
CACHE DESIGN SIMULATION IN MULTIPROCESSOR
BASED ENVIRONMENT

By
Captain Tahir Javaid

NC Behram Khan
Captain Tasadduq Mahmood

Captain Ahmar Raza

 Supervisor: Brigadier S.M. Salahuddin Tariq

Project report for partial fulfilment of the requirement of MCS/NUST

for the
award of the B.E degree in Software Engineering

Department of Computer Science
Military College of Signals

Rawalpindi

April 2003

 2

DECLARATION

“No portion of the work presented in this dissertation has been
submitted in support of another award or qualification either at this
institution or elsewhere”

 3

Acknowledgements

We are thankful to Almighty Allah who enabled us to complete
this project. We show gratitude to our parents, whose love and care has
enabled us to be what we are. Our deepest appreciation is extended to
all whose unfeigned help and encouragement made the present work a
reality.

We gratefully acknowledge the help and guidance provided by

our project advisors Brigadier S.M.Salahuddin Tariq and
Mr. M. Mohsin Rahmatullah. Without their personal supervision,
advice and valuable guidance, completion of this project would have
been doubtful. We are deeply indebted to them for their encouragement
and continual help during this work.

Our very special thanks are extended to Prof. Dr. Mark D Hill

and Ms. Carrie Pritchard at University of Wisconsin-Madison, and Ms.
Weikel at Virginia State University for their very useful help extended
during the project which made us more clear about whole project.

We would like to express our gratitude to all faculty members of

the Department of Computer Science for their cooperation and healthy
academic environment throughout our career at Military College of
Signals Rawalpindi.

 4

Abstract

The gap between processor and memory speeds is increasing day
by day. This situation makes it imperative to use effective caches or
other structures between CPUs and DRAMs. The traditional measures
of the quality of a caching strategy have been the aggregate hit rate and
the execution time of a benchmark, but these measures are no longer
sufficient. They provide no insight into dynamic programme behaviour
and little guidance in designing a multi-level memory hierarchy.
Current caches are designed primarily using ad hoc experimentation
and commonly accepted rules-of-thumb: there is no systematic
experimental methodology, and there is only fragmented theory to
guide the design.

This demands evolution of new methods for evaluating memory

system designs before they are implemented in hardware. One such
method, trace-driven memory simulation, has been the subject of
intense interest among researchers and has, as a result, enjoyed rapid
development and substantial improvements during the past decade.

This project report surveys and analyzes these developments by

establishing criteria for evaluating Cache Designs for Multiprocessor
based Environments using trace-driven simulation method, and then
applies these criteria to describe, categorize and recommend optimal
combinations of Cache Designs basing on user discretion.

Besides, it provides an analysis methodology that supports cache

hierarchy design theoretically and subsequently leads towards the
development of mathematical and software tools that accompany this
methodology.

In doing so it discusses the strengths and weaknesses of different

approaches and uses One Pass Stack based Trace Driven Simulation
method for application of Cache Coherence Protocols, to recommend
best, appropriate and user defined design, when all criteria, including
accuracy, speed, memory, flexibility, portability, ease-of-use and
expense are considered.

 5

Contents

Chapter 1 Introduction 9

1.1 Cache and System Performance in Retrospect. 9
1.2 Trace Driven Simulation Methods for Cache Performance 10
1.3 Background and Related Work in Trace Driven Simulations. 10

1.3.1 Trace Collection 10
1.3.2 Trace Reductions 18

1.4 Trace Characteristics 24

Chapter 2 Trace Processing 25

2.1 Trace Processing: An Overview 25
2.2 Efficient Cache Simulation Using Multiconfiguration Algorithms 26
2.3 Stack Algorithms 26

2.3.1 Set Associative Caches 27
2.3.2 Stack Algorithms: Formal Definition 28
2.3.3 Linked-List Stack Simulation 30
2.3.4 Other Stack Simulation Implementation 32

2.4 Inclusion in Set Associative Caches 33
2.5 Simulating Direct Mapped Caches with Inclusion 34
2.6 Simulating Set-Associative Caches without Inclusion 36
2.7 Comparing Actual Simulation Times 36

Chapter 3 Implementation 38

3.1 Premise. 38
3.2 Trace-Driven Simulation 38
3.3 Non stack Algorithms 41
3.4 Extensions to Stack Analysis 42
3.5 Write-Back Stack Algorithm 43

3.5.1 The Write-Back Problem 43
3.5.2 A Non Stack Algorithm 43
3.5.3 Dirty Set Inclusion Property 44
3.5.4 Writes Avoided. 46
3.5.5 Dirty Push Computation 47
3.5.6 Warm Start. 48

3.6 Write-Through 50
3.7 Deletions 51
3.8 Periodic Write-Back 53
3.9 Trace-Driven Simulation For Write-Back Caches 53

3.9.1 One-pass Trace-Driven Simulation Algorithm for Write-Back
Caches. 53

3.9.2 An Application Example 60
3.10 Other Stack Simulation Implementation 62

3.10.1 Inclusion in Set Associative Caches 63

 6

3.10.2 Simulating Direct Mapped Caches with Inclusion 66
3.10.3 Simulating Set-Associative Caches without Inclusion 71

3.11 Comparing Actual Simulation Times 84
3.12 One-Pass Simulation Technique for Multiprocessor Set-Associative

 Caches 85
3.13 Cache Coherence Protocol for Multiprocessor Set-Associative Caches. 85

3.13.1 The MESI Protocol 87
3.14 Deletion Issues in Multiprocessor Set-Associative Caches 89
3.15 Implementation of One-Pass Simulation Technique for Multiprocessor

Set-Associative Caches 94

Chapter 4 The Acumen 114

4.1 Introduction to Acumen 114
4.2 How to Use the Software 114

4.2.1 Screen Shot of Installation Setup 114
4.3 Graphical User Interface 115

4.3.1 Initial Screen 115
4.3.2 User Input Choices 115
4.3.3 User Choices of Out Put 116

4.4 The Out Put 116
4.4.1 Line Graph 116
4.4.2 Bar Graph 117

Chapter 5 Conclusion and Future Prospects 118

5.1 Conclusion 118
5.2 Future Prospects 119

Appendix A ABC’s of Cache 120

References 134

 7

List of Figures
Chapter 2

Figure 2.1 Set Associative Mapping 28
Figure 2.2 Stack Simulation Example 30
Figure 2.3 Stack Simulation Storage 31
Figure 2.4 Stack Simulation 31
Figure 2.5 Forest Simulation 34
Figure 2.6 Stack Simulation Example 35

Chapter 3

Figure 3.1 Examples of Stack Maintenance Using LRU Replacement 39
Figure 3.2 Examples of Stack Maintenance Using a Stack Replacement Algorithm 39
Figure 3.3 General Stack Algorithm 40
Figure 3.4 The Stack Analysis Algorithm 41
Figure 3.5 Cache Contents Using the Least Frequently Used Policy 41
Figure 3.6 Cache Contents Using One-Block Demand Prefetch Policy 42
Figure 3.7 General Non Stack Write Back Algorithm 44
Figure 3.8 Write Back Stack Algorithm 47
Figure 3.9 Revised Count of Dirty Pushes After Warm Start 49
Figure 3.10 Mixed Write-Back/Write Through Algorithm 50
Figure 3.11 A Gap “jumps” Down the Stack 51
Figure 3.12 Write-Back Stack Algorithm with Delete 52
Figure 3.13 An Example of Mattson (1970) Algorithm 54
Figure 3.14 A Block can have Different Dirty Levels in Caches 55
Figure 3.15 An Outline of an Algorithm for Simulating Write-Back Caches. 56
Figure 3.16 A Snapshot Example for the One-Pass Write-Back Algorithm 58
Figure 3.17 Relative Traffic Change Vs. Cache Size (8-byte block size) 59
Figure 3.18 Relative Traffic Change Vs. Cache Size (16-byte block size) 60
Figure 3.19 Relative Traffic Change Vs. Cache Size (32-byte block size) 61
Figure 3.20 Percentage Contribution of Write-Back to Total Traffic. 62
Figure 3.21 Forest Simulation 67
Figure 3.22 Forest Simulation Example 68
Figure 3.23 Forest Simulation Storage 68
Figure 3.24 Forest Simulation Storage 68
Figure 3.25 Cache Design Space 71
Figure 3.26 Stacks for Caches with One or Two Sets Using Bit Selection 72
Figure 3.27 Concurrent Stack Simulation with Shared Storage 74
Figure 3.28 All-Associativity Simulation Example 75
Figure 3.29 All-Associativity Simulation Storage 76
Figure 3.30 All Associativity Simulation 77
Figure 3.31 All-Associativity Simulation with Set Hierarchy Example 78
Figure 3.32 All Associativity Storage w/ Set Hierarchy 79
Figure 3.33 All Associativity Simulation w/ Set Hierarchy 80
Figure 3.34 Random Replacement Does Not Work 82

 8

Figure 3.35 Deletion Issue (In case of Miss : Initial States) 90
Figure 3.36 Deletion Issue (In case of Miss : States after Hole Propagation) 91
Figure 3.37 Deletion Issue (In case of Hit : Initial States) 92
Figure 3.38 Deletion Issue (In case of Hit : States after Hole Propagation) 93

Chapter 4

Figure 4.1 Installation Process 114
Figure 4.2 Input Screen 115
Figure 4.3 User Input 116
Figure 4.4 Out Put Choices 116
Figure 4.5 Line Graph 117
Figure 4.6 Bar Graph 117

 9

Chapter One

Introduction
1.1 Cache and System Performance in Retrospect.
Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Language, Second
College Edition (1976)

Cache is the name generally given to the first level of the memory hierarchy

encountered once the address leaves the CPU. Since the principle of locality
applies at many levels, and taking advantage of locality to improve
performance is so popular, the term cache is now applied whenever buffering is
employed to reuse commonly occurring items: examples include file caches,
name caches, and so on. The memory hierarchy is given the responsibility of
address checking: hence protection schemes for scrutinizing addresses are also
part of the memory hierarchy.

The importance of the memory hierarchy has increased with advances in

performance of processors. For example, in 1980 microprocessors were often
designed without caches, while in 1995 they often came with two levels of
caches. Microprocessor performance improved 55% per year since 1987, and
35% per year until 1986.

Computer pioneers correctly predicted that programmers would want

unlimited amounts of fast memory. An economical solution to that desire is a
memory hierarchy, which takes advantage of locality and cost/performance of
memory technologies. The principle of locality says that most programs do not
access all code or data uniformly. This principle, plus the guideline that smaller
hardware is faster, led to the hierarchy based on memories of different speeds
and sizes. Since fast memory is expensive, a memory hierarchy is organized
into several levels each smaller, faster and more expensive per byte than the
next level. The goal is to provide a memory system with cost almost as low as
the cheapest level of memory and speed almost as fast as the fastest level. The
levels of the hierarchy usually subset one another: all data in one level is also
found in the level below, and all data in that lower level is found in the one
below it, and so on until we reach the bottom of the hierarchy. Note that each
level maps addresses from a larger memory to a smaller but faster memory
higher in the hierarchy. As part of address mapping, where miss rate is the
fraction of accesses that are not in the cache and miss penalty is the additional
clock cycles to service the miss, a block is the minimum unit of information
that can be present in the cache (hit in the cache) or not (miss in the cache).

 10

1.2 Trace Driven Simulation Methods for Cache Performance.
Caches have been widely used in most computer systems for the last two

decades. They are expected to play an increasingly important role in future
high-performance computer systems. Very soon we will see machines with an
off-chip cache miss penalty of over 100 instruction times (undoubtedly, the
performance of these machines will be substantially influenced by their cache
performance). A careful cache design choice is therefore crucial to the design
of future computer systems. The most accurate way of assessing cache
performance before a machine is built would be a thorough simulation of the
whole system, which captures not only the detailed behaviour of the cache but
also its subtle interactions with the rest of the system. Unfortunately, a
thorough simulation of a complete system generally takes too long to allow
coverage of the vast design space.

A more realistic approach would loosely couple the cache with the rest of

the system via high-level analytical model. In this approach, detailed
simulations are performed on the cache subsystem to produce performance
metrics such as miss ratios and write-back traffic. These results are then
incorporated into the high-level model to generate the system performance
under different cache design choices.

Still, even cache simulation itself is not an easy task. The widely used trace-

driven cache simulation technique generally requires a large amount of disk
space to store the program traces, and simulations that produce results which
would cover a sufficient portion of the design space are very time consuming.
Therefore, methods which can quickly and cheaply produce cache performance
results are desirable.

A large number of techniques for trace-driven cache simulation have been
reported in the literature. Related work is briefly reviewed in following section
along with a description of trace characteristics that we use throughout this
paper.

1.3 Background and Related Work in Trace Driven Simulations.

Trace driven simulations can be further subdivided under three major
headings, which are:

• Trace Collection
• Trace Reduction
• Trace Processing

 Out of these three each one is a complete subject within itself. Though the
main focus of our project is on Trace Processing however following sections of
this chapter briefly discuss ‘trace collection’ and ‘trace reduction’ for the sake
of completeness, whereas a detailed discussion on trace processing is generated
in chapter 2.

1.3.1 Trace Collection
To ensure accurate simulations, collected address traces should

be as close as possible to the actual stream of memory references made

 11

by a workload when running on a real system. Trace quality can be
evaluated based on the completeness and detail in a trace, or on the
degree of distortion that it contains. Ideally speaking a complete trace
should include all memory references made by each component of the
system, including all user-level processes and the operating system
kernel. User level processes should include not only applications, but
also OS server and daemon processes that provide services such as a file
system or network access. Complete traces should also include
dynamically-compiled or dynamically-linked code, which is becoming
increasingly important in applications such as processor or operating-
system emulation. An ideal detailed trace is one that is annotated with
information beyond simple raw addresses. Useful annotations include
changes in VM page-table state for translating between physical and
virtual addresses and tags that mark each address with a reference type
(read, write, execute), size (word, half word, byte) and a timestamp.
Traces should be undistorted so that they do not include any additional
memory references, or references that appear out of order relative to the
actual reference stream of the workload had it not been monitored.
Common forms of distortion include trace discontinuities, which occurs
when tracing must stop because a trace buffer is not large enough to
continue recording workload memory references, and time dilation and
memory dilation, which occur when the tracing method causes a
monitored workload to run slower, or to consume more memory than it
normally would.

In addition to the three aspects of trace quality described above,

a good trace collector exhibits other characteristics as well. In particular,
portability, both in moving to other machines of the same type and to
machines that are architecturally different is important. Finally, an ideal
trace collector should be fast, inexpensive and easy to operate.

Address traces have been extracted at virtually every system
level, from the circuit and microcode levels to the compiler and
operating-system levels. (see Figure 2). We organize the following
discussion accordingly, starting at the lower hardware levels.

1.3.1.1External Hardware Probes

A straightforward method for collecting address traces is
to record signals from electrical probes physically connected to
the address bus of a host computer while it runs a workload. The
address and control signals are fed into an external memory
buffer at the full speed of the monitored host system, and when
the buffer fills, its contents are transferred to a standard storage
device, such as tape or disk, so that it can be processed at a later
time. If a long, continuous address trace is desired, then the
buffer must either be very large or there must be some way to
stall the host whenever the buffer becomes full. It is usually only
possible to stall the processor — external I/O devices, such as

 12

disks or network controllers will must usually be permitted to
continue operating. If there is no way to stall the system, then
several discontinuous address-trace samples can be acquired and
concatenated together. In either case, the resulting trace exhibits
a form of distortion that is called trace discontinuity.

The main advantage of the probe-based trace collectors

is their ability to capture trace sequences complete with both
user and kernel memory references, and free of most forms of
trace distortion, provided that the trace buffer is deep enough.
Although the traces are complete, this does not necessarily mean
that they are easy to interpret. Hardware events such as cache
misses, integer- and floating-point-unit stalls, exceptions and
interrupts all must be separated from run cycles to determine the
actual type (read, write, execute) and size (word, half word, byte)
of the memory references made by a monitored processor. In
processors that implement hardware pre-fetching or speculative
execution, it may be difficult or impossible to separate “true”
memory references from those that occur due to a pre-fetch that
might not actually be used. Some of these problems can be
overcome by implementing the inverse function of the processor
sequencer, either in the trace-collecting hardware, or in a trace
post-processing tool. Because the addresses captured by a probe-
based monitor are usually physical addresses, special methods
that may require cooperation from the host OS must be used to
reverse-translate addresses to their matching virtual addresses.
These problems all follow from the fact that probe-based trace
collectors are external to the monitored system and therefore do
not have easy access to operating-system data structures.

A common misconception regarding trace collection

using hardware probes is that the technique is very fast. While it
is true that acquisition of the trace proceeds at the full speed of
the monitored system, it is important to account for the overhead
of managing trace-buffer overflow as well as the time required
to empty the buffer. This overhead is typically not reported in
published papers, but because most systems can unload these
buffers only through some form of relatively low-bandwidth
channel, this overhead is necessarily high. For a system where
overhead data is available, approximately 12 hours are required
to obtain 11 seconds of real-time system activity.

Although trace collection with hardware probes is time

consuming, once the traces have been captured and stored to a
permanent file they require no special hardware to use, and can
be used repeatedly to achieve reproducible simulation results.
Hardware probe-based methods share other common
disadvantages. The first is expense. Logic analyzers with deep

 13

trace memories cost from $50,000 to $200,000 .These amounts
are probably low compared to the engineering costs associated
with designing custom hardware. A second problem is
portability. Although logic analyzers support probes for most
popular microprocessors, it is often necessary to physically
modify the motherboard or chassis of the monitored system to
enable probe access to the signals of interest. These systems also
require an understanding of the electrical issues concerning the
connection of probes to running hardware, and are therefore
typically fragile, sensitive to their operating environment, and
difficult to learn and operate.

As noted above, the advent of on-chip caches is making

it increasingly difficult to build trace collection hardware as an
afterthought. The future of probe-based trace collection
therefore depends mainly on the level of support designed into
systems for this task. A small, on-chip trace buffer that traps to
the operating-system kernel whenever it becomes full is an
example of the sort of support that could be provided. However,
even a very small buffer of 2048 entries with 32-bits per entry (8
K-bytes) is about the size of on-chip caches in current
microprocessors and thus would be relatively costly in terms of
chip area. An alternative approach would be to send certain key
internal signals through the microprocessor package pins so that
they can be monitored externally.

1.3.1.2 Microcode Modification

The high cost of circuit-level probing has motivated
many researchers to develop methods for collecting traces at
higher levels of system abstraction. One such alternative is to
collect traces at the borderline between the hardware and
software levels of a system in microcode. From the beginnings
of the IBM 360 series (1964) until the DEC VAX machines, the
most common method for implementing control logic was
microcode. When implemented off-chip, a microcode memory
was often writable or could be modified through replacement,
making it possible to change the behaviour of instructions, or to
support multiple instruction sets. Agarwal (1986, 1988) realized
that this mechanism made it possible to collect address traces.
He modified the microcode on a VAX 8200 to cause all
instructions to deposit the addresses of their memory references
into a reserved area of main memory as a side effect of their
execution. This method, which Agarwal called address tracing
using microcode (ATUM), offers a number of advantages. The
first is completeness. Because the microcode runs beneath the
operating system, all user and kernel references are captured, as
well as those from dynamically-compiled and dynamically-
linked code. Because ATUM has access to internal system state,

 14

it is easily able to annotate traces with access-type tags and
page-map information. Another advantage is speed. ATUM
acquires address traces with a slowdown of only about 10 to 20,
and because the addresses can be processed directly out of the
trace buffer in main memory, there is no overhead of buffer
unloading as with external probe-based trace collection. Finally,
no additional hardware is required. The only cost associated
with ATUM is the engineering effort required to modify
microcode to produce the desired results. The ATUM method
suffers a few minor disadvantages and one major one. First,
ATUM traces exhibit some discontinuity distortion because the
processor is not stalled when the trace buffer becomes full.
Buffer size could be increased only up to a certain point because
it took away from the usable memory of the host system.
Agarwal has developed a method, called trace stitching, to
counter this problem. Microcode modification also introduces
another form of trace distortion, commonly called time dilation.
Because instructions take 10 to 20 times as long to execute as
they normally would, external devices such as disks and network
controllers appear to the workload to be faster than they actual
are, and interrupts from the system clock occur more frequently,
thus changing the workload’s behaviour.

The primary disadvantage of the microcode-modification

technique is that the technique is now effectively obsolete
because most new microprocessors use hardwired control or
have an on chip microcode memory that is not easily modified.
The fundamental idea behind microcode modification —
augmenting the interpretation of instructions to generate trace
addresses as a side effect of their execution — can, however, be
implemented at other levels in a system. This has been made
easier by some of the very trends that have made microcode
modification obsolete. Hardwired control, for example, has been
made possible (or at least easier) with the advent of RISC
instruction sets. The relatively simple and uniform coding of
RISC instruction sets has also made it easier to develop fast
instruction-set emulators and binary-rewriting tools for
annotating executables to produce traces as a side effect of their
normal execution.

1.3.1.3 Instruction-set Emulation

An instruction-set architecture (ISA) is the collection of
instructions that defines the interface between hardware and
software for a particular computer system. A microcode engine,
as described in the previous section, is an ISA interpreter that is
implemented in hardware. It is also possible to interpret an
instruction set in software through the use of an instruction-set
emulator. Emulators typically execute one instruction set (the

 15

target ISA) in terms of another instruction set (the host ISA) and
are usually used to enable software development for a machine
that has not yet been built, or to ease the transition from an older
ISA to a newer one. As with microcode, an instruction-set
emulator can be modified to cause an emulated program to
generate address traces as a side-effect of its execution.

Conventional wisdom holds that instruction-set

emulation is very inefficient, with slowdowns estimated to be in
the range of 1,000 to 10,000 Agarwal (1989); Wall (1989);
Borg(1989); Stunkel(1991); Flanagan(1992). The degree of
slowdown is clearly related to the level of emulation detail. For
some applications, such as the verification of a processor’s logic
design, the simulation detail required is very high and the
corresponding slowdowns may agree with those cited above. In
the context of this review, however, we consider an instruction-
set emulator to be sufficiently detailed for the purposes of
address-trace collection if it can produce an accessible trace of
memory references made by the instructions that it emulates.
Given this minimal requirement, there are several recent
examples of instruction-set emulators that have achieved
slowdowns much lower than 1,000; they work by fetching,
decoding and then dispatching instructions one at a time in an
iterative emulation loop, re-interpreting instructions each time
they are encountered. Instructions are fetched by reading the
contents of the emulated program’s text segment, and are
decoded through a series of mask and shift operations to extract
the various fields of the instruction (opcode, register specifiers,
etc.). Once an instruction has been decoded, it is emulated
(dispatched) by updating machine state, such as the emulated
register set, which can be stored in memory as a virtual register
data structure , or which may be held in the actual hardware
registers of the host machine . An iterative interpreter may use
some special features of the host machine to speed instruction
dispatch, but this final step is more commonly preformed by
simply jumping to a small subroutine or handler that updates
machine state as dictated by the instruction’s semantics. The
reported slowdowns for iterative emulators range from 20 to
about 600, but these figures should be interpreted carefully
because larger slowdowns may represent the time required to
emulate processor activity that is not strictly required to generate
address traces.

Some interpreters avoid the cost of repeatedly decoding

instructions by saving predecoded instructions in a special table
or cache. A predecoded instruction typically includes a pointer
to the handler for the instruction, as well as pointers to the
memory locations that represent the registers on which the

 16

instruction operates. The register pointers save both decoding
time as well as time in the instruction handler, because fewer
instructions are required to compute the memory address of a
virtual register.

1.3.1.4 Static Code Annotation

The fastest instruction-set emulators dynamically
translate instructions in the target ISA to instructions in the host
ISA, and optionally annotate the host code to produce address
traces. Because these emulators perform translation at run time
they gain some additional functionality, such as the ability to
trace dynamically-linked or dynamically-compiled code. This
additional flexibility comes at some cost, both in overall
execution slowdown and in memory usage. For the purposes of
trace collection, it is often acceptable to trade some flexibility
for increased speed. If the target and host ISAs are the same and
if dynamically-changing code is not of interest, then a workload
can be annotated statically, before run time. With this technique,
instructions are inserted around memory operations in a
workload to create a new executable file that deposits a stream
of memory references into a trace buffer as the workload
executes. Static code annotation can be performed at the source
(assembly) level, the object-module level, or the executable
(binary) level, with different consequences for both the
implementation and the end user Stunke(l991); Wall(1992);
Pierce(1994).

.
The main advantage of annotating code at the source

level is ease of implementation. At this level, the task of
relocating the code and data of the annotated program can be
handled by the usual assembly and link phases of a compiler,
and more detailed information about program structure can be
used to optimize code-annotation points. Unfortunately,
annotation at this level may render the tool unusable in many
situations because the complete source code for a workload of
interest is often not available and annotation at this level is also
the most difficult to implement because executable files are
often stripped of symbol-table information. A significant amount
of analysis may be required to properly relocate code and data
after trace-generating instructions have been added to the
program Pierce(1994). Despite these difficulties, there exist
several program-annotation tools that operate at the executable
level. A common problem with many code annotators is that
they produce traces with an inflexible level of detail, requiring a
user to select the monitoring of either data or instruction
references (or both) with an all-or-nothing switch. Many tools
are similarly rigid in the mechanism that they use to
communicate addresses, typically forcing the trace through a file

 17

or pipe interface to another process containing the trace
processor. Some more recent tools overcome these limitations
and offer a flexible interface that enables a user to specify how
to annotate each individual instruction, basic block and
procedure of an executable file; at each possible annotation
point the user can specify the machine state to extract, such as
register values or addresses, as well as an analysis routine to
process the extracted data. If no annotation is desired at a given
location, they do not add it, thus enabling a minimal degree of
annotation to be specified for a given application. For I-cache
simulation, for example, a simulator writer can specify that only
instruction references be annotated, and that a specific I-cache
analysis routine be called at these points. In general, code
annotators are not capable of monitoring multi-process
workloads or the operating system kernel, but there exist some
exceptions as well.

1.3.1.5 Single-step Execution

The highest level of system abstraction for collecting
address traces is the operating system. Most operating systems
support some form of debugging utility that enables a
programmer to step through a program one instruction at a time
to expose errors. This form of debugging is usually supported in
hardware through a single-step execution mode, where the
processor traps into the OS kernel after the execution of each
instruction or basic block Digital 86; AMD91; AMD93;
Motorola93; HP90; Motorola90 or by breakpoint instructions
that cause kernel traps whenever they are executed Kane(1992);
Intel(1990). A debugger that supports single-step execution and
examination of processor state, such as registers, can be
modified to generate both instruction-address and data-address
traces. Instruction-address traces are produced by simply
recording the value of the program counter at each execution
step. Data-address traces require instruction emulation to
determine if the current instruction generates a memory
reference and, if so, the value of that reference.

The main advantages of this method are low expense,
high portability, and ease of use. With the exception of debugger
data structures, little additional host memory is used.
Unfortunately, slowdowns for this technique are high, with
estimates varying widely from 100 Agarwal (1988) to 1,000
Flanagan (1992) to 10,000 (Holliday1991). High slowdowns are
usually due to debugger implementations that rely on the UNIX
ptrace () facility which, in turn, is implemented using
UNIX exception-signal handlers. Although there is nothing
inherent in this approach that limits traces to a single process, or
to user-only references, debuggers typically do impose these

 18

limitations. Similarly, dynamically compiled and dynamically-
linked code is usually not supported by debuggers. Because only
address-trace information is desired, a single-step trace-
collection tool could, in principle, be written from scratch to
avoid the overheads and single-process limitations of program
debuggers. We are not aware of any existing trace-collection
system that uses this approach.

1.3.2 Trace Reductions.
Since the space and time needed for trace-driven cache

simulation are approximately proportional to the trace length, several
early studies have focused on reducing the trace length to reduce the
cost of cache simulation. Smith (1977) pioneered this work by
proposing a trace deletion technique for memory-paging studies. He
used Least Recently Used (LRU)-model of memory references and
produced a reduced trace by deleting references that accessed the top D
levels of the LRU stack of data. The resulting trace, if used for
simulating memory larger than D pages under the LRU replacement
algorithm, would produce almost the same number of misses (page
faults) as the original long trace, provided that the page size is kept
constant.

An extension of Smith’s (1977) technique was proposed by

Puzak (1985). He called it trace stripping. This approach focuses on
reducing traces for simulating set-associative caches. A direct-mapped
cache (serving as a filter) is simulated and the miss references are
recorded; they form a reduced trace. This reduced trace, if used to
simulate caches with a larger number of sets, would result in the same
number of misses as the original trace, provided that the block size is
kept the same.

Other approaches have also been proposed which substantially

reduce the trace length but cannot guarantee that exact performance
metrics would be obtained by using the reduced trace. For example,
Smith’s(1977)’s snapshot method records memory references at regular
time intervals; a set selection method described by Puzak(1985) keeps
only references that access some specific sets; Agarwal’s(1987) trace
compaction combines Puzak’s(1985) reduction technique and
Smith’s(1977)’s snapshot method ; Laha et al.(1988), proposed another
sampling-based method.

The main focus is to produce exact cache performance cheaply

and quickly. To this end, sampling approaches cannot be used. Even
Puzak’s (1985) and Smith’s (1977)’s original exact reduction
techniques are not sufficient for two reasons. First, the reduced trace
method can only produce a count of misses (i.e., hit ratios) but not the
number of write-backs. Second, the existing methods apply only to

 19

uniprocessor caches and are inadequate for multiprocessor caches.
Finally, the reduced trace cannot be used to simulate caches which have
block sizes different from that of the cache filter used for the trace
reduction.

1.3.2.1 Trace Reduction for Write-Back Cache Simulation.

As stated earlier, the objective of trace reduction is to
produce a reduced trace which can be used to generate exactly
the same number of misses and write-backs as the original trace.
Wang(1991) used small direct-mapped cache as a filter but
instead of keeping only references that cause misses, he also
kept those that were first-time writes.

The intuitive idea behind this reduction is that if a

reference causes a hit in a small direct-mapped cache, it will also
hit in a larger cache. Furthermore, if a block is dirty in a small
direct-mapped cache it will also be dirty in a larger cache. Thus,
the miss references to a small cache would be a superset of
misses to larger caches. Also, references that cause blocks to be
dirty in a small cache would be a superset of references that
make blocks dirty in larger caches. Therefore, the reduced trace
can be used to produce exact cache performance metrics for
same size or larger caches (which implies some criteria for the
parameters of the small cache).

Formal description of reduction is as follows.

Assume all caches under study have a power-of-two
integer number of sets, simulate a direct-mapped cache with S
sets using a program trace and record only references that cause
misses or writes on clean data to form a reduced trace. This
reduced trace, if used to simulate caches with a larger number of
sets, would produce exactly the same number of misses and
write-backs as the original trace, provided that the same block
size is used.

Now we see the proof of the above statement,
Proof. The proof on the exact number of misses was given by
Puzak (1985). So, it is sufficient to prove that using the reduced
trace would produce the same number of write-backs as the
original trace. Since the number of misses is exactly the same,
any block that is replaced is the same independently of whether
the reduced trace or the original trace is used. For the purpose of
proof by contradiction, let us assume that there is a block, when
replaced using the reduced trace that has a dirty state different
from the original trace. That is, we have two cases:

 20

(1) Case 1: the block is clean using the reduced trace, but is dirty
using the original trace. The reasons for a block to be dirty are
either the block is brought into the cache upon a write miss or
upon a read miss followed by a write-on-clean. In the case of a
write miss, there will be a write miss in the filter cache too, and
the reduced trace will retain the reference. That is, using the
reduced trace will make the block dirty too. In the case of a
write-on-clean, it can be either a write-on-clean or a write miss
on the filter cache. In either case, the write reference is recorded
in the reduced trace. Thus, using the reduced trace will make the
block dirty as well.

(2) Case 2: the block is dirty using the reduced trace, but is clean
using the original trace. This case is easily dismissed as follows.
Since the block is clean using the original trace, the block must
have been brought into the cache on a read miss and possibly
followed by a number of read references. The first read miss and
possibly a subset of the followed read references will be
recorded in the reduced trace. None of them will cause the block
to be dirty, since they are read references. Thus, using the
reduced trace will make the block clean as well. For both cases,
the block will be in the same dirty state using either the original
trace or the reduced trace. This contradicts the assumption that
the block be in different states. Since a block being replaced
cannot have different dirty states and since the number of
replacements is the same, using the reduced trace will produce
the same number of write-backs as the original trace.

Wang (1991) used the traces mentioned above to

measure the effectiveness of trace reduction. By using an 8K-
byte cache filter with a 4-byte block size obtained reduced traces
which are between 10 and 22 times shorter than the original
traces.

The reduced traces were used to simulate (i.e., record

misses and number of write-backs) a 32 K-byte 4-way set-
associative cache. Table I shows that the simulation times are
between 7 and 15 times faster using the reduced traces. We
notice from Table I that the speedups are not as good as the
space reduction ratios. This is due to the fact that the reduced
traces have fewer localities than the original traces.

 1.3.2.2 Multiblock-Size Trace Reduction.

The reduction techniques we have discussed so far only
work if reduced traces are used to simulate caches with the same
block size as that of the filter cache used for reduction. A
reduced trace cannot be used to simulate a large cache with a
different block size because the contents of a larger cache are

 21

not necessarily a superset of those of a smaller cache with
different block sizes. Thus, the reduced trace may not capture
every miss that can occur in a larger cache. In other words, the
reduced trace cannot be used to simulate larger caches and still
produce the exact results.

What this lack of consideration implies is that we need to

produce reduced traces for every possible block size under study
or we take the risk of getting incorrect results. Unfortunately, the
disk spaced needed to store every reduced trace would take
away the space-saving benefits of the trace reduction. A
“universal” reduced trace that can be used for all different block
sizes but does not take up too much space is therefore highly
desirable.

Table I Time and Space Saving Due to Trace Reduction

In an attempt to produce a universal reduced trace, we
observe that most misses to a cache filter with one block size
tend to be misses in another filter with a different block size.
Therefore, Wang(1991) produce universal reduced traces by
collecting the superset of misses that occur on every cache filter
with different block sizes. His results (Table II) show that with
40-48% of additional space, i.e., 1.8-4.5% of the original traces,
we can have universal reduced traces for 5 block sizes. We
notice from TableII that there is a jump on the length of the
reduced trace from 4 block sizes to 5 block sizes for the Pops
trace. The reason this happens is that the Pops trace has the
worst locality among the three traces and the 8 K-byte cache
filter experiences lots of misses due to thrashing when the block
size is 64 bytes.

1.3.2.3 Trace Reductions for Parallel Multiprocessor Cache
Simulation.

Recently, there have been many performance (trace-driven
simulation) studies on cache coherence protocols for shared-bus
multiprocessors. In this section we describe how multiprocessor
traces can be reduced and still be used to provide exact
performance figures. The performance metrics of interest for
multiprocessor caches are miss ratios, number of write-backs
and cache-coherence interferences from other caches. We start
our discussion with a straightforward sequential simulation and
describe how traces can be reduced for this type of simulation.

 22

We then consider extensions of the reduction technique to
parallel cache simulations.

A few assumptions are in order before we present the

reduction technique, these assumptions were originally made by
Wang(1991) and we apply them here for our discussion. We
assume that each processor has a private cache and that the
cache size is the same for every cache in the system. We also
assume that the relative order of reference streams from each
processor is kept the same across different simulations; similar
assumptions are presented by Thompson (1989) and Lin et al.
(1989). To simplify our discussions we further assume that an
invalidation protocol Sweazey (1986) is used for cache
coherence, although our results can easily be extended to a
larger class of coherence protocols. For the MOESI class of
invalidation protocols, each cache block can be in one of four
states: invalid, private, shared and dirty. On a read miss, the
block is brought in and the state is set to private if the other
caches do not have this block; otherwise the state is set to shared.
On a write miss the block is brought in and any copy of this
block, if present in other caches, is invalidated before the write
is done. The state is set to dirty. On a write hit on a shared block,
other copies also get invalidated before the write is done and

Table II Length of Reduced Traces with up to 5 Different Block Sizes

the state is set to dirty. A write hit on a private block does not
require a bus transaction except that the state of the block is
changed to dirty.

A straightforward simulation method represents a cache
as a table and takes a serialized reference stream as input. For
each reference a table look-up is performed to determine
whether there is a hit and whether any coherence action needs to
be done. Although this straightforward serial method is slow, we
use it as the basis for comparing the speed-up with parallel
methods to be discussed later.

The trace reduction for this method works as follows.

Simulate small caches (serving as filters) under the chosen
coherence protocol using a multiprocessor trace and record only
references that cause misses or result in writes on clean blocks.
These references form a reduced trace and, if used for
simulating large multiprocessor caches, would produce the same

 23

number of misses, write-backs, and invalidations as the original
trace, provided that the block size is kept the same and the same
coherence protocol is used.

The proof of the above statement is similar to that of the

uniprocessor case, except we need to prove that the reduced
traces preserve the references that cause invalidations i.e. if the
original trace is used to simulate a larger cache (more sets) it
should produce the same number of invalidations as the reduced
trace. To show this, let us assume, for the purpose of a proof by
contradiction, that there are invalidations in the original trace but
not in the reduced trace. Then, there must be a first such
invalidation. According to our chosen protocol (to mention
again this protocol was originally designed by Wang (1991) and
we are only discussing it here), this invalidation can either be
caused by a write miss or a write hit on shared data (i.e., a subset
of write on clean) in the large cache. If this is a write miss, then
there will also be a write miss in the filter cache, so this
reference will be recorded in the reduced trace. If this is a write
hit on shared data, then it can only fall into the following three
categories in the filter cache: namely, a write hit on shared data,
a write hit on private, or a write miss. It cannot be a write hit on
a modified block in the filter cache, since before this first
mismatched invalidation a block that is modified in the filter
cache will also be modified in the larger cache. That is, the
reference causes either a write on clean or a write miss in the
filter cache, and it will be recorded in the reduced trace as well.
This is a contradiction to the assumption that the reduced trace
does not contain the reference that causes the invalidation.
Therefore, the number of invalidations will still be the same for
the reduced trace and for the original trace.

Table III Time and Space Saving due to Trace Reduction on Simulation

of a 4-Processor System

Using the above reduction method Wang (1991) produced
reduced traces for the three multiprocessor traces of Table IV.
These traces are used to simulate 4-cpu multiprocessor caches,
128 K-byte, direct-mapped with a 4 byte block size. Table III
gives the space and time comparison in using long traces vs.
reduced traces. It shows that the reduced traces are between 9 to
22 times shorter than the original traces and the simulation times
using the reduced traces are between 7 to 17 times shorter.

 24

1.4 Trace Characteristics.
Our traces are on a set of three 4-processor VAX traces and four post-

processed single processor traces as shown in Table IV. These traces were
collected by sites and Agarwal (1987). We describe below a summary of these
traces. The reader is referred to Sites and Agarwal (1987) for more information
about these traces and the post-processing details.

Abaqus is a parallel finite-element analysis program. It is manually

decomposed to run on multiple processes, one per CPU, June9 is a batch
multiprogramming workload, with no shared data except in the operating
system. Cayenne is a parallel version of Spice, a circuit simulation program.

Make is a trace of two X-window network processes plus a disk copy

and a make. Pero is a parallel VLSI layout routing program. Thor is a parallel
logic simulation program and Pops is a parallel rule-based production system.
We use these traces to simulate each individual cache of each CPU in the same
way as Sites and Agarwal (1987).

Table IV Characteristics of Traces

 25

Chapter Two

Trace Processing

2.1 Trace Processing: An Overview.
The ultimate objective of trace-driven simulation is, of course, to

estimate the performance of a range of memory configurations by simulating
their behaviour in response to the memory references contained in an input
trace. This final stage of trace-driven simulation is often the most time
consuming component because at this level we are often interested in hundreds
or thousands of different memory configurations in a given design space. As an
example, the space of simple caches defined by sizes ranging from 1 K-bytes to
1024 K-bytes (in powers of two), line sizes ranging from 1 word to 32 words
(in powers of two), and associativities ranging from 1-way to 8-way, contains
264 possible design points. Adding the choice of different replacement policies
(LRU, FIFO, Random), different set-indexing methods (virtually- or
physically-indexed) and different write policies (write-back, write-through)
creates thousands of additional possibilities. These design options are for a
single cache, but actual memory systems are typically composed of multiple
caches that cooperate and interact in a multi-level hierarchy. Because of these
interactions different components cannot be considered in isolation. This leads
to a further, combinatorial expansion of the design space. Our exploration of
the subject material reveals that there are two basic approaches of dealing with
this problem:

• Parallel distributed simulations
• Multiconfiguration simulation algorithms.

Since first approach doesn’t fulfil the requirements of this project due to

some inherent limitations so their discussion is out of scope. Algorithms that
enable the simulation of multiple memory configurations in a single pass of an
address trace offer another solution to the compute-intensive task of exploring a
large design space. We use several criteria to judge a multi-configuration
simulation algorithms in this survey. First, it is desirable that the algorithm be
able to vary several simulation parameters (cache size, line size, associativity,
etc.) at a time and, second, that it be able to produce any of several different
metrics for performance, such as miss counts, miss ratios, misses per
instruction (MPI), write backs and cycles per instruction (CPI). The overhead
of performing a multiconfiguration simulation relative to a single-configuration
simulation is also of interest because this value can be used to compute the
effective simulation speedup relative to the time that would normally be
required by several single-configurations simulations.

 26

2.2 Efficient Cache Simulation Using Multiconfiguration Algorithms.
Almost two decades ago, Mattson (1970) and his colleagues presented

an algorithm that can determine the performance (i.e., hit ratios) of all cache
sizes under certain replacement policies with only a single pass through the
trace file. Their techniques work because the replacement policies they studied
guarantee inclusion, the property that, after any sequence of references; the
contents of a cache are always a subset of any larger cache. This class of
replacement algorithms is called stack algorithms, and the performance
evaluation method is therefore known as stack simulation. This stack
simulation technique was later extended to cover a wider range of cache
organizations TRAIGER, I L., AND SLUTZ, D. R (1991).

The basic idea behind stack simulation is as follows. A common tag

stack which holds the reference history is shared by caches of different sizes
and with a different number of sets. When a block is requested, a search in the
stack is performed until the block is found or the end of the stack is reached.
Each element of the stack being visited is compared with the block’s tag to
determine whether this element is in the same set as the block. This is done for
various tag lengths corresponding to the number of sets under study. An array
of distance counters is used to keep track of the stack distances for caches with
a different number of sets. At the end of the simulation, the distances are used
to calculate the hit ratios of interest.

The stack simulation technique works well if the hit ratio is the only

parameter of interest. For write-back caches, the frequency of replacing a dirty
block is an important parameter since it substantially affects the bus and
memory traffic. Unfortunately, this parameter cannot be obtained by using the
original technique. This is because a block could be clean for some small
caches but dirty for larger ones. Upon replacement, there is no way to tell
whether the displaced block needs to be written back to memory. Thompson
and Smith’s (1989) addressed the write-back frequency problem in the context
of fully associative caches. Their method is to attach a dirty level to each block
in the stack. This allows them to count the number of writes that can be avoided
when the dirty block is still resident in the cache.

Thompson and Smith (1989) were the first to propose efficient

simulation algorithms which obtain useful performance measures other than hit
ratio, although they considered only fully associative caches. Their technique
was extended to a one-pass simulation method for more widely used set-
associative write-back caches.

2.3 Stack Algorithms.

Design and research questions regarding memory hierarchies are often
investigated with trace-driven simulation of several design alternatives.
Mattson et al. (1970) developed the stack simulation technique for simulating
many caches with one pass through an address trace. Stack simulation can
evaluate alternative caches of many sizes if all have the same number of sets,
the same block size, do no prefetching, and use a stack replacement algorithm

 27

(e.g., LRU and RANDOM). Caches in a single stack simulation all have
different associativities, however, since associativity is cache size in block
(which varies in a stack simulation) divided by the number of sets (which is
fixed). Design and research questions regarding CPU caches often examine
caches of differing sizes, but fixed associativity Smith(1978), Clar(1983),
Good(1983), Haik(1984), Hill(1987) and Puzak(1985). Consequently the
evaluation of alternative CPU cache designs can require numerous stack
simulations.

To reduce the number of simulations required, Hill (1987) has
developed efficient one-pass trace-driven simulation algorithms for evaluating
caches having differing numbers of sets. In some cases he reduces simulation
time by using inclusion. He says cache C2 includes cache C1 if cache C2
contains a superset of the blocks in cache C1 after any series of references. A
simulation of alternative cache designs can take advantage of inclusion by
searching for a reference in cache C1 first, cache C2 second, and then in other
caches that include cache C2. When a reference is found, a hit can be reported
for that cache and (implicitly) for all caches that include that cache.

Hill (1987) shows when inclusion holds for caches having differing
number of sets. He finds inclusion holds between practical direct-mapped
(one-way set-associative) CPU caches, but that it does not hold in general
between practical set-associative CPU caches. Since direct-mapped caches are
important. He develops and algorithm, called forest simulation, for simulating
alternative direct-mapped caches that takes advantage of inclusion. He allows
alternative caches to use arbitrary functions to map references to sets. He also
shows that faster simulation times can be achieved when the functions that map
references to sets obey a property called set hierarchy. His algorithm is a
generalization of an algorithm for simulating set-associative caches that map
references to set with bit selection Mattson(1970), Trai(1971). A cache that
uses bit selection contains a power of two number of sets and selects the set of
a reference with the least-significant bits of the reference’s block number.

Subsequent discussion is based on original work of Hill (1987) and
Mattson (1991), and reviews set-associative caches, formally introduces stack
algorithms, describes and analyzes linked-list stack simulation and describes
more efficient methods of stack simulation.

2.3.1 Set Associative Caches.
A fully-associative cache allows any block to reside in any block

frame. An n-way set-associative cache of c blocks uses a set-mapping
function f to partition all blocks in main memory into a number of
equivalence classes, and allows at most n blocks from each equivalence
class to be simultaneously resident. The block frames that hold blocks
from one equivalence class are called a set. The number of block frames
in a set, n, is called the associativity (or degree of associativity or set
size). The number of equivalence classes in the image of f, called the
number of sets, is always equal to c/n, the number of blocks in a cache

 28

divided by its associativity. The advantage of a set-associative cache
with respect to a fully-associative cache of the same size is that n block
frames rather than c block frames must be searched on each reference.
The disadvantage of a set-associative cache is that it restricts which
blocks can be simultaneously resident. For example, an n-way set-
associative cache cannot contain the n + 1 most-recently-referenced
block that map to one set. Figure 2-1 illustrates set-associative mapping
and discusses Hill’s notation for caches.

The most-commonly used set-mapping function is bit selection,

because it can be implemented with no logic or delay. In bit selection,
several low order bits of the block number are used to select the set. Bit
selection requires that the number of sets be a power of two. For
example, the set of block x is a cache with 21 sets that uses bit selection
is f (x) = rem 2i is the remainder of dividing x by 2i.

2.3.2. Stack Algorithms: Formal Definition.

The seminal paper on memory hierarchy simulation is Mattson
et al. (1970). It introduces stack simulation as an efficient technique for
evaluating a series of fully-associative caches and obeys the inclusion
property. Since a set-mapping function partitions blocks into
equivalence classes and set-associative caches do not allow blocks from
different classes to interact, each set of a set-associative cache operates
as an independent fully-associative cache. For this reason stack
simulation can be applied to set-associative caches that use the same
set-mapping function.

This figure illustrates set-associative mapping in an n-way set-
associative cache of c blocks with set-mapping function f. If a block x is
present, it is in one of the n block frames in set f (x) (one row). The
number of elements in a single set is the associativity (degree of
associativity, set size, A). The number of values in the image of f
(number of rows) is the number of sets in the cache (S=c/n). The
associativity times the number of sets is always equal to the cache’s size
in blocks. A cache is direct-mapped if A=1; it is fully-associative if
S =1.

Hill(1987) denotes the above cache with “C(A=n, S=c/n, F=t).”
where A,S and F are cache parameters “associativity.” “number of sets” and
“set-mapping function”. When comparing caches he omits listing parameters

 29

that do not vary. For example, I use “C(A=1)” and “C(A=2)” to contrast a
direct-mapped and a two-way set-associative cache that are otherwise similar.
When differences are clear, I use subscripts for distinguishing caches (e.g, “C
1”, and :C2”). Finally I use “ci” (lower case) to represent the number of
blocks in cache “Ci” (upper case). Thus “Ci” represents all attributes of
cache Ci while “ci” represents only the number of blocks in cache Ci..

Stack simulation is efficient because it takes advantage of

inclusion, which is the property that, after any series of references, each
larger cache simulated contains a superset of the blocks resident in all
smaller caches. Inclusion may seem trivially true, but it is not. For
example, a series of caches managed with FIFO (first in first out)
replacement do not always obey inclusion. Consider a series of
references to blocks 1,2,3,1, and 4. At the end of this sequence, a two-
block cache will contain blocks 1 and 4 while a three-block cache will
contain 2,3 and 4, but not block 1.

Assuming no perfecting and fixed block size, Mattson et al

(1970). show that inclusion holds between caches using the same set-
mapping function for a class of replacement algorithms called stack
algorithms. LRU and RANDOM are the principal, interesting stack
algorithms.

A stack simulation of caches C (A=k, F=f) for k = 1 to n uses a

stack of n nodes for each set in the image of f, and an array of n
distance counters. If we assume LRU replacement, each stack
conceptually lists the most-recently-referenced n blocks for its set.
Stacks in simulations of other stack replacement algorithms list blocks
in order of descending priority, where priorities are defined so that
blocks with a lower priority are preferred for replacement with respect
to blocks with a higher priority. Each counter distance (k) contains the
number reference so far to the k-th most-recently-referenced block. For
each reference x, stack simulation performs three steps: FIND,
UPDATE and METRIC.

FIND Locate block x in stack f (x). we say a reference is found
at distance k if it is the k-th element in the stack and at distance infinity
(∞ if it not found.

METRIC Increment counters distance [k] and N, where N is the
number of reference. At the end of simulation, the miss ratio of cache C
(A=k, F=f) is 1- j=1∑k distance [k]/N. Metrics can be also be
maintained by keeping counters only for specific cache sizes of interest.
This will save space, but increase the time required to determine what
counter(s) to increment.

UPDATE Update the stack to reflect the contents of all caches after the
reference to x. See Mattson et al. (1970). for what is required with an
arbitrary stack algorithm. For LRU, x must be moved from it old

 30

position (if any) to the top of stack f (x), all blocks x passes must be
moved down one position, and all other blocks must not move, if x was
not previously referenced, moved down one position.

2.3.3. Linked-List Stack Simulation.

Hill(1987) describes stack simulation with the stack for each set
implemented with a linkedlist. This is commonly done for CPU cache
simulations, because it is simple to implement and has adequate
performance since the referenced block is usually found in the first few
elements of the stack. He assumes LRU replacement, because it is
commonly used; the arguments that follow can also be extended to
other stack replacement algorithms. Figure 2-2 shows an example eight-
entry stack before and after a reference.

The left stack (a) shows an LRU stack for one sort after a sequences of
references to that set, Information in the stack reveals that block 6 is in this set
of a direct-mapped cache (one block per set); blocks 6 and 5 are in a two way
set-associative cache; blocks 6, 5 and 3 are in a three way cache;…and blocks
0 through 7 are in an eight way cache. Let the next reference that maps to this
set be to block 4. The blocks in bold are examined to find block 4. The search
stops when block 4 is found or the stack is exhausted. Since block 4 is located
(coincidentally) at stack dept 4, a miss is recorded for all caches smaller than
four blocks, and a hit is recorded for all caches 4 blocks or larger. The right
stack (b) shows the stack after it has been updated with LRU replacement; the
blocks in bold have moved.

The pseudo-code in Figures 2-3 and 2-4 illustrate the storage
and the per-reference processing required by linked list stack simulation.
The implementation of FIND (not shown) merely walks down the link-
list f(x) until reference x is found or the linked list is exhausted. If x
found, the implementation of UPDATE (also not shown) changes two
pointers to move x to the head of the linked list f (x). Otherwise, it
allocates a new node for x, either from a free list or by reclaiming the
last block in the list, and puts the node at the head of the linked list.

The analysis of the time to simulate each reference is some

constant, O (I), that include the time to read the reference, plus the

 31

number of iterations within FIND. Let δk be the probability that a
reference is found at stack depth k, let δ∞ be the probability that the
reference is not found, i.e this is the first reference to that block, and let
N be the number of references in the trace. FIND uses k iterations to
find a reference at stack distance k, and O(N δ∞) iterations for stack
distance ∞ where O (N δ∞) is the size of the entire stack. In practice,
the average stack size is much smaller than the number of unique blocks
in the trace, N δ∞, because the unique blocks are distributed across a 100
or more sets.

 max assoc …. Maximum stack size
 function f (x) – a set-mapping function
integer number of stacks --- number of sets induced by f (x)
integer N---- number of references
----distance counts so that m (C(F=f,A=k)=1-j=1∑k distance[j]/N
integer distance (1 max assoc)
define stacknode type {

 integer block number
 stacknode type next
 }

stacknode type stack (0: number of stacks-1) --- top of stack pointers
---pool of dynamically linked stacknodes
stacknode type stacknodes (1 number of stacks max assoc)

figure 2-3 Stack Simulation Storage

 For each reference x (
 Read (var x)
 N + +
 Stack number = f (x)

---Walk down stack unitl x is found or stack is exhausted.
---If found, return stack distance and pointers to stacknode
containing x.
---Otherwise set stack distance to max assoc + 1 and point to
LRU stacknode.
Found =FIND (x, stack number, var stack distance, Var
previous node pointer, var node pointer
--METRIC
---if (found) distance (stack distance)++

--If was found, move the stack node of x to the top of its stack.
---Otherwise, store x in LRU stacknode and move it to the top
UPDATE(x, stack_ number found, previous node pointer node pointer)

Figure 2-4 Stack Simulation

 32

The time integer to process a reference is of order:

The first term, called the mean stack distance, is the average number of
distinct blocks since the last reference to the referenced block. If one is
simulating only caches with associativity skmax, then no stack node
need to be retained beyond distance kmax. This reduces the simulation
time to;

Bounding stack size can significantly reduce simulation time of set
associative CPU caches, where kmax rarely exceeds eight. However, for
fully associative caches, kmax is equal to the number of block in the
largest cache simulated. The run-time of linked list stack simulation of
fully associative caches will be poor if either k=kmax+1∑∞ δk or δ∞ is
large.

An analysis of the exact storage required for bounded linked list
stack simulation of even large CPU caches is uninteresting, because the
storage required is small relative to modern main memories. For
example, the storage required by the linked list stack simulation pseudo
code in figure 2-3 for simulating a direct mapped 128K-btye cache, a
two way set associative 256 K byte cache, a four way512 K cache and
eight way 1M cache with 32 byte blocks is approximately equal to the
number of blocks in the 1M byte cache (32K) times 8 bytes per block,
and is less than 300 K bytes.

2.3.4 Other Stack Simulation Implementation.

Bennett and Kruskal(1975) examine the paging behaviour of a
large data base. They find mean stack distances of 1 to 328 entries for
varying page sizes. Bennett and Kruskal propose an algorithm for stack
simulation using an m-ary tree and a hash table where the run time per
reference is approximately logarithmic in the number of block since the
last reference to the current block. In contrast, the time per reference for
linked list stack simulation is linear in the number of distinct blocks
since the last reference of the current block. Bennett and Kruskal
conclude that their algorithm is of order ten times faster than linked list
stack simulation for mean stack distances of 150 entries. The storage
requirements of the algorithm are large, but this is not important since
the memory required is small relative to modern main memory sizes.
The tree size is linear in the length of the address trace, N, and the hash
table must be larger than the number of distinct blocks (N δ∞). A
simulation of 10 million references with 200.000 unique blocks requires
only 3M bytes of storage if it uses two bits per reference and two words

 33

per unique block. Olken (1981) changes Bennett and Kruskal’s
algorithm by replacing their m-ary tree with an AVL tree.

Bennett and Kruskal’s algorithm and Olken’s algorithm use a

hash table to learn about a block’s history. A hash table can also be used
in linked list stack simulation to see if a block has ever been referenced.
This reduces the time to process a previously unreferenced block from
Kmax to a constant, reducing simulation time to:

This change will significantly improve performance only if both
kmax and δ∞ are large, that is both the degree of associatively and the
fractions of the references to previously un-referenced blocks are large.

Thompson et al.(1989) examine each of these algorithms, and

conclude that linked list stack simulation performs best for most CPU
cache simulations. Consequently, Hill(1987) compared the performance
of forest and all associativity simulation with linked list stack
simulation only, and used stack simulation to linked list stack
simulation.

2.4 Inclusion in Set Associative Caches .

Hill(1987) proves several theorems about inclusion for set associative
caches using (possible) differing set mapping functions. Recall that Mattson et
al, (1970) discuss inclusion only in caches that use the same set mapping
function, and hence have the same number of sets (e.g. all are fully associative).
In this section, as in the rest of this chapter, Hill assumes that all caches have
the same block size, do no pre-fetching, and use LRU replacement. He wants to
use inclusion to rapidly simulate alternative single level cache designs.
Consequently when he discusses a large and small cache, he is considering
using one or the other in a memory system, not using both as components in
cache hierarchy.

 Consider two caches, C,(A=n1, F=f1) and C (A=n2, f2), with blocks,
associativities of n and set –mapping functions fi, for i = 1,2 . An important
condition necessary for cache C2 to include (the blocks of) cache C1 is that all
blocks mapping to the same set in C2 map to the same set in C1,. That is, for all
blocks x and y:

Hill (1987) calls this condition set hierarchy, because it means that f2
induces a finer partition on all blocks than does f1. Assume also that each set
mapping function maps a large number of blocks(>=2* max(n1 , n2))to each set.

 34

Set mapping functions used in real caches, including bit selection, trivially
meet this restriction.

For cache C2 to include cache C1, C2 must be at least as large as C1
otherwise inclusion will be violated as soon as C1, is full. For cache C2 to
include a different cache C1, C2 must be strictly larger than C1. Hill(1987)
considers two caches to be equivalent if they always contain the same blocks,
i.e. , are identical up to placement of sets. Suppose cache C1 and C2 are the
same size. For cache C2 to include cache C1 . It must always contain a superset
of cache C1blocks. Since cache C2 contains the same number of blocks as C1. It
must always contain exactly the same blocks, and therefore is not a different
cache. For this reason he sometimes refers to cache C as the larger cache.

 2.5 Simulating Direct Mapped Caches with Inclusion.
The section introduces forest simulation for evaluating direct mapped

caches that have the same block size and obey inclusion. Like stack simulation,
forest simulation takes advantage of inclusion by searching for a block from the
smallest to largest cache. When a block is found, a hit can be implicitly
recorded in all larger caches. Forest simulation is so named because it uses a
forest (a set of disjoint trees) rather than a stack to store cache blocks.

Let the direct mapped caches be named C1 C2… CL. Assume that each

cache Ci has ci block frames and uses set mapping function rem ci. While forest
simulation works for arbitrary set mapping functions of the form rem ci. Let 1 <
c1 < c2 < …<cL and ci divided ci+1 for i=1,L-1. By the argument presented after
Theorem 3, inclusion holds for these caches.

The key data structure in forest simulation is a forest of L levels. The
number of trees in the forest is equal to the number of blocks in the smallest
cache, c. The c nodes of level I represent the blocks in cache c1. The branching
factor between two levels is equal to the cache size of the larger level, divided
by the cache size of the smaller level ci+1 / ci . The levels represent the blocks in
the largest cache, c. This forest can be implemented as a heap containing twice
as many nodes as there are blocks in the largest cache, since ci+1 / ci <= 2 for all
I implies i=1∑L ci is less than 2* cL

 . For example, the heap location of block x
a cache of c blocks using set mapping function f can be calculated with f (x) +
c. Figure 2-5 shows an example forest simulation forest.

This figure displays the forest for caches of size 1,2,4 and 8 blocks. This forest
contains only one tree, because the smallest cache contains only one block. This tree is

 35

a binary tree, because each cache in this example is twice as large as the next smaller
cache. In this example we assume blocks are mapped to block frames with bit
selection. Each node holds the information for one block frame in direct mapped
cache. The block at the root of the tree has no block number bits constrained, because
a one block direct mapped cache can hold any block. This illustrated with a t
representing arbitrary high order bits of the block number and three x’s representing
don’t cares for the three low order bits. The tags lxx0 and xx1 in the nodes of level two
indicate that the blocks that can reside in these nodes are constrained to have even
and odd block numbers, respectively. Similar rules with more bits constrained apply to
the rest of the levels.

Forest simulation works as follows and as is illustrated in Figure 2.6.

On each reference, the algorithm selects the tree corresponding to the set of the
reference in the smallest cache.

The top tree (a) depicts the forest of Figure 2-5 after a series of references.
Information in the tree tells us that block 6 is in a cache of size one block: blocks 6 and
5 are in a direct mapped cache of size two: blocks 4.6,5, and 3 are in a direct mapped
cache of size four: and blocks 0 through 7 are in a direct mapped cache of size eight.
Let the next reference be to block 4. A path from the root to a leaf is determined using
the set mapping function for each cache (here bit selection is assumed). A search
begins at the root and stops when block 4 is found. All nodes encountered in the search
that do not contain block 4 are modified to do so. The blocks on bold are examined to
find block 4. Since block 4 is located at level 3, caches 1 and 2 miss and caches 3 and
4 hit.
The bottom tree (b) shows the tree after this reference as been processed. The nodes in
bold now contain the referenced block.

Then it searches for the referenced block beginning at the root of the

tree. The path of the search is determined by the set of the reference in each
cache. Any time a node is encountered that does not contain the reference, the
node is updated to contain it. The processing of a reference stops when the

 36

reference is found, or after a leaf node has been modified. If the reference is
found at level i ,a counter distance (i) must be updated.

2.6 Simulating Set-Associative Caches without Inclusion.

Stack and forest simulation will simulate a series of caches with one
pass through an address trace. Both methods are “efficient,” because they take
advantage of inclusion. Since inclusion does not hold for caches of all sizes and
associativities, algorithms using inclusion must constrain the series of caches
simulated. Hill(1987) describes an algorithm, which he calls all associativity
simulation, that does not use inclusion, but can simulate set associative caches
with the same block size, that do no prefetching, and use LRU replacement,
with one pass over an address trace. With it, he can cover the design space in 3
simulations (one per block size) instead of 15 runs of stack simulation. The
algorithm permits the set associative caches use of arbitrary set mapping
functions. A literature search revealed that a version of all associativity
simulation, where all set mapping functions use bit selection, was developed by
researchers at IBM Mattson(1970), Trai (1971).

2.7. Comparing Actual Simulation Times

Hill (1987) compares the simulation times of implementations of stack, forest,
and all-associativity simulation. While the exact quantitative results of this
section do not necessarily apply to other implementations, there is no reason to
believe that gross comparisons do not generalize. The advantage of this data
over the run-time analysis is that these results apply to at least one set of
implementations of these algorithms.

Hill (1987) has implemented stack, forest and all-associativity
simulation in C under UNIX 4.3 BSD. Stack and forest simulation were added
to a general cache simulator, called DineroIII Hill (1985). Dinero III originally
contained 1250 C statements, as measured by the number of source lines
containing a semicolon or closing brace. Adding stack simulation increased
total code size by 150 statements, adding forest simulation, 220 statements.
Stack simulation is implemented using linked lists and without using a hash
table to detect previously unreferenced blocks. The forest simulation
implementation restricts the set-mapping functions to be the block number
modulo the cache size in blocks, a generalization of bit selection. He has
implemented all-associativity simulation in a separate program, called Tycho,
containing 800 C statements and having far fewer options than Dinero III.
Tycho restricts the set-mapping functions to be bit selection. His
implementations of these algorithms are available to interested researchers free
of charge.

He estimates simulation time with the elapsed virtual time (user plus
system) returned by the UNIX 4.3 BSD system call getrusage on an otherwise
unloaded Sun-3/75 with 8M of memory and no local disk. Trace data is read
from a file server via an Ethernet. He gives the results for four traces from four
different architectures, described in Table 2-1, despite finding that results are

 37

fairly insensitive to program traces. All caches simulated have 32-bytes blocks,
do no prefetching, use LRU replacement, are mixed (data and instruction
cached together), and use bit selection.

He begins by verifying that implementations of the three algorithms
have similar run-times for simulating a single cache, using two methods. First,
he ran each implementation using a trace of 1 million identical addresses so
that all references, expect the first, hit at distance one. Results show that the
elapsed virtual times of forest and stack simulation differ by 0.1 percent, while
all-associativity simulation is 3 percent faster. All-associativity simulation is
faster, because it is implemented in a different program, Tycho. It is not
surprising that Tycho is slightly faster than Dinero III is a general cache
simulator. Even through Dinero III’s additional features are not used in these
simulation runs, DineroIII uses some execution time to fall through the if
statements that guard the additional features.

Second, he compares the algorithms simulating a 16K-byte direct-
mapped cache with each of four traces; the results are similar to those above. In
addition a stack and an all-associativity of a single 16K-byte four-way set-
associative cache are also comparable.

Since his implementations of these algorithms have similar run-times
for simulating single caches, and the time differences are not due to per
reference overheads, thus these lead us to meaningful comparison of multiple
cache simulations.

 38

Chapter Three

Implementation
3.1 Premise.
 Till now we have discussed the historical background with reference to trace
driven simulations with special emphasis on trace processing techniques. From this
discussion one thing becomes clear that not much research has been done as far cache
simulations in multiprocessor environments are concerned. Whatever knowledge about
multiprocessor environments has been given is in the form of slight clues that too only
highlight the challenges involved and does not discuss the solution space.

In this chapter we start our discussion, from the implementation of already
discussed theoretical aspects of uniprocessor based environments, in the form of
algorithms and gradually extend the idea towards multiprocessor based environments.
In the end of this chapter we present our algorithm that works in befitting manner in
multiprocessor based environments.
3.2 Trace-Driven Simulation

One common method for calculating Cache memory metrics is to use trace-
driven simulation. Memory references are gathered from a system believed to be
similar to the system being modelled. These references are then used to drive a
simulation of the system under study with varying design parameters. To the extent
that the traces apply to the modelled system, simulation is a relatively simple way to
observe the effect of changes to the memory hierarchy. Unfortunately, it could take a
large number of simulations if only a single combination of memory sizes could be
simulated at a time.

In a classic paper, Mattson et al. (1970). showed that for certain replacement

policies the miss ratios for all cache sizes could be calculated in a single pass over the
reference trace. These policies are collectively known as stack algorithms. The
technique depends on the inclusion property of these policies; the contents of any size
cache includes (i.e. is a superset of) the contents of any smaller cache. Thus the cache
at any time can be represented as a stack, with the upper k elements of the stack
representing the blocks present in a cache of size k. The current stack level of any
block is therefore the minimum cache size for which the block is resident. If a block is
referenced while at level k, it is a “hit,” and therefore resident, for all sizes k and larger.
The level at which the block is found is referred to as its stack distance; see Figure 3.1
Using stack analysis, it is possible to compute the miss ratio of Equation (MRR(C) =
m(C)/N) for all sizes by recording the hits to each level.

The miss ratio for a cache size C is where N is again the total number of

references. Notice that, since hits (i) are never negative, this is a non increasing
function of cache size. All stack algorithms possess this characteristic, whereas non

 39

stack algorithms may show points at which performance declines with increased cache
size.

The simplest example of a stack algorithm is the Least Recently Used (LRU)
policy. The stack always contains the blocks in order of last reference, with the most
recently referenced block on the top. For any cache size C, the LRU block for that
cache size is the block at level C in the stack. When a block at level k is referenced, it
is not in any cache smaller than k, and therefore it must be fetched. The block that
must be removed from any cache of size j, j smaller than k, is the block at level j. The
stack is updated by simply “pulling” the referenced block out of the stack and placing
it on top. All blocks down to level k are effectively “pushed” down one level. Since the
referenced block was in all caches k or larger, all blocks below level k remain
unchanged. Figure 3.1 illustrates these operations for the case where the referenced
block is at stack level 4 and the case in which the block is not currently in the stack.

More generally any stack algorithm possesses a “priority function” which

imposes a total ordering on all blocks at any given time, independent of cache size.
Notice that LRU imposes such an ordering based on the time of last reference.

Figure3.1. Examples of stack maintenance using LRU replacement. The referenced block is
always “pulled” to the top of the cache stack. All blocks with smaller stack distance are
pushed down one level.

Figure3. 2. Examples of stack maintenance using a stack replacement algorithm. For each
level C a single comparison (indicated by a circled cross) between the prior block at the level
(st-1 (C)) and the block pushed from above (yt (C - 1)) determines the new block at the level
and the block pushed from the level. Update continues down to the current level of the
referenced block or to the bottom of the stack if Xt is not in the stack.

 40

However, in the more general case the relative priority of two blocks may change
without either of them being referenced. (See, for example, Figure 3.4 where the
relative positions of blocks A and B reverse between times 5 and 6. It is no longer the
case that the block at level j is necessarily the one to be pushed from that size cache.
This complicates the stack update procedure, but only slightly. The stack can still be
updated in a single pass that is similar to one pass of a bubble sort. A single
comparison at each level determines the new block at the level and the block pushed
from the level.

First, the referenced block is still pulled to the top of the stack since it must
become resident in all cache sizes. Using the terminology from Mattson et al. (1970),
let yt (C) be the block pushed (“yanked?“) from a cache of size C. To make room for
the referenced block, the top block in the stack,st-1(1) must be pushed from a one-
block cache, becoming yt (l). Some block must also be pushed from a two-block cache-
the one with the lowest priority. A single comparison between yt (1)= st-1(1) and st-1(2)
determines which becomes yt (2). (Ties are broken by some arbitrary rule.)
Algorithm 1. General Stack Analysis Algorithm

 (2) In step 7,pmin returns the block with the lowest priority, as defined by the replacement algorithm.
 Pmin is the comparison function in the circles of Figure 3.2.

Figure 3.3 General Stack Algorithm

Similarly, the block pushed from a three-block cache should be the lowest
priority of the three blocks previously present. However, the lowest priority block can
be determined in a single comparison of yt (2) and st-1 (3) since the third block, now st
(2), has already “won” a comparison against yt (2), and thus cannot have the lowest
priority. Similar logic applies for all levels down to level k, the original level of the
referenced block; only the block currently at the level and the one pushed from above

 41

need be compared to find the block to be pushed. The contents of all sizes larger than k
are again unchanged.

The stack analysis algorithm is formally presented in Figure 3.4. This algorithm
is used as the basis for the extensions. Let:

Figure 3.4 The stack analysis algorithm

Note that, in practice, it is possible to search the stack for the referenced block and
update the stack simultaneously, since the priority function cannot depend on where
(or even if) the referenced block is in the stack. The update stops when the referenced
block is found. The block being pushed takes the place of the referenced block, which
is inserted on top of the stack.

Figure 3.5. Cache contents using the Least Frequently Used policy. The number beside the
block is the priority, that is, the number of references.

As an example, consider the application of a Least Frequently Used policy to

the reference string {AAABBCCDB). Using this policy, the block pushed from any
cache is the one that has been used the fewest total times. Figure 3.5 shows the
contents of the stack after each reference, where the number beside each block is the
priority (i.e. the number of uses of the block). Notice that a block may be pushed
several levels because of a reference, as seen at time 8. Note too that blocks below the
level where the referenced block is found are unchanged, even though they may have
higher priorities, as seen after the last reference.

3.3 Non stack Algorithms.

The prohibition against a priority function that depends on cache size prevents
some otherwise simple policies from being stack algorithms such as the First-In First-
Out (FIFO) rule. Another common technique that is not a stack algorithm is the use of
demand prefetch or prefetch-on-miss . Suppose that the prefetch policy is to fetch the
following block along with any fetched block, but not to prefetch if the referenced
block is already present. Assume an arbitrary stack algorithm for replacement. It is
easy to construct counterexamples that violate inclusion because the priority of a

 42

prefetched block depends on when it is fetched, which varies with cache size. For
example, consider the examples of Figure 3.6, where the contents of a larger cache are
clearly not a superset of a smaller cache after the final reference.

It is possible to construct prefetch policies that are stack algorithms. For
example, the non demand policy that always prefetches the next block, regardless of
whether the referenced block is resident, is a stack algorithm. This policy is a form of
One Block Lookahead or OBL. From the point of view of the stack, this is equivalent
to the insertion of a reference to the next block after each reference. Non demand
prefetch is not practical if the cost of a fault is high, as it is in virtual memory systems,
for example, because the penalty for faulting to prefetch a block that may not be
needed is greater than the potential gain. Non demand prefetch is practical when it is
possible to look for the next block in the cache and prefetch it if necessary without
significantly slowing down processing the current reference. This is the case for many
large processor caches and file system caches.

Figure3.6. Cache contents using one-block demand prefetch. Since this is not a stack
algorithm, the contents of each cache size are listed separately. In both examples the next
block is prefetched only if the referenced block is not present. In all cases the referenced block
becomes the highest priority, followed by the prefetched block, if any. The inclusion property is
violated after the last reference in both cases.

3.4 Extensions to Stack Analysis.

There have been several important extensions to the basic stack analysis
technique. Mattson et al. (1970) showed how the hit ratio can be computed for an
arbitrary number of levels, assuming a common block size and replacement policy.
Gecsei (1974) showed how it could be generalized to multiple levels with different
block sizes for LRU and certain related policies. Traiger and Slutz (1991) showed that
it is possible to compute miss ratios for variable block sizes and variable associativity
in a single pass.

Coffman and Randell (1971) investigated the “extension problem,” that is,
predicting the performance of cache sizes greater than C, given only the misses from
cache size C instead of a full trace. For LRU, a trace of “pushes” and “pulls” was
sufficient; for other stack algorithms, the priority ranking for the block pushed and all

 43

blocks not in the cache of size C was also required. A trace of misses only was found
to be sufficient for providing good approximations to the performance of larger caches.

A more recent extension by Silberman (1983) showed that stack analysis can be
applied to a delayed-staging hierarchy in which the processor directly accesses several
levels of the memory hierarchy. When a referenced block is not in a higher level cache,
it is supplied to the processor (at the speed of the highest level cache to contain the
block) and begins “migrating” into the higher caches. The time elapsed until it
becomes “staged” (resident) in a higher cache is equal to the sum of the access times of
the caches below it. Further, the displacement of a block in the higher level cache is
also delayed, creating a situation where the stack level of a block may be a function of
the size of several lower level caches and the time since the last reference to one or
more other blocks. Silberman showed that stack analysis can be applied to this class of
hierarchy by maintaining the time and cache depth of the last “migration” for each
block. This information is used at the time of each reference to compute the stack
distance of the block for different sizes of each level, by considering the delayed
staging times. This idea of maintaining additional information about each block is seen
again in our write-back algorithm presented in the next section.

3.5 WRITE-BACK STACK ALGORITHM.

We turn now to the development of a stack analysis algorithm for write-back.
We begin by discussing the problems with write-back stack analysis, then present a
general nonstack algorithm for computing the write-back ratios. We then prove that the
algorithm obeys a form of inclusion and derive a corresponding stack algorithm.

3.5.1 The Write-Back Problem.

In write-back, a write access to secondary storage occurs whenever a
dirty block is “pushed.” The main problem with write-back is maintaining the
“state” (clean or dirty) of each block in the stack. A single dirty bit is sufficient
in the real cache, but not for the simulation stack. Consider a read to a dirty
block at level k. For sizes h and larger the block is still dirty, since it has not
been written; for sizes 1 to k - 1 it is clean. The inclusion property is violated
since the contents of the larger cache are “different” in the sense that the block
has different attributes in some larger sizes. A second problem is accounting for
the “dirty pushes.” Each miss from a memory of size C causes a push from
each smaller memory; that pushed block may be dirty. On first inspection, this
suggests that counts need to be maintained and updated for every memory size
from which a dirty block is pushed. We show that a surprisingly simple
technique solves both of these problems.

3.5.2 A Non Stack Algorithm.

We begin by assuming that write-back is not a stack algorithm and by
imagining a general algorithm for computing write-back miss or transfer ratios.
The algorithm is based on the stack analysis algorithm, but maintains a separate
set of dirty blocks for each cache size in order to solve the problem of the no
ninclusion of dirty bits. Let:

 44

Figure 3.7

We define Algorithm 2 in Figure 3.7 by adding steps 7A and 8A to Algorithm 1
presented in section 3.2. When a block is written, it must be added to each dirty
set (line 8A). A block is removed from a set if and only if a dirty block is
pushed from memory (line 7A). Note that if write fetch is not used, then line 5
of Algorithm 2 must be conditioned on a read, that is, IF wt = Φ THEN rh(∆)
= rh(∆) + 1.

3.5.3 Dirty Set Inclusion Property.

The inclusion property of stack algorithms states that if a block is
present in memory of size C, then it is present in size C + 1, and therefore in all
larger sizes. This can be formally stated as

for all t and C, where Mt (C) is the set of blocks present in a memory of size C
after reference .xt. We now show that a similar condition applies to dirty sets;
that is, if a block is dirty in a memory of size C, then it is dirty in all larger sizes.

 45

An intuitive argument of this fact is the following. In order to become
dirty, a block must be written, which makes the block dirty in all sizes. A block
becomes clean only when it is replaced (ignoring deletions for now). Because
the replacement algorithm is a stack algorithm, the block is always pushed from
a smaller cache before it is pushed from a larger one. The dirty level is
therefore the maximum level to which the block has been pushed since it was
written. A read may pull the block to the top of the stack, but will leave it dirty
in an inclusive set of sizes. There is no way to make it dirty in some sizes
without making it dirty in all sizes; therefore, inclusion holds. A more formal
proof follows.

Proof. Choose an arbitrary C. The condition certainly applies at the
start of the simulation when no blocks are in cache; therefore, the dirty sets are
empty. Assume it to be true at time t - 1. Beginning with this induction
hypothesis, the proof adds and subtracts blocks from each side, preserving the
subset relation, and finally arrives at an expression for the dirty sets at time t.

Adding the possibly null block wt to both sets does not affect the subset
relation.

Similarly, the relation holds if the block pt is removed from the smaller set.

Finally, removing the same block from both sets preserves the subset relation,

Note that the right-hand side is exactly Dt(C + 1) as computed by line 8A of
Algorithm 2, whereas the left-hand side differs from Dt(C) only by the term pt
(C + 1). There are three possible values for pt (C + l), none of which affect the
set on the left-hand side:

Removing this term gives

which is exactly equal to

as set by Algorithm 2, line 8A.

 46

With these facts we can simplify the algorithm considerably.

Above relation implies that there is a minimum size at which a block is dirty (if
it is dirty at all). Intuitively, this is the smallest memory from which the block
has not been pushed since its last write reference, and therefore, the smallest
memory size in which it is still dirty. This is also the largest stack distance the
block has attained since it was last written. Therefore, the separate Dt(C) can be
replaced by a single array. Let dl(x) be the dirty level of block x or infinity, if
the block has never been written. A block at level k (i.e., s(k) = X) is dirty if
and only if dl(x) ≤ I k. We can set the dirty level to 1 when a block is written
and update it as the block is pushed.

3.5.4 Writes Avoided.

Before defining the new algorithm, let us also reconsider the way dirty
pushes are counted. In Algorithm 2, dp is updated as each block is pushed. Also,
recall that the purpose of the write-back policy is to avoid the write to
secondary storage that is required for each write reference when using write-
through. We can count the number of write-backs required in two ways. One is
to count them directly, as done by Algorithm 2. The other is to count the total
number of writes and then to subtract the number of times that no additional
write-back is required, since the block is already dirty or is being deleted.
When a write does not require a write-back, we increment a count of writes
avoided. This is analogous to the way reads are computed in the basic stack
analysis algorithm, where a read is avoided for all sizes larger than the current
stack distance.

Ignoring deletes for now, a write is avoided only when a dirty block is

overwritten, since both the previous and current modification can be written by
the next write-back. Therefore, we can say that the previous write has been
avoided for all sizes equal to or greater than the current dirty level. Notice that
we now only care about the dirty level for the block being referenced, and
therefore, we only need to adjust dl for the referenced block. If it is found at
level ∆ which is below its dirty level (i.e. ∆ > dl(x,)), we can reason that the
block has been pushed (while dirty) from all levels between dl (xt) and ∆;
therefore, the proper value for dl (xt) is ∆; see line 6 of Algorithm 3 (Figure3.8).

We now define wa(C) to be the writes avoided at level C, that is, the

number of writes for which the referenced block was still dirty in memory sizes
C and larger. The write-back stack algorithm, Algorithm 3, is shown below.
The differences between this algorithm and Algorithm 1 are line 6, which
adjusts the dirty level as described above, and lines 10-13, which count the
writes avoided and write references and reset the dirty level to one on a write.

For the special case of LRU, this algorithm is particularly simple. As in

the standard stack analysis algorithm for LRU, updating the stack is a Matter of
removing the referenced block and inserting it at the top of the stack. The fact

 47

that only the referenced block affects the statistics is particularly useful for this
case since no work needs to be done while searching for the referenced block.

3.5.5 Dirty Push Computation.

Using Algorithm 3, the number of dirty pushes which have occurred by
time t for a memory of size C is given by

Equation 3.1
where the count of write references by time t is

and the count of dirty blocks resident in the cache of size C is the size of the set.

Figure 3.8

The first two terms of (3.1) are obvious, but we should elaborate on the

need for the third term. It should be clear that each block that is still dirty has
avoided the most recent write for all sizes in which it is still dirty and should
therefore be subtracted from the count of writes. This argument applies at any
point during the trace and at the end of the simulation. Since the relevant
metrics are those gathered during the trace period, regardless of any activity
which occurs after the trace ends, we should consider each dirty block
remaining at the end of simulation as having avoided a write. To simplify the
computations, we can make a final scan of the memory stack and update
wa(dl(x)) for each dirty block x. We can then eliminate the third term of (3.1).
Of course, the effect of this should be small if the total number of trace events
is large.

 48

Using this expression for the number of dirty pushes leads to a simple
recurrence for computing the transfer ratio.

Assuming write-fetch, the first two terms can be replaced by the stack
analysis computation of the miss ratio , giving

Substituting (3.1) for dp(C) and assuming that the final scan has
updated wa,
this simplifies to

 Equation 3.2
or

Equation 3.3

Notice that since rh(i) and wa(i) are both nonnegative, this function also
decreases as memory size increases, just as the miss ratio does.

3.5.6 Warm Start.

If the simulation results are gathered starting from an empty stack, the
results can be biased by the fact that many of the early references will be
misses in all cache sizes. In fact, until the memory contains k blocks there is no
chance of a hit at level k producing a higher than expected miss ratio. In some
situations this cold-start miss ratio is appropriate, for example, when a single-
program address trace is used to derive multiprogramming metrics. In other
situations, the desired metrics are those for a system in steady state. In these
cases it is common to warm start the simulation to reduce startup effects. A
warm start consists of allowing the simulation to run until it is assumed to be in
steady state, often either for a fixed number of events or until the memory
contains a fixed number of blocks, then stopping. Without changing the state of
the simulation, all statistics are cleared. The simulation then resumes from its
current state. The final metrics are those gathered after the warm start.

Warm start using the write-back algorithm can produce an anomaly in
the transfer ratio. This is caused by the final scan of memory which considers

 49

all dirty blocks as having avoided a write, which may have occurred before the
warm start. Suppose, for example, that the write-back simulation is warm
started, and suppose that W, and wa are zeroed. Then immediately after warm
start, the value of dp(C) calculated using (3.1) may be negative for some values
of C, as shown in Figure 3.9(c), where the number in parentheses is the dirty
level of the block. Of course, a “negative push” is meaningless. We can keep
the numbers positive by setting Wt to the number of dirty blocks in the cache at
warm start, but then dp is immediately nonzero for some cache sizes. Another
alternative would be to zero both wa and dl, but then it will be a long time
before any dirty block could be pushed from large sizes-in conflict with the
reason to warm start in the first place.

Since the third term of (3.1) increases with C, the second term of (3.1),
the sum of wa must decrease for larger C if we want the computed value of dp
to be zero immediately after warm start. This can only happen if some wa are
negative. The solution we use is to zero wa at warm start, then decrement
wa[dl(x)] for all dirty blocks X. With this solution dp(C) is zero immediately
after warm start for all C, as it intuitively should be; see Figure 3.9(a). Now
suppose that a reference to a previously unreferenced block causes all blocks to
be pushed (Figure 3.9(b)). The result is that dp(C) is zero for all sizes except
those from which a dirty block is pushed-which is exactly the result obtained
from a simulation of a single cache size or a real cache.

Note, however, the unexpected result that the transfer ratio due to dirty

pushes is no longer a monotone decreasing function of size. In fact, if the warm
start of Figure 3.9(a) were followed by the unlikely event of five total misses,

(c)

Figure 3.9. Revised count of dirty pushes after warm start: (a) is immediately after
warm start, and (b) is after all blocks are pushed one level. The count of dirty pushes
from each size, dp(C) agrees with the results from a real cache.

 50

the resulting transfer ratio would be increasing with cache size. It seems that
the rate of dirty pushes may be exaggerated for larger cache sizes by the fact
that there are more dirty blocks in the larger cache. (There may also be a higher
probability that blocks pushed from larger caches are dirty). This “error” for
large sizes is bounded by the number of dirty blocks in the stack divided by the
number of references after warm start. It can therefore be made arbitrarily small
by increasing the number of references after warm start (which also reduces the
need for warm start). In most cases, locality causes the write-back traffic ratio
to assume its normal decreasing form.

3.6 Write-Through

This policy is trivially included in the algorithm by setting dl(xt) to infinity
instead of one after a write. In fact, since the total number of write requests is known,
both the write-back and write-through transfer and traffic ratios are available
simultaneously. It is also possible to simulate a combination of policies provided the
choice of policy is not a function of memory size. For example, some blocks could be
write-through and others write-back, a scheme used in some real caches, for example,
the Intergraph CLIPPER processor [5,20] and the NEC disk cache[36].

An example of an algorithm for such a cache is given as Algorithm 4 (Figure 3.10).
The only difference between this and Algorithm 3 (Figure 3.8) is that Line 12 ensures

Figure 3.10

that only write-back blocks become dirty. Writes to both write-back and write-through
blocks are counted in W, (Line 13), but only writes to write-back blocks are avoidable
(Line 11) since write-through blocks are never dirty. As a simplification, both write-
back and write-through are counted the same. In reality, a write-through may involve
less data and, therefore, is less costly. This algorithm assumes that write allocate and
write fetch are performed for write-through blocks; if this is not the case, then Line 5
and the stack update should be bypassed for a write-through miss .

 51

Figure. 3.11. A gap “jumps” down the stack. The gap (γ) is unaffected by references B above it,
but a reference below it causes it A to “jump” to the level of the referenced c block.

3.7 Deletions.

An important consideration in file system studies is the existence of deletions in
the reference string. If a file is deleted, the blocks of that file should be removed from
the cache without a write. With a write-back cache and short file lifetimes, it is likely
that file blocks will be created and deleted without ever being written to the next level.
Deletions also occur in processor caches when blocks are invalidated but generally not
without writing the block first if it is dirty. Deletion of blocks from the cache was
discussed by Mattson et al. (1970) in the context of a “call back” hierarchy, where
cache blocks may be invalidated by a write directed to a lower level. The example used
by Mattson(1970) is a virtual memory system in which all I/O occurs to blocks
residing in an I/O Subsystem, not the CPU memory. If an I/O is addressed to a block
which is in CPU memory, that block must be invalidated. Greenburg(1974) also
discusses deletions and implements an algorithm to approximate the effect of deletion.
Olken (1983) proposes an exact algorithm and discusses implementation using various
data structures. None of these consider the effect of write-back. If a deleted block were
simply deleted from the stack, the stack level for all lower blocks would be reduced.
This would have the undesirable effect of calling these blocks back into a memory
from which they had been pushed. Instead, what called a “marker” block is inserted in
the stack replacing the deleted block.

We refer to the marker blocks as gaps in the stack, corresponding to a vacant
block in all larger caches. The next push from above the gap replaces the gap with the
pushed block since no block needs to be replaced in a cache containing a vacant block.
Thus a gap stops the sequence of stack updates, just as finding the referenced block
stops the pushes in the normal case. However, since the referenced block must still be
pulled to the top and blocks below the referenced block do not change stack level, the
referenced block must be replaced in the stack by another gap. Thus, a reference to a
block below the first gap seems to make the gap “jump” down the stack. As an
example, consider the sequence of Figure 3.12. After block D is deleted, a gap is left at
level 4. A reference to block B above level 4 does not affect the gap. However, the
reference to block F below level 4 “jumps” the gap to the stack level of F. From the
point of view of the “real” cache, the gap represents the same vacant block, which was
in all memory sizes 4 or larger. Since block F is already resident in memories of size 6

 52

Figure3.12

or larger,the reference to F has not fetched any block to fill the gap. Therefore, the gap
still exists in these sizes. The effect of deletions on the transfer ratio is to introduce
another way in which a write can be avoided, particularly evident in large cache sizes.
If a block is written, then deleted before it is pushed, the write-back is avoided for all
sizes greater than the current dirty level. It is therefore a simple matter to increment the
appropriate wa[dx(xt)] on deletion. In addition, the count of read hits must exclude
deletes, since a deleted block is never fetched. This is seen in lines 6 and 7 of
Algorithm 5. The complete, though somewhat complicated, algorithm for write-back
with deletions is given as Algorithm 5 (Figure 3.12). Let:

There are actually only a few changes between Algorithm 3 and Algorithm 5.
First, line 6 handles a deletion by updating the count of writes avoided and replacing
the block by a gap in the stack. Line 8 computes Γ, the level of the topmost gap, while
line 9 determines whether the referenced block or Γ stops the sequence of updates.
Line 10 uses this value instead of ∆. A subtle change in line 13 inserts xt on top of the
stack even if ∆’ = 1; this handles the case where there is a gap at the top of the stack.
Finally, line 14 replaces the referenced block with a gap if it was below the first gap by
implementing the “jump” of a gap described above.

 53

3.8 Periodic Write-Back.
With large caches, there may be a very long delay before a block is removed by

replacement. In practice, reliability considerations may dictate that a dirty block be
written before this time. Suppose that all dirty blocks are written every n seconds
instead. An example of this is the UNIX™ file system policy of writing all dirty file
system buffers to disk every 30 seconds. Alternatively, suppose only certain blocks are
written, for example, by a policy to write a block after it has been unreferenced for n
seconds. These policies are all stack algorithms, provided that the write happens for all
memory sizes where the block is dirty, in order to maintain inclusion in the dirty set.
A forced write-back is implemented in the algorithm by setting dl (x) to infinity for
each written block. It has no effect on writes avoided, except that the write which made
the block dirty cannot subsequently be avoided. The effect of this is to increase the
calculated number of dirty pushes. Consider the third term in (3.1) for any C where the
block is dirty: The block was dirty and included in Dt(C); it is now clean and not in the
term; the net increase to dp(C) is 1.

3.9 Trace-Driven Simulation for Write-Back Caches.

3.9.1 one-pass Trace-Driven Simulation Algorithm for Write-Back Caches.
In this section we present a one-pass algorithm which allows capturing

the number of write-backs, in addition to hit ratios, for set-associative write-
back caches. We first present briefly the original method for stack simulation
and the dirty level concept introduced by Thompson and Smith (1989). To
explain the stack algorithm in some detail, consider the example given by
Mattson et al. (1970). A reference to a block at time t, denoted xt, is compared
with elements in the LRU stack, denoted S (t-1) , that holds the reference history.
The number of right match bits is recorded. These right match bits are used to
calculate the stack distance i.e. the number of elements that are ahead of the
currently referenced element plus 1. An element with i right match bits is in the
same set as xt for caches with 2t or smaller number of sets. For example, the
first element in the stack has 2 right match bits. This implies that this element is
in the same set as xt for fully associative caches, caches with 2 sets and caches
with 4 sets. That is, this element is “ahead” of xt for caches with 4 or smaller
number of sets. For the ease of keeping track of the stack distance, an array of
right match counters, denoted u(r), is used to record the number of times that
exactly bits are right matched. This recording process concludes when xt is
found or the end of the stack is reached (which gives an infinite stack distance).
In our example, xt is found at the seventh position in the stack and the
rightmatch- bits frequency counts, u(r), are recorded (see the top right chart of
Figure 13.13). From u(r) the stack distances for caches with a different number
of sets can be easily calculated as follows. For caches with 2t sets 0 <= t <=
maxset, where maxset = 6 in the example, the stack distance of xt k=1∑k=6 u(k).

 54

Figure 3.13 an example of Mattson (1970) algorithm

For example, the stack distance for a cache of 16 (24) sets is u(6) + u(5) + u(4)
= 2. This stems from the fact that if an element is ahead of xt in the same set for
caches with a given number of sets, it will also be ahead of xt in the same set
for caches with a smaller number of sets.

This method permits the computation of hit ratios but it must be
extended if other metrics of interest, e.g., number of writebacks, are to be
determined. Thompson and Smith (1989) solved this problem in the context of
fully associative caches. Their method is to attach a dirty level (dl) to each
block in the stack. A block is dirty for caches larger than or equal to dl blocks
and is clean for those smaller than dl blocks. In other words, dl is the maximum
distance A where a dirty block was pushed between two write references. For a
given dirty block, dl is updated only when it is referenced. Thus, instead of
directly simulating the replacements and recording the number of dirty blocks
being displaced, another measure is introduced, namely wa(C), the writes
avoided at level C, that is, the number of writes for which the referenced block
was still dirty in memory sizes c and larger. The wa(C) count is incremented
when a write is performed on a block with a C dirty level. Another counter, wc
is used to record the total number of write requests. At the end of the simulation,
the number of dirty block replacements for a cache with size C can be obtained
by subtracting the number of write requests (wc) by the number of writes being
avoided at levels 1 through C.

However, a single dirty level is not sufficient to capture the complete

dirty information in simulating set-associative caches. For example, Figure 3.14
shows a block (block 4) which has a dirty level of 3 in a cache with only one

 55

Figure3.14. A block can have different dirty levels in caches with different numbers of
sets; in this example, block 4 has dirty level 3 for a one-set cache, but a dirty level of 2
for a two-set cache.

set (i. e., fully associative cache), but has the dirty level of 2 in a cache with 2
sets (one for the even blocks and the other for the odd blocks). In order to
simulate caches with a different number of sets using a single stack as in
Mattson’s (1970) algorithm, we need to attach a vector of dirty levels to each
block in which each element of the vector corresponds to the dirty level of the
block for caches with a specific number of sets. For example, block 4 in Figure
3.14 will have a (3, 2) dirty-level vector.

We can now present the outline of the all-associativity write-back
simulation algorithm in Figure 3.15. The notations used are listed in Table V.
In most practical situations we will not simulate all possible set-associativi -
ties. Generally, set-associativities will range from one-way (direct-mapped) to
a maximum of 16-way. Consequently, this limits the number of sets from
maxset = cache size/block size to minset = cache size /(block size x maximum
set-associativity). Hence, we will divide the LRU stack into minset substacks to
optimize the search. Let St

a: denote a substack at the end of time t. With each
block in the stack we attach a vector of dirty levels denoted dl[set, block].
Furthermore, write-avoid counts, denoted wa[set, level], are used to record the
number of writes that are avoided. Finally, RDistancecnt[set, l:maxassoc] and
WDistancecnt[set, 1 :maxassoc] are used to record the histogram of stack
distances for read and write accesses respectively. For example, a
RDistancecnt[4set] of [10,5,0,0] (i.e., RDistancecnt[4set, 1] = 10,
RDistancecnt[4set, 2] = 5, RDistancecnt[4set, 3] = O, and RDistancecnt[4set, 4]
= O) records that 10 read accesses have been satisfied with a stack distance of 1
and 5 with a stack distance of 2, That is, if the total number of references were
18 (say three references were not found in the stack) when this state is reached,
then the read hit ratio for a 4-set direct-mapped cache is 10/18 – 56 percent and
for a 4-set two-way cache, (10 + 5)/18 = 84 percent.

Our algorithm works as follows. For each reference xt, find the
substack a to which it is mapped. A search is done through the substack and the
number of right match bits (b) is determined. This number, b, if not larger than
log(maxset), is then added to the right match histogram U[b] for producing
later the appropriate stack distances. If b is at least as large as log(mcmset),
then u[log(maxset)] gets incremented instead.

 56

Figure 3.15 an outline of an algorithm for simulating write-back set-associative
caches.

Table V. Notations for the A1l-Associativity Write-Back Cache Simulation
Algorithm

If the requested block cannot be found in the stack, all stack distances

are set to infinity and the block is brought in. The dirty levels of the block are
set to 1 if the request is a write, otherwise they are set to infinity.

If the block is in the stack, the stack distances are determined by
accumulating the right match histogram starting from log(maxset) and down
through each smaller number of sets, until log(minset) is reached. For each
number of sets, the dirty level is set to the current stack distances unless it is
already larger than the stack distance in which case it is not modified. If the

 57

reference is a read, the read distance counts are updated. If the reference is a
write, the write distance counts are updated and the write avoid counts of the
current dirty level are incremented. Finally, the stack is rearranged by moving
the referenced block to the top and shifting those top elements down. At the
end of simulation, the stack distance counts and the write avoid counts are used
to calculate the hit ratios and the number of dirty blocks being replaced.

Figure 3.16 gives a snapshot example to show how a read request is

processed under this algorithm. For simplicity, let us assume that we want to
simulate caches with 4 sets and 8 sets only, with a maximum set-associativity
of 4 (i.e., we want to obtain performance figures for 6 points in the design
space, namely 4-set direct-mapped, 4-set 2-way, 4-set 4-way, 8-set direct-
mapped, 8-set 2-way, and 8-set 4-way). That is, the minset is 4 and the maxset
is 8 for this example. Let us further assume that the contents of the stack are the
same as in Figure 13.13. Then we can partition the stack into 4 (i.e., minset)
substacks as in Figure 13.16, assuming that the rightmost bits of a block
number determine the set number. With relevant states at the end of time t – 1
as given in Figure 13.16a, we can now process the read request on block 6
(000110) as follows. The requested block (block 6) is first tested to determine
which substack it might be in and a search is done in that substack only (the
leftmost in the figure, the others will remain unchanged). The first block in the
stack, block 2, has 2 right bits in common with block 6, the requested block. So
block 2 will be in the same set as block 6 for caches with 4 or a smaller number
of sets (u[2] is incremented by 1). The next block in the stack, block 54, has 4
right bits in common with block 6, so it will be in the same set as block 6 for
caches with up to 16 sets i.e. in the example, for both 4-set and 8-set caches
(u[3] = u[log(maxset)] is incremented by 1). Finally the block is found when
the third block in the stack is reached (u[3] is incremented by 1). Thus, for an
8-set cache the distance of block 6 is 2 (i.e. u[3]= 2; that is, only block 54 is
ahead of block 6) and for 4-set, the distance is 3 (i.e., u[3] + u[2] = 2 + 1 = 3;
that is, 2 and 54 are ahead of block 6 in the stack for a 4-set cache).

Assume that at the end of time t – 1 the read distance counts,

RDistancecnt, for 4-set caches are [10,5,2, 0]. Then the RDistancecnt will be
[10,5,3, 0] at time t,reflecting the fact that block 6 is found at a distance of 3.
SimiIarly, for 8-set caches the RDistancecnt is updated to [12,5, 1,0] from [12,4,
1, O]. Moreover, since the stack distances of block 6 are larger than its dirty-
levels, the dirty-levels of block 6 far 4-set and 8-set caches are updated to 3
and 2 respectively. Lastly, the substack is rearranged by moving block 6 to the
top of the substack. As a final remark, if

 58

Figure 3.16 a snapshot example for the one-passwrite-back algorithm. (a) before and
(b) after the read request being serviced.

 the request is a write instead of a read, we need to update the write distance
counts and the dirty levels in a similar manner. Furthermore, we also need to
increment the write-avoid counts wa[4set, 3] and wa[8set, 2] to reflect the fact
that for a 4-set cache with a set-associativity of at least 3 or for a 8-set cache
with a set-associativity of at least 2, the write is to a dirty block, and therefore a
write-back to memory is saved.

We used this algorithm to simulate 20 caches in a single pass. All
caches have a 4-byte block size and their sizes range from 8-K-byte to 128-K-
byte with set-associativities from 1 to 4. The run times for the same traces used
in

Table VI Speed-Up Using One-Pass Approach

 59

Figure 3.17 Relative traffic change vs. cache size (8-byte block size)

the previous section are given in Table VI. Table VI (line 3) shows that this
one-pass simulation is about 1.5 times slower than the one cache per simulation
approach (line 1), but can generate 20 results at a time. From Table VI we also
observe that if the reduced traces are used together with this one-pass algorithm,
the performance of 20 caches can be obtained in less than a minute of VAX
8550 CPU time (line 4). On the other hand, the naive one-result-per-simulation
approach (line 5), if used without taking advantage of trace reduction, would
need between 50 and 100 times longer to produce the same results. Thus,
roughly speaking, trace reduction could bring us a ten-fold disk space saving
(see Table II) and, together with the one-pass

 60

Figure 3.18.Relative traffic change vs. cache size (16-byte block size).

simulation algorithm, could reduce the simulation time by nearly two orders of
magnitude over the naive one-result-per-simulation approach.

3.9.2 An Application Example.

 we now give an example to show how the above techniques can be
used to produce useful results on cache performance that have not been covered
in the vast cache literature. More specifically, we want to explore the impact of
set-associativity on cache-bus traffic. This problem is interesting because it is
the cache-bus traffic that will limit the number of processing elements (i.e.,
CPU + cache) that can be put on a single sharedbus. For the following
discussion we define the cache-bus traffic as the number of misses plus the
number of write-backs.

The techniques given in this section allow us to explore the design
space of write-back caches quickly. Using these techniques and seven Atum-2
traces(see Table I for summary of the characteristics of these traces) , we report
in Figures 3.17, 3.18 and 3.19 the impact of set-associativit y on the relative
cache-bus traffic change over a wide range of cache sizes, from 2 K-byte to 256
K-byte. In these figures, the X axis represents cache sizes and the Y axis

 61

Figure 3.19 Relative traffic change vs. cache size (32-byte block size)

represent the relative traffic increases when we move from a larger set-
associativity to a smaller set-associativity. (For the reader’s reference, Figure
3.20 shows the write-back traffic percentage for a 16-byte-block size.)

From these figures, we see a big increase (on average 31 percent) in
traffic when we move from a 2-way set-associativity to a direct-mapped
organization. The average relative traffic changes from 4-way to 2-way and
from 8-way to 4-way are 12 percent and 6 percent respectively. We also notice
that the relative traffic change increases as the block size increases, especially
for small set-associativities. This is due to the fact that the larger the block size
the lesser the number of sets, and therefore the conflicts due to set collisions
will be more frequent. Similar observations on the relative miss ratio change
were reported by Hill and Smith (1989).

To complete this section, we present in Figure 3.20 the percentage
contribution of write-back traffic to the total cache-bus traffic. We observe
from Figure 3.20 that write-back traffic accounts for 15 to 22 percent of total

 62

bus-cache traffic. Furthermore, the larger the cache, the higher the write-back
traffic contribution. This is because a block in a larger cache tends to stay in

Figure 3.20 Percentage contribution of write-back to total traffic.

the cache longer and therefore has a higher probability of being modified. As a
result, upon a miss, the likelihood of having to write back the replaced block is
higher for a larger cache. For the same reason, the increase in the set-
associativity enlarges the contribution of write-back traffic to the overall
cache-bus traffic.

3.10 Other Stack Simulation Implementation.

Bennett and Kruskal (1975) examine the paging behaviour of a large data base.
They find mean stack distances of 1 to 328 entries for varying page sizes. Bennett and
Kruskal propose an algorithm for stack simulation using an m-ary tree and a hash table
where the run time per reference is approximately logarithmic in the number of block
since the last reference to the current block. In contrast, the time per reference for
linked list stack simulation is linear in the number of distinct blocks since the last
reference of the current block. Bennett and Kruskal conclude that their algorithm is of
order ten time faster than linked list stack simulation for mean stack distances of 150
entries. The storage requirements of the algorithm are large, but this is not important
since the memory required is small relative to modern main memory sizes. The tree
size is linear in the length of the address trace, N, and the hash table must be larger
than the number of distinct blocks (Nδ∞). A simulation of 10 million references with
200,000 unique blocks requires only 3M bytes of storage if it uses two bits per
reference and two words per unique block. Olken (1981) changes Bennett and
Kruskal’s algorithm by replacing their m-ary tree with an AVL tree.

Bennett and Kruskal’s algorithm and Olken’s algorithm use a hash table to

learn about a block’s history. A hash table can also be used in linked list stack

 63

simulation to see if a block has ever been referenced. This reduces the time to process
a previously unreferenced block from Kmax to a constant, reducing simulation time to:

This change will significantly improve performance only if both kmax and are large,
that is both the degree of associatively and the fraction of the references to previously
un-referenced blocks are large.

Thompson et al. (1986) examine each of these algorithms, and conclude that linked list
stack simulation performs best for most CPU cache simulations. Consequently, we will
compare the performance of forest and all associativity simulation with linked list
stack simulation only, and use stack simulation to linked list stack simulation.

3.10.1 Inclusion in Set Associative Caches .
Hill(1987) proves several theorems about inclusion for set associative

caches using (possibly) differing set mapping functions. Recall that Mattson et
al, (1970) discuss inclusion only in caches that use the same set mapping
function, and hence have the same number of sets (e.g. all are fully associative).
In this section, as in the rest of this chapter, he assume that all caches have the
same block size, do no pre-fetching, and use LRU replacement. He wants to use
inclusion to rapidly simulate alternative single level cache designs.
Consequently when he discusses a large and small cache, he is considering
using one or the other in a memory system, not using both as components in
cache hierarchy.

 Consider two caches, C1(A=n1, F=f2) and C (A=n2, f=f2), with blocks,
associativities of ni and set –mapping functions fi for i=1,2 . An important
condition necessary for cache C2 to include (the blocks of) cache C1 is that all
blocks mapping to the same set in C2 map to the same set in C1. That is, for all
blocks x and y:

Hill (1987) calls this condition set hierarchy, because it means that f2
induces a finer partition on all blocks than does f1. Assume also that each set
mapping function maps a large number of blocks(>=2* max(n1 , n2))to each set.
Set mapping functions used in real caches, including bit selection, trivially
meet this restriction.

For cache C2 to include cache C1, C2 must be at least as large as C1
otherwise inclusion will be violated as soon as C1, is full. For cache C2 to
include a different cache C1, C2 must be strictly larger than C1. Hill(1987)
considers two caches to be equivalent if they always contain the same blocks,
i.e. ,are identical up to placement of sets. Suppose cache C1 and C2 are of the
same size. For cache C2 to include cache C1 . It must always contain a superset
of cache C1blocks. Since cache C2 contains the same number of blocks as C1. It

 64

must always contain exactly the same blocks, and therefore is not a different
cache. For this reason he sometimes refer to cache C as the larger cache.

Theorem 3.1
 Cache C2 (A=n2 F=f2) includes cache C1 (A=n1 F=f1) if and only if f2 (x)
=f2(y) implies f1(x) =f1(y) (set hierarchy) and n2 >= n1, (non-decreasing
associativity).
Proof

Suppose cache C2 includes cache C1 and f2 (x1) =f2(x2)= = ….=f2 (x2n1) for
some 2n2 blocks x1…x2n2.The xj , exist, because Hill(1987) assume each set-
mapping function maps a large number of block to each set. To demonstrate
that both set hierarchy and non decreasing associativity are necessary for
inclusion, He show that one of the xj ‘s must be in cache C1 but not in larger
cache C2 if either (1) set hierarchy is false or (2) set hierarchy holds, but the
larger cache has the smaller associatively.

(1) With set hierarchy false, let the 2n2 xj s be chosen so that at least
one block, y, maps to a different set in cache C1, than does x 1, (i,e, f1, (y)!=f1
(x1). Either (a) less than n2 of the xj ‘s map to f1 (x1) or (b) n2 or more of the xj
map to f 1 (x1). For (a), reference x1 >= n2 and the blocks that do not map to f
(x) . Inclusion is now violated since x1 is in cache C1 but not in larger cache C2.
it is in cache C1 since all other blocks referenced map to other sets; It is
replaced in n2- way set associative cache C2 since at least n2 other blocks
mapping to its set are more recently referenced. For (b), references y and
the >= n2 blocks that do map to f 2 (x1) Inclusion is now violated since y is in
cache C1 but not in the larger cache C2.

(2) Since set hierarchy holds and f2 (x1) =f2 (x2)=… =f (xn2+1),
Hill(1987) knows that f1 (x1)=f1 (x2)=….=f1 (xn2+1). Reference x1 through xn2+1
in succession. Inclusion is now violated since x1 is in n1- way set associative
cache C1 (n1 > n2 implies n1 >= n2+1) but not in n2-way set associative cache C2.

<=. Suppose set hierarchy and n2 > n1 . Initially both caches are empty
and inclusion holds, because everything (nothing) in cache C1 is also in cache
C2. Consider the first time inclusion is violated, i.e some block is in cache C1
that is not in cache C2. This can only occur when some block y is replaced from
cache C2. but not from cache C1. A block y can only be replaced from cache C2
if n2 blocks, x 1through xn2 all mapping to f2 (y) , are referenced after it. By set
hierarchy, f (y)=f(x1)=…=f (x2). Since n2 >= n1 , y must also be replaced in
cache C1.

 QED.

Theorem 3.1 states that inclusion holds between two set associative
caches only if the two caches obey set hierarchy and not decreasing
associativity. In Section 3.9.3 Hill (1987) shows that set hierarchy and non
decreasing assoriativity are too restrictive to permit inclusion to hold between
many pairs of set associative caches, and then he describes an algorithm for
simulating numerous set associative caches does not try to take advantage of
inclusion.

 65

Hill(1987) next shows that the includes relation is a partial ordering of
the set of set associative caches (will the same block size, that do no perfecting,
and use LRU replacement). A partial ordering differs from total ordering (e.g
“≤” on the set of real numbers), because some elements may not be comparable
(i.e neither C2 includes C1 nor C1 includes C2). While establishing includes as a
partial ordering is mostly of theoretical interest, it does enable transitivity to be
used in the proof of Theorem 3.3.
Theorem3. 2

 The includes relation is a partial ordering of the set of caches.
Proof

Hill(1987) must show that includes is reflexive (C 1includes C1)
antisymmetric (C2includes C1 and C1 includes C2) implies C=C) and transitive
((C3 includes C2 and C2 includes C1)) implies C3 includes C1).
Reflexive, A cache includes another if it contains a superset of the blocks of the
other. Clearly C1 includes C1. Since two identical caches always contain the
same blocks.

Antisymmetric, Suppose C2 includes C1 and C1 includes C2. Therefore
cache C2 must always contain a superset of the blocks in cache C1 and cache
C1 must always contain a superset of the blocks in cache C2. Since superset is
antisymmetric, both caches must always contain the same blocks, and therefore
are equivalent.
Transitive. Suppose C3 (A=n3, F=f3) includes C2 (A=n2, F=f2) includes C2
(A=n2,F=f2) By Theorem 1, n3 >= n2 , n2 > n1 , f3 (x) = f3 (y) implies f2 (x) = f2 (y)
and f2 (x) = f2 (y) implies f1 (x) = f1 (y) , for all block x and y. Since both
relations “>=” and implies are transitive n3 >= n1 f3 (x) = f3 (y) implies f1 (x) =
f1 (y). By Theorem 1 C3 includes C1.

QED

Next Hill(1987) considers caches using set mapping functions of the
form “h (x) rem s,” where h (x) is a hash function whose image if the set of all
block numbers, “rem” is the remainder operator, and s is the number of sets in a
cache, I show that set hierarchy holds between two such caches if and only if
the number of sets in the larger cache is a multiple of the number of sets in the
smaller cache.
Theorem 3.3

Set hierarchy holds, that is f2 (x) = f2 (y) implies f1 (x) = f1 (y), for set
mapping functions of the form (x) rem si if and only if s1 divides s2.
Proof

=> Suppose set hierarchy holds, that is, h(x) rem s2 (y) rem s implies h
(x) rem s1h(y) rem s1. Suppose s1 does not divide s2 then s2 rem s1 =k where
k!=0. Let h(x) = s1, s2 and h (y) =s2 (s1+1). Hill(1987) knows that there exist
some block numbers x and y for which the above is true, because he requires
the image of hash function h be the set of all block numbers. For these values
of h (x) and h (y), h (x) rem s2 =h (y) rem s2 = 0 but h(x) rem s1 = 0 and h (y)
rem s1 = s2 rem s1 = k where k != 0. Thus, h(x) rem s 2= h (y) rem s2 is true
while h(x) rem s1 = h (y) rem s1 is not. A contradiction, There fore, s1 must
divide s2 for set hierarchy to hold.

 66

<= Suppose s1 divides s2. By definition of divides, s2 = ns1 for some integer n.
If h(x) rem s2 = h(y) rem s2 , then h(x) =x’ s2 + k and h (y) =y’s2+K for some
integers x’ ,y’ and k. Substitution yields h(x) = x’ns1 + k and h(y) = y’ns1 + k.
By definition of remainder,h(x) rem s1 = h(y) rem s1 = k. Thus h(x) rem s2 = h
(y) rem s1 implies h (x) rem s1 = h (y) rem s1 or set hierarchy holds.

QED.
Theorem 3.3 allows us to prove that inclusion holds for many practical

direct mapped caches Ci, including those using bit selection, Consider a series
of direct mapped caches ci , where each cache uses set mapping function fi (x)
= h (x) rem ci and each ci+1 divides C. By theorem 3.3 set hierarchy holds
between each pair of caches. Since set hierarchy holds and all associativities
are equal (to one). Inclusion holds between each pair of caches by Theorem I.
Since inclusion is a partial ordering (Theorem 3.2), inclusion holds between all
caches in the series, The above applies to series of direct mapped cache that use
bit selection, because for such caches h (x)=x and each ci divides ci+1, because
both are powers of two. Consequently inclusion holds between direct mapped
caches that use bit selection.

Since inclusion holds for many direct mapped caches and inclusion can

be used to make simulations run more rapidly, Hill (1987) develops an
algorithm for simulating direct mapped caches that obey inclusion, which is
presented in the next section.

3.10.2 Simulating Direct Mapped Caches with Inclusion.

The section introduces forest simulation for evaluating direct mapped
caches that have the same block size and obey inclusion. Like stack simulation,
forest simulation takes advantage of inclusion by searching for a block from the
smallest to largest cache. When a block is found, a hit can be implicitly
recorded in all larger caches. Forest simulation is so named because it uses a
forest (a set of disjoint trees) rather than a stack to store cache blocks.

Let the direct mapped caches be named C1 C2… CL. Assume that each cache C
has c block frames and uses set mapping function rem c. While forest
simulation works for arbitrary set mapping functions of the form rem c. Let 1 <
c < c < …<c and c for I=1,L-1. By the argument presented after Theorem 3,
inclusion holds for these caches.

The key data structure in forest simulation is a forest of L levels. The
number of trees in the forest is equal to the number of blocks in the smallest
cache, c. The c nodes of level I represent the blocks in cache c1. The branching
factor between two levels is equal to the cache size of the larger level, divided
by the cache size of the smaller level ci+1 / ci . The leaves represent the blocks in
the largest cache, c. This forest can be implemented as a heap containing twice
as many nodes as there are blocks in the largest cache, since ci+1 / ci <= 2 for all
I implies i=1∑L ci is less than 2* cL

 . For example, the heap location of block x

 67

a cache of c blocks using set mapping function f can be calculated with f (x) +
c. Figure 3.20 shows an example forest simulation forest.

Figure 3.21 Forest Simulations. This figure displays the forest for caches of size 1, 2,
4 and 8 blocks. This forest contains only one tree, because the smallest cache contains
only one block. This tree is a binary tree, because each cache in this example is twice
as large as the next smaller cache. In this example we assume blocks are mapped to
block frames with bit selection. Each node holds the information for one block frame
in a direct mapped cache. The block at the root of the tree has no block number bits
constrained, because a one block direct mapped cache can hold any block. This
illustrated with a t representing arbitrary high order bits of the block number and
three x’s representing don’t cares for the three low order bits. The tags txx0 and txx1
in the nodes of level two indicate that the blocks that can reside in these nodes are
constrained to have even and odd block numbers, respectively,. Similar rules with
more bits constrained apply to the rest of the levels.

Forest simulation works as follows and as is illustrated in Figure 3.21.

On each reference, the algorithm selects the tree corresponding to the set of the
reference in the smallest cache. Then it searches.

 68

Figure 3.22 Forest Simulation Example .The top tree (a) depicts the forest of Figure
3.20 after a series of references. Information in the tree tells us that block 6 is in a
cache of size one block: blocks 6 and 5 are in a direct mapped cache of size two:
blocks 4.6,5, and 3 are in a direct mapped cache of size four: and blocks 0 through 7
are in a direct mapped cache of size eight.
Let the next reference be to block 4. A path from the root to a leaf is determined using
the set mapping function for each cache (here bit selection is assumed). A search
begins at the root and stops when block 4 is found. All nodes encountered in the search
that do not contain block 4 are modified to do so. The blocks on bold are examined to
find block 4. Since block 4 is located at level 3, caches 1 and 2 miss and caches 3 and
4 hit.
The bottom tree (b) shows the tree after this reference has been processed. The nodes
in bold now contain the referenced block.

Figure 3.23 Forest Simulation Storage

Figure 3.24 Forest Simulation Storage

 69

For the referenced block beginning at the root of the tree. The path of

the search is determined by the set of the reference in each cache. Any time a
node is encountered that does not contain the reference, the node is updated to
contain it. The processing of a reference stops when the reference is found, or
after a leaf node has been modified. If the reference is found at level i, a
counter distance [i] must be updated.

Figure 3.23 and 3.24 show the pseudo-code for forest simulation. Forest

simulation is efficient because it uses inclusion and direct mapping. It uses
inclusion in the same way as stack simulation, i.e., by ending the processing of
a reference when it is found in a cache, regardless of how many larger caches
are being simulated. Direct mapping implies that a block can reside in only one
block frame in a cache, Forest simulation benefits from direct mapping by
examining only that one block frame per cache. In contrast, a simulation of set
associative caches must often search more than one block frame per cache size
of interest.

As with stack simulation, the exact storage required for a forest

simulation of CPU caches is small relative to main memory sizes, The storage
required is dominated by the size of the forest, which can be implemented in a
heap of 2c nodes, where c is the number of blocks in the largest cache
simulated (see figure 3.22). The storage required for simulating direct mapped
caches with 32 byte blocks of sizes 128 K, 256K, 512 K and 1M byte, for
example, is approximately 500 K bytes, given node sizes of four to eight bytes.

Next Hill (1987) shows the time used to process one reference in a
forest simulation of direct mapped caches, ci, is;

Where m is the miss ratio of cache c and each iteration requires unit
time. The power of this analysis is limited, however, because several constant
factors are difficult to calibrate.

The time to simulate each reference is determined by how many times
the loop is executed for each reference, plus a constant amount of overhead for
reading trace addresses. Forest simulation executes one iteration per cache
(level in the forest) up to a maximum of L levels. If one iteration requires unit
time, the execution time per reference is:

 Rearranging terms yields

 70

This equation can be simplified by manipulating the third term L ∑ i=2
i(mi-1), so that the mi-1‘s are changed into mi ‘s . This manipulation changes
the index variable from to replaces j.s with I +1s, simplifiles,and changes
summation bounds to yield:-

Substituting this result back the time per reference equation produces:-

which reduces to:

Equation 3.4

Readjusting summation limits yields a run time per reference for forest
simulation of:

The miss ratios for L direct mapped caches can also be computed with
L separate or concurrent stack simulations of individual caches. In separate
simulation, cache C1 is simulated with all references, then cache C2 is simulated
with all references, and so forth, until cache CL is simulated with all references.
In concurrent simulation all caches are simulated at the same time with each
reference processed by all the caches before the next reference is processed.
Concurrent simulation is faster than separate simulation, but requires more
storage. It is faster, because each trace address is read once rather than times. It
uses more storage, since blocks for all caches must be simultaneously resident.
Since we care about run time and not about storage, we consider only
concurrent simulation further.

 71

In concurrent simulation each address is read once, and unit processing

is required for each level. The run time per reference is therefore:

L + O (1)

This time is greater than the time for forest simulation,

1 + i=1∑L-1 mi + O(1)’

For practical (not equal to one) miss ratios.

3.10.3 Simulating Set-Associative Caches without Inclusion.

Stack and forest simulation will simulate a series of caches with one
pass through an address trace. Both methods are “efficient,” because they take
advantage of inclusion. Since inclusion does not hold for caches of all sizes and
associativities (see Theorem 3.1), algorithms using inclusion must constrain the
series of caches simulated (see figure 3.24). Hill (1987) describes an algorithm,
which he calls all associativity simulation that does not use inclusion, but can
simulate set associative caches with the same block size, that do no prefetching,
and use LRU replacement, with one pass over an address trace. With it, he can
cover the design space of figure 3.25 in 3 simulations (one per block size)
instead of 15 runs of stack simulation .The algorithm described here permits the
set associative caches use of arbitrary set mapping functions. A literature search
revealed that a version of all associativity simulation, where all set mapping
functions use bit selection, was developed by researchers at IBM
(Mattson(1970) , Trai(1971).

Figure 3.25 Cache design Space. This figure displays a portion of the cache design
space: cache size, block size and associativity. The solid lines on the left connects
cache designs that can be simulated with a single stack simulation. Circles indicate
simulations of single cache designs. The solid lines on the right connect cache designs
that can be simulated with single forest simulation.
Covering portions of the cache design space can require many simulations even
though stack and forest simulation simulate several caches at a time. In this example,

 72

15 stack simulations are needed, and 3 forest simulation cover half the space but can’t
simulate the rest of it. Alternatively, three all associativity simulations (one per block
size) cover the same space.

All associativity simulation does not take advantage of inclusion,

because inclusion does not hold for many groups of set associative caches. For
example: (a) direct mapped and two way set associative caches of any size do
not include any four way set associative caches, because, the former have
smaller associativities; (b) a four way set associative cache of c blocks does not
include a direct mapped cache of c/2 blocks even if both use bit selection,
because x rem c/4 = y rem c/4 does not imply x rem c/2=y rem c/2 (e.g.=0 and
y=c/4); and (c) it is not possible for a cache c2 to include a different cache c1 of
the same size, because C2 can never contain any block not in C1and still
contain all the blocks of cache C1.

Hill(1987) now develops all associativity simulation from stack

simulation through successive refinements. An all associative simulation run
can simulate caches that use different set mapping functions, fi(x) and have
different capacities. The same caches can be simulated with concurrent stack
simulations. This approach requires a stack simulation for each different set
mapping function. For instance, if the

Figure 3.26 Stacks for caches with one or two sets using bit selection. This figure
displays how the stacks for caches with one (fully associative) or two sets using bit
selection (f (x)=0 and f (x)=x rem 2) could look during a simulation. The stack for one
set contains a list of all the block numbers recently referenced, listed from most
recently referenced to least recently referenced. we call this stack a fully associative
stack, because it models fully associative caches. The stacks for two sets contain
similar lists for the even and odd block numbers. 2L stacks are required to simulate

 73

with bit selection for 2L sets. A block resides in a cache of C blocks with one set if and
only if the block is in the fully associative stack at a distance of less than or equal to c.
A block resides in a cache of c blocks with two sets if and only if it is in the
appropriate stack at a distance of less than or equal to c/2. A block resides in a cache
of c blocks with 2L sets if and only if it is in the appropriate stack at a distance of less
than or equal to c/2L.

caches to be simulated use bit selection with 0, 1 and 2 bits, the following
stack simulations are sufficient: a stack simulation with one stack for caches
with f1 (x) = 0, a stack simulation with two stacks for caches with f2 (x) =x rem
2 and a stack simulation with four stacks for caches with f3 (x)=x rem 4. Figure
3.26 illustrates how the stacks for one and two sets with bit selection could look
during concurrent stack simulation. In this example both sets of stacks contain
the same nodes. In practice when stack sizes are bounded by the largest cache
size of interest, the sets of stacks will (usually) contain slightly different nodes.
For example node 8 would be missing from stacks for two sets if caches of
interest are restricted to eight total blocks (four per set). Nevertheless, many
blocks will be shared by both caches, since similar caches have similar hit
ratios.

Storage can be reduced in this simulation by allocating a single node per
block and including in the node a next pointer field for each group of stacks
being simulated. Figure 3.27 illustrates how the nodes of the single fully
associative stack can be linked with a second set of next pointers to form the
stacks for caches with two sets.

While reducing storage is not important, this node sharing holds the key

to reducing time. Observe that all the pointers in the stack point down. This is
always the case for LRU replacement, because the order of two blocks in any
stack is a function of references to those two blocks, independent of all other
references. For example, stack 0 rem 2 in Figure 3.26 indicates that block 6 was
referenced more recently than block 4. Block 6 must also be above block 4 in
the fully associative stack, because intermediate references to blocks 3 and 5 do
not effect whether block 6 was referenced more recently than block 4. Since all
pointers point down, the fully associative stack contains all the information

 74

Figure 3.27 Concurrent Stack Simulation with Shared Storage. This figure illustrates a
single set of nodes can be used to represent the stacks for caches using bit selection
with one and two sets. A second next pointer field must be added to each node so that
it can be linked into a second stack.. The stack for stack simulations with L different
set mapping functions can share one group of nodes if each node contains storage for
L different next pointers. This reduces storage requirements with respect to using
separate stacks, but does not reduce simulation time
.
necessary to determine the order of nodes in all other groups of stacks. Thus,
the stack for reference x with set-mapping function f (x) can be constructed by
finding all blocks y in the fully-associative stack where f (y) =f (x) and listing
these blocks in the same order as they are encountered in the fully-associative
stack.

The goal of this research is to find stack distances, and hence miss ratios,

however, not construct all the groups of stacks. The following algorithm
computes stack distances for set-associative caches of different capacities and
set-mapping functions fi through fL directly from the fully-associative stack..
When simulation completes, each counter distance (i,k) holds the number of
references to stack distance k with set-mapping function fi. For each reference
to block number x {

Zero the L total_above counters.
Look at nodes y in the fully-associative stack until x is found or the stack
exhausted. If y=x {
Increment the L total_above counters, move x to the top of the stack, and
increment distance (i, total_above[i]) for i =1 to L.

 } else {
 For i=1 to L, increment total_above [i] if fi (x)=fi (y).
 }

 If the stack is exhausted without finding x, push x on the top of the stack.

 75

}.

Figure 3.28 illustrates the algorithm operating on one reference. Figures 3.29
and 3.30 give pseudo-code for this algorithm.

All-associativity simulation can be improved further if I restrict the fi’s so that the set
hierarchy condition holds. Recall that this condition is:

fi+1(x)=f i+1 (y) implies f i (x)=f i (y).

Figure 3.28 All-Associativity Simulation Example. This figure illustrates how all-
associativity simulation processes a reference to block 2 for caches with set-mapping
functions f1 (x)=0, f2(x)=x rem 2, and f3(x)=x rem 4. Counter total_above (i) always
contains the number of blocks encountered so far stack fi(2), since block 2 is
referenced. Each row of the figure shows that total_above (i) is incremented in
response to block y in the stack if and only if i(y) =fi(2).

Processing stops when the reference is found (block 2). The stack distance of block 2
in a cache with set-mapping function fi is total_above[i]. The stack distances found
for block 2 are 7,4, and 2, respectively.

 76

 Figure3.29. All-Associativity Simulation Storage.

In all-associativity simulation with arbitrary fi ‘s, it is necessary to know which
of any two blocks are more recently referenced. Consequently, a total ordering
of the previously referenced blocks must be

 77

Figure 3.30 All Associativity Simulation

maintained with a fully-associative LRU stack. Since the set hierarchy
condition also implies:

 f1(x)!=f1 (y) implies fi (x)!=fi (y) for i=1,L,

two blocks in different f1-stacks will never be compared. This means all-
associativity simulation with set hierarchy need only maintain the LRU stacks
for each element in the image of f1. Simulating with multiple stacks is faster
than simulating with one, because the average number of active blocks one
must look through to find a block is smaller, since active blocks are spread
across many stacks. This reduction is significant since, the number of stacks
for practical CPU cache simulations is often greater than 100. The number of
stacks used in a simulation of the VAX-11/780’s cache, for example, is 512.

 78

Another benefit of set-hierarchy is that a simulation need not examine fi
(x)= fi(y) for i=L down to 1, since fi+1 (x)= fi+1 (y) implies fi (x)= fi (y). Instead
of iterating through all L set-mappings, one can begin with fL and stop as soon
as fi (x)= fi (y). For instance, if x and y are in the same set in the largest cache
simulated, i.e., fL (x)= fL (y) ,the number of iterations is reduced from L to one.
Additional time can be saved if one increments above(i) only for the largest i
for which x and y map to the same set, rather than incrementing total_above[i]
for each i where fi (x)= fi (y). When x is found or the stack exhausted.

Figure 3.31. All-Associativity Simulation with Set Hierarchy Example. This figure
illustrates how all-associativity simulation with set hierarchy processes a reference to
block 2 by scanning the stack until block 2 is found (or the stack is exhausted). For
each block before the reference is found: (a) The algorithm calculates the largest set-
mapping function, fi, for which the reference and the stack node are in the same set.
For bit selection, the calculation reduces to computing the number of least-significant
bits that match between the block numbers of the reference and the stack node. (b) it
increments above(i). Once the reference is found, above (L) is incremented, the
reference’s stack distance with set-mapping function fi is k=1∑L above [k].

 79

Figure 3.32. All Associativity Storage w/ Set Hierarchy

 80

Figure 3.33 All Associativity Simulation w/ Set Hierarchy

 81

Figure 3.31 gives an example of all associativity simulation using set hierarch.
Figures 3.32 and 3.33 give the pseudo-code for this improved algorithm.

All-associativity simulation can be made to run even faster in practice if
the fi’s are all bit selection. Bit selection set-mapping functions make it easy to
compute the largest i for which x and y map to the same set. The computation
reduces to finding the minimum of L and the number of least significant bits
that match between x and y.

Hill (1987) has defined all-associativity simulation for set-associative
caches that use LRU replacement. He now shows that it does not work with
two other commonly-implemented replacement algorithms, FIFO and
RANDOM. All-associativity simulation does not work with FIFO replacement,
because all associativity simulation is based on stack simulation, and FIFO is
not a stack algorithm.

Figure 3.34 shows by example that all-associativity simulation does not
work with RANDOM replacement even though RANDOM is a stack algorithm.
The example illustrates the following general problem. Any replacement
algorithm may reorder blocks in the set of a reference between the top of stack
and the original position of the reference, so long as no blocks other than the
reference move up. In all-associativity simulation, multiple set-mapping
functions are concurrently simulated. Therefore, some blocks can be in the set
of a reference with one set-mapping function and not in the set of a reference
with another set-mapping function. Incorrect behaviour occurs any time blocks
not in the set of the reference are reordered. LRU prevents such blocks from
being reordered by never changing the order of unreferenced blocks.

While Hill (1987) has shown that all-associativity simulation fails with
FIFO and RANDOM, he has not shown that all-associativity simulation fails
with all replacement algorithms other than LRU. One way to show this is to
prove the following. Consider an all-associativity simulation with two set-
mapping functions, f1 ! = f2. (Recall that all-associativity simulation reduces to
stack simulation if only one set-mapping function is used). The stacks in all-
associativity simulation are updated incorrectly in response to a reference x if
blocks not in f1 (x) or not in f2 (x) are reordered. While he has not done it, one
can demonstrate that LRU replacement is necessary for all-associativity
simulation by showing that any replacement algorithm which obeys the above
constraint never reorders any unreferenced blocks, and is therefore equivalent
to LRU.

The storage for all-associativity simulation is dominated by storage for
the stack nodes (see Figure 3.31). Like unbounded stack simulation, the storage
required is proportional to the number of unique blocks in a trace, Nδ∞. Even
for a long trace, however, the storage required is small relative to modern main
memory sizes. A simulation of 10 million references with 200 thousand unique
blocks requires only 1.6M bytes of storage if it uses two words per block.
While stacks in stack simulation can be bounded by the largest associativity of
interest, stacks in all-associativity simulation cannot be bounded, because these

 82

stacks are used to construct stacks for other set-mapping functions. Consider a
fully-associative stack and stacks for even and odd blocks. The fully-
associative stack cannot be bounded, because the first odd block can reside at
an arbitrary large distance in the fully-associative stack.

The run-time (per reference) of all-associativity simulation with set
hierarchy centres around how many times the “while” loop is executed (see
Figure 3.32). Let δk be the probability that a reference is found at stack depth k,
and let δ∞ be the probability that a reference is not found. References at stack
distance k are found in k iterations. References at stack distance ∞ are found by
looking through the entire stack. The size of the stack is equal to the number
of distinct blocks previously referenced, which is O(Nδ∞), where N is the
number of blocks in the address trace. On each iteration in all-associativity
simulation, a stack node must be compared to the reference to see if they are
the same. If not, additional work is required to find the maximum i for which
the reference and the stack node are in the same set. Let the average amount of
this extra work be called match_compute. Whenever a reference is found at
distance k, unit work must be done on k iterations and match_compute work on
all but the last iteration. In addition, each reference must be read from a trace
file, L above counters initialized and summed to form the stack distances. We
gather the per-reference overhead in 0(1). Thus, time to process a reference is
of order:

Figure 3.34. Random Replacement Does Not Work. This figure shows that all-
associativity simulation does not work with RANDOM replacement. Part(a) illustrates
a fully-associative stack after a series of references (left), and the pair of stacks for

 83

even and odd blocks implied by the fully-associative stack (right). Among other things,
the stacks imply that a two-block fully-associative cache contains blocks 0 and 2, and
a two-block direct-mapped cache contains blocks 1 and 2.

Let block 1 be referenced. RANDOM replacement in the two-block fully associative
cache requires that block 0 or block 2 be replaced with equal probability. Part (b)
shows block 0 replaced, while part (b’) shows block 2 replaced. The stacks in part (b)
are consistent, since RANDOM replacement coincidentally replaces the least recently
used block..

The state of the fully-associative stack in part (b’), however, implies that block 0 is in
the two-block direct-mapped cache. The state of the stacks is inconsistent, since block
0 was not originally in the two-block direct-mapped cache, block 0 was not referenced,
and prefetching is not allowed. Therefore the fully-associative stack under RANDOM
replacement cannot be used to infer the positions of blocks in the even and odd stacks,
which demonstrates that all-associativity simulation does not work with RANDOM
replacement.

K=1∑∞[k +(k-1)* match_computer]+

δ∞*(N∞)*[1+ match_computer] + o (L) + o (1)

The first term is the time to process previously referenced blocks; the
second is for previously unreferenced blocks; the third and final terms are for
manipulating counters and reading the reference, respectively.

To see how this run-time compares with stack simulation, let us assume
the all set-mapping functions are bit-selection. For this to be possible with a
32-bit address, L must be less than 32. If the low-order bits of block numbers
for recently-referenced blocks are independent and equally likely to be zero or
one, then the expected number of least-significant bits that match is less than 1
(1/2+1/4+1/8+…). Since the loop computing match iterates until a mismatch is
found, the expected number of iterations is two . Substituting two for
match_compute yields:

Which should not be more than three times greater than the time for
stack simulation.

 84

In practice the relative difference in run times should be smaller,
because it is expected that the O(32) term to be small compared to other terms,
δi to be near one (the direct-mapped hit ratio near one) often saving any
match_compute overhead, and the per-reference overhead O(1) to be relatively
large.

3.11 Comparing Actual Simulation Times

 Hill (1987) compares the simulation times of implementations of stack, forest,
and all-associativity simulation. While the exact quantitative results of this section do
not necessarily apply to other implementations, there is no reason to believe that gross
comparisons do not generalize. The advantage of this data over the run-time analysis
presented earlier is that these results apply to at least one set of implementations of
these algorithms.

 He implemented stack, forest and all-associativity simulation in C under UNIX
4.3 BSD. Stack and forest simulation were added to a general cache simulator, called
DineroIII (Hill(1987)85). DineroIII originally contained 1250 C statements, as
measured by the number of source lines containing a semicolon or closing brace.
Adding stack simulation increased total code size by 150 statements, adding forest
simulation, 220 statements. Stack simulation is implemented using linked lists and
without using a hash table to detect previously unreferenced blocks. The forest
simulation implementation restricts the set-mapping functions to be the block number
modulo the cache size in blocks, a generalization of bit selection. Hill (1987)
implemented all-associativity simulation in a separate program, called Tycho,
containing 800 C statements and having far fewer options than DineroIII. Tycho
restricts the set-mapping functions to be bit selection.

 He estimates simulation time with the elapsed virtual time (user plus system)
returned by the UNIX 4.3 BSD system call getrusage on an otherwise unloaded Sun-
3/75 with 8M of memory and no local disk. Trace data is read from a file server via an
Ethernet. He gives results for four traces from four different architectures, despite
finding that results are fairly insensitive to program traces. All caches simulated have
32-bytes blocks, do no prefetching, use LRU replacement, are mixed (data and
instruction cached together), and use bit selection.

 He begins by verifying that implementations of the three algorithms have
similar run-times for simulating a single cache, using two methods. First, he ran each
implementation using a trace of 1 million identical addresses so that all references,
expect the first, hit at distance one. Results show that the elapsed virtual times of forest
and stack simulation differ by 0.1 percent, while all-associativity simulation is 3
percent faster. All-associativity simulation is faster, because it is implemented in a
different program, Tycho. It is not surprising that Tycho is slightly faster than
DineroIII which is a general cache simulator. Even through DineroIII’s additional
features are not used in these simulation runs, DineroIII uses some execution time to
fall through the if statements that guard the additional features.

 85

 Second, Hill (1987) compares the algorithms simulating a 16K-byte direct-
mapped cache with each of four traces. A stack and an all associativity of a single
16K-byte four-way set-associative cache are also comparable.

 Since Hill (1987) implementations of these algorithms have similar run-times
for simulating single caches, the comparisons of multiple cache simulations that
follows are meaningful, because we know that simulation time differences are not due
to per reference overheads. Therefore we just take the advantage of Hill’s research and
corresponding results and implement them in own devised algorithms for
multiprocessor environments.

 3.12 One-Pass Simulation Technique for Multiprocessor Set-Associative Caches.
The techniques presented in the previous sections could be further improved if

one were to extend the uniprocessor one-pass algorithm in Section 3.8.1 to
multiprocessors. In this section we discuss the difficulty of extending this algorithm to
multiprocessors with invalidation protocols and describe the feasibility for distributed-
write protocols.

For multiprocessors and an invalidation-based coherence protocol, the

algorithm in Figure 3.33 requires modifications to handle shared reads and shared
writes. A shared read will cause a reset of the requested block’s dirty level since the
block will be clean after being read by another cache. A shared write will cause a
deletion and will leave a “hole” in the stack. This hole cannot be deleted since that will
change the stack level of all lower blocks. We call the deleted block a marker. For fully
associative cache simulations, a marker will remain at the same position in the stack
until another block below the marker is accessed. In this case the marker propa - gates
to the position of the newly accessed block while the block is moved to the top of the
stack.

For a set-associative cache simulation algorithm , a deletion also leaves a
marker in the stack. However, the propagation of a marker is a complicated Matter. the
caches with several different numbers of sets, say 2, 4 and 8, are represented by a
single stack. Now, when a block below the marker is accessed, it can be, for example,
in the same set with the deleted block for caches with 2 and 4 sets but not for 8 sets.
Therefore, from the viewpoint of 2 and 4-set caches, the marker needs to be propagated,
but for 8-set caches the marker should stay. Thus, a marker can become multiple
markers, and keeping track of their propagations complicates the one-pass algorithm.

This problem is not present for multiprocessors using distributed- write

protocols. This is because a shared write will update instead of invalidate other copies
of the requested block. That is, the effect of a shared write by other processors is to
reset the dirty level of the block, as a shared read would do. Thus, the one-pass
algorithm can be straightforwardly extended for multiprocessors using distributed-
write protocols.

3.13 Cache Coherence Protocol for Multiprocessor Set-Associative Caches.

In contemporary multiprocessor systems, it is customary to have one or two
level of cache associated with each processor. This organisation is essential to achieve
reasonable performance. It does however; create a problem known as the cache

 86

coherence problem. The essence of the problem is this: Multiple copies of the same
data can exist in different caches simultaneously, and if processors are allowed to
update their own copies freely an inconsistent view of memory can result. The are two
common write policies:-

• Write back: Write operations are usually made only to the cache. Main
memory is only updated when the corresponding cache line is flushed
from the cache.

• Write Through: All write operations are made to main memory as well
as to the cache, ensuring that main memory is always valid.

It is clear that a write back policy can result in inconsistency. If two caches

contain same line, and the same line is updated in one cache, the other cache will
unknowingly have an invalid value; subsequently reads to that invalid line produce
invalid results. Even with the write through policy, inconsistency can occur unless
other caches monitor the memory traffic or receive some direct notification of the
update.

In this section we will briefly survey various approaches to cache coherence

problem and then focus on the approach that is most widely used: the MESI protocol.

For any cache coherence protocol, the objective is to let recently used local

variables get into the appropriate cache and stay there through numerous reads and
writes, while using the protocol to maintain consistency of shared variables that might
be in multiple caches at the same time. Cache coherence protocols have generally been
divided into software and hardware approaches. Some implementations adopt a
strategy that involves both software and hardware elements. Nevertheless, the
classification into software and hardware approaches is still instructive and commonly
used in surveying cache coherence strategies.

Software Solutions. Software cache coherence schemes attempt to avoid the need for
additional hardware circuitry and logic by relying on the compiler and operating
system to deal with the problem. Software approaches are attractive the overhead of
detecting potential problems is transferred from run time to compile time, and the
design complexity is transferred from hardware to software.

• Hardware Solutions. Hardware based solutions are generally referred to

as cache coherence protocols. These solutions provide dynamic
recognition at run time of potential inconsistency conditions. Because
the problem is only dealt with when it actually arises, there is more
effective use of caches, leading tom improved performance over a
software approach. In addition these approaches are transparent to the
programmer and the compiler reducing the software development
burden.

Hardware schemes differ in number of particulars, including where the
state information about data lines is held, how that information is
organised , where coherence is enforced, and the enforcement

 87

mechanisms. In general hardware schemes can be divided into two
categories: directory protocol and snoopy protocol.

• Directory Protocol. Directory protocols collect and

maintain information about where copies of lines
reside. Typically there is a centralized controller that
is the part of the main memory controller, and a
directory that is stored in main memory.

• Snoopy Protocol. Snoopy protocols distribute the
responsibility for maintaining cache coherence
among all of the cache controllers in a multiprocessor.

3.13.1 The MESI Protocol.

The data cache includes two status bits per tag, so that cache line
can be in one of four states:

• Modified: The line in the cache has been modified
(different from main memory) and is available only
in this cache.

• Exclusive: The line in the cache is same as that in the
main memory and is not present in any other cache.

• Shared: The line in the cache is the same as that in
main memory and may be present in another cache.

• Invalid: The line in the cache does not contain valid
data.

Now we discuss different situations of read and write.
• Read Miss. When a read miss occurs in the local

cache, the processor initiates a memory read to read
the line of main memory containing the missing
address. The processor inserts a signal on the bus that
alerts all other processor/ cache units to snoop the
transaction. There are number of possible outcomes:

o If one other cache has a clean (unmodified
since read from memory) copy of the line in
the exclusive state, it returns a signal
indicating that it shares this line. The
responding processor then transitions the state
of its copy from exclusive to shared, and the
initiating processor reads the line from main
memory and transitions the line in its cache
from invalid to shared.

o If one or more cache have a clean copy of the
line in the shared state, each of them signals
that it shares the line. The initiating processor
reads the line in its cache from invalid to
shared.

o If one other cache has a modified copy of the
line, then that cache blocks the memory read
and provides the line to the requesting cache

 88

over the shared bus. The responding cache
then changes its line from modified to shared.

o If no other cache has a copy of the line (clean
or modified), then no signals are returned.
The initiating processor reads the line and
transitions the line in its cache from invalid to
exclusive.

• Read Hit. When a read hit occurs on a line currently
in the local cache, the processor simply reads the
required item. There is no state change : the state
remains modified, shared or exclusive.

• Write Miss. When a write miss occurs in the local
cache, the processor initiates a memory read to read
the line of main memory containing the missing
address. For this purpose the processor issues the
signal on the bus that means read-with-intent-to-
modify (RWITM). When the line is loaded it is
immediately marked modified. With respect to other
caches, two possible scenarios precede the loading of
the line of data.

First some other cache may have modified copy

of this line (state = modified). In this case the alerted
processor signals the initiating processor that another
processor has a modified copy of the line. The
initiating processor surrenders the bus and waits. The
other processor gains access to the bus, writes the
modified cache line back to main memory, and
transitions the state of cache line to invalid (because
the initiating processor is going to modify this line).
Subsequently the initiating processor will again issue
a signal to the bus of RWITM and then reads the line
from main memory, modify the line in the cache and
mark the line in the modified state.

The second scenario is that the other cache has a

modified copy of the requested line. In this case, no
signal is returned, and the initiating processor
proceeds to read in the line and modified. Meanwhile,
if one or more caches have a clean copy of the line in
the shared state, each cache invalidates its copy of
the line and if one cache has a clean copy of the line
in the exclusive state, it invalidates its copy of the
line.

• Write Hit. When a write hit occurs on a line currently
in the local cache the effect depends on the current
state of that line in the local cache:

 89

o Shared: Before performing the update, the
processor must gain exclusive ownership
of the line. The processor signals its intent
on the bus. Each processor that has a
shared copy of the line in its cache
transitions the sector from shared to
invalid. The initiating processor then
performs the update and transitions its
copy of the line from shared to modified.

o Exclusive: The processor already has
exclusive control of this line so it simply
performs the update and transitions its
copy of the line from exclusive to
modified.

o Modified: The processor already has
exclusive control of this line and has the
line marked as modified and so it simply
performs the update.

All aspects of cache coherence have been incorporated in the

algorithm that is discussed in the section 3.15. To implement these
aspects a special structure has been introduced in the algorithm that
simulates the cache controller and maintains the coherence. Here
instead of generating signals, the simulated processors simply set the
relevant bits in the common structure.

3.14 Deletion Issues in Multiprocessor Set-Associative Caches.

As mentioned in section 3.12 for multiprocessors and an invalidation-based
coherence protocol, when a shared write causes a deletion, there raise certain issues
regarding propagation of markers. Let us discuss these issues one by one and try to
find solution for these problems. Since the hole or the marker can not be straightaway
deleted for the reasons that it is to be catered for certain caches and not for others. A
deliberate research on the issue leads us to following theorems.

Theorem 3.4. For a deleted block ‘D’ and a referenced block ‘R’ such that ‘R’
is a miss in the cache and ‘n’ least significant bits of both ‘D’ and ‘R’ match
then for all further references ‘D’ will not be considered for all 2 i set caches
where i = 1 to n, but it will be accounted for all 2 j set caches where j>n.

Example. We verify the above theorem by considering an example.

Figures 3.35 (a), (b) and (c) show a 2 set and 4 set (real caches), and the

simulating stack respectively, after a sequence of references. Assume that block ‘8’ has
been invalidated and thus it should be deleted for some caches while it should not for
others. Let the new reference is made for block ‘14’ which is a miss and has to be
brought in the cache from main memory. Now in 2 set cache ‘14’ comes on the top of
the stack and subsequent pushes fill up the gap thus the 2 set (real) cache holds a

 90

sequence of references as shown in figure 3.36(a). Similarly the state of 4 set (real)
cache and the simulating stack are also shown in figures 3.36 (b) and (c) respectively.

Figure 3.35 Deletion Issue (In case of Miss : Initial States)

 Let new reference is made for block ‘12’ which is a hit and LRU just demands
that it should come at top of the stack. But we are also keeping a record of all those
caches for which it is a hit and for which it is not by maintaining the distance counters.
A keen observation of the real and simulated caches makes it clear that ‘12’ is a hit at
stack distance 6 in 2 set (real) cache and at stack distance 3 in 4 set (real) cache but in
the simulating stack it is a hit at stack distance 7 for 2 set cache and at stack distance 3
for 4 set cache. It means that the hole should not be catered for a 2 set cache but it
should be catered for a 4 set cache.

1

5

3

2

4

6

8

10

12

2 set (real) cache

(a)

4 set (real) cache

(b)

1

5

2

6

10

3

4

8

12

12

5

4

3

6

10

8

1

2

Simulating Stack

marker

(c)

 91

 Figure 3.36 Deletion Issue (In case of Miss : States after Hole Propagation)

 If we observe the bit patterns for digits ‘8’ and ‘14’ (i.e. 01000 and 01110),
we’ll find that only the first bit matches, it means these two references can fall in the
same set only in the case of 2 set cache and hence ‘14’ can fill the hole created by
invalidation of ‘8’ in 2 set cache only. Consequently if any further references are made
then the hole should not be catered for any more in the 2 set cache but it should be
catered for all other set-associative caches.

 On the other hand, if the new reference is made for ‘28’ instead of ‘14’ then the
hole created by ‘8’ has to be filled in 2 set as well as 4 set cache. If we match the least
significant bits (i.e. 00000 and 11100) then we find last two bits similar (i.e. n = 2) and
we are not considering the hole for 2 set (21 set) and 4 set (22 set) caches which is
again in accordance with our theorem.

 Theorem 3.5. For a deleted block ‘D’ and a referenced block ‘R’ such that ‘R’
is a hit in the cache and ‘n’ least significant bits of both ‘D’ and ‘R’ match then for all
further references

(i) ‘D’ will not be considered for all 2 i set caches where i = 1 to n and it
will be accounted for all 2 j set caches where j>n.

(ii) Moreover a duplicate of ‘D’ will be accounted for all 2 i set caches

where i= 1 to n and will not be considered for all 2 j set caches where

1

5

3

14

2

4

6

10

12

2 set (real) cache

(a)

4 set (real) cache

(b)

1

5

14

2

6

10

3

4

8

12

10

2

5

4

3

8

6

14

1

Simulating Stack

(c)

12

marker

 92

j>n, provided that the duplicate occurs at the same place where ‘R’ was
previously residing.

Example. We verify the above theorem by considering an example

Figures 3.37 (a), (b) and (c) show a 2 set and 4 set (real caches), and the

simulating stack respectively, after a sequence of references. Assume that block ‘8’ has
been invalidated and thus it should be deleted for some caches while it should not for
others. Let the new reference is made for block ‘14’ which is a hit and has to be
brought in the cache from main memory. Now in 2 set cache ‘14’ comes on the top of
the stack and subsequent pushes fill up the gap thus the gap is pushed to a location
where block ‘14’ was residing previously. 2 set (real) cache, after the propagation of
the marker is shown in figure 3.37 (a). Similarly the state of 4 set (real) cache and the
simulating stack are also shown in figures 3.37 (b) and (c) respectively.

Figure 3.37 Deletion Issue (In case of Hit : Initial States)
 Let new reference is made for block ‘0’ which is again a hit and LRU just
demands that it should come at top of the stack. But we are also keeping a record of all
those caches for which it is a hit and for which it is not by maintaining the distance
counters. A keen observation of the real and simulated caches makes it clear that ‘0’ is
a hit at stack distance 8 in 2 set (real) cache (because the marker has moved to stack
distance 7) and at stack distance 4 in 4 set (real) cache. Moreover in the simulating
stack it is a hit at stack distance 8 for 2 set cache and at stack distance 4 for 4 set cache
which is in agreement to real caches. Still there is a problem because in 2 set (real)
cache the marker is at stack distance 7 and in 4 set (real) cache it is at stack distance 2

4 set (real) cache

(b)

1

5

2

6

10

14

3

4

8

12

0

2

4

6

8

10

12

14

0

2 set (real) cache

(a)

1

3

5

12

3

4

5

6

10

8

1

2

Simulating Stack

(c)0

14

marker

 93

for the fourth set. The current state of simulating cache (figure 3.38(c)) show that the
simulating stack is in agreement with 4 set (real) cache but not with 2 set (real) cache.
If in simulating stack we move the marker to stack distance 7 to bring it in agreement
with 2 set (real) cache then it no more remains in agreement with the 4 set (real) cache.

Figure 3.38 Deletion Issue (In case of Hit : States after Hole Propagation)

Here, basic issue is the decision for new location of the marker (hole) in the
simulating stack. This issue can be resolved if we duplicate the marker and move this
duplicate to the same location where we found the hit (as it actual happens in real
caches). By introducing two markers in the simulating stack we can bring our
simulating stack in accordance with the real caches (figure 3.38 (d)). The only
remaining problem is the decision as when to consider the original hole and when to
consider the duplicate.
.
 If we observe the bit patterns for digits ‘8’ and ‘14’ (i.e. 01000 and 01110),
we’ll find that only the first bit matches, this means that these two references can fall
in the same set only in the case of 2 set cache. Since we introduced the duplicate to
bring our simulating stack in agreement with the 2 set (real) cache it means that the
duplicate should be considered while simulating 2 set cache. Moreover, for the reasons
described while verifying Theorem 3.4, it is obvious that original marker must not be
considered while simulating a 2 set cache. Same principle should be followed for any
further references.

 On the other hand the original marker should be considered while simulating 4
set and 8 set caches but the duplicate must not be considered for these. Same concepts

4 set (real) cache

(b)

1

5

1
4

2

6

3

4

8
1
2
0

14

2

4

6

10

12

8
0

2 set (real) cache

(a)

1

3

5

10

2

3

4

5

8

6

14

1

Simulating Stack

(c)0

12

marker 10

2

3

4

5

8

6

14

1

(d)

8(D)

12

0

marker

duplicate
marker

Simulating Stack
after introducing
duplicate marker

 94

can be verified further by applying different sequences of references to M set caches,
where M can be any number.

 Above described theorems sufficiently cover all the cases of delete and give the
solution for placement of markers. In actual implementation of these concepts (which
will be covered in detail in next section) we have introduced an integer and we set its
bits to show whether to consider a marker or not. For instance, for the case of figure
3.36 (c) a bit pattern of [00000000000000000000000000000001] shows that the
marker should not be considered for a 2 way cache but it should be considered for rest
all caches. Similarly for the case described in 3.37 (c) a bit pattern
[11111111111111111111111111111110] reflects that the duplicate should be
considered for a 2 set cache and should be neglected for the rest of cache. These
concepts will be covered again in next section.

 The last vital point is the understanding that either of these theorems will
always apply on a sequence of references while dealing with shred writes in case of
multiprocessor based environments. If the next reference in the queue is a miss in
cache Theorem 1 will govern the changes in simulating stack, whereas if it is a hit
Theorem 2 will come in power.

3.15 Implementation of One-Pass Simulation Technique for Multiprocessor Set-
Associative Caches.
 After considering all the options available and after discussing different issues
of the trace driven simulations in uniprocessor based environments, now we are at a
stage where we can extend all those ideas to multiprocessor based environments. Here
we make certain assumptions and develop our algorithm, and consequently, our
software for the defined parameters only, however these algorithms are flexible enough
to incorporate further changes and modifications.
 We develop our algorithm for shared writes and we assume that already
‘treated’ traces are available for processing. We define ‘Treated’ traces as those which
are pre-collected and pre-reduced in the best possible manner. Secondly we assume
that there are 32 processors working parallel and are arranged in an array. We also
assume that each processor has its own private cache at level-1, whose minimum size
is 4 K byte. These parameters are not rigid and suitable modifications can be done for
any required changes. We also assume that minimum and maximum limits for line size
are dictated by the user. Same is the case with the degree of associativity which can
vary between 1 way (direct mapped) to 8 way (fully associative).

We implement our algorithms in “C” language to simulate multiprocessor set-
associative write back caches. The algorithms are in “C” like syntax for ease of
understanding and comprehension. An approach which is best used by experienced
programmers is to declare variable names which are self explanatory is also used here.
Sections 3.12, 3.13 and 3.14 are referred since these provide the basic understanding
for these algorithms.

The structure of the caches needed to implement the simulation is given in the
following algorithm
structure Cache
{

 95

 structure Read--Hit--Structure
 {
 Integer HitArray[Array Of][MaxAssociativity + 1]
 ::: Comments:::;//0,1,2,3....8 deg of

associativity

 Read--Hit--Structure[Array Of] [MaxPossibleSetBits +1]

 :::Comments:::;//from 0 to
MaxPossibleSetBits 0 represents pow(2,0)
only one set

 :::Comments::: this structure stores the no
of read hits in the Cache having pow
(2, MaxPossibleSetBits + 1) sets and deg
of associativity of(1,2,3,4,5,6,7,8) we
calculate only(1,2,4 and 8)

 structure Write--Hit--Structure
 {
Integer HitArray[Array Of][MaxAssociativity + 1] ::: Comments:::;//0,1,2,3....8

deg of associativity
 }
Write-Hit-Structure [Array Of] [MaxPossibleSetBits + 1] :::Comments:::;//from 0 to

MaxPossibleSetBits
 :::Comments::: this structure

stores the number of write
hits in the Cache having
pow(2,
MaxPossibleSetBits + 1)
sets and deg of
associativity
of(1,2,3,4,5,6,7,8) we
calculate only (1,2, 4 and
8)

 structure Write--Avoidance--Structure
 {
Integer HitArray[Array Of][MaxAssociativity + 1] :::Comments:::;//0,1,2,3....8

deg of associativity
 }
Write-Avoidance-Structure[Array Of]
 [MaxPossibleSetBits + 1] :::Comments:::;//from 0 to

MaxPossibleSetBits

 96

 :::Comments::: this structure
stores the no of writes
being avoided in the
(write back)Cache having
pow(2,
MaxPossibleSetBits + 1)
sets and deg of
associativity
of(1,2,3,4,5,6,7,8) we
calculate only(1,2,4 and 8)

 Stack(Address Of) Top :::Comments:::;//top of the

stack
 Stack(Address Of) Previous :::Comments:::;//previous

element to the current
stack element

 Stack(Address Of) Current :::Comments:::;//current
element of the stack being
considered

Integer TotalNoOfRef :::Comments::://total no of references
read from the file

 Integer TotalNoOfReads :::Comments::://total no of read
references in the file

 Integer TotalNoOfWrites :::Comments::://total no of write
references in the file

 Integer TotalNoOfDeletes :::Comments::://not used so far because
delete request can be from other Cache

 Integer ArrayOfDeletes :::Comments:::;//represents how many

elements will be added
 :::Comments::: for a particular reference

 Stack(Address Of) ArrayOfDel[Array Of]
 [MaxPossibleSetBits + 1] :::Comments:::;//this is the array

:::Comments::: of Integers for the deletes
that will be added in the stack for

 :::Comments::: particular sets

Integer Above[Array Of][MaxPossibleSetBits + 1]
 :::Comments:::;//from 0 to

MaxPossibleSetBits
 :::Comments::: 0 represents pow(2,0) only

one set

 97

 :::Comments:::the value in the
Above[Array Of][] array is the no. of
references coming

 :::Comments::: before a given reference
for pow(2,i) no of sets

 char AccessType[Array Of][10] :::Comments:::;//access type is read write

or delete.
 :::Comments:::This information is stored

in this string per reference

 Integer ResetDel :::Comments:::;//when finding which

block is deleted for which set
 :::Comments:::we should be conscious not

to include two deleted blocks for one
 :::Comments:::particular set. this Integer

indicates which set has been catered
 :::Comments:::for and which not the rest

explanation will be given
 :::Comments:::while using this variable

 Integer Address :::Comments:::;//will contain the address

read from the file

 Integer Tag :::Comments:::;//results in removing

LineBits from Address

 Integer Found :::Comments:::;//hit in the Cache or not

0=miss,1=hit,2=hit but delete
}

Simulation of main memory is implemented by following algorithm
Structure SharedMemory :::Comments:::represents the contents in

the struct rep shared data
{
 Integer Block; :::Comments:::represents the shared

block
 Integer Flag; ::: Comments:::flag represent which

Cache processes
 :::Comments:::the block and its first bit

represents whether the block
 :::Comments:::in the shared memory is

modified or not(1 = modified)
 :::Comments:::(0 = notmodified)
 :::Comments:::the rest of the bits in flag

represents which Cache has the

 98

 :::Comments:::block(i-e)bit 2 represents
Cache1 bit 3 represents Cache2

 :::Comments:::and so on
 SharedMemory(Address Of) Next :::Comments:::;//next element in the
shared memory
};

Structure of main memory

structure MainMemory
{

 SharedMemory(Address Of) Top; :::Comments:::top of the memory link

list stack
 SharedMemory(Address Of) Previous; :::Comments:::previous to the current

element of the stack being examined
 SharedMemory(Address Of) Current; :::Comments:::represents the current

stack being examined
}
In find
 If we have found the address as in previous algorithms we will not increment any
read or writes.
We will just access it and then delete it not from the link list but make it invisible for
some caches while keeping it visible for other caches the reason is explained in
sections 3.12, 3.14.

Find(Cache(Address of) cache) :::Comments:::;//find in the stack
{
 :::Comments:::;//cout<<"entered

find"<<endl;
 :::Comments:::;//getch();
 AdjustmentsBeforeFind(cache);

 cache(contains)Found=0; :::Comments:::;// 0 means not found 1

means found 2 means found but found in
delete

if the case in the brackets is true
(strcmp(cache(contains)AccessType,Delete)!=0)
 :::Comments:::;//if the case in the brackets

is true access type is not delete
 {
 if the case in the brackets is true
 (cache(contains)Top == NULL) :::Comments:::;//if the case in the brackets

is true very first address
 {}

 99

 else do this :::Comments:::;//if the case in the brackets
is true not the very first element

 {
 :::Comments:::;//cout<<"not very first

address";
 :::Comments:::;//getch();
 cache(contains)Current = cache(contains)Top;

while(cache(contains)Current != NULL && (cache(contains)
Above[Array Of][MaxMatchBits]<MaxDataAssociativity))
 :::Comments:::;//you don't need to continue

searching if the case in the brackets is
true the address has gone down greater

 :::Comments:::;//than the max deg of
associativity of the largest

 :::Comments:::;//cache
 {
if the case in the brackets is true
(cache(contains)Tag == cache(contains)Current(contains)Block)
 {
 if the case in the brackets is true
 (cache(contains)Current(contains)RWD == 2)
 :::Comments:::;//if the case in the

brackets is true the block is delete
{ cache(contains)Found = 2;} :::Comments:::;//found but delete

 if the case in the brackets is true
 (cache(contains)Current(contains)RWD != 2)
 {
cache(contains)Found=1; :::Comments:::;// 1 means found
 }
 }
if the case in the brackets is true
(cache(contains)Tag == cache(contains)Current(contains)Block &&
cache(contains)Found == 1) break;
 ::: Comments:::;//if the case in the brackets

is true found and the block is not
deleted

else do this
 :::Comments:::;//if the case in the brackets

is true it is not the current block the
current block

 {
 FindRightMatchBits(cache);

:::Comments:::;//find least significant the
case in the brackets is true icant bits
matching between the block of the
current cache and the tag

 100

 :::Comments:::;//to see how far it has
gone down the stack

 :::Comments:::;//in finding the req
address wetger found or not

 :::Comments:::;// cout<<endl;
 for(Integer k=0;k<=MaxPossibleSetBits;k++)
 {
 :::Comments:::;//cout<<cache(contains)
 Above[Array Of][k];
 }

 cache(contains)Previous= cache(contains)Current;
 cache(contains)Current =
cache(contains)Current(contains)Next;
 }
 }
 }
 ArrangeAfterFind(cache);

 }

if the case in the brackets is true
 (strcmp(cache(contains)AccessType,Delete) ==0) :::Comments:::;//if the case in

the brackets is true the new
reference is delete

{ :::Comments:::;//cout<<"Enter
ing Delete" <<endl;

 if the case in the brackets is true
(cache(contains)Top != NULL) :::Comments:::;//it will always

be null but the condition is
just precautionary

 {
 cache(contains)Current = cache(contains)Top;
 while(cache(contains)Current != NULL)
 {
 if the case in the brackets is true
 (cache(contains)Tag == cache(contains)Current(contains)Block)
 {
 cache(contains)Current(contains)RWD = 2;
 cache(contains)Current(contains)Delse do thist =

((Integer)pow(2,MaxMatchBits+1) -1);
 :::Comments:::;//this causes

every bit of the
 :::Comments:::;//delse do thist

to be one indicating that the

 101

block is deleted for every
set and

 :::Comments:::;//should be
catered for rightmatchbits
because

 :::Comments:::;//it will
increment cache(contains)above[Array Of][] to indicate
 :::Comments:::;//that this

block is actually present in
the

 :::Comments:::;//actual cache
which this program is
simulating

 }
 if the case in the brackets is true
 (cache(contains)Tag == cache(contains)Current(contains)Block) break;
 cache(contains)Current = cache(contains)Current(contains)Next;
 }
 ArrangeAfterFind(cache);
 }
 }

}

 Now next time we do the right match bits we find whether block is deleted or not
and if it is delete for which sets as explained earlier (section 3.14).

FindRightMatchBits(Cache(Address of) cache)
{
 :::Comments:::;//cout<<"entering

right match"<<endl;

if the case in the brackets is true
 (cache(contains)Current(contains)RWD NotEqualTo 2)
 :::Comments:::;//if the case in the

brackets is true the block is not
deleted

 {
 cache(contains)Above[Array Of][0]++;
 :::Comments:::;//it will be above in

one set any way
 Integer XOR = cache(contains)Tag ^ cache(contains)Current(contains)Block;
 Integer AND;

 for(Integer i=0; i<MaxMatchBits; i++)
 {
 AND = XOR Anding (Integer)pow(2, i);

 102

 if the case in the brackets is true
 (AND EqualTo (Integer)pow(2,i)) :::Comments:::;//if the case in the

brackets is true i bits don't match
 break;

 :::Comments:::;//it is not above for
any other set

 else do this
 {
 :::Comments:::;//cout<<"bit"<<(i+1)

<<cache(contains)Current(contains)
Block<<"is matching"<<" ";

 cache(contains)Above[Array Of][i+1]++;
 :::Comments:::;//no of ref above for

pow(2,i) no of sets
 }
 }
 }

if the case in the brackets is true
(cache(contains)Current(contains)RWD EqualTo 2)

 {
 :::Comments:::;//cout<<"Access type is

delete";
 Integer Delse do thistForNew = 0; :::Comments:::;//this basically provides

Delse do thist
 :::Comments:::;//for the new element

that will be added as a delete in the
 :::Comments:::;//link-list for some sets

and not for other sets
 :::Comments:::;// ResetDel =

((Integer)pow(2,MaxMatchBits) -1);

 if the case in the brackets is true
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,0))
NotEqualTo 0)
 {
 :::Comments:::;//cout<<"bit one is 1";
 :::Comments:::;//this means check bit 1 if

the case in the brackets is true it is "1"
then this delete

 :::Comments:::;//block is present in the
actual "one set" cache at this level

 cache(contains)Above[Array Of][0]++;

 103

 :::Comments:::;//this if the case in the
brackets is true for one set a special
case

 }
 if the case in the brackets is true
((cache(contains)ResetDel Anding
(Integer)pow(2,0))NotEqualTo) :::Comments:::;//if the case in the

brackets is true pow(2,0) bit of
ResetDel is 0 then it means that set no
pow(2,i+1) is catered for

 {
 if the case in the brackets is true
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,0))
NotEqualTo 0)
 {
 :::Comments:::;//cout<<"entering if the

case in the brackets is true "<<endl;
 cache(contains)ResetDel = (cache(contains)ResetDel
Anding(~(Integer)pow(2,0)));
 Delse do thistForNew = (Delse do thistForNew Oring
(Integer)pow(2,0));
 :::Comments:::;//the new set added will not

be catered for these sets represented by
bits

 cache(contains)Current(contains)Delse do thist =
(cache(contains)Current(contains)Delse do thist Anding(~(Integer)pow(2,0)));
 :::Comments:::;//cout<<cache(contains)

Current(contains)Delse do thist<<endl;
 :::Comments:::;//cout<<"Resetdel"<<ca

che(contains)ResetDel<<endl;
 }
 }

 Integer XOR = cache(contains)Tag ^ cache(contains)Current(contains)Block;
 :::Comments:::;//same "0" opposite "0ne"
 Integer AND;

 for(Integer i=0; i<MaxMatchBits; i++)
 :::Comments:::;//i=0 means bit 1
 {
 AND = XOR Anding (Integer)pow(2, i);
 :::Comments:::;//checking bit pow(2,i)

 if the case in the brackets is true
 (AND EqualTo (Integer)pow(2,i))
 :::Comments:::;//if the case in the brackets

is true i bits don't match break;

 104

 else do this
 :::Comments:::;//means i bits do match for

set pow(2,i+1) and onwards i-e 2 and
onwards

 {
 :::Comments:::;//cout<<"bit"<<(i+1)<<"of"

<<cache(contains)Current(contains)Block
<<"is matching"<<" ";

 if the case in the brackets is true
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,i+1))
NotEqualTo 0)
 cache(contains)Above[Array Of][i+1]++;

 if the case in the brackets is true
 ((cache(contains)ResetDel Anding (Integer)pow(2,i+1)) NotEqualTo)
 :::Comments:::;//if the case in the brackets is

true pow(2,i+1) bit of ResetDel is 0 then
it means that set no pow(2,i+1) is catered
for

 {
 if the case in the brackets is true
((cache(contains)Current(contains)Delse do thist Anding (Integer)pow(2,i+1))
NotEqualTo 0)
 {
 cache(contains)ResetDel =
(cache(contains)ResetDel Anding(~(Integer)pow(2,i+1)));
 cache(contains)Current(contains)Delse do thist =
(cache(contains)Current(contains)Delse do thist Anding(~(Integer)pow(2,i+1)));
 Delse do thistForNew = (Delse do thistForNew Oring
(Integer)pow(2,i+1));
 :::Comments:::;//the new set added

will not be catered for these sets
represented by bits

 }
 }
 :::Comments:::;//cout<<"resetdel"<<ca

che(contains)ResetDel<<endl;
 :::Comments:::;//Above[Array

Of][i+1]++;
 :::Comments:::;//no of ref above for

pow(2,i) no of sets
 }
 }
 ::Comments:::;//end of for
 if the case in the brackets is true
 (Delse do thistForNew NotEqualTo 0)
 {

 105

 cache(contains)ArrayOfDel[Array of][cache(contains)ArrayOfDeletes]
= new Stack;

cache(contains)ArrayOfDel[Array of][cache(contains)ArrayOfDeletes](contains)RWD
= 2;
 cache(contains)ArrayOfDel[Array

of][cache(contains)ArrayOfDeletes](contains)
Block =
cache(contains)Current(contains)Block;

 cache(contains)ArrayOfDel[Array
of][cache(contains)ArrayOfDeletes](contains)
Next = cache(contains)ArrayOfDel[Array
of][cache(contains)ArrayOfDeletes+1];

 cache(contains)ArrayOfDel[Array
of][cache(contains)ArrayOfDeletes](contains)
Delse do thist = Delse do thistForNew;

 cache(contains)ArrayOfDeletes++;
 }

 }

}

Cache Coherence Protocol
Following is the algorithm that performs cache coherence protocol as discussed
above (section 3.13).
 if the address is in the shared region then enter the following function
SharedRegion(MainMemory(Address of)
mainmemory,CCacheSimulationView::Cache(Address of) cache)
{
 :::Comments:::;//cout<<"entered shared

region"<<endl;
 :::Comments:::;//getch();

Integer Found=0;
 :::Comments:::;//found in shared memory

or not "0" means not found
if the case in the brackets is true
 (mainmemory(contains)Top EqualTo NULL)
 :::Comments:::;//if the case in the brackets

is true very first shared memory
 :::Comments:::;//access
{
 :::Comments:::;//cout<<"main memory is

null"<<endl;
 mainmemory(contains)Top = new SharedMemory;
 mainmemory(contains)Top(contains)Block = cache(contains)Tag;

 106

 mainmemory(contains)Top(contains)Next = NULL;
 mainmemory(contains)Top(contains)Flag = 0;
 :::Comments:::;//initialise the flag
 if the case in the brackets is true
 (strcmp(cache(contains)AccessType,Read) EqualTo 0)
 :::Comments:::;//if the case in the brackets

is true the cache is reading the block
 {
 mainmemory(contains)Top(contains)Flag =
(mainmemory(contains)Top(contains)Flag Anding (~(Integer)pow(2,0)));
 :::Comments:::;// first bit=0 means that

cache has just asked for reading
 :::Comments:::;//it has not modif the case in

the brackets is true it
 mainmemory(contains)Top(contains)Flag =
(mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,CacheNo+1));
 :::Comments:::;//(for cache no 0 it should be

1)it means that this cache
 :::Comments:::;//has the copy of the block

and has no rite to modif the case in the
brackets is true it

 :::Comments:::;//without notify the case in
the brackets is true ication

 }
 else do this
 {
 if the case in the brackets is true
(strcmp(cache(contains)AccessType,Write) EqualTo 0)
 mainmemory(contains)Top(contains)Flag =
(mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,0));
 :::Comments:::;//first bit=1 means that cache has asked for modif the
case in the brackets
 :::Comments:::;// or has modif the case in the brackets is true
mainmemory(contains)Top(contains)Flag =
(mainmemory(contains)Top(contains)Flag Oring (Integer)pow(2,CacheNo+1));
 :::Comments:::;//(for cache no 0 it should be 1)it means that this cache
 :::Comments:::;//has the (private)copy of the block and has a rite to
 :::Comments:::;//modif the case in the brackets is true }
 mainmemory(contains)Current = mainmemory(contains)Top;
 mainmemory(contains)Previous = mainmemory(contains)Top;

 }
 else do this :::Comments:::;//if the case in the brackets is true not very first shared
memory reference
 {
 :::Comments:::;//cout<<"main memory is not null"<<endl;

 107

 mainmemory(contains)Current = mainmemory(contains)Top;

 while(mainmemory(contains)Current NotEqualTo NULL)
 {
 if the case in the brackets is true (cache(contains)Tag EqualTo
mainmemory(contains)Current(contains)Block)
 {
 Found = 1; :::Comments:::;//found(1)
 if the case in the brackets is true
(strcmp(cache(contains)AccessType,Read) EqualTo 0)
 {
 :::Comments:::;//check the first bit of the flag
if the case in the brackets is true
 :::Comments:::;//is 1 then some
 :::Comments:::;//other cache has this block in dirty state
 Integer Temp =
(mainmemory(contains)Current(contains)Flag Anding ((Integer)pow(2,0)));

 if true the case in the brackets is true(Temp EqualTo
(Integer)pow(2,0)) :::Comments:::;//it means that some other
 :::Comments:::;//cache has made this block private to it
self
 :::Comments:::;//(remember it will only be one cache)
 {
 :::Comments:::;//cout<<"some other
cache has made the block dirty"<<endl;

 RequestBlockBack(mainmemory,cache);
 :::Comments:::;//bring it back(make it read only
in that
 :::Comments:::;//cache)

 }
 mainmemory(contains)Current(contains)Flag =
(mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,CacheNo+1));
 :::Comments:::;//(for cache no 0 it should be 1)it means
that
 :::Comments:::;//this cache has the copy of the block
and has
 :::Comments:::;//no rite to modif the case in the brackets
is true

 }
 else do this

 :::Comments:::;//if the case in the brackets is
true access type is write or delete

 {

 108

 :::Comments:::;//remove the delete in the
future(or should you)
 if the case in the brackets is
true(strcmp(cache(contains)AccessType,Write) EqualTo 0)
 {
 :::Comments:::;//check the first bit of
the flag if the case in the brackets is true then
 :::Comments:::;//some other cache has this block
in dirty state
 Integer Temp =
(mainmemory(contains)Current(contains)Flag Anding ((Integer)pow(2,0)));

 if the case in the brackets is true (Temp EqualTo
(Integer)pow(2,0)) :::Comments:::;//it means that some
 :::Comments:::;//other cache has made this block
private to it
 :::Comments:::;//self (remember it wail only be
one cache
 {
 :::Comments:::;//cout<<"cache
has made the block dirty"<<endl;

RequestBlockBackInvalidate(mainmemory(contains)Current(contains)Flag,cache);
 :::Comments:::;//in case of write only one
can have the total
 :::Comments:::;//access
 }
 else do this
 :::Comments:::;//all the other caches has the
block in read state

InvalidateAllOtherCaches(mainmemory(contains)Current(contains)Flag,cache);
 :::Comments:::;//delete this shared block in
all other caches
 :::Comments:::;//containing it because the
current cache
 :::Comments:::;//requires this block to be
private

 mainmemory(contains)Current(contains)Flag
= 0; :::Comments:::;//no other cache should have the copy of it now
 mainmemory(contains)Current(contains)Flag
= (mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,0));
 :::Comments:::;//first bit=1 means that
cache has asked for
 :::Comments:::;//modif the case in the
brackets is true

 109

 mainmemory(contains)Current(contains)Flag
= (mainmemory(contains)Current(contains)Flag Oring (Integer)pow(2,CacheNo+1));
 :::Comments:::;//(for cache no 0 it should
be 1)it means that
 :::Comments:::;//this cache has the copy of
the block and has
 :::Comments:::;// rite to modif the case in
the brackets is true
 }
 if the case in the brackets is true
(strcmp(cache(contains)AccessType,Delete) EqualTo 0)
 {
 Integer
Change=1; :::Comments:::;//should i change the "0"th bit of the flag or not
 :::Comments:::;//cout<<"accesss type is delete";
 mainmemory(contains)Current(contains)Flag =
(mainmemory(contains)Current(contains)Flag Anding(~
(Integer)pow(2,CacheNo+1)));
 for(Integer i=1; i<=NoOfProcessors; i++)
 {
 if the case in the brackets is true
((i-1) NotEqualTo CacheNo)
 {
 Integer AND =
mainmemory(contains)Current(contains)Flag Anding (Integer)pow(2, i);
 if the case in the brackets is true
(AND EqualTo (Integer)pow(2,i))
 :::Comments:::;//(bit 0 is there)if the case

in the brackets is true i bit
 :::Comments:::;//match(means i'th

processor has the block
 {
 Change = 0;
 :::Comments:::;//cout<<"cache no"<<(i-

1)<<"has it"<<endl;
 }
 }
 }
 if the case in the brackets is true
 (Change EqualTo 1)
 {
 mainmemory(contains)Current(contains)Flag = 0;
 }
 }
 }
 }
if the case in the brackets is true
 (cache(contains)Tag EqualTo mainmemory(contains)Current(contains)Block)break;

 110

 :::Comments:::;//if the case in the brackets
is true found and the block is not
deleted

 else do this
 :::Comments:::;//if the case in the brackets

is true it is not the current block the
current block

 {
 mainmemory(contains)Previous=
mainmemory(contains)Current;
 mainmemory(contains)Current =
mainmemory(contains)Current(contains)Next;
 }
 }

 if the case in the brackets is true (Found EqualTo 0)
 :::Comments:::;//i-e not found
 {
 ArrangeSharedRegion(mainmemory,cache);
 }
 }
 mainmemory(contains)Current = mainmemory(contains)Top;
 while(mainmemory(contains)Current NotEqualTo NULL)
 {
 :::Comments:::;//cout<<(mainmemory(con

tains)Current(contains)Block)<<"
"<<(mainmemory(contains)Current(cont
ains)Flag)<<" ";

 mainmemory(contains)Current = mainmemory(contains)Current(contains)Next;
 }
 :::Comments:::;//cout<<endl<<endl;
}

InvalidateAllOtherCaches(Integer Flag,Cache(Address of) cache)
{
 :::Comments:::;//it should not be called if

the case in the brackets is true the
shared block is in the same cache

 :::Comments:::;// asking for it}
 :::Comments:::;//cout<<"entered

Invalidating all other other caches "<<"
";

 :::Comments:::;//cout<<Flag<<" "<<Flag;
 for(Integer i=1; i<=NoOfProcessors; i++)
 {
 if the case in the brackets is true
((i-1) NotEqualTo CacheNo)
 {

 111

 Integer AND = Flag Anding (Integer)pow(2, i);
 if the case in the brackets is true
(AND EqualTo (Integer)pow(2,i))
 :::Comments:::;//(bit 0 is there)if the case

in the brackets is true i bit match(means
i'th

 :::Comments:::;//processor has the block in
a read state

 {
 :::Comments:::;//cout<<"cache no"<<(i-

1)<<"has it"<<endl;
 Stack(Address of) Temp = FindRequest(cache,AndingCache1[Array
Of][i-1]);
 :::Comments:::;//cout<<Temp(contains)Bloc

k<<" ";
 :::Comments:::;//cout<<Temp(contains)RW

D<<endl;

 }
 }
 }

}

RequestBlockBackInvalidate(Integer Flag,Cache(Address of) cache)
{
 :::Comments:::;//it should not be called if the

case in the brackets is true the shared block
is in the same cache

 :::Comments:::;// asking for it
 :::Comments:::;//cout<<"entering

requestblockbackinvalidate";
 :::Comments:::;//cout<<Flag<<" "<<Flag;
 for(Integer i=1; i<=NoOfProcessors; i++)
 {
 if the case in the brackets is true
 ((i-1) NotEqualTo CacheNo)
 {
 Integer AND = Flag Anding (Integer)pow(2, i);
 if the case in the brackets is true
 (AND EqualTo (Integer)pow(2,i))
 :::Comments:::;//(bit 0 is there)
 :::Comments:::;//if the case in the brackets is

true i bit match(means i'th
 :::Comments:::;//processor has the block in

dirty state
 {

 112

 :::Comments:::;//cout<<"cache no"<<(i-
1)<<"has it"<<endl;
 Stack(Address of) Temp = FindRequest(cache,AndingCache1[Array
Of][i-1]);
 :::Comments:::;//cout<<Temp(contains)Block<<

" ";
 :::Comments:::;//cout<<Temp(contains)RWD<<

endl;
 }
 }
 }

}

RequestBlockBack(MainMemory(Address of)
mainmemory,CCacheSimulationView::Cache(Address of) cache)
{
 :::Comments:::;//it should not be called

if the case in the brackets is true the
shared block is in the same cache

 :::Comments:::;// asking for it

 :::Comments:::;//now check which bit of

the flag is 1 other than bit 0 because
onlyone cache can have a particular
block in dirty state

 :::Comments:::;//cout<<"entered request
block back "<<" ";

 :::Comments:::;//cout<<"mainmemory(c
ontains)Current(contains)Flag"<<"
"<<mainmemory(contains)Current(co
ntains)Flag;

 for(Integer i=1; i<=NoOfProcessors; i++)
 {
 if the case in the brackets is true
 ((i-1) NotEqualTo CacheNo)
 {
 Integer AND = mainmemory(contains)Current(contains)Flag
Anding (Integer)pow(2, i);
 if the case in the brackets is true
 (AND EqualTo (Integer)pow(2,i)) :::Comments:::;//(bit 0 is there)if the

case in the brackets is true i bit
 :::Comments:::;//match(means i'th

processor has the block in dirty state
 {

 113

 :::Comments:::;//cout<<"cache no"<<(i-
1)<<"has it"<<endl;
 Stack(Address of) Temp = FindRequest(cache,AndingCache1[Array
Of][i-1]);
 :::Comments:::;//cout<<Temp(contains)

Block<<" ";
 :::Comments:::;//cout<<Temp(contains)

RWD<<endl;
 mainmemory(contains)Current(contains)Flag =
(mainmemory(contains)Current(contains)Flag Anding (~(Integer)pow(2,0)));
 :::Comments:::;// first bit=0 means that

cache has just asked for
 :::Comments:::;//reading it and has not

modif the case in the brackets is
trueied it

 }
 }
 }

}

 114

Chapter Four

The Acumen
4.1 Introduction to Acumen.

After the discussion of first three chapters the software which we
developed is named Acumen because of it’s ability to efficiently propose
appropriate cache designs basing on user’s choices.

4.2 How to Use the Software.

The software is packaged for best deployment and is portable. When we
explore the compact disc containing the software we find the familiar set up
icon. Following the easy steps as per instructions displayed the software can be
deployed on any windows platform containing windows installer (issued in
service pack).

4.2.1 Screen shot of Installation Process.

To find best cache design user will have to give following inputs:-

• An address trace.
• Number of Processors in the system for which cache design is

required. Up to 32 processors are permitted. (Simulation can
work for uni-processor based environment also).

• User has the choice of combined and split caches.
• For split caches user can further choose between instruction and

data cache.
• Minimum and maximum cache size. i.e limits are defined by the

user
• Minimum and maximum line size.

 115

• Degree of associativity i.e. minimum and maximum
associativity

• Whether the cache required will be write through or write back.
• After necessary processing results will be available for the user

in various combinations of line and bar graphs. Main
combinations are :-

o Cache size vs. read hits / write hits / write avoidance.
o Line size vs. read hits / write hits / write avoidance
o Degree of associativity vs. read hits / write hits / write

avoidance.

4.3 Graphical User Interface.
 4.3.1 Initial Screen.

 The user starts the simulation either by an icon on the toolbar or
by pressing init simulation from a drop down menu.

Figure 4.1 Initial Screen.

4.3.2 User Input Choices
The user gives the input choices through radio and sliding

buttons

 116

Figure 4.2 User Input .

 4.3.3 User Choices for Outputs
The user can obtain out put in different forms and has choice of

best caches depending on various parameters.

Figure 4.3 Output Choices.

4.4 The Out Put.

4.4.1 Line Graphs
The out put with line graphs

 117

Figure 4.4 Line Graph.

4.4.2 Bar Graphs
The out put with bar graphs

Figure 4.5 Bar Graph

 118

Chapter Five

Conclusion and Future Prospects

5.1 Conclusion.
All associative simulations can be made faster by taking advantage of set

hierarchy, a necessary but not sufficient condition for inclusion. Since we find the set
hierarchy usually holds between set associative caches (for example those that use bit
selections) with set hierarchy , the time to run most of the set associative simulations
is within 30% of the time of one stack simulation. This facilitates the rapid simulation
of direct mapped and set-associative caches.

The principal impact of this project is that all associative simulations with set

hierarchy allows a similar or wide cache design space to be examined in comparable or
less simulation time than required with stack simulation.

With all associative simulations, requiring comparable time for practical CPU

caches (normally CPU caches are less than or equal to 32- way set- associative and
use bit selection to map references to sets), one can evaluate mixed , instruction only
and data only of two block size and numerous associativities and sizes in particular the
use of all associativity simulation facilitated the evaluation of large number of CPU
cache designs.

We further amortized the cost of reading reduced traces by devising a one-pass

simulation algorithm that can simulate many write-back caches during a single
simulation run, yielding speed-ups of two orders of magnitude over a naive method. In
addition, we extended the trace reduction and the efficient simulation techniques to
parallel multiprocessor cache simulations.

 We have shown how stack analysis can be extended to important new areas.
The ability to collect transfer ratios, considering both reads and writes, for all memory
sizes in a single pass reduces simulation time by as much as 90 percent compared to
running 8-10 individual simulations, making this metric much more reasonable to
collect. The transfer ratio is increasingly important in the study of shared-memory
systems, including multiprocessor caches and network file systems. Equally important,
the ability to easily simulate set associative caches, including write backs and write
throughs.

 119

5.2 Future Prospects.
Software and hardware projects can not be declared as perfect or last words but

just milestones in their respective fields. Trends of refinements and enhancements are
the basic attributes in the further development of the projects. Like other projects our
cache design simulation for multiprocessor based environment can be further explored
in many ways.

 The performance evaluation of any system can be done through simulations
economically and efficiently. Trace driven simulations are of many types and each can
be further explored. Trace collection of executing programmes further divides into
three main types of hardware probes, processor and programme simulations including
modifications in instruction sets to obtain traces via special buffers and CPU stalling ,
i.e. software approach and lastly the compiler approach of programme profiling and
debugging.

Trace reduction is another important task. Processors generate millions of

address- traces in a split of time. Sampling these traces and reducing them to evaluate
correct performance of system is what the need of time is.

 Brigham Young University has specially established a Trace Distribution
Centre, Performance Evaluation Laboratory and National Trace Collection Centre,
their site can be visited at http://tds.cs.byu.edu. Establishment of such evaluation
centres can be a national level project for future development of computer sciences.

Finally the trace processing for uni-processor based systems and multiprocessor based
systems can be undertaken. One prospect can be of enhancing level of sharing among
different number of processors, at different cache levels and in different architectures
of multiprocessors for example multiprocessor based system with ringed architecture.

 120

Appendix A

ABC’S OF CACHE

Introduction
 The purpose of caching is to improve the average access time to items in memory by
keeping the most frequently used items in a small, fast, cache memory and by leaving
the remainder in a larger, slower memory. The contents of cache are checked on each
reference; if the referenced item is present in cache, then the item is available at the
speed of the cache. If not, then the item is read into cache from memory, replacing
something already cached. The speed of the combined memory system is a function of
the two memory speeds and the probability that the referenced item is in cache.
There are a large number of design parameters to any cache, most of which must be
considered in any analysis of that design. We briefly present definitions of a number of
these.

Blocking. The cache may be divided into fixed-size blocks or variable-size segments.
Blocks are also referred to as pages in the context of virtual memory and lines or
sectors in the context of a processor cache. The cache block or line size may be equal
to the amount of data retrievable in one memory cycle, or it may require several
memory cycles to fetch a block. A larger block size reduces per-block overhead and
provides a form of pre fetch, discussed below.

Replacement Policy. The replacement policy determines which block to remove when
the cache is full and a new block must be fetched. Commonly suggested policies
include the Least Recently Used (LRU) policy, First-In First-Out (FIFO), Least
Frequently Used (LFU), and Random (RAND). An optimal policy, MIN, exists, but is
unrealizable in practice because it requires knowledge of the future. The MIN policy
does not consider writes or deletes and is known to be non optimal if writes are
considered.

Write Policy. The write policy determines when a modification is presented to
secondary storage. Writes may always go directly to secondary storage using the write-
through or store-through policy. Alternatively, the write may go to the cache to be
written at some later time, usually when the block is about to be replaced, using the
write-back or copy-back policy. Write-back is motivated by the expectation that the
block will be modified several times before it has to be written. Clearly, write-back can
never cause more accesses than write-through and usually far fewer. On the other hand,
since it deals in blocks rather than words, write- back may increase the number of
bytes written. In addition, dirty blocks may remain in the cache for a long time, leading
to reliability issues in large volatile caches such as file system caches in main memory.
The decrease in memory traffic from write-back makes it very valuable in systems
with limited memory bandwidth such as shared-bus multiprocessor systems. Write-
back is also desirable in file system caches because many files are temporary and may
never have to be written.

 121

Write Allocate. When a written block is not present in a write-through cache, the
block may be inserted in the cache (write allocate) or the cache may be bypassed
altogether. Write allocate is again motivated by locality-the expectation that the written
block will soon be referenced again. A write-back cache always allocates a cache block
to the written block.

Write-Fetch. If write allocate is used by a cache where partial-block modification is
allowed, and the block to be written is not in the cache (a write miss), then it is usually
necessary to fetch the block prior to modifying it. This write-fetch is needed, for
example, if one word of a multiword block is being written. The alternative is to keep
track of the portion(s) of the cache block that are “valid,” which becomes costly when
several disjoint portions of a large block are written. However, there are situations in
which write-fetch can be avoided such as when the entire block are being overwritten,
or when the contents of the rest of the block are predictable (e.g., when the block is a
“new” block in a file system).

Prefetch. Because of spatial locality, a reference to a block often implies that the next
block will soon be referenced. It is possible to take advantage of this anticipated
reference and to prefetch the next block in advance. This reduces the delay when the
next block is actually referenced. Prefetch is advantageous when it can be overlapped
with processing of other references or when two or more blocks can be fetched in
much less time than all of them individually, as is the case with disk secondary storage.
Although it reduces the delay, prefetch increases memory traffic unless all pre fetched
blocks are referenced before they are replaced. It may also result in memory pollution
in which a soon-to-be-referenced block is displaced to make room to prefetch an
unnecessary block. If a prefetch is only permitted in conjunction with a fetch, then the
policy is a demand prefetch policy. Demand prefetch is desirable when the overhead of
a fault is large; demand prefetch amortizes this over two (or more) blocks. With
modern memory systems and file system caches, it is simple and inexpensive to initiate
a prefetch even if the referenced block is present.

 Metrics The performance of a memory system can be measured in several ways.
Perhaps the most widely used is the miss ratio, which is the fraction of references that
were not satisfied by the cache. Conversely, the hit ratio is the fractions that were
satisfied by the cache. The miss ratio is latency metric since it determines the apparent
access time of the memory system. The effective access time for any multilevel
hierarchy is given by 2 tihi, where ti is the access time to the ith level, and hi is the
fraction of references satisfied by the ith level cache. Sometimes overlooked is the fact
that the access time to each level should include any queuing delays. These are usually
negligible in a single-processor system, but may become important when several
processors compete for access to a single secondary store.

The actual computation of miss ratios during simulation varies with the parameters of
the cache. Let N be the total number of references, and m(C) be the number of misses
to a cache of size C. If all references are assumed to be reads, then the miss ratio for a
cache of size C is given by

MRRC) = m(C)/N, (1.1)

 122

hence the name. With write-through, where every write is a “miss” (i.e., causes an
access to secondary storage), the miss ratio is

MRWT = (mT(C)) + W/N (1.2)
where mT (C) is the number of reads that “miss,” and W is the number of write
references.

When write-back is used, a write could result in two accesses to secondary storage, one
to fetch the block and another later to write it. The miss ratio is now given by

MRWB (C) = (mT(C) + mW(C) + dp(c)/N (1.3)
where m (C) is the number of write misses (i.e., write fetches), and dp(C) is the number
of dirty blocks “pushed” from a cache of size C. This becomes

MRWB (C) = (m(C) + dp (C))/N (1.4)
by using the fact that a write-fetch is actually just a read reference and occurs if the
block reference “misses.”

 All of the expressions so far assume that the processor must wait for the write to
secondary storage to complete before continuing. It is often reasonable to buffer the
writes so that the processor can continue almost immediately. In this case delay occurs
only if there are enough accesses to create contention. It is observed that when memory
bandwidth is adequate, four store-through buffers are sufficient to largely eliminate
queuing for writes. Under this assumption, the write-back miss ratio with write-fetch is
again simply

MRWF(C) = m(C)/N (1.5)
A related metric is the traffic ratio, which is the ratio of traffic between cache and
secondary storage, measured in bytes, compared to the traffic that would be present
without a cache . The traffic ratio is increasingly important for analyzing shared-bus
systems such as multiprocessor architectures or a network file system. Although
buffering may eliminate write-back from consideration in the miss ratio, the write
traffic is not eliminated, so writes must be considered in the traffic ratio. Also, prefetch
may result in increased traffic since some prefetched blocks may not be actually
referenced.
The traffic ratio is dependent on the same factors as the miss ratio and, in addition,
depends on the size of the data blocks transferred. Suppose that the processor accesses
BP bytes per average memory reference. The traffic without a cache is then B, times
the number of references. Frequently, the cache block size, B, is larger than B,. We
assume that each cache miss causes B, bytes to be transferred. Then a large cache
block size may act as a form of prefetch and reduce the miss ratio, but it may also
increase the amount of traffic.
The general form of the traffic ratio computation is

TR(C ,Bc) = [mr (C) + mw(C) +f(C) + dp(C)]*Bc/N*Bp, (1.6)
where mw (C) is again the number of write misses; dp(C) is again the number of write-
backs; and f(C) is the number of prefetched blocks. This expression assumes that write-
fetch is used. Notice that the traffic ratio is identical to the miss ratio when there is no
prefetching, no write buffering, and the cache block size is the same as BP.

A third metric is the transfer ratio, which is the ratio of secondary storage accesses
with and without cache . This metric has also been called the transaction ratio G.
Gibson, personal communication 19861, the I/O ratio , and the swapping ratio . The

 123

transfer ratio is similar to the traffic ratio but is more appropriate when performance is
dominated by the cost of a memory access, relatively independent of the number of
bytes transferred. Thus it is appropriate for disk caches and often for networks using
small (1K or less) messages. For example, the transfer ratio decreases if two blocks are
read from disk in a single I/O, whereas the traffic ratio is the same regardless of the
number of I/Os used to transfer the data.

The transfer ratio also has an indirect effect on the access time if there are enough
transfers to create contention, particularly in multiple processor systems with shared
memory. Assuming that prefetches occur only when the referenced block is not in
cache (demand prefetch), then they do not affect the transfer ratio. A general
expression for the transfer ratio is

T(C) = [mr(C) + mw (C) + dp(C)] /N (1.7)
which is almost proportional to the traffic ratio using constant block sizes.

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hierarchy.
This takes advantage of locality and cost/performance of memory technologies.

Principle of Locality. This says that most programs do not access all code or data
uniformly . This principle, plus the guideline that smaller hardware is faster, led to the
hierarchy based on memories of different speeds and sizes. Since fast memory is
expensive, a memory hierarchy is organized into several levels each smaller, faster and
more expensive per byte than the next level. The goal is to provide a memory system
with cost almost as low as the cheapest level of memory and speed almost as fast as the
fastest level. The levels of the hierarchy usually subset one another: all data in one
level is also found in the level below, and all data in that lower level is found in the one
below it, and so on until we reach the bottom of the hierarchy. Note that each level
maps addresses from a larger memory to a smaller but faster memory higher in the
hierarchy. As part of address mapping, where miss rate is the fraction of accesses that
are not in the cache and miss penalty is the additional clock cycles to service the miss.
Recall that a block is the minimum unit of information that can be present in the cache
(hit in the cache) or not (miss in the cache).

The ABC’s. Cache is the name generally given to the first level of the memory
hierarchy encountered once the address leaves the CPU. We start our description of
caches by answering the four common questions for the first level of the memory
hierarchy. The memory hierarchy is given the responsibility of address checking:
hence protection schemes for scrutinizing addresses are also part of the memory
hierarchy.

 124

Figure . It plots CPU performance projections against the historical performance
improvement in main memory access time .Clearly there is a processor memory
performance gap that computer architects try to close

100,000

1000

100

10

0.1

10,000

1980

1997

2001

2002

1996

1998

1999

2000

1991

1992

1993

1994

1995

1984

1985

1986

1987

1988

1989

1990

1981

1982

1983

PER
FO

R
M

A
N

C
E

YEAR

Memory CPU

 125

Where can a block be placed in a cache?The restrictions on where a block is placed
create three categories of cache organization:

Figure. This example cache has eight block frames and memory has 32 blocks Real
caches contain hundreds of block frames and real memories contain millions of blocks.
The set-associative organization has four sets with two blocks per ser, called two-way
set as associative. Assume that there is nothing in the cache and that the block address
in questions identifies lower-level block 12. The three options for caches are shown
left to right. In associative, block 12 from the lower level can go into any of the eight
block frame 4 (12 modules). Set associative, which has some of both features, allows
the block to be placed anywhere se 0 (12 modulo 4). With two blocks per set, this
means block 12 can be placed either block 0 or block 1 of the cache.

 If each block has only one place it can appear in the cache, the cache is
said be direct mapped. The mapping is usually

(Block address) MOD (Number of block in cache)
 If a block can be placed anywhere in the cache, the cache is said to be

fully associative.
 If a block can be placed in a restricted set of places in the cache, the

cache is said to be set associative. A set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be

MEMORY

. 0 1 2 3 4 5 6 7

FULLY
ASSOCIATIVE

CACHE

0 1 2 3 4 5 6 7

DIRECT
 MAPPED

Block No. 0 1 2 3 4 5 6 7

(2 WAY) SET

Block No.

SET
0

SET
1

SET
2

SET
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

.

 126

place anywhere within that set. The set is usually chosen by bit
selection; that is,

(Block address) MOD (Number of sets in cache)
 If there are n blocks in a set, the cache placement is called n-way set
associative.

 How a block is found if it is in the cache? Caches have and address tag on each
block frame that gives the block address. The tag of every cache block that might
contain the desired information is checked to see if it matches the block address from
the CPU. As a rule, all possible tags are searched in parallel because speed is critical.
There must be a way to know that a cache block does not have valid information. The
most common procedure is to add a valid bit to the tag to say whether or not this entry
contains a valid address. If the bit is not set, there cannot be a match on this address.
Before proceeding to the next question, let’s explore the

Block address Block offset
Tag Index

Figure. The three portions of an address in set-associative or direct-mapped cache. The
tag is used to check all the blocks in the set and the index is used to select these. The
block is the address of the desired data within the block.

If the total cache size is kept the same, increasing associatively increases the number of
blocks per set, thereby decreasing the size of the index and increasing the size of the
tag.

Which block should be replaced on a cache miss?When a miss occurs, the cache
controller must select a block to be replaced with the desired data. A benefit of direct
mapped placement is that hardware decisions are simplified in fact, so simple that
there is no choice. Only one block frame is checked for a hit and only that block can be
replaced. With fully associative or set associative placement, there are many blocks to
choose from on a miss. There are two primary strategies employed for selecting which
block to replace.

 Random. To spread allocation uniformly, candidate blocks are randomly
selected.

 Least recently used (LRU).To reduce the chance of throwing out information
that will be needed soon accesses to blocks are recorded. The block replaced is
the one that has been unused for the longest time. LRU makes use of a
corollary of locality.

What happens on a write? Reads dominate processor cache accesses. All instruction
accesses are reads and most instructions don’t write to memory. The write policies
often distinguish cache designs. There are two basic options when writing to the cache.

 Write through (or store through). The information is written to both the block
in the cache and to the block in the lower level memory.

 Write back (also called copy back or store in). The information is written only
to the block in the cache. The modified cache block is written to main memory
only when it is replaced.

 127

Since the data are not needed on a write, there are two common options on a write
miss.

 Write allocate (also called fetch on write). The block is loaded on a write
miss followed by the write hit actions above. This is similar to a read miss.

 No write allocate(also called write around). The block is modified in the lower
level and not loaded into the cache.

Cache Performance. The temptation for evaluating memory hierarch performance is
to concentrate on miss rate. A check measure of memory hierarchy performance is the
average time to access memory.
 Average memory access time = Hit time + Miss rate x Miss penalty

Reducing cache Misses. Most cache research has concentrated on reducing the miss
rate, so that is where we start our exploration. To gain better insights into the causes of
misses, we start with a model that sorts all misses into three simple categories;

 Compulsory. The very first access to a block cannot be in the cache, so the
block must be brought into the cache. There are called cold start misses of first
reference misses.

 Capacity. If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur because of blocks being
discarded and later retrieved.

 Conflict. If the block placement strategy is set associative or direct
mapped conflict misses (in addition to compulsory and capacity misses) will
occur be cause a block can be discarded and later retrieved if too many block s
map to the set. These are also called collision misses or interference misses.

First Miss Rate Reduction Technique: Larger Block Size This simplest way to
reduce miss rate is increase the block size. Large block sizes will reduce compulsory
misses. This reduction occurs because the principle of locality has two components
temporal locality and spatial locality. Large blocks take advantage of spatial locality.
At the same time, large blocks increase the miss penalty. Since they reduce the number
of blocks in the cache, large blocks may increase conflict misses and even capacity
misses if the cache is small.

Second Miss Rate Reduction Technique: Higher Associatively
 There are two general rules of thumb; the first is that eight ways set associative is for
practical purposes as effective in reducing misses for these sized caches as fully
associative. The second observation called the 2; 1 cache rule of thumb and found on
the front inside cover, is that direct mapped cache of size N has about the same miss
rate as a 2 way set associative cache of size N/2.

Third Miss Rate Reduction Technique: Victim Caches. One solution that reduces
conflict misses without impairing block rate is to add a small, fully associative cache
between a cache and its refill path .

 128

Figure.Placement of victim cache in the memory hierarchy

Fourth Miss Rate Reduction Technique: Pseudo-Associative Caches. A cache
access proceeds just as in the direct-mapped cache for a hit. On a miss however, before
going to the next lower level of the memory hierarchy another cache entry is of
checked to see if it matches there. A simple way is to invert the most significant it of
the index field to find the other block in the “pseudo set”.
 Pseudo-associative caches then have one fast and one slow hit time
corresponding to a regular hit and a pseudo hit in addition to the miss penalty. The
danger is if many of the fast hit times of the direct-mapped cache became slow hit
times in the pseudo-associative cache then the performance would be degraded by this
optimization. Hence it is important to be able to indicate for cache set which block
should be the fast hit and which should be the slow one; one way is simply to swap the
contents of block.

Fifth Miss Rate Reduction Technique: HW prefetching of instructions and data.
This technique prefetches the items before they are requested by the processor. Both
instructions and data can be prefetched directly into the cache Prefetching relies on
utilizing memory bandwidth that otherwise would be a used and can actually lower
performance if it interferes with demand miss. Help from compilers can reduce useless
prefetching.

CPU address

Data
IN

Data
Out

Write
buffer

Low level Memory

Data

Tag

=?

Victim
Cache

=?

 129

Sixth Miss Rate Reduction Technique: Compiler-controlled prefetching.This
makes sense only if the processor can proceed while the prefetched data are being
fetched, that is the caches continue to supply instructions and data while waiting for
the prefetched data to return. Such it memory cache is called a nonblocking cache or
lockup-free cache; we’ll discuss it in more detail later.
Like hardware-controlled prefetching, the goal is to overlap execution with the
prefetching of data. Issuing prefetch instructions incurs an instruction overhead,
however, so care must be taken to ensure that such overheads do not exceed the
benefits. By concentrating on references that are likely to be cache misses, programs
can avoid unnecessary prefetches while improving average memory access time
significantly.

Seventh Miss Rate Reduction Technique: Compiler Optimizations. This magical
reduction comes from optimized software the hardware de-signer’s favourite’s solution.
The increasing performance gap between processors and main memory has inspired
compiler writers to scrutinize the memory hierarchy to see if compile time
optimizations can improve performance. Once again research is split between
improvements in instruction misses and improvements in data misses.

Reducing Cache Miss Penalty

Reducing cache misses has been the traditional focus of cache research, but the
cache performance formula assures us that improvements in miss penalty can be just a
beneficial as improvements in miss rate.

First Miss Penalty Reduction Technique: Giving Priority to Read Misses over
Writes. With a write-through cache the most important improvement is a write buffer
of the proper size. Write buffer, however, do complicate memory accesses in that they
might hold the updated value of a location needed on a read miss.
The simplest way out of this dilemma is for the read miss to wait until the write buffer
is empty. A write buffer of a few words in a write-through cache will almost always
have data in the buffer on a miss, thereby increasing the read miss penalty.
The cost of writes by the processor in a write-back cache can also be reduced. Suppose
a read miss will replace a dirty memory block. Instead of writing the dirty block to
memory, and then reading memory, we could copy the dirty bold to a buffer, then read
memory, and then write memory. This way the CPU real for which the processor is
probably waiting, will finish sooner. Similar to the situation above, if a read miss
occurs, the processor can either stall until the buffer an empty or check the addresses of
the words in the buffer for conflicts.

Second Miss Penalty Reduction Technique: Sub-block placement for Reduced
Miss penalty. Suppose we are designing a cache that must fit one the chip. We may
find that our tags are too large eight because they don’t fit on the chip or because the
are too slow. A simple solution is go to large blocks, which reduces tag store without
decreasing the amount of information you can store in the cache of course the miss rate
will likely improve, but the increase in miss penalty and make the large blocks a bad
decision.
One solution is called sub-block placement. A valid bit is added to unit’s storage than
the full block, called sub-blocks. Only a single sub-block need be read a miss. The

 130

valid bits specify some parts of the block as valid and some as invalid, so a match of
the tag doesn’t mean the word is necessary in the cache as the valid bit for that word
must also be on.

Third Miss Penalty Reduction Technique: Early restart and Critical Word First

• Early restart- As soon as the requested word of the block arrives, send it to the
CPU and let the CPU continue execution.

• Critical word first- Request the missed word first from memory and send it to
the CPU as soon as it arrives, let the CPU continue while filling the rest of the
words in the block. Critical-word first fetch is also called wrapped fetch and
requested word first.

Fourth Miss Penalty Reduction Technique: Nonblocking caches to Reduce Stalls
on Cache Misses. The potential benefits of this scheme are to allow the data cache to
continue to supply cache hits during a miss. This “hit under miss” optimization reduces
the effective miss penalty by being helpful during a miss instead of ignoring the
requests of CPU.

Fifth Miss Penalty Reduction Technique: Second-Level Caches Adding another
level of between the original cache and memory, the first level cache can be small
cache to match the clock cycle time of the fast CPU, while the second-level cache be
large enough to capture many accesses that would go to main memory thereby
lessening the effective miss penalty. Summarizing the second-level cache
considerations, the essence of cache sign is balancing fast hits and few misses. Most
optimizations that help one hit the order. For second-level caches, there are many
fewer hits than in the first level cache, so the emphasis shifts to fewer misses. This
insight leads in large caches with fighter associativity and larger blocks.

Reducing Hit Time
Hit time is critical because it affects the clock rate of the processor, on memory
machines today the cache access time limits the clock cycle rate, even machines that
take multiple clock cycles to access the cache, Hence a fast hit time is multiplied in
importance beyond the average memory access time formula be because it helps
everything.

First Hit Time Reduction Technique: Small and Simple Caches
A time-consuming portion of a cache hit is using the index portion of the address to
read the tag memory and then compare it to the address. Guideline suggests that
smaller hardware is faster, and a small cache century helps the hit time. It is also
critical to keep the cache small enough to hit of the same chip as the processor to avoid
the time penalty of going off-chip. A main benefit of direct-mapped caches is that the
signer can overlap the tag check with the transmission of the data. The effectively
reduces hit time. Hence the pressure of a fast clock cycle encourages and simple cache
designs for first-level caches.

Second Hit Time Reduction Technique: Avoiding Address Translation During
Indexing of the Cache. Even a small and simple cache must cope with the translation

 131

of a virtual address from the CPU to a physical address to access memory. Processors
treat main memory as just another level of the memory hierarchy and thus the address
of the virtual memory that exists on disk must be mapped onto the main memory.
The guideline of making the common case fast suggest that we use virtual addresses
for the cache, since hits are much more common than misses. Such caches are termed
virtual; caches, with physical cache used to identify the traditional cache that uses
physical addresses. Virtual addressing eliminates address translation time from a cache
hit. Then why doesn’t everyone build virtually addressed caches? One reason is that
every time a process is switched, the virtual addresses refer to different physical
addresses, requiring the cache to be flushed .Keeping caches small and simple and
techniques to avoid delays of address translation will make both read hits and write hits
faster. The next subsection concentrates only on writes.

Third Hit Time Reduction Technique: Pipelining Writes for Fast write Hits. Write
hits usually take longer than read hits because the tag must be checked before writing
the data; otherwise the wrong address would be written. One technique, used by the
Alpha AXP 21064 and other machines, pipelines the writes . First tags and data are
split so that they can be addressed independently. On a write, the cache compares the
tag with the current write address, as usual. The difference comes with the write to the
data portion of the cache that occurs during the tag compassion; it must be using some
other address since the current write address is still being checked. The trick is that the
cache uses the address and data from the previous write, which has already been
determined to be a hit. Thus the logical pipeline is between writes, the second stage of
the write occurs during the first stage of the next write (or during a cache miss).
Therefore, writes can be performed back to back at one per clock cycle because the
CPU does not have to wait for the tag check before writing. Reads play no part in this
pipeline since they already operate in parallel with the tag check.
 .

 132

Figure The hardware organization of pipelined writes.

CPU address

Data
IN

Data
Out

Write
buffer

Low level Memory

Data

Delayed Write buffer
Tag

=?
M
U
X

=?

 133

Cache Optimization Summary The techniques discussed above to improve miss rate,
miss penalty , and hit time generally impact the other components of the average
memory access time as well as the complexity of the memory hierarchy.

Technique Miss Miss Hit
 rate penalty time
Larger block size + -
Higher associatively + -
Victim cache +
Pseudo associative cache +
HW prefetching of instructions and data +
Compiler techniques to reduce cache misses +
Giving priority to read misses over writes +
Sub-block placement +
Early restart and critical word first +
Non-blocking caches +
Second level caches +
Small and simple caches - +
Avoiding address translation using indexing of the cache +
Pipelining writes for fast write +
Compiler controlled prefetching +

Note : Table above summaries these techniques where ‘+ ‘meaning that the technique improves the
factor, ’-‘ meaning it hurts that factor, and blank meaning it has no impact.

Main Memory
“… the one single development that put computers on their feet was the invention of a
reliable form of memory, namely, the core memory….Its cost was reasonable, it was
reliable and, because it was reliable, it could in due course be made large .”

Maurice Wilkes , Memories of a Computer Pioneer(1985)

Main memory is the next level down in the hierarchy .Main memory, satisfies the
demands of cache and serves as the I\O interface, as it is the destination of input as
well as the source for the output. Performance measures of memory emphasis both
latency and bandwidth.Traditionally,main memory latency is the primary concern of
the cache, while main memory bandwidth is the primary concern of I\O. With the
popularity of second level caches and their larger block sizes, main memory bandwidth
becomes important to caches as well.

 134

REFERENCES

1. ARCHIBALD, J., AND BAER, J.-L. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Trans. Comput. Syst. 4, 4 (Nov. 1986), 273-
298.

2. AGARWAL, A. Analysis of cache performance for operating systems and
multiprogramming. Ph D. dissertation, Stanford Univ., 1987.

3. BAER, J.-L., AND SAGER, G. Dynamic improvement of locality in virtual memory
systems. IEEE Trans. Softw. Eng. SE-2, 1 (Mar. 1976), 54-62.

4. BELADY, L. A. A study of replacement algorithms for virtual storage computers.
IBM Syst. J. 5, 2 (1966), 78-101.

5. GECSEI, J. Determining hit ratios in multilevel hierarchies. IBM J. Res. Deu. 28,4
(July 1974), 316-327.

6. GOODMAN, J. R. Using cache memory to reduce processor-memory traffic. In
Proceedings of the 10th Znternationa2 Symposium on Computer Architecture.
(Stockholm, June, 1983). pp. 124-131.

7. GREENBERG, B. S. An experimental analysis of program reference patterns in the
multics virtual memory. MAC Tech. Rep.-127, Cambridge, Mass., Jan. 1974.

8. HILL, M. D., AND SMITH, A. J. Experimental evaluation of on-chip
microprocessor cache memories. In Proceedings of the 11 th Annual Symposium on
Computer Architecture (Ann Arbor, Mich., June, 1984). pp. 158-166.

9. HILL, M. Aspects of cache memory and instruction buffer performance. Ph.D.
dissertation, Univ. of California, Berkeley, 1987

10. HILL, M. D. AND SMITH, A. J. Evaluating associativity in cpu caches. IEEE
Trans. Comput. 38, 12 (Dec. 1989), 1612-1630.

11. IEEE P896.1. Draft Standard, Backplane Bus (Futurebus). Nov. 1986. 17. KATZ,
R., EGGERS, S., WOOD, D. A., PERKINS, C., AND SHELDON, R. G.
Implementing a cache consistency protocol. In Proceedings of the 12th International
Symposium on Computer Architecture (June 1985). pp. 276-283.

12. LAHA, S., PATEL, J. H., AND IYER, R. K. Accurate low-cost methods for
performance evaluation of cache memory systems. IEEE Trans. Comput. 37, 11 (Nov.
1988), 1325-1336.

13. LIN, Y-B., BAER, J.-L., AND LAZOWSKA, E. D. Tailoring a parallel trace-
driven simulation technique to specific multiprocessor cache coherence protocols. In
Distributed Simulation Proceedings of the 1989 SCS Eastern Conference (Tampa, Fla.,
March 1989), pp. 185-190.

 135

14. LIPTAY, J. S. Structural aspects of the system/360 Model 85, part II: The cache.
IBM Syst. J. 7, 1 (1968), 15-21.

15. PUZAK, T. R. Cache-Memory Design Ph.D. dissertation, Univ. of Massachusetts,
1985.

16. MATTSON, R. L., GECSEI, J., SLUTZ, D., AND TRAIGER, I. L. Evaluation
techniques for storage hierarchies. IBM Syst. J. 9, 2 (1970), 78-117.

17. OLKEN, F. Efficient methods for calculating the success function of fixed space
replacement policies. Master’s thesis, Univ. of California, Berkeley, Calif., May 1981.

18. SLUTZ, D. R., AND TRAIGER, I. L. Determination of hit ratios for a class of
staging hierarchies. IBM Res. Rep. RJ 1044, May 1972.

19. SMITH, A. J. Two methods for the efficient analysis of memory trace data. IEEE
Trans. Softw. Eng. SE-3, 1 (Jan. 1977), 94-101.

20. SMITH, A. J. Sequential program prefetching in memory hierarchies. Computer 11,
2 (Dec. 1978), 7-21.

21. SMITH, A. J. Cache memories. ACM Comput. Suru. 14,3 (Sept. 1982), 473-530.

22. SMITH, A. J. Cache evaluation and the impact of workload choice. In Proceedings
of the 12th Annual Symposium on Computer Architecture (Boston, Mass., June 1985).
pp. 64-73. 34. SMITH, A. J. Disk cache-Miss ratio analysis and design considerations.

23. SMITH, A. J. Two methods for the efficient analysis of memory address trace data.
IEEE Trans. Softw. Eng. 3, 1 (Jan. 1977), 94-101.

24. SWEAZEY, P., AND SMITH A. J. A class of compatible cache consistency
protocols and their support by the IEEE future bus, In Proceedings of the 13th
Symposium on Computer Architecture (Tokyo, June 1986), pp. 414-423.
ACM Trans. Comput. Syst., Aug. 1985, 161-203.

25. THOMPSON, J. Efficient analysis of caching systems. Ph.D. dissertation, Univ. of
California, Berkeley; also Tech. Rep. UCB/CSD 87/3’74, Oct. 1987.

26. THOMPSON, J. G., AND SMITH, A. J. Efficient (stack) algorithms for analysis of
write-back and sector memories. ACM Trans. Comput. Syst. 7, 1 (Feb. 1989), 78-116.

27. TOKUNAGA, T., HIRAI, Y., AND YAMAMOTO, S. Integrated disk cache
systems with file adaptive control. In Proceedings of the IEEE Computer Society
Conference (Washington, DC, Sept. 1980). IEEE, New York, 1980, pp. 412-416.
28. TRAIGER, I. L., AND SLUTZ, D. R. One pass techniques for the evaluation of
memory hierarchies. IBM Res. Rep. RJ 892, Yorktown Heights, N.Y., July 1971.

 136

