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ABSTRACT

Malicious portable executables (PE) pose a significant threat to Microsoft

Windows operating systems. State-of-the-art antivirus software detect the mali-

cious PE files using signature-based approaches or manually generated heuristics.

However, the size of signature database, the signature matching overhead and the

cost of manual heuristic generation cannot scale with an exponential increase in

the number of malicious PE files. In this work we present a data mining approach

to automatically extract distinguishing features and classify unseen malicious PE

files. The distinguishing features are extracted using the structural information

provided in the standard PE file format for executables, DLLs and object files

used in Microsoft Windows operating systems. The eventual classification is per-

formed using well-known data mining algorithms. Our executable classification

methodology is twofold; firstly we classify benign and malicious executables and

secondly we classify malicious executables as a function of their payload. We eval-

uated PE-Miner on two malware collections, VX Heavens dataset and Malfease

dataset, that contain 11 thousand and 5 thousand malicious PE files respectively.

The results of our experiments show that PE-Miner achieves more than 99% de-

tection rate with less than 0.5% false alarm rate for distinguishing between the

benign and malicious executables. Furthermore, it achieves an average detection

rate of 90% with an average false alarm rate of less than 5% for categorizing the

malicious executables as a function of their payload. It is important to emphasize

that PE-Miner has low processing overheads and takes only 0.244 seconds on the

average to scan a given PE file.
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CHAPTER 1

INTRODUCTION

A number of non-signature based malware detection techniques have been

proposed recently. These techniques mostly use heuristic analysis, or behavior

analysis or a combination of both to detect malware. Such techniques are being

actively investigated because of their ability to detect zero-day malware without

any a priori knowledge about them. Some of them have been even integrated

into the existing Commercial Off the Shelf Anti Virus (COTS AV) products, but

achieved only limited success [4], [5]. The most important shortcoming of these

techniques is that they are not realtime deployable1. We, therefore, believe that the

domain of realtime deployable non-signature based malware detection techniques

is still open to novel research.

Non-signature based malware detection techniques are primarily criticized be-

cause of two inherent problems: (1) high fp rate, and (2) large processing over-

heads. Consequently, COTS AV products mostly utilize signature based detection

schemes that provide low fp rate and have acceptable processing overheads. But

it is a well-known fact that signature based malware detection schemes are unable

to detect zero-day malware. We cite two reports to highlight the alarming rate at

which new malware is proliferating. The first report is by Symantec that shows an

increase of 468% in the number of malware from 2006 to 2007 [6]. The second re-

port shows that the number of malware produced in 2007 alone was more than the

total number of malware produced in the last 20 years [7]. These surveys suggest

that signature based techniques cannot keep abreast with the security challenges

1We define a technique as realtime deployable if it has three properties: (1) a tp rate of
approximately 1, (2) an fp rate of approximately 0, and (3) the file scanning time is comparable
to existing COTS AV.
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of the new millennium because not only the size of the signatures’ database will

exponentially increase but also the time of matching signatures. These bottlenecks

are even more relevant on resource constrained smart phones and mobile devices

[8]. We, therefore, envision that in near future signature based malware detection

schemes will not be able to meet the criterion of realtime deployable as well.

We argue that a malware detection scheme which is realtime deployable should

use an intelligent but simple static analysis technique. In this work we propose

a framework, called PE-Miner, which uses novel structural features to efficiently

detect malicious PE files. PE is a file format which is standardized by the Microsoft

Windows operating systems for executables, dynamically linked libraries (DLL)

and object files. We follow a threefold research methodology in our static analysis:

(1) identify a set of structural features for PE files, which is computable in realtime,

(2) use an efficient preprocessor for removing redundancy in the features’ set, and

(3) select an efficient data mining algorithm for final classification. Consequently,

our proposed framework consists of three modules, the feature extraction module,

the feature selection/preprocessing module, and the detection module inline with

above-mentioned research methodology.

We have evaluated our proposed detection framework on two independently

collected malware datasets with different statistics. The first malware dataset is

the VX Heavens Virus collection consisting of more than ten thousand malicious

PE files [9]. The second malware dataset is the Malfease dataset, which contains

more than five thousand malicious PE files [10]. We also collected more than one

thousand benign PE files from our lab, which we use in conjunction with both

malware datasets in our study. The results of our experiments show that our

PE-miner framework achieves more than 99% detection rate with less than 0.5%

false alarm rate for distinguishing between the benign and malicious executables.
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Further, our framework takes on average only 0.244 seconds to scan a given PE file.

Therefore, we can conclude that our proposed PE-Miner is realtime deployable, and

consequently it can be easily integrated into existing COTS AV products.

Remember that PE-Miner framework can also categorize the malicious exe-

cutables as a function of their payload. This analysis is of great value for system

administrators and malware forensic experts. PE-Miner achieves a detection rate

of 90% with an average false alarm rate of less than 5% for categorizing the mali-

cious executables as a function of their payload.

We have also compared PE-Miner with other promising malware detection

schemes proposed by Perdisci et al [1], Schultz et al [2] and Kolter et al [3]. These

techniques use some variation of n-gram analysis for malware detection. PE-Miner

provides better detection accuracy2 with significantly smaller processing overheads

compared with these approaches. We believe that the superior performance of PE-

Miner is attributable to a rich set of novel PE format specific structural features,

which provides relevant information for better detection accuracy [12]. In compar-

ison, n-gram based techniques are more suitable for classification of loosely struc-

tured data, therefore, they fail to exploit format specific structural information of

a PE file. As a result, they provide lower detection rates and higher processing

overheads as compared to PE-Miner.

The remaining thesis is organized as follows. In Chapter 2, we discuss the

architecture of our proposed framework. In Chapter 3, we briefly explain the

work that has been done in malware detection and in Chapter 4, we discuss the

techniques closely related with our proposed approach. In Chapter 5 we present

description and statistics of the executable datasets used in our study. Chapter 6

2Throughout this text, the terms detection accuracy and Area Under ROC Curve (AUC) are
used interchangeably. The AUC (0 ≤ AUC ≤ 1) is used as a yardstick to determine the detection
accuracy. Higher values of AUC mean high tp rate and low fp rate [11]. At AUC = 1, tp rate
= 1 and fp rate = 0.

3



contains the discussion on the results of our experiments, evaluation of our scheme

on cross datasets, and describe the limitations of PE-Miner and potential solutions.

We finally conclude the thesis in Chapter 7, with an outlook of our future work.
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CHAPTER 2

PROPOSED FRAMEWORK

In this chapter we discuss our proposed PE-Miner framework. We set the fol-

lowing strict requirements on our PE-Miner framework to ensure that our research

is enacted with a product development cycle that has a short time-to-market:

• It must be a pure non-signature based framework with an ability to detect

zero-day malicious PE files. Moreover, it should have the nice-to-have feature

of categorizing malware as a function of their payload.

• It must be realtime deployable. To this end, we say that it should have more

than 99% tp rate and less than 1% fp rate. We argue that it is still a challenge

for non-signature based techniques to achieve these true and false positive

rates. Moreover, its time to scan a PE file must be comparable to those of

existing COTS AV products.

• Its design must be modular that allows for the plug-n-play design philosophy.

This feature will be useful in customizing the detection framework to specific

requirements, such as porting it to the file formats used by other operating

systems

We have evolved the final modular architecture of our PE-Miner framework

in a systematic questioned oriented engineering fashion. In our research, we raised

following relevant questions, analyzed their potential solutions and finally selected

the best one through extensive empirical studies.

1. Which PE format specific features can be statically extracted from PE files

to distinguish between benign and malicious files? Moreover, are the format

5



Figure 1. The architecture of our PE-Miner framework

specific features better than the existing n-grams or string-based features in

terms of detection accuracy and efficiency?

2. Do we need to deploy preprocessors on the features’ set? If yes then which

preprocessors are best suited for the raw features’ set?

3. Which are the best back-end classification algorithms in terms of detection

accuracy and processing overheads.

Our PE-Miner framework consists of three main modules inline with the

above-mentioned vision: (1) feature extraction, (2) feature preprocessing, and (3)

classification (see Figure 1). We now discuss each module separately.

2.1 Feature Extraction

Let us revisit the PE file format [13] before we start discussing the structural

features used in our features’ set. A PE file consists of a PE file header, a section

table (section headers) followed by the sections’ data. The PE file header consists

of a MS DOS stub, a PE file signature, a COFF (Common Object File Format)

header and an optional header. It contains important information about a file

such as the number of sections, the size of the stack and the heap, etc. The section

6



Figure 2. The PE file format

table contains important information about the sections that follow it, such as

their name, offset and size. These sections contain the actual data such as code,

initialized data, exports, imports and resources [13], [14].

Figure 2 shows an overview of the PE file format [13], [14]. It is important

to note that the section table contains Relative Virtual Addresses (RVAs) and the

pointers to the start of every section. On the other hand, the data directories

in optional header contain references to various tables (such as import, export,

resource, etc.) present in different sections. These references, if appropriately

analyzed, can provide useful information.

We believe that this structural information about a PE file should be leveraged

to extract features that have the potential to achieve our primary and secondary

objectives. Using this principle, we statically extract a set of large number of fea-

7



Table 1. List of the features extracted from PE files
Feature Description Type Quantity

DLLs referred binary 73
COFF file header integer 7

Optional header – standard fields integer 9
Optional header – Windows specific fields integer 22

Optional header – data directories integer 30
.text section – header fields integer 9
.data section – header fields integer 9
.rsrc section – header fields integer 9

Resource directory table & resources integer 21

Total 189

tures from a given PE file1. These features are summarized in Table 12. In the

discussion below, we first intuitively argue about the features that have the poten-

tial to distinguish between benign and malicious files. We then show interesting

observations derived from the executable datasets used in our empirical studies.

DLLs referred. The list of DLLs referred in an executable effectively

provides an overview of its functionality. For example, if an executable calls

WINSOCK.DLL or WSOCK.DLL then it is expected to perform network related activi-

ties. However, there can be exceptions to this assumption as well. In [2], Schultz et

al have used the conjunction of DLL names, with a similar functionality, as binary

features. The results of their experiments show that this feature helps to attain

reasonable detection accuracy. However, our pilot experimental studies have re-

vealed that using them as individual binary features can reveal more information,

and hence can be more helpful in detecting malicious PE files. In this study, we

have used 73 core functionality DLLs as features. Table 2 shows the mean feature

values for the two DLLs. Interestingly, WSOCK32.DLL and WININET.DLL are used by

a majority of backdoors, nukers, flooders, hacktools, worms and trojans to access

the resources on the network and the Internet. Therefore, the applications mis-

1A well-known Microsoft Visual C++ utility, called dumpbin, dumps the relevant information
which is present inside a given PE file [15]. Another freely available utility, called pedump, also
does the required task [16].

2The details of the datasets and their categorization are available in chapter 5.
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using these DLLs might provide a strong indication of a possible covert network

activity.

COFF file header. The COFF file header contains important information

such as the type of the machine for which the file is intended, the nature of the file

(DLL, EXE, or OBJ etc.), the number of sections and the number of symbols. It is

interesting to note in Table 2 that a reasonable number of symbols are present in

benign executables. The malicious executables, however, either contain too many

or too few symbols.

Optional header: standard fields. The interesting information in the

standard fields of the optional header include the linker version used to create an

executable, the size of the code, the size of the initialized data, the size of the

uninitialized data and the address of the entry point. Table 2 shows that the

values of major linker version and the size of the initialized data have a significant

difference in the benign and malicious executables. The size of the initialized

data in benign executables is usually significantly higher compared to those of the

malicious executables.

Optional header: Windows specific fields. The Windows specific fields

of the optional header include information about the operating system version, the

image version, the checksum, the size of the stack and the heap. It can be seen

in Table 2 that the values of fields such as the major image version, the checksum

and the DLL characteristics are usually set to zero in the malicious executables.

In comparison, their values are significantly higher in the benign executables.

Optional header: data directories. The data directories of the optional

header provide pointers to the actual data present in the sections following it. It

includes the information about export, import, resource, exception, debug, cer-

tificate and base relocation tables. Therefore, it effectively provides a summary
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of the contents of an executable. Table 2 highlights that the size of the export

table is higher for the benign executables and nukers as compared to those of

other malicious executables. Another interesting observation in Table 2 is that the

backdoors, flooders, worms and trojans mostly have a bigger import table size. It

can be intuitively argued that they usually import network functionalities which

increases the size of their import table. The size of the resource table, on the other

hand, is higher for the benign executables as compared to those of the malicious

executables. The exception table is mostly absent in the malicious executables.

Section headers. The section headers provide important characteristics of

a section such as its address, size, number of relocations and line numbers. In this

study, we have only considered text, data and resource sections because they are

commonly present in the executables. Note that the size of the .data section (if

present) is relatively higher for the benign executables.

Resource directory table & resources. The resource directory table pro-

vides an overview of the resources that are present in the resource section of an

executable file. We consider the actual count of various types of resources that

are present in the resource section of an executable file. The typical examples of

resources include cursors, bitmaps, icons, menus, dialogs, fonts, group cursors and

user defined resources. Intuitively and as shown in Table 2, the number of these

resources is relatively higher for the benign executables.

2.2 Feature Selection/Preprocessing

We have now identified our features’ set that consists of a number of statically

computable features (189 to be precise) based on the structural information of the

PE files. It is possible that some of the features might not convey useful information

in a particular scenario, therefore, it makes sense to remove or combine them with

other similar features to reduce the dimensionality of our input feature space.
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Moreover, this preprocessing on the raw extracted features’ set also reduces the

processing overheads in training and testing of classifiers, and can possibly also

improve the detection accuracy of classifiers. In this study, we have used three well-

known features’ selection/preprocessing filters. We provide their short descriptions

in the following text. More details can be found in [17].

2.2.1 Redundant Feature Removal (RFR)

We apply this filter to remove those features that do not vary at all or show

significantly large variation i.e. they have approximately uniform-random behav-

ior. Consequently, this filter removes all features that have either constant values

or show a variance above a threshold or both. In our framework, we set this

threshold parameter at 0.99.

2.2.2 Principal Component Analysis (PCA)

We apply PCA filter to remove/combine correlated features for dimensionality

reduction. A relevant parameter present in most implementations of PCA is the

variance covered. This parameter determines the minimum number of principal

components required to cover the given variance. In this study, we set this param-

eter to be 0.95. We have set a conservative value for this parameter to avoid loss

of any important information that may later become useful in classification.

2.2.3 Haar Wavelet Transform (HWT)

The wavelet transform has also been used for dimensionality reduction. The

wavelet transform technique has been extensively used in the image compression

but is never evaluated in the malware detection domain. The Haar wavelet is one of

the simplest wavelets and is known to provide reasonable accuracy. The application

of Haar wavelet transform requires the data to be normalized. Therefore, we have

passed the data through normalize filter before applying HWT.
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2.3 Classification

Once the dimensionality of the input features’ set is reduced by applying

one of the above-mentioned preprocessing filters, it is given as an input to the

well-known data mining algorithms for classification. Most of these algorithms

require a training and testing phase. In this study we have used five classifiers:

(1) instance based learner (IBk) [18], (2) decision tree (J48) [19], (3) Näıve Bayes

[20], (4) inductive rule learner (RIPPER) [21], and (5) support vector machines

using sequential minimal optimization (SMO) [22]. We use the implementations of

following classification algorithms which are available in Wakaito Environment for

Knowledge Acquisition (WEKA) [17]. We provide their brief overview as follows:

2.3.1 Instance Based Learner (IBk)

The instance based classifier (IBk) is the simplest of all algorithms used in

our comparative study. The classification is done on the basis of a majority vote of

k neighboring instances [18]. In our study, we use default parameters for instance

based classifier (IBk) implemented in WEKA. We use the value of k as 5 and the

window size is set to be 0 allowing maximum number of instances in the training

pool with no replacements. We have not used distance weighting method. No

internal cross validation is used in the algorithm to determine the value of k.

2.3.2 Decision Tree (J48)

Decision trees are usually used to map observations about an item to con-

clusions about the item’s target value using some predictive models [19]. They

are very easy to understand and are efficient in terms of time especially on large

datasets. They can be applied on both numerical and categorical data, and statis-

tical validation of the results is also possible.

We use C4.5 decision tree (J48) that is implemented in WEKA. We use the
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default parameters for J48. We do not utilize binary splits on nominal attributes

for building trees because all of our selected features are numeric except the class

labels. The confidence factor for pruning is set to 0.25, where lower values lead to

more pruning. The minimum number of instance per leaf equals 2. The number

of folds of training data is set to 3, where one fold is used for pruning and the rest

are used for growing the tree.

2.3.3 Näıve Bayes (NB)

Näıve Bayes is a simple probabilistic classifier assuming näıve independence

among the features i.e. the presence or absence of a feature does not affect any

other feature [20]. The algorithm works effectively and efficiently when trained in a

supervised learning environment. Due to its inherent simple structure it often gives

very good performance in complex real world scenarios. The maximum likelihood

technique is used for parameter estimation of Näıve Bayes models.

We use the default parameters for Näıve Bayes in WEKA. We neither use

kernel estimator functions nor numeric attributes for supervised discretization that

converts numeric attributes to nominal ones.

2.3.4 Inductive Rule Learner (RIPPER)

We also use a propositional rule learner, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), proposed by William W. Cohen as an opti-

mization of IREP [21]. We chose rule based learners due to their inherent simplicity

that results in a better understanding of their learner model. RIPPER, performs

quite efficiently on large noisy datasets with hundreds of thousands of examples.

It caters for missing attributes, numerical variables and multiple classes. The al-

gorithm works by initially making a detection model composed of rules which are

improved iteratively using different heuristic techniques. The constructed rule set
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is used to classify the test cases.

We use default parameters for RIPPER in WEKA. The training set is divided

into 3 types, one is used for pruning and the rest are used for growing the rules.

The minimum total weight of the instances in the rule is 2. The optimization of

the rule set is done twice.

2.3.5 Support Vector Machines using Sequential Minimal Optimiza-
tion (SMO)

The concept of Support Vector Machine (SVM), invented by Vladimir Vapnik,

in its simplest form aims to develop a hyperplane that separates a set of positive

samples from a set of negative samples with a maximum margin [22]. For lin-

ear separability of the problem space, SVMs use a kernel function for mapping

training data to a higher-dimensional space. It is a quadratic programming (QP)

problem, which can be very time consuming on larges dataset like ours. However,

we are using SMO (Sequential Minimal Optimization) which is a fast and efficient

SVM training algorithm implemented in WEKA [22]. It breaks the QP problem

into smaller subsets which are later solved analytically reducing the processing

overheads.

We use the default parameters for SMO in WEKA with a linear kernel. The

complexity parameter is set at 1. The threshold on round-off error is set to 10−12.

We are using training data to generate a logistic model. The tolerance parameter

for the experiments is set at 0.0010.
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CHAPTER 3

BACKGROUND STUDIES

Malware detection has been one of the most important research area in infor-

mation security recently. A lot of work has been done in order to cater for this

problem [[2], [3], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],

[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47]]. The research done in

this field can be broadly divided in 2 sub categories based on the technique and

methodology used to detect malware i.e, anomaly based detection and signature

based detection. Anomaly based detection is done on the basis of deviation from

the learned normal or benign model. Another kind of anomaly based detection is

specification based detection in which there is some rule set or specification which

is considered as valid behavior. The programs which does not follow the rule set

or specification are deemed as malicious and vice versa. The other subcategory

of malware detection is signature based detection, which uses signature or exact

snippets of bytes for the detection of malicious files. This characterization is the

key to signature based detection and the main limitation to it as well.

The Figure 3 shows the hierarchy of the malware detection techniques. These

techniques are further divided into three sub-categories on the basis of their ap-

proaches, i.e. static, dynamic and hybrid. Static approach analyzes the structural

features and syntax of the program for example exact byte values in the file. Dy-

namic approach analyzes the run time information of the program for example the

API calls it is requesting. Hybrid approaches combine both the static and dynamic

analysis for malware detection.

We shall briefly explain the sub-categories for host based malware detection

and some of the literature work as their examples. Quite a lot of work has been
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Figure 3. Malware Detection System

done in specification based detection, so although it is a part of anomaly based

detection we are explaining it separately.

3.1 Anomaly based detection

Anomaly based detection system is a system for detecting anomalies by an-

alyzing system activity and classifying it as either normal or anomalous. The

classification is based on heuristics or rules, rather than patterns or signatures,

and will detect any type of misuse that falls out of normal system operation.

There are two phases in an anomaly based approach, training phase and testing

phase. In training phase, a normal or a benign model is constructed using the

normal samples, while in testing phase, the suspicious samples are classified as

malicious if they deviate from the normal model obtained from the training and

vice versa. The main advantage of the anomaly based detection is their ability to

detect zero-day malware, as they learn the behavior rather than the exact byte
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values of malware. However, the high false alarm rate associated with these sys-

tems can not be ignored, as well as the learning of what specific features to use

in the model is an important consideration. The selection of features/behaviors is

the basis of the numerous approaches that have been proposed in the literature.

3.1.1 Static anomaly based detection

Static anomaly based detection system leverage structural characteristics and

properties of the program under observation to detect malware. The main advan-

tage of static analysis is that the malware does not get the chance to execute.

Christopher et al. [35]

Current system call pattern based intrusion detection systems have become

highly sophisticated. This includes checking the value of the PC. This makes the

job of the attacker harder. However, mimicry attacks which are exploits carefully

crafted with valid sequence of system calls, can deceive these systems. One way

of countering this is to validate return addresses on the call stack. This only

allows the attacker’s code to execute one system call before it loses control. For

the attacker’s code to regain control after a system call the attacker can change

the function pointer to a library function or influence the application to alter the

return address of a function. This however requires a complex static analysis of

the application binary. This is made easy by ’Symbolic Execution’. The execution

state and path constraints are used with the goal of finding memory instructions

that can be used to return control to the attacker’s code. Three real life applications

apache2, ftpd, and imapd were analyzed with a success rate of about 85%.

Lakhotia et al. [38]

The approach to verifying virus and worm binaries uses a combination of

techniques from the reverse engineering and model checking domains. A malicious
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program behavior is characterized using predicates. A predicate is a Boolean

outcome of abstract action present in a worm or virus program. An action is a

sequence of one or more function/system calls, in a program, connected through a

flow relationship. The authors have introduced the term organ for the functional

elements of a malicious code, which according to them are; survey, concealment,

propagation, injection, self identification.

The authors use Model Checking technique to match a sample of malicious

code with a supplied behavior. The prime advantage of using an established tech-

nique is efficiency and ease of use. Another advantage this approach has is that

it takes a malicious code and a behavioral pattern to be matched. This allows

the technique to be implemented as both signature matching and non signature

matching scheme. If the behavioral pattern is generated using a virus signature the

technique becomes a signature based scheme. Whereas if the patterns are generic

and represent the general behavior of malicious code, then they this technique can

be used as a non-signature based scheme.

3.1.2 Dynamic anomaly based detection

The dynamic anomaly based detection learns the normal run time behavior

of programs in the training phase. The behavior of any program which deviates

from this normal model is deemed as anomalous or malicious. The literature work

done in dynamic anomaly based malware detection is briefly explained as follows:

Sekar et al. [37]

This paper aims to develop an anomaly based intrusion detection system. This

system works by learning the sequence of system calls called by the programs under

scrutiny, a compact finite state automaton (FSA) is developed for the sequence

of the system calls for capturing normal behaviors. After that each program is
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dynamically analyzed on the basis of the FSA already developed and according to

that analysis it is termed as malicious or normal. The novel approach adopted by

the authors is the method to develop a compact FSA which can not only take less

space but also capture much more information about program structures such as

branches, loops etc. This method also takes less time and computation costs to

develop an FSA and also to perform matching operations. This is achieved by not

only capturing the system calls called by the programs but also the locations from

where they are called.

The idea presented in this paper is simple and can be implemented with less

computation, time, and space costs as compared to other similar methods e.g.

other FSA based and N-gram Based ID methods. It also gives a high convergence

and low false positive rates as compared to the above mentioned approaches.

As this method uses the value of program counter it may not work well with

dynamically linked code. This convergence of this method depends on repeat- ing

program behavior. This technique may not work pretty well when working on http

servers because of varying behavior. This would result in more space requirements.

Yoshinori et al. [46]

This paper presents an idea to develop an anomaly intrusion detection tech-

nique based on process profiling. This technique is different from misuse detection

techniques which record the malicious behavior and then classify analyzed soft-

ware on the basis of comparisons done with the recorded malicious behavior. This

process works by recording and analyzing the system calls made by setuid and

daemon programs. Three types of profiles are developed which state the names of

system calls with their ranks decided according to their frequencies. The profiles

are then developed for every incoming software and are matched with the already

developed profiles. The difference in distances of these profiles rate the nature of
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these threats. There are situations when the incoming patterns differ with the

existing patterns only due to the time lagging problem i.e. they may perform the

same functionality but with some time lag. The approach discussed above would

generate a high difference rate between these profiles which actually is not true.

This problem is solved by applying DP (Dynamic Processing) techniques which

would contract or expand time to make the similar patterns match and solve this

problem.

3.1.3 Hybrid anomaly based detection

The hybrid anomaly based detector uses the combination of static and dy-

namic approaches. Few interesting papers using this approach are briefly explained

as follows:

Paul et al. [42]

The paper presents ’PolyUnpack’, which uses a behavior-based approach that

uses a combination of static and dynamic analysis to automate the process of

extracting the hidden-code of unpack executing malware. First a static code view

is generated for a piece of code by static analysis. Next, in the dynamic analysis

the code is executed in a sterile and isolated environment. The execution is paused

after each instruction and the context of the instruction is examined to find out

whether it is the static code view or not. If it is not found in the static code

view, representations of that unknown instruction sequence are written out and

the malware’s execution is halted. A formal definition of an unpack-executing is

given, and an instruction execution bound n is introduced. Based on these two,

an algorithm, to decide whether a given piece of code is unpack-executing or not,

is provided. To avoid false positives due to the execution of code called from

DLLs by programs, the pausing and comparing after each execution is disabled
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as long as the code from a dll is executing. There are a variety of challenges

posed due to the complex nature of the 80x86 ISA and assembly. To overcome

these and the overhead of determining whether an instruction being executed is

a subsequence of an instruction in the static code view; the problem of detecting

unpacked code via instruction subsequence is mapped into a series of statically

assigned and dynamically created bounds checks that test whether the current

value of PC points to a location statically or dynamically identified as code. The

results of experiments although show that PolyUnpack is about 3 times faster

on 40% of the sample data and about 12 times faster on the rest of the data as

compared to manual unpacking.

Engin et al. [36]

This paper presents an idea to overcome the weaknesses of traditional sig-

nature based anti spyware software. Their idea is based on intrusion detection

system approach which already has the knowledge of how non-self would behave.

The technique uses both static and dynamic analysis of the specific objects i.e.

Microsoft browser helper objects and toolbars. These objects are commonly used

by spywares to launch most of their attacks usually comprising of capturing and

leaking sensitive information. In the dynamic analysis step the interaction of under

analysis software’s component with the browser is monitored and all the browser’s

COM functions which are involved in the response to the events are recorded. Sec-

ondly the code regions which are responsible for handling events are determined.

In the static analysis step these code regions are explored and analyzed. Their

behavior is represented by control flow graphs. API functions called by these re-

gions are recorded. In the end some limitations of this approach are discussed by

presenting some ideas which would help the spyware writers to evade detection

techniques. Some statistics of tests performed are shown which clearly show the
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static and dynamic analysis techniques both used together give much better results

in not only discovering spywares but false positives as well.

3.2 Specification based detection

Specification based detection is the subset of anomaly based detection so it also

has the training and testing phases. In the training phase of these systems usually

some rule set or heuristics are developed which act as the exact specifications of

the behavior a normal program should exhibit. However, to come up with the

exact and accurate specifications and rule set is a daunting task, which in turn

increases the complexity of these systems.

3.2.1 Static specification based detection

The static specification based detectors, analyze the structural properties and

features of the program to make the training model, which is then used for classi-

fication in testing phase.

Bergeron et al. [33]

This paper addresses the problem of static slicing on binary executables for

the purpose of the malicious code detection in COTS components. Static slicing is

useful to extract security critical code fragments. As a first step of the developed

methodology, the binary is disassembled to obtain an assembly code. This code

is then transformed into its high level imperative representation, without losing

its semantics. For instance the elimination of the stack, recovering of subroutine

parameters, recovering of return results, etc are examples of code transformation.

This substantially improves the analyzability of code. This also decreases the

complexity of the detection problem, by only considering a potentially malicious

code instead of the whole file. As a first step of transformation, idioms can be

identified. These are set of assembly commands which have a logical meaning
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that cannot be fully understood from only one of them. By the application of

data flow analysis we can improve the analyzability of the code. This can be

done by the elimination of the stack, by treating the stack as a set of temporary

variables. APIs and library subroutine prototypes can be used to compute the

actual parameters and return values. Intra-procedural program slicing is applied

to simplify register jumps instructions. The standard backward slicing algorithm

is applied for program slicing to retain only those parts of code that are relevant to

the suspicious parts of the program. The slicing algorithm uses system, procedure,

data, and control dependence graphs (SDG, PDG, DDG, and CDG). Alias analysis

allows the DDG to link the correct set of instructions to each other that further

allows the complexity of detection to be reduced.

In their extended work [34], they presented a tool that detects malicious be-

havior of a program by analyzing it statically. It first generates an intermediate

representation of the binary, analyzes the control and data flows, and then does

the static verification using security automaton.

3.2.2 Dynamic specification based detection

In dynamic specification based system, the run time behavior of the programs

is used for malware classification.

Linn et al. [39]

Executables can be obfuscated to complicate the process of reverse engineering

to protect them from piracy and theft. The technique presented here in however,

is focused on making executables resistant to disassembly in the first place. The

difference in the start address of instructions obtained after static disassembly

and that obtained at runtime, is a direct measure of the error in the disassembly.

The goal therefore is to maximize this difference. One aspect that must be taken
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into account is the self repairing behavior (re-synchronization) of these differences

because of the variable length nature of instructions (especially in the most widely

used x86 ISA). Junk Insertion is done to ‘confuse’ the disassembly process as much

as possible. Next, it is determined how many bytes of the said instruction should

be inserted to confuse the disassembly process maximum. The above technique

confuses Linear Sweep (a commonly used disassembly algorithm) by a confusion

factor of 26%-30% (i.e. 26%-30% instructions are interpreted incorrectly) that

can increase up to confusion factor of about 70% for Linear Sweep. To confuse

Recursive Traversal (another commonly used disassembly algorithm), the basic

assumption, and weakness of the algorithm is exploited, i.e. the control flow of

the program can correctly be determined. The values of opaque expressions with

artificial jump table constructs to mislead a disassembler. This technique is called

‘jump table spoofing’.

Kirda et al. [41]

This paper has presented an idea of a personal web based firewall, to subvert

the possibilities of exploiting vulnerabilities in web applications. As web appli-

cations are spreading at a fast rate, vulnerabilities are being discovered in them

at a proportional rate as well. Injection of malicious Java Script code in the web

applications is one of the vulnerabilities, which could be subverted by reducing the

access to resources these applications can access. But now this approach has failed

because even in this case malicious Java Script can be unknowingly downloaded

(injected by an attacker in it) from a trusted site which can be executed at client

side causing the leakage of private information to several unwanted locations. This

problem can be subverted by overcoming it on the server side i.e. having strict

security policies but then all the users are left on the mercy of the people on the

server side that will they implement them or not. Authors in this paper have
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introduced a client side solution which analyzes the code being executed on the

client side and tries to find any suspicious code or activities being performed. It

notifies the user about an extra ordinary event to check if user wants to proceed

with it or not. After the response from the user it acts accordingly and also records

this rule to not to disturb the user about the same activity again for some time.

This reduces the burden on the user as well and makes its working more efficient.

To make this method more efficient other portions of the code e.g. the static links

which are usually considered safe are analyzed as well because some attackers can

use them as well. A rule is defined by the user according to them to decide when to

notify the user about suspicious activity going on. Some tests were performed in

this case which clearly showed the effectiveness of this tool. Some previous work in

this field was analyzed as well which is mostly based on predefined policies, which

has proven to be inefficient.

3.2.3 Hybrid specification based detection

These systems use both the static features and run time behavior of the pro-

grams to classify them as benign or malicious. Some of the papers are discussed

below.

Rabek et al. [43]

This paper presents DOME, a host-based technique for detecting several gen-

eral classes of malicious code in software executables. The key idea of DOME is

to preprocess software executables to identify the locations of Win32 API calls in

the software, and then to verify that every Win32 API call observed at runtime is

made from a location identified during preprocessing. The Win32 API calls made

by injected code and those made by obfuscated or dynamically generated code

will not be detected during preprocessing, because these will not be present (for
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dynamically generated or injected code) and because no attempt is made to deob-

fuscate intentionally obfuscated code. DOME detects malicious code before it has

a chance to interact with the OS or any of its resources. It also pinpoints the parts

of MC where the calls were made from. The proof-of-concept study shows that

DOME shows 100% detection for relevant MC classes. The performance overhead

is however, 5% per Win32 API call.

3.3 Signature based detection

Signature based detection systems work by extracting signatures from the ma-

licious files. These signature may be byte values, sequence of API calls or a combi-

nation of both. The signatures can be extracted manually as well as automatically.

These signatures are then searched in programs to classify them as malicious or

benign. As these approaches are dependent on the signature databases, the main

drawback of signature based detection system is their failure to detect zero-day

malware, i.e. they fail to detect the malware whose signature is missing in the

signature database/repository.

3.3.1 Static signature based detection

The static signature based detection is done using the signature obtained from

sequence of byte values or instructions that are malicious. The only advantage of

this detection system is that the malicious program is classified before execution,

only if its signature is present in the knowledge base. Normally manual analysis is

required to generate the static signatures which increases the vulnerability period

of a computer system.

Sandeep et al. [44]

The paper presents a generic virus scanner in C++. The scanner is completely

generic and is independent of the platform it runs on and the platform of the files
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it scans. The virus scanner can be sure of the integrity of the byte sequences it

reads if the files cannot execute on the host platform. Software monitors that use

profiles to detect viruses have a great advantage as they can detect both known

and unknown viruses. However, they require the normal usage profile to be fairly

different from the malicious code activities, which may not always be the case.

Detection by emulation is done by emulating program behavior for a specific input

to decide whether it is malicious or not. This process is highly dependent on input

and thus is less precise. An executable can be classified by checking if it confirms

to a defined policy. This policy defines what a valid behavior of a program is. This

however, requires the source of the program. Storing a checksum with a program

and checking it each time the program runs is an excellent way of insuring that

the program has not been infected, however, this method is ineffective when the

program has already been infected. Checksums can be applied to each separate

module of an executable to ensure integrity at runtime. This however, requires

hardware support and trusted read and checksum operations. Time stamping can

also be used as an alternate for checksuming, but it is vulnerable to the system

clock being reset and other means of changing file modification times. Detection by

signature matching is the most commonly used and cost effective method there is.

Though it is vulnerable to obfuscation of malicious code and signature extraction

takes significant effort, which may fail to keep up with the growing rate of virus

proliferation. This paper presents a generic implementation of a virus scanner. It

first reads from a virus signature database and arranges them in a sparse tree. The

virus signature uses wild cards such as ? and * to compensate for code obfuscation.

Sung et al. [45]

This paper has taken into consideration the growing threat of malicious soft-

ware and the destruction they can cause. Authors have discussed the types of
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different type of malicious code and have classified them on the basis of their prop-

erties and evolution. Authors explain in this paper the inefficiency of the current

detection techniques whether static or dynamic (sand box techniques). They have

explained that how these detection techniques fail due to obfuscation techniques

used by malicious code writers and time constraints. In this paper the authors

have introduced a tool known as SAVE (static analyser for vicious executables)

to analyse portable executables (PE) and detect the malicious ones by analysing

the calling sequence of API calls. This is a signature based tool i.e. a database

of known patterns of sequence calls of viruses is build and then these patterns

are matched with the incoming patterns of the exe files being analysed. This tool

works on the binary code and explores the structure of portable executables to

extract the sequence of API calls. It works quite well as compared to the com-

mon anti-viruses against polymorphic viruses as the patterns of API calls do not

change entirely. The matching takes place by implying some matching formula

like Euclidean and others to test if the two patterns match to the extent that they

can be considered similar in functionality. Then that pattern is submitted to the

database for future use. Many experiments were performed using obfuscated codes

which show a much better performance by SAVE as compared to commercial anti

virus tools which almost had 0

3.3.2 Dynamic signature based detection

Dynamic signature based techniques classify the program malicious on the

basis of information which is extracted at run time only. These techniques keep

check of any malicious behavior at run time.
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Yang et al. [48]

In this paper, the authors apply several machine learning (ML) algorithms to

automatically generate signatures for polymorphic worms. The authors use Naive

Bayes, Support Vector Machine (SVMs), Decision Tree, and Rule Learner for worm

fingerprinting. Their system uses a predetermined heuristic to identify suspicious

hosts and mark all traffic from these hosts as suspicious, leaving other flows as

unsuspicious. The suspicious and unsuspicious flows are then fed as training data

to the different ML algorithms to generate accurate worm signatures. Experimental

results show that an existing decision-tree learning algorithm and a rule learner

both run faster than Polygraph (the best known automatic fingerprint generator

to date) and produce fewer errors.

3.3.3 Hybrid signature based detection

These systems use run time analysis as well as sequences of code and byte

values malware classification.

Lo et al. [24]

The malicious code filter (MCF) presents a technique named program slicing

to ’analyze’ malicious code. The authors present a technique in which through

static analysis the code of the program is ’sliced’ into different functional parts.

These slices are mainly based on a certain subset of system calls. The paper

extensively discusses the different kinds of malicious code, and the ’tell-tail signs’

they would show. There is an in depth discussion of what type of tell tail signs a

type of malicious code would show. The tell-tail sign concept is used to generate

a data flow information graph. This graph is used for further analysis. However,

this data flow information can be mislead severely if the code under analysis is not

’well behaved’ i.e. there is some pointer or value over flow in the code. This type
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of over ow tends to mislead the data flow information, and thus the MCF.

The paper makes the assumption that the programs are ’well behaved’ and

there is no pointer over flow. The paper then discusses the tell tail signs showed

by certain classes of malicious code, these include, 1) Trojan Login, 2) Multistage

Launcher, 3) Development System Attack.Some UNIX vulnerabilities are also dis-

cussed; 1) Finger Daemon (fingerd), 2) Mail Notifier (comsat).

The detection/analysis mechanism based on the tell-tail signs concept is mech-

anized as follows: First the program under inspection is represented as control flow

graph. Although some restrictions have been imposed on this graph to make it

independent of the particular code used to undertake a task, however, this control

flow graph does to some extent depend on the particular instructions/calls used

and the variables used. As a second step a global flow analysis is done to see if

one procedure alters the data in another procedure and the effects of the same.

This allows for the development of on overall model of what a piece of code does.

A malicious code writer may try to hide the malicious nature of the code by com-

posing the code of seemingly benign procedures, which when interact turn into a

malicious code. Next the code is sliced for different types of activities; such as; file

access, time dependent computations, and race conditions. A similar technique

is presented in another paper, S̈tatic Analysis of Executables to Detect Malicious

Patterns”. Many improvements have been introduced which render the system

more reliable and real testing results are also given.

Mori et al. [40]

Authors developed a tool for analysis and detection of viruses and internet

worms using code simulation, static code analysis, and OS execution emulation. It

inspects the code and identifies commonly found mal behaviors like mass mailing,

self duplication, and registry over write. Policies are used to define mal behav-
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iors at API library function call level in a state transition like language. Policies

include mass email, registry modification, file infection, file modification, process

scan, self modification, anti-debugger/emulation, out of bounds execution, external

execution, illegal address call, self duplication, and network connection policies. It

targets win32 binary programs in Intel IA32 architecture.

The good thing in this approach is that it gives 95% detection on the sample

set of 600 virus/worm using IAC, OBE, self duplication, and file modification

policies. Over 80% detection using only file modification, self duplication, and

external execution. Successful detection of unknown viruses. However, the tool is

run in a virtual environment with CPU simulation, OS execution simulation etc.
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CHAPTER 4

RELATED WORK

A significant amount of research has been conducted to analyze the character-

istics and effects of malware. However, to maintain focus in this thesis, we include

techniques proposed by Perdisci et al [1], Schultz et al [2] and Kolter et al [3] for

detecting Win32 malicious PE files. These techniques use static analysis and utilize

n-grams and data mining algorithms to detect malicious PE files.

4.1 Perdisci et al [1] — McBoost

Recently, Perdisci et al have used a set of structural heuristics for detection of

packed executables [49]. The authors argue to use their technique as a preprocessor

before signature-based detectors. In this way, the executables need to be unpacked

by a universal unpacker before doing the scanning. They use 9 heuristic features

with different pattern recognition techniques for this purpose. The features include

the number of standard sections, the number of non-standard sections, the number

of executable sections, the number of readable/writable/executable sections, the

number of entries in the import address table, the entropy of PE file header, the

entropy of the code sections, the entropy of the data sections and the entropy of

an entire PE file. A Multi-Layer Perceptron (MLP) classifier is used for eventual

classification of the PE files. However, the scope of their work is limited to the

detection of packed executables only.

In an extension to their previous work, Perdisci et al proposed McBoost, a

statistical malware collection tool [1]. McBoost consists of three modules, A, B

and C. The module A differentiates between packed and non-packed executables.

It is further composed of three sub-modules: A1 is a heuristic-based classifier; A2

and A3 are n-gram based classifiers similar to those proposed by Kolter et al [3]
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(explained later in the chapter). A2 operates only on the code section of a PE

file and A3 operates on an entire PE file. All executables classified as packed by

the module A are sent to the module B. It contains a custom implementation of

an unpacker for hidden code extraction. The implementation of module B uses

QEMU emulator [50] similar to Renovo [51]. The module C performs eventual

classification of malware. It also consists of two sub-modules: (1) C1 is an n-

gram based classifier which operates on the code section of PE files classified as

non-packed by the module A, and (2) C2 is also an n-gram based classifier which

operates on the hidden code (extracted by the module B) of PE files classified

packed by the module A.

The authors performed experiments on a dataset consisting of 5, 586 malicious

PE files from Malfease dataset [10] and 2, 258 benign PE files. 37% malicius PE

files are packed (detected using PEiD [52] and F-Prot antivirus [53]). Only 3%

malicious PE files are non-packed and the rest of the files cannot be classified as

packed or non-packed. The authors used Polyunpack [54] and custom developed

unpacker for unpacking. On the other hand, only 2% benign executables are

packed and rest 98% are non-packed in the original dataset. The skewness in the

distribution of packed/non-packed malware and benign files is obvious.

McBoost is primarily a malware collection tool and its utility as an online

realtime malware detection tool is limited due to high processing overheads and

relatively lower detection rates. In [1], the authors report that McBoost requires

approximately 1.06 seconds for detection of non-packed executables, 4.7 and 5.6

minutes for detection of packed PE files and benign PE files respectively. Fur-

ther, McBoost is unable to analyze 1, 030 (approximately 13%) “heavily packed”

executables which effectively require manual analysis for eventual classification.
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4.2 Schultz et al [2] — Strings

In [2], Schultz et al use several data mining techniques to distinguish between

the benign and malicious executables in Windows or MS-DOS format. They have

done experiments on a dataset that consists of 1, 001 benign and 3, 265 malicious

executables. These executables have 206 benign and 38 malicious samples in the

PE file format. They collected most of the benign executables from Windows 98

systems. They use three different approaches to statically extract features from

executables.

The first feature extracts DLL information inside PE executables. Further,

the DLL information is extracted using three types of feature vectors: (1) the list

of DLLs (30 boolean values), (2) the list of DLL function calls (2, 229 boolean

values), and (3) the number of different function calls within each DLL (30 integer

values). RIPPER (an inductive rule-learning algorithm) is used on top of every

feature vector for classification. These schemes based on DLL information provides

an overall detection accuracy of 83.62%, 88.36% and 89.07% respectively.

The second feature extraction approach extracts the strings from the executa-

bles using GNU strings program. Näıve Bayes classifier is used on top of extracted

strings for detection. This scheme provides an overall detection accuracy of 97.11%.

The third feature extraction approach uses byte sequences (n-grams) using

hexdump. The authors do not explicitly specify the value of n used in their study.

However, from an example provided in the paper, we deduce it to be 2 (bi-grams).

The Multi-Näıve Bayes algorithm is used for classification. This algorithm uses

voting by a collection of individual Näıve Bayes instances. This scheme provides

an overall detection accuracy of 96.88%.

The authors also compare their proposed schemes with a custom developed

signature-based detector that uses traditional byte sequence based signatures. Such
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schemes are meant for low false positive rates. The signature-based detector pro-

vides an overall accuracy of 49.28% only.

The results of their experiments reveal that Näıve Bayes algorithm with strings

is the most effective approach for detecting the unseen malicious executables with

reasonable processing overheads. The authors acknowledge the fact that the string

features are not robust enough and can be easily defeated. Multi-Näıve Bayes

with byte sequences also provides a very high detection accuracy, however, it has

large processing and memory requirements. These overheads make the approach

infeasible for realtime deployment.

4.3 Kolter et al [3] — KM

In [3], Kolter et al use n-gram and data mining approaches to detect mali-

cious executables in the wild. They use n-gram analysis to extract features from

1, 971 benign and 1, 651 malicious PE files. The PE files have been collected from

machines running Windows 2000 and XP operating systems. The malicious PE

files are taken from an older version of the VX Heavens Virus Collection [9].

The authors evaluate their approach for two classification problems: (1) clas-

sification between the benign and malicious executables, and (2) categorization

of executables as a function of their payload. The authors have categorized three

types of malware, mailer, backdoor and virus due to the limited number of samples.

Top n-grams with the highest information gain as binary features (T if present

and F if absent) in every classification problem. The authors have done pilot studies

to determine the size of n-grams, the size of words and the number of top n-grams

to be selected as features. A smaller dataset consisting of 561 benign and 476

malicious executables is considered in this study. They used 4-grams, one byte

word and top 500 n-grams are selected as features.

A number of inductive learning methods, namely instance-based learner, Näıve
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Bayes, support vector machines, decision trees and boosted versions of instance-

based learner, Näıve Bayes, support vector machines and decision trees are used

for classification. The same features are provided as an input to all classifiers.

They report their results as the area under an ROC curve (AUC) which is a

more complete measure compared with the detection accuracy [55], [11]. AUCs

show that the boosted decision trees outperform the rest of the classifiers for both

classification problems.
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CHAPTER 5

DATASETS

In this chapter, we present an overview of the datasets used in our study. We

have collected 1, 447 benign PE files from the local network of our lab. The collec-

tion contains executables such as Packet CAPture (PCAP) file parsers compiled

by MS Visual Studio 6.0, compressed installation executables and MS Windows

XP/Vista applications’ executables. The diversity of the benign files is also evident

from their sizes, which range from a minimum of 4 KB to a maximum of 104, 588

KB (see Table 3).

Moreover, we have used two malware collections in our study. First is the

VX Heavens Virus Collection, which is labeled and is publicly available for free

download [9]. We only consider PE executables to maintain focus. Our filtered

dataset contains 10, 339 malicious PE files. The second dataset is the Malfease

malware dataset [10], which consists of 5, 586 unlabeled malicious PE files.

In order to conduct a comprehensive study, we further categorize the malicious

PE files as a function of their payload1. The malicious executables are subdivided

into eight major categories such as virus, trojan, worm, etc. Moreover, we have

combined some categories that have similar functionality. For example, we have

combined constructor and virtool to create a single constructor + virtool category.

This unification increases the number of malware samples per category. It will be

helpful later when we categorize the malicious executables as a function of their

payload. We now provide a brief introduction of each malware category, used in

our study, to make it self contained [56].

1Since the Malfease malware collection is unlabeled, therefore, it is not possible to divide it
into different malware categories.
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Backdoor + Sniffer.

A backdoor is a program which allows bypassing of standard authentication

methods of an operating system. As a result, remote access to computer systems

is possible without explicit consent of the users. Information logging and sniffing

activities are possible using the gained remote access.

Constructor + Virtool.

This category of malware mostly includes toolkits for automatically creating

new malware by varying a given set of input parameters. Virtool and constructor

categories are combined because of their similar functionality.

DoS + Nuker.

Both DoS and nuker based malware allow an attacker to launch malicious

activities at a victim’s computer system that can possibly result in a denial of

service attack. These activities can result in slow down, restart, crash or shutdown

of a computer system.

Email- + IM- + SMS Flooder.

The malware in this category initiate unwanted information floods such as

email, instant messaging and SMS floods.

Exploit + Hacktool.

The malware in this category exploit vulnerabilities in a system’s implemen-

tation which most commonly results in buffer overflows.

Email- + IM- + IRC- + Net Worm.

The malware in this category spreads through instant messaging networks,

IRC networks and port scanning.
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Trojan.

A trojan is a broad term that refers to stand alone programs which appear to

perform a legitimate function but covertly do possibly harmful activities such as

providing remote access, data destruction and corruption.

Virus.

A virus is a program that can replicate itself and attach itself with other

benign programs. It is probably the most well-known type of malware and has

different types.

Table 3 provides the detailed statistics of the malware used in our study. A

careful reader can rightly conclude that the average size of the malicious executa-

bles is smaller than that of the benign executables. Further, some executables used

in our study are encrypted and/or compressed (packed). The detailed statistics

about packing are also tabulated in Table 3. We use PEiD [52] and Protection ID

for detecting packed executables [57]2.

Our analysis shows that VX Heavens Virus collection contains 40.1% packed

and 47.2% non-packed PE files. However, approximately 12.7% malicious PE files

cannot be classified as either packed or non-packed by PEiD and Protection ID.

The Malfease collection contains 46.6% packed and 27.2% non-packed malicious

PE files. Similarly, 26.2% malicious PE files cannot be classified as packed or

non-packed. We can, therefore, say that packed/non-packed malware distribution

in the VX Heavens virus collection is relatively more balanced than the Malfease

dataset. In our collection of benign files, 43.1% are packed and 27.0% are non-

packed PE files respectively. Similarly, 29.9% benign files are not detected by

PEiD and Protection ID. An interesting observation is that the benign PE files are

mostly packed using nonstandard and custom developed packers. We speculate

2We acknowledge the fact that PEiD and Protection ID are signature based packer detectors
and can have false negatives.
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that a significant portion of the packed executables are not classified as packed

because the signatures of their respective packers are not present in the database

of PEiD or Protection ID. Note that we do not manually unpack any PE file prior

to the processing of our PE-Miner.
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CHAPTER 6

EXPERIMENTAL RESULTS AND EVALUATION

Recall that we set two objectives for doing a comparative evaluation of dif-

ferent techniques: (1) the primary objective is to distinguish between benign and

malicious PE files, and (2) the secondary objective is to categorize the malicious

executables as a function of their payload. We have compared our PE-Miner frame-

work with recently proposed promising techniques by Perdisci et al [1], Schultz et

al [2] and Kolter et al [3]. We briefly summarize their working principles in the

following paragraphs again.

In [1], the authors proposed McBoost that uses two classifiers, C1 and C2, for

classification of non-packed and packed PE files respectively. A custom developed

unpacker is used to unpack the packed PE files and these unpacked executables are

given as an input to the C2 classifier. Unfortunately, we could not obtain its source

code or binary due to licensing related problems. Further its implementation is

not within the scope of our current work. Consequently, we only evaluate the

C1 module of McBoost which works only for non-packed PE files. We, therefore,

acknowledge that our McBoost results should be considered preliminary. However,

they do provide useful insight into the detection behavior of McBoost.

In [2], Schultz et al have proposed three independent techniques for detecting

malicious PE files. The first technqiue, uses the information about DLLs, function

calls and their invocation counts. However, the authors did not provide enough in-

formation about the used DLLs and function names; therefore, it is not possible for

us to implement it. But we have implemented the second approach (titled strings)

which uses strings as binary features i.e. present or absent. The third technique

uses two byte words as binary features. This technique is later improved in a sem-
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Figure 4. The magnified ROC plots for detecting the malicious executables using
PE-Miner utilizing J48 preprocessed with RFR filter. The results are shown for
VX Heavens dataset.

inal work by Kolter et al [3] which uses 4-grams as binary features. Therefore, we

include the technique of Kolter et al (titled KM ) in our comparative evaluation.

We have used the standard 10 fold cross-validation process in our experiments:

the dataset is randomly divided into 10 smaller subsets, where 9 subsets are used

for training and 1 subset is used for testing. The process is repeated 10 times

for every combination. This methodology helps in evaluating the robustness of

a given approach to detect malicious PE files that contain malware without any

a priori information. The ROC curves are generated by varying the threshold on

output class probability [55], [11]. The AUC is used as a yardstick to determine the

detection accuracy of each approach. We have done the experiments on an Intel

Pentium Core 2 Duo 2.19 GHz processor with 2 GB RAM. The Microsoft Windows

XP SP2 is installed on this machine. We now separately report the detection

accuracies of different approaches for our primary and secondary objectives.
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6.1 Primary Objective: Malicious PE File Detection

In our first experimental study, we attempt to distinguish between benign and

malicious PE files. To get better insights, we have done independent experiments

with benign and each of the eight types of the malicious executables. The five data

mining algorithms, namely IBk, J48, NB, RIPPER and SMO, are deployed on top

of each approach (namely PE-Miner with RFR, PE-Miner with PCA, PE-Miner

with HWT, McBoost (C1 only) by Perdisci et al [1], strings approach by Schultz et

al [2] and KM by Kolter et al [3]). This results in a total of 270 experimental runs

each with 10-fold cross validation. We tabulate our results for this study in Table

4 and now answer different questions that we raised in Chapter 2 in a chronological

fashion.

6.1.1 Which features’ set is the best?

Table 4 tabulates the AUCs for PE-Miner using three different preprocessing

filters (RFR, PCA and HWT), McBoost, strings and KM [3]. A macro level scan

through the table clearly shows the supremacy of PE-Miner based approaches with

AUCs more than 0.99 for most of the malware types and even approaching 1.00

for some malware types. For PE-Miner, RFR and HWT preprocessing lead to the

best average results with more than 0.99 AUC.

The strings approach gives the worst detection accuracy. The KM approach

is better than the strings approach but inferior to our PE-Miner. This is expected

because the string features are not stable as compiling a given piece of code by

using different compilers leads to different sets of strings. Our analysis shows

that KM approach is more resilient to variation in the string sets because it uses

a combination of string and non-string features. The results obtained for KM

approach are also consistent with the results reported in [3]. Its average AUC is

about 0.95. The C1 module of McBoost also provides relatively inferior detection
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Table 5. The processing overheads (in milliseconds/file) of different feature selec-
tion, extraction and preprocessing schemes.

PE-Miner McBoost Strings KM
(RFR) (PCA) (HWT)

Selec. - - - 2839 5289 31499
Ext. 228 228 228 198 220

Preproc. 7 9 12 - - -

Total 235 237 240 3037 5419 31719

accuracies which are as low as 0.66 for exploit+hacktool category. It is important

to note that the C1 module of McBoost is functionally similar to the techniques

proposed by Schultz et al and Kolter et al. The only significant difference is that

C1 operates only on the code sections of the non-packed PE files whereas the other

techniques operate on complete files.

It is important to emphasize that both strings and KM approaches incur

large overheads in the feature selection process (see Table 51). Kolter et al have

confirmed that their implementation of information gain calculation for feature

selection took almost a day for every single run. To make our implementation of

n-grams more efficient, we use hash map STL containers in the Visual C++ [58].

Our experiments show that the feature selection process in KM still takes more

than 31000 milliseconds per file with our optimized implementation. The optimized

strings approach takes, on the average, more than 5000 milliseconds per file for

feature selection. The optimized McBoost (C1 only) approach takes an average

of more than 2000 milliseconds per file for feature selection2. Therefore, these

approaches do not satisfy our definition of realtime deployable. This is because the

processing overheads in calculation of information gain increase exponentially with

the number of unique n-grams (or strings). On the other hand, PE-Miner does

not suffer from such serious bottlenecks. The application of RFR, PCA or HWT

1The results in Table 5 are averaged over 100 runs.
2Note that the complete McBoost system also uses universal unpacker for extraction of hidden

code. This process is very time consuming. Therefore, the processing overheads for McBoost
represent the best-case scenario (all executables are non-packed)
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Table 6. The processing overheads (in milliseconds/file) of different features and
classification algorithms.

IBK J48 NB RIPPER SMO

Training

PE-Miner (RFR) - 8 1 269 199
PE-Miner (PCA) - 7 1 264 179
PE-Miner (HWT) - 7 1 252 147

McBoost - 21 4 1305 1122
Strings - 9 2 799 838

KM - 24 4 1510 1018

Testing

PE-Miner (RFR) 32 1 2 2 2
PE-Miner (PCA) 35 1 1 1 2
PE-Miner (HWT) 32 1 2 1 2

McBoost 218 10 7 5 22
Strings 163 3 3 2 3

KM 254 18 7 5 20

filters takes only about a few milliseconds.

6.1.2 Which classification algorithm is the best?

We can conclude from Table 4 that the J48 outperforms the rest of the data

mining classifiers in terms of the detection accuracy in most of the cases. Moreover,

Table 6 shows that J48 has one of the smallest processing overheads both in train-

ing and testing. RIPPER and IBk closely follow the detection accuracy of J48.

However, they are infeasible for realtime deployment because of the high process-

ing overheads in the training and the testing phases respectively. The processing

overheads of training RIPPER are the highest among all classifiers. In comparison,

IBk does not require a training phase but its processing overheads in the testing

phase are the highest. Further, Näıve Bayes gives the worst detection accuracy

because it assumes independence among input features. Intuitively speaking, this

assumption does not hold for all features’ sets used in our study. Note that Näıve

Bayes has very small learning and testing overheads (see Table 63).

3The results in Table 6 are averaged over 100 runs.
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6.1.3 Which malware category is the most challenging to detect?

An overview of Table 4 suggests that the most challenging malware categories

are worms and trojans. The average AUC values of the compared techniques

for worms and trojans are approximately 0.95. The poor detection accuracy is

attributed to the fact that the trojans are inherently designed to appear similar to

the benign executables. Therefore, it is a difficult challenge to distinguish between

trojans and benign PE files. Our PE-Miner still achieves on the average 0.98 AUC

for worms and trojans which is quite reasonable. Figure 4 shows that for other

malware categories, PE-Miner (with RFR preprocessor) has AUCs more than 0.99.

6.2 Secondary Objective: Malicious Executable Detection as a Func-
tion of Payload

In our second comparative study, we attempt to categorize the malicious ex-

ecutables as a function of their payload. This means that we want to know the

category of a malware in a given malicious PE file. Recall from Chapter 5 that we

have eight different categories of malware. This is in fact a multi-class classification

problem and is therefore significantly more challenging than the primary objective

of just categorizing the benign and malicious PE files. The secondary objective is

not a necessity from the point-of-view of use in a COTS AV product. However, it

is definitely a nice-to-have feature for system administrators and malware forensic

experts. We follow the same ‘one-vs-all’ classification approach as is used by the

authors in [3]. We have done experiments with the VX Heavens dataset in which

each malware category is labeled as a separate class. Table 7 tabulates the results

from our second study. We again answer the same questions raised in Chapter 2

in a chronological fashion for our second study.
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Figure 5. The magnified ROC plots for detecting the malicious executables as
a function of their payload using PE-Miner utilizing J48 preprocessed with RFR
filter. The results are shown only for VX Heavens dataset.

6.2.1 Which features’ set is the best?

The results of the payload based malicious executable classification follow sim-

ilar patterns as are observed in the first experimental study. The best detection

accuracy is again achieved with the PE format specific structural feature extrac-

tion algorithm. PE-Miner with RFR and HWT preprocessing on the average has

0.93 AUCs. In comparison, the detection accuracies of McBoost, strings and KM

approaches are significantly deteriorated and the average AUCs are in the range of

0.60 – 0.70. This further strengthens our thesis that the format specific structural

feature extracting scheme can achieve both primary and secondary objectives with

the highest detection accuracies and the lowest processing overheads.

6.2.2 Which classification algorithm is the best?

The relative performance of the data mining classification algorithms is similar

to the previous study. Here again, PE-Miner using J48 performs significantly better
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Table 8. The processing overheads (in milliseconds/file) of different features and
classification algorithms with standard deviations.

IBK J48 NB RIPPER SMO

Training

PE-Miner (RFR) - 5 (10) 4 (8) 14 (8) 137 (36)
PE-Miner (PCA) - 3 (6) 2 (5) 8 (8) 140 (43)
PE-Miner (HWT) - 11 (8) 11 (9) 37 (17) 203 (69)

McBoost - 67 (18) 16 (10) 155 (33) 243 (47)
Strings - 17 (10) 3 (6) 32 (14) 144 (4)

KM - 42 (15) 15 (4) 110 (26) 208 (33)

Testing

PE-Miner (RFR) 3 (6) 1 (3) 3 (6) 0 (0) 0 (2)
PE-Miner (PCA) 3 (7) 0 (0) 1 (3) 0 (2) 0 (0)
PE-Miner (HWT) 7 (8) 0 (2) 6 (11) 0 (0) 0 (2)

McBoost 15 (6) 0 (0) 9 (8) 0 (0) 0 (2)
Strings 7 (8) 0 (0) 1 (4) 0 (2) 0 (2)

KM 11 (7) 0 (0) 9 (8) 0 (2) 0 (2)

than the other classifiers. Another important observation in these experiments is

that the processing overheads of all approaches have significantly increased for

the payload based malicious executable classification. In fact, the KM approach

with SMO classifier does not finish despite running for several days and hence no

values are reported for it in Table 7. Our observation is that the J48 gave the best

detection accuracy with relatively smaller processing overheads in the training and

testing phases.

6.2.3 Which malware category is the most challenging to categorize?

It is interesting to note in Table 7 that the worm and trojan categories have

the best AUCs. This trend is opposite to the pattern observed in the previous

study where these categories of malware were the most difficult to detect. Here

the flooder and nuker categories have the worst AUCs. Our analysis reveals that

several flooder samples are wrongly classified as nuker and vice-versa leading to

worst accuracies. This is because both of them have similar functional behavior

(refer to Chapter 5). This trend can also be observed in Figure 5.

Table 8 shows the processing overheads of the the used algorithms with stan-

dard deviations. This timing analysis has been done on a sample dataset of 100
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files with 10-fold cross validation.

6.3 Miscellaneous Discussions

The training models of the J48 and RIPPER also provide interesting insights

into the characteristics of different categories of malware. The partial subtrees

of J48 for categorizing benign and malicious PE files are shown in Table 9. The

message tables mostly do not exist in the backdoor+sniffer and constructor+virtool

categories. The TimeDateStamp is usually obfuscated in the malicious executables.

The number of resources are generally smaller in malicious PE files, whereas the

benign files tend to have larger number of resources such as menus, icons and user

defined resources. Moreover the reference of WSOCK32.DLL increases the probability

that a given PE file might be doing a trojan-like activity. We note that the sizes of

the certificate table, resource section (if exists), uninitialized data and code section

are smaller for viruses compared with those of benign executables. Similar insights

are also provided by the rules developed in the training phase of the RIPPER.

PE-Miner framework exploits our analysis of learning models of classifiers that

helped in improving its accuracy in realtime. We tabulate the AUC and the scan

time of the best techniques in Table 10. Moreover, we also show the scan time of

two well-known COTS AV products for doing the realtime deployable analysis of

different non-signature based techniques. It is clear that PE-Miner (RFR) with

J48 classifier is the only non-signature based technique that satisfies the criteria of

being realtime deployable introduced in Chapter 2. One might argue that PE-Miner

framework provides only 0.014 AUC improvement over the KM approach. But then

KM has the worst scan time of 31.97 seconds per file (see Table 10). It is very

important to interpret the results in Table 10 from a security expert’s perspective.

For example, if a malware detector scans ten thousand files with an AUC of 0.97,

it will not detect approximately 300 malicious files. In comparison, a detector
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with an AUC of 0.99 will miss only 100 files, which is a 66.6% improvement in the

number of missed files [59]. The number of undetected files in the wild represent a

serious threat because “the longer a threat remains undiscovered in the wild, the

more opportunity it has to compromise computers before measures can be taken to

protect against it. Furthermore, its ability to steal information increases the longer

it remains undetected on a compromised computer” [6]. We therefore argue that

from a security perspective, even a small improvement in the detection accuracy

is significant in the limiting case when it approaches to 1.00.

We conclude this chapter with another important discussion that the authors

do in [1] about the ability of different schemes to detect packed/non-packed mal-

ware. They show that the detection accuracy of KM approach degrades on a “dif-

ficult dataset” consisting of packed benign and non-packed malicious PE files. Our

experimental study on VX Heavens and Malfease dataset shows that the results of

KM approach remain consistent if enough training samples are used. The results

of our PE-Miner framework also show consistent detection accuracies on the “dif-

ficult dataset” derived from both malware collections. This shows its robustness

to the limited number of training samples and the packing problem.

6.4 Cross Dataset Analysis

In this section, we would like to test our approach rigorously using cross

dataset training-testing. Earlier we have been using 10-fold cross validation within

a dataset. The 10-fold cross validation basically means that we are dividing the

dataset in 10 subsets, then training the classifier using 9 subsets and testing on

the 10th subset. This process is repeated ten times so that every subset is tested.

Although cross validation provides a very authentic method of testing whole of the

dataset, it gives the inherent bias of learning the pattern/flow of the dataset to

the classifier. It would be interesting to see how accurate our scheme turns out to
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Table 9. Portions of developed decision trees

NumMessageTable <= 0

| SizeLoadConfigTable <= 0

| | TimeDateStamp <= 1000000000

| | | NumCursor <= 1

| | | | NumAccelerators <= 0

| | | | | NumBitmap <= 0: malicious

| | | | | NumBitmap > 0: benign

| | | | NumAccelerators > 0:malicious

| | | NumCursor > 1:malicious

(a) between benign and backdoor+sniffer

NumMessageTable <= 0

| NumBitmap <= 0

| | NumAccelerators <= 1: malicious

| | NumAccelerators > 1

| | | NumUserDefined <= 0: malicious

| | | NumUserDefined > 0: benign

| NumBitmap > 0

| | NumUserDefined <= 0: malicious

| | NumUserDefined > 0: benign

NumMessageTable > 0: benign

(b) between benign and constructor+virtool

NumDialog > 8

| NumIcon <= 2

| | NumMenu <= 1: malicious

| | NumMenu > 1: benign

| NumIcon > 2

| | WSOCK32.DLL <= 0: benign

| | | NumIcon <= 8: benign

| | | NumIcon > 8: malicious

(c) between benign and trojan

SizeCertificateTable <= 2500

| .rsrcSizeofRawData <= 17000

| | SizeofUnintializedData <= 4096: malicious

| | SizeofUnintializedData > 4096

| | | SizeofCode <= 30208: malicious

| | | SizeofCode > 30208: benign

| .rsrcSizeofRawData > 17000

SizeCertificateTable > 2500: benign

(d) between benign and virus 55



Table 10. Realtime deployable analysis of the best techniques
Technique Classifier AUC Scan Time Is Realtime

(sec/file) Deployable?

PE-Miner (RFR) J48 0.991 0.244 Yes
McBoost IBk 0.926 3.255 No
Strings IBk 0.927 5.582 No

KM IBk 0.977 31.973 No
AVG Free 8.0 [60] - - 0.159 -
Panda 7.01 [61] - - 0.131 -

be when it is trained with one dataset and tested with the others.

We are using three datasets for the cross dataset analysis. Two of them,

Malfease and VX Heavens are detailed in Chapter 5. The testing of these datasets is

done using another dataset which is obtained from OffensiveComputing.net [62],

we will refer this dataset as Óffensive’ from now onwards. This dataset contains

about half a million malwares. For the sake of initial evalution, we are using

a subset of the whole dataset and have selected approximately thirty thousand

malware samples randomly.

The Offensive dataset is the most difficult and challenging in its nature as it

is the biggest malware repository which is open for information security research.

Malfease dataset comes second in terms of difficulty level with respect to malware

analysis, where as VX Heavens is considered to be the least difficult dataset as

compared to others. It would be interesting to see how the difficulty level of these

datasets affect our cross dataset evaluation. Intuitively, we expect the performance

of our scheme to degrade to a small extent when we train our classifiers with the

less difficult dataset and test with difficult ones and vice versa.

We have categorized our cross dataset analysis in 3 cases:

• Case 1: Train with VX Heavens

• Case 2: Train with Malfease

• Case 3: Train with Offensive
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Table 11. Cross Dataset Analysis with PE-Miner
Train: VX Heavens Train: Malfease Train: Offensive

Test Test Test
Classifier Malfease Offensive VX Heavens Offensive VX Heavens Malfease

PE-Miner

IBK 0.949 0.866 0.904 0.894 0.998 0.999
J48 0.983 0.937 0.945 0.896 0.98 0.982
NB 0.957 0.84 0.951 0.649 0.921 0.902

RIPPER 0.777 0.848 0.963 0.886 0.95 0.95
SMO 0.936 0.972 0.915 0.87 0.928 0.721

PE-Miner (RFR)

IBK 0.949 0.884 0.904 0.894 0.998 0.999
J48 0.983 0.937 0.945 0.878 0.98 0.982
NB 0.957 0.854 0.951 0.864 0.921 0.902

RIPPER 0.975 0.874 0.964 0.929 0.955 0.956
SMO 0.936 0.893 0.915 0.869 0.723 0.721

According to the difficulty level of the datasets, we are expecting average perfor-

mance with lowest AUCs in Case 1 and best performance with highest AUCs in

Case 3.

We have used all of our selected classifiers to first train with one dataset and

then test the other two and vice versa. In this way our classification would not be

biased with respect to the dataset and the actual effect of the structural feature

analysis would be observed. We have performed the cross dataset experiments with

two approaches in mind. Firstly, we have used PE-Miner without any preprocessing

filter and secondly, we have used PE-Miner with RFR, in order to check the effect

of preprocessing filter while testing new datasets. It was not possible to apply

preprocessing filters of PCA and HWT, as the features filtered from one dataset

do not match with the features obtained from the other one, which results in

dataset mismatch. The results of our experiments are shown in Table 11 and

Figure 6, 7. We observe interesting patterns of varying AUC with respect to the

datasets.
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6.4.1 CASE 1 - Train with VX Heavens

In this case we train the classifiers with VX Heavens dataset and test Malfease

and Offensive datasets with the obtained model.

We observe that when we test Malfease dataset we get the AUC upto 0.983

with J48 using PE-Miner and 0.972 with SMO using PE-Miner with RFR. Also,

the performance of RIPPER with PE-Miner without preprocessing is significantly

degraded having 0.777 AUC. This is due to the fact that without optimized feature

set many malware programs are being misclassified as benign. It is interesting to

note that with PE-Miner (RFR), RIPPER gives an AUC of 0.975. This shows the

impact of feature preprocessing in our approach. The rule set of RIPPER with

PE-Miner has 13 rules and that of PE-Miner (RFR) has 12 rules. There is no

significant effect of RFR processing on AUCs obtained from J48, IBK, NB, and

SMO.

The performance of the system further degrades when Offensive dataset is

tested with the VX Heavens trained model as we expected. The Offensive testing

being the most difficult one follows Malfease one with respect to preprocessing

filter.

6.4.2 CASE 2 - Train with Malfease

In this case we train the classifiers with Malfease dataset and test with VX

Heavens and Offensive. As per our expectation we see better AUCs with VX

Heavens, being the least difficult dataset and degraded AUCs with Offensive.

RIPPER shows the best AUC when we train it with Malfease and test VX

Heavens on it. Decision tree J48 with AUC 0.945 closely follow the AUC of RIP-

PER 0.963.

As in Case 1, only the performance of RIPPER has improved with the pre-

processing filter, while the other classifiers are unaffected. The testing of Offensive
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Figure 6. AUCs of PE-Miner

Figure 7. AUCs of PE-Miner (RFR)

dataset also shows that with optimized feature set, RIPPER out performs all the

other classifiers, with quite a margin.

6.4.3 CASE 3 - Train with Offensive

In this case we train the classifiers with randomly selected thirty thousand

malware samples of Offensive dataset and test VX Heavens and Malfease with this

model. This case shows best accuracies as compared to previous two cases, as we

expected. The instance based classifier IBk outperforms rest of the classifiers with

AUC 0.99 on testing VX Heavens and Malfease.

The AUC show that feature preprocessing does not plays a significant rule

when the classifiers have a very extensive train set. However, we observe that the

performance of SMO suffers quite a lot after the preprocessing filter. We hope

to have even better results when we train the classifiers with complete Offensive

dataset.
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6.4.4 Discussion

As discussed earlier Offensive and Malfease datasets are supposed to be dif-

ficult and more challenging datasets than VX heavens Our packed/non-packed

analysis of the datasets shows that VX Heavens virus collection is relatively more

balanced than the Malfease dataset. As we had already discussed in Chapter 5,

the VX Heavens Virus collection contains 40.1% packed and 47.2% non-packed

PE files, where as approximately 12.7% malicious PE files cannot be classified as

either packed or non-packed by PEiD and Protection ID. On the other hand, the

Malfease collection contains 46.6% packed and 27.2% non-packed malicious PE

files. Similarly, 26.2% malicious PE files cannot be classified as packed or non-

packed. We have not done the packed/non-packed analysis of Offensive Dataset in

this study but we assume it to be evenly distributed like VX Heavens.

Based on the assumed difficulty level of the datasets, with Malfease being more

challenging than VX Heavens, we expected to see deteriorating performance of PE-

Miner in Case 1 and like wise in Case 2. We observe best performance in Case 3

with AUCs reaching 0.999. Interestingly, when we test Offensive with VX Heavens

training model, the detection accuracy is better than that of Malfease training

model. This can mean two things, one the malware samples of VX Heavens are

similar with Offensive, and second the packed/non-packed samples in Malfease are

not evenly distributed and thus average performance is seen.

It is worth noting that preprocessing filter does not contribute much towards

the accuracies but with certain exceptions like RIPPER in Case 1 and SMO in

Case 3 we get good AUCs upto 0.975 and 0.929 as compared to 0.777 and 0.866

respectively .
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6.5 Preprocessing Algorithm Evaluation

We performed another set of experiments to gain insights into the effect of

varying parameters of the pre-processing algorithms on the AUC. For this purpose

we analyzed the algorithms to select the parameters that would be varied. They

are explained as follows:

6.5.1 Redundant Feature Removal (RFR)

The only parameter in RFR is maximumVariancePercentageAllowed,

which set the threshold for the highest variance allowed before a nominal attribute

will be deleted. Specifically, if (number of distinct values / total number of values

* 100) is greater than this value then the attribute will be removed. We varied this

parameter from 99.0 to 1 and the number of removed features stayed the same,

i.e only 6 features removed. This essentially means that the AUCs remained the

same.

6.5.2 Haar Wavelet Transform (HWT)

The Haar wavelet transform does not have any parameter’s that we can tweak

to improve accuracy.

6.5.3 Principal Component Analysis (PCA)

This filter performs a principal components analysis and transformation of the

data. Dimensionality reduction is accomplished by choosing enough eigenvectors

to account for some percentage of the variance in the original data – default 0.95

(95%). The important parameter related with the dimensionality reduction is

varianceCovered, which is a measure to retain enough PC attributes to account

for this proportion of variance.

We varied this parameter from 0.99 to 0.5 and the AUC’s obtained are shown

in Table 12.
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Table 12. Varying the parameter ’variance’ of PCA algorithm
Variance 0.99 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Backdoor + Sniffer
IBK 0.978 0.974 0.981 0.981 0.983 0.983 0.985 0.986 0.987 0.987 0.985
J48 0.986 0.98 0.98 0.978 0.98 0.977 0.978 0.978 0.98 0.982 0.984
NB 0.981 0.961 0.961 0.961 0.972 0.976 0.978 0.984 0.986 0.988 0.986

SMO 0.989 0.99 0.989 0.987 0.989 0.986 0.985 0.986 0.984 0.983 0.977
Ripper 0.982 0.983 0.982 0.979 0.981 0.98 0.984 0.986 0.986 0.985 0.987

Constructor & Virtool
IBK 0.978 0.983 0.981 0.985 0.984 0.984 0.987 0.992 0.988 0.99 0.984
J48 0.978 0.966 0.969 0.968 0.971 0.974 0.978 0.981 0.982 0.982 0.984
NB 0.994 0.99 0.989 0.987 0.99 0.987 0.987 0.986 0.987 0.986 0.983

SMO 0.993 0.992 0.993 0.993 0.989 0.991 0.987 0.99 0.982 0.977 0.967
Ripper 0.98 0.978 0.973 0.979 0.985 0.985 0.97 0.973 0.983 0.98 0.983

Exploit + Hacktool
IBK 0.987 0.981 0.984 0.983 0.983 0.98 0.979 0.985 0.991 0.968 0.956
J48 0.933 0.929 0.937 0.921 0.916 0.915 0.926 0.931 0.943 0.933 0.95
NB 0.995 0.994 0.99 0.984 0.985 0.969 0.961 0.966 0.955 0.951 0.946

SMO 0.995 0.989 0.987 0.985 0.986 0.984 0.977 0.973 0.965 0.891 0.849
Ripper 0.956 0.963 0.964 0.952 0.955 0.964 0.954 0.958 0.952 0.96 0.937

Email- + IM- + SMS Flooder
IBK 0.986 0.985 0.985 0.981 0.984 0.987 0.985 0.986 0.985 0.979 0.973
J48 0.955 0.96 0.96 0.944 0.942 0.946 0.961 0.961 0.96 0.951 0.945
NB 0.996 0.995 0.995 0.994 0.994 0.994 0.993 0.994 0.995 0.988 0.985

SMO 0.994 0.991 0.991 0.992 0.984 0.982 0.983 0.979 0.98 0.942 0.928
Ripper 0.96 0.981 0.981 0.973 0.957 0.973 0.956 0.971 0.958 0.972 0.951

Email- + IM- + IRC- + Net Worm
IBK 0.979 0.982 0.984 0.984 0.983 0.987 0.99 0.99 0.988 0.988 0.988
J48 0.987 0.985 0.984 0.987 0.985 0.981 0.981 0.98 0.981 0.982 0.983
NB 0.991 0.989 0.99 0.989 0.986 0.989 0.988 0.984 0.985 0.988 0.991

SMO 0.99 0.992 0.991 0.992 0.991 0.991 0.99 0.99 0.989 0.987 0.986
Ripper 0.989 0.987 0.991 0.99 0.988 0.991 0.991 0.99 0.992 0.991 0.985

DoS + Nuker
IBK 0.986 0.989 0.989 0.984 0.986 0.988 0.99 0.986 0.992 0.971 0.968
J48 0.987 0.987 0.987 0.986 0.987 0.99 0.99 0.992 0.992 0.98 0.977
NB 0.996 0.996 0.995 0.993 0.992 0.984 0.981 0.979 0.988 0.975 0.975

SMO 0.996 0.995 0.996 0.998 0.997 0.998 0.996 0.998 0.997 0.924 0.911
Ripper 0.969 0.977 0.966 0.968 0.971 0.984 0.978 0.972 0.979 0.953 0.953

Trojan
IBK 0.954 0.952 0.952 0.955 0.958 0.958 0.962 0.96 0.961 0.963 0.964
J48 0.933 0.936 0.939 0.94 0.943 0.939 0.941 0.946 0.951 0.948 0.953
NB 0.965 0.963 0.963 0.96 0.96 0.964 0.967 0.962 0.951 0.954 0.949

SMO 0.966 0.958 0.955 0.953 0.948 0.95 0.948 0.947 0.95 0.943 0.938
Ripper 0.948 0.949 0.953 0.958 0.953 0.952 0.955 0.949 0.957 0.95 0.952

Virus
IBK 0.964 0.962 0.968 0.968 0.968 0.966 0.969 0.969 0.972 0.969 0.959
J48 0.952 0.951 0.956 0.956 0.959 0.953 0.963 0.966 0.965 0.956 0.965
NB 0.956 0.956 0.955 0.955 0.948 0.947 0.947 0.946 0.949 0.946 0.938

SMO 0.967 0.965 0.961 0.958 0.957 0.955 0.952 0.946 0.946 0.945 0.937
Ripper 0.969 0.968 0.963 0.968 0.967 0.972 0.972 0.966 0.97 0.971 0.97
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6.6 Limitations and Potential Solutions

In this section, we present the limitations of our PE-Miner framework and

their potential solutions.

• We acknowledge that the features proposed in our study are simple and if

adversaries know our detection methodology then they can design strategies

to evade detection by PE-Miner. For example, the number of resources (such

as bitmaps, icons, etc.) is more in the benign executables as compared to

those of the malicious executables. A crafty attacker may insert dummy

resources in the malicious executables to increase the number of resources.

But doing so will not only increase the size of the malware but also its

processing overheads. An increase in the size of a malware significantly

limits its capability to spread via replication without getting noticed. It

also compromises its ability to fit into size constrained buffers in the buffer

overflow attacks. Furthermore, PE-Miner uses a large number of features,

covering structural information of all portions of a PE file, which makes it

very difficult for an attacker to manipulate most of them at the same time. It

is relevant to mention that simple structural features used by PE-Miner are

not affected by code obfuscation and restructuring techniques. A majority of

new malware that appears today consists of the variants of existing malware

generated via such techniques . Therefore, PE-Miner can prove more effective

in detecting zero-day malware.

• The strings technique proposed by Schultz et al and the KM technique pro-

posed by Kolter et al are not dependent on the executable file format. There-

fore, their techniques can possibly scale to malware targeted for UNIX and

other non-Windows operating systems. However, PE-Miner is specific for the

executables in the PE format which is used by Windows operating systems.
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We envision that similar structural features can be extracted from other ex-

ecutables with a different file format and then PE-Miner can be ported to

other operating systems as well.

• If a malware uses good packing techniques, then it can circumvent the DLL

features of PE-Miner. However, PE-Miner uses a host of other structural

features which are still able to provide important information for detecting

malicious PE files. Our experiments on packed executables also confirm that

PE-Miner is robust to different packing techniques.
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CHAPTER 7

CONCLUSION & FUTURE WORK

In this thesis we present, PE-Miner, a technique for detection of malicious PE

files. PE-Miner leverages the structural information of PE files and data mining

algorithms to provide high detection accuracy with low processing overheads. Our

implementation of PE-Miner completes a single-pass scan of all executables in the

dataset (more than 17 thousand) in less than one hour. Therefore it meets all of

our requirements mentioned in Chapter 2.

Our question oriented research methodology helped us in extensively searching

almost all dimensions in the design space and the conclusion of the work is that

three design options provide the best combination for detecting malicious PE files:

(1) a rich PE format specific set of structural features which can be statically

extracted from a PE file, (2) the preprocessing filters help in reducing the training

and testing time of a classifier but they have minor role in improving the detection

accuracy, (3) J48 classifier gives the best detection accuracy with low processing

overheads. Therefore, our final PE-Miner framework has RFR preprocessing filter

with J48 as the back-end classifier.

We believe that PE-Miner framework is ideally suited for detecting malicious

PE files on resource constrained mobile phones running Windows CE. Our results

are intriguing enough to port it to Windows CE mobile devices. Moreover, we also

plan to evaluate PE-Miner on a much larger executable dataset (with size of 140

GB) that we have just obtained from offensivecomputing.net.
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