

Development of Software Testing

Framework on Cloud

By

Sidrah Inayat

2008-NUST-MS-PhD-IT-41

Supervisor

Dr. Raihan Ur Rasool

A thesis submitted in partial fulfilment of the requirements for the degree of Masters in

Information Technology (MSIT)

In

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST),

Islamabad, Pakistan

i

APPROVAL

It is certified that the contents and form of thesis entitled “Development of software Testing

Framework on Cloud” submitted by Sidrah Inayat has been found satisfactory for the

requirement of the degree.

Advisor: Dr. Raihan Ur Rasool

Signature: ____________________

Date: ____________________

Committee Member 1: Dr. Hafiz Farooq Ahmad

Signature: ______________________________

Date: __________________________________

Committee Member 2: Mr. Muhammad Bilal

Signature ____________________________

Date: _____________________________

Committee Member 3: Ms. Sana Khalique

Signature ____________________________

Date: ____________________________

ii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY PARENTS & SISTER

iii

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at SEECS or at any

other educational institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author Name: Sidrah Inayat

 Signature: ___________________

iv

ACKNOWLEDGEMENTS

First of all I am thankful to Almighty Allah for giving me courage and strength to complete this

challenging task and to compete with international research community. I am also grateful to my

family, especially my parents who have supported and encouraged me through their prayers that

have always been with me.

I am extremely thankful to Dr. Raihan Ur Rasool, Dr. Hafiz Farooq, Mr. Muhammad Bilal and

Ms. Sana Khalique for their guidance and help in throughout my research work to accomplish

the goal. I am highly thankful to all of my teachers who have been guiding me throughout my

course work and have contributed to my knowledge. Their knowledge, guidance and training

helped me a lot to carry out this research work.

I am especially thankful to Dr. Raihan Ur Rasool for sparing his precious time for my guidance

and warmed welcomed me whenever I visited him. I am thankful to him for his motivation,

valuable suggestions and continuous guidance throughout my research work. His foresightedness

and critical analysis of things taught me a lot about research which will be more helpful to me in

my practical life.

Sidrah Inayat

v

Table of Contents
Abstract .. VII

Chapter 1: Introduction .. 1

 1.1 Software Testing ... 1

 1.2 Cloud Computing .. 2

 1.3 Testing Modern Software Systems ... 3

 1.4 Software testing on cloud .. 4

 1.5 Thesis organization ... 5

Chapter 2: Literature Review .. 6

 2.1 Cloud Computing Architecture .. 6

 2.2 Selecting Cloud Vendor ... 7

 2.3 Amazon Elastic Compute Cloud (EC2) .. 9

 2.4 Future of Software Testing ... 12

 2.5 Traditional vs. Cloud based Testing ... 12

 2.6 Benefits of Testing in the Cloud ... 13

 2.7 Review of papers ... 14

 2.8 Summary ... 18

Chapter 3: Motivation and Scope ... 19

 3.1 Research motivation ... 19

 3.2 Research Scope .. 20

 3.3 Aims of Purposed Solution .. 20

 3.4 Summary ... 21

Chapter 4: Methodology .. 22

 4.1 Software Testing Framework on Cloud (STFC) .. 22

 4.2 Abstract level Architecture .. 23

 4.3 Interaction with STFC .. 24

 4.4 Detailed Architecture of the STFC .. 25

 4.5 Amazon Machine Image (AMI) Creation .. 28

 4.6 Execution of Test Plan ... 36

 4.7 Credibility of Results ... 37

Chapter 5: Test Results and Evaluation ... 40

 5.1 Test Plan.. 40

vi

 5.2 Test Results .. 40

 5.3 Evaluation .. 48

 5.4 Summary .. 49

Chapter 6: Conclusion and Future work ... 50

 6.1 Conclusion ... 50

 6.2 Future Work ... 50

vii

List of Figures

Figure 1.1 Testing Types and respective Tools ... 1

Figure 1.2:Cloud based Testing .. 5

Figure 2.1: Cloud Architecture ... 7

Figure 2.2: Getting Started with EC2 ... 11

Figure 4.1: Software Testing Framework on Cloud ... 22

Figure 4.2: STFC Abstract level Architecture ... 23

Figure 4.3: Interaction with STFC .. 24

Figure 4.4: STFC Detailed architecture ... 26

Figure 4.5: System Modules’ Interaction .. 27

Figure 4.6: System WorkFlow .. 28

Figure 4.7: AMI Creation Steps .. 31

Figure 4.8: Bundling Process. ... 33

Figure 4.9:Jmeter working on cloud. ... 36

Figure 4.10: Throughput vs. Response Time .. 38

Figure 5.1:Response Time in local Environment 41

Figure 5.2: Response Time on Cloud. .. 42

Figure 5.3: Response Time comparison local vs. Cloud. ... 43

Figure 5.4: Graph results in local environment . .. 46

Figure 5.5: Graph results on cloud ... 47

viii

List of Tables

Table 2.1: Comparison of Cloud Vendors ... 8

Table 2.2:Comparsion between privders of software testing on cloud .. 12

Table 4.1: ec2-Bundle Utility Parameters .. 24

Table 4.2: ec2-Upload Utility Parameters ... 25

Table 5.1: Summary report in local environment .. 43

Table 5.2: Summary report on cloud .. 44

Table 5.3: Throughput of local Vs. Cloud ... 45

Table 5.4: Response Time per request ... 48

ix

Abstract

Software testing is any activity used for evaluating an attribute or capability of a program or

system and determining that it meets its required results. The difficulty in software testing stems

from the complexity of software. There are several major issues that people are facing while

testing the applications in their local environment, firstly they have to install multiple software

for performing different type of tests like Jmeter is used for load testing LoadRunner for

Performance testing, JUnit for Unit testing and many more, actually there is no common

platform from where a user can get all these software and can use them according to the need by

scaling up and down resources accordingly. Secondly on one hand while testing an application

on personal computers results are not credible and accurate all the time because of the

involvement of some hardware and software factors such as processing and computing time and

storage differences etc. at the same time if an application needs to be tested under certain load for

performance testing, in such cases not only the personal computers but even the private clusters

become unsuitable. They usually prohibit deficiency of lack of resources, memory and storage

for generating the load to test the application under stress. To tackle all these issues the software

testing framework on cloud (STFC) is developed that provides multiple open source software

testing tools on the cloud , with ease of accessibility, range of resources available on demand,

provides credibility of results, without worrying about the management and maintenance.

1

Chapter 1: Introduction

1.1. Software Testing

Software testing is a technique in which the software is processed in controlled

conditions to evaluate its behavior, to detect the errors and to check that the user

requirements are fulfilled and the system includes all the functionalities as were specified

by the user.

Agility, shorter time to market, rising complexity, market competition and many other

factors compel the organizations to ensure the quality, performance and the reliability of

software. Modern software testing includes complete software analysis including review

of the source code, design and the architecture. There are multiple types of testing and

several open source software testing tools are available that are used for performing these

different types of testing as shown in the Figure 1.1for example JMeter is used for load

testing and measuring performance, JUnit for unit testing of the code etc.

Figure 1.1: Testing Types and respective tools

Type of Testing Software

Functional

JUnit

JFunc

WebLoad

JMeter Load

Performanc

e

Unit

2

1.2. Cloud Computing

“Cloud computing” which actually means “internet computing” or “utility computing”

makes it possible to access the resources via the Internet by the user from anywhere, for

as long as they need, without worrying about any maintenance or management of actual

resources. For years, many organizations have suffered the difficulties in maintaining and

upgrading different types of software on their own machines. Actually now large

organizations are becoming frustrated with the long deploying cycles, high costs, and

complicated upgrading processes.

Cloud Computing allows vendors to deliver computing resources on a large scale to the

developer and the end users. It actually provides the alternative way of delivering and

managing different IT services. The prosperity of provisioning the resources, storage and

computing capabilities on demand with pay as you go method is actually the driving

feature of the cloud computing that is fetching the attraction of the market place.

There are lots of advantages because of that companies are using cloud computing. One

of the major ones is the flexibility that it offers. By using the cloud computing resources

can be accessed from anywhere, remotely and tasks can be performed without being at

some specific location. As long as people can get on the Internet, People can access

information from home, on the road, even from a smartphone. People can also work

collaboratively on files and documents, even when they're not actually together.

Documents can concurrently be viewed and edited from numerous locations.

Cloud computing provides ease of access and is very quick all we need is just a computer

with very simple specification and a good internet connection.

3

Cloud computing is cheaper as it reduces the costs of buying and managing the software

and their licenses, because it’s already installed online remotely and we can run them

from anywhere, not to mention the fact that many cloud computing applications are

offered free of charge. With cloud computing, we subscribe to the software, rather than

buying it outright. This means that you only need to pay for it when you need it, and it

also offers flexibility, in that it can be quickly and easily scaled up and down according to

demand. This can be particularly advantageous when there are temporary peaks in

demand [1].

A major advantage of using cloud computing is that a large number of hardware

resources are available on demand, user doesn’t have to get worried about their

management and the maintenance, everything is managed by the cloud vendor and the

users pays for what they actually use.

1.3. Testing Modern Software Systems

Now-a-days the requirements of the market are changing so rapidly that modern software

systems are also manipulating the changes to They are getting combined within and across

the enterprise thereby changing into ecosystems. This has resulted in complexity which

seems to be ever increasing and also in a high number of changes these stems have to go

through. Complexity is actually directly related to the risks and costs.so when complexity

increases the costs and risks automatically touches the upper limits.

There are stresses on time to market and there is a need to ensure the agility of the

enterprise at several levels: Technical, Organizational and Business. The cost of finding

4

&fixing defects is becoming exponential. There’s a high premium for Continuing Quality

in Modern Software Development.

The above mentioned challenges can be tackled by working in a stable way. We need to

exaggerate the Continued Integration discipline by embedding & integrating the following

activities:

• Acceptance Testing

• Source Code Analysis

• Common Coding Mistakes

• Unit & Integration Testing

• Load Testing

These activities ensure rapid, immediate, useful feedback throughout the duration of

software development thereby transforming a spiteful circle into a virtuous cycle [2].

1.4. Software testing on cloud

In order to reduce the expenses and to achieve the better control on the resources, many

organizations are starting using the cloud computing delivery model. As by using cloud

computing resources can be accessed on demand, from anywhere, for as long as they are

needed without worrying about the maintenance and the management.

Traditionally, when the organizations have to perform large scale testing they have to

purchase additional servers and require extra staff which ultimately end in the increase of

expenditures but by using cloud computing, test environments can be now easily and

5

quickly replicated to the cloud and the resources can be used on demand and for as long as

they are needed. This is a relatively more cost effective way [3].

The software testing on cloud becomes complex as it should be used to test the SaaS and

non SaaS applications on cloud as well as the cloud itself needs testing as shown in the

Figure 1.2.

Figure 1.2: Cloud Based Testing

1.5. Thesis organization

This thesis is ordered into eight different chapters. Chapter 2 provides the background of

the software testing, cloud computing and the issues faced by the users in traditional

environment. Chapter 3 presents literature survey about the testing services being

provided on cloud there limitations and issues still there Chapter 4 Presents the proposed

solution with aims and objectives Chapter 5 presents the proposed solution and its

system architecture. Chapter 6 presents the proposed system design and implementation.

Chapter 7 presents the Test results. Chapter 8 presents the conclusion and future work.

3. Testing the cloud

2. Testing Environment in the cloud

1a: SaaS

software

1a: Non-

SaaS

software

6

Chapter 2: Literature Review

2.1. Cloud Computing Architecture

There are many cloud providers and each of them provides cloud services at different

layers of the cloud. There are basically three layers of the cloud Architecture, the details

are given below.

2.1.1. Software as a Service (SaaS)

The customers can make the application of their interest that run on the cloud, usually

through the web browser. The user doesn’t have any concern with the infrastructure

being used to run the application, they don’t have to manage and control the

infrastructure, an example of SaaS in Cloud Computing is Google docs.

2.1.2. Platform as a Service (PaaS)

In this case, in order to run and access the applications of their interest the customers are

provided with programming and execution environments. Just like SaaS model,

customers cannot control the underlying cloud infrastructure but have control over the

applications they create and to a certain degree, configuration settings of the hosting

environment. An example of a PaaS is Google app engine

2.1.3. Infrastructure as a Service (IaaS)

This is where computing services such as storage, processing and networks are provided

by the IaaS provider for the customers to deploy and run their applications. IaaS gives a

customer the flexibility to control and run software over the computing environment. A

popular example is Amazon’s EC2.Figure 2.1 shows the architecture of the cloud.

7

 Figure 2.1: Cloud Architecture

2.2. Selecting Cloud Vendor

As there are multiple cloud vendors available to the market for example MS Azure,

Google App engine, sales force etc. so making a right decision in choosing the correct

vender is based on multiple factors. There were several questions that arise in one’s mind

while selecting the cloud vendor like security of data and how much reliable the cloud

vendor is?

Microsoft Azure, Google App Engine or Amazon Elastic Cloud, all these cloud

computing systems have been designed to provide facilities required to support the

complete life cycle of building and delivering software applications and making them

available over the Internet.[5]

Microsoft azure is directly comparable to Google's App Engine. On same lines as App

Engine, Azure also provides environment for building applications for the cloud (PaaS)

plus providing finished applications as service over the cloud (SaaS). From development

point of view, building applications in Azure environment would be much easier as most

Infrastructure as a Service

 Platform as a Service

 Software as a Service

8

of the IDEs used by developers are now capable of developing and testing applications for

cloud. But the backline of Azure is that it is not supporting the Java language yet [6].

Google App Engine is the cloud computing platform for developing and hosting web

applications on Google's data centers. It is free up to a certain level of used resources. Fees

are charged for additional storage, bandwidth, or CPU cycles required by the application.

The supported programming environments that Google currently offers for App Engine are

Python and Java, but there's no roadmap for future language support [5].

Of all three cloud services providers mentioned here Amazon is the only one that provides

true IaaS, this inference is based on capability of Amazon’s Elastic Compute Cloud or

EC2 to allow users to use web service interfaces to launch instances with a variety of

operating systems. EC2 also enables users to load these Operating systems with custom

application environment plus gives them ability to manage network's access permissions

and run image using as many or few systems as desired. The Table 2.1 shows the

comparison between the world three rocking cloud vendors.

Table 2.1: Comparison of cloud Venders

 Feature Microsoft Google Amazon

Offerings

Windows Azure ,

SQL Azure,

AppFabric

Google App Engine

S3, Ec2, SQS,

SDB, FWS, Cloud

Front

Load Balancing Yes Yes Yes

Storage Yes Yes Yes

9

Message

queuing for

machine

communications

Yes: Queues in

Windows Azure

storage

No Yes:

Simple Queue

Service(SQS)

Tied to the

vendor

datacenter

Yes Yes Yes

Pricing Flat rate (including

connection packs

on AppFabric) or

pay-per-use

pricing

compute + storage

+ transaction +

bandwidth

Free resources up to a

level After that enable

billing for cost of the

resources, bandwidth,

CPU, data store,

emails etc

Pay as you go +

EC2 spot Instances

Language

support

Java (Not

Completely),

Python, Ruby,

PHP, .Net, C#,

C++, VB

REST, SOAP,

XML,

-

Java/AJAX/JavaScript

-Java 6 runtime (white

listed JRE classes)

Python 2.5

- SOAP & REST

- Developer

libraries: C++,

Ruby, Python,

Java, PHP

- Command line

utilities for EC2

Elasticity No No Yes

As depicted by the Table2.1, Amazon is best for providing testing softwares as a service

because of mainly two reasons firstly as it provides the elasticity i.e. resources can be utilized

according to the need of time. We can scale up and down on demand. Secondly the language

support as it supports multiple languages.

2.3 . Amazon Elastic Compute Cloud (EC2)

Amazon EC2 is a web service that enables user to launch and manage server instances in

Amazon's data centers using APIs or available tools and utilities. User can use Amazon EC2

server instances at any time, for as long as you need, from anywhere.

10

2.3.1. Service highlights

 Amazon Elastic compute cloud provides multiple services some of them are as following.

 Elasticity: Resources can be used when needed and can be released when they are

free.

 Complete Control: The user have complete control on the resources

 Flexible: Provides Flexibility of usage

 Reliable: Provides reliable mechanisms of data storage and manipulation

 Secure: Provides security of the data

 Inexpensive: Provides a cost effective way for using large number of resources [8].

2.3.2. Amazon Machine Image and Instance

An Amazon Machine Image (AMI) contains all information necessary to boot instances

of software. For example, an AMI might contain all the software to act as a web server or

it might contain all the software to act as a Hadoopnode.

User launches one or more instances of an AMI. An instance might be one web server

within a web server cluster or one Hadoop node [8].

2.3.3. Instance Storage

Every instance includes a fixed amount of storage space on which you can store data.

Within this document, it is referred to as the "instance store" as it is not designed to be a

permanent storage solution. If an instance reboots the data on the instance store will

survive. If the underlying drive fails, the instance is terminated, or the instance is stopped,

the data is lost. If you need a permanent storage solution the Amazon Elastic Block Store

(Amazon EBS) is used.

11

EBS is a type of storage designed specifically for Amazon EC2 instances [8]. Amazon

EBS allows you to create volumes that can be mounted as devices by Amazon EC2

instances. Amazon EBS volumes behave like raw unformatted external block devices.

They have user supplied device names and provide a block device interface

2.3.4. Getting Started with Amazon Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that enables user to

launch and manage Linux/UNIX and Windows server instances in Amazon's data

centers. User can get started with Amazon EC2 by following the tasks shown in the

Figure 2.2.

Figure 2.2 Getting started with EC2

Find an

AMI

Build an

AMI from

Scratch

Customize

an Existing

AMI
Create/

Bundle

the AMI

Launch

Instances

of Your

AMI

Administe

r and use

your

Instances

1

2
3

4

12

2.4. Future of Software Testing

The testing of an application becomes more crucial and time consuming with increase in

complexity. Trends in the industry suggest that software testing will become more difficult

in future. In order to drive the changes in effective and efficient way, more emphasis must

be placed on analysis and design phases. Emphasis should be towards the 4Rs,

repeatability, reliability, re-use and robustness.

Testing and Quality Assurance will become more important and add more value as we

move into architectures and technologies that support the business in their goals of

bringing products and services to the market as rapidly as possible, with minimal risk [10].

Recent studies show that the software testing is now moving into cloud as more and more

companies understand the importance and value of cloud [11] and want to get of the

problems faced because of physical storage and computation power’s limitation.

2.5. Traditional vs. Cloud based Testing

In order to reduce the expenses and to achieve the better control on the resources, many

organizations are starting using the cloud computing delivery model. As by using cloud

computing resources can be accessed on demand, from anywhere, for as long as they are

needed without worrying about the maintenance and the management.

Traditionally, when the organizations have to perform large scale testing they have to

purchase additional servers and require extra staff which ultimately end in the increase of

expenditures but by using cloud computing, test environments can be now easily and

13

quickly replicated to the cloud and the resources can be used on demand and for as long as

they are needed. This is a relatively more cost effective way [12].

There are several service providers that are providing different services of software testing

on cloud; a comparison on the base of services provided is shown in the Table 2.2.

Table 2.2: comparison between providers of software testing in cloud

Providers Performance

Testing

Load

Testing

Unit Testing Functional Testing

Cloud-

Intelligence[13]

Yes Yes No No

RTTS[14] Yes Yes No Yes

Attenda [15] Yes No Yes No

HP [16] Yes Yes No No

It is concluded from the Table 2.2 that although the power of cloud computing is being

utilized in the software testing but there is still lack of some common platform for

accessibility of multiple software testing services on demand.

2.6. Benefits of Testing in the Cloud

In term of resources and cost, testing on cloud have many benefits, some are as followed

 To perform the load and stress testing when numerous resources are needed, cloud

computing helps to reduce the infrastructure cost.

 It provides the facility of scaling up and down the resources according to the need;

means we have flexibility of using the resources when they are needed while paying as

we go.

14

 We can skip the time consuming process of setup and procurement by simply using the

preconfigured cloud resources.

 The service provider is supposed to ensure that latest version of the tool is provided. So

instead of paying a heavy amount for buying a tool, keeping track of latest version, and

updating the software accordingly; we just need to pay-as-we-use.

 It somehow reduces the need of hiring the individual tool experts [17].

Because of such benefits, the cloud computing is becoming the best suited environment for

the software testing and many organizations have started using it to save their Time,

Money and resources.

2.7. Review of papers

This section provides the review of some research papers that provides the details about

the cloud computing, its utilization in software testing and benefits that how it improves

the test results credibility.

2.7.1. When to Migrate Testing on Cloud [18].

In order to stays up-to-date with changing market requirements software is constantly

evolving. The testing process needs to constantly evolve as well to stay in sync with the

development process. Migration is one form of software development. As software

becomes mature, so does its testing process. To make the testing process more efficient

new techniques needs to be in place as the test cases become outdated. There is a

noticeable paradigm shift with the introduction of technologies such as SOA, cloud

computing, and SaaS. The testing is now being shifted to on demand, pay as you go from

15

having standalone in-house development and testing. With this paradigm shift in software

development, it is time to hold this change and introduce it to the testing process as well.

However, like all movement process, immigration of testing to the cloud does not have to

be an “all or nothing” big bang approach. Some parts of the testing process can be

migrated to the cloud and others may not. As with all engineering deliberations, the

decision of when to do so rests on a number of business, technical, and operational

aspects. This paper has laid out some of the characteristics to consider when to migrate

testing to the cloud from the application point of view. There are many other aspects to

consider, such as the cloud infrastructure, the test environment, the quality of the cloud

service provider, and security and privacy concerns of test assets.

2.7.2. Research Issues for Software Testing in the Cloud [19].

This paper provided an overview of cloud computing and discussed various research

issues within the context of testing in the cloud. The research issues are presented in four

categories Cloud computing provides large business and technical assistances to software

testing. As it becomes more common practice and availing a myriad of cloud solutions,

services and applications, we observed that organizations seem to be on the lookout for

ways to enhance the testing process. There is an anticipation of an increase in testing

solutions in the cloud, providing flexibility and cost benefits. We believe cloud

computing promises a lot of potential for testing. Additionally, vendors will provide

testing services through 562crowdsourcing as well as testing platforms and infrastructure

hosted in the cloud.

16

As the shift to the cloud continues to grow, it will also increase the need for testing in and

of the cloud. The problems associated with migration to the cloud are many: security,

reliability, performance, scalability and manageability among others. Organizations

looking to shift their systems or applications to the cloud need to understand the problems

and risks involved in doing so and take the appropriate precautions. Therefore,

comprehensive testing becomes necessary as a means to address these problems and

risks.

There is a need for pilot projects to see how delivery of testing in the cloud will work in

practice. An example is discussed in where so getting started a “proof of concept” with

IBM Development and Test Cloud to experiment with test tooling and infrastructure in

the cloud [34]. Another effort is Open Cirrus (TM) - an open cloud-computing research

testbed aimed at supporting research in various aspects of cloud computing e.g. design

and management of services [35]. The testbed attempts to encourage collaboration among

a community of interest to share and exchange knowledge. Our current work-in-progress

is looking at how cloud computing, service oriented architecture, open source

development technologies and crowdsourcing affect an organization’s testing process. In

general, we are studying how different software organizations adopt to new technology

methods and concepts, specifically within their testing activities. We also plan to explore

how cloud software development and testing will affect quality requirements in the future

addressing the interdependency of cloud software development, cloud testing and overall

quality assurance. The research issues for testing in the cloud are many. We believe

17

different research approaches and methods will suit different problems and scenarios.

Suitable research methods could be action research, with survey and the grounded theory

method among others. Due to the industry-specific problems of cloud computing, we

recommend research methods that encourage a high collaboration between the industry

and researchers, e.g. action research, design research and case studies research. This

interplay would enable real-life problems to be addressed in a scientific and

methodological manner. Cloud computing is growing and there is need for academic

research to address different research issues associated with it. We hope that this paper

can act as a resource

2.7.3. Testing as a Service over Cloud [20].

This paper proposed an automated testing platform TaaS on a cloud. This platform adopts

cloud computing technique to build the elastic resource infrastructures, and provide

various kinds of testing services to testing users. To validate TaaS platform, we used unit

testing services to perform the experiments. This platform helps testers to set up unit

testing environment, select a suitable unit testing method and testing service for the test

task, automatically generate test cases, automatically execute test cases, at last collect the

test results, and report to testers. The process is automatically completed, thus maximally

saves tester's effort for performing a unit testing task. In the future, we plan to deploy

more testing services on TaaS cloud platform, and collect a variety of runtime

information to perform corresponding analysis on scalability and reliability

18

2.8 Summary

Before going into the development phase one has to select a well suited cloud vendor.

Selecting a well suited cloud vendor is elementary building block of starting using cloud.

The selection of well suited cloud vendor is based on multiple factors discussed above.

As there are multiple cloud vendors available in the market for example MS Azure,

Google App engine, sales force etc. that are providing different facilities according to

their architecture so making a right decision in choosing the well suited vender is a quite

difficult task.

19

Chapter 3: Motivation and Scope

3.1. Research motivation

Agility, shorter time to market, rising complexity, market competition and many other

factors compel the organizations to ensure the quality, performance and the reliability of

software. Modern software testing includes complete software analysis including review

of the source code, design and the architecture. There are several open source software’s

testing tools available in the market that are used for performing different types of

software testing like JMeter is used for load testing and measuring performance , JUnit

for unit testing of the code etc. but the matter is that organizations have to manage and

maintain these multiple software for testing tenacity. And even when they succeed in

implementing the tools and instilling the best practices, these things takes Time, Money

& Resources.

Cloud Computing allows vendors to deliver computing resources on a large scale to the

developer and the end users. It actually provides the alternative way of delivering and

managing different IT services. The prosperity of provisioning the resources, storage and

computing capabilities on demand with pay as you go method is actually the driving

feature of the cloud computing that is fetching the attraction of the market place.

To get rid of all these issues of managing and maintaining the tools and resources and for

tackling the issues of storage and computation powers, the industry is locating for a

common platform for multiple software testing services so we proposed STFC. It lays at

the intersection of these key areas i.e. software testing and cloud computing for providing

20

multiple open source software testing tools on one platform, with a range of maintainable

resources available on demand.

3.2. Research Scope

Providing a Common software testing framework that have multiple open source tools

available on demand can resolve the multiple issues faced by the software tester, such as

they will not have to manage multiple software for performing different types of testing,

they will not have to get worried about the management and the maintenance of the tools

and resources, they can access the tools on demand from anywhere, they can access

bundle of resources with capability of scaling up and down the resources on demand.

Along with all these features the users can get more accurate and credible results over the

cloud.

3.3. Aims of proposed Solution

The Proposed solution has multiple aims objectives listed below

 Providing a common platform of testing, from where a user can access multiple

open source software testing tools to perform multiple tests of applications.

 To provide the bundle of resources on demand that can be accessed from

anywhere with ease of scalability.

 To provide more credible and accurate results.

 To reduce the management and maintenance efforts of the users

 To reduce the costs.

21

3.4 . Summary

This chapter illustrates that are several open source software testing tools available on the

market that are used to perform different kind of testings but the a user willing to test all

aspects of his application, have to install and manage multiple open sources tools, he has

to allocate resources for it, but at the end he has no grantee of getting credible results, so

a software testing frame on cloud is proposed that will have property of performing all

kind of software testing on demand, with a range of resources available on demand.

22

Chapter 4: Methodology

4.1. Software Testing Framework on Cloud (STFC)

The STFC provides multiple open source software testing tools under one roof. The

STFC provides several facilities as increases the processing capabilities, saves time and

generates the accurate and credible results. Traditionally while testing an application in

the local environment, results are not credible and accurate all the time because of the

involvement of some hardware and software factors such as processing, computing and

transmission time or storage differences etc. also on the other hand if an application

needs to be tested under certain load for rationale of performance testing, in some cases

not only the personal computers but even the private clusters become unsuitable. They

usually prohibit deficiency of lack of resources for generating the large scale load so

these issues can be tackled easily by deploying testing tools in the cloud environment and

utilizing the range of resources available on demand as shown in Figure 4.1.

Figure 4.1 Software Testing Framework on Cloud

Load Testing

On Cloud

(Single Combined

Junit, LibUetc JFucn,

CuCumber

Apache Jmeter

etc

Jmeter WebLoad

Unit Testing Functional

Testing

Performance

Testing

23

4.2. Abstract level Architecture

On abstract level the STFC interacts with all the three levels of the cloud architecture, i.e.

IaaS, PaaS and SaaS. The user can interact with the SaaS layer through a browser, IDE or

program, the SaaS layer interacts with the PaaS and IaaS. Figure 4.2 shows the STFC

structure at abstract level.

Figure 4.2: STFC Abstract level architecture

Program IDE Browser

Storage

Computing

IaaS

SaaS

PaaS

24

4.3. Interaction with STFC

The STFC provides multiple open source software testing tools over on platform, i.e.

Cloud. User can interact with the cloud through the internet. The tools are deployed over

the cloud and they use the storage of the vendor as shown in Figure 4.3.

STFC eliminates the need of installing and configuring multiple tools on the local

machines and also reduces the time and cost needed in allocating resources and man

power for performing different types of testing. User can access all the services through

a browser, IDE or a program.

 Figure 4.3: Interaction with STFC

Storage

Jmeter

WebLoad

Junit

JFunc

Cloud

25

4.4. Detailed Architecture of the STFC

The Architecture of the STFC is shown in the Figure 5.4It shows that a user gets

connected with the amazon elastic compute cloud through the internet and after getting

connected he can launch the instances of the Amazon Machine Image (AMI), that

contains all the necessary information of booting the instance and providing multiple

open source software testing tools to the end user. A user can launch multiple instance of

AMI and run can use the tool of interest according to the need, for example a user

wanting to perform the unit testing of the application can launch a separate instance of

the same AMI and can access the JUnit to perform the Unit Testing and at the same time

if a user is interested in the Load testing of the application he can launch the separate

instance of the same AMI and can perform the load testing of the application by initiating

the slaves instances etc.

The Figure 4.4 shows the architecture of the STFC, there is an AMI that contains all the

necessary information of the software testing tools, their configurations etc. and a user

have to simply launch the instance of that AMI, after launching the instance of the AMI

the user can run the tools of his interest and can scale up and down the resources

according to the need of the time.

26

Figure 4.4: Architecture of STFC

As a start point Jmeter is deployed on the cloud, The Amazon machine image is created

that contains all the necessary information about the environment and the Jmeter. A user

after getting connected with Cloud can launch the instance of the AMI and can perform

the load testing of his application without going into the installing and configuration

phases of the Jmeter.

The different Modules of the System interact with each other. The Completer system

Module Diagram is shown in the Figure 4.5

Instances

JJJ

AMI
Launch
Instance

Load Testing

Unit Testing

Performance
Testing

Functional
Testing

Amazon S3

27

Figure 4.5: System Modules’ Diagram

The implementation workflow of the system is shown in the Figure 4.6. It shows the

different states of the Master and Slaves and how they interact with each other. The user

launches the Master instance, the Master instance stays in Pending state in the start and

after some time it becomes active. When the Master becomes active it initiates the slaves,

distributes the threads on the slaves. The slaves run the test plan and calculate the results

and then test results are shifted back to the user.

Slave 1 to n

4. Initiate Slaves

Thread
Distribution

Running Test
Plan

Result
calculation

28

Figure 4.6: System Work Flow

4.5. Amazon Machine Image (AMI) Creation

Amazon machine image contains all the necessary information to boot the instance, with

required environment and the tools. The Amazon provides EC2 API tools to interact with

their cloud, there are several other ways provided that are used to interact with the

amazon elastic compute cloud e.g. AWS console through which instances can be

launched and monitored effectively. A user uses SSH connection to get connected with

an instance, when a user launches an instance; the instance is assigned with a IP address

and Public DNS. This IP address and public DNS are used to get connected with the

29

instance. When a user creates his own Amazon machine image, the AMI is stored in the

S3 storage so whenever the user wants to use the AMI he can launch the instance of this

AMI.

Initially we started with Jmeter, we had to create such an AMI that have Jmeter in it as a

preconfigured tool, and with all the environmental setups, a user can simply launch the

instance of this AMI and can get started with running his test plans without worrying

about the management and the maintenance of the tool and without going through the

installation and configuration phases. Jmeter is selected as the very first tool because it

can actually provide us the overview of the memory utilization, resources and other factor

like this, because it is used to load test the applications which means testing the

application when a large number of users access the application concurrently, so under

such conditions when an application is being accessed by the multiple users at a time then

resources are also utilized accordingly which gives an actual and realistic overview of

benefits availed through the software

The Amazon machine can be created by the following steps.

 Select an AMI: An AMI is selected that well suits our needs, and that have the

required environment

 Launch and Connect to the instance; The instance of the AMI is launched and

connection to the instance establishing SSH connection through the Putty

 Install the software; the software of the need is installed on the instance, if the

software is not found in the online repository, then it can be transferred from

local machine to the instance by using the PSCP.

30

 Configure the software; the software is configured on the instance according to

its need

 Set the environment; the environmental variables are added to the instance’s

.bashrc file and that .bashrc file is set as a source file for the booting time.

 Create S3 Bucket; S3 is the amazon simple storage system, a S3 bucket is just

like a hard disk drive, in which the data of the AMI is stored

 Bundle the Image; The image of the running instance is bundled to create the

manifest file, the images is first compressed, signed for integrity, divided into

small parts and then the manifest file is created.

 Upload the bundled image to the S3 storage; the image is uploaded to the S3

storage so that it can be accessed by the user whenever needed.

 Register the Amazon Machine Image; the image is registered with the Amazon so

that it can get a unique identification in the amazon cloud.

The Figure 4.7 shows the AMI creation and bundling process respectively.

31

Figure 4.7: AMI Creation Steps

4.5.1 Connection

The SSH secure connection mechanism is used to get connected with the instance

running on the Amazon cloud. When instance is launched it is assigned with the IP

address and Public DNS. Using these IP address and Public DNS a connection is

established with the instance. There are several other AWS credentials that are used for

secure connection.

4.5.2. Updating Directories

The directories of the running instance are needed to be updated so that repositories can

be upgraded with latest software versions and latest versions of the software can be

Connection

Updating

Directories

Tools
Installation

Configuration

Environment
Setups

S3 Bucket Bundling

Uploading

Registration

32

installed whenever needed. There are basically two utilities of APT that are used to

update and upgrade the repositories.

4.5.3 Tools Installation

The software testing tools are installed to the running instance, if software version needed

is not found in the online dictionary of the instance then using any secure copy

mechanism the setup files can be transmitted from the local machine to the running

instance and then installation can be performed according to the setup requirements.

Normally PSCP is used to transfer the files to and from the running instance.

4.5.4 Configuration and Environment Setups

Mostly when any tool is installed on the system it needs some configurations in the

system and also requires some other software to be installed or needs some

environmental variables to be set so that the system can actually allocated the installation

directory of the software. Most of the time its considered more accurate way to add the

environmental variables in the .bashrc file and then this .bashrc file is set as the source

file so that whenever the instance reboot it first locate the .bashrc for environmental

variables.

4.5.5 Simple storage system bucket

Amazon S3 stores data objects in buckets, which are similar in concept to directories, a

bucket can be created through AWS console, each bucket have a unique name and

identification.

33

Compress the Image

Sign for

confidentiality

Spilt the Image

Encrypt the Image

Create Manifest File

4.5.6 Bundling the Image

Amazon S3 stores data objects in buckets, which are similar in concept to directories.

User has to specify a bucket name in the following example as <your-s3-bucket>.

Buckets have globally unique names and are owned by unique users. If user has used

Amazon S3 before, user can use any of its existing buckets or just give ec2-bundle-

instanceany name that makes sense. The ec2-bundle-instance utility uploads the bundled

AMI to a specified bucket. If the specified bucket does not exist, it creates it. If the

specified bucket belongs to another user, ec2-bundle-instance fails. The bundling process

is shown in the Figure 4.8

Figure 4.8: Bundling Process

34

Amazon EC2 provides the ec2-bundle utility for bundling the instance. This utility has

parameters are shown in the Table 4.1[22]

Table 4.1: ec2-Bundle Utility parameters

Option Definition Required? Example

-k, --privatekey

KEY

The path to the user's

PEM encoded RSA

key file.

Yes -k $HOME/pk-

234242DEADCAFE.pem

-u, --user USER The user's EC2 user

ID (a.k.a. AWS

account number).

Yes -u 123456789

-i, --image

PATH

The path to the image

to bundle.

Yes -i /var/spool/my-

image/version-

2/debian.img

-d, --destination

DESTINATION

The directory in

which to create the

bundle. Defaults to

the current directory.

No -d /var/run/my-bundle

-p, --prefix

PREFIX

The filename prefix

for

bundled AMI files.

Defaults to "image".

No -p my-image-is-special

--help Display the help

message.

No --help

4.5.7 Upload the Image

We must upload the bundled AMI to Amazon S3 before it can be accessed by Amazon

EC2. ec2-upload-bundle is used to upload the bundled AMI. Amazon S3 stores data

objects in buckets, which are similar to directories. Buckets must have globally unique

names. The ec2-upload-bundle utility uploads the bundled AMI to a specified bucket.

The utility parameters are shown in the Table 4.2 [22]

35

Table 4.2: ec2-upload Utility parameters

Option Definition Required? Example

-b, --bucket

S3-BUCKET

The name of the Amazon S3 bucket

in which the bundle will be stored. If

the bucket doesn't exist it will be

created (provided the bucket is

available of course).

Yes -b aes-cracker-ami

-m, --

manifest

MANIFEST-

PATH

The path to the manifest file. The

manifest file is created during the

bundling process and can be found

in the directory containing the

bundle.

Yes -m /var/spool/my-first-

bundle/Manifest

-a, --access-

key USER

The user's AWS access key ID. Yes -a *******

-s, --secret-

key

PASSWORD

The user's AWS secret access key. Yes -s *******

--acl ACL The access control list policy of the

bundled image. It may be either

"public-read" or "aws-exec-read"

and defaults to "aws-exec-read" if

not specified.

No --acl public-read

--

ec2certificate

PATH

The path to the EC2 X509 public

key certificate. Defaults to

"/etc/aes/amiutil/cert-ec2.pem".

No --ec2certificate

$HOME/pk-

234242DEADCAFE.pem

-d, --directory

DIRECTORY

The directory containing the bundled

AMI parts. Defaults to the directory

containing the manifest file (see the

"-m" option).

No -d /var/run/my-bundle

--part PART Start uploading the specified part

and upload all subsequent parts.

No --part ????

--url URL The S3 service URL. Defaults to

https://s3.amazonaws.com.

No --url

https://s3.amazonaws.ie

--retry Automatically retry failed uploads.

Use with caution.

No --retry

--

skipmanifest

Do not upload the manifest. No --skipmanifest

36

--help Display the help message. No --help

--manual Display the help. No --manual

4.5.8 Register the Image

We must register your image with Amazon EC2, so we can locate it and run instances

based on it. The ec2-register utility is used to register the AMI and to get the unique AMI

ID.

4.6. Execution of Test Plan

The Jmeter is initially deployed over the cloud, the Jmeter is open source software testing

tool that is used to test the application under load. The Jmeter working on cloud is shown

in the Figure 4

 Figure 4.9: Jmeter Working on cloud

Master
Instance

Slave
Instances

SSH

Tester

System under Test

AmazonEC2

37

The bash programming is done to perform the following tasks.

 Run the slave instance from the master instance

 Continuously checking the state of the instance

 Getting IPs and public DNS of the slaves

 Copying the test plan to the slaves

 Distributing the threads on slaves

 Running the test plan on slaves

 Saving the result files

4.7. Credibility of Results

Latency and throughput are the key considerations for any website. These two KPIs are

extremely important to developers as the response time of the web site and the skill to

handle large amounts of traffic are directly related to the user experience.

Primarily due to the propagation and transmission delays on the internet the delay comes

as the latency of the web site. There are many donors to this latency starting from the

DNS lookup, to the link bandwidth etc.

The throughput increases linearly when the traffic to a web site is increased the and

finally reaches to the threshold value as shown in the Figure 4.10. While on the other

hand at low traffic the response time is low it starts to increase non-linearly with

increasing load and continues to increase as it maxes out system resources like the CPU

and memory.

38

Figure 4.10: Throughput vs. response Time

The latency and throughput are key considerations while deploying applications on the

cloud, which are needed to determine the kind of computing resources that are needed in

the cloud. Supposing that the web application has been optimized and performance tuned

for optimum performance what needs to be done is run load testing of the application on

the cloud using different CPU instances. For this a small and medium instances can be

utilized to plot the throughput and response time on both. And then analysis can be done

to test the adequate behavior of the application [22].

Now whether to use the small instance or medium, this decision can be taken by using

this formula.

Capacity of Small Instance=c

Capacity of Large Instance=C

Traffic to be handled = T

Then Instance needed

39

Small CPU instance it will be n= (T/c) + 1

Medium CPU instance it will be N =(T/C)+1

If

r1 = cost per hour of the small CPU instance

R1= Cost of the medium CPU instance

Then we can compare the both costs to make the choice by using following technique

r1 *n < R1 *N

By using these formulas we can measure the number of instances needed to make the

adequate throughput available for the application. So in this way we can have more

credible results on as we can compare the results of application test by varying the

throughput.

40

Chapter 5: Test Results and Evaluation

5.1 Test Plan

The test plan used to test the working of the STFC included the web pages of the oracle.

There were 31 pages added into the test plan with the number of 100 concurrent users and

loop count was set as 2 so a total of 6200 samples were tested.

The test plan was first executed in the local environment then on the cloud, the results

had the remarkable difference, as on the cloud we have range of resources available on

the demand so the throughput high. The Throughput and the response time are inversely

proportional to each other so the response time reduces with increase in the through put.

The test results are discussed in next section.

5.2. Test Results

5.2.1 Response Time

The response time of the both scenarios i.e. local environment and the cloud have

remarkable difference this difference is basically because of throughput, bandwidth,

transmission time and storage differences. Figure 5.1And Figure 5.2shows the average

response time of the test in the local environment and on cloud respectively.

41

Figure 5.1: Response Time in Local Environment

Response Time (Msec)

P
a
g
es

42

Figure 5.2: Response Time on Cloud

Response Time (Msec)

P
a
g
es

43

5.2.2 The response Time comparison

The Figure 5.3 shows the comparison of the response time on cloud and local

environment.

Figure 5.3: Response Time Comparison local vs. Cloud

5.2.3Summary Report

The summary report in the Jmeter is generated to provides the details of the response

time and throughput

Table 5.1: Summary report in local Environment

Pages Sample# Average Minimum Maximum Error% Bandwidth Average

bytes

Home 200 104249 33650 181343 0 7.117665 132962

Products 200 163814 114135 247388 0 10.73916 206148

Industries 200 118484 95201 204188 0 7.563149 144921.4

Solution 200 115852 90620 192839 0 7.357057 141160.5

Cloud

Computing

200 116863 99776 218815 0 7.418434 142812

R
es

p
o

n
se

 T
im

e
(M

se
c)

Pages

44

Table 5.2: Summary report on Cloud

Customers 200 106848 87789 181885 0 6.906394 132694.8

Acquisitions 200 122316 98974 223869 0 7.845371 151455.5

Downloads 200 108575 87166 170688 0 7.211207 138214

Support 200 103907 82139 219515 0 7.021908 135076

Education 200 36465 26681 94874 0 1.854045 35017

Partner 200 63911 49832 130631 0 3.992039 75848

About 200 113743 93918 218957 0 7.559922 146235.8

Documentation 200 120824 95619 193327 0 7.810304 152830.3

Articles 200 105193 80002 179186 0 6.627403 129063

Africa 200 103023 82271 172572 0 6.352429 125450.8

American 200 100809 82077 179502 0 6.29299 124654

Australia 200 100489 81107 188541 0 6.199369 123063.9

Middle East 200 101659 81133 199316 0 6.38376 127269

Pakistan 200 98335 76112 172085 0 6.042227 120276

France 200 102047 79563 175212 0 6.386633 126822

Japan 200 104416 81147 185114 0 6.268898 124566.3

Italia 200 106474 87062 220422 0 6.518838 129632.8

Communities 200 117758 97598 177726 0 7.455361 148287

Deutschland 200 108113 87628 183888 0 6.735925 133284

South Asia 200 103892 83517 199920 0 6.422258 127279

Denmark 200 101434 72727 164804 0 6.385563 126657

Turkey 200 100444 67326 185255 0 6.336103 125706.6

Russia 200 101774 56372 188473 0 6.40672 125892

New Zealand 200 95247 23636 149411 0 6.532632 126130

India 200 89637 14849 189042 0 6.596035 124551

China 200 84551 5321 193983 0 7.260526 133612

Page Sample

Average Minimum Maximum Error% Bandwidth Average

bytes

Home 200 43650 1999 91571 0 1008.158 132962

Products 200 134135 2998 122407 0 1623.28 211952

Industries 200 93201 2999 111703 0 1122.39 145729

Solution 200 91620 4998 101989 0 1103.589 142655

Cloud

Computing

200 90776 3999 91605 0 1141.47 142812

Customers 200 87989 4998 91903 0 1110.003 133351

Acquisitions 200 98974 2366 81742 0 1327.99 152964

Downloads 200 87166 1999 101639 0 1254.761 138214

45

5.2.4. Through Put

Throughput is the number of the requests handled per time unit. The throughput recorded

by Jmeter on local and cloud is given in the table 5.3

Table 5.3: Throughput local vs. Cloud

Support 200 82139 1197 91658 0 1171.025 135076

Education 200 26681 1000 30153 0 301.7941 35017

Partner 200 49832 2019 53485 0 638.9289 75852

About 200 93918 1074 105669 0 1267.575 147050

Documentation 200 95619 1999 100778 0 1317.304 153588

Articles 200 80002 1999 102334 0 1083.308 129312

Africa 200 82271 1000 91472 0 1031.729 126071

American 200 82077 1000 81456 0 1049.101 124654

Australia 200 81107 2000 91369 0 1064.956 124286

Middle East 200 81133 1000 91416 0 1119.14 127269

Pakistan 200 76112 3509 81438 0 957.8555 120276

France 200 79563 2977 91485 0 999.9565 126822

Japan 200 81147 3113 91396 0 999.7796 125182

Italia 200 87062 2810 81458 0 1065.974 130321

Communities 200 97598 3775 101401 0 1243.398 148377

Deutschland 200 87628 1463 91398 0 1104.035 133284

South Asia 200 83517 1677 81374 0 1094.684 127279

Denmark 200 82727 1871 71379 0 1113.157 126657

Turkey 200 77026 1594 91405 0 1144.78 126328

Russia 200 66372 1737 91407 0 1181.731 125892

New Zealand 200 23536 1567 81351 0 1231.8 126130

India 200 15849 1135 61400 0 1264.101 124551

China 200 5441 1233 61469 0 1413.197 133612

Environment Throughput

Local 56.984/Min

Cloud 9777.124/Min

46

5.2.5. Graph Results

The Graph Results listener generates a simple graph that plots all sample times. The

throughput number represents the actual number of requests/minute the server handled.

The advantage of doing the calculation like this is that this number represents something

real [23]

Figure 5.4: Graph results in local environment

Response Time (Msec)

S
am

p
le

47

Figure 5.5: Graph results on cloud

 Response Time (Msec)

S
am

p
le

48

5.3. Evaluation

The basic instruction regarding response times has been about the same for thirty

years .The response time is idealized according to the user acceptance rate.

 0.1 second meaning that no special feedback is necessary except to display the

result, user feels that the system is reacting instantaneously,

 1.0 second is about the limit for the user's flow of thought to stay uninterrupted,

even though the user will notice the delay. Normally, no special feedback is

necessary during delays of more than 0.1 but less than 1.0 second, but the user

does lose the feeling of operating directly on the data.

 10 seconds is about the limit for keeping the user's attention focused on the

dialogue. For longer delays, users will want to perform other tasks while waiting

for the computer to finish [24].

 Table 5.4: Response Time per Request

Pages Cloud Local

Home 0.21825 0.521245

Products 0.670675 0.81907

Industries 0.466005 0.59242

Solution 0.4581 0.57926

Cloud
Computing

0.45388 0.584315

Customers 0.439945 0.53424

Acquisitions 0.49487 0.61158

Downloads 0.43583 0.542875

Support 0.410695 0.519535

Education 0.133405 0.182325

Partner 0.24916 0.319555

About 0.46959 0.568715

49

Documentation 0.478095 0.60412

Articles 0.40001 0.525965

Africa 0.411355 0.515115

Latin-American 0.410385 0.504045

Australia 0.405535 0.502445

Middle East 0.405665 0.508295

Pakistan 0.38056 0.491675

France 0.397815 0.510235

Japan 0.405735 0.52208

Italia 0.43531 0.53237

Communities 0.48799 0.58879

Deutschland 0.43814 0.540565

South Asia 0.417585 0.51946

Denmark 0.413635 0.50717

Turkey 0.38513 0.50222

Russia 0.33186 0.50887

New Zealand 0.11768 0.476235

India 0.079245 0.448185

China 0.027205 0.422755

So it is clearly visible from the results that the response time recorded on the cloud is less

then local environment that is because bandwidth, throughput, and delays. As on cloud

we have range of resources available on demand so it best suits for the testing purpose.

5.4. Summary

The comparison of the Response time and the throughput between local and cloud

environment tests shows that as on the cloud we have high throughput so the response is

quite down, we can test our application’s response time by increasing and decreasing the

throughput to get a real time idea of the application’s behavior under stress when a large

number of concurrent users access it.

50

Chapter 6: Conclusion and Future work

6.1. Conclusion

Software testing in a technique of evaluating the system behavior, now a day because of

agile technologies software is becoming more complex, with increase in the complexity

the testing of the applications is also becoming an effort intensive task. User has to

manage and maintain multiple open source software testing tools to test different aspects

of the application. It becomes hectic to manage and maintain a large range of software on

local machines and allocating resources etc. so a software testing framework (STFC) is

developed to provide a common platform to the end user from where a user can access all

the open source software testing tools on demand, without worrying about their

management and the maintenance. User can access them through internet and can run his

test plans to get more accurate and credible results as compared with the local

environment.

STFC not only provides integrated environments for ease of use and maintainability but

also ensures more accurate and credible results. We performed tests in the cloud using

Jmeter and the results had a remarkable difference. Our ultimate goal is to place multiple

open source software testing tool over one platform so that user can access them on

demand without worrying about their maintenance and management.

6.2. Future Work

Software testing is a necessary phase of the software development life cycle. The quality

of the product can be enhanced by following the different testing techniques. In future the

51

work can be done to implement the solution on the smart phones so that the user can get

the results of the test plan on the screen of the smart phone. The user should be provided

with interactive charts and graphs for the analysis purposes.

52

REFERENCES

[1] “Advantages of Cloud Computing,” Available: http://www.webhostingreport.com/ learn

/advantages-of -cloud-computing.html, [Accessed: Sep. 2010]

[2] “Modern Software Testing,” Available: http://modern-testing.blogspot.com/, [Accessed: Feb.

2010]

[3] “Cloud computing”, Available: http://en.wikipedia.org/wiki/Cloud_computing,[Accessed:

Oct. 2010]

[4]L.Riungu,O.Taipale, K.Smolander “Resaerch issues of software testing in the cloud” in

proceedings of2nd IEEE International Conference on Cloud Computing Technology and

Science, 2010

[5] “Choosing the Right Cloud Platform”, Available: http://pcquest.ciol.com/content/techtrends

/2010/110040105.asp, [Accessed: Jun. 2010]

[6] “Microsoft shares SaaS architecture insights” available: http:// www. Zdnet .com/blog /saas

/Microsoft-shares-saas-architecture-insights/239, [Accessed: Sep. 2010]

[7] “Comparison - Cloud Offerings” Available: www.blog.kitetail.com,[Accessed: Feb. 2010]

[8] “Amazon Elastic cloud developer’s guide”, available: www.aws.amazon.com, November 30,

2009

[9] “Overview of security process”, White Paper, Amazon Web Services, August 2010.

[10] “Future of Software Testing,” White Paper, App Labs, July 2008

[11] M. Vasilian, “Trends in Software Testing,” SoftwareDev Explained, [Accessed: August

2010].

[12] E.Sha,“Trends in Software Testing for 2011,” information Bible, Jan 2011. Available:

http://www.informationbible.com/article-trends-in-software-testing-for-2011-35378.htm,

[Accessed: April, 2011]

[13] “PerformanceXpert Pro,” Available: http://www.cloudintelligence.com/applications/j

meter/about/, [Accessed: March. 2011]

[14] “RTTS-Performance Testing in Cloud” Available: http://ww w.rttsweb.co m/services/imp

lamentation/performance/packages, [Accessed: March. 2011]

[15] “Cost effective web load testing in cloud,” Available: http://www.attenda.net/e-zines

/clients /100910/clients-sub1-WebLoadTest-0910.asp,[Accessed: March. 2011]

53

[16] “HP LoadRunner software in the Cloud,” https://h10079.www1.hp.com,[Accessed: March.

2011]

[17] Jaideep, “Five benefits of software testing on cloud,” Available: http://itknowle

dgeexchange.techtarget.com/quality-assurance/five-benefits-of-software-testing-on-cloud/,

[Accessed: May 2010]

[18] T.ParveenS.Tilley “When to migrate Testing on Cloud” Third International Conference on

Software Testing, Verification, and Validation Workshops, IEEE, July, 2010

[19] L.Riungu,O.Taipale, K.Smolander “Research issues of software testing in the cloud” 2nd

IEEE International Conference on Cloud Computing Technology and Science, [Accessed: 5 Jun,

2011]

[20]L.Yu, W.Tsai1, X.Chen, L.Liu, Y. Zhao, L.Tang, W.Zhao “Testing as service over cloud” in

Proceedings of Fifth IEEE International Symposium on Service Oriented System Engineering,

Dec. 2010

[21] “EC2 Documentation” Available:http://docs.amazonwebservices.com/

[22] Tinniam V Ganesh“Latency, throughput implications for the Cloud”, Available:

http://gigadom.wordpress.com/2011/04/13/latency-throughput-implications-for-the-cloud/, April,

13, 2011

[23]“Jmeter User Guide”, Available: Http: //jakarta.apache.org/jmeter/usermanual/component

referene.html#GraphResult, [Accessed: Jan. 2011]

[24] “Response Time: The 3 Important Limits”, Available: http://www .useit.com/papers/respon

setime.html, [Accessed: May. 2011]

