
Efficient Parallel Architecture of
SWAF for Multi-core Sysrems

By
Fauzia Noureen

2008-NUST-MS-PhD-IT-34

Supervisor
Dr. Hafiz Farooq Ahmad

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(April 2011)

Approval

It is certified that the contents and form of the thesis entitled “Efficient
Parallel Architecture of SWAF for Multi-core Sysrems” submitted
by Fauzia Noureen have been found satisfactory for the requirement of the
degree.

Advisor: Dr. Hafiz Farooq Ahmad

Signature:
Date:

Committee Member 1: Sir Ibrar Ahmed

Signature:
Date:

Committee Member 2: Sir Aatif Kamal

Signature:
Date:

Committee Member 3: Sir. Ammar Karim

Signature:
Date:

i

Abstract

Multi-core systems and multi-core servers are present in almost all data cen-
ters now-a-days. All major processor vendors are producing multi-core chips.
These multi-core systems are commonly used to deploy high end applications
such as firewalls. However the capacity of a system cannot by fully utilized
unless and until application running on the system is not capable of utiliz-
ing it. So multi-threaded application architecture is need for mission critical
systems like SWAF (Semantic Web Application Firewall). Fully parallelized
application running on multi-core system achieves high performance. To de-
sign fully parallelized SWAF, all different modules need to run concurrently.
Furthermore each module has to have its own thread pool containing mul-
tiple numbers of threads which are responsible for performing tasks specific
to that module. The research challenges faced while designing such archi-
tecture includes reducing the SWAF’s complexity, minimizing the increased
inter-modular communication and most importantly usage of different opti-
mized techniques to remove sequential dependencies among different mod-
ules. Each module places intermediate result in a memory buffer so that the
other module can read it and perform further tasks on it. JVM (Java Virtual
Machine) manages and distributes the thread pools to the available cores of
the system and assures to run each module on different core of the machine
concurrently. The system has been evaluated on both low and high loads to
test the performance. At low load of requests, old architecture gave better
results than the proposed one. The reason was the increased communication
between different modules of SWAF. The test results at high load of requests
proved that multi-core SWAF gave consistent behavior where as old SWAF
code become irresponsive at high loads.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by an-
other person, nor material which to a substantial extent has been accepted
for the award of any degree or diploma at National University of Sciences
& Technology (NUST) School of Electrical Engineering & Computer Science
(SEECS) or at any other educational institute, except where due acknowl-
edgement has been made in the thesis. Any contribution made to the research
by others, with whom I have worked at NUST SEECS or elsewhere, is ex-
plicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Fauzia Noureen

Signature:

iii

Acknowledgment

First and foremost, I am immensely thankful to Almighty Allah for letting
me pursue and fulfill my dreams. Nothing could have been possible without
His blessings.
After that I am thankful to my family and friends for supporting me in every
ways possible to complete my work. I am grateful to my thesis supervisor,
Dr. Hafiz Farooq Ahmed, for his continuous support and guidance during
this journey. He gave me motivation whenever I felt difficulties in my work.
Without his guidance and encouragement I would not be able to complete
my thesis. He was always available for me during the difficulties I faced
regarding any matter. He was really very generous and patient during this
thesis time span.
This thesis would not have been possible without the expert opinions of
my Co-supervisor, Sir Ibrar Ahmed, who was a great source of inspiration
and guidance. His work experience helped me a lot during my thesis work.
His experience and vision helped me resolving my problems during work. I
am really grateful to him because he spared time from his hectic industry
routines. I am also thankful to my committee members Sir Aatif Kamal and
Sir Ammar Karim for their support and suggestions.
I am also thankful to SWAF Team leads Ali Hur and Abdul Razzaq for their
guidance. They helped me understanding SWAF which supported me to
integrate my ideas in SWAF. I am also thankful to all SWAF team members
for their help and support.

Fauzia Noureen

iv

Contents

1 Introduction and Motivation 1
1.1 Introduction . 1

1.1.1 Why Web Application Firewall (WAF)? 1
1.1.2 Multi-threading on Single core vs. Multi-core 2

1.2 Motivation . 3
1.3 Research Objectives . 3
1.4 Thesis Organization . 4

2 Existing Techniques and Architectures 5
2.1 Overview . 5
2.2 Performance impact of a WAF 5
2.3 Parallel Computing . 6
2.4 Moore’s Law . 6
2.5 Amdahl’s Law . 7
2.6 Parallelism saves power consumption 8
2.7 Revolution in computing . 9
2.8 Overhead of parallelism . 9
2.9 Relation of threads and cores 10
2.10 Relevant Architectures . 11
2.11 Conclusion . 14

3 Proposed System Architecture 15
3.1 Overview . 15
3.2 Current Architecture . 15
3.3 Weaknesses of existing solution 17

3.3.1 Single thread pool for each block 17
3.3.2 More or less a serial architecture 17
3.3.3 Almost no advantage of multi-cores 18

3.4 Problem Statement . 18
3.5 Proposed Architecture . 18
3.6 Challenges . 18

v

CONTENTS vi

3.6.1 Minimize System Complexity 19
3.6.2 Minimize Inter-module Communication 19
3.6.3 Reduce Sequential dependencies 19

3.7 Resolution of overheads of parallelism 20
3.7.1 Cost of starting a thread or process 20
3.7.2 Cost of communicating shared data 20
3.7.3 Cost of synchronizing 21
3.7.4 Extra (redundant) computation 21

3.8 Conclusion . 21

4 Implementation Details 22
4.1 Overview . 22
4.2 Implementation details . 22

4.2.1 Stored data object . 23
4.2.1.1 Http Request [28] 23
4.2.1.2 Http Response[29] 24
4.2.1.3 Http Context 25
4.2.1.4 Http Host . 25
4.2.1.5 Http Processor 25
4.2.1.6 Http Request Executor 25
4.2.1.7 Connection Reuse Strategy 26
4.2.1.8 Http Request Handler Resolver 26
4.2.1.9 Http Server Connection 26

4.2.2 Memory Buffer . 26
4.2.2.1 Array Blocking Queue 28
4.2.2.2 Linked Blocking Queue 28
4.2.2.3 Priority Blocking Queue 28
4.2.2.4 Delay Queue 28
4.2.2.5 Synchronous Queue 29

4.2.3 Threads Execution . 29
4.3 Responsibilities of Modules . 30

4.3.1 HTTP Interceptor . 31
4.3.2 HTTP Parser . 31
4.3.3 Request and Response Filter 31
4.3.4 Legitimate and Malicious Requests Logging 31

4.4 Conclusion . 32

5 System Evaluation 33
5.1 Overview . 33
5.2 Evaluation Criteria . 33

5.2.1 Number of Requests / Second 34

CONTENTS vii

5.2.2 Total Number of samples in the test run 34
5.2.3 Total Throughput of the test 34
5.2.4 Error Rate . 34

5.3 Testing Results . 35
5.3.1 Testing Results on Windows Machine 35
5.3.2 Initial Testing Results on High end Machine 36
5.3.3 Testing results on high end server after complete dis-

integration . 38
5.4 Conclusion . 39

6 Conclusion and Future Works 40
6.1 Overview . 40
6.2 Conclusion . 40
6.3 Future Works . 41

List of Abbreviations

Abbreviations Descriptions
SWAF Semantic based Web Application Firewall
WAF Web Application Firewall
OSI Open Systems Interconnection
CPU Central Processor Unit
QoS Quality of Service
I/O Input Output
HTTP HyperText Transfer Protocol
URI Uniform Resource Identifier
RFC Request For Comment
JVM Java Virtual Machine
FIFO First In First Out
SQL Structured Query Language
DT Directory Traversal
XSS Cross Site Scripting
DoS Denial of Service
DDoS Distributed Denial of Service
RMI Remote Method Invocation
SOA Service Oriented Architecture
VM Virtual Machine
RAM Random Access Memory

viii

List of Figures

1.1 Deployment of a WAF . 2

2.1 Moore’s Law [24] . 7
2.2 Amdahl’s Law [16] . 8
2.3 Formula for Power consumption 8
2.4 Formula for performance evaluation 9
2.5 Evaluation in computing . 10
2.6 Threads vs. Cores . 11
2.7 Function-parallel, rules distributed across an array of firewalls 13
2.8 Multi-Primary Hash-Based Stateful Firewall Cluster 14

3.1 Current SWAF Architecture 16
3.2 SWAF - In a bit detail . 16
3.3 SWAF - Description of different modules 17
3.4 Proposed Architecture . 19

4.1 Response status codes . 24
4.2 Buffer Content Class . 27
4.3 Defining analyzer queue . 29
4.4 Writing an object to queue . 30
4.5 Defining executor . 30
4.6 Fixed thread pool . 31
4.7 Invoking multiple threads . 31

5.1 Testing machine specifications 35
5.2 Comparison on low load . 36
5.3 System specification of high end machine 36
5.4 Number of requests per second 37
5.5 SWAF test run I . 37
5.6 SWAF test run II . 38
5.7 Test run for Multi-core SWAF 38
5.8 Comparison at different loads 39

ix

List of Tables

2.1 Threads vs. Cores . 11

x

Chapter 1

Introduction and Motivation

1.1 Introduction

1.1.1 Why Web Application Firewall (WAF)?

The security of web applications has become increasingly important and a
secure web environment has become a high priority for e-businesses com-
munities [1]. Traditional firewalls do not understand attacks directed at the
code of the application. If the firewall sees TCP port 80, the traffic is allowed
through; no matter what malicious code it may contain [2]. Web applica-
tion firewalls are used to protect the application layer attacks. WAFs are
capable of preventing attacks that network firewalls and intrusion detection
systems cannot. In most cases WAFs do not require modification of applica-
tion source code [13]. According to the statistics given by various authentic
sources, such as MITRE, OWASP [3], WHITE HAT, ACUNETIX, about 75
% of information security attacks are being launched at Application layer of
OSI (Open Systems Interconnection) model. A security assessment by the
Application Defense Center, which included more than 250 Web applications
from e-commerce, online banking, enterprise collaboration, and supply chain
management sites, concluded that at least 92% of Web applications are vul-
nerable to some form of attack [4]. Another survey found that about 75% of
all attacks against web servers target the web applications also [5]. WAFs
are often called ’Deep Packet Inspection Firewall’ because they look at each
request and response. Unfortunately packet inspections can impose signifi-
cant delays on traffic due to the complexity and size of policies [6].

Traditional firewall implementations consist of a single dedicated machine,
similar to a router that sequentially applies the policy to each arriving packet.
However, packet filtering can represent a significantly higher processing load

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

Figure 1.1: Deployment of a WAF

than routing [7]-[9]. For example, a firewall that interconnects two 100Mbps
networks would have to process over 300,000 packets per second [10]. Suc-
cessfully handling this traffic load becomes more difficult as policies become
more complex [7], [11], [12]. An Application firewall’s role is to improve ap-
plication security by integrating knowledge about an application’s specific
security needs into elements of the IT security infrastructure [13].

1.1.2 Multi-threading on Single core vs. Multi-core

Application performance can be improved by having multiple threads in the
program. Many web applications are using concept of multi-threading to im-
prove their time to respond to a user request over single core platforms. The
concept of multi-threading over single core platforms provides one significant
advantage. If one thread of application is working on a time consuming task
like heavy database query or disk access than instead of waiting the other
thread will utilize the CPU for its working. These improved instructions
application can has by using multiple threads over single core is known as
’interleave instructions stream’. In this scenario threads are not running in
parallel to each other so the performance gain of multi-threading over single
core is limited.

However this performance restriction is not there when multi-threaded appli-
cation runs over multi-core platform. On a multi-core system, threads don’t
need to wait for each other. Rather they run independently over different
cores of CPU[16]. The theme for such systems is that applications should be
optimized in such a way that different threads run over different cores of the
system.

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

1.2 Motivation

Research proved that the questions which are normally asked by the client
before deployment of firewall includes, ”Is there a significant performance
loss while deploying a firewall in the network?” and ”What level of security
we (client) should expect without sacrificing the network performance?” [14].
It gives a motivation that in the client’s perspective performance is as im-
portant as security of the application. Client is concerned that the increased
security should not compromise the performance of the application.

Moore’s law states, the number of transistors inside a single chip has contin-
ued to increase exponentially after every 18 months which also gives motiva-
tion that performance of applications can be improved.

Another motivation is an interesting note that the intuitive belief about se-
curity to performance i.e. the more security would result in less performance,
does not always hold in the firewall testing. [6]

1.3 Research Objectives

The Web Application Firewall (WAF) functions by being positioned between
the user-side client and the application server, thereby intercepting all data
passed between the application server and the user. This traffic is examined
by the WAF against various rules in an attempt to determine which data is
valid and which is considered invalid [13] and as discussed earlier that WAFs
are also known as ’deep packet inspectors’ because they will in detail check
the packet is malicious or not. As discussed earlier, it is proved that WAFs
are the best solution for securing the web server but the performance en-
hancement is WAF is very important factor.

Performance is very important factor for a firewall. If a client deploys
firewall in-front of an application server they needs to be sure that it won’t
affect the performance of the application very much. The demand for com-
puting power continues to increase in virtually every domain, from the basic
desktop systems to the high-end computing platforms [19]. The emerging
multi-core architectures provide a solution to increase the performance capa-
bility on a single chip without requiring a complex system and increasing the

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

power requirements [19]-[23]. Therefore, multi-core systems have become the
dominant architecture for both desktop and high-performance platforms.

Protecting the application servers to the highest level possible without af-
fecting the performance is desired by the industry today. This is the era of
multi-core systems and multi-core servers are present in almost all data cen-
ters now-a-days. However the capacity of a system cannot by fully utilized
unless and until application running on that system is not capable of utilizing
it. So the Multi-core & multi-threaded architecture is need of mission critical
systems like WAFs.

1.4 Thesis Organization

Chapter 2 includes the research backgrounds of this topic starting from ba-
sics of this domain moving onto the test run performed and its results and
ending on the relevant work proposed by different people in this domain.
Chapter 3 includes the details about the proposed methodology and how it
is implemented in the system. The proposed architecture is also discussed in
detail in this chapter. Chapter 4 is all about the implementation details of
my thesis. Different data structures used on java code and what advantages
I am gaining from them. This chapter also contains code snippets of my the-
sis. Chapter 5 contains evaluation and testing results of the proposed system.
Different tests are included in this chapter to compare that the performance
of proposed architecture is better than the previous system. Chapter 6 con-
cludes the thesis and contains few suggestions based on what performance
enhancements can be evaluated in future.

Chapter 2

Existing Techniques and
Architectures

2.1 Overview

In this chapter first I discussed different reasons due to which performance
of a WAF (Web Application Firewall) is so much important. After that
two Laws Moore’s law and Amdahl’s Law is discussed. These laws shows
that capabilities of processors is increasing with time, the need is to have
such applications which can fully utilize the capacity of hardware proces-
sors. After that; results of a small test is shared. Test results proved that
multi-threaded programs are required for multi-core platforms to get best
performance results. After that different relevant architectures from differ-
ent research papers are discussed with their pros and cons. I have concluded
the chapter after these discussions.

2.2 Performance impact of a WAF

Performance impact may cause major concerns while deploying a firewall: Is
there a significant performance loss while incorporating a secure environment
using a firewall for the internet connection? To what level of security should
we expect without sacrificing the network performance? [14] The WAF func-
tions by being positioned between the user-side client and the application
server, thereby intercepting all data passed between the application server
and the user. This traffic is examined by the WAF against various rules in
an attempt to determine which data is valid and which is considered invalid

5

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 6

[13] and as discussed earlier that WAFs are also known as ’deep packet in-
spectors’ because they will in detail check the packet is malicious or not. As
discussed earlier, it is proved that WAFs are the best solution for securing
the web server but the performance enhancement is WAF is very important
factor.

The demand for computing power continues to increase in virtually every
domain, from the basic desktop systems to the high-end computing platforms
[15]. In the past, performance increase in processors was mainly reached by
increasing clock frequency and designing more complex systems [16],[17].
The major focus is that how to place a WAF inside the environment to give
maximum protection to the application but yet not compromising the per-
formance of the application server. It is interesting to note that the intuitive
belief about security to performance i.e. the more security would result in
less performance, does not always hold in the firewall testing [14].

2.3 Parallel Computing

Parallel computing refers to usage of multiple number of processor in parallel
to solve a problem instead of using single processor. [30]

The main goal which is desired from parallel computing is improvement in
performance of the task assigned. Few years back people talked about paral-
lelism in their research but now-a-days there is not a single company which
is not offering multi-core systems for high computational tasks to increase
their performance.

2.4 Moore’s Law

Moore’s law claims a long term trend in the constitution of computer hard-
ware. He claimed that the number of transistors on an integrated circuit
will get double approximately after every eighteen months of time. Moore’s
claimed this almost more than half century back and this trend is still fol-
lowed by different computer hardware.

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 7

This claim shows that the capacity of the computer hardware is increasing

Figure 2.1: Moore’s Law [24]

exponentially with time. Now the utilization of that capacity to its maxi-
mum level is the requirement of the era now. Utilizing hardware capacity to
its maximum level by introducing different techniques and technologies can
results in high performance systems.

2.5 Amdahl’s Law

Amdahl’s claimed in his law that, ’If in an application whose 50% of the code
can be parallelized and 50% of the code cannot be parallelized run on infinite
number of processors than the total time consumed by the application will
cut down to half’.

The figure given below shows the comparison of parallelism of application
and the number of cores on which application is running. This comparison
was described by Amdahl in his law. Left side of the figure shows the per-
formance benefits one can achieve by just doubling the number of cores on

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 8

which the application is running without increasing the parallelism in the
code. The Amdahl claimed that if time consuming by an application was
85% when it was running on single core than it will decreased to around 77.5
percent if that application start running on double number of cores.

The right side of the figure shows that after introducing the parallelism in
the code by any means like multi threading, when application will run on
single core take 85 percent time. This shows that if application has the ca-
pacity of parallelism but it is running on single core than it will not give any
performance improvement.

Figure 2.2: Amdahl’s Law [16]

2.6 Parallelism saves power consumption

According to [30], the formula to calculate the power utilization in comput-
ing is given in figure 2.3

Where C is capacitance, V is voltage given to the chip and F is frequency.

Figure 2.3: Formula for Power consumption

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 9

Similarly according to [30], the formula to calculate performance of the ap-
plication is given in figure 2.4

Here again F is frequency. If number of cores is increased to 2x in the

Figure 2.4: Formula for performance evaluation

formula than the performance will also ideally go to 2x. Similarly if number
of cores is increased to 2x but to maintain the performance to same level,
frequency is decreased to *x. Exact same performance will be achieved at of
the original power. (Decrease in Frequency also decreases the power require)

2.7 Revolution in computing

According to the figure given below, number of transistors on a chip or chip
density is increasing continuously after every two years as stated by Moore’s
law. However, the increase in clock speed and the power offered are lim-
ited with time. Number of cores is increasing in hardware to increase these
parameters now. Performance per clock is not increasing very much. Hard-
ware is providing abilities but there is a great need of parallelism at software
level. All major vendors are producing multi core systems now-a-days. Multi-
threaded application running over the hardware of this era is basically the
requirement to gain high performance.

2.8 Overhead of parallelism

Parallelism brings some overheads along with more performance. There is
a great need to overcome these overheads smartly to achieve desired perfor-
mance boost. These overheads includes

• Cost of starting a thread or process

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 10

Figure 2.5: Evaluation in computing

• Cost of communicating shared data

• Cost of synchronizing

• Extra (redundant) computation

Each of these overheads may take milliseconds of time but the decision of
units of work which run in parallel needs to be done very smartly so that
performance is not affected by these overheads.

2.9 Relation of threads and cores

To find out the best combination of multi-threading over multi-core system I
performed a small test. I wrote a multi-threaded program which was writing
two files to the hard disk. I used different combination to check the perfor-
mance of the program. The results I achieved are given in table 1.

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 11

Table 2.1: Threads vs. Cores

No of threads No of cores Time (sec)
1 1 60.50
1 2 61.27
2 1 58.47
2 2 37.88

The graphical representation is given in figure 2.6

The conclusion of this test is that a multi-threaded application running

Figure 2.6: Threads vs. Cores

over multi-cores systems is key to achieve high performance solution. Promi-
nent improvement can be noticed while running the last scenario.

2.10 Relevant Architectures

While doing the literature survey I went through different architectures which
are somehow relevant to the architecture I am currently working on. I looked
into the description of every architecture in detail and found out some pros
and cons of the architectures too.

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 12

Michael R. Lyu and Lorrien K. Y. Lau [16] explored the firewall security and
performance relationship for distributed systems. They performed experi-
ments for different security levels of firewalls and quantify their performance
results. Based on the test results, the impacts of the various firewall security
levels on system performance with respect to transaction time and latency
are measured and analyzed. They claimed that the belief that more security
would result in less performance does not always holds true and they proved
this claim via test results. The performance was evaluated via two perfor-
mance indicators i.e. Latency and Total transaction time. They took results
for both HTTP and FTP traffic.

Overall testing results in [16] showed that the firewall performance is affected
only if the overhead incurred by the enhanced security control is significant
when compared with the normal transaction time without the enhanced se-
curity control. If frequent connections with data of small size are required
in communication, enhanced firewall security would be very likely to bring
out some significant performance degradation to the private network. The
con of the technique in paper [16] is that the authors have not talked about
the parallelism at all. Secondly their firewall is Linux based network layer
firewall and there are many issues with the firewalls at network layer as de-
scribed in introduction session.

In paper [17] authors Errin W. Fulp and Ryan J. Farley introduced a
firewall architecture that performs packet inspection under increasing traf-
fic load, high traffic speeds and strict QoS. To enhance performance in this
architecture authors used multiple instances of firewalls where each firewall
was implementing a portion of security policy of organization. Packet was
forwarded to every firewall and the gate as shown in figure 5. Each firewall
process the packet based on their local security policy. If match found that
is the packet is malicious, firewall will notify to the gate. As soon as match is
found as any firewall packet will be declared malicious and will be discarded.

The advantage of this architecture is that as every firewall is involved
in processing of each packet, the performance is improved regardless of the
traffic load. Another advantage is in this architecture we can maintain the
state. The disadvantages are that first of all this solution is not a scalable
solution and secondly this is an expensive solution.

Another relevant architecture is proposed in paper [18] where authors talked
about the three major issues when we talk about the firewall architecture.

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 13

Figure 2.7: Function-parallel, rules distributed across an array of firewalls

First is the ’Performance issues’ which will cause the reduction in the band-
width throughput of the network. Second and third issues are ’availability’
and ’complexity’. They said that among all these issues performance issue
is the biggest because if that is not resolved the firewall may become bottle-
neck in the system. Authors discussed four different architectures of firewalls
which are

• The Primary-Backup approach

• Multi-Primary Multipath Firewall Cluster

• Multi-Primary Firewall Cluster Sandwich

• Multi-Primary Hash-Based Stateful Firewall Cluster

Few of these architectures are for stateful firewalls and few are applicable to
stateless firewalls. The most effective architecture which is also relevant to
SWAF is ’Multi-Primary Hash-Based Stateful Firewall Cluster’ because this
architecture is for stateful firewalls like SWAF. This architecture is given in
the figure below. In this architecture firewalls share the load without the
load balancer because they are clones. All the instances of firewall receive

CHAPTER 2. EXISTING TECHNIQUES AND ARCHITECTURES 14

same data all the time because a network layer hub with the port mirroring
feature is used. Hash based approach is used on the firewalls to know that
which firewall will filter the packet. The only advantage is this architecture
is that it gives performance benefits. The disadvantages include complexity
of architecture, costly solution and a problem that if one firewall fails during
operation than a subset of packets won’t get filtered.

Figure 2.8: Multi-Primary Hash-Based Stateful Firewall Cluster

2.11 Conclusion

To conclude the discussion of this chapter I must say that there are different
architectures which are proposed by different authors to improve the perfor-
mance of a firewall but none of these architectures are focusing on multi-core
platforms. Multi-core systems are very common now-a-days and utilizing the
performance capacity of multi-core system can give the best results.

Chapter 3

Proposed System Architecture

3.1 Overview

In this chapter, I discussed the original SWAF (Semantic Based Web Appli-
cation Firewall) architecture in little detail. There are few problems with the
original architecture due to which the performance of current system is con-
fined. However at higher loads clients normally do not wanted to compromise
on performance of their applications because in e-commerce slow responses
are highly discouraged. So to improve the performance over high loads a
new architecture for SWAF is proposed in this chapter later on. Different
challenges are discussed in the end which may affect the implementation of
proposed architecture.

3.2 Current Architecture

The figure 3.1 contains the current architecture of SWAF. This figure shows
different modules of SWAF.

The figure 3.2 shows the current architecture of SWAF in a bit detail. Here
’Listener’ module is one separate thread which is always listening on a partic-
ular port. This means that listener module will receive requests on a defined
port and will forward it to a thread from the thread pool every time.

The tasks of the modules in the next block i.e. starting from ’Intercep-
tor’ till ’Response generation’ are executed by single thread which is highly
in-efficient and independent way. The delay in any module of this block will

15

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 16

Figure 3.1: Current SWAF Architecture

hold the overall execution of the request. Size of thread pool defines that
how much concurrent requests can be handled. This is a limitation of this
architecture.

Current architecture of SWAF is not getting any benefit of multi-cores of
the system because of the dependency of the biggest block of architecture.

Short description of each module of SWAF is given in figure 3.3

Figure 3.2: SWAF - In a bit detail

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 17

Figure 3.3: SWAF - Description of different modules

3.3 Weaknesses of existing solution

The weaknesses of current solution are given below.

• Single thread pool for each block

• More or less a serial architecture

• Almost no advantage of multi-cores

3.3.1 Single thread pool for each block

The two main blocks of this architecture contains separate thread pool. But
the problem is that the thread pool for the main block (Starting from In-
terceptor till Response generator) is just one. The thread pool size of this
block actually defines that how much number of requests can be handled
concurrently.

3.3.2 More or less a serial architecture

Current architecture is not parallel architecture because modules are calling
each other via the function calls. Function call is serial in nature because
the caller of the function keeps on waiting for the result of the function it
called. This actually means that interceptor module will keep on waiting till
the response generator is not done with its work.

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 18

3.3.3 Almost no advantage of multi-cores

Now-a-days multi-core systems are very common. Multi-core systems help
in enhancing the performance of the system if the architecture running over
it supports it. The current architecture of SWAF does not help in increasing
the performance of the system while running over multi-core system.

3.4 Problem Statement

Performance and security are desirable attributes for web servers. So to im-
prove performance there is a need to design a parallelized architecture for
SWAF on Multi-core systems. The theme is how to maximize the core uti-
lization and minimize the communication of the sub-systems.

3.5 Proposed Architecture

The proposed architecture of SWAF contains independent working of major
modules of SWAF. Each module performs its tasks and places the output
in the memory buffers then a thread of next module starts working on that
input given to it. Different modules are coordinating with each other via
the buffers and not the function calls. Thread pool for different modules is
separated from each other so that the working of one module may not affect
other module.

Working of all modules is independent of each other and can be run on
different cores of the system to enhance the performance of the overall sys-
tem.

3.6 Challenges

The challenges I faced while working on this architecture includes

• Minimize System Complexity

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 19

Figure 3.4: Proposed Architecture

• Minimize Inter-module Communication

• Reduce Sequential dependencies

3.6.1 Minimize System Complexity

System complexity is increased while we were trying to propose an archi-
tecture which could run on multi-core systems. So the first and the most
important challenge was that the proposed architecture should not be that
much complex that it may compromise the performance because of the com-
plexity.

3.6.2 Minimize Inter-module Communication

By introducing the proposed architecture I am introducing enhanced com-
munication between different modules. The second challenge I faced was
that how can I optimize this communications so that the performance is not
compromised the time taken by the inter modules communication.

3.6.3 Reduce Sequential dependencies

This architecture helped in reducing the sequential dependencies of different
modules by introducing memory buffers between them to make them work

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 20

independent of each other. There is a great need to learn that how to improve
performance of the SWAF without increasing the complexity of the system.

3.7 Resolution of overheads of parallelism

As discussed in chapter 2, following are different overheads which can de-
crease the performance boost application can gain.

• Cost of starting a thread or process

• Cost of communicating shared data

• Cost of synchronizing

• Extra (redundant) computation

To resolve these overheads in proposed solution several measure are taken. I
will briefly discuss them one by one.

3.7.1 Cost of starting a thread or process

In proposed multi-core architecture of SWAF, threads are not created each
time we need them. Rather threads are one time created at start of the
application and then they are saved in their corresponding thread pools. By
this mechanism the time to create a thread each time is not required.

3.7.2 Cost of communicating shared data

In proposed multi-core architecture of SWAF, shared data is communicating
between different modules by placing a user defined object in memory. Cost
of sharing is reduced because the object is present in memory all the time
and there is no I/O processing involved. However this cost is low but still
present in proposed system.

CHAPTER 3. PROPOSED SYSTEM ARCHITECTURE 21

3.7.3 Cost of synchronizing

Blocking Queue (Java defined Queue) is used for storage of data. Blocking
queue is responsible for the synchronization of threads. It also solves the
reader writer problem of threads. The details of blocking queue are given in
chapter 4.

3.7.4 Extra (redundant) computation

There are no extra or redundant computations in SWAF. Each module works
on its own tasks which are not shared by any other module of SWAF.

3.8 Conclusion

Protecting the application servers to the highest level possible without affect-
ing the performance is desired by the industry. This is the era of multi-core
systems and multi-core servers are present in almost all data centers now-a-
days. However the capacity of a system cannot by fully utilized unless and
until application running on that system is not capable of utilizing it. So the
Multi-core and multi-threaded architecture is need of mission critical systems
like SWAF.

Chapter 4

Implementation Details

4.1 Overview

This chapter contains implementation details of the proposed architecture.
Different components of the system are discussed in detail in this chapter.
Code snippets are also given with the components for the understanding of
working. In the end responsibilities of different modules in the new architec-
ture is discussed.

4.2 Implementation details

The main difference in the new architecture is that in this working of each
module is separated with each other. Instead of function call different mod-
ules work independent of each other and places the results in a memory buffer
after their processing. The next module picks up the object from the mem-
ory buffer for further processing. There are different components which are
involved in the processing. These includes

• Stored data object

• Memory Buffer

• Threads Execution

22

CHAPTER 4. IMPLEMENTATION DETAILS 23

4.2.1 Stored data object

Stored data object is custom object which is saved in the memory buffer by
all modules after finishing their working. There are nine different parameter
of HTTP Request which are saved in this data object. These includes

• Http Request

• Http Response

• Http Context

• Http Host

• Http Processor

• Http Request Executor

• Connection Reuse Strategy

• Http Request Handler Resolver

• Http Server Connection

The description of these parameters is given one by one to tell that what
information is stored in all of these headers.

4.2.1.1 Http Request [28]

HTTP request parameter contains information about client while sending
request message to server. HTTP Request includes first line of the message,
the method to be applied to the resource, the identifier of the resource, and
the Request header fields.

Request line contains method token, request URI and the information about
the protocol version. The method token tells that what method should be
applied to the resource identified by the request. Method token can have
get, post, head, put, delete etc as its value in it. Request URI (Uniform Re-
source Identifier) tells the resource on which request should apply. Different
options can be applied to Request URI. Asterisk ’*’ means that the request
should not apply on any particular resource rather it should be applied to

CHAPTER 4. IMPLEMENTATION DETAILS 24

the server. Similarly absolute URI paths of resources are used in Request
URI. An example of Request line is given below.

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

The identifier of resource helps in identifying the exact resource on which
request needs to be applied along with request URI header. Identified is
used in three different ways. If the request URI is absolute, identifier will
be ignored. If the request URI is not absolute, the host is decided by this
header. And if both the scenarios are not fulfilled then response must contain
’bad request’ message in it.

Request header fields contain different headers which give information of
client to the server. These headers include Accept, Authorization, From,
Host, If-match, and Range etc.

4.2.1.2 Http Response[29]

HTTP Response contains the server’s response to the request. The first line
of response contains protocol version, numeric status code and description of
the status.

The status code is three digits code which tells the server’s response and
after that a short description is given by server to explain it a little. The
first digit tells that from status code belongs to which class. Next two digits
specify the exact status code.

The response header fields contain additional information from server to

Figure 4.1: Response status codes

client which cannot be given in status line.

CHAPTER 4. IMPLEMENTATION DETAILS 25

4.2.1.3 Http Context

HTTP context is a class in HTTP core library which encapsulates all HTTP-
specific information about an individual HTTP request. This information is
also saved in memory buffer so that client’s complete information is pre-
served.

4.2.1.4 Http Host

HTTP Host is a class in HTTP core library that holds all of the variables
needed to describe an HTTP connection to a host. This includes remote host
name, port and scheme used. HTTP host helps in recognizing the client on
the internet.

4.2.1.5 Http Processor

HTTP processor in an interface defined in HTTP core library. This is collec-
tion of interceptors which are responsible for different tasks. HTTP processor
extends both HTTP Request Interceptor and HTTP Response Interceptor.
Interceptors must be implemented as thread safe fashion.

4.2.1.6 Http Request Executor

It is HTTP protocol handler which implements all the requirements of the
HTTP protocol for client side. It follows the requirements described by RFC
2616. HTTP Request Executor depends on HTTP processor to generate dif-
ferent headers.

CHAPTER 4. IMPLEMENTATION DETAILS 26

4.2.1.7 Connection Reuse Strategy

Connection Reuse Strategy is an interface in HTTP core library. It decides
that either connection can be reused or not for all further requests. On the
decision of connection reuse strategy connection remains kept alive or dis-
carded. Implementation of this interface must be thread safe.

4.2.1.8 Http Request Handler Resolver

Http Request Handler Resolver can be used to resolve an instance of match-
ing a particular request URI. Usually the resolved request handler will be
used to process the request with the specified request URI.

4.2.1.9 Http Server Connection

It is a server-side HTTP connection which can be used for receiving requests
and sending responses.

In java code stored data object is an object of class ’BufferContent’. This
class contains all the private data members of the classes described above.
Getters and Setters are present in this class to access these private data ob-
jects. The visual description of class is given in figure 4.2

4.2.2 Memory Buffer

At first Java Queue was used in code for storing buffer content’s objects in
memory. But I was getting reader writer problem in that case. Reader writer
problem is that if one thread is writing in queue the other thread is trying
to read that content from the queue. To resolve that issue we used ’Block-
ing Queue’ concept. This concept is present in java after Java 5. Blocking
Queue’s implementation is present in java.util.concurrent package.

Blocking Queue [25] resolves the reader writer problem at its own. The
implementation characteristic of blocking queue includes following function-
alities.

CHAPTER 4. IMPLEMENTATION DETAILS 27

Figure 4.2: Buffer Content Class

• Blocks the thread when it tries to de-queue and queue is empty.

• Blocks the thread when it tries to en-queue and queue is full.

• If a thread tries to de-queue empty queue it is blocked unless data is
inserted by any other thread.

• Thread trying to en-queue full queue is blocked unless some data is
removed by any other thread.

There are different types of blocking queues [26] defined in java. These in-
cludes

• Array Blocking Queue

• Linked Blocking Queue

CHAPTER 4. IMPLEMENTATION DETAILS 28

• Priority Blocking Queue

• Delay Queue

• Synchronous Queue

Short description of all these types is given.

4.2.2.1 Array Blocking Queue

In this type we need to tell the size of queue while declaring it at first. It
behaves just like java arrays in which fixed size collection is created. This is
FIFO (First In First Out) based collection.

4.2.2.2 Linked Blocking Queue

This type of queue is just like linked list in which no size needs to be speci-
fied. There is no maximum capacity of this queue theoretically. Practically
limit of main memory is limit of this queue. This is also FIFO (First In First
Out) based queue.

4.2.2.3 Priority Blocking Queue

In this type of queue priorities are assigned to objects stored in it. Objects
with higher priority will get priority in processing.

4.2.2.4 Delay Queue

In this type of queues delay is assigned to data before appearing or disap-
pearing from the queue. This kind of queue is normally used when such data
items are present on which we wanted to apply such restrictions.

CHAPTER 4. IMPLEMENTATION DETAILS 29

4.2.2.5 Synchronous Queue

In this type of queue, one thread always writes the item in the queue and
another thread is removing item from the queue. There is no size limit in
such queues.

I am using linked blocking queue in SWAF because of no size limit in it.

I will now discuss the working of queues in SWAF. For the discussion purpose
I am using Analyzer module’s queue. To declare a queue code line shown in
figure 4.3 should be added.

To add object of buffer content code shown in figure 4.4 is added.

Figure 4.3: Defining analyzer queue

In the same manner object is retrieved from the queue by the next module.

4.2.3 Threads Execution

As discussed earlier, thread pools are separated for each module of SWAF.
So to execute the working of a module, threads from its specific pool is exe-
cuted. I am explaining this working with the help of Analyzer thread pool.
Analyzer Invoker class contains definition of thread pools. Executor is de-
fined in Analyzer Invoker as shown in figure 4.5

A fixed size thread pool is created for every module as shown in figure
4.6

To execute a thread of analyzer code shown in figure 4.7 is written.

CHAPTER 4. IMPLEMENTATION DETAILS 30

Figure 4.4: Writing an object to queue

Figure 4.5: Defining executor

4.3 Responsibilities of Modules

After the implementation of new architecture, SWAF is mainly divided into
four components. These includes

• HTTP Interceptor

• HTTP Parser

• Request and Response Filter

• Legitimate and Malicious Requests Logging

Brief description of all these modules is given below.

CHAPTER 4. IMPLEMENTATION DETAILS 31

Figure 4.6: Fixed thread pool

Figure 4.7: Invoking multiple threads

4.3.1 HTTP Interceptor

This module intercepts the request coming from the clients. HTTP intercep-
tor allows the communication between client and SWAF.

4.3.2 HTTP Parser

The main responsibility of Parser is that it parses HTTP Request coming
from client and map it into a java object of HTTP Request Class.

4.3.3 Request and Response Filter

Filter is the main component of SWAF. It semantically detects different at-
tacks like SQL injection, DT (Directory Traversal), XSS (Cross Site Script-
ing), DoS (Denial of Service), DDoS (Distributed Denial of Service) etc.

4.3.4 Legitimate and Malicious Requests Logging

The responsibility of logger is to keep track of both legitimate and malicious
traffic. It records the details of each request made to the application server.

CHAPTER 4. IMPLEMENTATION DETAILS 32

4.4 Conclusion

Performance is very major concern of resource intense systems like SWAF.
To enhance the performance we implemented a new architecture in which
each module of SWAF is communicating via memory buffers instead of func-
tion calls. Concept of multi-threading is effectively used by assigned separate
thread pools to each module. By running a multi-threaded system over multi-
core systems we are expecting to have better performance.

Chapter 5

System Evaluation

5.1 Overview

In this chapter I will first discuss the evaluation criteria on which we are
focusing while making the test runs and comparing them over different set
ups. Afterwards I discussed different test runs I performed in both Windows
machine and on high end Linux machines on different loads. I concluded the
chapter in the end.

5.2 Evaluation Criteria

I used a tool named ’Jmeter’ [27] by apache to test the system. Jmeter is
stress testing tool which is used to measure the performance outcome of an
application. In this tool there are several characteristics which help in setting
up a test run for an application. Stress varies based on these characteristics
defined in jmeter. The major characteristics of a test run includes following
properties.

• Number of Requests / Second

• Total Number of samples in the test run

• Total Throughput of the test

• Error Rate

33

CHAPTER 5. SYSTEM EVALUATION 34

The brief description of all these properties is given below.

5.2.1 Number of Requests / Second

This parameter defines the concurrent number of requests generated by jme-
ter in that test run. Number of requests per second is defined as total number
of users in the test run into the number of requests generated by one user in
one second. This parameter defined the work load to the application in one
second.

5.2.2 Total Number of samples in the test run

This parameter defines the total number of sample (Requests) made to the
application by the test run. This parameter mainly depends on the number
of samples recorded by jmeter during the recording phase of testing.

5.2.3 Total Throughput of the test

Throughput is defined rate of successful end to end communication. So in
Jmeter all the requests having valid response add in to throughput parame-
ter.

5.2.4 Error Rate

Error rate represents any type of error code in response message or delayed or
no response from the application. The more the error rate the fewer through-
puts will be generated by the test run. High error rate means application got
down during the test run. This factor helps us determining the applications
capacity.

CHAPTER 5. SYSTEM EVALUATION 35

5.3 Testing Results

5.3.1 Testing Results on Windows Machine

First I performed a test with small number of sample size. Total sample
size was around 2000 requests. I performed the test for different number
of requests per second and ran it for both old SWAF code and for the new
proposed SWAF’s code. I plotted a graph to compare the results I collected
from thesis test runs.

The system specification of machine on which SWAF application, web appli-
cation (Web Goat in particular) and Jmeter was installed to test the systems
is given in figure 5.1

Note that in the graph given below x-axis shows number of concurrent

Figure 5.1: Testing machine specifications

request which are generated by the system per second. This is not very huge
test run so I used only 50 concurrent requests per second. Y-axis of graph
shows the throughput the test run gave at the end.

In the figure it is very clear that at very small load like till nine requests
per second performance of old SWAF is better than the proposed one. The
reason is very obvious that the communication between the modules is in-
creased in proposed SWAF’s architecture. But on ten requests per second the
throughput achieved by both systems are almost same. After that proposed
system’s performance is improving.

This shows that at low loads performance of the proposed architecture
is not very good because of the increased communication between different
modules.

CHAPTER 5. SYSTEM EVALUATION 36

Figure 5.2: Comparison on low load

5.3.2 Initial Testing Results on High end Machine

I performed a test run with very huge number of data samples to test the
performance of both systems. The high end server machine which was used
to deploy SWAF, backend application (Web Goat in particular) and Jmeter
machine had the following specifications.

Testing scenario included total sample size of more than 161,000 requests.

Figure 5.3: System specification of high end machine

200 requests per second were generated by the jmeter to test the performance.
Number of concurrent users was ten and they were generating 20 requests
per second as shown in figure 5.3

This test was performed twice for old SWAF code. Old SWAF performs
really well initially but after some time it slows down and later on the er-
ror rate increases very much because the SWAF become irresponsive. Dur-
ing first test run, SWAF performed really well till around 63,000 requests.

CHAPTER 5. SYSTEM EVALUATION 37

Figure 5.4: Number of requests per second

Throughput was around 95/sec at that particular time but after that SWAF
stopped responding error rate continued to increase. I stopped the test run
because error rate was increasing. The snapshot of intermediate result is
given in figure 5.4

In second test run, I was bound to stop the test run after 140,000 requests

Figure 5.5: SWAF test run I

because SWAF stopped responding and was continuously giving errors. The
throughput at that time reached to 33.6 per second and error rate reached
to 44.6 %. The snapshot of this test run of jemeter is given in figure 5.5

When this test was run for proposed SWAF architecture’s implementation
than the result was very consistent. The error rate was just 2.85 %. The
consistent throughput in this case was 52.1/sec. The most important point
for this test run is that SWAF was not irresponsive at any point of time.

CHAPTER 5. SYSTEM EVALUATION 38

Figure 5.6: SWAF test run II

Rather on high loads too SWAF behaved consistently.

Figure 5.7: Test run for Multi-core SWAF

5.3.3 Testing results on high end server after complete
disintegration

I did a series of test runs on multi-core SWAF installed in VMware. Total
eight cores and 3Gb RAM was assigned to the VM. Number of threads is
given on x-axis whereas the throughput achieved is shown on the y-axis of

CHAPTER 5. SYSTEM EVALUATION 39

the graph. The results are shown in the graph which shows that old SWAF
performed better at low load but at high loads throughput gained by multi-
core SWAF was much better.

Figure 5.8: Comparison at different loads

5.4 Conclusion

Testing and evaluation is very important phase of system development. Open
source stress testing software ’Jmeter’ is used for testing of multi-core system.
Jmeter is a product offered by Apache. Results are taken on both normal
windows machine and high end linux server. It is proven that the result on
high number of cores was really impressive.

Chapter 6

Conclusion and Future Works

6.1 Overview

This chapter contains the concluding remarks for the thesis. Importance
of multi-threaded architecture is discussed and the advantages that multi-
threaded application gains while running on multi-core system. Afterwards
I discussed different aspects in which this system can be enhanced in future
to increase the performance boost on high loads.

6.2 Conclusion

Multi-core systems are commonly used to deploy application servers and fire-
walls. Multi-core systems improve the performance of applications running
over it. However application should be parallelized enough to utilize capacity
offered by the multi-core systems. SWAF was previously designed to run on
single core of the system. Different modules of SWAF were tightly coupled
with each other and their working was highly dependent on each other. How-
ever, Proposed Multi-core architecture helped in reducing the response time
required for each HTTP request by smartly sharing the load on different cores
of the system. The research challenges I faced while designing multi-core ar-
chitecture included reducing the proposed system’s complexity, minimizing
the increased inter-modular communication and most importantly optimized
techniques are used to remove sequential dependencies among different mod-
ules.

In the proposed architecture of SWAF, all different modules are working

40

CHAPTER 6. CONCLUSION AND FUTURE WORKS 41

independent of each other. Each module is having its own thread pool con-
taining multiple numbers of threads which are responsible for performing
tasks specific to that module. Each module of SWAF works independently
and places the results in a memory buffer so that the other module can read
it and perform further tasks on it. Java virtual machine is responsible to run
each module on different core of the server machine. We have tested that
JVM distributes the load to the available cores of the system. This archi-
tecture ensures better performance than the old architecture of SWAF over
high loads as well. This claim is proved by system testing performed on high
loads.

6.3 Future Works

Currently all the modules of SWAF are separated and are communicating via
memory buffer. Different thread pools are created for each module of SWAF.
Ideally each module is running on different cores of the system to increase
the overall performance of SWAF. All the modules are currently running in
single JVM (Java Virtual Machine) meaning by different parameters assigned
to application running in JVM is shared by all modules. For example Java
heap space assigned to JVM will be shared by all the modules. Heap space
is the space given to JVM in memory of system.

For future, different modules can be made independent of each other by
placing each module in separate JVM and communicating with each other.
This may also increase the performance over high loads because all the com-
ponents of SWAF will work totally independent of each other. Different
modules will be loosely coupled with each other.

Another variation can be made by placing each module of SWAF on dif-
ferent system and communicating to each other via RMI (Remote Method
Invocation). This variation will also increase the performance over high loads.
The communication is also increasing in these two variations and it may be
useful on really high loads.

Bibliography

[1] Abdul Razzaq, Ali Hur, Nasir Haider, Farooq Ahmad, “Multi-Layered
Defense against Web Application Attacks” Information Technology: New
Generations, 2009. ITNG ’09. Sixth International Conference on Digi-
tal Object Identifier: 10.1109/ITNG.2009.77 Publication Year: 2009 ,
Page(s): 492 - 497

[2] Tom Rowan, “Application firewalls: filling the void”, in Network Security
Volume 2007, Issue 4, April 2007, Pages 4-7

[3] Open Web Application Security Project. “The ten most critical Web ap-
plication security vulnerabilities”

[4] WebCohort, Inc., “Only 10% of Web applications are secured
against common hacking techniques” http://www.imperva. com
/company/news/2004-feb-02.html, 2004.

[5] G. Hulme. “New software may improve application security,”
http://www.informationweek.com/story/ ,2001.

[6] Fulp, E.W.; Farley, R.J., “A Function-Parallel Architecture for
High-Speed Firewalls” Communications, 2006. ICC ’06. IEEE In-
ternational Conference on Volume: 5 Digital Object Identifier:
10.1109/ICC.2006.255099 Publication Year: 2006 , Page(s): 2213 - 2218

[7] E. D. Zwicky, S. Cooper, and D. B. Chapman, “Building Internet Fire-
walls”. O’Reilly, 2000.

[8] L. Qui, G. Varghese, and S. Suri, “Fast firewall implementations for soft-
ware and hardware-based routers”, in Proceedings of ACM SIGMET-
RICS, June 2001.

[9] S. Suri and G. Varghese, “Packet filtering in high speed networks,” in
Proceedings of the Symposium on Discrete Algorithms”, 1999, pp. 969
-970.

42

BIBLIOGRAPHY 43

[10] R. L. Ziegler, “Linux Firewalls, 2nd ed. New Riders”, 2002.

[11] C. Benecke, “A parallel packet screen for high speed networks”, in Pro-
ceedings of the 15th Annual Computer Security Applications Conference,
1999.

[12] O. Paul and M. Laurent, “A full bandwidth ATM firewall”, in Proceed-
ings of the 6th European Symposium on Research in Computer Security
ESORICS’2000, 2000.

[13] Paul Byrne, “Application firewalls in a defense-in-depth design”, Net-
work Security, Volume 2006, Issue 9, September 2006, Pages 9-11

[14] Lyu, M.R.; Lau, L.K.Y., ”Firewall security: policies, testing and per-
formance evaluation”, Computer Software and Applications Conference,
2000. COMPSAC 2000. The 24th Annual International Digital Ob-
ject Identifier: 10.1109/CMPSAC.2000.884700 Publication Year: 2000
, Page(s): 116 - 121

[15] Parallel Programming for Multicore, Electrical Engineering and
Computer Sciences Department University of California, Berkeley
http://www.cs.berkeley.edu/ yelick/cs194f07/

[16] Shameem Akhter, Jason Roberts, “Multi-Core Programming: Increas-
ing Performance through Software Multi-threading”, Intel press 2006,
http://www.intel.com/intelpress/samples/mcp samplech01.pdf

[17] Fulp, E.W.; Farley, R.J., “A Function-Parallel Architecture for
High-Speed Firewalls” Communications, 2006. ICC ’06. IEEE In-
ternational Conference on Volume: 5 Digital Object Identifier:
10.1109/ICC.2006.255099 Publication Year: 2006 , Page(s): 2213 - 2218

[18] Pablo Neira Ayuso and Rafael M. Gaca, Laurent Lefevre; “Demystifying
Cluster-Based Fault-Tolerant Firewalls” , Published by IEEE Computer
Society Nov/Dec 2009

[19] Abdullah Kayi, Tarek El-Ghazawi, Gregory B. Newby; “Performance is-
sues in emerging homogeneous multi-core architectures Simulation Mod-
elling Practice and Theory”, Volume 17, Issue 9, October 2009, Pages
1485-1499

[20] S.R. Alam, R.F. Barrett, J.A. Kuehn, P.C. Roth, J.S. Vetter; “Charac-
terization of scientific workloads on systems with multi-core processors”,
in IISWC, IEEE,2006, pp. 225-236.

BIBLIOGRAPHY 44

[21] S. Balakrishnan, R. Rajwar, M. Upton, K. Lai; “The im-
pact of performance asymmetry in emerging multicore archi-
tectures”, in ISCA’05: Proceedings of the 32nd Annual Inter-
national Symposium on Computer Architecture, IEEE Com-
puter Society, Washington, DC, USA, 2005, pp. 506-517.
doi:¡http://dx.doi.org.proxygw.wrlc.org/10.1109/ISCA.2005.51¿. M.

[22] Chu, R. Ravindran, S. Mahlke; “Data access partitioning for fine-grain
parallelism on multicore architectures”, in MICRO’07: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture, IEEE Computer Society, Washington, DC, USA, 2007, pp. 369-380.
doi:¡http://dx.doi.org.proxygw.wrlc.org/10.1109/MICRO.2007.11¿.

[23] P.F. Gorder, “Multicore processors for science and engineer-
ing”, Computing in Science and Engineering 9 (2) (2007) 3-7.
doi:¡http://dx.doi.org/10.1109/MCSE.2007.35¿.

[24] Moore’s law, last modified on 24 March 2011, available at
http://en.wikipedia.org/wiki/Moore

[25] Jakob Jenkov, ’Java Concurrency: Blocking Queues’; 2008
http://java.dzone.com/news/java-concurrency-blocking-queu

[26] R.J. Lorimer,’Concurrency: Blocking Queues and You’; 2004
http://www.javalobby.org/java/forums/m91820807.html

[27] Criteria Evaluated by Apache Jmeter (Stress Testing software,
http://jakarta.apache.org/jmeter)

[28] part of Hypertext Transfer Protocol – HTTP/1.1 RFC 2616 Fielding, et
al. available at http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

[29] part of Hypertext Transfer Protocol – HTTP/1.1 RFC 2616 Fielding, et
al. available at http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

[30] Katherine Yelick, CS 194 Parallel Programming available on
http://www.cs.berkeley.edu/ yelick/cs194f07

