Proceedings of the third international

conference on Information and knowledge management, 1994, Gaithersburg, MD

USA, pp. 456-463.

[9]. P Charlton, R. Cattoni, A. Potrich, and E. Mamdani, "Evaluating the FIPA

Standards and Its Role in Achieving Cooperation in Multi-agent Systems", Proc.

33rd Hawaii Int'l Conf. on System Sciences, HICSS-33, 2000, Maui, HI, USA.

[10]. Fabio Bellifemine, Giovanni Rimassa, and Agostino Poggi, "JADE - A FIPA-

compliant Agent Framework", The Fourth International Conference and

Exhibition on The Practical Application of Intelligent Agents and Multi-Agents

(PAAM99), 1999, London, UK.

[11]. Marian H. Nodine and Amy Unruh, "Constructing Robust Conversation

Policies in Dynamic Agent Communities", Third International Conference on

AUTONOMOUS AGENTS (Agents '99) Seattle, Washington, 1999.

 88

[12]. H. Dong, J.H. Ding, X. Li and J. Lu, "On Open Communication Frameworks

for Software Agents", Proc. of the Technology of Object-Oriented Languages and

Systems, 1998, Beijing, China.

[13]. Chelliah Thirunavukkarasu, Tim Finin, and James Mayfield, "Secret Agents -

A Security Architecture for KQML", in: Proc. ACM CIKM Intelligent Information

Agents Workshop, Baltimore, Maryland, USA, 1995.

[14]. James Mayfield and Tim Finin, "A security architecture for agent

communication languages", Fourth International Workshop on Agent Theories,

Architectures, and Languages, Providence, Rhode Island, USA, 1997.

[15]. Mundidar P. Singh, "Agent Communication Languages: Rethinking the

Principles", IEEE Computer, December, 1998, pp. 40-47.

[16]. P., Sadri, F., Toni, F., "Communicating Agents", Proc. International

Workshop on Multi-Agent Systems in Logic Programming, in conjunction with

ICLP'99, Las Cruces, New Mexico, 1999.

[17]. J.A. Pastor, T. S. Liebowitz., D.P. McKay, and R McEntire, "An architecture

for intelligent resource agents", Proceedings of the 2nd IFCIS International

Conference on Cooperative Information Systems (CoopIS '97), Kiawah Island, SC

,1997.

[18]. The Grid: An Application of the Semantic Web, Carole Goble Department of

Computer Science, University of Manchester, Oxford Road, Manchester, M13

9PL, UK, carole@cs.man.ac.uk, David De Roure, Dept of Electronics &

Computer Science, University of Southampton, Southampton, SO17 1BJ, UK

dder@ecs.soton.ac.uk

[19]. H. Farooq Ahmad, Kashif Iqbal, Naveed Baqir, Arshad Ali, Hiroki Suguri,

“Integration of Agents with Web services and Grid computing Environment”,

Proc. 9th Assurance System Symposium, pp. 65-71, June 2003, Tokyo, Japan.

[20]. H. Farooq Ahmad, Kashif Iqbal, Arshad Ali, Hiroki Suguri, “Autonomous

Distributed Service System: Basic Concepts and Evaluation”, Proc. The Second

International Workshop on Grid and Cooperative Computing, GCC 2003, pp. 432-

439, Shanghai, China.

[21]. Kashif Iqbal, Mobeena Jamshed, H. Farooq Ahmad, Arshad Ali, Hiroki

Suguri, “Integration of Agents with Web services and Grid Computing

 89

Environment: Design and Implementation”, International Workshop on Frontiers

of Information Technology, December 23-24, 2003, Islamabad, Pakistan.

[22]. Kashif Iqbal, H. Farooq Ahmad, Arshad Ali, Hiroki Suguri, Mobeena

Jamshed, “Autonomous Distributed Service System Implementation”, ADSN

2004, Tokyo, Japan.

[23]. Kashif Iqbal, H. Farooq Ahmad, Arshad Ali, “Autonomous Distributed

Service System: Concept, Architecture and Implementation”, GIKITech 2004,

Ghulam Ishaq Khan Institute, Topi, Pakistan.

[24]. Describing Web services using OWL-S and WSDL, DAML-S Coalition

working document; October 2003, David Martin, Mark Burstein, Ora Lassila,

Massimo Paolucci, Terry Payne, Sheila McIlraith

[25]. http://www.globus.org/ogsa/releases/final/docs/infosvcs/indexsvc_overview.ht

ml

[26]. WSDL2JADE TOOL, http://sas.ilab.sztaki.hu:8080/wsdl2jade/index.html

[27]. JADE, Java Agent Development Framework,

http://sharon.cselt.it/projects/jade

[28]. Globus Toolkit 3, Programmers’ Tutorial, http://www.casa-sotomayor.net/gt3-

tutorial/

[29]. Apache-axis, http://ws.apache.org/axis/

[30]. JAX-RPC, http://java.sun.com/xml/downloads/jaxrpc.html

[31]. http://www.developer.com/design/article.php/10925_1010451_1

[32]. Foster, I., Kesselman, C., Nick, J. and Tueske, S., “The Physiology of the

Grid: An Open Grid services Architecture for Distributed Systems Integration”,

Globus, Project, www.globus.org/research/papers/ogsa.pdf (2002).

[33]. http://www.semanticgrid.org/documents/sigmod/ami9.pdf

[34]. Foster, I., Kesselman, C., Nick, J. and Tueske, S., “The Physiology of the

Grid: An Open Grid services Architecture for Distributed Systems Integration”,

Globus, Project, www.globus.org/research/papers/ogsa.pdf (2002).

[35]. http://www.w3.org/SOAP

[36]. http://www.w3.org//WSDL1.1

[37]. http://www.UDDI.org

 90

13 APPENDIX

13.1 PUBLICATIONS

 H. Farooq Ahmad, Kashif Iqbal, Naveed Baqir, Arshad Ali, Hiroki Suguri,

“Integration of Agents with Web services and Grid computing Environment”,

Proc. 9th Assurance System Symposium, pp. 65-71, June 2003, Tokyo, Japan.

 H. Farooq Ahmad, Kashif Iqbal, Arshad Ali, Hiroki Suguri, “Autonomous

Distributed Service System: Basic Concepts and Evaluation”, Proc. The

Second International Workshop on Grid and Cooperative Computing, GCC

2003, pp. 432-439, Shanghai, China.

 Kashif Iqbal, Mobeena Jamshed, H. Farooq Ahmad, Arshad Ali, Hiroki Suguri,

“Integration of Agents with Web services and Grid Computing Environment:

Design and Implementation”, International Workshop on Frontiers of

Information Technology, December 23-24, 2003, Islamabad, Pakistan.

 Kashif Iqbal, H. Farooq Ahmad, Arshad Ali, Hiroki Suguri, Mobeena Jamshed,

“Autonomous Distributed Service System Implementation”, ADSN 2004,

Tokyo, Japan.

 Kashif Iqbal, H. Farooq Ahmad, Arshad Ali, “Autonomous Distributed Service

System: Concept, Architecture and Implementation”, GIKITech 2004, Ghulam

Ishaq Khan Institute, Topi, Pakistan.

 91

13.2 TUTORIALS AND GUIDES:

 Apache-axis Installation Guide

 JWSDP Tutorial

 GT3 Tutorial

