
Efficient Resource Allocation to
Optimize the Network Usage

By
Saba Maqbool

2012-NUST-MS IT-13

Supervisor
Dr.Asad Waqar Malik

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(May 2016)



Approval

It is certified that the contents and form of the thesis entitled “Efficient
Resource Allocation to Optimize the Network Usage” submitted by
Saba Maqbool have been found satisfactory for the requirement of the
degree.

Advisor: Dr.Asad Waqar Malik

Signature:
Date:

Committee Member 1: Dr. Anis ur Rehman

Signature:
Date:

Committee Member 2: Dr. Muhammad Muneeb Ullah

Signature:
Date:

Committee Member 3: Dr. Arsalan Ahmad

Signature:
Date:

i



Abstract

In this thesis we proposed an algorithm for efficient resource allocation in
torus network. The torus is one of the topology used in High Performance
Computing (HPC) to connect systems and high speed networks. The High
Performance applications usually requires significant computing capacity and
network bandwidth utilized during execution. Therefore, by applying this ef-
ficient resource allocator algorithm, we can reduce the excessive use of HPC
resources for concerned user applications. The resources of the HPC systems
are virtual machines, processes,high computing nodes that are using the torus
network are handled intelligently by using the proposed algorithm(Efficient
Resource Allocator - ERA).So, that the communication between these re-
sources is minimized and in return reduce the network cost of torus network.
ERA allocates the resources by using local information of the targeted ap-
plication on torus. The efficient allocation of resources according to an as-
signment scheme and then migrate them (Virtual Machines). The objective
is to reduced the communication among processes and thus optimize net-
work usage. The evaluation and benchmarking of the proposed ERA shows
significant reduction in terms of communication cost.
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Chapter 1

INTRODUCTION

In the most recent couple of years, there has been an incredible exertion from
cloud suppliers to offer easy to use situations that can be utilized by cus-
tomers to execute applications. In [1] the services are conveyed to the cloud
clients according to pay per use model, which implies that the proprietor
of an application is required to pay that is corresponding to the measure of
resources the individual application expends amid its execution on the cloud.
Consequently, applying wise strategies to minimize the asset utilization is of
vital significance.

The previously stated issue can be tackled by recognizing a task plan
between (a) the communicating components of an application, for example,
processes and virtual machines, (b) the computing VM/processes of a cloud
framework, such that the aggregate sum of resources consumed by the indi-
vidual application is minimized. In previous research [2] have concentrated
on a varieties of the network topology, for example, homogeneous linear ar-
rays or trees, which make the issue reasonable in the polynomial time [3].
Since our proposed model considers the relocation of components of an ap-
plication (VM/processes) imparting with each other, processes and VMs are
utilized conversely all through the content.

The issue turns out to be more intriguing while considering applications
that face continuous changes in their assignment load and designs. It depends
on the assignment scheme that is ideal for quite a while may become non ideal
later. Hence, it is significant to progressively reassign the processes/VMs to
nodes considering the new correspondence requests of the application seg-
ments. Be that as it may, additional care must be taken to evade repetitive
calculations for VMs/processes that are as of now ideally situated inside the
framework. In view of the extra requests in both time and memory, past
approaches that expand on the minimum cut maximum flow strategy, for
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CHAPTER 1. INTRODUCTION 2

example, the ones presented [4] are not versatile while considering extensive
scale applications.

Consider a two dimensional rectangular grid of computing nodes in net-
work and fold this grid from top to bottom and join the first row of nodes
with a row of nodes at the bottom of the grid by communication links. Now
the top row has direct link with nodes of last row. Then in last again fold and
stretch the grid from left to right direction. In this way all the computing
nodes on left column and in the right column are directly linked [5].Typical
torus network shown in Figure 1.1.

Figure 1.1: Torus Network

Recently a lot of work has been done [6] to facilitate the users of cloud
applications. The clients of cloud are using the services provided by the cloud
users according to SLA for cloud applications. Thus the clients are charged,
how much they used their services. The more the numbers of resources are
used by the client, more they have to pay for the execution of an application
on cloud. So, a better scheme is required to allocate the resources dynam-
ically for each application that the resource consumption is reduced. This
problem can be solved if the processes and nodes are placed in such a way
that the minimum number of resources [7] will be consumed and the overall
cost is also decreased.

1.1 Problem Statement

Datacenter is often based on flat tree network, on which resource allocation
is relatively more explored [8] as compare to torus network are more com-
plex due to cycles involved. For resolving this problem consider that HPC
applications and the resources (components of an application) to nodes are
reassigned in such a way that the total communication and consumption of
network should be minimized.

Major aspects of our proposed research work is summarized as follows:
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• Handling the issue in a completely rapid and disseminated way.

• Making just local neighborhood decisions that cause insignificant over-
head of framework control messages.

• Identifying the interdependencies between the processes of the specified
application.

• Proving that calculation dependably brings about an ideal arrangement
of nodes/processes/VM.

• Guaranteeing that the proposed solution dependably always converges.

• Developing a scheme that can similarly work well with trees and various
leveled networks also.

• Proposing strategies to handle the situations where the super-nodes
inside the framework are over-burden.



Chapter 2

LITERATURE REVIEW

This chapter covers the related work, divided them into the following classes:
(a) task allocation, (b) VM placement and (c) migration mechanism (d)
distributed dynamic environment (e) comparison and evaluation.

Torus network is the interconnection of processing nodes for parallel su-
per computing systems [9]. In torus network the processes are connected
with their neighbors in such a way that it seems like a mesh topology. In
mesh topology each node have 2N connections. In 2D torus each node has
4 neighbors and in 3D torus network each node has 6 neighbors[10]. Torus
network is made by a rectangular 2D grid. This rectangular grid is rolled
as the opposite ended nodes directly link with each other. The rolled torus
is visualized as tube. Now this tube is bend to form a torus in which nodes
which far apart are closer due to these bending of rectangular lattice consist
of a grid of rows and columns. However, for other networks a long length
cable link is required to direct link those nodes which are on opposite edges.
Each link in folded torus is as short as nearest neighbor link in simple grid
of nodes. Thus, due to short links in torus network, applications has to face
low hardware latency [11].

The cloud based applications demand is increasing day by day. The
cloud providers are interested in to facilitate the cloud users and their as
much as they can and provide them friendly environment. The data centers
are more explored to optimize the resource usage of cloud based and high
computing applications. Number of algorithms have proposed to increase the
performance of high computing processes by providing the task allocation
scheme of processes so that the resource utilization is reduced and the cloud
users have to pay less for those applications. The reason is that the owners
of the cloud applications have to pay for using the cloud services[10].

To solve the above mentioned problem, researcher Azeez et al. [12] has

4
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been done and they had worked on assignment scheme of resources for the
hosted applications so that the number of resources required for those ap-
plications have been minimized. Earlier work [13] to decrease the commu-
nication cost and execution cost is divided into two categories: (1) by task
allocation scheme(2) by divided the whole task in virtual machines.

2.1 Task Allocation

Earlier related works [14] concentrated on task assignment issue over a dou-
ble processor framework are such illustrations, for example, to minimize the
aggregate communication cost. In [14],authors Jason et al. have more ex-
plored different structures of networks. The fundamental contrasts of the
previously stated works with our proposed are (a) that the previously stated
arrangements are centralized, while our proposed algorithms is completely
distributed, and (b) that they don’t consider the capacitated case. Related
are likewise a few variants of the exemplary planning issue in multiprocessor
frameworks where they include diverse enhancement targets. In particular,

the streamlining objective is to minimize both the aggregate make span and
correspondence overhead at the same time. The researchers handle the issue
of minimizing the aggregate fulfillment time of parallel occupations in het-
erogeneous frameworks [15]. The calculations minimizing in the meantime
energy utilization furthermore, the aggregate make span. The creators of [16]
explore the assignment scheme of enhancing (a) the productivity as far as so-
cial welfare, and (b) the decency as far as jealousy freeness. The researchers
of [16] study the issue of expanding both the usage of the framework and the
throughput execution on heterogeneous situations. All the previously stated
research, related, varies from our proposed work.

2.2 VM Placement

There is additionally a numerous number of research works in the writing
identified with energy utilization and VM union. However, the vast majority
of them don’t consider the system overhead when choosing about the task
of VMs onto super nodes (servers). In [10], authors handle the issue of iden-
tifying over-burden has by optimizing the mean inter-migration time under
the predefined nature of administrative services (QoS) objective in view of
a Markov-chain model. In [16], the researchers propose energy consumption
heuristics that combine VMs onto the basis of number of servers involved.
At the same time, the researcher of [17] additionally investigate solution for
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minimize the SLA (Service Level Agreement) disagreement experienced in-
side a cloud because of the workload combination systems strategies. The
researcher propose a workload combination algorithm that changes the Best
Fit Decreasing (BFD) approach [16]. The proposed calculation is named
Modified Best Fit Decreasing (MBFD). The same issue is additionally han-
dled utilizing Limited Look-ahead Control (LLC). All the previously stated
works vary from our proposed work in that they don’t consider the commu-
nication dependencies among VMs.

2.3 Migration of Processes/VM

In this section, we specify the most significant works we found in the writing
with respect to the relocation components that they are supported at various
levels: (i) thread- level, (ii) process-level, and (iii) VM-level. We should take
note of that such works are corresponding to our proposed work, subsequent
to our proposed algorithm could embrace such mechanism to actualize VM
or migration of VM/processes in and of themselves. Thread level movement
systems are considered [18]. In [11], the researchers can discover an or-
der of process/VM/nodes relocation mechanism: (a) UNIX-like frameworks
supporting straightforward migration, (b) frameworks with message passing
interfaces, (c) microkernels, (d) client space movement, and (e) application-
particular relocation. The researcher Buyya et al. [19] talk about a Java VM
relocation system that considers the accompanying arrangement of proper-
ties: transparent, adaptability, consistency, fulfillment, versatility, efficiency,
and power.

2.4 Affinity Aware Technique on Torus

The computing platform of virtual machines are used for large scale com-
puting environment such as for data centers, grid and cloud environment.
Starling reduced the communication overhead of these computing environ-
ments by proposing an affinity aware technique of migration. They [20]
handled two main factors in network topology. First one heterogeneity and
secondly dynamic network. The communication pattern of resources is man-
aged by allocation of resources and placement of virtual machines so that
the communication overhead is minimized in data centers. The difference in
above research work and in our proposed work is that they work on grid and
data centers environment [19] while we have optimized the torus network in
which cycles are involved and due to these cycles the physical overhead is
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minimized as well as the least communication cost bared by the owners of
the cloud applications [10].

2.5 Locally Virtual Migration of Nodes/ Pro-

cesses

Another most similar research work to our proposed work that migrate the
virtual machines to reduce the communication overhead. They also used the
technique of migration of VM on the nearest resource available so that the
communication cost will somehow reduce. The drawback of this algorithm is
that they had not considered overall effect on the whole network topology due
to these migration. In other words they just consider the local cluster benefit
between specified source and destination. However the whole network cost or
global benefit is decreased due to such migration technique[21]. In contrast to
this work our algorithm considered the overall network communication and
execution cost and local cluster cost also. So, before migration we measured
the local as well as global network communication cost [11]. At earlier times,
on k-ary-n-tube interconnection topology or on torus a lot of research work
had done on placement of nodes and used the codes for error correction using
lee distance method[22].

2.5.1 1-Dimensional Torus

[22] The involvement of virtual networks have make work more easy and fas-
cinating the researchers because it is easy to maintain them and re-mapped
them over the original physical network. Virtualization provides flexibil-
ity in performing different complex operations. They solved the problem of
scheduling the nodes and move them from its virtual placements to the orig-
inal places so that decreases the cost and time both. Firstly, they [23] have
done work on single node migration locally so that less cost and latency is
faced by the network. Then they migrate more than one nodes at a time so
that minimum disruption will be occurred in a network and also simultaneous
migration is done in less time.

2.5.2 2-Dimensional Torus

Researcher Almohammad et al.[24] proposed three new algorithms for schedul-
ing the virtual network. First is LMCF in which they migrate the single node
in one transmission. According to two other algorithms MIS-SS and MIS-
LMCF that pre than one node can be migrated simultaneously so that cost
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and time is reduced. The advantage of this research is that they evolve the
concept of more than one node migrate at the same time but the disadvan-
tage of all these three algorithms is that they migrate them and calculate the
benefit locally and the whole application cost is not optimized by them[25].
Jun Doi especially work on asymmetrical torus network and improve the
performance of an application by improving the traffic of longest axis of the
network [21]. They used a strategy to separate the thread of the longest axis,
thus the traffic of the long route is separated from the traffic of others routes
so that the long axis will not become the bottleneck for the whole application
and scheduled the traffic of the long axis smoothly [26].

2.5.3 Resource Placement at Perfect Distance

The resource placement in network is explored since last few years and in
this [10] research they have improved the network efficiency by changing
the places of those nodes which are within the given distance that is d and
those which are out of the range known as non-resource nodes. Due to this
placement strategy they have improved the message latency of the network
if the resources are at the perfect distance d from other resource node.

2.5.4 MEPL from the Center of the Region

The research work on networks, data centers and also on chip network where
they [27] have reduced the minimum expected length of the path among the
resources. The network efficiency increased locally in a specified small region
and the distance from the central node of that small region is minimized.
Thus the cost and time has been reduced by this scheduling scheme. The
disadvantage of this research is that in case of some applications the whole
network cost and time is increased because they have placed the resources
without considering the whole network.



Chapter 3

SYSTEM MODEL AND
PROBLEM FORMULATION

This chapter consists of following portions: (1) firstly we have discussed
about system model then (2) problem formulation

3.1 System Model

We assumed a torus network consisting of n nodes arranged in two dimen-
sional grid. In this grid of computing nodes, the nodes on the edges are also
directly connected with a single link known as cycles. So, in this topology of
nodes all the nodes on horizontal edges are directly connected with another
horizontal extreme edge. In the same way, all the extreme top nodes are
directly linked with a single links with the nodes of other extreme edge at
the bottom. Let ni is the ith node in the network and hij is the path length
between the i and j nodes. Np is the total number of processes which are
in running state and nodes in the whole application. The communication
among the processes is considered in the Np X Np matrix. The enhancement
in this is that we managed the super nodes, each super node has supervised
the group of virtual nodes or processes. The migration of the processes/VM
from one super node to another super node. We considered that each server
nodes have same category and capabilities as in EC2. To handle the com-
munication dependencies, we add virtual machines and each group of VM is
mainly supervised by the super node. The more there is communication be-
tween the nodes and processes the more there is communication dependency
among the nodes and processes.

9
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3.2 Problem Formulation

The VM arrangement problem is formally expressed as takes after. Given a
system of N super nodes that host a utilization of P procedures (or VMs),
reassign the VM/processes to super nodes, such that the application com-
ponents usage is minimized, with consideration of capacity limitations. As
talked about before, the application asset use relies on upon both the execu-
tion cost and the cost of communication caused by the VM/processes of an
applications. Agreeing to the past documentation, the execution expense of
an application can be specifically calculated by summing the computational
requests of every VM/processes. Be that as it may, we can’t straightforwardly
include the information exchanged between the VM/processes to measure the
communication cost. This is due to the communication of components of an

application utilization is straightforwardly associated. In this manner, two
cases emerge for the correspondence between any pair of VM/processes: (a)
the VM/processes are situated on the same super node, and,due to the in-
terprocess correspondence is performed by getting to the local neighborhood
memory, the resource utilization is unimportant, and (b) the procedures are
situated on various super nodes in which the VM/processes utilization is
relative to both the measure of information exchanged and the number of
connections required for communication. The previously stated model is
utilized by numerous cloud suppliers, for example, Amazon EC2, to charge
the aggregate correspondence resource utilization of an application, which
is relative to the measure of information sent over the torus network. As

an illustration, consider a communication of components of application uti-
lization amongst pi and pj being equivalent to D*h*y, given that pi and pj
transfer D information and they are situated on super nodes Snx and Sny,
separately. If there is communication at local level, hxx = 0, which involves
that the communication expense is zero. To express the issue through a
thorough mathematical calculations, we characterize them as follows. Give
F as P N framework catching the assigned super node for every VM/process,
with fiSx = 1 if Snx is allocated to pi; generally, fiSx = 0. According to
them, given a task F ,total execution of resources use is given by exec(F ),
as depicted in Eq. (1), while the cost of total communication (called the
correspondence or torus network cost/overhead) is signified by comm(F ), as
portrayed in Eq. (2). From the above, we can conclude that the aggregate
asset utilization can be expressed as total(F ), which is communicated by
Eq. (3). Thusly, the aggregate asset utilization can be minimized by finding
a task F such that Eq. (3) is minimized under the imperative that the CPU
necessities of the processes facilitated by a super node must not surpass the
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aggregate capacity of that super node.

exec(F ) =
P∑
i=1

N∑
x=1

uifiSx (1)

comm(F ) =
P+N∑
1=1

P+N∑
k=1

N∑
x=1

N∑
y=1

CikfiSxfkSyhxy (2)

total(F ) = exec(F ) + comm(F ) (3)



Chapter 4

METHODOLOGY OF
RESEARCH WORK

This chapter covers methodology of distributed system and the steps to im-
plement the proposed methodology. The steps of proposed methodology are:
(a) to apply the minimum cut algorithm [28] then in the last the some of
the examples in which (b) migration of the virtual processes/nodes dynam-
ically and (c) make different two types of calculations (1) before migration
network cost (2) after migration network cost, (d) placement of components
of an application and (e) also calculate benefit in terms of cost and time.

In figure 4.1 shows the methodology of our proposed Efficient Resource
Allocation research work. According to the methodology we have to apply
the minimum cut algorithm on application graph.

4.1 Procedure of Applying the Minimum Cut

Algorithm

The network consist of nodes and processes/VM . The problem of minimum
cut is to find the cut having minimum weight from source to the sink node.
Minimum cut algorithm consists of following steps which are as follows:

In figure 4.2 the graph having three nodes and n1 has two processes
P1 and P2, n2 has one process P3, and n3 has two processes P4 and P5.
Apply the min cut algorithm on the application graph having 3 nodes and 5
processes. n1 is the source node and n3 is the sink node.

In figure 4.3 shows step 1 where min cut algorithm starts from source
node n1 and get the min cut between (n1)and (P1,P3).In step 1 the weight
of the cut is w=5. The sets are as follows: n1, P1, P2, n2, P3, n3, P4, P5.

12
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Figure 4.1: Model for research methodology of thesis

Figure 4.2: Application Graph having 3 nodes and 5 processes

A cut in the graph which divides the nodes into two sets. The weight of the
cut is equal to weight of number of edges between two sets.

In figure 4.4 step 2 the weight of the cut is w=5. The sets are as follows:
P5, n1, P1, P2, n2, P3, n3, P4, then edges contracted and the selected node
(n1) merge with the nearest node to form a new node(n1,p2).

In figure 4.5 step 3, the weight of the cut is w= 7. The sets are P3, P5,
n1, P1, P2, n2, n3, P4.The min cut is between (p3,p5)and (n2,n3,p4).
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Figure 4.3: Step1: Min cut algorithm starting from source node n1

Figure 4.4: Step 2: Process P5 is selected and min cut weight w=5

Figure 4.5: Step 3:New node (p5,p3) is selected and min cut weight w=7

In figure 4.6 step 4 the edges of min cut contracted and then merge(p3,p5)with
(n5). The weight of the cut is w=7. The sets are as follows: P3, P5, n3, n1,
P1, P2, n2, P3, n3, P4, P5.

In figure 4.7 step 5, the weight of the cut is w=4. The sets are: n3, P3,
P4, P5, n1, P1, P2, n2.

In figure 4.8 step 6 the weight of the cut is w=7. The sets are: n1, P2,
n2, P1, P3, P4, P5, n3.

In figure 4.9 step 7 the weight of the cut is w=9, the sets are: n1, P2, n2,
P3, P4, n3, P5, P1
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Figure 4.6: Step 4:Node (p3,n3,p5)is selected and min cut weight w=7

Figure 4.7: Step 5:Node (p3,n3,p4,p5)is selected and min cut weight w=7

Figure 4.8: Step 6:Node(n1,p2)is selected and min cut weight w=7
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Figure 4.9: Step 7: p1 is selected and min cut weight w=9

Table 4.1: Results of minimum cut algorithm
Steps cut Min cut
0 -
1 5 5
2 5 5
3 7 5
4 7 5
5 4 4
6 7 4
7 9 4

Table 4.1 shows the results of all steps of the minimum cut algorithm
which are as follows: 4.1

Result: In 4.1 the weight of the minimum cut is 4. This result shows
that node 4 can migrate and will give benefit while others are not beneficial
to move from their original locations.

4.2 Proposed Efficient Resource Allocator

(ERA) Algorithm

In this chapter we proposed an algorithm that accentuates performing light
weight figuring, we don’t put the reliability of our issue at danger. This de-
pends on our focal thought that we should abstain from running in to attain-
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ability issues, for example, attempting to discover the min-cut of an applica-
tion graph that does not by any means fit into the memory. Therefore, we fo-
cus on components that relocate a VM/processes or a group of VM/processes
starting with one super node then onto the next, going for the aggregate
communication cost decrease. We depict the single VM/processes/nodes
migration. A noteworthy downside of the previously stated component is
distinguished , driving that component to make imperfect choices. As a so-
lution for the downside, we present the super process migration. In the last
segment, we describe how to implement that algorithm.

4.2.1 Single VM/process/node Migration

Our goal is to make migrations that lessens the present torus network cost. In
this segment, we consider relocating Processes/VM/nodes as single elements.
In this manner, we require a metric to consider whether such a movement
contributes adversely or emphatically towards the minimization of the ag-
gregate torus network cost. To characterize such a metric, we initially need
to present some additional yet important documentation. Let Mi , sd char-
acterize a relocation of process pi (called target process) from the node ns (
nearby node) to a 1-jump neighbour nd ( destination node). For any of the
previously stated movement, we have to recognize the following.

4.2.2 Steps for Identifying the un-balanced Super Pro-
cess

• Construct a min cut graph represent real processes

• Add source node ns (source)

• Add destination node nd (destination)

• Remove edges having weight equal to zero

• Min cut algorithm is applied on graph

• Identifying the super process (group of co-located processes)

• Positive load

This load speaks to the increase (as far as the all out correspondence
overhead) while relocating pi from ns to nd. In particular, this move-
ment will convey pi closer by 1 jump to the group of VM/processes
that utilization the destination node nd to speak with pi at the point
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when the last is situated on ns. Subsequently, the aggregate correspon-
dence overhead will diminish by a sum that is equivalent to the volume
of information traded among pi and the VM/processes having a place
with source node.

• Negative load

This load depicts the network cost (as far as the complete correspon-
dence overhead) while relocating a VM/process pi from ns towards its
1-jump neighbour nd. In particular, when relocating process pi from
source node (ns) towards destination node (nd), pi will move itself by 1
node from the group of VM/processes that don’t utilize the destination
node (nd) to speak with pi which finally found on ns. In this manner,
the aggregate correspondence overhead will increment by a sum that
is equivalent to the volume of information traded between pi and the
VM/processes having a place with nd.

• Benefit

This shows the metric that surveys whether a movement is valuable or
not. In particular, the relocation of VM/process pi from ns to nd is
viewed as advantageous if (pl) positive load is more than the nl negative
load else, it is considered non-gainful. The benefit which states that the
relocation Mi will bring about a decline or an expansion in the general
framework correspondence overhead by a sum that is equivalent to the
subtraction of nl from pl. If the result of taking difference is zero,
then Mi won’t influence the general correspondence overhead. At the
point when the outcome is a positive, then the total correspondence
overhead will diminish by a sum equivalent to that esteem; else, it will
be expanded.

4.2.3 Examples of the proposed technique to optimize
the network

There are some examples in which we apply our proposed methodology of
implementing the proposed algorithm. Here we calculate the original network
cost then again calculate network cost after executing our proposed algorithm
and calculate benefit in terms of cost and time.

4.2.3.1 Example 1

In figure 4.11 Applying the min-cut algorithm on nodes N1 and N2 Applying
the min cut max flow algorithm from [29] and create the min cut graph. The
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Figure 4.10: Application Graph having 4 nodes and 1 process

min-cut graph is as follows:

Figure 4.11: Min cut Graph N1-N2

Consider all the possible cases of migration for Process P1:
The original network cost for process P1 at Node N1:
The total original cost of process P1 at Node N1 is :(1*1) +(4*2) +(5*1)=

14.
Decision: (no migration benefit) So we will not move Process P1 to Node

N2
In figure 4.12 Applying the min-cut algorithm on nodes N1 and N4
The min-cut graph is as follows:
In figure 4.12 shows applying the min-cut algorithm on nodes N1 and N4.

The original network cost for process P1 at Node N1:
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Figure 4.12: Min cut graph N1-N4

The total original cost of process P1 at Node N1 is : (1*1) +(4*2)
+(5*1)= 14

The network cost for process P1 after migration to N4 = (5*0) +(1*1)+(1*2)
+ (4*1)=7

Migration Benefit = 14-7 =7
Result
The process P1 should migrate to the node N4, as it gives the benefit of

cost 7

4.2.3.2 Example 2

An application graph having four nodes and three processes is selected. Ap-
plying the minimum cut algorithm on N1 and N2.

In figure 4.14 Applying the min-cut between the nodes N1 and N2
The min-cut graph is as follows:
In figure 4.14 Applying the min-cut between the nodes N1 and N2. The

result of min cut algorithm is that P1 should migrate.
The original network cost for Process P1 at Node N1 is:
Network cost from N2 to N1 (INCLUDES THE COMBINED WEIGHT)=

(6*1) +(1*1)+ (4*2) +(1*2)=17
Network cost from N4 to N1 = (3*1) =3
Total original network cost (SUM OF ALL)=6+1+8+2+3=20
Consider all the possible cases of migration for Process P1:
The network cost for process P1 after migration to N2
If process P1 migrate from N1 to N2 then :
Network cost after migration = (6*0) +(3*2) +(1*1)+(1*1)+ (1*4)=12
Benefit = 20-12=8
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Figure 4.13: Application Graph having 4 nodes and 3 processes

Figure 4.14: Min cut Graph N1-N2

The min-cut graph is as follows: In figure 4.15 shows applying the min-cut
algorithm on N1 and N4.

However it is clear from the min cut graph that there is no migration
benefit .

The original network cost for Process P1 at Node N1 is:
Total original network cost (SUM OF ALL)=6+1+8+2+3=20.
The network cost for process P1 after migration to N4
Network cost after migration = (6*2) +(3*0) +(1*1)+(1*2)+ (1*4)+(1*1)=20
Migration benefit= 20-20=0 (no migration benefit)
Decision: The Process P1 migrated to node N2
In figure 4.16 shows that process P1 is migrated to node N2.
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Figure 4.15: Min cut Graph N1-N4

Figure 4.16: Application Graph in which P1 migrated to N2

The min-cut graph is as follows:
In figure 4.17 Applying the min-cut algorithm on N2 and N3
The original network cost for Process P1 at Node N2 is:
The original network cost = (6*0) +(1*1)+(4*1) +(1*1)+(3*2) = 12
The network cost for process P1 after migration to N3
Network cost after migration = (6*1) +(1*1)+(1*1)+(4*0) + (3*1)=11
Benefit : 12-11=1
Decision: The process P1 should migrate to the node N2
The original network cost for Process P2 at Node N2 is:
The original network cost = (6*0)+(1*1)=1
The network cost for process P2 after migration to N3
Network cost after migration =(6*1)+(1*1)+(1*1)=8
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Figure 4.17: Min cut Graph N2-N3

(no migration benefit)
Result: The process P1 should migrate to the node N2 then to node N3

and no migration for process P2.

4.2.3.3 Example 3

Figure 4.18: Application Graph having 4 nodes and 2 processes

Figure 4.18 shows the application graph having four nodes and two pro-
cesses.

The min-cut graph is as follows:
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Figure 4.19: Min cut Graph N1-N4

In figure 4.19 Applying the min-cut between the nodes N1 and N4
The process P1 should migrate.
The original network cost for Process P1 at Node N1: = (5*1)=5
After migration of P1 to node N4 = 5*0+(1*1) = 1
Benefit = 5-1=4
Result:
So, P1 should migrate to N4.

4.2.3.4 Example 4 : (3 x 3) Torus Network

Figure 4.20: Input for 3x3 Torus Application Graph

In figure no. 4.20 , here I take the input from the user that how many
nodes = 3 and their names 1 , 2 , 3 Then how many processes then their
names and end with terminator zero.

Then, adjacency matrix of the whole graph is created which shows the
links and weights of all the nodes and their processes. According to figure
no.4.21 the 12 number of edges are created , these edges have the information
about their source , destination and their weights as (edge src :1, edge dest
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Figure 4.21: Application Graph having 3 super nodes

: 4 ,w: 1). Then min cut graph is created of first two nodes 1,2 and their
respective processes. After applying the mincut algorithm on this min cut
graph the , the result of the min cut algorithm is (1-4) means first node and
its process named 4.

Figure 4.21 shows the output console of our proposed algorithm. Now
applying the min cut algorithm on node SN2 and node SN3. The result
of min cut graph is (SN2-5) means node SN2 and its process 5. Now we
calculate the network cost for process 5. In above figure no 4.22 the network
cost of process 5 at node SN2 is 3. Next we calculate the migration cost of
process 5.

As the process 4 is migrated to node SN2, now the network cost of process
4 at node SN2 is 5 and network cost of process 5 at node SN2 is 3. As shown
below in figure no 4.23, so, the total cost at node SN2 is 5+3=8. Then the
after migration cost of process 4 and process 5 at node 3 are calculated. The
network cost of process 5 at node SN3 is 2 and the network cost of the process
4 at node SN3 is 1. So, the total cost at node SN3 is 3.

Calculating the networking cost for both 4 and 5 at SN2:
The network cost for 4 at SN2 =(1*1)+(8*0)+(4*1) =5
The network cost for 5 at SN2 =(2*1)+(8*0)+(3*0) =3
Total cost for 4 and P5 at SN2 = 5+3 = 8
Calculating the networking cost for both 5 and after migration to SN3:
The network cost for 4 at SN3 =(1*1)+(8*0)+(4*0) =1
The network cost for 5 at SN3 =(2*1)+(8*0)+(3*0) =2
Total cost for 4 and 5 at SN3 = 3
Thus the migration benefit is 8-3 =5 for process 4 and 5.
Overall the result is that process 4 and process 5 is migrated to node 3
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Figure 4.22: Output console of our proposed algorithm :process 5 is selected

and benefit is 15 in terms of network cost

4.2.3.5 Example: 5 ( 5x5 Torus Network)

P1 is located on N1
P9 is located on N9
P20 is located on N20
P24 is located on N24
(P1, N1):1 (i.e., communication dependencies between P1 and N1)
(P9, N9):10
(P20, N20):5
(P24, N24):10
(P1, P9):8
(P1, P20):1
(P9, P20):1
(P20, P24):10
GRID
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Figure 4.23: Min cut between (SN2-5)process 5 is selected

Figure 4.24 shows grid consists of rows and columns having nodes and
processes. The application graph of grid have 5 super nodes an 4 processes.
Figure 4.25 shows the application graph consist of 5 super nodes, 4 nodes
and 4 processes.

Applying Min Cut on Super Column SN1, SN2, SN3, SN4, SN5
First applying the algorithm on super node SN1 and SN5:
The first min cut is between N1 and P1. So, P1 should migrate.
Min cut graph is as follows:
In above figure no. 4.26, weight 8 comes from (P1, P9), weight 10 comes

from (P20, P24), and 1 comes from (P20, P9).
Calculating the network cost for process P1 at node SN1:
The original network cost for P1= (1*0) + (2*8) + (1*1) =16+1=17.
Network cost after migration of P1 to SN5:
The network cost for P1 at SN5 = (1*1) + (1*8) + (1*0) =9
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Figure 4.24: Application grid having 5 super nodes and 4 processes

Figure 4.25: Application Graph having 5 super nodes and 4 processes

Benefit =17-9=8
Result
So, P1 should migrate to super node SN5 with migration benefit of 8.
Again apply the algorithm on super nodes SN5 and SN4:
The min cut graph is as follows
Figure 4.27 shows the min cut super nodes SN5 and SN4.
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Figure 4.26: Min cut Graph of SN1-SN5

Figure 4.27: Min cut Graph of SN4-SN5

The min cut is between (SN5, P1) AND (P20, P1)
Calculating the network cost for process P1, P20 at node SN5:
Network cost for P1 at SN5 = (1*1) + (8*1) + (1*0) =9
Network cost for P20 at SN5 = (5*0) + (10*1) + (1*1) + (1*0) = 11
Total network cost of P1, P20 at SN5 =9+11 = 20
Calculating the network cost for process P1, P20 at node SN4:
Network cost of P1 at SN4 = (1*2) + (8*0) + (1*1) = 3
Network cost of P20 at SN4 = (5*1) + (10*0) + (1*0) + (1*0) = 5
Total network cost of P1, P9, P20 at SN4 =3+5 = 8
Benefit =20-8=12
Result: P1, P20 is migrated to SN4.
Figure 4.28 shows grid of 5x5 torus application graph.
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Figure 4.28: Grid of 5x5 Torus Application Graph

Applying Min Cut on Super ROW SN1, SN6, SN11, SN16, SN21

Figure 4.29: 5x5 Torus Application Graph

After applying the algorithm on super node SN1 and SN6: Min cut graph
is as follows for SN1 and SN6:

Figure 4.30 shows min cut graph of SN1 and SN6. The min cut is between
(SN1, P1) AND (SN1, P9)

Calculating the network cost for process P1, P9 both at node SN1
Network cost for P1 at SN1 = (1*0) + (8*0) + (1*2) =2
Network cost for P9 at SN1 = (10*1) + (1*2) + (8*0) = 12
Total cost for P1 and P9 at SN1 = 12 + 2 = 14
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Figure 4.30: Min cut Graph from SN1-SN6

Calculating the network cost for process P1, P9 both at node SN6
Network cost for P1 at SN6 = (1*1) + (8*0) + (1*2) =3
Network cost for P9 at SN6 = (10*0) + (1*2) + (8*0) = 2
Total cost for P1 and P9 at SN6 = 3 + 2 = 5
Benefit = 14-5=9
Result:P1 is migrated to SN6
After applying the algorithm on super node SN6 and SN11:

Figure 4.31: Min cut Graph SN6-SN11

Figure 4.31 shows min cut graph of SN6 and SN11. No min cut, no
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migration
Again apply the algorithm on super nodes SN16 and SN21:
Min cut graph is as follows:

Figure 4.32: Min cut Graph SN16-SN21

Figure 4.32 shows min cut graph of SN6 and SN21. The min cut is
between (SN16, P20)

Calculating the network cost for process P20 at node SN16:
Network cost for P20 at SN16 = (1*2) + (5*0) + (1*2) + (10*1) =14
Total cost for P20 at SN16 = 14
Calculating the network cost for process P20 at node SN21:
Network cost for P20 at SN21 = (1*2) + (5*1) + (1*1) + (10*0) =
Total cost for P20 at SN21 = 8
Benefit= 14-8=6
Result
P20 is migrated to SN21. Again apply the algorithm on super nodes SN1

and SN21:
Min cut graph is as follows:
Figure 4.33 shows min cut graph of SN1 and SN21. No min cut No

migration benefit
Conclusion:
P1 should migrate to (SN4)4rth row, 2nd column (SN6) So, P1 is migrated

to node N9 P20 migrated to 4rth row (SN4), 5th column (SN21) So, P20
should migrate to node N24

Total network cost of all the processes = 1+1+8+10=20
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Figure 4.33: Min cut Graph SN1-SN21

Total network cost of all the processes after migration =1+1= 2
Benefit = 20-2=18



Chapter 5

EVALUATION OF RESULTS

In this chapter we have compared self-adjusting algorithm [27] with our pro-
posed approach. The comparison and evaluation of these algorithms are as
follows:

5.1 Initial cost of network before execution

of algorithms

Calculate the initial network cost of self adjusting and our proposed algo-
rithm. The initial network cost is actually the original cost of torus network
which it bears to run an application.

Initial network cost of both the self adjusting algorithm and proposed
ERA algorithm is 227564.

5.2 Final network cost after execution of al-

gorithms

By applying the algorithm on network the communication overhead and net-
work cost due migration is reduced. The network cost of proposed ERA
algorithms after execution is less than self adjusting algorithm.

In figure 5.1 shows Network cost after execution of both algorithms.

34
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Figure 5.1: Network Cost after execution of both algorithms
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5.3 Benefit in terms of communication cost

of self- adjusting algorithm

Figure 5.2: Self Adjusting algorithm

In figure 5.2 Initial cost before executing the self adjusting algorithm =
227564

Final cost after executing the self adjusting algorithm = 219229
Difference between the initial and final network cost = 8335

5.4 Benefit in terms of communication cost

of proposed ERA algorithm

In figure 5.3 shows benefit by our proposed ERA algorithms.
In figure 5.3 Initial cost before executing the proposed ERA algorithm =

227564
Final cost after executing the proposed ERA algorithm = 10244
Difference between the initial and final network cost = 217320
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Figure 5.3: Graph of proposed algorithm

5.5 Comparison of ERA and self adjusting al-

gorithm in terms of benefit

Benefit in terms of network cost of self adjusting algorithms is = 8335
Benefit in terms of network cost of proposed ERA algorithms is = 217320
ERA based proposed algorithm give 208985 more benefit than self ad-

justing algorithm.
In figure 5.4 taking some points of migration of both of the algorithms

having same scenario and compares the difference in their costs at different
points. The space between upper and lower graph line.

In figure 5.7 Line graph after applying self-adjusting algorithm
At run time during migration of proposed algorithm: with before migra-

tion cost and after migration costs.
Figure 5.6 and 5.8 shows lines graph of proposed algorithm with no mi-

gration and after migrations respectively.

5.6 Results of different applications on torus

network

At run time the results of proposed algorithm: with no migration and after
migrations.
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Figure 5.4: Cost Comparison of both algorithms

Figure 5.5: Proposed ERA algorithm

In figure 5.9 shows the results of 17 x 17 torus network.
At run time the results of proposed algorithm 17x17: with no migration

and after migrations
Figure 5.10 shows the results of proposed algorithm: with no migration

and after migrations
Figure 5.11 shows the graph of 20x 20 torus network having 400 nodes.

Result of 13 x 13 Torus having 169 nodes. Shows the Result in Graphs of
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Figure 5.6: Self Adjusting Algorithm

Figure 5.7: Proposed ERA Algorithm

Higher and Complex Examples on Torus
13 x 13 Application of Torus Network
Figure 5.14 shows the communication cost for topology of 13x13 torus

having 169 nodes. This topology has 13 super nodes, having 9 processes,
only 2 processes can migrated and give cost benefit of cost 9.
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Figure 5.8: Results of Proposed ERA Algorithm

Figure 5.9: Graph of (17 x 17) Torus Network

Figure 5.15 shows the communication cost for topology of 13x13 torus
network.
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Figure 5.10: Result of Proposed Algorithm

Figure 5.11: Proposed ERA algorithm for 400 nodes of torus network

17 x 17 Application of Torus Network Figure 5.16 shows the commu-
nication cost for topology of 17x17 torus network having 289 nodes. This
topology has 17 super nodes, having 14 processes over different nodes, 4 pro-
cesses can migrated and give benefit in terms of cost that is 46. Results of
20 x 20 Torus Network

Figure 5.17 shows the communication cost for topology of 20x20 torus
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Figure 5.12: Result of 20 x 20 network with ERA algorithm

Figure 5.13: Result (13 x 13) Torus Network

having 400 nodes. This topology has 20 super nodes, having 16 processes
over different nodes, 5 processes can migrated and give benefit in terms of
cost value is 49.

5.7 Conclusion:

From experimental evaluation of both algorithms on torus we concluded that
our proposed ERA algorithm is 48 percent more beneficial than self adjusting
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Figure 5.14: Results (13 x 13) Torus Network

Figure 5.15: Results of Application Graph (13 x13)Torus Network

algorithm. It is proved through experiments that ERA algorithm is an effi-
cient resource allocation algorithm as it reduces the communication overhead.
hence the total consumption of cloud resources on torus is also minimized.
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Figure 5.16: Results of (17 x 17) Torus Network

Figure 5.17: Results of (20 x 20) Torus Network



Chapter 6

CONCLUSION AND
FUTURE WORK

In high performance applications there is excessive use of HPC resources.
The owners of the application have to pay for the consumption of these re-
sources. So, there should be a dynamic re-assignment scheme for these HPC
resources. The objective is to reduced the communication among processes
and thus optimize network usage. The main contribution of our proposed
research is the development of an algorithm for efficient resource allocator
for HPC applications. The problem is to minimize the consumption of re-

sources of an application (which is already deployed over cloud distributed
system)during its execution on torus network. The solution of the problem
is provided by proposing the ERA algorithm. In this algorithm the HPC
resources are dynamically re-assigned and make migrations of computing re-
sources. So, that we get the benefit in terms of network cost and reduce
the communication overhead. We make evaluation and comparison of our
proposed (ERA)algorithm with self adjusting algorithm on torus network.
We described the theocratical analysis of our proposed algorithm and also
make experimental evaluation of ERA algorithm and prove that this algo-
rithm is optimal for HPC applications on torus in distributed environment.
we achieve 48 percent reduction in network cost comparable to self adjusting
algorithm.

Major aspects of our proposed research work is summarized as follows:

• Handling the issue in a completely rapid and disseminated way.

• Making just local neighborhood decisions that cause insignificant over-
head of framework control messages.

45



CHAPTER 6. CONCLUSION AND FUTURE WORK 46

• Identifying the interdependencies between the processes of the specified
application.

• Proving that calculation dependably brings about an ideal arrangement
of nodes/processes/VM.

• Guaranteeing that the proposed solution dependably always converges.

• Proposing strategies to handle the situations where the super-nodes
inside the framework are over-burden.

• Developing a scheme that can similarly work well with trees and various
leveled networks also.

6.1 Future Work

We observed the migration of super process is difficult to handle dynamically
with respect to CPU utilization. so as future work there is a plan to extend
our system model for reducing the CPU utilization and energy consumption
on torus network.
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