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Abstract 
 

The gap between processor and memory speeds is increasing day 
by day. This situation makes it imperative to use effective caches or 
other structures between CPUs and DRAMs. The traditional measures 
of the quality of a caching strategy have been the aggregate hit rate and 
the execution time of a benchmark, but these measures are no longer 
sufficient. They provide no insight into dynamic programme behaviour 
and little guidance in designing a multi-level memory hierarchy. 
Current caches are designed primarily using ad hoc experimentation 
and commonly accepted rules-of-thumb: there is no systematic 
experimental methodology, and there is only fragmented theory to 
guide the design. 

 
This demands evolution of new methods for evaluating memory 

system designs before they are implemented in hardware. One such 
method, trace-driven memory simulation, has been the subject of 
intense interest among researchers and has, as a result, enjoyed rapid 
development and substantial improvements during the past decade. 

  
This project report surveys and analyzes these developments by 

establishing criteria for evaluating Cache Designs for Multiprocessor 
based Environments using trace-driven simulation method, and then 
applies these criteria to describe, categorize and recommend optimal 
combinations of Cache Designs basing on user discretion.  

 
Besides, it provides an analysis methodology that supports cache 

hierarchy design theoretically and subsequently leads towards the 
development of mathematical and software tools that accompany this 
methodology. 

 
 
In doing so it discusses the strengths and weaknesses of different 

approaches and uses One Pass Stack based Trace Driven Simulation 
method for application of Cache Coherence Protocols, to recommend 
best, appropriate and user defined design, when all criteria, including 
accuracy, speed, memory, flexibility, portability, ease-of-use and 
expense are considered.  
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Chapter One 

 
 

Introduction 
1.1 Cache and System Performance in Retrospect. 
Cache: a safe place for hiding or storing things. 

 
Webster’s New World Dictionary of the American Language, Second 
College Edition (1976)  
 
Cache is the name generally given to the first level of the memory hierarchy 

encountered once the address leaves the CPU. Since the principle of locality 
applies at many levels, and taking advantage of locality to improve 
performance is so popular, the term cache is now applied whenever buffering is 
employed to reuse commonly occurring items: examples include file caches, 
name caches, and so on. The memory hierarchy is given the responsibility of 
address checking:  hence protection schemes for scrutinizing addresses are also 
part of the memory hierarchy.  

  
The importance of the memory hierarchy has increased with advances in 

performance of processors. For example, in 1980 microprocessors were often 
designed without caches, while in 1995 they often came with two levels of 
caches. Microprocessor performance improved 55% per year since 1987, and 
35% per year until 1986. 

  
Computer pioneers correctly predicted that programmers would want 

unlimited amounts of fast memory. An economical solution to that desire is a 
memory hierarchy, which takes advantage of locality and cost/performance of 
memory technologies. The principle of locality says that most programs do not 
access all code or data uniformly. This principle, plus the guideline that smaller 
hardware is faster, led to the hierarchy based on memories of different speeds 
and sizes. Since fast memory is expensive, a memory hierarchy is organized 
into several levels each smaller, faster and more expensive per byte than the 
next level. The goal is to provide a memory system with cost almost as low as 
the cheapest level of memory and speed almost as fast as the fastest level. The 
levels of the hierarchy usually subset one another: all data in one level is also 
found in the level below, and all data in that lower level is found in the one 
below it, and so on until we reach the bottom of the hierarchy. Note that each 
level maps addresses from a larger memory to a smaller but faster memory 
higher in the hierarchy. As part of address mapping, where miss rate is the 
fraction of accesses that are not in the cache and miss penalty is the additional 
clock cycles to service the miss, a block is the minimum unit of information 
that can be present in the cache (hit in the cache) or not (miss in the cache). 
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1.2 Trace Driven Simulation Methods for Cache Performance. 
Caches have been widely used in most computer systems for the last two 

decades. They are expected to play an increasingly important role in future 
high-performance computer systems. Very soon we will see machines with an 
off-chip cache miss penalty of over 100 instruction times (undoubtedly, the 
performance of these machines will be substantially influenced by their cache 
performance). A careful cache design choice is therefore crucial to the design 
of future computer systems. The most accurate way of assessing cache 
performance before a machine is built would be a thorough simulation of the 
whole system, which captures not only the detailed behaviour of the cache but 
also its subtle interactions with the rest of the system. Unfortunately, a 
thorough simulation of a complete system generally takes too long to allow 
coverage of the vast design space. 

 
A more realistic approach would loosely couple the cache with the rest of 

the system via high-level analytical model. In this approach, detailed 
simulations are performed on the cache subsystem to produce performance 
metrics such as miss ratios and write-back traffic. These results are then 
incorporated into the high-level model to generate the system performance 
under different cache design choices. 

 
Still, even cache simulation itself is not an easy task. The widely used trace-

driven cache simulation technique generally requires a large amount of disk 
space to store the program traces, and simulations that produce results which 
would cover a sufficient portion of the design space are very time consuming. 
Therefore, methods which can quickly and cheaply produce cache performance 
results are desirable.  
 

A large number of techniques for trace-driven cache simulation have been 
reported in the literature. Related work is briefly reviewed in following section 
along with a description of trace characteristics that we use throughout this 
paper.  

 
1.3 Background and Related Work in Trace Driven Simulations. 

Trace driven simulations can be further subdivided under three major 
headings, which are: 

• Trace Collection 
• Trace Reduction 
• Trace Processing 

         Out of these three each one is a complete subject within itself. Though the 
main focus of our project is on Trace Processing however following sections of 
this chapter briefly discuss ‘trace collection’ and ‘trace reduction’ for the sake 
of completeness, whereas a detailed discussion on trace processing is generated 
in chapter 2. 
 

1.3.1 Trace Collection 
To ensure accurate simulations, collected address traces should 

be as close as possible to the actual stream of memory references made 
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by a workload when running on a real system. Trace quality can be 
evaluated based on the completeness and detail in a trace, or on the 
degree of distortion that it contains. Ideally speaking a complete trace 
should include all memory references made by each component of the 
system, including all user-level processes and the operating system 
kernel. User level processes should include not only applications, but 
also OS server and daemon processes that provide services such as a file 
system or network access. Complete traces should also include 
dynamically-compiled or dynamically-linked code, which is becoming 
increasingly important in applications such as processor or operating-
system emulation. An ideal detailed trace is one that is annotated with 
information beyond simple raw addresses. Useful annotations include 
changes in VM page-table state for translating between physical and 
virtual addresses and tags that mark each address with a reference type 
(read, write, execute), size (word, half word, byte) and a timestamp. 
Traces should be undistorted so that they do not include any additional 
memory references, or references that appear out of order relative to the 
actual reference stream of the workload had it not been monitored. 
Common forms of distortion include trace discontinuities, which occurs 
when tracing must stop because a trace buffer is not large enough to 
continue recording workload memory references, and time dilation and 
memory dilation, which occur when the tracing method causes a 
monitored workload to run slower, or to consume more memory than it 
normally would. 

  
In addition to the three aspects of trace quality described above, 

a good trace collector exhibits other characteristics as well. In particular, 
portability, both in moving to other machines of the same type and to 
machines that are architecturally different is important. Finally, an ideal 
trace collector should be fast, inexpensive and easy to operate. 
 

Address traces have been extracted at virtually every system 
level, from the circuit and microcode levels to the compiler and 
operating-system levels. (see Figure 2). We organize the following 
discussion accordingly, starting at the lower hardware levels.  

 
1.3.1.1External Hardware Probes 

A straightforward method for collecting address traces is 
to record signals from electrical probes physically connected to 
the address bus of a host computer while it runs a workload. The 
address and control signals are fed into an external memory 
buffer at the full speed of the monitored host system, and when 
the buffer fills, its contents are transferred to a standard storage 
device, such as tape or disk, so that it can be processed at a later 
time. If a long, continuous address trace is desired, then the 
buffer must either be very large or there must be some way to 
stall the host whenever the buffer becomes full. It is usually only 
possible to stall the processor — external I/O devices, such as 
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disks or network controllers will must usually be permitted to 
continue operating. If there is no way to stall the system, then 
several discontinuous address-trace samples can be acquired and 
concatenated together. In either case, the resulting trace exhibits 
a form of distortion that is called trace discontinuity.  

 
The main advantage of the probe-based trace collectors 

is their ability to capture trace sequences complete with both 
user and kernel memory references, and free of most forms of 
trace distortion, provided that the trace buffer is deep enough. 
Although the traces are complete, this does not necessarily mean 
that they are easy to interpret. Hardware events such as cache 
misses, integer- and floating-point-unit stalls, exceptions and 
interrupts all must be separated from run cycles to determine the 
actual type (read, write, execute) and size (word, half word, byte) 
of the memory references made by a monitored processor. In 
processors that implement hardware pre-fetching or speculative 
execution, it may be difficult or impossible to separate “true” 
memory references from those that occur due to a pre-fetch that 
might not actually be used. Some of these problems can be 
overcome by implementing the inverse function of the processor 
sequencer, either in the trace-collecting hardware, or in a trace 
post-processing tool. Because the addresses captured by a probe-
based monitor are usually physical addresses, special methods 
that may require cooperation from the host OS must be used to 
reverse-translate addresses to their matching virtual addresses. 
These problems all follow from the fact that probe-based trace 
collectors are external to the monitored system and therefore do 
not have easy access to operating-system data structures. 

 
A common misconception regarding trace collection 

using hardware probes is that the technique is very fast. While it 
is true that acquisition of the trace proceeds at the full speed of 
the monitored system, it is important to account for the overhead 
of managing trace-buffer overflow as well as the time required 
to empty the buffer. This overhead is typically not reported in 
published papers, but because most systems can unload these 
buffers only through some form of relatively low-bandwidth 
channel, this overhead is necessarily high. For a system where 
overhead data is available, approximately 12 hours are required 
to obtain 11 seconds of real-time system activity. 

  
Although trace collection with hardware probes is time 

consuming, once the traces have been captured and stored to a 
permanent file they require no special hardware to use, and can 
be used repeatedly to achieve reproducible simulation results. 
Hardware probe-based methods share other common 
disadvantages. The first is expense. Logic analyzers with deep 
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trace memories cost from $50,000 to $200,000 .These amounts 
are probably low compared to the engineering costs associated 
with designing custom hardware. A second problem is 
portability. Although logic analyzers support probes for most 
popular microprocessors, it is often necessary to physically 
modify the motherboard or chassis of the monitored system to 
enable probe access to the signals of interest. These systems also 
require an understanding of the electrical issues concerning the 
connection of probes to running hardware, and are therefore 
typically fragile, sensitive to their operating environment, and 
difficult to learn and operate.  

 
As noted above, the advent of on-chip caches is making 

it increasingly difficult to build trace collection hardware as an 
afterthought. The future of probe-based trace collection 
therefore depends mainly on the level of support designed into 
systems for this task. A small, on-chip trace buffer that traps to 
the operating-system kernel whenever it becomes full is an 
example of the sort of support that could be provided. However, 
even a very small buffer of 2048 entries with 32-bits per entry (8 
K-bytes) is about the size of on-chip caches in current 
microprocessors and thus would be relatively costly in terms of 
chip area. An alternative approach would be to send certain key 
internal signals through the microprocessor package pins so that 
they can be monitored externally.  

 
1.3.1.2 Microcode Modification 

The high cost of circuit-level probing has motivated 
many researchers to develop methods for collecting traces at 
higher levels of system abstraction. One such alternative is to 
collect traces at the borderline between the hardware and 
software levels of a system in microcode. From the beginnings 
of the IBM 360 series (1964) until the DEC VAX machines, the 
most common method for implementing control logic was 
microcode.  When implemented off-chip, a microcode memory 
was often writable or could be modified through replacement, 
making it possible to change the behaviour of instructions, or to 
support multiple instruction sets. Agarwal (1986, 1988) realized 
that this mechanism made it possible to collect address traces. 
He modified the microcode on a VAX 8200 to cause all 
instructions to deposit the addresses of their memory references 
into a reserved area of main memory as a side effect of their 
execution. This method, which Agarwal called address tracing 
using microcode (ATUM), offers a number of advantages. The 
first is completeness. Because the microcode runs beneath the 
operating system, all user and kernel references are captured, as 
well as those from dynamically-compiled and dynamically-
linked code. Because ATUM has access to internal system state, 
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it is easily able to annotate traces with access-type tags and 
page-map information. Another advantage is speed. ATUM 
acquires address traces with a slowdown of only  about 10 to 20, 
and because the addresses can be processed directly out of the 
trace buffer  in main memory, there is no overhead of buffer 
unloading as with external probe-based trace collection. Finally, 
no additional hardware is required. The only cost associated 
with ATUM is the engineering effort required to modify 
microcode to produce the desired results. The ATUM method 
suffers a few minor disadvantages and one major one. First, 
ATUM traces exhibit some discontinuity distortion because the 
processor is not stalled when the trace buffer becomes full. 
Buffer size could be increased only up to a certain point because 
it took away from the usable memory of the host system. 
Agarwal has developed a method, called trace stitching, to 
counter this problem. Microcode modification also introduces 
another form of trace distortion, commonly called time dilation. 
Because instructions take 10 to 20 times as long to execute as 
they normally would, external devices such as disks and network 
controllers appear to the workload to be faster than they actual 
are, and interrupts from the system clock occur more frequently, 
thus changing the workload’s behaviour. 

 
The primary disadvantage of the microcode-modification 

technique is that the technique is now effectively obsolete 
because most new microprocessors use hardwired control or 
have an on chip microcode memory that is not easily modified. 
The fundamental idea behind microcode modification — 
augmenting the interpretation of instructions to generate trace 
addresses as a side effect of their execution — can, however, be 
implemented at other levels in a system. This has been made 
easier by some of the very trends that have made microcode 
modification obsolete. Hardwired control, for example, has been 
made possible (or at least easier) with the advent of RISC 
instruction sets. The relatively simple and uniform coding of 
RISC instruction sets has also made it easier to develop fast 
instruction-set emulators and binary-rewriting tools for 
annotating executables to produce traces as a side effect of their 
normal execution.   

 
1.3.1.3 Instruction-set Emulation 

An instruction-set architecture (ISA) is the collection of 
instructions that defines the interface between hardware and 
software for a particular computer system. A microcode engine, 
as described in the previous section, is an ISA interpreter that is 
implemented in hardware. It is also possible to interpret an 
instruction set in software through the use of an instruction-set 
emulator. Emulators typically execute one instruction set (the 
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target ISA) in terms of another instruction set (the host ISA) and 
are usually used to enable software development for a machine 
that has not yet been built, or to ease the transition from an older 
ISA to a newer one. As with microcode, an instruction-set 
emulator can be modified to cause an emulated program to 
generate address traces as a side-effect of its execution. 

 
Conventional wisdom holds that instruction-set 

emulation is very inefficient, with slowdowns estimated to be in 
the range of 1,000 to 10,000 Agarwal (1989); Wall (1989); 
Borg(1989); Stunkel(1991); Flanagan(1992). The degree of 
slowdown is clearly related to the level of emulation detail. For 
some applications, such as the verification of a processor’s logic 
design, the simulation detail required is very high and the 
corresponding slowdowns may agree with those cited above. In 
the context of this review, however, we consider an instruction-
set emulator to be sufficiently detailed for the purposes of 
address-trace collection if it can produce an accessible trace of 
memory references made by the instructions that it emulates. 
Given this minimal requirement, there are several recent 
examples of instruction-set emulators that have achieved 
slowdowns much lower than 1,000; they work by fetching, 
decoding and then dispatching instructions one at a time in an 
iterative emulation loop, re-interpreting instructions each time 
they are encountered. Instructions are fetched by reading the 
contents of the emulated program’s text segment, and are 
decoded through a series of mask and shift operations to extract 
the various fields of the instruction (opcode, register specifiers, 
etc.). Once an instruction has been decoded, it is emulated 
(dispatched) by updating machine state, such as the emulated 
register set, which can be stored in memory as a virtual register 
data structure , or which may be held in the actual hardware 
registers of the host machine . An iterative interpreter may use 
some special features of the host machine to speed instruction 
dispatch, but this final step is more commonly preformed by 
simply jumping to a small subroutine or handler that updates 
machine state as dictated by the instruction’s semantics. The 
reported slowdowns for iterative emulators range from 20 to 
about 600, but these figures should be interpreted carefully 
because larger slowdowns may represent the time required to 
emulate processor activity that is not strictly required to generate 
address traces.   

 
Some interpreters avoid the cost of repeatedly decoding 

instructions by saving predecoded instructions in a special table 
or cache. A predecoded instruction typically includes a pointer 
to the handler for the instruction, as well as pointers to the 
memory locations that represent the registers on which the 
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instruction operates. The register pointers save both decoding 
time as well as time in the instruction handler, because fewer 
instructions are required to compute the memory address of a 
virtual register.   

 
1.3.1.4 Static Code Annotation 

The fastest instruction-set emulators dynamically 
translate instructions in the target ISA to instructions in the host 
ISA, and optionally annotate the host code to produce address 
traces. Because these emulators perform translation at run time 
they gain some additional functionality, such as the ability to 
trace dynamically-linked or dynamically-compiled code. This 
additional flexibility comes at some cost, both in overall 
execution slowdown and in memory usage. For the purposes of 
trace collection, it is often acceptable to trade some flexibility 
for increased speed. If the target and host ISAs are the same and 
if dynamically-changing code is not of interest, then a workload 
can be annotated statically, before run time. With this technique, 
instructions are inserted around memory operations in a 
workload to create a new executable file that deposits a stream 
of memory references into a trace buffer as the workload 
executes. Static code annotation can be performed at the source 
(assembly) level, the object-module level, or the executable 
(binary) level, with different consequences for both the 
implementation and the end user Stunke(l991); Wall(1992); 
Pierce(1994). 

. 
The main advantage of annotating code at the source 

level is ease of implementation. At this level, the task of 
relocating the code and data of the annotated program can be 
handled by the usual assembly and link phases of a compiler, 
and more detailed information about program structure can be 
used to optimize code-annotation points. Unfortunately, 
annotation at this level may render the tool unusable in many 
situations because the complete source code for a workload of 
interest is often not available and annotation at this level is also 
the most difficult to implement because executable files are 
often stripped of symbol-table information. A significant amount 
of analysis may be required to properly relocate code and data 
after trace-generating instructions have been added to the 
program Pierce(1994). Despite these difficulties, there exist 
several program-annotation tools that operate at the executable 
level.  A common problem with many code annotators is that 
they produce traces with an inflexible level of detail, requiring a 
user to select the monitoring of either data or instruction 
references (or both) with an all-or-nothing switch. Many tools 
are similarly rigid in the mechanism that they use to 
communicate addresses, typically forcing the trace through a file 
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or pipe interface to another process containing the trace 
processor. Some more recent tools overcome these limitations 
and offer a flexible interface that enables a user to specify how 
to annotate each individual instruction, basic block and 
procedure of an executable file; at each possible annotation 
point the user can specify the machine state to extract, such as 
register values or addresses, as well as an analysis routine to 
process the extracted data. If no annotation is desired at a given 
location, they do not add it, thus enabling a minimal degree of 
annotation to be specified for a given application. For I-cache 
simulation, for example, a simulator writer can specify that only 
instruction references be annotated, and that a specific I-cache 
analysis routine be called at these points.  In general, code 
annotators are not capable of monitoring multi-process 
workloads or the operating system kernel, but there exist some 
exceptions as well.  

 
1.3.1.5 Single-step Execution 

The highest level of system abstraction for collecting 
address traces is the operating system. Most operating systems 
support some form of debugging utility that enables a 
programmer to step through a program one instruction at a time 
to expose errors. This form of debugging is usually supported in 
hardware through a single-step execution mode, where the 
processor traps into the OS kernel after the execution of each 
instruction or basic block Digital 86; AMD91; AMD93; 
Motorola93; HP90; Motorola90 or by breakpoint instructions 
that cause kernel traps whenever they are executed Kane(1992); 
Intel(1990). A debugger that supports single-step execution and 
examination of processor state, such as registers, can be 
modified to generate both instruction-address and data-address 
traces. Instruction-address traces are produced by simply 
recording the value of the program counter at each execution 
step. Data-address traces require instruction emulation to 
determine if the current instruction generates a memory 
reference and, if so, the value of that reference.  
 

The main advantages of this method are low expense, 
high portability, and ease of use. With the exception of debugger 
data structures, little additional host memory is used. 
Unfortunately, slowdowns for this technique are high, with 
estimates varying widely from 100 Agarwal (1988) to 1,000 
Flanagan (1992) to 10,000 (Holliday1991). High slowdowns are 
usually due to debugger implementations that rely on the UNIX 
ptrace () facility which, in turn, is implemented using 
UNIX exception-signal handlers.  Although there is nothing 
inherent in this approach that limits traces to a single process, or 
to user-only references, debuggers typically do impose these 
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limitations. Similarly, dynamically compiled and dynamically-
linked code is usually not supported by debuggers. Because only 
address-trace information is desired, a single-step trace-
collection tool could, in principle, be written from scratch to 
avoid the overheads and single-process limitations of program 
debuggers. We are not aware of any existing trace-collection 
system that uses this approach.  

 
 

1.3.2 Trace Reductions. 
Since the space and time needed for trace-driven cache 

simulation are approximately proportional to the trace length, several 
early studies have focused on reducing the trace length to reduce the 
cost of cache simulation. Smith (1977) pioneered this work by 
proposing a trace deletion technique for memory-paging studies. He 
used Least Recently Used (LRU)-model of memory references and 
produced a reduced trace by deleting references that accessed the top D 
levels of the LRU stack of data. The resulting trace, if used for 
simulating memory larger than D pages under the LRU replacement 
algorithm, would produce almost the same number of misses (page 
faults) as the original long trace, provided that the page size is kept 
constant.  

 
An extension of Smith’s (1977) technique was proposed by 

Puzak (1985). He called it trace stripping. This approach focuses on 
reducing traces for simulating set-associative caches. A direct-mapped 
cache (serving as a filter) is simulated and the miss references are 
recorded; they form a reduced trace. This reduced trace, if used to 
simulate caches with a larger number of sets, would result in the same 
number of misses as the original trace, provided that the block size is 
kept the same. 

 
Other approaches have also been proposed which substantially 

reduce the trace length but cannot guarantee that exact performance 
metrics would be obtained by using the reduced trace. For example, 
Smith’s(1977)’s snapshot method records memory references at regular 
time intervals; a set selection method described by Puzak(1985)  keeps 
only references that access some specific sets; Agarwal’s(1987) trace 
compaction combines Puzak’s(1985) reduction technique and 
Smith’s(1977)’s snapshot method ; Laha et al.(1988),  proposed another 
sampling-based method. 

 
The main focus is to produce exact cache performance cheaply 

and quickly. To this end, sampling approaches cannot be used. Even 
Puzak’s (1985) and Smith’s (1977)’s original exact reduction 
techniques are not sufficient for two reasons. First, the reduced trace 
method can only produce a count of misses (i.e., hit ratios) but not the 
number of write-backs. Second, the existing methods apply only to 
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uniprocessor caches and are inadequate for multiprocessor caches. 
Finally, the reduced trace cannot be used to simulate caches which have 
block sizes different from that of the cache filter used for the trace 
reduction. 

   
1.3.2.1 Trace Reduction for Write-Back Cache Simulation. 

As stated earlier, the objective of trace reduction is to 
produce a reduced trace which can be used to generate exactly 
the same number of misses and write-backs as the original trace.  
Wang(1991) used small direct-mapped cache as a filter  but 
instead of keeping only references that cause misses, he also 
kept those that were first-time writes. 

 
The intuitive idea behind this reduction is that if a 

reference causes a hit in a small direct-mapped cache, it will also 
hit in a larger cache. Furthermore, if a block is dirty in a small 
direct-mapped cache it will also be dirty in a larger cache. Thus, 
the miss references to a small cache would be a superset of 
misses to larger caches. Also, references that cause blocks to be 
dirty in a small cache would be a superset of references that 
make blocks dirty in larger caches. Therefore, the reduced trace 
can be used to produce exact cache performance metrics for 
same size or larger caches (which implies some criteria for the 
parameters of the small cache). 

 
Formal description of reduction is as follows. 
 

Assume all caches under study have a power-of-two 
integer number of sets, simulate a direct-mapped cache with S 
sets using a program trace and record only references that cause 
misses or writes on clean data to form a reduced trace. This 
reduced trace, if used to simulate caches with a larger number of 
sets, would produce exactly the same number of misses and 
write-backs as the original trace, provided that the same block 
size is used.  
 
Now we see the proof of the above statement, 
Proof. The proof on the exact number of misses was given by 
Puzak (1985). So, it is sufficient to prove that using the reduced 
trace would produce the same number of write-backs as the 
original trace. Since the number of misses is exactly the same, 
any block that is replaced is the same independently of whether 
the reduced trace or the original trace is used. For the purpose of 
proof by contradiction, let us assume that there is a block, when 
replaced using the reduced trace that has a dirty state different 
from the original trace. That is, we have two cases: 
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(1) Case 1: the block is clean using the reduced trace, but is dirty 
using the original trace. The reasons for a block to be dirty are 
either the block is brought into the cache upon a write miss or 
upon a read miss followed by a write-on-clean. In the case of a 
write miss, there will be a write miss in the filter cache too, and 
the reduced trace will retain the reference. That is, using the 
reduced trace will make the block dirty too. In the case of a 
write-on-clean, it can be either a write-on-clean or a write miss 
on the filter cache. In either case, the write reference is recorded 
in the reduced trace. Thus, using the reduced trace will make the 
block dirty as well.  

 
(2) Case 2: the block is dirty using the reduced trace, but is clean 
using the original trace. This case is easily dismissed as follows. 
Since the block is clean using the original trace, the block must 
have been brought into the cache on a read miss and possibly 
followed by a number of read references. The first read miss and 
possibly a subset of the followed read references will be 
recorded in the reduced trace. None of them will cause the block 
to be dirty, since they are read references. Thus, using the 
reduced trace will make the block clean as well.  For both cases, 
the block will be in the same dirty state using either the original 
trace or the reduced trace. This contradicts the assumption that 
the block be in different states. Since a block being replaced 
cannot have different dirty states and since the number of 
replacements is the same, using the reduced trace will produce 
the same number of write-backs as the original trace. 

  
Wang (1991) used the traces mentioned above to 

measure the effectiveness of trace reduction. By using an 8K-
byte cache filter with a 4-byte block size obtained reduced traces 
which are between 10 and 22 times shorter than the original 
traces. 

  
The reduced traces were used to simulate (i.e., record 

misses and number of write-backs) a 32 K-byte 4-way set-
associative cache. Table I shows that the simulation times are 
between 7 and 15 times faster using the reduced traces.  We 
notice from Table I that the speedups are not as good as the 
space reduction ratios. This is due to the fact that the reduced 
traces have fewer localities than the original traces. 

    
   1.3.2.2 Multiblock-Size Trace Reduction. 

The reduction techniques we have discussed so far only 
work if reduced traces are used to simulate caches with the same 
block size as that of the filter cache used for reduction. A 
reduced trace cannot be used to simulate a large cache with a 
different block size because the contents of a larger cache are 
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not necessarily a superset of those of a smaller cache with 
different block sizes. Thus, the reduced trace may not capture 
every miss that can occur in a larger cache. In other words, the 
reduced trace cannot be used to simulate larger caches and still 
produce the exact results.  

 
What this lack of consideration implies is that we need to 

produce reduced traces for every possible block size under study 
or we take the risk of getting incorrect results. Unfortunately, the 
disk spaced needed to store every reduced trace would take 
away the space-saving benefits of the trace reduction. A 
“universal” reduced trace that can be used for all different block 
sizes but does not take up too much space is therefore highly 
desirable. 

 
Table I Time and Space Saving Due to Trace Reduction 

 
 

In an attempt to produce a universal reduced trace, we 
observe that most misses to a cache filter with one block size 
tend to be misses in another filter with a different block size. 
Therefore, Wang(1991) produce universal reduced traces by 
collecting the superset of misses that occur on every cache filter 
with different block sizes. His results (Table II) show that with 
40-48% of additional space, i.e., 1.8-4.5% of the original traces, 
we can have universal reduced traces for 5 block sizes. We 
notice from TableII that there is a jump on the length of the 
reduced trace from 4 block sizes to 5 block sizes for the Pops 
trace. The reason this happens is that the Pops trace has the 
worst locality among the three traces and the 8 K-byte cache 
filter experiences lots of misses due to thrashing when the block 
size is 64 bytes. 

 
1.3.2.3 Trace Reductions for Parallel Multiprocessor Cache 
Simulation. 

Recently, there have been many performance (trace-driven 
simulation) studies on cache coherence protocols for shared-bus 
multiprocessors. In this section we describe how multiprocessor 
traces can be reduced and still be used to provide exact 
performance figures. The performance metrics of interest for 
multiprocessor caches are miss ratios, number of write-backs 
and cache-coherence interferences from other caches. We start 
our discussion with a straightforward sequential simulation and 
describe how traces can be reduced for this type of simulation. 
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We then consider extensions of the reduction technique to 
parallel cache simulations. 

 
A few assumptions are in order before we present the 

reduction technique, these assumptions were originally made by 
Wang(1991) and we apply them here for our discussion. We 
assume that each processor has a private cache and that the 
cache size is the same for every cache in the system. We also 
assume that the relative order of reference streams from each 
processor is kept the same across different simulations; similar 
assumptions are presented by Thompson (1989) and Lin et al. 
(1989). To simplify our discussions we further assume that an 
invalidation protocol Sweazey (1986) is used for cache 
coherence, although our results can easily be extended to a 
larger class of coherence protocols. For the MOESI class of 
invalidation protocols, each cache block can be in one of four 
states: invalid, private, shared and dirty. On a read miss, the 
block is brought in and the state is set to private if the other 
caches do not have this block; otherwise the state is set to shared. 
On a write miss the block is brought in and any copy of this 
block, if present in other caches, is invalidated before the write 
is done. The state is set to dirty. On a write hit on a shared block, 
other copies also get invalidated before the write is done and 

 
Table II Length of Reduced Traces with  up to 5 Different Block Sizes 

 
the state is set to dirty. A write hit on a private block does not 
require a bus transaction except that the state of the block is 
changed to dirty. 
 

A straightforward simulation method represents a cache 
as a table and takes a serialized reference stream as input. For 
each reference a table look-up is performed to determine 
whether there is a hit and whether any coherence action needs to 
be done. Although this straightforward serial method is slow, we 
use it as the basis for comparing the speed-up with parallel 
methods to be discussed later. 

 
The trace reduction for this method works as follows. 

Simulate small caches (serving as filters) under the chosen 
coherence protocol using a multiprocessor trace and record only 
references that cause misses or result in writes on clean blocks. 
These references form a reduced trace and, if used for 
simulating large multiprocessor caches, would produce the same 
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number of misses, write-backs, and invalidations as the original 
trace, provided that the block size is kept the same and the same 
coherence protocol is used.  

 
The proof of the above statement is similar to that of the 

uniprocessor case, except we need to prove that the reduced 
traces preserve the references that cause invalidations i.e. if the 
original trace is used to simulate a larger cache (more sets) it 
should produce the same number of invalidations as the reduced 
trace. To show this, let us assume, for the purpose of a proof by 
contradiction, that there are invalidations in the original trace but 
not in the reduced trace. Then, there must be a first such 
invalidation. According to our chosen protocol (to mention 
again this protocol was originally designed by Wang (1991) and 
we are only discussing it here), this invalidation can either be 
caused by a write miss or a write hit on shared data (i.e., a subset 
of write on clean) in the large cache. If this is a write miss, then 
there will also be a write miss in the filter cache, so this 
reference will be recorded in the reduced trace. If this is a write 
hit on shared data, then it can only fall into the following three 
categories in the filter cache: namely, a write hit on shared data, 
a write hit on private, or a write miss. It cannot be a write hit on 
a modified block in the filter cache, since before this first 
mismatched invalidation a block that is modified in the filter 
cache will also be modified in the larger cache. That is, the 
reference causes either a write on clean or a write miss in the 
filter cache, and it will be recorded in the reduced trace as well. 
This is a contradiction to the assumption that the reduced trace 
does not contain the reference that causes the invalidation. 
Therefore, the number of invalidations will still be the same for 
the reduced trace and for the original trace. 

 
Table III Time and Space Saving due to Trace Reduction on Simulation 

of a 4-Processor System 

 
 
Using the above reduction method Wang (1991) produced 
reduced traces for the three multiprocessor traces of Table IV. 
These traces are used to simulate 4-cpu multiprocessor caches, 
128 K-byte, direct-mapped with a 4 byte block size. Table III 
gives the space and time comparison in using long traces vs. 
reduced traces. It shows that the reduced traces are between 9 to 
22 times shorter than the original traces and the simulation times 
using the reduced traces are between 7 to 17 times shorter. 
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1.4 Trace Characteristics. 
Our traces are on a set of three 4-processor VAX traces and four post-

processed single processor traces as shown in Table IV. These traces were 
collected by sites and Agarwal (1987). We describe below a summary of these 
traces. The reader is referred to Sites and Agarwal (1987) for more information 
about these traces and the post-processing details. 

 
Abaqus is a parallel finite-element analysis program. It is manually 

decomposed to run on multiple processes, one per CPU, June9 is a batch 
multiprogramming workload, with no shared data except in the operating 
system. Cayenne is a parallel version of Spice, a circuit simulation program.  

 
Make is a trace of two X-window network processes plus a disk copy 

and a make. Pero is a parallel VLSI layout routing program. Thor is a parallel 
logic simulation program and Pops is a parallel rule-based production system. 
We use these traces to simulate each individual cache of each CPU in the same 
way as Sites and Agarwal (1987). 

 
Table IV Characteristics of Traces 
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Chapter Two 

 
 

Trace Processing 
 

2.1 Trace Processing: An Overview.  
The ultimate objective of trace-driven simulation is, of course, to 

estimate the performance of a range of memory configurations by simulating 
their behaviour in response to the memory references contained in an input 
trace. This final stage of trace-driven simulation is often the most time 
consuming component because at this level we are often interested in hundreds 
or thousands of different memory configurations in a given design space. As an 
example, the space of simple caches defined by sizes ranging from 1 K-bytes to 
1024 K-bytes (in powers of two), line sizes ranging from 1 word to 32 words 
(in powers of two), and associativities ranging from 1-way to 8-way, contains 
264 possible design points. Adding the choice of different replacement policies 
(LRU, FIFO, Random), different set-indexing methods (virtually- or 
physically-indexed) and different write policies (write-back, write-through) 
creates thousands of additional possibilities. These design options are for a 
single cache, but actual memory systems are typically composed of multiple 
caches that cooperate and interact in a multi-level hierarchy. Because of these 
interactions different components cannot be considered in isolation. This leads 
to a further, combinatorial expansion of the design space. Our exploration of 
the subject material reveals that there are two basic approaches of dealing with 
this problem:  

• Parallel distributed simulations 
• Multiconfiguration simulation algorithms. 

 
Since first approach doesn’t fulfil the requirements of this project due to 

some inherent limitations so their discussion is out of scope. Algorithms that 
enable the simulation of multiple memory configurations in a single pass of an 
address trace offer another solution to the compute-intensive task of exploring a 
large design space. We use several criteria to judge a multi-configuration 
simulation algorithms in this survey. First, it is desirable that the algorithm be 
able to vary several simulation parameters (cache size, line size, associativity, 
etc.) at a time and, second, that it be able to produce any of several different 
metrics for performance, such as miss counts, miss ratios, misses per 
instruction (MPI), write backs and cycles per instruction (CPI). The overhead 
of performing a multiconfiguration simulation relative to a single-configuration 
simulation is also of interest because this value can be used to compute the 
effective simulation speedup relative to the time that would normally be 
required by several single-configurations simulations. 
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2.2 Efficient Cache Simulation Using Multiconfiguration Algorithms. 
Almost two decades ago, Mattson (1970) and his colleagues presented 

an algorithm that can determine the performance (i.e., hit ratios) of all cache 
sizes under certain replacement policies with only a single pass through the 
trace file. Their techniques work because the replacement policies they studied 
guarantee inclusion, the property that, after any sequence of references; the 
contents of a cache are always a subset of any larger cache. This class of 
replacement algorithms is called stack algorithms, and the performance 
evaluation method is therefore known as stack simulation. This stack 
simulation technique was later extended to cover a wider range of cache 
organizations TRAIGER, I L., AND SLUTZ, D. R (1991).  

 
The basic idea behind stack simulation is as follows. A common tag 

stack which holds the reference history is shared by caches of different sizes 
and with a different number of sets. When a block is requested, a search in the 
stack is performed until the block is found or the end of the stack is reached. 
Each element of the stack being visited is compared with the block’s tag to 
determine whether this element is in the same set as the block. This is done for 
various tag lengths corresponding to the number of sets under study. An array 
of distance counters is used to keep track of the stack distances for caches with 
a different number of sets. At the end of the simulation, the distances are used 
to calculate the hit ratios of interest. 

 
The stack simulation technique works well if the hit ratio is the only 

parameter of interest. For write-back caches, the frequency of replacing a dirty 
block is an important parameter since it substantially affects the bus and 
memory traffic. Unfortunately, this parameter cannot be obtained by using the 
original technique. This is because a block could be clean for some small 
caches but dirty for larger ones. Upon replacement, there is no way to tell 
whether the displaced block needs to be written back to memory. Thompson 
and Smith’s (1989) addressed the write-back frequency problem in the context 
of fully associative caches. Their method is to attach a dirty level to each block 
in the stack. This allows them to count the number of writes that can be avoided 
when the dirty block is still resident in the cache. 

 
Thompson and Smith (1989) were the first to propose efficient 

simulation algorithms which obtain useful performance measures other than hit 
ratio, although they considered only fully associative caches. Their technique 
was extended to a one-pass simulation method for more widely used set-
associative write-back caches. 

 
2.3 Stack Algorithms. 

Design and research questions regarding memory hierarchies are often 
investigated with trace-driven simulation of several design alternatives.  
Mattson et al. (1970) developed the stack simulation technique for simulating 
many caches with one pass through an address trace.  Stack simulation can 
evaluate alternative caches of many sizes if all have the same number of sets, 
the same block size, do no prefetching, and use a stack replacement algorithm 
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(e.g., LRU and RANDOM). Caches in a single stack simulation all have 
different associativities, however, since associativity is cache size in block 
(which varies in a stack simulation) divided by the number of sets (which is 
fixed).  Design and research questions regarding CPU caches often examine 
caches of differing sizes, but fixed associativity Smith(1978), Clar(1983), 
Good(1983), Haik(1984), Hill(1987) and Puzak(1985).  Consequently the 
evaluation of alternative CPU cache designs can require numerous stack 
simulations.  
 

To reduce the number of simulations required, Hill (1987) has 
developed efficient one-pass trace-driven simulation algorithms for evaluating 
caches having differing numbers of sets.  In some cases he reduces simulation 
time by using inclusion.  He says cache C2 includes cache C1 if cache C2 
contains a superset of the blocks in cache C1 after any series of references.  A 
simulation of alternative cache designs can take advantage of inclusion by 
searching for a reference in cache C1 first, cache C2 second, and then in other 
caches that include cache C2.  When a reference is found, a hit can be reported 
for that cache and (implicitly) for all caches that include that cache.  
  

Hill (1987) shows when inclusion holds for caches having differing 
number of sets.  He finds inclusion holds between practical direct-mapped 
(one-way set-associative) CPU caches, but that it does not hold in general 
between practical set-associative CPU caches. Since direct-mapped caches are 
important. He develops and algorithm, called forest simulation, for simulating 
alternative direct-mapped caches that takes advantage of inclusion. He allows 
alternative caches to use arbitrary functions to map references to sets. He also 
shows that faster simulation times can be achieved when the functions that map 
references to sets obey a property called set hierarchy.  His algorithm is a 
generalization of an algorithm for simulating set-associative caches that map 
references to set with bit selection Mattson(1970), Trai(1971).  A cache that 
uses bit selection contains a power of two number of sets and selects the set of 
a reference with the least-significant bits of the reference’s block number. 
 

Subsequent discussion is based on original work of Hill (1987) and 
Mattson (1991), and reviews set-associative caches, formally introduces stack 
algorithms, describes and analyzes linked-list stack simulation and describes 
more efficient methods of stack simulation. 
  

2.3.1 Set Associative Caches. 
A fully-associative cache allows any block to reside in any block 

frame. An n-way set-associative cache of c blocks uses a set-mapping 
function f to partition all blocks in main memory into a number of 
equivalence classes, and allows at most n blocks from each equivalence 
class to be simultaneously resident.   The block frames that hold blocks 
from one equivalence class are called a set. The number of block frames 
in a set, n, is called the associativity (or degree of associativity or set 
size).  The number of equivalence classes in the image of f, called the 
number of sets, is always equal to c/n, the number of blocks in a cache 
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divided by its associativity.  The advantage of a set-associative cache 
with respect to a fully-associative cache of the same size is that n block 
frames rather than c block frames must be searched on each reference.  
The disadvantage of a set-associative cache is that it restricts which 
blocks can be simultaneously resident.  For example, an n-way set-
associative cache cannot contain the n + 1 most-recently-referenced 
block that map to one set.  Figure 2-1 illustrates set-associative mapping 
and discusses Hill’s notation for caches. 

  
The most-commonly used set-mapping function is bit selection, 

because it can be implemented with no logic or delay.  In bit selection, 
several low order bits of the block number are used to select the set. Bit 
selection requires that the number of sets be a power of two.  For 
example, the set of block x is a cache with 21 sets that uses bit selection 
is  f (x) = rem 2i is the remainder of dividing x by 2i. 

 
2.3.2. Stack Algorithms: Formal Definition. 

The seminal paper on memory hierarchy simulation is Mattson 
et al. (1970).  It introduces stack simulation as an efficient technique for 
evaluating a series of fully-associative caches and obeys the inclusion 
property. Since a set-mapping function partitions blocks into 
equivalence classes and set-associative caches do not allow blocks from 
different classes to interact, each set of a set-associative cache operates 
as an independent fully-associative cache.  For this reason stack 
simulation can be applied to set-associative caches that use the same 
set-mapping function. 

 
 

This figure illustrates set-associative mapping in an n-way set-
associative cache of c blocks with set-mapping function f. If a block x is 
present, it is in one of the n block frames in set f (x) (one row). The 
number of elements in a single set is the associativity (degree of 
associativity, set size, A).  The number of values in the image of f 
(number of rows) is the number of sets in the cache (S=c/n).  The 
associativity times the number of sets is always equal to the cache’s size 
in blocks.  A cache is direct-mapped if A=1; it is fully-associative if  
S =1. 

Hill(1987) denotes the above cache with “C(A=n, S=c/n, F=t).” 
where A,S and F are cache parameters “associativity.” “number of sets” and 
“set-mapping function”.  When comparing caches he omits listing parameters 
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that do not vary. For example, I use “C(A=1)” and “C(A=2)” to contrast a 
direct-mapped and a two-way set-associative cache that are otherwise similar. 
When differences are clear, I use subscripts for distinguishing caches (e.g, “C 
1”, and :C2”). Finally I use “ci”  (lower case) to represent the number of 
blocks in cache “Ci” (upper case). Thus “Ci” represents all attributes of 
cache Ci  while “ci” represents only the number of blocks in cache Ci.. 

 
Stack simulation is efficient because it takes advantage of 

inclusion, which is the property that, after any series of references, each 
larger cache simulated contains a superset of the blocks resident in all 
smaller caches. Inclusion may seem trivially true, but it is not. For 
example, a series of caches managed with FIFO (first in first out) 
replacement do not always obey inclusion.  Consider a series of 
references to blocks 1,2,3,1, and 4.  At the end of this sequence, a two-
block cache will contain blocks 1 and 4 while a three-block cache will 
contain 2,3 and 4, but not block 1. 

 
Assuming no perfecting and fixed block size, Mattson et al 

(1970). show that inclusion holds between caches using the same set-
mapping function for a class of replacement algorithms called stack 
algorithms. LRU and RANDOM  are the principal, interesting stack 
algorithms. 

 
A stack simulation of caches C (A=k, F=f) for k = 1 to n uses a 

stack of n nodes for each set in the image of f, and an array of n 
distance counters. If we assume LRU replacement, each stack 
conceptually lists the most-recently-referenced n blocks for its set.  
Stacks in simulations of other stack replacement algorithms list blocks 
in order of descending priority, where priorities are defined so that 
blocks with a lower priority are preferred for replacement with respect 
to blocks with a higher priority. Each counter distance (k) contains the 
number reference so far to the k-th most-recently-referenced block.  For 
each reference x, stack simulation performs three steps: FIND, 
UPDATE and METRIC. 

 
FIND  Locate block x in stack f (x).  we say a reference is found 
at distance k if it is the k-th element in the stack and at distance infinity 
(∞ if it not found. 
 
METRIC Increment counters distance [k] and N, where N is the 
number of reference.  At the end of simulation, the miss ratio of cache C 
(A=k, F=f) is 1- j=1∑k  distance [k]/N.  Metrics can be also be 
maintained by keeping counters only for specific cache sizes of interest.  
This will save space, but increase the time required to determine what 
counter(s) to increment. 
 
UPDATE Update the stack to reflect the contents of all caches after the 
reference to x. See Mattson et al. (1970). for what is required with an 
arbitrary stack algorithm. For LRU, x must be moved from it old 
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position (if any) to the top of stack f (x), all blocks x passes must be 
moved down one position, and all other blocks must not move, if x was 
not previously referenced, moved down one position. 
 
2.3.3. Linked-List Stack Simulation. 

Hill(1987) describes stack simulation with the stack for each set 
implemented with a linkedlist. This is commonly done for CPU cache 
simulations, because it is simple to implement and has adequate 
performance since the referenced block is usually found in the first few 
elements of the stack. He assumes LRU replacement, because it is 
commonly used; the arguments that follow can also be extended to 
other stack replacement algorithms. Figure 2-2 shows an example eight-
entry stack before and after a reference. 

 
 
 

The left stack (a) shows an LRU stack for one sort after a sequences of 
references to that set, Information in the stack reveals that block 6 is in this set 
of a direct-mapped cache (one block per set); blocks 6 and 5 are in a two way 
set-associative cache; blocks 6, 5 and 3 are in a three way cache;…and blocks 
0 through 7 are in an eight way cache. Let the next reference that maps to this 
set be to block 4. The blocks in bold are examined to find block 4. The search 
stops when block 4 is found or the stack is exhausted. Since block 4 is located 
(coincidentally) at stack dept 4, a miss is recorded for all caches smaller than 
four blocks, and a hit is recorded for all caches 4 blocks or larger. The right 
stack (b) shows the stack after it has been updated with LRU replacement; the 
blocks in bold have moved. 
 

The pseudo-code in Figures 2-3 and 2-4 illustrate the storage 
and the per-reference processing required by linked list stack simulation. 
The implementation of FIND (not shown) merely walks down the link-
list f(x) until reference x is found or the linked list is exhausted. If x 
found, the implementation of UPDATE (also not shown) changes two 
pointers to move x to the head of the linked list f (x). Otherwise, it 
allocates a new node for x, either from a free list or by reclaiming the 
last block in the list, and puts the node at the head of the linked list. 

 
The analysis of the time to simulate each reference is some 

constant, O (I), that include the time to read the reference, plus the 
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number of iterations within FIND. Let  δk  be the probability that a 
reference is found at stack depth k, let δ∞   be the probability that the 
reference is not found, i.e this is the first reference to that block, and let 
N be the number of references in the trace. FIND uses k iterations to 
find a reference at stack distance k, and O(N δ∞) iterations for stack 
distance  ∞  where O (N δ∞) is the size of the entire stack. In practice, 
the average stack size is much smaller than the number of unique blocks 
in the trace, N δ∞, because the unique blocks are distributed across a 100 
or more sets.  
 
 max assoc …. Maximum stack size 
 function f (x) – a set-mapping function  
integer number of stacks --- number of sets induced by f (x)  
integer N---- number of references 
----distance counts so that m (C(F=f,A=k)=1-j=1∑k  distance[j]/N 
integer distance (1 max assoc) 
define stacknode type { 

   integer block number 
   stacknode type next 
  } 

stacknode type stack (0: number of stacks-1) --- top of stack pointers 
---pool of dynamically linked stacknodes 
stacknode type stacknodes (1 number of stacks max assoc) 

figure 2-3 Stack Simulation Storage 
 

 For each reference x ( 
   Read (var x) 
   N + + 
   Stack number = f (x) 

---Walk down stack unitl x is found or stack is exhausted. 
---If found, return stack distance and pointers to stacknode 
containing x. 
---Otherwise set stack distance to max assoc + 1 and point to 
LRU stacknode.    
Found =FIND (x, stack number, var stack distance,  Var 
previous node pointer, var node pointer 
--METRIC 
---if (found) distance (stack distance)++ 

--If was found, move the stack node of x to the top of its stack. 
---Otherwise, store x in LRU stacknode and move it to the top  
UPDATE(x, stack_ number found, previous node pointer node pointer) 

 
Figure 2-4 Stack Simulation 
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The time integer to process a reference is of order: 

 
 

The first term, called the mean stack distance, is the average number of 
distinct blocks since the last reference to the referenced block. If one is 
simulating only caches with associativity skmax, then no stack node 
need to be retained beyond distance kmax. This reduces the simulation 
time to; 

 

 
Bounding stack size can significantly reduce simulation time of set 
associative CPU caches, where kmax rarely exceeds eight. However, for 
fully associative caches, kmax is equal to the number of block in the 
largest cache simulated. The run-time of linked list stack simulation of 
fully associative caches will be poor if either k=kmax+1∑∞ δk  or    δ∞ is 
large. 
 

An analysis of the exact storage required for bounded linked list 
stack simulation of even large CPU caches is uninteresting, because the 
storage required is small relative to modern main memories. For 
example, the storage required by the linked list stack simulation pseudo 
code in figure 2-3 for simulating a direct mapped 128K-btye cache, a 
two way set associative 256 K byte cache, a four way512 K cache and 
eight way 1M cache with 32 byte blocks is approximately equal to the 
number of blocks in the 1M byte cache (32K) times 8 bytes per block, 
and is less than 300 K bytes. 
 
2.3.4 Other Stack Simulation Implementation. 

Bennett and Kruskal(1975) examine the paging behaviour of a 
large data base. They find mean stack distances of 1 to 328 entries for 
varying page sizes. Bennett and Kruskal propose an algorithm for stack 
simulation using an m-ary tree and a hash table where the run time per 
reference is approximately logarithmic in the number of block since the 
last reference to the current block. In contrast, the time per reference for 
linked list stack simulation is linear in the number of distinct blocks 
since the last reference of the current block. Bennett and Kruskal 
conclude that their algorithm is of order ten times faster than linked list 
stack simulation for mean stack distances of 150 entries. The storage 
requirements of the algorithm are large, but this is not important since 
the memory required is small relative to modern main memory sizes. 
The tree size is linear in the length of the address trace, N, and the hash 
table must be larger than the number of distinct blocks (N δ∞). A 
simulation of 10 million references with 200.000 unique blocks requires 
only 3M bytes of storage if it uses two bits per reference and two words 
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per unique block. Olken (1981) changes Bennett and Kruskal’s 
algorithm by replacing their m-ary tree with an AVL tree. 

 
Bennett and Kruskal’s algorithm and Olken’s algorithm use a 

hash table to learn about a block’s history. A hash table can also be used 
in linked list stack simulation to see if a block has ever been referenced. 
This reduces the time to process a previously unreferenced block from 
Kmax to a constant, reducing simulation time to: 

 
 
 

This change will significantly improve performance only if both 
kmax and δ∞ are large, that is both the degree of associatively and the 
fractions of the references to previously un-referenced blocks are large. 

 
Thompson et al.(1989) examine each of these algorithms, and 

conclude that linked list stack simulation performs best for most CPU 
cache simulations. Consequently, Hill(1987) compared the performance 
of forest and all associativity simulation with linked list stack 
simulation only, and used stack simulation to linked list stack 
simulation. 

 
2.4 Inclusion in Set Associative Caches . 

Hill(1987) proves several theorems about inclusion for set associative 
caches using (possible) differing set mapping functions. Recall that Mattson et 
al, (1970) discuss inclusion only in caches that use the same set mapping 
function, and hence have the same number of sets (e.g. all are fully associative). 
In this section, as in the rest of this chapter, Hill assumes that all caches have 
the same block size, do no pre-fetching, and use LRU replacement. He wants to 
use inclusion to rapidly simulate alternative single level cache designs. 
Consequently when he discusses a large and small cache, he is considering 
using one or the other in a memory system, not using both as components in 
cache hierarchy. 

 
 Consider two caches, C,(A=n1, F=f1) and C (A=n2, f2), with blocks, 
associativities of n and set –mapping functions fi, for i = 1,2 . An important 
condition necessary for cache C2 to include (the blocks of) cache C1 is that all 
blocks mapping to the same set in C2 map to the same set in C1,. That is, for all 
blocks x and y: 

 
 

Hill (1987) calls this condition set hierarchy, because it means that f2 
induces a finer partition on all blocks than does f1. Assume also that each set 
mapping function maps a large number of blocks(>=2* max(n1 , n2) )to each set. 
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Set mapping functions used in real caches, including bit selection, trivially 
meet this restriction. 
  

For cache C2 to include cache C1, C2 must be at least as large as C1 
otherwise inclusion will be violated as soon as C1, is full. For cache C2 to 
include a different cache C1, C2 must be strictly larger  than C1. Hill(1987) 
considers two caches to be equivalent if they always contain the same blocks, 
i.e. , are identical up to placement of sets. Suppose cache C1   and C2 are the 
same size. For cache C2 to include cache C1 . It must always contain a superset 
of cache C1blocks. Since cache C2 contains the same number of blocks as C1. It 
must always contain exactly the same blocks, and therefore is not a different 
cache. For this reason he sometimes refers to cache C as the larger cache. 
 

  2.5 Simulating Direct Mapped Caches with Inclusion. 
The section introduces forest simulation for evaluating direct mapped 

caches that have the same block size and obey inclusion. Like stack simulation, 
forest simulation takes advantage of inclusion by searching for a block from the 
smallest to largest cache. When a block is found, a hit can be implicitly 
recorded in all larger caches. Forest simulation is so named because it uses a 
forest (a set of disjoint trees) rather than a stack to store cache blocks. 

 
Let the direct mapped caches be named C1 C2… CL. Assume that each 

cache Ci has ci block frames and uses set mapping function rem ci. While forest 
simulation works for arbitrary set mapping functions of the form rem ci. Let 1 < 
c1 < c2 <  …<cL and ci divided ci+1 for i=1,L-1. By the argument presented after 
Theorem 3, inclusion holds for these caches. 
 

The key data structure in forest simulation is a forest of L levels. The 
number of trees in the forest is equal to the number of blocks in the smallest 
cache, c. The c nodes of level I represent the blocks in cache c1. The branching 
factor between two levels is equal to the cache size of the larger level, divided 
by the cache size of the smaller level ci+1 / ci . The levels represent the blocks in 
the largest cache, c. This forest can be implemented as a heap containing twice 
as many nodes as there are blocks in the largest cache, since ci+1 / ci <= 2 for all 
I implies  i=1∑L ci is less than 2* cL

  . For example, the heap location of block x 
a cache of c blocks using set mapping function f can be calculated with f (x) + 
c. Figure 2-5 shows an example forest simulation forest. 

 
 
 
 

This figure displays the forest for caches of size 1,2,4 and 8 blocks. This forest 
contains only one tree, because the smallest cache contains only one block. This tree is 
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a binary tree, because each cache in this example is twice as large as the next smaller 
cache. In this example we assume blocks are mapped to block frames with bit 
selection. Each node holds the information for one block frame in direct mapped 
cache. The block at the root of the tree has no block number bits constrained, because 
a one block direct mapped cache can hold any block. This illustrated with a t 
representing arbitrary high order bits of the block number and three x’s representing 
don’t cares for the three low order bits. The tags lxx0 and xx1 in the nodes of level two 
indicate that the blocks that can reside in these nodes are constrained to have even 
and odd block numbers, respectively. Similar rules with more bits constrained apply to 
the rest of the levels. 

  
Forest simulation works as follows and as is illustrated in Figure 2.6. 

On each reference, the algorithm selects the tree corresponding to the set of the 
reference in the smallest cache.  

 
 

 
 
 
 
 

The top tree (a) depicts the forest of Figure 2-5 after a series of references. 
Information in the tree tells us that block 6 is in a cache of size one block: blocks 6 and 
5 are in a direct mapped cache of size two: blocks 4.6,5, and 3 are in a direct mapped 
cache of size four: and blocks 0 through 7 are in a direct mapped cache of size eight.   
Let the next reference be to block 4. A path from the root to a leaf is determined using 
the set mapping function for each cache (here bit selection is assumed). A search 
begins at the root and stops when block 4 is found. All nodes encountered in the search 
that do not contain block 4 are modified to do so. The blocks on bold are examined to 
find block 4. Since block 4 is located at level 3, caches 1 and 2 miss and caches 3 and 
4 hit. 
The bottom tree (b) shows the tree after this reference as been processed. The nodes in 
bold now contain the referenced block.  

 
Then it searches for the referenced block beginning at the root of the 

tree. The path of the search is determined by the set of the reference in each 
cache. Any time a node is encountered that does not contain the reference, the 
node is updated to contain it. The processing of a reference stops when the 
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reference is found, or after a leaf node has been modified. If the reference is 
found at level i ,a counter distance (i) must be updated. 

 
 
 
2.6 Simulating Set-Associative Caches without Inclusion. 

Stack and forest simulation will simulate a series of caches with one 
pass through an address trace. Both methods are “efficient,” because they take 
advantage of inclusion. Since inclusion does not hold for caches of all sizes and 
associativities, algorithms using inclusion must constrain the series of caches 
simulated.  Hill(1987) describes an algorithm, which he calls all associativity 
simulation, that does not use inclusion, but can simulate set associative caches 
with  the same block size, that do no prefetching, and use LRU replacement, 
with one pass over an address trace. With it, he can cover the design space in 3 
simulations (one per block size) instead of 15 runs of stack simulation. The 
algorithm permits the set associative caches use of arbitrary set mapping 
functions. A literature search revealed that a version of all associativity 
simulation, where all set mapping functions use bit selection, was developed by 
researchers at IBM Mattson(1970), Trai (1971). 

 
2.7. Comparing Actual Simulation Times 

Hill (1987) compares the simulation times of implementations of stack, forest, 
and all-associativity simulation.  While the exact quantitative results of this 
section do not necessarily apply to other implementations, there is no reason to 
believe that gross comparisons do not generalize.  The advantage of this data 
over the run-time analysis is that these results apply to at least one set of 
implementations of these algorithms. 

Hill (1987) has implemented stack, forest and all-associativity 
simulation in C under UNIX 4.3 BSD.  Stack and forest simulation were added 
to a general cache simulator, called DineroIII Hill (1985). Dinero III originally 
contained 1250 C statements, as measured by the number of source lines 
containing a semicolon or closing brace.  Adding stack simulation increased 
total code size by 150 statements, adding forest simulation, 220 statements. 
Stack simulation is implemented using linked lists and without using a hash 
table to detect previously unreferenced blocks.  The forest simulation 
implementation restricts the set-mapping functions to be the block number 
modulo the cache size in blocks, a generalization of bit selection. He has 
implemented all-associativity simulation in a separate program, called Tycho, 
containing 800 C statements and having far fewer options than Dinero III.  
Tycho restricts the set-mapping functions to be bit selection.  His 
implementations of these algorithms are available to interested researchers free 
of charge. 

He estimates simulation time with the elapsed virtual time (user plus 
system) returned by the UNIX 4.3 BSD system call getrusage on an otherwise 
unloaded Sun-3/75 with 8M of memory and no local disk.  Trace data is read 
from a file server via an Ethernet.  He gives the results for four traces from four 
different architectures, described in Table 2-1, despite finding that results are 
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fairly insensitive to program traces.  All caches simulated have 32-bytes blocks, 
do no prefetching, use LRU replacement, are mixed (data and instruction 
cached together), and use bit selection. 

He begins by verifying that implementations of the three algorithms 
have similar run-times for simulating a single cache, using two methods. First, 
he ran each implementation using a trace of 1 million identical addresses so 
that all references, expect the first, hit at distance one. Results show that the 
elapsed virtual times of forest and stack simulation differ by 0.1 percent, while 
all-associativity simulation is 3 percent faster.  All-associativity simulation is 
faster, because it is implemented in a different program, Tycho. It is not 
surprising that Tycho is slightly faster than Dinero III is a general cache 
simulator.  Even through Dinero III’s additional features are not used in these 
simulation runs, DineroIII uses some execution time to fall through the if 
statements that guard the additional features. 

Second, he compares the algorithms simulating a 16K-byte direct-
mapped cache with each of four traces; the results are similar to those above. In 
addition a stack and an all-associativity of a single 16K-byte four-way set-
associative cache are also comparable. 

Since his implementations of these algorithms have similar run-times 
for simulating single caches, and the time differences are not due to per 
reference overheads, thus these lead us to meaningful comparison of multiple 
cache simulations.  
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Chapter Three 
 
 

Implementation 
3.1 Premise. 
 Till now we have discussed the historical background with reference to trace 
driven simulations with special emphasis on trace processing techniques. From this 
discussion one thing becomes clear that not much research has been done as far cache 
simulations in multiprocessor environments are concerned. Whatever knowledge about 
multiprocessor environments has been given is in the form of slight clues that too only 
highlight the challenges involved and does not discuss the solution space. 
  

In this chapter we start our discussion, from the implementation of already 
discussed theoretical aspects of uniprocessor based environments, in the form of 
algorithms and gradually extend the idea towards multiprocessor based environments. 
In the end of this chapter we present our algorithm that works in befitting manner in 
multiprocessor based environments. 
3.2 Trace-Driven Simulation 

One common method for calculating Cache memory metrics is to use trace-
driven simulation. Memory references are gathered from a system believed to be 
similar to the system being modelled. These references are then used to drive a 
simulation of the system under study with varying design parameters. To the extent 
that the traces apply to the modelled system, simulation is a relatively simple way to 
observe the effect of changes to the memory hierarchy. Unfortunately, it could take a 
large number of simulations if only a single combination of memory sizes could be 
simulated at a time. 

 
In a classic paper, Mattson et al. (1970). showed that for certain replacement 

policies the miss ratios for all cache sizes could be calculated in a single pass over the 
reference trace. These policies are collectively known as stack algorithms. The 
technique depends on the inclusion property of these policies; the contents of any size 
cache includes (i.e. is a superset of) the contents of any smaller cache. Thus the cache 
at any time can be represented as a stack, with the upper k elements of the stack 
representing the blocks present in a cache of size k. The current stack level of any 
block is therefore the minimum cache size for which the block is resident. If a block is 
referenced while at level k, it is a “hit,” and therefore resident, for all sizes k and larger. 
The level at which the block is found is referred to as its stack distance; see Figure 3.1 
Using stack analysis, it is possible to compute the miss ratio of Equation (MRR(C) = 
m(C)/N) for all sizes by recording the hits to each level.  
 

 
The miss ratio for a cache size C is where N is again the total number of 

references. Notice that, since hits (i) are never negative, this is a non increasing 
function of cache size. All stack algorithms possess this characteristic, whereas non 
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stack algorithms may show points at which performance declines with increased cache 
size. 
 

The simplest example of a stack algorithm is the Least Recently Used (LRU) 
policy. The stack always contains the blocks in order of last reference, with the most 
recently referenced block on the top. For any cache size C, the LRU block for that 
cache size is the block at level C in the stack. When a block at level k is referenced, it 
is not in any cache smaller than k, and therefore it must be fetched. The block that 
must be removed from any cache of size j, j smaller than k, is the block at level j. The 
stack is updated by simply “pulling” the referenced block out of the stack and placing 
it on top. All blocks down to level k are effectively “pushed” down one level. Since the 
referenced block was in all caches k or larger, all blocks below level k remain 
unchanged. Figure 3.1 illustrates these operations for the case where the referenced 
block is at stack level 4 and the case in which the block is not currently in the stack. 

 
More generally any stack algorithm possesses a “priority function” which 

imposes a total ordering on all blocks at any given time, independent of cache size. 
Notice that LRU imposes such an ordering based on the time of last reference.  

 
Figure3.1. Examples of stack maintenance using LRU replacement. The referenced block is 
always “pulled” to the top of the cache stack. All blocks with smaller stack distance are 
pushed down one level. 

 
Figure3. 2. Examples of stack maintenance using a stack replacement algorithm. For each 
level C a single comparison (indicated by a circled cross) between the prior block at the level 
(st-1 (C)) and the block pushed from above (yt (C - 1)) determines the new block at the level 
and the block pushed from the level. Update continues down to the current level of the 
referenced block or to the bottom of the stack if Xt is not in the stack. 
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However, in the more general case the relative priority of two blocks may change 
without either of them being referenced. (See, for example, Figure 3.4 where the 
relative positions of blocks A and B reverse between times 5 and 6. It is no longer   the   
case that the block at level j is necessarily the one to be pushed from that size cache. 
This complicates the stack update procedure, but only slightly. The stack can still be 
updated in a single pass that is similar to one pass of a bubble sort. A single 
comparison at each level determines the new block at the level and the block pushed 
from the level. 
 

First, the referenced block is still pulled to the top of the stack since it must 
become resident in all cache sizes. Using the terminology from Mattson et al. (1970), 
let yt (C) be the block pushed (“yanked?“) from a cache of size C. To make room for 
the referenced block, the top block in the stack,st-1(1) must be pushed from a one- 
block cache, becoming yt (l). Some block must also be pushed from a two-block cache-
the one with the lowest priority. A single comparison between yt (1)= st-1(1) and st-1(2) 
determines which becomes yt (2). (Ties are broken by some arbitrary rule.)  
Algorithm 1. General Stack Analysis Algorithm 

 

 
 (2)   In step 7,pmin returns the block with the lowest priority, as defined by the replacement algorithm. 
         Pmin is the comparison function in the circles of Figure 3.2. 

 
 

Figure 3.3 General  Stack Algorithm 
 

Similarly, the block pushed from a three-block cache should be the lowest 
priority of the three blocks previously present. However, the lowest priority block can 
be determined in a single comparison of yt (2) and st-1 (3) since the third block, now st 
(2), has already “won” a comparison against yt (2), and thus cannot have the lowest 
priority. Similar logic applies for all levels down to level k, the original level of the 
referenced block; only the block currently at the level and the one pushed from above 
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need be compared to find the block to be pushed. The contents of all sizes larger than k 
are again unchanged.  
 

The stack analysis algorithm is formally presented in Figure 3.4. This algorithm 
is used as the basis for the extensions. Let: 

 
Figure 3.4 The stack analysis algorithm 

Note that, in practice, it is possible to search the stack for the referenced block and 
update the stack simultaneously, since the priority function cannot depend on where 
(or even if) the referenced block is in the stack. The update stops when the referenced 
block is found. The block being pushed takes the place of the referenced block, which 
is inserted on top of the stack. 

 
Figure 3.5. Cache contents using the Least Frequently Used policy. The number beside the 
block is the priority, that is, the number of references. 

 
As an example, consider the application of a Least Frequently Used policy to 

the reference string {AAABBCCDB). Using this policy, the block pushed from any 
cache is the one that has been used the fewest total times. Figure 3.5 shows the 
contents of the stack after each reference, where the number beside each block is the 
priority (i.e. the number of uses of the block). Notice that a block may be pushed 
several levels because of a reference, as seen at time 8. Note too that blocks below the 
level where the referenced block is found are unchanged, even though they may have 
higher priorities, as seen after the last reference. 
 
3.3 Non stack Algorithms. 

The prohibition against a priority function that depends on cache size prevents 
some otherwise simple policies from being stack algorithms such as the First-In First-
Out (FIFO) rule. Another common technique that is not a stack algorithm is the use of 
demand prefetch or prefetch-on-miss . Suppose that the prefetch policy is to fetch the 
following block along with any fetched block, but not to prefetch if the referenced 
block is already present. Assume an arbitrary stack algorithm for replacement. It is 
easy to construct counterexamples that violate inclusion because the priority of a 
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prefetched block depends on when it is fetched, which varies with cache size. For 
example, consider the examples of Figure 3.6, where the contents of a larger cache are 
clearly not a superset of a smaller cache after the final reference. 
 

It is possible to construct prefetch policies that are stack algorithms. For 
example, the non demand policy that always prefetches the next block, regardless of 
whether the referenced block is resident, is a stack algorithm. This policy is a form of 
One Block Lookahead or OBL. From the point of view of the stack, this is equivalent 
to the insertion of a reference to the next block after each reference. Non demand 
prefetch is not practical if the cost of a fault is high, as it is in virtual memory systems, 
for example, because the penalty for faulting to prefetch a block that may not be 
needed is greater than the potential gain. Non demand prefetch is practical when it is 
possible to look for the next block in the cache and prefetch it if necessary without 
significantly slowing down processing the current reference. This is the case for many 
large processor caches and file system caches.  

 
Figure3.6. Cache contents using one-block demand prefetch. Since this is not a stack 
algorithm, the contents of each cache size are listed separately. In both examples the next 
block is prefetched only if the referenced block is not present. In all cases the referenced block 
becomes the highest priority, followed by the prefetched block, if any. The inclusion property is 
violated after the last reference in both cases. 
 
3.4  Extensions to Stack Analysis. 

There have been several important extensions to the basic stack analysis 
technique. Mattson et al. (1970) showed how the hit ratio can be computed for an 
arbitrary number of levels, assuming a common block size and replacement policy. 
Gecsei (1974) showed how it could be generalized to multiple levels with different 
block sizes for LRU and certain related policies. Traiger and Slutz (1991) showed that 
it is possible to compute miss ratios for variable block sizes and variable associativity 
in a single pass. 
 

Coffman and Randell (1971) investigated the “extension problem,” that is, 
predicting the performance of cache sizes greater than C, given only the misses from 
cache size C instead of a full trace. For LRU, a trace of “pushes” and “pulls” was 
sufficient; for other stack algorithms, the priority ranking for the block pushed and all 
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blocks not in the cache of size C was also required. A trace of misses only was found 
to be sufficient for providing good approximations to the performance of larger caches. 
 

A more recent extension by Silberman (1983) showed that stack analysis can be 
applied to a delayed-staging hierarchy in which the processor directly accesses several 
levels of the memory hierarchy. When a referenced block is not in a higher level cache, 
it is supplied to the processor (at the speed of the highest level cache to contain the 
block) and begins “migrating” into the higher caches. The time elapsed until it 
becomes “staged” (resident) in a higher cache is equal to the sum of the access times of 
the caches below it. Further, the displacement of a block in the higher level cache is 
also delayed, creating a situation where the stack level of a block may be a function of 
the size of several lower level caches and the time since the last reference to one or 
more other blocks. Silberman showed that stack analysis can be applied to this class of 
hierarchy by maintaining the time and cache depth of the last “migration” for each 
block. This information is used at the time of each reference to compute the stack 
distance of the block for different sizes of each level, by considering the delayed 
staging times. This idea of maintaining additional information about each block is seen 
again in our write-back algorithm presented in the next section. 
 
3.5  WRITE-BACK STACK ALGORITHM. 

We turn now to the development of a stack analysis algorithm for write-back. 
We begin by discussing the problems with write-back stack analysis, then present a 
general nonstack algorithm for computing the write-back ratios. We then prove that the 
algorithm obeys a form of inclusion and derive a corresponding stack algorithm. 

 
3.5.1 The Write-Back Problem. 

In write-back, a write access to secondary storage occurs whenever a 
dirty block is “pushed.” The main problem with write-back is maintaining the 
“state” (clean or dirty) of each block in the stack. A single dirty bit is sufficient 
in the real cache, but not for the simulation stack. Consider a read to a dirty 
block at level k. For sizes h and larger the block is still dirty, since it has not 
been written; for sizes 1 to k - 1 it is clean. The inclusion property is violated 
since the contents of the larger cache are “different” in the sense that the block 
has different attributes in some larger sizes. A second problem is accounting for 
the “dirty pushes.” Each miss from a memory of size C causes a push from 
each smaller memory; that pushed block may be dirty. On first inspection, this 
suggests that counts need to be maintained and updated for every memory size 
from which a dirty block is pushed. We show that a surprisingly simple 
technique solves both of these problems.  
 
3.5.2  A Non Stack Algorithm. 

We begin by assuming that write-back is not a stack algorithm and by 
imagining a general algorithm for computing write-back miss or transfer ratios. 
The algorithm is based on the stack analysis algorithm, but maintains a separate 
set of dirty blocks for each cache size in order to solve the problem of the no 
ninclusion of dirty bits. Let: 
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Figure 3.7 

We define Algorithm 2 in Figure 3.7 by adding steps 7A and 8A to Algorithm 1 
presented in section 3.2. When a block is written, it must be added to each dirty 
set (line 8A). A block is removed from a set if and only if a dirty block is 
pushed from memory (line 7A). Note that if write fetch is not used, then line 5 
of Algorithm 2 must be conditioned on a read, that is, IF wt = Φ THEN    rh(∆ )  
=   rh(∆) + 1.  
 
3.5.3 Dirty Set Inclusion Property. 

The inclusion property of stack algorithms states that if a block is 
present in memory of size C, then it is present in size C + 1, and therefore in all 
larger sizes. This can be formally stated as  

 
for all t and C, where Mt (C) is the set of blocks present in a memory of size C 
after reference .xt. We now show that a similar condition applies to dirty sets; 
that is, if a block is dirty in a memory of size C, then it is dirty in all larger sizes. 
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An intuitive argument of this fact is the following. In order to become 
dirty, a block must be written, which makes the block dirty in all sizes. A block 
becomes clean only when it is replaced (ignoring deletions for now). Because 
the replacement algorithm is a stack algorithm, the block is always pushed from 
a smaller cache before it is pushed from a larger one. The dirty level is 
therefore the maximum level to which the block has been pushed since it was 
written. A read may pull the block to the top of the stack, but will leave it dirty 
in an inclusive set of sizes. There is no way to make it dirty in some sizes 
without making it dirty in all sizes; therefore, inclusion holds. A more formal 
proof follows. 

 

 
 

Proof. Choose an arbitrary C. The condition certainly applies at the 
start of the simulation when no blocks are in cache; therefore, the dirty sets are 
empty. Assume it to be true at time t - 1. Beginning with this induction 
hypothesis, the proof adds and subtracts blocks from each side, preserving the 
subset relation, and finally arrives at an expression for the dirty sets at time t. 

 
Adding the possibly null block wt to both sets does not affect the subset 
relation. 

 
Similarly, the relation holds if the block pt is removed from the smaller set. 

 
Finally, removing the same block from both sets preserves the subset relation, 

 
Note that the right-hand side is exactly Dt(C + 1) as computed by line 8A of 
Algorithm 2, whereas the left-hand side differs from Dt(C) only by the term pt 
(C + 1). There are three possible values for pt (C + l), none of which affect the 
set on the left-hand side: 

 
Removing this term gives 

 
which is exactly equal to 

 
as set by Algorithm 2, line 8A. 
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With these facts we can simplify the algorithm considerably.  

 
Above relation implies that there is a minimum size at which a block is dirty (if 
it is dirty at all). Intuitively, this is the smallest memory from which the block 
has not been pushed since its last write reference, and therefore, the smallest 
memory size in which it is still dirty. This is also the largest stack distance the 
block has attained since it was last written. Therefore, the separate Dt(C) can be 
replaced by a single array. Let dl(x) be the dirty level of block x or infinity, if 
the block has never been written. A block at level k (i.e., s(k) = X) is dirty if 
and only if dl(x) ≤ I k. We can set the dirty level to 1 when a block is written 
and update it as the block is pushed. 
 
3.5.4 Writes Avoided. 

Before defining the new algorithm, let us also reconsider the way dirty 
pushes are counted. In Algorithm 2, dp is updated as each block is pushed. Also, 
recall that the purpose of the write-back policy is to avoid the write to 
secondary storage that is required for each write reference when using write-
through. We can count the number of write-backs required in two ways. One is 
to count them directly, as done by Algorithm 2. The other is to count the total 
number of writes and then to subtract the number of times that no additional 
write-back is required, since the block is already dirty or is being deleted. 
When a write does not require a write-back, we increment a count of writes 
avoided. This is analogous to the way reads are computed in the basic stack 
analysis algorithm, where a read is avoided for all sizes larger than the current 
stack distance. 

 
Ignoring deletes for now, a write is avoided only when a dirty block is 

overwritten, since both the previous and current modification can be written by 
the next write-back. Therefore, we can say that the previous write has been 
avoided for all sizes equal to or greater than the current dirty level. Notice that 
we now only care about the dirty level for the block being referenced, and 
therefore, we only need to adjust dl for the referenced block. If it is found at 
level ∆  which is below its dirty level (i.e. ∆ > dl(x,)), we can reason that the 
block has been pushed (while dirty) from all levels between dl (xt ) and ∆; 
therefore, the proper value for dl (xt) is ∆; see line 6 of Algorithm 3 (Figure3.8). 

 
We now define wa(C) to be the writes avoided at level C, that is, the 

number of writes for which the referenced block was still dirty in memory sizes 
C and larger. The write-back stack algorithm, Algorithm 3, is shown below. 
The differences between this algorithm and Algorithm 1 are line 6, which 
adjusts the dirty level as described above, and lines 10-13, which count the 
writes avoided and write references and reset the dirty level to one on a write. 

  
For the special case of LRU, this algorithm is particularly simple. As in 

the standard stack analysis algorithm for LRU, updating the stack is a Matter of 
removing the referenced block and inserting it at the top of the stack. The fact 
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that only the referenced block affects the statistics is particularly useful for this 
case since no work needs to be done while searching for the referenced block.  

 
3.5.5 Dirty Push Computation. 

Using Algorithm 3, the number of dirty pushes which have occurred by 
time t for a memory of size C is given by 

Equation 3.1 
where the count of write references by time t is 

 
and the count of dirty blocks resident in the cache of size C is the size of the set. 

 

 
Figure 3.8 

 
The first two terms of (3.1) are obvious, but we should elaborate on the 

need for the third term. It should be clear that each block that is still dirty has 
avoided the most recent write for all sizes in which it is still dirty and should 
therefore be subtracted from the count of writes. This argument applies at any 
point during the trace and at the end of the simulation. Since the relevant 
metrics are those gathered during the trace period, regardless of any activity 
which occurs after the trace ends, we should consider each dirty block 
remaining at the end of simulation as having avoided a write. To simplify the 
computations, we can make a final scan of the memory stack and update 
wa(dl(x)) for each dirty block x. We can then eliminate the third term of (3.1). 
Of course, the effect of this should be small if the total number of trace events 
is large. 
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Using this expression for the number of dirty pushes leads to a simple 
recurrence for computing the transfer ratio.  

 
 

Assuming write-fetch, the first two terms can be replaced by the stack 
analysis computation of the miss ratio , giving 

 
 

Substituting (3.1) for dp(C) and assuming that the final scan has 
updated wa, 
this simplifies to 

 Equation 3.2 
or 

 
 

Equation 3.3 
 

Notice that since rh(i) and wa(i) are both nonnegative, this function also 
decreases as memory size increases, just as the miss ratio does. 
 
3.5.6 Warm Start. 

If the simulation results are gathered starting from an empty stack, the 
results can be biased by the fact that many of the early references will be 
misses in all cache sizes. In fact, until the memory contains k blocks there is no 
chance of a hit at level k producing a higher than expected miss ratio. In some 
situations this cold-start miss ratio is  appropriate, for example, when a single-
program address trace is used to derive multiprogramming metrics. In other 
situations, the desired metrics are those for a system in steady state. In these 
cases it is common to warm start the simulation to reduce startup effects. A 
warm start consists of allowing the simulation to run until it is assumed to be in 
steady state, often either for a fixed number of events or until the memory 
contains a fixed number of blocks, then stopping. Without changing the state of 
the simulation, all statistics are cleared. The simulation then resumes from its 
current state. The final metrics are those gathered after the warm start. 
 

Warm start using the write-back algorithm can produce an anomaly in 
the transfer ratio. This is caused by the final scan of memory which considers 
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all dirty blocks as having avoided a write, which may have occurred before the 
warm start. Suppose, for example, that the write-back simulation is warm 
started, and suppose that W, and wa are zeroed. Then immediately after warm 
start, the value of dp(C) calculated using (3.1) may be negative for some values 
of C, as shown in Figure 3.9( c), where the number in parentheses is the dirty 
level of the block. Of course, a “negative push” is meaningless. We can keep 
the numbers positive by setting Wt to the number of dirty blocks in the cache at 
warm start, but then dp is immediately nonzero for some cache sizes. Another 
alternative would be to zero both wa and dl, but then it will be a long time 
before any dirty block could be pushed from large sizes-in conflict with the 
reason to warm start in the first place. 
 

Since the third term of (3.1) increases with C, the second term of (3.1), 
the sum of wa must decrease for larger C if we want the computed value of dp 
to be zero immediately after warm start. This can only happen if some wa are 
negative. The solution we use is to zero wa at warm start, then decrement 
wa[dl(x)] for all dirty blocks X. With this solution dp(C) is zero immediately 
after warm start for all C, as it intuitively should be; see Figure 3.9(a). Now 
suppose that a reference to a previously unreferenced block causes all blocks to 
be pushed (Figure 3.9(b)). The result is that dp(C) is zero for all sizes except 
those from which a dirty block is pushed-which is exactly the result obtained 
from a simulation of a single cache size or a real cache. 

 
Note, however, the unexpected result that the transfer ratio due to dirty 

pushes is no longer a monotone decreasing function of size. In fact, if the warm 
start of Figure 3.9(a) were followed by the unlikely event of five total misses,  

 

 
(c) 

Figure 3.9. Revised count of dirty pushes after warm start: (a) is immediately after 
warm start, and (b) is after all blocks are pushed one level. The count of dirty pushes 
from each size, dp(C) agrees with the results from a real cache. 
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the resulting transfer ratio would be increasing with cache size. It seems that 
the rate of dirty pushes may be exaggerated for larger cache sizes by the fact 
that there are more dirty blocks in the larger cache. (There may also be a higher 
probability that blocks pushed from larger caches are dirty). This “error” for 
large sizes is bounded by the number of dirty blocks in the stack divided by the 
number of references after warm start. It can therefore be made arbitrarily small 
by increasing the number of references after warm start (which also reduces the 
need for warm start). In most cases, locality causes the write-back traffic ratio 
to assume its normal decreasing form. 

 
3.6 Write-Through 

This policy is trivially included in the algorithm by setting dl(xt) to infinity 
instead of one after a write. In fact, since the total number of write requests is known, 
both the write-back and write-through transfer and traffic ratios are available   
simultaneously. It is also possible to simulate a combination of policies provided the 
choice of policy is not a function of memory size. For example, some blocks could be 
write-through and others write-back, a scheme used in some real caches, for example, 
the Intergraph CLIPPER processor [5,20] and the NEC disk cache[36]. 
 
An example of an algorithm for such a cache is given as Algorithm 4 (Figure 3.10). 
The only difference between this and Algorithm 3 (Figure 3.8) is that Line 12 ensures  

 
Figure 3.10 

 
that only write-back blocks become dirty. Writes to both write-back and write-through 
blocks are counted in W, (Line 13), but only writes to write-back blocks are avoidable 
(Line 11) since write-through blocks are never dirty. As a simplification, both write-
back and write-through are counted the same. In reality, a write-through may involve 
less data and, therefore, is less costly. This algorithm assumes that write allocate and 
write fetch are performed for write-through blocks; if this is not the case, then Line 5 
and the stack update should be bypassed for a write-through miss . 
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Figure. 3.11. A gap “jumps” down the stack. The gap (γ) is unaffected by references B above it, 
but a reference below it causes it A to “jump” to the level of the referenced c block. 
 
3.7 Deletions. 

An important consideration in file system studies is the existence of deletions in 
the reference string. If a file is deleted, the blocks of that file should be removed from 
the cache without a write. With a write-back cache and short file lifetimes, it is likely 
that file blocks will be created and deleted without ever being written to the next level. 
Deletions also occur in processor caches when blocks are invalidated but generally not 
without writing the block first if it is dirty. Deletion of blocks from the cache was 
discussed by Mattson et al. (1970) in the context of a “call back” hierarchy, where 
cache blocks may be invalidated by a write directed to a lower level. The example used 
by Mattson(1970) is a virtual memory system in which all I/O occurs to blocks 
residing in an I/O Subsystem, not the CPU memory. If an I/O is addressed to a block 
which is in CPU memory, that block must be invalidated. Greenburg(1974) also 
discusses deletions and implements an algorithm to approximate the effect of deletion. 
Olken (1983) proposes an exact algorithm and discusses implementation using various 
data structures. None of these consider the effect of write-back. If a deleted block were 
simply deleted from the stack, the stack level for all lower blocks would be reduced. 
This would have the undesirable effect of calling these blocks back into a memory 
from which they had been pushed. Instead, what called a “marker” block is inserted in 
the stack replacing the deleted block. 

We refer to the marker blocks as gaps in the stack, corresponding to a vacant 
block in all larger caches. The next push from above the gap replaces the gap with the 
pushed block since no block needs to be replaced in a cache containing a vacant block. 
Thus a gap stops the sequence of stack updates, just as finding the referenced block 
stops the pushes in the normal case. However, since the referenced block must still be 
pulled to the top and blocks below the referenced block do not change stack level, the 
referenced block must be replaced in the stack by another gap. Thus, a reference to a 
block below the first gap seems to make the gap “jump” down the stack. As an 
example, consider the sequence of Figure 3.12. After block D is deleted, a gap is left at 
level 4. A reference to block B above level 4 does not affect the gap. However, the 
reference to block F below level 4 “jumps” the gap to the stack level of F. From the 
point of view of the “real” cache, the gap represents the same vacant block, which was 
in all memory sizes 4 or larger. Since block F is already resident in memories of size 6  
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Figure3.12 

or larger,the reference to F has not fetched any block to fill the gap. Therefore, the gap 
still exists in these sizes. The effect of deletions on the transfer ratio is to introduce 
another way in which a write can be avoided, particularly evident in large cache sizes. 
If a block is written, then deleted before it is pushed, the write-back is avoided for all 
sizes greater than the current dirty level. It is therefore a simple matter to increment the 
appropriate wa[dx(xt)] on deletion. In addition, the count of read hits must exclude 
deletes, since a deleted block is never fetched. This is seen in lines 6 and 7 of 
Algorithm 5. The complete, though somewhat complicated, algorithm for write-back 
with deletions is given as Algorithm 5 (Figure 3.12). Let: 

 
 

There are actually only a few changes between Algorithm 3 and Algorithm 5. 
First, line 6 handles a deletion by updating the count of writes avoided and replacing 
the block by a gap in the stack. Line 8 computes Γ, the level of the topmost gap, while 
line 9 determines whether the referenced block or Γ stops the sequence of updates. 
Line 10 uses this value instead of ∆. A subtle change in line 13 inserts xt on top of the 
stack even if ∆’ = 1; this handles the case where there is a gap at the top of the stack. 
Finally, line 14 replaces the referenced block with a gap if it was below the first gap by 
implementing the “jump” of a gap described above.  
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3.8 Periodic Write-Back. 
With large caches, there may be a very long delay before a block is removed by 

replacement. In practice, reliability considerations may dictate that a dirty block be 
written before this time. Suppose that all dirty blocks are written every n seconds 
instead. An example of this is the UNIX™ file system policy of writing all dirty file 
system buffers to disk every 30 seconds. Alternatively, suppose only certain blocks are 
written, for example, by a policy to write a block after it has been unreferenced for n 
seconds. These policies are all stack algorithms, provided that the write happens for all 
memory sizes where the block is dirty, in order to maintain inclusion in the dirty set. 
A forced write-back is implemented in the algorithm by setting dl (x) to infinity for 
each written block. It has no effect on writes avoided, except that the write which made 
the block dirty cannot subsequently be avoided. The effect of this is to increase the 
calculated number of dirty pushes. Consider the third term in (3.1) for any C where the 
block is dirty: The block was dirty and included in Dt(C); it is now clean and not in the 
term; the net increase to dp(C) is 1. 
 
 

 
3.9 Trace-Driven Simulation for Write-Back Caches. 

3.9.1 one-pass Trace-Driven Simulation Algorithm for Write-Back Caches.  
In this section we present a one-pass algorithm which allows capturing 

the number of write-backs, in addition to hit ratios, for set-associative write-
back caches. We first present briefly the original method for stack simulation  
and the dirty level concept introduced by   Thompson and Smith (1989).  To 
explain the stack algorithm in some detail, consider the example given by 
Mattson et al. (1970). A reference to a block at time t, denoted xt, is compared 
with elements in the LRU stack, denoted S (t-1) , that holds the reference history. 
The number of right match bits is recorded. These right match bits are used to 
calculate the stack distance i.e. the number of elements that are ahead of the 
currently referenced element plus 1. An element with i right match bits is in the 
same set as xt for caches with 2t or smaller number of sets. For example, the 
first element in the stack has 2 right match bits. This implies that this element is 
in the same set as xt for fully associative caches, caches with 2 sets and caches 
with 4 sets. That is, this element is “ahead” of xt for caches with 4 or smaller 
number of sets. For the ease of keeping track of the stack distance, an array of 
right match counters, denoted u(r), is used to record the number of times that 
exactly bits are right matched. This recording process concludes when xt is 
found or the end of the stack is reached (which gives an infinite stack  distance). 
In our example, xt is found at the seventh position in the stack and the 
rightmatch- bits frequency counts, u(r), are recorded (see the top right chart of 
Figure 13.13). From u(r) the stack distances for caches with a different number 
of sets can be easily calculated as follows. For caches with 2t sets 0 <= t <=  
maxset, where maxset = 6 in the example, the stack distance of xt k=1∑k=6   u(k).  
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Figure 3.13 an example of Mattson (1970) algorithm 

For example, the stack distance for a cache of 16 (24) sets is u(6) + u(5) + u(4) 
= 2. This stems from the fact that if an element is ahead of xt in the same set for 
caches with a given number of sets, it will also be ahead of xt in the same set 
for caches with a smaller number of sets.  
  

This method permits the computation of hit ratios but it must be 
extended if other metrics of interest, e.g., number of writebacks, are to be 
determined. Thompson and Smith (1989) solved this problem in the context of 
fully associative caches. Their method is to attach a dirty level (dl) to each 
block in the stack. A block is dirty for caches larger than or equal to dl blocks 
and is clean for those smaller than dl blocks. In other words, dl is the maximum 
distance A where a dirty block was pushed between two write references. For a 
given dirty block, dl is updated only when it is referenced. Thus, instead of 
directly simulating the replacements and recording the number of dirty blocks 
being displaced, another measure is introduced, namely wa(C), the writes 
avoided at level C, that is, the number of writes for which the referenced block 
was still dirty in memory sizes c and larger. The wa(C) count is incremented 
when a write is performed on  a block with a C dirty level. Another counter, wc 
is used to record the total number of write requests. At the end of the simulation, 
the number of dirty block  replacements for a cache with size C can be obtained 
by subtracting the number of write requests (wc) by the number of writes being 
avoided at levels 1 through C. 

 
However, a single dirty level is not sufficient to capture the complete 

dirty information in simulating set-associative caches. For example, Figure 3.14 
shows a block (block 4) which has a dirty level of 3 in a cache with only one 
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Figure3.14. A block can have different dirty levels in caches with different numbers of 
sets; in this example, block 4 has dirty level 3 for a one-set cache, but a dirty level of 2 
for a two-set cache. 
 
set (i. e., fully associative cache), but has the dirty level of 2 in a cache with 2 
sets (one for the even blocks and the other for the odd blocks). In order to 
simulate caches with a different number of sets using a single stack as in 
Mattson’s (1970) algorithm, we need to attach a vector of dirty levels to each 
block in which each element of the vector corresponds to the dirty level of the 
block for caches with a specific number of sets. For example, block 4 in Figure 
3.14 will have a (3, 2) dirty-level vector. 
 

We can now present the outline of the all-associativity write-back 
simulation algorithm in Figure 3.15. The notations used are listed in Table V. 
In most practical situations we will not simulate all possible set-associativi - 
ties.  Generally, set-associativities will range from one-way (direct-mapped) to 
a maximum of 16-way. Consequently, this limits the number of sets from 
maxset = cache size/block size to minset = cache size /(block size x maximum 
set-associativity). Hence, we will divide the LRU stack into minset substacks to 
optimize the search. Let St 

a: denote a substack at the end of time t. With each 
block in the stack we attach a vector of dirty levels denoted dl[ set, block]. 
Furthermore, write-avoid counts, denoted wa[ set, level], are used to record the 
number of writes that are avoided. Finally, RDistancecnt[set, l:maxassoc] and 
WDistancecnt[ set, 1 :maxassoc] are used to record the histogram of stack 
distances for read and write accesses respectively. For example, a 
RDistancecnt[4set] of [10,5,0,0] (i.e., RDistancecnt[4set, 1] = 10, 
RDistancecnt[4set, 2] = 5, RDistancecnt[ 4set, 3] = O, and RDistancecnt[4set, 4] 
= O) records that 10 read accesses have been satisfied with a stack distance of 1 
and 5 with a stack distance of 2, That is, if the total number of references were 
18 (say three  references were not found in the stack) when this state is reached, 
then the read hit ratio for a 4-set direct-mapped cache is 10/18 – 56 percent and 
for a 4-set two-way cache, (10 + 5)/18 = 84 percent.  
 

Our algorithm works as follows. For each reference xt, find the  
substack a to which it is mapped. A search is done through the substack and the 
number of right match bits (b) is determined. This number, b, if not larger than 
log(maxset), is then added to the right match histogram U[ b] for producing 
later the appropriate stack distances. If b is at least as large as log( mcmset), 
then u[log( maxset)] gets incremented instead. 
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Figure 3.15 an outline of an algorithm for simulating write-back set-associative 
caches. 
 
Table V. Notations for the A1l-Associativity Write-Back Cache Simulation 
Algorithm 

 
 
If the requested block cannot be found in the stack, all stack distances 

are set to infinity and the block is brought in. The dirty levels of the block are 
set to 1 if the request is a write, otherwise they are set to infinity.  
 

If the block is in the stack, the stack distances are determined by 
accumulating the right match histogram starting from log(maxset) and down 
through each smaller number of sets, until log( minset) is reached. For each 
number of sets, the dirty level is set to the current stack distances unless it is 
already larger than the stack distance in which case it is not modified. If the 
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reference is a read, the read distance counts are updated. If the reference is a 
write, the write distance counts are updated and the write avoid counts of the 
current dirty level are incremented. Finally, the stack is rearranged by moving 
the referenced block to the top and shifting those top elements down. At the 
end of simulation, the stack distance counts and the write avoid counts are used 
to calculate the hit ratios and the number of dirty blocks being replaced. 

 
Figure 3.16 gives a snapshot example to show how a read request is 

processed under this algorithm. For simplicity, let us assume that we want to 
simulate caches with 4 sets and 8 sets only, with a maximum set-associativity 
of 4 (i.e., we want to obtain performance figures for 6 points in the design 
space, namely 4-set direct-mapped, 4-set 2-way, 4-set 4-way, 8-set direct-
mapped, 8-set 2-way, and 8-set 4-way). That is, the minset is 4 and the maxset 
is 8 for this example. Let us further assume that the contents of the stack are the 
same as in Figure 13.13. Then we can partition the stack into 4 (i.e., minset) 
substacks as in Figure 13.16, assuming that the rightmost bits of a block 
number determine the set number. With relevant states at the end of time t – 1 
as given in Figure 13.16a, we can now process the read request on block 6 
(000110) as follows. The requested block (block 6) is first tested to determine 
which substack it might be in and a search is done in that substack only (the 
leftmost in the figure, the others will remain unchanged). The first block in the 
stack, block 2, has 2 right bits in common with block 6, the requested block. So 
block 2 will be in the same set as block 6 for caches with 4 or a smaller number 
of sets ( u[2] is incremented by 1). The next block in the stack, block 54, has 4 
right bits in common with block 6, so it will be in the same set as block 6 for 
caches with up to 16 sets i.e. in the example, for both 4-set and 8-set caches 
( u[3] = u[log( maxset)] is incremented by 1). Finally the block is found when 
the third block in the stack is reached (u[3] is incremented by 1). Thus, for an 
8-set cache the distance of block 6 is 2 (i.e. u[3]= 2; that is, only block 54 is 
ahead of block 6) and for 4-set, the distance is 3 (i.e., u[3] + u[2] = 2 + 1 = 3; 
that is, 2 and 54 are ahead of block 6 in the stack for a 4-set cache).  

 
Assume that at the end of time t – 1 the read distance counts, 

RDistancecnt, for 4-set caches are [10,5,2, 0]. Then the RDistancecnt will be 
[10,5,3, 0] at time t,reflecting the fact that block 6 is found at a distance of 3. 
SimiIarly, for 8-set caches the RDistancecnt is updated to [12,5, 1,0] from [12,4, 
1, O]. Moreover, since the stack distances of block 6 are larger than its dirty-
levels, the dirty-levels of block 6 far 4-set  and 8-set caches are updated to 3 
and 2 respectively. Lastly, the substack is rearranged by moving block 6 to the 
top of the substack. As a final remark, if 
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Figure 3.16 a snapshot example for the one-passwrite-back algorithm. (a) before and 
(b) after the read request being serviced. 
 
 the request is a write instead of a read, we need to update the write distance 
counts and the dirty levels in a similar manner. Furthermore, we also need to 
increment the write-avoid counts wa[4set, 3] and wa[8set, 2] to reflect the fact 
that for a 4-set cache with a set-associativity of at least 3 or for a 8-set cache 
with a set-associativity of at least 2, the write is to a dirty block, and therefore a 
write-back to memory is saved. 
 

We used this algorithm to simulate 20 caches in a single pass. All 
caches have a 4-byte block size and their sizes range from 8-K-byte to 128-K-
byte with set-associativities from 1 to 4. The run times for the same traces used 
in 

 
 
 
 

Table VI Speed-Up Using One-Pass Approach 
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Figure 3.17 Relative traffic change vs. cache size (8-byte block size)  
 
the previous section are given in Table VI. Table VI (line 3) shows that this 
one-pass simulation is about 1.5 times slower than the one cache per simulation 
approach (line 1), but can generate 20 results at a time. From Table VI we also 
observe that if the reduced traces are used together with this one-pass algorithm, 
the performance of 20 caches can be obtained in less than a minute of VAX 
8550 CPU time (line 4). On the other hand, the naive one-result-per-simulation 
approach (line 5), if used without taking advantage of trace reduction, would 
need between 50 and 100 times longer to produce the same results. Thus, 
roughly speaking, trace reduction could bring us a ten-fold disk space saving 
(see Table II) and, together with the one-pass 
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Figure 3.18.Relative traffic change vs. cache size (16-byte block size). 
 
simulation algorithm, could reduce the simulation time by nearly two orders of 
magnitude over the naive one-result-per-simulation approach. 
 
3.9.2 An Application Example. 

 we now give an example to show how the above techniques can be 
used to produce useful results on cache performance that have not been covered 
in the vast cache literature. More specifically, we want to explore the impact of 
set-associativity on cache-bus traffic. This problem is interesting because it is 
the cache-bus traffic that will limit the number of processing elements (i.e., 
CPU + cache) that can be put on a single sharedbus. For the following 
discussion we define the cache-bus traffic as the number of misses plus the 
number of write-backs. 
 

The techniques given in this section allow us to explore the design 
space of write-back caches quickly. Using these techniques and seven Atum-2 
traces(see Table I for summary of the characteristics of these traces) , we report 
in Figures 3.17, 3.18 and 3.19 the impact of set-associativit y on the relative 
cache-bus traffic change over a wide range of cache sizes, from 2 K-byte to 256 
K-byte. In these figures, the X axis represents cache sizes and the Y axis  
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Figure 3.19 Relative traffic change vs. cache size (32-byte block size) 
 
represent the relative traffic increases when we move from a larger set-
associativity to a smaller set-associativity. (For the reader’s reference, Figure 
3.20 shows the write-back traffic percentage for a 16-byte-block size.) 
 

From these figures, we see a big increase (on average 31 percent) in 
traffic when we move from a 2-way set-associativity to a direct-mapped 
organization. The average relative traffic changes from 4-way to 2-way and 
from 8-way to 4-way are 12 percent and 6 percent respectively. We also notice 
that the relative traffic change increases as the block size increases, especially 
for small set-associativities. This is due to the fact that the larger the block size 
the lesser the number of sets, and therefore the conflicts due to set collisions 
will be more frequent. Similar observations on the relative miss ratio change 
were reported by Hill and Smith (1989). 
 

To complete this section, we present in Figure 3.20 the percentage 
contribution of write-back traffic to the total cache-bus traffic. We observe 
from Figure 3.20 that write-back traffic accounts for 15 to 22 percent of total 



 62

bus-cache traffic. Furthermore, the larger the cache, the higher the write-back 
traffic contribution. This is because a block in a larger cache tends to stay in  

 

 
Figure 3.20 Percentage contribution of write-back to total traffic. 
 
the cache longer and therefore has a higher probability of being modified. As a 
result, upon a miss, the likelihood of having to write back the replaced block is 
higher for a larger cache. For the same reason, the increase in the set-
associativity  enlarges the contribution of write-back traffic to the overall 
cache-bus traffic. 
 

 
3.10 Other Stack Simulation Implementation. 

Bennett and Kruskal (1975) examine the paging behaviour of a large data base. 
They find mean stack distances of 1 to 328 entries for varying page sizes. Bennett and 
Kruskal propose an algorithm for stack simulation using an m-ary tree and a hash table 
where the run time per reference is approximately logarithmic in the number of block 
since the last reference to the current block. In contrast, the time per reference for 
linked list stack simulation is linear in the number of distinct blocks since the last 
reference of the current block. Bennett and Kruskal conclude that their algorithm is of 
order ten time faster than linked list stack simulation for mean stack distances of 150 
entries. The storage requirements of the algorithm are large, but this is not important 
since the memory required is small relative to modern main memory sizes. The tree 
size is linear in the length of the address trace, N, and the hash table must be larger 
than the number of distinct blocks (Nδ∞). A simulation of 10 million references with 
200,000 unique blocks requires only 3M bytes of storage if it uses two bits per 
reference and two words per unique block. Olken (1981) changes Bennett and 
Kruskal’s algorithm by replacing their m-ary tree with an AVL tree. 

 
Bennett and Kruskal’s algorithm and Olken’s algorithm use a hash table to 

learn about a block’s history. A hash table can also be used in linked list stack 
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simulation to see if a block has ever been referenced. This reduces the time to process 
a previously unreferenced block from Kmax to a constant, reducing simulation time to: 

 
 
 
This change will significantly improve performance only if both kmax and    are large, 
that is both the degree of associatively and the fraction of the references to previously 
un-referenced blocks are large. 
 
Thompson et al. (1986) examine each of these algorithms, and conclude that linked list 
stack simulation performs best for most CPU cache simulations. Consequently, we will 
compare the performance of forest and all associativity simulation with linked list 
stack simulation only, and use stack simulation to linked list stack simulation. 
 

3.10.1 Inclusion in Set Associative Caches . 
Hill(1987) proves several theorems about inclusion for set associative 

caches using (possibly) differing set mapping functions. Recall that Mattson et 
al, (1970)  discuss inclusion only in caches that use the same set mapping 
function, and hence have the same number of sets (e.g. all are fully associative). 
In this section, as in the rest of this chapter, he assume that all caches have the 
same block size, do no pre-fetching, and use LRU replacement. He wants to use 
inclusion to rapidly simulate alternative single level cache designs. 
Consequently when he discusses a large and small cache, he is considering 
using one or the other in a memory system, not using both as components in 
cache hierarchy. 

 
 Consider two caches, C1(A=n1, F=f2 ) and C (A=n2, f=f2), with blocks, 
associativities of ni and set –mapping functions fi for i=1,2 . An important 
condition necessary for cache C2 to include (the blocks of) cache C1 is that all 
blocks mapping to the same set in C2 map to the same set in C1. That is, for all 
blocks x and y: 
 

Hill (1987) calls this condition set hierarchy, because it means that f2 
induces a finer partition on all blocks than does f1. Assume also that each set 
mapping function maps a large number of blocks(>=2* max(n1 , n2) )to each set. 
Set mapping functions used in real caches, including bit selection, trivially 
meet this restriction. 
  

For cache C2 to include cache C1, C2 must be at least as large as C1 
otherwise inclusion will be violated as soon as C1, is full. For cache C2 to 
include a different cache C1, C2 must be strictly larger  than C1. Hill(1987) 
considers two caches to be equivalent if they always contain the same blocks, 
i.e. ,are identical up to placement of sets. Suppose cache C1   and C2 are of the 
same size. For cache C2 to include cache C1 . It must always contain a superset 
of cache C1blocks. Since cache C2 contains the same number of blocks as C1. It 
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must always contain exactly the same blocks, and therefore is not a different 
cache. For this reason he sometimes refer to cache C as the larger cache. 
 
Theorem 3.1 
 Cache C2 (A=n2 F=f2) includes cache C1 (A=n1 F=f1) if and only if f2 (x) 
=f2(y) implies f1(x) =f1(y) (set hierarchy) and n2 >= n1, (non-decreasing 
associativity). 
Proof 

Suppose cache C2 includes cache C1 and f2 (x1) =f2(x2)= = ….=f2 (x2n1) for 
some 2n2 blocks x1…x2n2.The xj , exist, because Hill(1987) assume each set-
mapping function maps a large number of block to  each set. To demonstrate 
that both set hierarchy and non decreasing associativity are necessary for 
inclusion, He show that one of the xj   ‘s   must be in cache C1 but not in larger 
cache C2 if either (1) set hierarchy is false or (2) set hierarchy holds, but the 
larger cache has the smaller associatively. 

(1) With set hierarchy false, let the 2n2 xj s be chosen so that at least 
one block, y, maps to a different set in cache C1, than does x 1, (i,e, f1, (y)!=f1 
(x1). Either (a) less than n2 of the xj    ‘s  map to f1 (x1) or (b) n2 or more of the xj 
map to f 1 (x1). For (a), reference x1 >=  n2 and the blocks that do not map to f 
(x) . Inclusion is now violated since x1 is in cache C1 but not in larger cache C2. 
it is in cache C1 since all other blocks referenced map to other sets; It is 
replaced in n2- way set associative cache C2 since at least n2 other blocks 
mapping to its set are more recently referenced. For (b), references  y and 
the >= n2 blocks that do map to f 2 (x1) Inclusion is now violated since y is in 
cache C1 but not in the larger cache C2. 

(2) Since set hierarchy holds and f2 (x1) =f2 (x2)=… =f (xn2+1), 
Hill(1987) knows that f1 (x1)=f1 (x2)=….=f1 (xn2+1). Reference x1 through xn2+1 
in succession. Inclusion is now violated since x1 is in n1- way set associative 
cache C1 (n1 > n2 implies n1 >= n2+1)  but not in n2-way set associative cache C2. 

<=. Suppose set hierarchy and n2  > n1 . Initially both caches are empty 
and inclusion holds, because everything (nothing) in cache C1 is also in cache 
C2. Consider the first time inclusion is violated, i.e some block is in cache C1 
that is not in cache C2. This can only occur when some block y is replaced from 
cache C2. but not from cache C1. A block y can only be replaced from cache C2 
if n2 blocks, x 1through xn2 all mapping to f2 (y) , are referenced after it. By set 
hierarchy, f (y)=f(x1)=…=f (x2). Since n2  >= n1 ,  y must also be replaced in 
cache C1. 

  
 QED. 
 

Theorem 3.1 states that inclusion holds between two set associative 
caches only if the two caches obey set hierarchy and not decreasing 
associativity. In Section 3.9.3 Hill (1987) shows that set hierarchy and non 
decreasing assoriativity are too restrictive to permit inclusion to hold between 
many pairs of set associative caches, and then he describes an algorithm for 
simulating numerous set associative caches does not try to take advantage of 
inclusion. 
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Hill(1987)  next shows that the includes relation is a partial ordering of 
the set of set associative caches (will the same block size, that do no perfecting, 
and use LRU replacement). A partial ordering differs from total ordering (e.g 
“≤” on the set of real numbers), because some elements may not be comparable 
(i.e neither C2 includes C1 nor C1 includes C2). While establishing includes as a 
partial ordering is mostly of theoretical interest, it does enable transitivity to be 
used in the proof of Theorem 3.3. 
Theorem3. 2 

  The includes relation is a partial ordering of the set of caches. 
Proof 

Hill(1987) must show that includes is reflexive (C 1includes C1) 
antisymmetric (C2includes C1 and C1 includes C2) implies C=C) and transitive 
((C3 includes C2 and  C2 includes C1)) implies C3 includes C1). 
Reflexive, A cache includes another if it contains a superset of the blocks of the 
other. Clearly C1 includes C1. Since two identical caches always contain the 
same blocks. 

Antisymmetric, Suppose C2 includes C1 and C1 includes C2. Therefore 
cache C2 must always  contain a superset of the blocks in cache C1 and cache 
C1 must always contain a superset of the blocks in cache C2. Since superset is 
antisymmetric, both caches must always contain the same blocks, and therefore 
are equivalent. 
Transitive. Suppose C3 (A=n3, F=f3) includes C2 (A=n2, F=f2) includes C2 
(A=n2,F=f2) By Theorem 1, n3 >= n2 ,  n2   >  n1 ,  f3 (x) =  f3 (y) implies f2 (x) = f2 (y) 
and  f2 (x) = f2 (y) implies f1 (x) = f1 (y) , for all block x and y. Since both 
relations “>=”  and implies are transitive n3 >= n1   f3 (x) = f3 (y) implies   f1 (x) = 
f1 (y). By Theorem 1  C3  includes C1. 
  
QED 

Next Hill(1987) considers caches using set mapping functions of the 
form “h (x) rem s,” where h (x) is a hash function whose image if the set of all 
block numbers, “rem” is the remainder operator, and s is the number of sets in a 
cache, I show that set hierarchy holds between two such caches if and only if 
the number of sets in the larger cache is a multiple of the number of sets in the 
smaller cache. 
Theorem 3.3 

Set hierarchy holds, that is f2 (x) = f2 (y) implies f1 (x) = f1 (y), for set 
mapping functions of the form (x) rem si if and only if s1 divides  s2. 
Proof 

=> Suppose set hierarchy holds, that is, h(x) rem s2 (y) rem s implies h 
(x) rem s1h(y) rem  s1.  Suppose  s1 does not divide s2 then s2 rem s1 =k where 
k!=0. Let h(x) = s1, s2 and h (y) =s2 (s1+1). Hill(1987) knows that there exist 
some block numbers x and y for which the above is true, because he requires 
the image of hash function h be the set of all block numbers. For these values 
of h (x) and h (y), h (x) rem s2 =h (y) rem s2 = 0 but h(x) rem s1  = 0  and h (y) 
rem s1 = s2  rem s1 = k where k != 0. Thus, h(x) rem s 2= h (y) rem s2 is true 
while h(x) rem s1  = h (y) rem s1 is not. A contradiction, There fore, s1 must 
divide s2 for set hierarchy to hold. 
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<= Suppose s1 divides s2. By definition of divides, s2 = ns1 for some integer n. 
If h(x) rem s2 = h(y) rem s2 , then h(x) =x’ s2 + k and h (y) =y’s2+K for some 
integers x’ ,y’ and k. Substitution yields h(x) = x’ns1 + k  and h(y) = y’ns1 + k. 
By definition of remainder,h(x) rem s1 = h(y) rem s1 = k. Thus h(x) rem s2 = h 
(y) rem s1  implies h (x) rem s1 = h (y) rem s1 or set hierarchy holds. 

 
QED. 
Theorem 3.3 allows us to prove that inclusion holds for many practical 

direct mapped caches Ci, including those using bit selection, Consider a series 
of direct mapped caches ci , where each cache uses set mapping function fi (x) 
= h (x) rem ci and each ci+1 divides C. By theorem 3.3  set hierarchy  holds 
between each pair of caches. Since set hierarchy holds and all associativities 
are equal (to one). Inclusion holds between each pair of caches by Theorem I. 
Since inclusion is a partial ordering (Theorem 3.2), inclusion holds between all 
caches in the series, The above applies to series of direct mapped cache that use 
bit selection, because for such caches h (x)=x and each ci  divides ci+1, because 
both are powers of two. Consequently inclusion holds between direct mapped 
caches that use bit selection. 

 
Since inclusion holds for many direct mapped caches and inclusion can 

be used to make simulations run more rapidly, Hill (1987) develops an 
algorithm for simulating direct mapped caches that obey inclusion, which is 
presented in the next section. 

 
3.10.2 Simulating Direct Mapped Caches with Inclusion. 

The section introduces forest simulation for evaluating direct mapped 
caches that have the same block size and obey inclusion. Like stack simulation, 
forest simulation takes advantage of inclusion by searching for a block from the 
smallest to largest cache. When a block is found, a hit can be implicitly 
recorded in all larger caches. Forest simulation is so named because it uses a 
forest (a set of disjoint trees) rather than a stack to store cache blocks. 

 
Let the direct mapped caches be named C1 C2… CL. Assume that each cache C 
has c block frames and uses set mapping function rem c. While forest 
simulation works for arbitrary set mapping functions of the form rem c. Let 1 < 
c < c <  …<c and c for I=1,L-1. By the argument presented after Theorem 3, 
inclusion holds for these caches. 
 
 

The key data structure in forest simulation is a forest of L levels. The 
number of trees in the forest is equal to the number of blocks in the smallest 
cache, c. The c nodes of level I represent the blocks in cache c1. The branching 
factor between two levels is equal to the cache size of the larger level, divided 
by the cache size of the smaller level ci+1 / ci . The leaves represent the blocks in 
the largest  cache, c. This forest can be implemented as a heap containing twice 
as many nodes as there are blocks in the largest cache, since ci+1  / ci <= 2 for all 
I implies  i=1∑L ci is less than 2* cL

  . For example, the heap location of block x 
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a cache of c blocks using set mapping function f can be calculated with f (x) + 
c. Figure 3.20 shows an example forest simulation forest. 

 
 

 
Figure 3.21 Forest Simulations. This figure displays the forest for caches of size 1, 2, 
4 and 8 blocks. This forest contains only one tree, because the smallest cache contains 
only one block. This tree is a binary tree, because each cache in this example is twice 
as large as the next smaller cache. In this example we assume blocks are mapped to 
block frames with bit selection. Each node holds the information for one block frame 
in a direct mapped cache. The block at the root of the tree has no block number bits 
constrained, because a one block direct mapped cache can hold any block. This 
illustrated with a t representing arbitrary high order bits of the block number and 
three x’s representing don’t cares for the three low order bits. The tags txx0 and txx1 
in the nodes of level two indicate that the blocks that can reside in these nodes are 
constrained to have even and odd block numbers, respectively,. Similar rules with 
more bits constrained apply to the rest of the levels. 

  
Forest simulation works as follows and as is illustrated in Figure 3.21. 

On each reference, the algorithm selects the tree corresponding to the set of the 
reference in the smallest cache. Then it searches. 
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Figure 3.22 Forest Simulation Example .The top tree (a) depicts the forest of Figure 
3.20 after a series of references. Information in the tree tells us that block 6 is in a 
cache of size one block: blocks 6 and 5 are in a direct mapped cache of size two: 
blocks 4.6,5, and 3 are in a direct mapped cache of size four: and blocks 0 through 7 
are in a direct mapped cache of size eight.   
Let the next reference be to block 4. A path from the root to a leaf is determined using 
the set mapping function for each cache (here bit selection is assumed). A search 
begins at the root and stops when block 4 is found. All nodes encountered in the search 
that do not contain block 4 are modified to do so. The blocks on bold are examined to 
find block 4. Since block 4 is located at level 3, caches 1 and 2 miss and caches 3 and 
4 hit. 
The bottom tree (b) shows the tree after this reference has been processed. The nodes 
in bold now contain the referenced block.  

 
 

 
Figure 3.23 Forest Simulation Storage 

 

 
Figure 3.24 Forest Simulation Storage 
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For the referenced block beginning at the root of the tree. The path of 

the search is determined by the set of the reference in each cache. Any time a 
node is encountered that does not contain the reference, the node is updated to 
contain it. The processing of a reference stops when the reference is found, or 
after a leaf node has been modified. If the reference is found at level i, a 
counter distance [i] must be updated. 

 
Figure 3.23 and 3.24 show the pseudo-code for forest simulation. Forest 

simulation is efficient because it uses inclusion and direct mapping. It uses 
inclusion in the same way as stack simulation, i.e., by ending the processing of 
a reference when it is found in a cache, regardless of how many larger caches 
are being simulated. Direct mapping implies that a block can reside in only one 
block frame in a cache, Forest simulation benefits from direct mapping by 
examining only that one block frame per cache. In contrast, a simulation of set 
associative caches must often search more than one block frame per cache size 
of interest. 

 
As with stack simulation, the exact storage required for a forest 

simulation of CPU caches is small relative to main memory sizes, The storage 
required is dominated by the size of the forest, which can be implemented in a 
heap of 2c nodes, where c is the number of blocks in the largest cache 
simulated  (see figure 3.22). The storage required for simulating direct mapped 
caches with 32 byte blocks of sizes 128 K, 256K, 512 K and 1M byte, for 
example, is approximately 500 K bytes, given node sizes of four to eight bytes. 

Next Hill (1987) shows the time used to process one reference in a 
forest simulation of     direct mapped caches, ci, is; 

 

         
 

Where m is the miss ratio of cache c and each iteration requires unit 
time. The power of this analysis is limited, however, because several constant 
factors are difficult to calibrate. 

The time to simulate each reference is determined by how many times 
the loop is executed for each reference, plus a constant amount of overhead for 
reading trace addresses. Forest simulation executes one iteration per cache 
(level in the forest) up to a maximum of L  levels. If one iteration requires unit 
time, the execution time per reference is: 

 

 
 
 Rearranging terms yields 
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This equation can be simplified by manipulating the third term L ∑ i=2  
i(mi-1 ),    so that the mi-1‘s  are changed into mi ‘s . This manipulation changes 
the index variable from to replaces j.s with I +1s, simplifiles,and changes 
summation bounds to yield:-      

 
 

 
Substituting this result back the time per reference equation produces:- 

 
 

which reduces to: 

 
Equation 3.4 

 
Readjusting summation limits yields a run time per reference for forest 
simulation of: 

 
 

The miss ratios for L direct mapped caches can also be computed with   
L separate or concurrent stack simulations of individual caches. In separate 
simulation, cache C1 is simulated with all references, then cache C2 is simulated 
with all references, and so forth, until cache CL is simulated with all references. 
In concurrent simulation all    caches are simulated at the same time with each 
reference processed by all the caches before the next reference is processed. 
Concurrent simulation is faster than separate simulation, but requires more 
storage. It is faster, because each trace address is read once rather than times. It 
uses more storage, since blocks for all caches must be simultaneously resident. 
Since we care about run time and not about storage, we consider only 
concurrent simulation further. 
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In concurrent simulation each address is read once, and unit processing 

is required for each level. The run time per reference is therefore: 
 

L + O (1) 
 

This time is greater than the time for forest simulation, 
 

1 + i=1∑L-1 mi + O(1)’ 
 

For practical (not equal to one) miss ratios. 
 
3.10.3 Simulating Set-Associative Caches without Inclusion. 

Stack and forest simulation will simulate a series of caches with one 
pass through an address trace. Both methods are “efficient,” because they take 
advantage of inclusion. Since inclusion does not hold for caches of all sizes and 
associativities (see Theorem 3.1), algorithms using inclusion must constrain the 
series of caches simulated (see figure 3.24). Hill (1987) describes an algorithm, 
which he calls all associativity simulation that does not use inclusion, but can 
simulate set associative caches with the same block size, that do no prefetching, 
and use LRU replacement, with one pass over an address trace. With it, he can 
cover the design space of figure 3.25 in 3 simulations (one per block size) 
instead of 15 runs of stack simulation .The algorithm described here permits the 
set associative caches use of arbitrary set mapping functions. A literature search 
revealed that a version of all associativity simulation, where all set mapping 
functions use bit selection, was developed by researchers at IBM 
(Mattson(1970) , Trai(1971). 

 

 
Figure 3.25 Cache design Space. This figure displays a portion of the cache design 
space: cache size, block size and associativity. The solid lines on the left connects 
cache designs that can be simulated with a single stack simulation. Circles indicate 
simulations of single cache designs. The solid lines on the right connect cache designs 
that can be simulated with single forest simulation. 
Covering portions of the cache design space can require many simulations even 
though stack and forest simulation simulate several caches at a time. In this example, 
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15 stack simulations are needed, and 3 forest simulation cover half the space but can’t 
simulate the rest of it. Alternatively, three all associativity simulations (one per block 
size) cover the same space. 

  
All associativity simulation does not take advantage of inclusion, 

because inclusion does not hold for many groups of set associative caches. For 
example: (a) direct mapped and two way set associative caches of any size do 
not include any four way set associative caches, because, the former have 
smaller associativities; (b) a four way set associative cache of c blocks does not 
include a direct mapped cache of c/2 blocks even if both use bit selection, 
because x rem c/4 = y rem c/4 does not imply x rem c/2=y rem c/2 (e.g.=0 and 
y=c/4); and (c) it is not possible for a cache c2 to include a different cache c1  of 
the same size, because C2  can never contain any block not in C1and still 
contain all the blocks of cache C1. 

 
Hill(1987) now develops all associativity simulation from stack 

simulation through successive refinements. An all associative simulation run 
can simulate caches that use different set mapping functions, fi(x) and have 
different capacities. The same caches can be simulated with concurrent stack 
simulations. This approach requires a stack simulation for each different set 
mapping function. For instance, if the  

 
 
 
 
 
 
 

 
Figure 3.26 Stacks for caches with one or two sets using bit selection. This figure 
displays how the stacks for caches with one (fully associative) or two sets using bit 
selection (f (x)=0 and f (x)=x rem 2) could look during a simulation. The stack for one 
set contains a list of all the block numbers recently referenced, listed from most 
recently referenced to least recently referenced. we call this stack a fully associative 
stack, because it models fully associative caches. The stacks for two sets contain 
similar lists for the even and odd block numbers. 2L stacks are required to simulate 
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with bit selection for 2L sets. A block resides in a cache of C blocks with one set if and 
only if the block is in the fully associative stack at a distance of less than or equal to c. 
A block resides in a cache of c blocks with two sets if and only if it is in the 
appropriate stack at a distance of less than or equal to c/2. A block resides in a cache 
of c blocks with 2L sets if and only if it is in the appropriate stack at a distance of less 
than or equal to c/2L. 

   
     

caches to be simulated use bit selection with 0, 1 and 2 bits, the following 
stack simulations are sufficient: a stack simulation with one stack for caches 
with f1 (x) = 0, a stack simulation with two stacks for caches with f2 (x) =x rem 
2 and a stack simulation with four stacks for caches with f3 (x)=x rem 4. Figure 
3.26 illustrates how the stacks for one and two sets with bit selection could look 
during concurrent stack simulation. In this example both sets of stacks contain 
the same nodes. In practice when stack sizes are bounded by the largest cache 
size of interest, the sets of stacks will (usually) contain slightly different nodes. 
For example node 8 would be missing from stacks for two sets if caches of 
interest are restricted to eight total blocks (four per set). Nevertheless, many 
blocks will be shared by both caches, since similar caches have similar hit 
ratios. 
 

Storage can be reduced in this simulation by allocating a single node per 
block and including in the node a next pointer field for each group of stacks 
being simulated. Figure 3.27 illustrates how the nodes of the single fully 
associative stack can be linked with a second set of next pointers to form the 
stacks for caches with two sets. 

 
While reducing storage is not important, this node sharing holds the key 

to reducing time. Observe that all the pointers in the stack point down. This is 
always the case for LRU replacement, because the order of two blocks in any 
stack is a function of references to those two blocks, independent of all other 
references. For example, stack 0 rem 2 in Figure 3.26 indicates that block 6 was 
referenced more recently than block 4. Block 6 must also be above block 4 in 
the fully associative stack, because intermediate references to blocks 3 and 5 do 
not effect whether block 6 was referenced more recently than block 4. Since all 
pointers point down, the fully associative stack contains all the information 



 74

 
 
 

Figure 3.27 Concurrent Stack Simulation with Shared Storage. This figure illustrates a 
single set of nodes can be used to represent the stacks for caches using bit selection 
with one and two sets.   A second next pointer field must be added to each node so that 
it can be linked into a second stack..  The stack for stack simulations with L different 
set mapping functions can share one group of nodes if each node contains storage for 
L different next pointers.  This reduces storage requirements with respect to using 
separate stacks, but does not reduce simulation time 
. 
necessary to determine the order of nodes in all other groups of stacks.  Thus, 
the stack for reference x with set-mapping function f (x) can be constructed by 
finding all blocks y in the fully-associative stack where f (y) =f (x) and listing 
these blocks in the same order as they are encountered in the fully-associative 
stack. 

 
The goal of this research is to find stack distances, and hence miss ratios, 

however, not construct all the groups of stacks. The following algorithm 
computes stack distances for set-associative caches of different capacities and 
set-mapping functions fi through fL directly from the fully-associative stack.. 
When simulation completes, each counter distance (i,k) holds the number of 
references to stack distance k with set-mapping function fi. For each reference 
to block number x { 

  
Zero the L total_above counters. 
Look at nodes y in the fully-associative stack until x is found or the stack 
exhausted.  If y=x { 
Increment the L total_above counters, move x to the top of the stack, and  
increment distance (i, total_above[i]) for i  =1 to L. 

 } else { 
  For i=1 to L, increment total_above [i] if fi (x)=fi (y). 
 } 
 
 If the stack is exhausted without finding x, push x on the top of the stack. 
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}. 

Figure 3.28 illustrates the algorithm operating on one reference.  Figures 3.29 
and 3.30 give pseudo-code for this algorithm. 

All-associativity simulation can be improved further if I restrict the fi’s so that the set 
hierarchy condition holds.  Recall that this condition is: 

fi+1(x)=f i+1 (y) implies f i (x)=f i (y). 

 

 

Figure 3.28 All-Associativity Simulation Example. This figure illustrates how all-
associativity simulation processes a reference to block 2 for caches with set-mapping 
functions f1 (x)=0, f2(x)=x rem 2, and f3(x)=x rem 4. Counter total_above (i) always 
contains the number of blocks encountered so far stack fi(2), since block 2 is 
referenced.  Each row of the figure shows that total_above (i) is incremented in 
response to block y in the stack if and only if i(y) =fi(2). 

Processing stops when the reference is found (block 2).  The stack distance of block 2 
in a cache with set-mapping function fi is total_above[i].  The stack distances found 
for block 2 are 7,4, and 2, respectively. 
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  Figure3.29.  All-Associativity Simulation Storage. 

    

In all-associativity simulation with arbitrary fi ‘s, it is necessary to know which 
of any two blocks are more recently referenced.  Consequently, a total ordering 
of the previously referenced blocks must be 



 77

 

Figure 3.30 All Associativity Simulation 

maintained with a fully-associative LRU stack. Since the set hierarchy 
condition also implies: 

  f1(x)!=f1 (y) implies fi (x)!=fi (y) for i=1,L, 

two blocks in different f1-stacks will never be compared.  This means all-
associativity simulation with set hierarchy need only maintain the LRU stacks 
for each element in the image of f1.  Simulating with multiple stacks is faster 
than simulating with one, because the average number of active blocks one 
must look through to find a block is smaller, since active blocks are spread 
across many stacks.  This reduction is significant since, the number of stacks 
for practical CPU cache simulations is often greater than 100. The number of 
stacks used in a simulation of the VAX-11/780’s cache, for example, is 512. 
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Another benefit of set-hierarchy is that a simulation need not examine fi 
(x)= fi(y) for i=L down to 1, since  fi+1 (x)= fi+1 (y) implies fi (x)= fi (y).  Instead 
of iterating through all L set-mappings, one can begin with fL and stop as soon 
as fi (x)= fi (y).  For instance, if x and y are in the same set in the largest cache 
simulated, i.e., fL (x)= fL (y) ,the number of iterations is reduced from L to one.  
Additional time can be saved if one increments above(i) only for the largest i 
for which x and y map to the same set, rather than incrementing total_above[i] 
for each i where fi (x)= fi (y).  When x is found or the stack exhausted.  

 

 

Figure 3.31.  All-Associativity Simulation with Set Hierarchy Example. This figure 
illustrates how all-associativity simulation with set hierarchy processes a reference to 
block 2 by scanning the stack until block 2 is found (or the stack is exhausted). For 
each block before the reference is found: (a) The algorithm calculates the largest set-
mapping function, fi, for which the reference and the stack node are in the same set. 
For bit selection, the calculation reduces to computing the number of least-significant 
bits that match between the block numbers of the reference and the stack node. (b) it 
increments above(i). Once the reference is found, above (L) is incremented, the 
reference’s stack distance with set-mapping function fi is k=1∑L above [k]. 
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Figure 3.32.  All Associativity Storage w/ Set Hierarchy 
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Figure 3.33 All Associativity Simulation w/ Set Hierarchy 
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Figure 3.31 gives an example of all associativity simulation using set hierarch. 
Figures 3.32 and 3.33 give the pseudo-code for this improved algorithm. 

All-associativity simulation can be made to run even faster in practice if 
the fi’s are all bit selection.  Bit selection set-mapping functions make it easy to 
compute the largest i for which x and y map to the same set.  The computation 
reduces to finding the minimum of L and the number of least significant bits 
that match between x and y. 

Hill (1987) has defined all-associativity simulation for set-associative 
caches that use LRU replacement. He now shows that it does not work with 
two other commonly-implemented replacement algorithms, FIFO and 
RANDOM. All-associativity simulation does not work with FIFO replacement, 
because all associativity simulation is based on stack simulation, and FIFO is 
not a stack algorithm. 

Figure 3.34 shows by example that all-associativity simulation does not 
work with RANDOM replacement even though RANDOM is a stack algorithm. 
The example illustrates the following general problem. Any replacement 
algorithm may reorder blocks in the set of a reference between the top of stack 
and the original position of the reference, so long as no blocks other than the 
reference move up.  In all-associativity simulation, multiple set-mapping 
functions are concurrently simulated. Therefore, some blocks can be in the set 
of a reference with one set-mapping function and not in the set of a reference 
with another set-mapping function. Incorrect behaviour occurs any time blocks 
not in the set of the reference are reordered. LRU prevents such blocks from 
being reordered by never changing the order of unreferenced blocks. 

While Hill (1987) has shown that all-associativity simulation fails with 
FIFO and RANDOM, he has not shown that all-associativity simulation fails 
with all replacement algorithms other than LRU.  One way to show this is to 
prove the following. Consider an all-associativity simulation with two set-
mapping functions, f1 ! = f2. (Recall that all-associativity simulation reduces to 
stack simulation if only one set-mapping function is used).  The stacks in all-
associativity simulation are updated incorrectly in response to a reference x if 
blocks not in f1 (x) or not in f2 (x) are reordered.  While he has not done it, one 
can demonstrate that LRU replacement is necessary for all-associativity 
simulation by showing that any replacement algorithm which obeys the above 
constraint never reorders any unreferenced blocks, and is therefore equivalent 
to LRU. 

The storage for all-associativity simulation is dominated by storage for 
the stack nodes (see Figure 3.31). Like unbounded stack simulation, the storage 
required is proportional to the number of unique blocks in a trace, Nδ∞.  Even 
for a long trace, however, the storage required is small relative to modern main 
memory sizes. A simulation of 10 million references with 200 thousand unique 
blocks requires only 1.6M bytes of storage if it uses two words per block.  
While stacks in stack simulation can be bounded by the largest associativity of 
interest, stacks in all-associativity simulation cannot be bounded, because these 
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stacks are used to construct stacks for other set-mapping functions. Consider a 
fully-associative stack and stacks for even and odd blocks.  The fully-
associative stack cannot be bounded, because the first odd block can reside at 
an arbitrary large distance in the fully-associative stack. 

The run-time (per reference) of all-associativity simulation with set 
hierarchy centres around how many times the “while” loop is executed (see 
Figure 3.32). Let δk be the probability that a reference is found at stack depth k, 
and let δ∞ be the probability that a reference is not found.  References at stack 
distance k are found in k iterations. References at stack distance ∞ are found by 
looking through the entire stack.   The size of the stack is equal to the number 
of distinct blocks previously referenced, which is O(Nδ∞), where N is the 
number of blocks in the address trace. On each iteration in all-associativity 
simulation, a stack node must be compared to the reference to see if they are 
the same.  If not, additional work is required to find the maximum i for which 
the reference and the stack node are in the same set.  Let the average amount of 
this extra work be called match_compute. Whenever a reference is found at 
distance k, unit work must be done on k iterations and match_compute work on 
all but the last iteration. In addition, each reference must be read from a trace 
file, L above counters initialized and summed to form the stack distances.  We 
gather the per-reference overhead in 0(1). Thus, time to process a reference is 
of order: 

 

 

 

Figure 3.34. Random Replacement Does Not Work. This figure shows that all-
associativity simulation does not work with RANDOM replacement.  Part(a) illustrates 
a fully-associative stack after a series of references (left), and the pair of stacks for 
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even and odd blocks implied by the fully-associative stack (right).  Among other things, 
the stacks imply that a two-block fully-associative cache contains blocks 0 and 2, and 
a two-block direct-mapped cache contains blocks 1 and 2. 

Let block 1 be referenced. RANDOM replacement in the two-block fully associative 
cache requires that block 0 or block 2 be replaced with equal probability.  Part (b) 
shows block 0 replaced, while part (b’) shows block 2 replaced. The stacks in part (b) 
are consistent, since RANDOM replacement coincidentally replaces the least recently 
used block.. 

The state of the fully-associative stack in part (b’), however, implies that block 0 is in 
the two-block direct-mapped cache.  The state of the stacks is inconsistent, since block 
0 was not originally in the two-block direct-mapped cache, block 0 was not referenced, 
and prefetching is not allowed.  Therefore the fully-associative stack under RANDOM 
replacement cannot be used to infer the positions of blocks in the even and odd stacks, 
which demonstrates that all-associativity simulation does not work with RANDOM 
replacement. 

K=1∑∞[k +(k-1)* match_computer]+ 

 

δ∞*(N∞)*[1+ match_computer] + o (L) + o (1)      

The first term is the time to process previously referenced blocks; the 
second is for previously unreferenced blocks; the third and final terms are for 
manipulating counters and reading the reference, respectively. 

To see how this run-time compares with stack simulation, let us assume 
the all set-mapping functions are bit-selection.   For this to be possible with a 
32-bit address, L must be less than 32. If the low-order bits of block numbers 
for recently-referenced blocks are independent and equally likely to be zero or 
one, then the expected number of least-significant bits that match is less than 1 
(1/2+1/4+1/8+…). Since the loop computing match iterates until a mismatch is 
found, the expected number of iterations is two . Substituting two for 
match_compute yields: 

 

Which should not be more than three times greater than the time for 
stack simulation. 
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In practice the relative difference in run times should be smaller, 
because it is expected that the O(32) term to be small compared to other terms, 
δi to be near one (the direct-mapped hit ratio near one) often saving any 
match_compute overhead, and the per-reference overhead O(1) to be relatively 
large. 

3.11 Comparing Actual Simulation Times 

 Hill (1987) compares the simulation times of implementations of stack, forest, 
and all-associativity simulation.  While the exact quantitative results of this section do 
not necessarily apply to other implementations, there is no reason to believe that gross 
comparisons do not generalize.  The advantage of this data over the run-time analysis 
presented earlier is that these results apply to at least one set of implementations of 
these algorithms. 

 He implemented stack, forest and all-associativity simulation in C under UNIX 
4.3 BSD.  Stack and forest simulation were added to a general cache simulator, called 
DineroIII (Hill(1987)85). DineroIII originally contained 1250 C statements, as 
measured by the number of source lines containing a semicolon or closing brace.  
Adding stack simulation increased total code size by 150 statements, adding forest 
simulation, 220 statements. Stack simulation is implemented using linked lists and 
without using a hash table to detect previously unreferenced blocks.  The forest 
simulation implementation restricts the set-mapping functions to be the block number 
modulo the cache size in blocks, a generalization of bit selection.  Hill (1987) 
implemented all-associativity simulation in a separate program, called Tycho, 
containing 800 C statements and having far fewer options than DineroIII.  Tycho 
restricts the set-mapping functions to be bit selection.   

 He estimates simulation time with the elapsed virtual time (user plus system) 
returned by the UNIX 4.3 BSD system call getrusage on an otherwise unloaded Sun-
3/75 with 8M of memory and no local disk.  Trace data is read from a file server via an 
Ethernet. He gives results for four traces from four different architectures, despite 
finding that results are fairly insensitive to program traces.  All caches simulated have 
32-bytes blocks, do no prefetching, use LRU replacement, are mixed (data and 
instruction cached together), and use bit selection. 

 He begins by verifying that implementations of the three algorithms have 
similar run-times for simulating a single cache, using two methods. First, he ran each 
implementation using a trace of 1 million identical addresses so that all references, 
expect the first, hit at distance one. Results show that the elapsed virtual times of forest 
and stack simulation differ by 0.1 percent, while all-associativity simulation is 3 
percent faster.  All-associativity simulation is faster, because it is implemented in a 
different program, Tycho. It is not surprising that Tycho is slightly faster than 
DineroIII which is a general cache simulator.  Even through DineroIII’s additional 
features are not used in these simulation runs, DineroIII uses some execution time to 
fall through the if statements that guard the additional features. 
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 Second, Hill (1987) compares the algorithms simulating a 16K-byte direct-
mapped cache with each of four traces. A stack and an all associativity of a single 
16K-byte four-way set-associative cache are also comparable. 

 Since Hill (1987) implementations of these algorithms have similar run-times 
for simulating single caches, the comparisons of multiple cache simulations that 
follows are meaningful, because we know that simulation time differences are not due 
to per reference overheads. Therefore we just take the advantage of Hill’s research and 
corresponding results and implement them in own devised algorithms for 
multiprocessor environments.  

 3.12 One-Pass Simulation Technique for Multiprocessor Set-Associative Caches. 
The techniques presented in the previous sections could be further improved if 

one were to extend the uniprocessor one-pass algorithm in Section 3.8.1 to 
multiprocessors. In this section we discuss the difficulty of extending this algorithm to 
multiprocessors with invalidation protocols and describe the feasibility for distributed-
write protocols.  

 
For multiprocessors and an invalidation-based coherence protocol, the 

algorithm in Figure 3.33 requires modifications to handle shared reads and shared 
writes. A shared read will cause a reset of the requested block’s dirty level since the 
block will be clean after being read by another cache. A shared write will cause a 
deletion and will leave a “hole” in the stack. This hole cannot be deleted since that will 
change the stack level of all lower blocks. We call the deleted block a marker. For fully 
associative cache simulations, a marker will remain at the same position in the stack 
until another block below the marker is accessed. In this case the marker propa - gates 
to the position of the newly accessed block while the block is moved to the top of the 
stack.  

For a set-associative cache simulation algorithm , a deletion also leaves a 
marker in the stack. However, the propagation of a marker is a complicated Matter. the 
caches with several different numbers of sets, say 2, 4 and 8, are represented by a 
single stack. Now, when a block below the marker is accessed, it can be, for example, 
in the same set with the deleted block for caches with 2 and 4 sets but not for 8 sets. 
Therefore, from the viewpoint of 2 and 4-set caches, the marker needs to be propagated, 
but for 8-set caches the marker should stay. Thus, a marker can become multiple 
markers, and keeping track of their propagations complicates the one-pass algorithm. 

 
This problem is not present for multiprocessors using distributed- write 

protocols. This is because a shared write will update instead of invalidate other copies 
of the requested block. That is, the effect of a shared write by other processors is to 
reset the dirty level of the block, as a shared read would do. Thus, the one-pass 
algorithm can be straightforwardly extended for multiprocessors using distributed-
write protocols. 
 
3.13 Cache Coherence Protocol for Multiprocessor Set-Associative Caches. 

In contemporary multiprocessor systems, it is customary to have one or two 
level of cache associated with each processor. This organisation is essential to achieve 
reasonable performance. It does however; create a problem known as the cache 
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coherence problem. The essence of the problem is this: Multiple copies of the same 
data can exist in different caches simultaneously, and if processors are allowed to 
update their own copies freely an inconsistent view of memory can result. The are two 
common write policies:-    

• Write back: Write operations are usually made only to the cache. Main 
memory is only updated when the corresponding cache line is flushed 
from the cache. 

• Write Through: All write operations are made to main memory as well 
as to the cache, ensuring that main memory is always valid. 

 
It is clear that a write back policy can result in inconsistency. If two caches 

contain same line, and the same line is updated in one cache, the other cache will 
unknowingly have an invalid value; subsequently reads to that invalid line produce 
invalid results. Even with the write through policy, inconsistency can occur unless 
other caches monitor the memory traffic or receive some direct notification of the 
update. 

 
In this section we will briefly survey various approaches to cache coherence 

problem and then focus on the approach that is most widely used: the MESI protocol. 
 
For any cache coherence protocol, the objective is to let recently used local 

variables get into the appropriate cache and stay there through numerous reads and 
writes, while using the protocol to maintain consistency of shared variables that might 
be in multiple caches at the same time. Cache coherence protocols have generally been 
divided into software and hardware approaches. Some implementations adopt a 
strategy that involves both software and hardware elements. Nevertheless, the 
classification into software and hardware approaches is still instructive and commonly 
used in surveying cache coherence strategies. 

 
Software Solutions. Software cache coherence schemes attempt to avoid the need for 
additional hardware circuitry and logic by relying on the compiler and operating 
system to deal with the problem. Software approaches are attractive the overhead of 
detecting potential problems is transferred from run time to compile time, and the 
design complexity is transferred from hardware to software. 

 
• Hardware Solutions. Hardware based  solutions are generally referred to 

as cache coherence protocols. These solutions provide dynamic 
recognition at run time of potential inconsistency conditions. Because 
the problem is only dealt with when it actually arises, there is more 
effective use of caches, leading tom improved performance over a 
software approach. In addition these approaches are transparent to the 
programmer and the compiler reducing the software development 
burden. 
 
Hardware schemes differ in number of particulars, including where the 
state information about data lines is held, how that information is 
organised , where coherence is enforced, and the enforcement 
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mechanisms. In general hardware schemes can be divided into two 
categories: directory protocol and snoopy protocol. 

 
• Directory Protocol. Directory protocols collect and 

maintain information about where copies of lines 
reside. Typically there is a centralized controller that 
is the part of the main memory controller, and a 
directory that is stored in main memory. 

• Snoopy Protocol. Snoopy protocols distribute the 
responsibility for maintaining cache coherence 
among all of the cache controllers in a multiprocessor.  

 
3.13.1 The MESI Protocol.   

The data cache includes two status bits per tag, so that cache line 
can be in one of four states: 

• Modified: The line in the cache has been modified 
( different from main memory) and is available only 
in this cache. 

• Exclusive: The line in the cache is same as that in the 
main memory and is not present in any other cache. 

• Shared: The line in the cache is the same as that in 
main memory and may be present in another cache. 

• Invalid: The line in the cache does not contain valid 
data. 

Now we discuss different situations of read and write. 
• Read Miss. When a read miss occurs in the local 

cache, the processor initiates a memory read to read 
the line of main memory containing the missing 
address. The processor inserts a signal on the bus that 
alerts all other processor/ cache units to snoop the 
transaction. There are number of possible outcomes: 

o If one other cache has a clean (unmodified 
since read from memory) copy of the line in 
the exclusive state, it returns a signal 
indicating that it shares this line. The 
responding processor then transitions the state 
of its copy from exclusive to shared, and the 
initiating processor reads the line from main 
memory and transitions the line in its cache 
from invalid to shared. 

o If one or more cache have a clean copy of the 
line in the shared state, each of them signals 
that it shares the line. The initiating processor 
reads the line in its cache from invalid to 
shared.  

o If one other cache has a modified copy of the 
line, then that cache blocks the memory read 
and provides the line to the requesting cache 
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over the shared bus. The responding cache 
then changes its line from modified to shared. 

o If no other cache has a copy of the line (clean 
or modified), then no signals are returned. 
The initiating processor reads the line and 
transitions the line in its cache from invalid to 
exclusive. 

• Read Hit. When a read hit occurs on a line currently 
in the local cache, the processor simply reads the 
required item. There is no state change : the state 
remains modified, shared or exclusive. 

• Write Miss. When a write miss occurs in the local 
cache, the processor initiates a memory read to read 
the line of main memory containing the missing 
address. For this purpose the processor issues the 
signal on the bus that means read-with-intent-to-
modify (RWITM). When the line is loaded it is 
immediately marked modified. With respect to other 
caches, two possible scenarios precede the loading of 
the line of data. 

 
First some other cache may have modified copy 

of this line (state = modified). In this case the alerted 
processor signals the initiating processor that another 
processor has a modified copy of the line. The 
initiating processor surrenders the bus and waits. The 
other processor gains access to the bus, writes the 
modified cache line back to main memory, and 
transitions the state of cache line to invalid (because 
the initiating processor is going to modify this line ). 
Subsequently the initiating processor will again issue 
a signal to the bus of RWITM and then reads the line 
from main memory, modify the line in the cache and 
mark the line in the modified state. 

 
The second scenario is that the other cache has a 

modified copy of the requested line. In this case, no 
signal is returned, and the initiating processor 
proceeds to read in the line and modified. Meanwhile, 
if one or more caches have a clean copy of the line in 
the shared state, each cache invalidates its copy of 
the line and if one cache has a clean copy of the line 
in the exclusive state, it invalidates its copy of the 
line. 

• Write Hit. When a write hit occurs on a line currently 
in the local cache the effect depends on the current 
state of that line in the local cache: 
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o Shared: Before performing the update, the 
processor must gain exclusive ownership 
of the line. The processor signals its intent 
on the bus. Each processor that has a 
shared copy of the line in its cache 
transitions the sector from shared to 
invalid. The initiating processor then 
performs the update and transitions its 
copy of the line from shared to modified.  

o Exclusive: The processor already has 
exclusive control of this line so it simply 
performs the update and transitions its 
copy of the line from exclusive to 
modified. 

o Modified: The processor already has 
exclusive control of this line and has the 
line marked as modified and so it simply 
performs the update. 

 
All aspects of cache coherence have been incorporated in the 

algorithm that is discussed in the section 3.15. To implement these 
aspects a special structure has been introduced in the algorithm that 
simulates the cache controller and maintains the coherence. Here 
instead of generating signals, the simulated processors simply set the 
relevant bits in the common structure. 

 
3.14 Deletion Issues in Multiprocessor Set-Associative Caches.  

As mentioned in section 3.12 for multiprocessors and an invalidation-based 
coherence protocol, when a shared write causes a deletion, there raise certain issues 
regarding propagation of markers. Let us discuss these issues one by one and try to 
find solution for these problems. Since the hole or the marker can not be straightaway 
deleted for the reasons that it is to be catered for certain caches and not for others. A 
deliberate research on the issue leads us to following theorems. 

 
Theorem 3.4. For a deleted block ‘D’ and a referenced block ‘R’ such that ‘R’ 
is a miss in the cache and ‘n’ least significant bits of both ‘D’ and ‘R’ match 
then for all further references ‘D’ will not be considered for all 2 i set caches 
where i = 1 to n, but it will be accounted for all 2 j set caches where j>n. 
 
Example. We verify the above theorem by considering an example. 
 
Figures 3.35 (a), (b) and (c) show a 2 set and 4 set (real caches), and the 

simulating stack respectively, after a sequence of references. Assume that block ‘8’ has 
been invalidated and thus it should be deleted for some caches while it should not for 
others. Let the new reference is made for block ‘14’ which is a miss and has to be 
brought in the cache from main memory. Now in 2 set cache ‘14’ comes on the top of 
the stack and subsequent pushes  fill up the gap thus the 2 set (real) cache holds a 
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sequence of references as shown in figure 3.36(a). Similarly the state of 4 set (real) 
cache and the simulating stack are also shown in figures 3.36 (b) and (c) respectively. 

 

 
Figure 3.35   Deletion Issue (In case of Miss : Initial States) 

 Let new reference is made for block ‘12’ which is a hit and LRU just demands 
that it should come at top of the stack. But we are also keeping a record of all those 
caches for which it is a hit and for which it is not by maintaining the distance counters. 
A keen observation of the real and simulated caches makes it clear that ‘12’ is a hit at 
stack distance 6 in 2 set (real) cache and at stack distance 3 in 4 set (real) cache but in 
the simulating stack it is a hit at stack distance 7 for 2 set cache and at stack distance 3 
for 4 set cache. It means that the hole should not be catered for a 2 set cache but it 
should be catered for a 4 set cache. 
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 Figure 3.36 Deletion Issue  (In case of Miss : States after Hole Propagation) 
 
 If we observe the bit patterns for digits ‘8’ and ‘14’ (i.e. 01000 and 01110), 
we’ll find that only the first bit matches, it means these two references can fall in the 
same set only in the case of 2 set cache and hence ‘14’ can fill the hole created by 
invalidation of ‘8’ in 2 set cache only. Consequently if any further references are made 
then the hole should not be catered for any more in the 2 set cache but it should be 
catered for all other set-associative caches. 
  
 On the other hand, if the new reference is made for ‘28’ instead of ‘14’ then the 
hole created by ‘8’ has to be filled in 2 set as well as 4 set cache. If we match the least 
significant bits (i.e. 00000 and 11100) then we find last two bits similar (i.e. n = 2) and 
we are not considering the hole for  2 set (21  set) and 4 set (22  set) caches which is 
again in accordance with our theorem. 
 
 Theorem 3.5. For a deleted block ‘D’ and a referenced block ‘R’ such that ‘R’ 
is a hit in the cache and ‘n’ least significant bits of both ‘D’ and ‘R’ match  then for all 
further references 
 

(i) ‘D’ will not be considered for all 2 i  set caches where i = 1 to n  and it 
will be  accounted for all 2 j set caches where j>n. 

 
(ii) Moreover a  duplicate of ‘D’ will be accounted for all 2 i set caches 

where i= 1 to n and will not be considered for all  2 j set caches where 
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j>n, provided that the duplicate occurs at the same place where ‘R’ was 
previously residing. 

 
Example. We verify the above theorem by considering an example 
 
Figures 3.37 (a), (b) and (c) show a 2 set and 4 set (real caches), and the 

simulating stack respectively, after a sequence of references. Assume that block ‘8’ has 
been invalidated and thus it should be deleted for some caches while it should not for 
others. Let the new reference is made for block ‘14’ which is a hit and has to be 
brought in the cache from main memory. Now in 2 set cache ‘14’ comes on the top of 
the stack and subsequent pushes  fill up the gap thus the gap is pushed to a location 
where block ‘14’ was residing previously. 2 set (real) cache, after the propagation of 
the marker is shown in figure 3.37 (a). Similarly the state of 4 set (real) cache and the 
simulating stack are also shown in figures 3.37 (b) and (c) respectively. 

Figure 3.37 Deletion Issue  (In case of Hit : Initial States) 
 Let new reference is made for block ‘0’ which is again a hit and LRU just 
demands that it should come at top of the stack. But we are also keeping a record of all 
those caches for which it is a hit and for which it is not by maintaining the distance 
counters. A keen observation of the real and simulated caches makes it clear that ‘0’ is 
a hit at stack distance 8 in 2 set (real) cache (because the marker has moved to stack 
distance 7) and at stack distance 4 in 4 set (real) cache. Moreover in the simulating 
stack it is a hit at stack distance 8 for 2 set cache and at stack distance 4 for 4 set cache 
which is in agreement to real caches. Still there is a problem because in 2 set (real) 
cache the marker is at stack distance 7 and in 4 set (real) cache it is at stack distance 2 
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for the fourth set. The current state of simulating cache (figure 3.38(c)) show that the 
simulating stack is in agreement with 4 set (real) cache but not with 2 set (real) cache. 
If in simulating stack we move the marker to stack distance 7 to bring it in agreement 
with 2 set (real) cache then it no more remains in agreement with the 4 set (real) cache. 

 
 

 
Figure 3.38 Deletion Issue  (In case of Hit : States after Hole Propagation) 

Here, basic issue is the decision for new location of the marker (hole) in the 
simulating stack. This issue can be resolved if we duplicate the marker and move this 
duplicate to the same location where we found the hit (as it actual happens in real 
caches). By introducing two markers in the simulating stack we can bring our 
simulating stack in accordance with the real caches (figure 3.38 (d)). The only 
remaining problem is the decision as when to consider the original hole and when to 
consider the duplicate. 
.  
 If we observe the bit patterns for digits ‘8’ and ‘14’ (i.e. 01000 and 01110), 
we’ll find that only the first bit matches, this means that these two references can fall 
in the same set only in the case of 2 set cache. Since we introduced the duplicate to 
bring our simulating stack in agreement with the 2 set (real) cache it means that the 
duplicate should be considered while simulating 2 set cache. Moreover, for the reasons 
described while verifying Theorem 3.4, it is obvious that original marker must not be 
considered while simulating a 2 set cache.  Same principle should be followed for any 
further references. 
  
 On the other hand the original marker should be considered while simulating 4 
set and 8 set caches but the duplicate must not be considered for these. Same concepts 
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can be verified further by applying different sequences of references to M set caches, 
where M can be any number.  
    
 Above described theorems sufficiently cover all the cases of delete and give the 
solution for placement of markers. In actual implementation of these concepts (which 
will be covered in detail in next section) we have introduced an integer and we set its 
bits to show whether to consider a marker or not. For instance, for the case of figure 
3.36 (c) a bit pattern of  [00000000000000000000000000000001] shows that the 
marker should not be considered for a 2 way cache but it should be considered for rest 
all caches. Similarly for the case described in 3.37 (c) a bit pattern 
[11111111111111111111111111111110] reflects that the duplicate should be 
considered for a 2 set cache and should be neglected for the rest of cache. These 
concepts will be covered again in next section.   
 
 The last vital point is the understanding that either of these theorems will 
always apply on a sequence of references while dealing with shred writes in case of 
multiprocessor based environments. If the next reference in the queue is a miss in 
cache Theorem 1 will govern the changes in simulating stack, whereas if it is a hit 
Theorem 2 will come in power.    
 
3.15 Implementation of One-Pass Simulation Technique for Multiprocessor Set-
Associative Caches. 
 After considering all the options available and after discussing different issues 
of the trace driven simulations in uniprocessor based environments, now we are at a 
stage where we can extend all those ideas to multiprocessor based environments. Here 
we make certain assumptions and develop our algorithm, and consequently, our 
software for the defined parameters only, however these algorithms are flexible enough 
to incorporate further changes and modifications.  
 We develop our algorithm for shared writes and we assume that already 
‘treated’ traces are available for processing. We define ‘Treated’ traces as those which 
are pre-collected and pre-reduced in the best possible manner. Secondly we assume 
that there are 32 processors working parallel and are arranged in an array. We also 
assume that each processor has its own private cache at level-1, whose minimum size 
is 4 K byte. These parameters are not rigid and suitable modifications can be done for 
any required changes. We also assume that minimum and maximum limits for line size 
are dictated by the user. Same is the case with the degree of associativity which can 
vary between 1 way ( direct mapped) to 8 way ( fully associative). 

We implement our algorithms in “C” language to simulate multiprocessor set-
associative write back caches. The algorithms are in “C” like syntax for ease of 
understanding and comprehension. An approach which is best used by experienced 
programmers is to declare variable names which are self explanatory is also used here. 
Sections 3.12, 3.13 and 3.14 are  referred since these provide the basic understanding 
for these algorithms.      
 
The structure of the caches needed to implement the simulation is given in the 
following algorithm 
structure Cache 
{ 
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 structure Read--Hit--Structure 
 { 
              Integer  HitArray[Array Of][ MaxAssociativity + 1]   
                                                                    ::: Comments:::;//0,1,2,3....8 deg of  

associativity 
 
             Read--Hit--Structure[Array Of] [ MaxPossibleSetBits +1]     

 :::Comments:::;//from 0 to                        
MaxPossibleSetBits 0  represents pow(2,0)             
only one set 

                                                                    :::Comments::: this structure stores the no        
of read hits in the Cache having pow 
(2, MaxPossibleSetBits + 1) sets and deg 
of        associativity  of(1,2,3,4,5,6,7,8) we 
calculate only(1,2,4 and 8) 

 
 
 
 
    structure Write--Hit--Structure 
 { 
Integer  HitArray[Array Of][ MaxAssociativity + 1]          ::: Comments:::;//0,1,2,3....8          

deg of associativity 
 }  
Write-Hit-Structure [Array Of] [MaxPossibleSetBits + 1]  :::Comments:::;//from 0 to  

MaxPossibleSetBits 
                                                                                              :::Comments::: this structure  

stores the number of write 
hits in the Cache having 
pow(2, 
MaxPossibleSetBits + 1) 
sets and deg of 
associativity 
of(1,2,3,4,5,6,7,8) we 
calculate only (1,2, 4 and 
8) 

 
 
    structure Write--Avoidance--Structure 
 { 
Integer  HitArray[Array Of][ MaxAssociativity + 1]          :::Comments:::;//0,1,2,3....8 

deg of associativity 
 } 
Write-Avoidance-Structure[Array Of] 
                                           [ MaxPossibleSetBits + 1]        :::Comments:::;//from 0 to   

MaxPossibleSetBits 
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                                                                                             :::Comments::: this structure  
stores the no of writes 
being avoided  in the 
(write back)Cache having 
pow(2, 
MaxPossibleSetBits + 1) 
sets and deg of 
associativity 
of(1,2,3,4,5,6,7,8) we 
calculate only(1,2,4 and 8) 

 
 
     Stack(Address Of)  Top                                                 :::Comments:::;//top of the 

stack 
     Stack(Address Of)  Previous                                         :::Comments:::;//previous 

element to the current            
stack element 

     Stack(Address Of)  Current                                           :::Comments:::;//current 
element of the stack  being 
considered 

 
 

Integer  TotalNoOfRef                                :::Comments::://total no of references 
read from the file 

    Integer  TotalNoOfReads                            :::Comments::://total no of read 
references in the file 

    Integer  TotalNoOfWrites                           :::Comments::://total no of write  
references in the file 

    Integer  TotalNoOfDeletes                         :::Comments::://not used so far because 
delete request can be from other Cache 

 
    Integer  ArrayOfDeletes                             :::Comments:::;//represents how many 

elements will be added 
                                                                        :::Comments::: for a particular reference 
 
   Stack(Address Of) ArrayOfDel[Array Of] 
                            [ MaxPossibleSetBits + 1]  :::Comments:::;//this is the array 

:::Comments::: of Integers for the deletes      
that will be added in the stack for 

                     :::Comments::: particular sets 
 

Integer  Above[Array Of][ MaxPossibleSetBits + 1]      
           :::Comments:::;//from 0 to        

MaxPossibleSetBits 
 :::Comments::: 0 represents pow(2,0) only  

one set 
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                                                                       :::Comments:::the value in the                 
Above[Array Of][] array is the no. of 
references coming 

                                                                       :::Comments::: before a given reference 
for pow(2,i) no of sets 

 
    char  AccessType[Array Of][10]               :::Comments:::;//access type is read write 

or delete. 
                                                                     :::Comments:::This information is stored   

in this string per reference 
 
    Integer  ResetDel                                       :::Comments:::;//when finding which 

block is deleted for which set  
                                                                       :::Comments:::we should be conscious not   

to include two deleted blocks for one  
                                                                       :::Comments:::particular set. this Integer    

indicates which set has been catered  
                                                                       :::Comments:::for and which not the rest  

explanation will be given  
                                                                       :::Comments:::while using this variable 
 
    Integer  Address                                         :::Comments:::;//will contain the address 

read from the file 
 
    Integer  Tag                                                :::Comments:::;//results in removing     

LineBits from  Address 
 
    Integer  Found                                            :::Comments:::;//hit in the Cache or not   

0=miss,1=hit,2=hit but delete 
} 
 

Simulation of main memory is implemented by following algorithm 
Structure  SharedMemory                                :::Comments:::represents the contents in 

the struct rep shared data 
{ 
    Integer  Block;                                             :::Comments:::represents the shared  

block    
    Integer Flag;                                                ::: Comments:::flag represent which  

Cache processes 
                                                                         :::Comments:::the block and its first bit 

represents whether the block 
                                                                         :::Comments:::in the shared memory is 

modified  or not(1 = modified) 
                                                                         :::Comments:::(0 = notmodified) 
                                                                         :::Comments:::the rest of the bits in flag   

represents which Cache has the 
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                                                                         :::Comments:::block(i-e)bit 2 represents 
Cache1 bit 3 represents Cache2 

                                                                         :::Comments:::and so on 
     SharedMemory(Address Of)  Next             :::Comments:::;//next element in the 
shared memory 
}; 

Structure of main memory 
 
structure   MainMemory 
{ 
  
 SharedMemory(Address Of)  Top;                 :::Comments:::top of the memory link  

list stack 
 SharedMemory(Address Of)  Previous;          :::Comments:::previous to the current 

element of the stack being examined 
 SharedMemory(Address Of)  Current;            :::Comments:::represents the current 

stack being examined 
} 
In find  
 If we have found the address as in previous algorithms we will not increment any 
read or writes. 
We will just access it and then delete it not from the link list but make it invisible for 
some caches  while keeping it visible for other caches  the reason is explained in 
sections  3.12, 3.14. 
 
 
Find(Cache(Address of) cache)                    :::Comments:::;//find in the stack 
{ 
                                                                       :::Comments:::;//cout<<"entered 

find"<<endl; 
                                                                      :::Comments:::;//getch(); 
    AdjustmentsBeforeFind(cache); 
 
    cache(contains)Found=0;                          :::Comments:::;// 0 means not found 1 

means found 2 means found but found in 
delete 

 
if the case in the brackets is true  
(strcmp(cache(contains)AccessType,Delete)!=0)  
                                                                  :::Comments:::;//if the case in the brackets  

is true access type is not delete 
 { 
 if the case in the brackets is true  
             (cache(contains)Top == NULL)      :::Comments:::;//if the case in the brackets 

is true very first address 
 {} 
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      else do this                                              :::Comments:::;//if the case in the brackets         
is true not the very first element 

 { 
                                                                      :::Comments:::;//cout<<"not very first  

address"; 
                                                          :::Comments:::;//getch(); 
 cache(contains)Current = cache(contains)Top; 
         
while(cache(contains)Current != NULL && (cache(contains) 
Above[Array Of][MaxMatchBits]<MaxDataAssociativity)) 
                                                                      :::Comments:::;//you don't need to continue 

searching if the case in the brackets is 
true the address has gone down greater 

                                                                      :::Comments:::;//than the max deg of 
associativity of the largest 

                                                :::Comments:::;//cache 
   { 
if the case in the brackets is true  
(cache(contains)Tag == cache(contains)Current(contains)Block) 
   { 
                                      if the case in the brackets is true  
  (cache(contains)Current(contains)RWD == 2)   
                                                                         :::Comments:::;//if the case in the 

brackets is true the block is delete 
{ cache(contains)Found = 2;}                         :::Comments:::;//found but delete 
 
 if the case in the brackets is true 
 (cache(contains)Current(contains)RWD != 2) 
 { 
cache(contains)Found=1;                                :::Comments:::;// 1 means found  
 } 
    } 
if the case in the brackets is true  
(cache(contains)Tag == cache(contains)Current(contains)Block && 
cache(contains)Found == 1) break;          
                                                                       ::: Comments:::;//if the case in the brackets  

is true found and the block is not 
deleted 

else do this      
  :::Comments:::;//if the case in the brackets   

is true it is not the current block the 
current block 

    { 
     FindRightMatchBits(cache); 

:::Comments:::;//find least significant the   
case in the brackets is true icant bits 
matching between the block of the 
current cache and the tag 
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                                                                        :::Comments:::;//to see how far it has 
gone  down the stack 

                                                                         :::Comments:::;//in finding the req 
address wetger found or not 

                                                   :::Comments:::;// cout<<endl; 
        for(Integer k=0;k<=MaxPossibleSetBits;k++) 
     { 
                                                              :::Comments:::;//cout<<cache(contains) 
                                                                             Above[Array Of][k]; 
     } 
    
        cache(contains)Previous= cache(contains)Current; 
        cache(contains)Current = 
cache(contains)Current(contains)Next; 
    } 
   } 
  } 
        ArrangeAfterFind(cache); 
 
    
 } 
 
 

if the case in the brackets is true 
 (strcmp(cache(contains)AccessType,Delete) ==0)      :::Comments:::;//if the case in  

the brackets is true the new 
reference is delete 

{                                                                                        :::Comments:::;//cout<<"Enter     
ing Delete" <<endl; 

        if the case in the brackets is true  
(cache(contains)Top != NULL)                                       :::Comments:::;//it will always       

be null but the condition is 
just precautionary 

  { 
  cache(contains)Current = cache(contains)Top; 
                     while(cache(contains)Current != NULL) 
   { 
   if the case in the brackets is true  
                                     (cache(contains)Tag == cache(contains)Current(contains)Block) 
    { 
 cache(contains)Current(contains)RWD = 2; 
                     cache(contains)Current(contains)Delse do thist = 

( (Integer)pow(2,MaxMatchBits+1) -1);        
                                                                                           :::Comments:::;//this causes                  

every bit of the  
                                                                                           :::Comments:::;//delse do thist 

to be one indicating that the 
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block is deleted for every 
set and 

                                                                                           :::Comments:::;//should be            
catered for rightmatchbits 
because 

                                                          :::Comments:::;//it will 
increment cache(contains)above[Array Of][] to indicate 
                                                                                           :::Comments:::;//that this 

block is actually present in 
the 

                                                                                          :::Comments:::;//actual cache 
which this program is 
simulating 

    } 
                                                if the case in the brackets is true  
              (cache(contains)Tag == cache(contains)Current(contains)Block) break; 
          cache(contains)Current = cache(contains)Current(contains)Next; 
   } 
            ArrangeAfterFind(cache); 
  }   
 } 
 
}   
 
  Now next time we do the right match bits we find whether  block is deleted or not 
and if it is delete for  which sets as explained earlier (section 3.14). 
 
 
FindRightMatchBits(Cache(Address of) cache) 
{ 
                                                                                  :::Comments:::;//cout<<"entering 

right match"<<endl; 
 

if the case in the brackets is true 
 (cache(contains)Current(contains)RWD NotEqualTo 2)     
                                                                             :::Comments:::;//if the case in the            

brackets is true the block is not 
deleted 

 { 
  cache(contains)Above[Array Of][0]++;    
                                                                                 :::Comments:::;//it will be above in     

one set any way 
        Integer XOR = cache(contains)Tag ^ cache(contains)Current(contains)Block; 
        Integer AND; 
 
        for(Integer i=0; i<MaxMatchBits; i++) 
  { 
   AND = XOR Anding (Integer)pow(2, i); 
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            if the case in the brackets is true 
 ( AND EqualTo (Integer)pow(2,i) )                       :::Comments:::;//if the case in the          

brackets is true i bits don't match 
      break;        

                                                                            :::Comments:::;//it is not above for 
any other set 

 
         else do this 
   { 
                                                                                :::Comments:::;//cout<<"bit"<<(i+1)  

<<cache(contains)Current(contains)  
Block<<"is matching"<<"  "; 

 
          cache(contains)Above[Array Of][i+1]++;   
                                                                                :::Comments:::;//no of ref above for 

pow(2,i) no of sets 
   } 
  } 
 } 
 
 

if the case in the brackets is true  
(cache(contains)Current(contains)RWD EqualTo 2) 

 { 
                                                                            :::Comments:::;//cout<<"Access type is 

delete"; 
        Integer Delse do thistForNew = 0;             :::Comments:::;//this basically provides   

Delse do thist 
                                                                            :::Comments:::;//for the new element  

that will be added as a delete in the 
                                                                            :::Comments:::;//link-list for some sets 

and not for other sets 
                                                                             :::Comments:::;// ResetDel =   

((Integer)pow(2,MaxMatchBits) -1); 
 
       if the case in the brackets is true  
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,0)) 
NotEqualTo 0) 
    {  
                                                   :::Comments:::;//cout<<"bit one is 1"; 
                                                                         :::Comments:::;//this means check bit 1 if 

the case in the brackets is true it is "1" 
then this delete 

                                                                        :::Comments:::;//block is present in the  
actual "one set" cache at this level 

        cache(contains)Above[Array Of][0]++; 
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                                                                         :::Comments:::;//this if the case in the    
brackets is true for one set a special 
case 

    }  
       if the case in the brackets is true  
( (cache(contains)ResetDel Anding  
(Integer)pow(2,0))NotEqualTo )                     :::Comments:::;//if the case in the 

brackets  is true pow(2,0) bit of 
ResetDel is 0 then it means that set no 
pow(2,i+1) is catered for  

    { 
     if the case in the brackets is true               
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,0)) 
NotEqualTo 0) 
    { 
                                                                         :::Comments:::;//cout<<"entering if the    

case in the brackets is true "<<endl; 
       cache(contains)ResetDel = ( cache(contains)ResetDel 
Anding( ~(Integer)pow(2,0)) ); 
         Delse do thistForNew = ( Delse do thistForNew Oring 
(Integer)pow(2,0) );                                
                                                                      :::Comments:::;//the new set added will not 

be catered for these sets represented by 
bits 

         cache(contains)Current(contains)Delse do thist = 
(cache(contains)Current(contains)Delse do thist Anding( ~(Integer)pow(2,0)) ); 
                                                                           :::Comments:::;//cout<<cache(contains)

Current(contains)Delse do thist<<endl; 
                                                                           :::Comments:::;//cout<<"Resetdel"<<ca 

che(contains)ResetDel<<endl; 
     } 
    } 
 
       Integer XOR = cache(contains)Tag ^ cache(contains)Current(contains)Block;    
                                                                         :::Comments:::;//same "0" opposite "0ne" 
                                                                               Integer AND; 
 
       for(Integer i=0; i<MaxMatchBits; i++)    
                                                                        :::Comments:::;//i=0 means bit 1 
    { 
     AND = XOR Anding (Integer)pow(2, i);     
                                                                       :::Comments:::;//checking bit pow(2,i) 
 
        if the case in the brackets is true 
 ( AND EqualTo (Integer)pow(2,i) )     
                                                                      :::Comments:::;//if the case in the brackets    

is true i bits don't match  break; 
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          else do this        
                                                                     :::Comments:::;//means i bits do match for 

set pow(2,i+1) and onwards i-e 2 and 
onwards 

     { 
                                                                    :::Comments:::;//cout<<"bit"<<(i+1)<<"of"

<<cache(contains)Current(contains)Block
<<"is matching"<<"  "; 

 
         if the case in the brackets is true  
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,i+1)) 
NotEqualTo 0) 
         cache(contains)Above[Array Of][i+1]++; 
  
         if the case in the brackets is true 
 ( (cache(contains)ResetDel Anding (Integer)pow(2,i+1)) NotEqualTo ) 
                                                                    :::Comments:::;//if the case in the brackets is 

true pow(2,i+1) bit of ResetDel is 0 then 
it means that set no pow(2,i+1) is catered 
for 

      { 
       if the case in the brackets is true  
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,i+1)) 
NotEqualTo 0) 
       { 
        cache(contains)ResetDel = 
( cache(contains)ResetDel Anding( ~(Integer)pow(2,i+1)) ); 
           cache(contains)Current(contains)Delse do thist = 
(cache(contains)Current(contains)Delse do thist Anding( ~(Integer)pow(2,i+1)) ); 
            Delse do thistForNew = ( Delse do thistForNew Oring 
(Integer)pow(2,i+1) );      
                                                                              :::Comments:::;//the new set added 

will not be catered for these sets 
represented by bits 

       } 
      } 
                                                                             :::Comments:::;//cout<<"resetdel"<<ca

che(contains)ResetDel<<endl; 
                                                                             :::Comments:::;//Above[Array 

Of][i+1]++;    
                                                                             :::Comments:::;//no of ref above for 

pow(2,i) no of sets 
     } 
    }       
                                                                            ::Comments:::;//end of for 
       if the case in the brackets is true 
 (Delse do thistForNew NotEqualTo 0) 
    { 
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     cache(contains)ArrayOfDel[Array of][cache(contains)ArrayOfDeletes] 
= new Stack; 
        
cache(contains)ArrayOfDel[Array of][cache(contains)ArrayOfDeletes](contains)RWD 
= 2; 
           cache(contains)ArrayOfDel[Array 

of][cache(contains)ArrayOfDeletes](contains)
Block = 
cache(contains)Current(contains)Block; 

           cache(contains)ArrayOfDel[Array 
of][cache(contains)ArrayOfDeletes](contains)
Next = cache(contains)ArrayOfDel[Array 
of][cache(contains)ArrayOfDeletes+1]; 

           cache(contains)ArrayOfDel[Array 
of][cache(contains)ArrayOfDeletes](contains)
Delse do thist = Delse do thistForNew; 

           cache(contains)ArrayOfDeletes++; 
    } 
 
 } 
 
 
} 
 
 
Cache Coherence Protocol 
Following is the algorithm that performs cache coherence protocol as discussed 
above (section 3.13). 
                  if the address is in the shared region then enter the following function 
SharedRegion(MainMemory(Address of) 
mainmemory,CCacheSimulationView::Cache(Address of) cache) 
{ 
                                                                        :::Comments:::;//cout<<"entered shared 

region"<<endl; 
                                                                        :::Comments:::;//getch(); 

Integer Found=0;      
                                                                    :::Comments:::;//found in shared memory 

or not "0" means not found 
if the case in the brackets is true 
 (mainmemory(contains)Top EqualTo NULL)   
                                                                   :::Comments:::;//if the case in the brackets 

is true very first shared memory 
                                                                       :::Comments:::;//access 
{ 
                                                                       :::Comments:::;//cout<<"main memory is 

null"<<endl; 
        mainmemory(contains)Top = new SharedMemory; 
        mainmemory(contains)Top(contains)Block = cache(contains)Tag; 
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        mainmemory(contains)Top(contains)Next  = NULL; 
        mainmemory(contains)Top(contains)Flag    = 0;     
                                                                      :::Comments:::;//initialise the flag 
        if the case in the brackets is true 
 (strcmp(cache(contains)AccessType,Read) EqualTo 0)   
                                                                     :::Comments:::;//if the case in the brackets 

is true the cache is reading the block 
  { 
   mainmemory(contains)Top(contains)Flag = 
( mainmemory(contains)Top(contains)Flag Anding (~(Integer)pow(2,0))); 
                                                                    :::Comments:::;// first bit=0 means that 

cache has just asked for reading 
                                                                    :::Comments:::;//it has not modif the case in 

the brackets is true it  
         mainmemory(contains)Top(contains)Flag = 
( mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,CacheNo+1) ); 
                                                                    :::Comments:::;//(for cache no 0 it should be 

1)it means that this cache 
                                                                     :::Comments:::;//has the copy of the block 

and has no rite to modif the case in the 
brackets is true it 

                                                                   :::Comments:::;//without notify the case in 
the brackets is true ication  

  }   
        else do this 
  { 
   if the case in the brackets is true 
(strcmp(cache(contains)AccessType,Write) EqualTo 0) 
         mainmemory(contains)Top(contains)Flag = 
(mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,0) ); 
              :::Comments:::;//first bit=1 means that cache has  asked for modif the 
case in the brackets  
              :::Comments:::;// or has  modif the case in the brackets is true         
mainmemory(contains)Top(contains)Flag = 
( mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,CacheNo+1) ); 
              :::Comments:::;//(for cache no 0 it should be 1)it means that this cache 
              :::Comments:::;//has the (private)copy of the block and has a rite to  
              :::Comments:::;//modif the case in the brackets is true  } 
        mainmemory(contains)Current      = mainmemory(contains)Top; 
        mainmemory(contains)Previous     = mainmemory(contains)Top; 
 
 } 
    else do this     :::Comments:::;//if the case in the brackets is true  not very first shared 
memory reference 
 { 
       :::Comments:::;//cout<<"main memory is not null"<<endl; 
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        mainmemory(contains)Current = mainmemory(contains)Top; 
 
        while(mainmemory(contains)Current NotEqualTo NULL) 
  { 
   if the case in the brackets is true (cache(contains)Tag EqualTo 
mainmemory(contains)Current(contains)Block) 
   { 
    Found = 1;     :::Comments:::;//found(1) 
          if the case in the brackets is true 
(strcmp(cache(contains)AccessType,Read) EqualTo 0) 
    { 
          :::Comments:::;//check the first bit of the flag 
if the case in the brackets is true  
                :::Comments:::;//is 1 then some  
                :::Comments:::;//other cache has this block in dirty state 
           Integer Temp = 
( mainmemory(contains)Current(contains)Flag Anding ((Integer)pow(2,0)) ); 
    
          if true the case in the brackets is true(Temp EqualTo 
(Integer)pow(2,0))     :::Comments:::;//it means that some other 
                :::Comments:::;//cache has made this block private to it 
self 
                :::Comments:::;//(remember it will only be one cache) 
     { 
           :::Comments:::;//cout<<"some other 
cache has made the block dirty"<<endl; 
     
            RequestBlockBack(mainmemory,cache); 
                 :::Comments:::;//bring it back(make it read only 
in that  
                 :::Comments:::;//cache) 
     
     } 
           mainmemory(contains)Current(contains)Flag = 
( mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,CacheNo+1) ); 
                :::Comments:::;//(for cache no 0 it should be 1)it means 
that 
                :::Comments:::;//this cache has the copy of the block 
and has 
                :::Comments:::;//no rite to modif the case in the brackets 
is true  
    
    } 
          else do this     

      :::Comments:::;//if the case in the brackets is 
true access type is write or delete  

    { 
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          :::Comments:::;//remove the delete in the 
future(or should you)    
           if the case in the brackets is  
true(strcmp(cache(contains)AccessType,Write) EqualTo 0 ) 
     { 
           :::Comments:::;//check the first bit of 
the flag if the case in the brackets is true then 
                 :::Comments:::;//some other cache has this block 
in dirty state 
            Integer Temp = 
( mainmemory(contains)Current(contains)Flag Anding ((Integer)pow(2,0)) ); 
    
            if the case in the brackets is true (Temp EqualTo 
(Integer)pow(2,0))     :::Comments:::;//it means that some 
                 :::Comments:::;//other cache has made this block 
private to it  
                 :::Comments:::;//self (remember it wail only be 
one cache 
      { 
            :::Comments:::;//cout<<"cache 
has made the block dirty"<<endl; 
             
RequestBlockBackInvalidate(mainmemory(contains)Current(contains)Flag,cache); 
                  :::Comments:::;//in case of write only one 
can have the total 
                  :::Comments:::;//access 
      } 
            else do this 
              :::Comments:::;//all the other caches has the 
block in read state 
         
InvalidateAllOtherCaches(mainmemory(contains)Current(contains)Flag,cache); 
              :::Comments:::;//delete this shared block in 
all other caches 
              :::Comments:::;//containing it because the 
current cache 
              :::Comments:::;//requires this block to be 
private 
     
          mainmemory(contains)Current(contains)Flag 
= 0;     :::Comments:::;//no other cache should have the copy of it now 
          mainmemory(contains)Current(contains)Flag 
= (mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,0) ); 
               :::Comments:::;//first bit=1 means that 
cache has  asked for 
               :::Comments:::;//modif the case in the 
brackets is true   
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          mainmemory(contains)Current(contains)Flag 
= (mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,CacheNo+1) ); 
               :::Comments:::;//(for cache no 0 it should 
be 1)it means that 
               :::Comments:::;//this cache has the copy of 
the block and has 
               :::Comments:::;// rite to modif the case in 
the brackets is true  
     } 
           if the case in the brackets is true 
(strcmp(cache(contains)AccessType,Delete) EqualTo 0 ) 
     { 
      Integer 
Change=1;     :::Comments:::;//should i change the "0"th bit of the flag or not 
                 :::Comments:::;//cout<<"accesss type is delete"; 
            mainmemory(contains)Current(contains)Flag = 
(mainmemory(contains)Current(contains)Flag Anding(~ 
(Integer)pow(2,CacheNo+1) )); 
            for(Integer i=1; i<=NoOfProcessors; i++) 
      { 
       if the case in the brackets is true 
( (i-1) NotEqualTo CacheNo ) 
       { 
        Integer AND = 
mainmemory(contains)Current(contains)Flag Anding (Integer)pow(2, i); 
     if the case in the brackets is true  
( AND EqualTo (Integer)pow(2,i) )   
                                                                      :::Comments:::;//(bit 0 is there)if the case             

in the brackets is true i bit 
                                                                      :::Comments:::;//match(means i'th 

processor has the block  
 { 
 Change = 0; 
                                                                       :::Comments:::;//cout<<"cache no"<<(i-

1)<<"has it"<<endl;                 
  } 
      }  
   } 
 if the case in the brackets is true 
 (Change EqualTo 1) 
   { 
   mainmemory(contains)Current(contains)Flag = 0; 
   } 
 } 
                  } 
  } 
if the case in the brackets is true 
 (cache(contains)Tag EqualTo mainmemory(contains)Current(contains)Block )break;    
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                                                                        :::Comments:::;//if the case in the brackets          
is true found and the block is not 
deleted 

         else do this     
                                                                        :::Comments:::;//if the case in the brackets 

is true it is not the current block the 
current block 

   { 
    mainmemory(contains)Previous= 
mainmemory(contains)Current; 
          mainmemory(contains)Current = 
mainmemory(contains)Current(contains)Next; 
   } 
  } 
 
        if the case in the brackets is true (Found EqualTo 0)  
                                                                     :::Comments:::;//i-e not found 
  { 
   ArrangeSharedRegion(mainmemory,cache); 
  } 
    } 
    mainmemory(contains)Current = mainmemory(contains)Top; 
    while(mainmemory(contains)Current NotEqualTo NULL) 
 { 
                                                                       :::Comments:::;//cout<<(mainmemory(con

tains)Current(contains)Block)<<" 
"<<(mainmemory(contains)Current(cont
ains)Flag)<<"     "; 

        mainmemory(contains)Current = mainmemory(contains)Current(contains)Next; 
 } 
                                                                        :::Comments:::;//cout<<endl<<endl; 
} 
 
InvalidateAllOtherCaches(Integer Flag,Cache(Address of) cache) 
{ 
                                                                       :::Comments:::;//it should not be called if          

the case in the brackets is true the 
shared block is in the same cache  

                                                                       :::Comments:::;// asking for it} 
                                                                       :::Comments:::;//cout<<"entered   

Invalidating all other other caches "<<"  
"; 

                                                                       :::Comments:::;//cout<<Flag<<"  "<<Flag; 
    for(Integer i=1; i<=NoOfProcessors; i++) 
 { 
  if the case in the brackets is true  
( (i-1) NotEqualTo CacheNo ) 
  { 
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   Integer AND = Flag Anding (Integer)pow(2, i); 
            if the case in the brackets is true  
( AND EqualTo (Integer)pow(2,i) )               
                                                                       :::Comments:::;//(bit 0 is there)if the case             

in the brackets is true i bit  match(means 
i'th  

                                                                      :::Comments:::;//processor has the block in           
a read state   

 { 
                                                                     :::Comments:::;//cout<<"cache no"<<(i-

1)<<"has it"<<endl;         
             Stack(Address of) Temp  = FindRequest(cache,AndingCache1[Array 
Of][i-1]); 
                                                                    :::Comments:::;//cout<<Temp(contains)Bloc

k<<"   "; 
                                                                    :::Comments:::;//cout<<Temp(contains)RW 

D<<endl; 
  
   } 
  }   
 } 
 
} 
 
 
RequestBlockBackInvalidate(Integer Flag,Cache(Address of) cache) 
{ 
                                                                 :::Comments:::;//it should not be called if the    

case in the brackets is true the shared block 
is in the same cache  

                                                                :::Comments:::;// asking for it 
                                                                :::Comments:::;//cout<<"entering  

requestblockbackinvalidate"; 
                                                                :::Comments:::;//cout<<Flag<<"  "<<Flag; 
    for(Integer i=1; i<=NoOfProcessors; i++) 
 { 
  if the case in the brackets is true 
 ( (i-1) NotEqualTo CacheNo ) 
  { 
   Integer AND = Flag Anding (Integer)pow(2, i); 
            if the case in the brackets is true 
 ( AND EqualTo (Integer)pow(2,i) )    
                                                               :::Comments:::;//(bit 0 is there) 
                                                               :::Comments:::;//if the case in the brackets is 

true i bit  match(means i'th  
                                                               :::Comments:::;//processor has the block in 

dirty state 
   { 



 112

                  :::Comments:::;//cout<<"cache no"<<(i-
1)<<"has it"<<endl;                 
             Stack(Address of) Temp  = FindRequest(cache,AndingCache1[Array 
Of][i-1]); 
                                                             :::Comments:::;//cout<<Temp(contains)Block<<

"   "; 
                                                             :::Comments:::;//cout<<Temp(contains)RWD<<

endl; 
   } 
  } 
 }  
 
} 
 
 
 
RequestBlockBack(MainMemory(Address of) 
mainmemory,CCacheSimulationView::Cache(Address of) cache) 
{ 
                                                                          :::Comments:::;//it should not be called    

if the case in the brackets is true the 
shared block is in the same cache  

                                                                         :::Comments:::;// asking for it 
 
                                                                          :::Comments:::;//now check which bit of 

the flag is 1 other than bit 0 because 
onlyone cache can have a particular 
block in dirty state 

                                                                          :::Comments:::;//cout<<"entered request 
block back "<<"  "; 

                                                                          :::Comments:::;//cout<<"mainmemory(c
ontains)Current(contains)Flag"<<"  
"<<mainmemory(contains)Current(co
ntains)Flag; 

    for(Integer i=1; i<=NoOfProcessors; i++) 
 { 
 if the case in the brackets is true 
 ( (i-1) NotEqualTo CacheNo ) 
  { 
   Integer AND = mainmemory(contains)Current(contains)Flag 
Anding (Integer)pow(2, i); 
            if the case in the brackets is true 
 ( AND EqualTo (Integer)pow(2,i) )                 :::Comments:::;//(bit 0 is there)if the 

case in the brackets is true i bit 
                                                                          :::Comments:::;//match(means i'th 

processor has the block in dirty state 
   { 



 113

                              :::Comments:::;//cout<<"cache no"<<(i-
1)<<"has it"<<endl;                 
             Stack(Address of) Temp  = FindRequest(cache,AndingCache1[Array 
Of][i-1]); 
                                                                          :::Comments:::;//cout<<Temp(contains)

Block<<"   "; 
                                                                           :::Comments:::;//cout<<Temp(contains)

RWD<<endl; 
             mainmemory(contains)Current(contains)Flag = 
( mainmemory(contains)Current(contains)Flag Anding (~(Integer)pow(2,0))); 
                                                                           :::Comments:::;// first bit=0 means that        

cache has just asked for 
                                                                           :::Comments:::;//reading it and has not 

modif the case in the brackets is 
trueied it  

   } 
  } 
 } 
 
} 
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Chapter Four 

 
 

The Acumen 
4.1 Introduction to Acumen.  

After the discussion of first three chapters the software which we 
developed is named Acumen because of it’s ability to efficiently propose 
appropriate cache designs basing on user’s choices. 
 
4.2 How to Use the Software. 

The software is packaged for best deployment and is portable. When we 
explore the compact disc containing the software we find the familiar set up 
icon. Following the easy steps as per instructions displayed the software can be 
deployed on any windows platform containing windows installer (issued in 
service pack). 

4.2.1 Screen shot of Installation Process. 

 
 
To find best cache design user will have to give following inputs:- 

• An address trace. 
• Number of Processors in the system for which cache design is 

required. Up to 32 processors are permitted.  (Simulation can 
work for uni-processor based environment also). 

• User has the choice of combined and split caches. 
• For split caches user can further choose between instruction and 

data cache. 
• Minimum and maximum cache size. i.e limits are defined by the 

user 
• Minimum and maximum line size. 
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• Degree of associativity i.e. minimum and maximum 
associativity 

• Whether the cache required will be write through or write back. 
• After necessary processing results will be available for the user 

in various combinations of line and bar graphs. Main 
combinations are :- 

o Cache size vs.  read hits / write hits / write avoidance. 
o  Line size vs.  read hits / write hits / write avoidance 
o Degree of associativity vs.  read hits / write hits / write 

avoidance. 
 
4.3 Graphical User Interface. 
 4.3.1 Initial Screen. 

 The user starts the simulation either by an icon on the toolbar or 
by pressing init simulation from a drop down menu. 

 
Figure 4.1 Initial Screen. 

 
 

4.3.2 User Input Choices 
The user gives the input choices through radio and sliding 

buttons 
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Figure 4.2 User Input . 

 4.3.3 User Choices for Outputs  
The user can obtain out put in different forms and has choice of 

best caches depending on various parameters. 

 
Figure 4.3 Output Choices. 

 
4.4 The Out Put. 

4.4.1 Line Graphs 
The out put with line graphs 
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Figure 4.4 Line Graph. 

4.4.2 Bar Graphs 
The out put with bar graphs 

 

 
Figure 4.5 Bar Graph 
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Chapter Five 
 
 

Conclusion and Future Prospects 
 

5.1 Conclusion. 
All associative simulations can be made faster by taking advantage of set 

hierarchy, a necessary but not sufficient condition for inclusion. Since we find the set 
hierarchy usually holds between set associative caches ( for example those that use bit 
selections ) with set hierarchy , the time to run most of the set associative simulations 
is within 30% of the time of one stack simulation. This facilitates the rapid simulation 
of direct mapped and set-associative caches. 

 
The principal impact of this project is that all associative simulations with set 

hierarchy allows a similar or wide cache design space to be examined in comparable or 
less simulation time than required with stack simulation. 

 
With all associative simulations, requiring comparable time for practical CPU 

caches ( normally CPU caches are less than or equal to 32- way set- associative and 
use bit selection to map references to sets), one can evaluate mixed , instruction only 
and data only of two block size and numerous associativities and sizes in particular the 
use of all associativity simulation facilitated the evaluation of large number of CPU 
cache designs. 

    
We further amortized the cost of reading reduced traces by devising a one-pass 

simulation algorithm that can simulate many write-back caches during a single 
simulation run, yielding speed-ups of two orders of magnitude over a naive method. In 
addition, we extended the trace reduction and the efficient simulation techniques to 
parallel multiprocessor cache simulations. 
 
            We have shown how stack analysis can be extended to important new areas. 
The ability to collect transfer ratios, considering both reads and writes, for all memory 
sizes in a single pass reduces simulation time by as much as 90 percent compared to 
running 8-10 individual simulations, making this metric much more reasonable to 
collect. The transfer ratio is increasingly important in the study of shared-memory 
systems, including multiprocessor caches and network file systems. Equally important, 
the ability to easily simulate set associative caches, including write backs and write 
throughs. 
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5.2 Future Prospects.  
Software and hardware projects can not be declared as perfect or last words but 

just milestones in their respective fields. Trends of refinements and enhancements are 
the basic attributes in the further development of the projects. Like other projects our 
cache design simulation for multiprocessor based environment can be further explored 
in many ways.    
 

 The performance evaluation of any system can be done through simulations 
economically and efficiently. Trace driven simulations are of many types and each can 
be further explored. Trace collection of executing programmes further divides into 
three main types of hardware probes, processor and programme simulations including 
modifications in instruction sets to obtain traces via special buffers and CPU stalling , 
i.e. software approach and lastly the compiler approach of programme profiling and 
debugging. 

 
Trace reduction is another important task. Processors generate millions of 

address- traces in a split of time. Sampling these traces and reducing them to evaluate 
correct performance of system is what the need of time is. 
 
 Brigham Young University has specially established a Trace Distribution 
Centre, Performance Evaluation Laboratory and National Trace Collection Centre, 
their site can be visited at http://tds.cs.byu.edu. Establishment of such evaluation 
centres can be a national level project for future development of computer sciences.   

 
Finally the trace processing for uni-processor based systems and multiprocessor based 
systems can be undertaken. One prospect can be of enhancing level of sharing among 
different number of processors, at different cache levels and in different architectures 
of multiprocessors for example multiprocessor based system with ringed architecture.     
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Appendix A 
 
 

ABC’S OF CACHE 
 

 
Introduction 
 The purpose of caching is to improve the average access time to items in memory by 
keeping the most frequently used items in a small, fast, cache memory and by leaving 
the remainder in a larger, slower memory. The contents of cache are checked on each 
reference; if the referenced item is present in cache, then the item is available at the 
speed of the cache. If not, then the item is read into cache from memory, replacing 
something already cached. The speed of the combined memory system is a function of 
the two memory speeds and the probability that the referenced item is in cache. 
There are a large number of design parameters to any cache, most of which must be 
considered in any analysis of that design. We briefly present definitions of a number of 
these. 
  
Blocking. The cache may be divided into fixed-size blocks or variable-size segments. 
Blocks are also referred to as pages in the context of virtual memory and lines or 
sectors in the context of a processor cache. The cache block or line size may be equal 
to the amount of data retrievable in one memory cycle, or it may require several 
memory cycles to fetch a block. A larger block size reduces per-block overhead and 
provides a form of pre fetch, discussed below. 
 
Replacement Policy. The replacement policy determines which block to remove when 
the cache is full and a new block must be fetched. Commonly suggested policies 
include the Least Recently Used (LRU) policy, First-In First-Out (FIFO), Least 
Frequently Used (LFU), and Random (RAND). An optimal policy, MIN, exists, but is 
unrealizable in practice because it requires knowledge of the future. The MIN policy 
does not consider writes or deletes and is known to be non optimal if writes are 
considered. 
 
Write Policy. The write policy determines when a modification is presented to 
secondary storage. Writes may always go directly to secondary storage using the write-
through or store-through policy. Alternatively, the write may go to the cache to be 
written at some later time, usually when the block is about to be replaced, using the 
write-back or copy-back policy. Write-back is motivated by the expectation that the 
block will be modified several times before it has to be written. Clearly, write-back can 
never cause more accesses than write-through and usually far fewer. On the other hand, 
since it deals in blocks rather than words, write- back may increase the number of 
bytes written. In addition, dirty blocks may remain in the cache for a long time, leading 
to reliability issues in large volatile caches such as file system caches in main memory. 
The decrease in memory traffic from write-back makes it very valuable in systems 
with limited memory bandwidth such as shared-bus multiprocessor systems. Write-
back is also desirable in file system caches because many files are temporary and may 
never have to be written. 
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Write Allocate. When a written block is not present in a write-through cache, the 
block may be inserted in the cache (write allocate) or the cache may be bypassed 
altogether. Write allocate is again motivated by locality-the expectation that the written 
block will soon be referenced again. A write-back cache always allocates a cache block 
to the written block.  
 
Write-Fetch. If write allocate is used by a cache where partial-block modification is 
allowed, and the block to be written is not in the cache (a write miss), then it is usually 
necessary to fetch the block prior to modifying it. This write-fetch is needed, for 
example, if one word of a multiword block is being written. The alternative is to keep 
track of the portion(s) of the cache block that are “valid,” which becomes costly when 
several disjoint portions of a large block are written. However, there are situations in 
which write-fetch can be avoided such as when the entire block are being overwritten, 
or when the contents of the rest of the block are predictable (e.g., when the block is a 
“new” block in a file system). 
 
Prefetch. Because of spatial locality, a reference to a block often implies that the next 
block will soon be referenced. It is possible to take advantage of this anticipated 
reference and to prefetch the next block in advance. This reduces the delay when the 
next block is actually referenced. Prefetch is advantageous when it can be overlapped 
with processing of other references or when two or more blocks can be fetched in 
much less time than all of them individually, as is the case with disk secondary storage. 
Although it reduces the delay, prefetch increases memory traffic unless all pre fetched 
blocks are referenced before they are replaced. It may also result in memory pollution 
in which a soon-to-be-referenced block is displaced to make room to prefetch an 
unnecessary block. If a prefetch is only permitted in conjunction with a fetch, then the 
policy is a demand prefetch policy. Demand prefetch is desirable when the overhead of 
a fault is large; demand prefetch amortizes this over two (or more) blocks. With 
modern memory systems and file system caches, it is simple and inexpensive to initiate 
a prefetch even if the referenced block is present.  
 
 Metrics The performance of a memory system can be measured in several ways. 
Perhaps the most widely used is the miss ratio, which is the fraction of references that 
were not satisfied by the cache. Conversely, the hit ratio is the fractions that were 
satisfied by the cache. The miss ratio is latency metric since it determines the apparent 
access time of the memory system. The effective access time for any multilevel 
hierarchy is given by 2 tihi, where ti is the access time to the ith level, and hi is the 
fraction of references satisfied by the ith level cache. Sometimes overlooked is the fact 
that the access time to each level should include any queuing delays. These are usually 
negligible in a single-processor system, but may become important when several 
processors compete for access to a single secondary store. 
 
The actual computation of miss ratios during simulation varies with the parameters of 
the cache. Let N be the total number of references, and m(C) be the number of misses 
to a cache of size C. If all references are assumed to be reads, then the miss ratio for a 
cache of size C is given by  

MRRC) = m(C)/N,  (1.1) 
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hence the name. With write-through, where every write is a “miss” (i.e., causes an 
access to secondary storage), the miss ratio is 

MRWT = (mT(C)) + W/N    (1.2) 
where mT (C) is the number of reads that “miss,” and W is the number of write 
references. 
 
When write-back is used, a write could result in two accesses to secondary storage, one 
to fetch the block and another later to write it. The miss ratio is now given by 

MRWB (C) = (mT(C) + mW(C) + dp(c)/N  (1.3)  
where m (C) is the number of write misses (i.e., write fetches), and dp(C) is the number 
of dirty blocks “pushed” from a cache of size C. This becomes 

MRWB (C) = (m(C) + dp (C))/N  (1.4) 
by using the fact that a write-fetch is actually just a read reference and occurs if the 
block reference “misses.” 
 
 All of the expressions so far assume that the processor must wait for the write to  
secondary storage to complete before continuing. It is often reasonable to buffer the 
writes so that the processor can continue almost immediately. In this case delay occurs 
only if there are enough accesses to create contention. It is observed that when memory 
bandwidth is adequate, four store-through buffers are sufficient to largely eliminate 
queuing for writes. Under this assumption, the write-back miss ratio with write-fetch is 
again simply  

MRWF(C) = m(C)/N     (1.5) 
A related metric is the traffic ratio, which is the ratio of traffic between cache and 
secondary storage, measured in bytes, compared to the traffic that would be present 
without a cache . The traffic ratio is increasingly important for analyzing shared-bus 
systems such as multiprocessor architectures or a network file system. Although 
buffering may eliminate write-back from consideration in the miss ratio, the write 
traffic is not eliminated, so writes must be considered in the traffic ratio. Also, prefetch 
may result in increased traffic since some prefetched blocks may not be actually 
referenced. 
The traffic ratio is dependent on the same factors as the miss ratio and, in addition, 
depends on the size of the data blocks transferred. Suppose that the processor accesses 
BP bytes per average memory reference. The traffic without a cache is then B, times 
the number of references. Frequently, the cache block size, B, is larger than B,. We 
assume that each cache miss causes B, bytes to be transferred. Then a large cache 
block size may act as a form of prefetch and reduce the miss ratio, but it may also 
increase the amount of traffic.  
The general form of the traffic ratio computation is 

TR(C ,Bc) = [mr (C) + mw(C) +f(C) + dp(C)]*Bc/N*Bp, (1.6) 
where mw (C) is again the number of write misses; dp(C) is again the number of write-
backs; and f(C) is the number of prefetched blocks. This expression assumes that write-
fetch is used. Notice that the traffic ratio is identical to the miss ratio when there is no 
prefetching, no write buffering, and the cache block size is the same as BP. 
 
A third metric is the transfer ratio, which is the ratio of secondary storage accesses 
with and without cache . This metric has also been called the transaction ratio G. 
Gibson, personal communication 19861, the I/O ratio , and the swapping ratio . The 
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transfer ratio is similar to the traffic ratio but is more appropriate when performance is 
dominated by the cost of a memory access, relatively independent of the number of 
bytes transferred. Thus it is appropriate for disk caches and often for networks using 
small (1K or less) messages. For example, the transfer ratio decreases if two blocks are 
read from disk in a single I/O, whereas the traffic ratio is the same regardless of the 
number of I/Os used to transfer the data.  
 
The transfer ratio also has an indirect effect on the access time if there are enough 
transfers to create contention, particularly in multiple processor systems with shared 
memory. Assuming that prefetches occur only when the referenced block is not in 
cache (demand prefetch), then they do not affect the transfer ratio. A general 
expression for the transfer ratio is 

T( C )   = [mr(C) + mw (C) + dp(C)] /N   (1.7) 
which is almost proportional to the traffic ratio using constant block sizes. 
 
Computer pioneers correctly predicted that programmers would want unlimited 
amounts of fast memory. An economical solution to that desire is a memory hierarchy. 
This takes advantage of locality and cost/performance of memory technologies. 
 
Principle of Locality. This says that most programs do not access all code or data 
uniformly . This principle, plus the guideline that smaller hardware is faster, led to the 
hierarchy based on memories of different speeds and sizes. Since fast memory is 
expensive, a memory hierarchy is organized into several levels each smaller, faster and 
more expensive per byte than the next level. The goal is to provide a memory system 
with cost almost as low as the cheapest level of memory and speed almost as fast as the 
fastest level. The levels of the hierarchy usually subset one another: all data in one 
level is also found in the level below, and all data in that lower level is found in the one 
below it, and so on until we reach the bottom of the hierarchy. Note that each level 
maps addresses from a larger memory to a smaller but faster memory higher in the 
hierarchy. As part of address mapping, where miss rate is the fraction of accesses that 
are not in the cache and miss penalty is the additional clock cycles to service the miss. 
Recall that a block is the minimum unit of information that can be present in the cache 
(hit in the cache) or not (miss in the cache). 
 
The ABC’s.  Cache is the name generally given to the first level of the memory 
hierarchy encountered once the address leaves the CPU. We start our description of 
caches by answering the four common questions for the first level of the memory 
hierarchy. The memory hierarchy is given the responsibility of address checking:  
hence protection schemes for scrutinizing addresses are also part of the memory 
hierarchy.  
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Figure . It plots CPU performance projections against the historical performance 
improvement in main memory access time .Clearly there is a processor memory 
performance gap that computer architects try to close 
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Where can a block be placed in a cache?The restrictions on where a block is placed  
create three categories of cache organization: 
 

 
 

 
Figure. This example cache has eight block frames and memory has 32 blocks Real 
caches contain hundreds of block frames and real memories contain millions of blocks. 
The set-associative organization has four sets with two blocks per ser, called two-way 
set as associative. Assume that there is nothing in the cache and that the block address 
in questions identifies lower-level block 12. The three options for caches are shown 
left to right. In associative, block 12 from the lower level can go into any of the eight 
block frame 4 (12 modules). Set associative, which has some of both features, allows 
the block to be placed anywhere se 0 (12 modulo 4). With two blocks per set, this 
means block 12 can be placed either block 0 or block 1 of the cache. 

 If each block has only one place it can appear in the cache, the cache is 
said be direct mapped. The mapping is usually 

(Block address) MOD (Number of block in cache) 
 If a block can be placed anywhere in the cache, the cache is said to be 

fully associative. 
 If a block can be placed in a restricted set of places in the cache, the 

cache is said to be set associative. A set is a group of blocks in the 
cache. A block is first mapped onto a set, and then the block can be 
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place anywhere within that set. The set is usually chosen by bit 
selection; that is, 

(Block address) MOD (Number of sets in cache) 
 If there are n blocks in a set, the cache placement is called n-way set 
associative. 
 

 How a block is found if it is in the cache? Caches have and address tag on each 
block frame that gives the block address. The tag of every cache block that might 
contain the desired information is checked to see if it matches the block address from 
the CPU. As a rule, all possible tags are searched in parallel because speed is critical. 
There must be a way to know that a cache block does not have valid information. The 
most common procedure is to add a valid bit to the tag to say whether or not this entry 
contains a valid address. If the bit is not set, there cannot be a match on this address. 
Before proceeding to the next question, let’s explore the  

 
Block address Block offset 
Tag Index 
 
Figure. The three portions of an address in set-associative or direct-mapped cache. The 
tag is used to check all the blocks in the set and the index is used to select these. The 
block is the address of the desired data within the block. 
 
If the total cache size is kept the same, increasing associatively increases the number of 
blocks per set, thereby decreasing the size of the index and increasing the size of the 
tag.  
 
Which block should be replaced on a cache miss?When a miss occurs, the cache 
controller must select a block to be replaced with the desired data. A benefit of direct 
mapped placement is that hardware decisions are simplified  in fact, so simple that 
there is no choice. Only one block frame is checked for a hit and only that block can be 
replaced. With fully associative or set associative placement, there are many blocks to 
choose from on a miss. There are two primary strategies employed for selecting which 
block to replace. 

 Random. To spread allocation uniformly, candidate blocks are randomly 
selected. 

 Least recently used (LRU).To reduce the chance of throwing out information 
that will be needed soon accesses to blocks are recorded. The block replaced is 
the one that has been unused for the longest time. LRU makes use of a 
corollary of locality. 

 
What happens on a write? Reads dominate processor cache accesses. All instruction 
accesses are reads and most instructions don’t write to memory. The write policies 
often distinguish cache designs. There are two basic options when writing to the cache.   

 Write through (or store through). The information is written to both the block 
in the cache and to the block in the lower level memory. 

 Write back (also called copy back or store in ).  The information is written only 
to the block in the cache. The modified cache block is written to main memory 
only when it is replaced. 



 127

Since the data are not needed on a write, there are two common  options on a write 
miss. 

 Write allocate (also called fetch on write). The block is loaded on a write 
miss followed by the write hit actions above. This is similar to a read miss. 

 No write allocate(also called write around). The block is modified in the lower 
level and not loaded into the cache. 

 
 
Cache Performance. The temptation for evaluating memory hierarch performance is 
to concentrate on miss rate. A check measure of memory hierarchy performance is the 
average time to access memory.  
 Average memory access time = Hit time + Miss rate x Miss penalty 
 
Reducing cache Misses. Most cache research has concentrated on reducing the miss 
rate, so that is where we start our exploration. To gain better insights into the causes of 
misses, we start with a model that sorts all misses into three simple categories;  

 Compulsory. The very first access to a block cannot be in the cache, so the 
block must be brought into the cache. There are called cold start misses of first 
reference misses. 

 Capacity. If the cache cannot contain all the blocks needed during 
execution of a program, capacity misses will occur because of blocks being 
discarded and later retrieved. 

 Conflict. If the block placement strategy is set associative or direct 
mapped conflict misses (in addition to compulsory and capacity misses) will 
occur be cause a block can be discarded and later retrieved if too many block s 
map to the set. These are also called collision  misses or interference misses. 

 
First Miss Rate Reduction Technique: Larger Block Size This simplest way to 
reduce miss rate is increase the block size.  Large block sizes will reduce compulsory 
misses. This reduction occurs because the principle of locality has two components 
temporal locality and spatial locality. Large blocks take advantage of spatial locality. 
At the same time, large blocks increase the miss penalty. Since they reduce the number 
of blocks in the cache, large blocks may increase conflict misses and even capacity 
misses if the cache is small.  
 
Second Miss Rate Reduction Technique:  Higher Associatively    
 There are two general rules of thumb; the first is that eight ways set associative is for 
practical purposes as effective in reducing misses for these sized caches as fully 
associative.  The second observation called the 2; 1 cache rule of thumb and found on 
the front inside cover, is that direct mapped cache of size N has about the same miss 
rate as a 2 way set associative cache of size N/2. 
 
Third Miss Rate Reduction Technique: Victim Caches. One solution that reduces 
conflict misses without impairing block rate is to add a small, fully associative cache 
between a cache and its refill path . 
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Figure.Placement of victim cache in the memory hierarchy 

 
Fourth Miss Rate Reduction Technique:  Pseudo-Associative Caches. A cache 
access proceeds just as in the direct-mapped cache for a hit. On a miss however, before 
going to the next lower level of the memory hierarchy another cache entry is of 
checked to see if it matches there. A simple way is to invert the most significant it of 
the index field to find the other block in the “pseudo set”. 
 Pseudo-associative caches then have one fast and one slow hit time 
corresponding to a regular hit and a pseudo hit in addition to the miss penalty.  The 
danger is if many of the fast hit times of the direct-mapped cache became slow hit 
times in the pseudo-associative cache then the performance would be degraded by this 
optimization. Hence it is important to be able to indicate for cache set which block 
should be the fast hit and which should be the slow one;  one way is simply to swap the 
contents of block. 
 
Fifth Miss Rate Reduction Technique: HW prefetching of instructions and data. 
This technique prefetches the items before they are requested by the processor. Both 
instructions and data can be prefetched directly into the cache Prefetching relies on 
utilizing memory bandwidth that otherwise would be a used and can actually lower 
performance if it interferes with demand miss. Help from compilers can reduce useless 
prefetching. 
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Sixth Miss Rate Reduction Technique: Compiler-controlled prefetching.This 
makes sense only if the processor can proceed while the prefetched data are being 
fetched, that is the caches continue to supply instructions and data while waiting for 
the prefetched data to return. Such it memory cache is called a nonblocking cache or 
lockup-free cache; we’ll discuss it in more detail later. 
Like hardware-controlled prefetching, the goal is to overlap execution with the 
prefetching of data. Issuing prefetch instructions incurs an instruction overhead, 
however, so care must be taken to ensure that such overheads do not exceed the 
benefits. By concentrating on references that are likely to be cache misses, programs 
can avoid unnecessary prefetches while improving average memory access time 
significantly. 
 
Seventh Miss Rate Reduction Technique: Compiler Optimizations. This magical 
reduction comes from optimized software the hardware de-signer’s favourite’s solution. 
The increasing performance gap between processors and main memory has inspired 
compiler writers to scrutinize the memory hierarchy to see if compile time 
optimizations can improve performance. Once again research is split between 
improvements in instruction misses and improvements in  data misses. 
 
Reducing Cache Miss Penalty 

Reducing cache misses has been the traditional focus of cache research, but the 
cache performance formula assures us that improvements in miss penalty can be just a 
beneficial as improvements in miss rate.  

 
First Miss Penalty Reduction Technique: Giving Priority to Read Misses over 
Writes. With a write-through cache the most important improvement is a write buffer 
of the proper size. Write buffer, however, do complicate memory accesses in that they 
might hold the updated value of a location needed on a read miss. 
The simplest way out of this dilemma is for the read miss to wait until the write buffer 
is empty. A write buffer of a few words in a write-through cache will almost always 
have data in the buffer on a miss, thereby increasing the read miss penalty. 
The cost of writes by the processor in a write-back cache can also be reduced. Suppose 
a read miss will replace a dirty memory block. Instead of writing the dirty block to 
memory, and then reading memory, we could copy the dirty bold to a buffer, then read 
memory, and then write memory. This way the CPU real for which the processor is 
probably waiting, will finish sooner. Similar to the situation above, if a read miss 
occurs, the processor can either stall until the buffer an empty or check the addresses of 
the words in the buffer for conflicts. 
 
Second Miss Penalty Reduction Technique: Sub-block placement for Reduced 
Miss penalty. Suppose we are designing a cache that must fit one the chip. We may 
find that our tags are too large eight because they don’t fit on the chip or because the  
are too slow. A simple solution  is go to large blocks, which reduces tag store without 
decreasing the amount of information you can store in the cache of course the miss rate 
will likely improve, but the increase in miss penalty and make the large blocks a bad 
decision. 
One solution is called sub-block placement. A valid bit is added to unit’s storage than 
the full block, called sub-blocks. Only a single sub-block need be read a  miss. The 
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valid bits specify some parts of the block as valid and some as  invalid, so a match of 
the tag doesn’t mean the word is necessary in the cache as the valid bit for that word 
must also be on. 
 
Third Miss Penalty Reduction Technique: Early restart and Critical Word First 

• Early restart- As soon as the requested word of the block arrives, send it to the 
CPU and let the CPU continue execution. 

• Critical word first- Request the missed word first from memory and send it to 
the CPU as soon as it arrives, let the CPU continue while filling the rest of the 
words in the block. Critical-word first fetch is also called wrapped fetch and 
requested word first. 

 
Fourth Miss Penalty Reduction Technique: Nonblocking caches to Reduce Stalls 
on Cache Misses.  The potential benefits of this  scheme are to  allow the data cache to 
continue to supply cache hits during a miss. This “hit under miss” optimization reduces 
the effective miss penalty by being helpful during a miss instead of ignoring the 
requests of CPU.  
 
Fifth Miss Penalty Reduction Technique: Second-Level Caches Adding another 
level of  between the original cache and memory, the first level cache can be small 
cache  to match the clock cycle time of the fast CPU, while the second-level cache be 
large enough to capture many accesses that would go to main memory thereby 
lessening the effective miss penalty. Summarizing the second-level cache 
considerations, the essence of cache sign is balancing fast hits and few misses. Most 
optimizations that help one hit the order. For second-level caches, there are many 
fewer hits than in the first level cache, so the emphasis shifts to fewer misses. This 
insight leads in large caches with fighter associativity and larger blocks. 
 
 
Reducing Hit Time 
Hit time is critical because it affects the clock rate of the processor, on memory 
machines today the cache access time limits the clock cycle rate, even machines that 
take multiple clock cycles to access the cache, Hence a fast hit time is multiplied in 
importance beyond the average memory access time formula be because it helps 
everything.  
 
First Hit Time Reduction Technique: Small and Simple Caches 
A time-consuming portion of a cache hit is using the index portion of the address to 
read the tag memory and then compare it to the address. Guideline suggests that 
smaller hardware is faster, and a small cache century helps the hit time. It is also 
critical to keep the cache small enough to hit of the same chip as the processor to avoid 
the time penalty of going off-chip. A main benefit of direct-mapped caches is that the 
signer can overlap the tag check with the transmission of the data. The effectively 
reduces hit time. Hence the pressure of a fast clock cycle encourages and simple cache 
designs for first-level caches. 
 
Second Hit Time Reduction Technique: Avoiding Address Translation During 
Indexing of the Cache. Even a small and simple cache must cope with the translation 
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of a virtual address from the CPU to a physical address to access memory. Processors 
treat main memory as just another level of the memory hierarchy and thus the address 
of the virtual memory that exists on disk must be mapped onto the main memory. 
The guideline of making the common case fast suggest that we use virtual addresses 
for the cache, since hits are much more common than misses. Such caches are termed 
virtual; caches, with physical cache used to identify the traditional cache that uses 
physical addresses. Virtual addressing eliminates address translation time from a cache 
hit. Then why doesn’t everyone build virtually addressed caches? One reason is that 
every time a process is switched, the virtual addresses refer to different physical 
addresses, requiring the cache to be flushed .Keeping caches small and simple and 
techniques to avoid delays of address translation will make both read hits and write hits 
faster. The next subsection concentrates only on writes. 
 
Third Hit Time Reduction Technique: Pipelining Writes for Fast write Hits. Write 
hits usually take longer than read hits because the tag must  be checked before writing 
the data; otherwise the wrong address would be written. One technique, used by the 
Alpha AXP 21064 and other machines, pipelines the writes . First tags and data are 
split so that they can be addressed independently. On a write, the cache compares the 
tag with the current write address, as usual. The difference comes with the write to the 
data portion of the cache that occurs during the tag compassion; it must be using some 
other address since the current write address is still  being checked. The trick is that the 
cache uses the address and data from the previous write, which has already been 
determined to be a hit. Thus the logical pipeline is between writes, the second stage of 
the write occurs during the first stage of the next write (or during a cache miss). 
Therefore, writes can be performed back to back at one per clock cycle because the 
CPU does not have to wait for the tag check before writing. Reads play no part in this 
pipeline since they already operate in parallel with the tag check. 
 . 
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Figure The hardware organization of pipelined writes. 
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Cache Optimization Summary The techniques discussed above  to improve miss rate, 
miss penalty , and hit time generally impact the other components of the average 
memory access time as well as the complexity of the memory hierarchy. 
 
Technique                                                   Miss     Miss     Hit         
                                                                             rate      penalty    time    
Larger block size + -    
Higher   associatively +  - 
Victim   cache +   
Pseudo associative cache +   
HW  prefetching of  instructions and data +   
Compiler techniques  to reduce cache misses +   
Giving  priority  to read misses over writes  +  
Sub-block placement  +  
Early restart and  critical word first  +  
Non-blocking caches  +  
Second  level caches  +  
Small and simple  caches -  + 
Avoiding address translation using indexing of the cache   + 
Pipelining writes for fast write   + 
Compiler controlled  prefetching  +   
 
Note : Table  above summaries these techniques where  ‘+ ‘meaning that the technique improves the 
factor,  ’-‘ meaning it hurts that factor, and blank meaning it has no impact.  
 
 
Main Memory 
“… the one single development that put computers on their feet was the invention of a 
reliable form of memory, namely, the core memory….Its cost was reasonable, it was 
reliable and, because it was reliable, it could in due course be made large .” 

Maurice Wilkes , Memories of a Computer Pioneer(1985) 
 

Main memory is the next level down in the hierarchy .Main memory, satisfies the 
demands of cache and serves as the I\O interface, as it is the destination of input as 
well as the source for the output. Performance measures of memory emphasis both 
latency and bandwidth.Traditionally,main memory latency is the primary concern of 
the cache, while main memory bandwidth is the primary concern of I\O. With the 
popularity of second level caches and their larger block sizes, main memory bandwidth 
becomes important to caches as well. 
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