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Abstract

Real-time Anomaly Detection Systems (ADSs) use packet sam-
pling to realize traffic analysis at wire speeds. While recent
studies have shown that a considerable loss of anomaly detection
accuracy is incurred due to sampling, solutions to mitigate this
loss are largely unexplored. In this thesis, we propose a Progres-
sive Security-Aware Packet Sampling (PSAS) algorithm which
enables a real-time inline anomaly detector to achieve higher
accuracy by sampling larger volumes of malicious traffic than
random sampling, while adhering to a given sampling budget.
High malicious sampling rates are achieved by deploying inline
ADSs progressively on a packet’s path. Each ADS encodes a
binary score (malicious or benign) of a sampled packet into the
packet before forwarding it to the next hop node. The next hop
node then samples packets marked as malicious with a higher
probability. We analytically prove that under certain realistic
conditions, irrespective of the intrusion detection algorithm used
to formulate the packet score, PSAS always provides higher ma-
licious packet sampling rates. To empirically evaluate the pro-
posed PSAS algorithm, we simultaneously collect an Internet
traffic dataset containing DoS and portscan attacks. Experi-
mental results using four existing anomaly detectors show that
PSAS, while having no extra communication overhead and ex-
tremely low complexity, allows these detectors to achieve signifi-
cantly higher accuracies than those operating on random packet
samples.
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Chapter 1

Introduction and Motivation

1.1 Introduction

The last few years have witnessed an exponential increase in
the volume and sophistication of network attacks. To combat
these rapidly evolving attacks, design of accurate Anomaly De-
tection Systems (ADSs), which can detect zero-day (previously
unseen) attacks, has received significant attention with commer-
cial ADSs now experiencing widespread deployments. In view
of the unprecedented traffic volumes observed on contemporary
enterprise networks and due in part to the stringent memory
and complexity constraints of network devices, it is not possible
for a real-time ADS to examine every packet in detail. Packet
and flow sampling, originally proposed for network monitoring
applications, are now being used to reduce the amount of data
to be analyzed by a real-time ADS [1, 2]. Commercial ADS
products are integrating sampling and anomaly detection algo-
rithms in the routing fabric in order to achieve high-speed and
truly-inline anomaly detection in real-time [3]–[6].

Packet sampling is an inherently lossy process which provides
an incomplete and biased approximation of the underlying traf-
fic. While minimization of estimation error on flow statistics
is well-investigated [7]–[10], there have only been a handful of
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CHAPTER 1. INTRODUCTION AND MOTIVATION 2

studies on the impact of packet sampling on anomaly detection
[11]–[14]. While these studies unanimously agree that packet
sampling can introduce significant accuracy degradations in an
ADS, solutions to mitigate this accuracy loss are largely unex-
plored in research literature. The seminal paper in this domain
concluded that [12]: “anomaly detection algorithms can be im-
proved under sampling if the information loss and distortions
is compensated or better avoided. Another relevant open ques-
tion is whether correlating sampled traces from multiple vantage
points could improve the anomaly detection process at relatively
low sampling rates, hence avoiding the need for detailed packet
trace collection.”

In this thesis, we propose a solution to simultaneously ad-
dress these open problems by enabling an inline ADS to achieve
higher accuracy under sampling by correlating traffic from differ-
ent points of deployment in a network. Specifically, as opposed
to prior studies which spatially distribute ADSs in a network
[15, 16], we propose that ADSs are deployed progressively on
nodes on a packet’s path. We then allow these ADSs to commu-
nicate with each other by encoding their binary score (malicious
or benign) of the packet inside the packet’s header before for-
warding it to the next hop node. The ADS operating at the next
hop uses this score as side information for packet sampling and
anomaly detection. This binary side information can be effort-
lessly encoded inside IP packets, thus allowing different nodes
to collaborate without any additional communication overhead.

We show that this simple collaboration model, referred to
as Progressive Security-Aware Sampling (PSAS), enables inline
anomaly detectors to achieve significantly higher accuracies by
mitigating the information loss under sampling. First, we empir-
ically show that, for a fixed sampling budget, an increase in the
amount of malicious traffic in the sampled subset induces at least
a linear, and mostly a much faster than linear, improvement in
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an ADS’ accuracy. To achieve these accuracy dividends, we pro-
pose the PSAS algorithm which samples packets marked as mali-
cious with higher probabilities, while adhering to a given packet
sampling budget. We analytically compare security-aware and
random sampling for a fixed sampling budget. This compari-
son reveals that, regardless of the ADS algorithms employed by
each node, PSAS samples considerably more malicious packets
at each node than blind random sampling.

To evaluate accuracy dividends and complexity of the pro-
posed PSAS algorithm, we collect a labeled dataset of Inter-
net attack traffic at three different points of deployment; these
attacks include DoS and portscan attacks launched at vary-
ing rates. Using this dataset, we input randomly sampled and
security-aware sampled traffic to four existing anomaly detectors
[17]–[20]. ROC-based performance evaluation substantiates that
security-aware traffic samples enable the anomaly detectors to
consistently achieve significantly higher accuracies than random
packet samples. These accuracy improvements are sustained for
both low and high rate attacks. Moreover, we show that, in
addition to having no additional communication overhead and
memory requirements, PSAS’ run-time complexity is compara-
ble to random sampling.

1.2 Background and Motivation

Most network anomalies tend to persist over time and are de-
tected by performing sophisticated statistical analysis on a time-
series of network parameters. In this context, packet and flow
sampling techniques can have a serious adverse affect on the ac-
curacy of the ADSs that are operating on the sampled traffic.
Mai et al. [11] evaluated the impact of packet sampling on three
portscan detection algorithms and concluded that packet sam-
pling is an inherently lossy process which provides an incomplete
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and biased approximation of the underlying traffic. This work
was extended in [12] and the affect of sampling was analyzed
using four popular sampling techniques; random packet sam-
pling, random flow sampling, sample-and-hold [21], and smart
sampling [22]. Three anomaly detection techniques were used
to cover broad categories of volumetric and portscan anomaly
detection, namely the wavelet analysis approach [23], Threshold
Random Walk (TRW) [24] and Time Access Pattern Scheme
(TAPS) [25]. Results showed that random packet sampling,
sample and hold, and smart sampling adversely affect both volu-
metric and portscan-based anomaly detectors. Similarly, it was
shown in [13] that the accuracy of an ADS is dependent on the
rate of sampling when flow based metrics are used. Brauck-
hoff et al. [14] analyzed the volume and feature entropy metrics
and showed that packet sampling does not have much impact
on volumetric packet counts but can introduce significant bias
in flow counts. Feature entropies are also disturbed but the
traffic pattern is generally visible. The biased and incomplete
traffic captured by a packet sampler when input to an anomaly
detector induces an undesirable loss of accuracy, thereby com-
promising the purpose for which the traffic was being sampled.
Intuitively, an ADS operating on sampled traffic would want to
operate on as much malicious data as possible. Therefore, in-
stead of the security-unaware or blind packet/flow samplers, we
need to design security-aware packet sampling algorithms.

1.3 Contribution

To the best of the authors’ knowledge, this thesis proposes the
first known solution to mitigate sampling-induced accuracy loss
in an anomaly detection system. PSAS sampling is efficient,
having no communication overhead and low complexity. We
also showed that the sampling-induced accuracy degradation in
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an ADS can be significantly reduced by PSAS, with promising
avenues for further research in this area. Problem statement
and its breakdown is as under.

1.3.1 Problem Statement

The problem statement of our research thesis is:

“To devise a security-aware packet sampling algorithm which
addresses these open problems by enabling an inline ADS to
achieve higher accuracy under sampling by correlating traffic

from different points of deployment in a network”

1.3.2 Problem Breakdown

The specific objectives of this project are:

� Dataset Collection: While there exist a few public and la-
beled traffic attack datasets [29]–[32], these datasets do
not satisfy our requirements (see chapter 3). Therefore,
we collect our own traffic dataset. For repeatable perfor-
mance evaluation, our labeled dataset is publicly available
at http://wisnet.seecs.edu.pk/datasets/.

� Implementation of Exising Sampling Algorithms: In order
to evaluate our proposed packet sampling algorithm, we
need to implement the existing sampling algorithms.

� Design and implementation of PSAS algorithm: The objec-
tive of this step is to design a Progressive Security-Aware
Packet Sampling (PSAS) algorithm which enables a real-
time inline anomaly detector to achieve higher accuracy by
sampling larger volumes of malicious traffic than random
sampling, while adhering to a given sampling budget.
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� Performance Evaluation: To analytically compare the per-
formance of the proposed packet sampling algorithm with
existing sampling algorithms; and to experimentally com-
pare and evaluate the impact of the proposed packet sam-
pling algorithm on existing anomaly detection algorithms.

1.4 Thesis Organization

The remainder of this thesis is structured as follows:
Chapter 2 provides discussion on some of the existing packet

sampling techniques, anomaly detection systems used in the ex-
periments, ADS accuracy criteria, and related work in the sub-
jected domain. The impact of existing sampling techniques on
anomaly detection systems is also discussed.

Chapter 3 is dedicated to the data collection activity. Unique
characteristics of the newly collected dataset, experimental setup
of the data collection process, detail of types of rates used to gen-
erate the attack traffic, and dataset’s statistics are detailed in
this chapter.

In Chapter 4, outlines the impact of increasing ratio of ma-
licious traffic on ADS accuracy, design constraints of a prac-
tical security-aware packet sampler, the proposed progressive
security-aware packet sampling algorithm, and analytical com-
parison of random and our proposed PSAS algorithm.

Experimental performance evaluation of the proposed security-
aware sampling algorithm under averaged and varying attack
rates, and PSAS’ complexity measures are provided in Chapter
5.

Limitations of the proposed security-aware packet sampler
and its countermeasures are discussed in Chapter 6. Chapter 7
summarizes key conclusions of this thesis.



Chapter 2

Literature Review

This chapter provides the background literature review of promi-
nent anomaly detection systems (ADSs) and existing sampling
techniques. We review four prominent anomaly detection sys-
tems (ADSs) and existing sampling techniques. These ADSs
and sampling techniques are detailed in subsequent sections.

2.1 Overview of Anomaly Detection Systems

Since it is not possible to evaluate all existing ADSs, we se-
lected the following four ADSs for this study: Maximum En-
tropy Anomaly Detector [17]; Credit-Based Threshold Random
Walk (TRW) Anomaly Detector [18]; Packet Header Anomaly
Detector (PHAD) [19]; and Network Traffic Anomaly Detec-
tor (NETAD) [20]. The two main rationales for choosing these
ADSs were:

1. Diversity in Accuracy : These detectors have been shown to
provide varying accuracies at different points of deployment
[32];

2. Diversity in Detection Principles and Features: These ADSs
use different traffic features and detection principles and
operate at different traffic granularities.

7



CHAPTER 2. LITERATURE REVIEW 8

The rest of this section briefly summarizes the basic detection
principles of these anomaly detectors. Interested readers are re-
ferred to the original papers [17, 18, 19, 20] for details description
of each detector.

2.1.1 Maximum Entropy Anomaly Detector

[17]: This detector computes real-time ADS scores of various
classes of network traffic based on a baseline benign traffic dis-
tribution. An alarm is raised if a packet class’s ADS score re-
peatedly exceeds a fixed threshold a certain number of times.
We varied this threshold of obtain accuracy points on the ROC
plane. To identify maliciousness at the packet level, we identi-
fied the packet classes which exceeded the detection threshold
in a time-window and then marked all packets belonging to that
class as malicious.

2.1.2 Credit-Based Threshold Random Walk (TRW)
Algorithm

[24, 18]: The original TRW algorithm [24] computes an ADS
score by applying the sequential hypothesis on a remote host’s
connection attempts. This ADS score is thresholded to deter-
mine whether or not a remote host is a scanner. TRW-CB [18]
is a hybrid solution, leveraging the complementary strengths of
Rate Limiting and TRW. A credit increase/decrease algorithm
is used to slow down hosts that are experiencing unsuccessful
connections. We generate ROCs for TRW-CB by varying its
upper and lower hypothesis testing thresholds.

2.1.3 Packet Header Anomaly Detector (PHAD)

[19]: PHAD learns the normal range of values for all 33 fields in
the Ethernet, IP, TCP, UDP and ICMP headers. An anomaly
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score is assigned to each packet header field in the testing phase
and the fields’ scores are summed to obtain a packet’s aggregate
anomaly score. We evaluate PHAD-C32 [19] using the follow-
ing packet header fields: source IP, destination IP, source port,
destination port, protocol type and TCP flags. The top n val-
ues are thresholded as anomalous. The value of n is varied to
generate ROCs.

2.1.4 Network Traffic Anomaly Detector (NETAD)

[20]: NETAD detects incoming IP traffic anomalies and operates
on the first 48 bytes of a packet including header in a modeled
subset. It computes a packet score depending on the time and
frequency of each byte of packet in the modeled subset. All
packets exceeding a certain threshold are marked as anomalous.
For our performance evaluation, we operated NETAD in the
reverse (outgoing) direction. As with PHAD, the top n values
are thresholded as anomalous.

2.2 Sampling Techniques

Many packet sampling techniques have been proposed over the
last few years. Due to computation and memory constraints,
these techniques use different attributes to estimate the traffic.
At a high-level, these techniques either sample traffic on the
basis of complete packet contents or maintain flow-level infor-
mation.

In this section, we review four prominent sampling tech-
niques; detail of each of these is as under:
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2.2.1 Random Packet Sampling

In random packet sampling, the selection of packets is triggered
in accordance to a random process. It can either be count-based
or probabilistic. In count based n samples are selected out of
N packets, hence it is sometimes called n-out-of-N sampling.
For this sampling schema each packet has an equal chance of
being drawn. One way of achieving a simple random sample is
to randomly generate n different numbers in the range of 1 to N
and then choose all packets with these positions. This procedure
is repeated for every N packets. For this kind of sampling the
sample size is fixed. In probabilistic sampling samples are chosen
in accordance to a pre-defined selection probability. The sample
size can be different for consecutive intervals. Random packet
sampling simply samples a packet with a small probability r < 1.

2.2.2 Random Flow Sampling

Random flow sampling first classifies packets into flows based on
the five-tuple: (Source IP address, destination IP address, source
port, destination port, protocol). The sampler then samples
each flow with some probability p < 1.

2.2.3 Sample and Hold

Sample and Hold [21] is similar to ordinary sampling such that
each packet is sampled with a probability h∗s < 1, where h∗sis
chosen as if each byte is sampled with a probability h. The
probability that a byte would not be sampled is 1 − h. The
packet is dropped if all of its bytes are not selected. Thus the
sampling probability for a packet of size s is given by:

h ∗ s = 1− (1− h)s

If a packet is sampled and the flow it belongs to has no entry
in the flow memory, a new entry is created. However, after an
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entry is created for a flow, unlike in simple sampling, the entry
for every subsequent packet belonging to the flow is updated.

2.2.4 Smart Sampling

This is a size-dependent flow record selection algorithm [22] and
applies to complete flow records. Given a set of flows of sizes
S = {xi : i = 1, 2, ...., n}, smart sampling selects a flow of size
x with a probability p(x) to form a set of selected flows of S ′.
The goal is to achieve an unbiased estimator of the total byte
count. The following solution was shown to be optimal in terms
of balancing the opposing constraints of keeping the variance of
X ′ small, while reducing the sample size N ′ = |S ′|:

f (xi) = fz (xi) =





xi

z
if xi < z

1 if xi ≥ z

where z is a threshold that trades off accuracy for reduction
in bandwidth requirement.

2.2.5 Discussion on Sampling Techniques

We emphasize that the sampling techniques described above are
designed to provide a sampled dataset that is representative of
the overall traffic behavior. The biased and incomplete traf-
fic captured by a packet sampler when input to an anomaly
detector causes loss of accuracy, thereby compromising the pur-
pose for which the traffic was being sampled. Intuitively, an
ADS operating on sampled traffic would want to operate on
as much malicious data as possible. Therefore, instead of the
security-unaware or blind packet/flow samplers, we need to de-
sign security-aware packet sampling algorithms.
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(a) ROC Curve

(b) ROC Curve Comparison

Figure 2.1: A typical ROC curve; comparison of different ROCs.

2.3 ADS Accuracy Criteria

The accuracy of an intrusion detection system is generally eval-
uated on two competing criteria:

1. Detection rate: What fraction of anomalies are correctly
detected by the IDS.
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2. False Alarm rate: What fraction of the total anomalies
detected by the IDS are in fact benign data.

To understand the tradeoff between these accuracy criteria,
consider an IDS that classifies all the test data as anomalous.
Such an IDS will achieve 100% detection rate, but at the cost of
an unacceptable 100% false alarm rate. At the other end of this
spectrum, consider an IDS that classifies all of the test data as
normal. This IDS will have an attractive 0% false alarm rate,
but is useless because it does not detect any anomalies. To eval-
uate the accuracy of an IDS, detection thresholds of the IDS are
tuned and for each threshold value the detection rate is plotted
against the false alarm rate. Each point on such a plot, referred
to as an ROC curve [33], represents performance results for one
configuration (or threshold value) whereas the curve represents
the behavior for the complete set of configurations.

A receiver operating characteristics (ROC) curve is a tech-
nique for visualizing, organizing and selecting classifiers based
on their performance [34]–[35]. A typical ROC curve is shown in
Fig. 2.1 (a). The ROC curve is the plot of TPR (true positive
rate) vs. FPR (false positive rate) for different threshold values.

The diagonal line y = x represents the strategy of random
guessing. For example, if a classifier randomly guesses the pos-
itive class half the time, it can be expected to get half the pos-
itives and half the negatives correct; this yields the point (0.5,
0.5) in ROC space.

Any classifier that appears in the lower right triangle per-
forms worse than random guessing. This triangle is therefore
usually empty in ROC graphs.

What is of interest are the curves in the upper left triangle.
Higher the curve, better the performance of the classifier. This
is shown in Figure 2.1 (b).



CHAPTER 2. LITERATURE REVIEW 14

2.4 Related Work

Most network anomalies tend to persist over time and are de-
tected by performing sophisticated statistical analysis on a time-
series of network parameters. In this context, packet and flow
sampling techniques can have a serious adverse affect on the ac-
curacy of the ADSs that are operating on the sampled traffic.
Mai et al. [11] evaluated the impact of packet sampling on three
portscan detection algorithms and concluded that packet sam-
pling is an inherently lossy process which provides an incomplete
and biased approximation of the underlying traffic. This work
was extended in [12] and the affect of sampling was analyzed
using four popular sampling techniques; random packet sam-
pling, random flow sampling, sample-and-hold [21], and smart
sampling [22]. Three anomaly detection techniques were used
to cover broad categories of volumetric and portscan anomaly
detection, namely the wavelet analysis approach [23], Threshold
Random Walk (TRW) [24] and Time Access Pattern Scheme
(TAPS) [25]. Results showed that random packet sampling,
sample and hold, and smart sampling adversely affect both volu-
metric and portscan-based anomaly detectors. Similarly, it was
shown in [13] that the accuracy of an ADS is dependent on the
rate of sampling when flow based metrics are used. Brauckhoff
et al. [14] analyzed the volume and feature entropy metrics and
showed that packet sampling does not have much impact on
volumetric packet counts but can introduce significant bias in
flow counts. Feature entropies are also disturbed but the traffic
pattern is generally visible.

A common approach followed by existing work is to use mul-
tiple ADSs on a single hop [26]–[28]. However, if the sampled
subset of traffic is not representative of the overall traffic trends
(e.g., does not contain enough malicious packets), then adding
more ADSs on the same node will not increase an improvement
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in accuracy. Our focus on this work is to improve the sampled
subset to facilitate the ADS deployed on a node. Hence, the
multiple ADSs based detectors can also benefit from using a
security-aware sampler.

In view of the above discussion, we concern ourselves with
security-aware packet sampling for an inline and real-time ADS.
Due to our focus on real-time anomaly detection (which is typi-
cally integrated with the routing fabric), we do not consider flow
sampling algorithms in this work.1

1While some recently-proposed real-time flow sampling algorithms [36], [37] can also
benefit from the proposed PSAS algorithm, we do not consider them in this thesis because
they will introduce undesirable communication overhead between communicating nodes.



Chapter 3

Attack Traffic Dataset

For the present research problem, we needed a traffic dataset
that meets the following requirements:

1. Attack traffic is captured as it passes through different
points in a network;

2. At each deployment point, benign (background) and at-
tack data had to be labeled accurately to allow judicious
evaluation of the impact of sampling on ADS accuracy;

3. For comprehensive performance evaluation, we needed at-
tacks of different types (DoS, portscan, etc.) and rates;

4. For repeatable performance benchmarking by future stud-
ies, the dataset had to be publicly available; and

5. To cater for different types of ADSs and attacks (present
and future), the dataset should contain different types (ICMP,
TCP, UDP, etc.) of packets with full (header+payload)
packet information.

While there exist a few public and labeled traffic attack datasets
[29, 30, 31, 32], these datasets do not satisfy the requirements
set above. Therefore, we collected our own traffic dataset and
the rest of this section explains our data collection experiment

16
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and some preliminary data statistics. For repeatable perfor-
mance evaluation, our labeled dataset is publicly available at
http://wisnet.seecs.edu.pk/datasets/.

Perhaps the most unique requirement of our study is simul-
taneous data collection at different deployment points. Note
that as we move from endpoints towards an enterprise’s net-
work perimeter, the scope of responsibility of a network entity,
in terms of traffic volume and number of network nodes generat-
ing that traffic, increases accordingly. We conducted our exper-
iment at three progressive points of deployment in our school’s
network: Endpoints, Research Lab Router and Research Wing
Router. As can be intuitively deduced, each one of these deploy-
ment points had a very different traffic scope in terms of traffic
volume and number of nodes. We now explain data collection
at each of these deployment points.

3.1 Endpoint Traffic

3.1.1 Endpoint Background Traffic

Before the attacks were launched, some background (benign)
data had to be collected at each network entity in order to train
our algorithms under normal circumstances. At the endpoint,
this background dataset was collected at three lab computers
with human users (research students) in our research lab. Back-
ground data were logged during six separate periods, each one
of over three hours duration, for an aggregate of approximately
nineteen hours. More specifically, traffic was collected on six
separate days during peak hours of Internet activity.

Different types of activities were taking place on these sys-
tems, including: peer-to-peer file sharing, software downloading
from remote servers, web browsing, real-time video streaming,
etc. Therefore, a considerable amount of background traffic was
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generated by the applications running on these endpoints. Such
high, yet realistic, background traffic was introduced so that the
attack traffic mixes up with benign data and does not stand out.
During the onset of an attack, this background traffic remained
uninterrupted.

3.1.2 Endpoint Attack Traffic

The three endpoints described earlier were scheduled to simulta-
neously launch each attack. The motivation behind this attack
scenario was to emulate a botnet or localized scanning scenario
in which a pool of comprised hosts exist in a network.

We launch TCP, UDP, and ICMP based attacks since a ma-
jority of contemporary attacks are launched using these proto-
cols. All the three attacking machines started their transmission
simultaneously and each exploit was launched for a period of five
minutes. A total of six attacks comprising three portscan attacks
and an equal number of DoS attacks were launched on servers
setup outside our network. The exploits involved in the former
are ICMP Path MTU Discovery, ICMP Protocol Unreachable
(Blind Connection Reset) and TCP-SYN portscans. DoS at-
tacks included in our study are TCP flood, UDP flood (fraggle)
and ICMP echo ping flood (smurf) attacks; readers are referred
to [38]–[40] for details of each attack.

The source IPs were spoofed for all (TCP, UDP and ICMP)
DoS attacks, while servers setup at two different public IPs were
attacked. Ports 1433, 22, 138, 137, 21 were attacked in the TCP-
SYN Flood, while ports 22, 80, 135, 1433 were targeted with
UDP floods. For each TCP portscan experiment, two distinct
attacks were launched, first on port 80 and then on port 135.
TCP portscan packets had fixed source IPs while the probed
destination IPs were generated randomly. ICMP scans were
also sent to randomly-generated IP addresses.
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Figure 3.1: Network diagram of the data collection setup.

To label the attack traffic, we needed to embed an attack
marker inside each malicious packet. In order to maintain the
labeling across different packet hops, the packet marker had to
be embedded in a protocol field that does not change at each
hop. To this end, we set the reserved flag in the IP header
of each attack packet using raw socket; this bit is unused and
generally a default value of zero is used for it.

The attacks were launched at five different rates. The rates
were progressively increased to launch the attacks over a range
of values (0.1, 1.0, 10, 100, and 1000 pkts/sec). For the portscan
attacks, the slow rates are ideal as hackers can avoid detection
using very low rates while the damage caused by DoS attacks
is more prominent at high rates. The range of rates ensured
the comprehensive results from both these types of attacks. It
also enabled us to check the robustness of our algorithms in
identifying the low-rate attacks besides the higher rate (more
obvious) ones.
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Table 3.1: Background Traffic Information

Date
Background Traffic Statistics

Endpoints Lab Router Wing Router
µ σ µ σ µ σ

pkts/sec pkts/sec pkts/sec pkts/sec pkts/sec pkts/sec
03/07/2009 191.4 136.6 1388.4 1256.2 3440.5 1614.3
03/09/2009 312.5 173.4 875.7 664.7 2751.2 1740.9
03/12/2009 562.8 210.2 1324.9 328.9 3445.5 1683.5
03/18/2009 643.5 209.7 1249.0 338.7 2988.0 1513.5
03/19/2009 495.9 173.3 1146.1 757.8 2939.5 1550.6
04/02/2009 416.7 191.0 1029.2 682.8 3168.8 1785.2

3.2 Lab and Research Wing Routers’ Back-

ground and Attack Traffic

All the research labs in the School of Electrical Engineering &
Computer Science (SEECS), NUST [www.seecs.edu.pk] are lo-
cated in three distinct research wings. Traffic from each lab
is routed by a 3Com 4500G switch. Traffic from all the lab
routers is relayed to a research wing router (Cisco 3750) using
fibre connections. These wing routers are in turn connected to
a distribution router that handles traffic from the entire school.
This network topology is shown in Fig.3.1

Due to privacy constraints, we were not allowed to log traffic
at the distribution router. Therefore, we setup our traffic col-
lection at the first and second hops. At the first hop, a port
was mirrored on our research lab’s router to receive the entire
lab’s traffic (inbound, outbound and internally routed). The
lab contains 28 computers running different operating systems
(Windows XP/Vista and Linux), applications and services. As
mentioned earlier, three of these computers were used to gener-
ate attack data while the remaining computers served as back-
ground traffic sources. At the second hop, we collected traffic
by mirroring a port on the router that manages traffic for our



CHAPTER 3. ATTACK TRAFFIC DATASET 21

Table 3.2: Background Traffic Information During Attacks

Attack Name

Background Traffic Statistics at Attack Time
Attack Rate (pkts/sec)
(pkts/sec) Endpoints Lab Router Wing Router

µ σ µ σ µ σ

0.1 151.4 115.3 897.8 440.6 2646.6 578.2
ICMP 1 201.8 114.3 963.6 140.2 2948.4 371.1

Protocol Unreachable 10 202.2 59.1 1211.2 309.2 3305.2 340.7
Portscans 100 264.8 117.5 2310.9 907.5 6495.8 3075.6

1000 212.0 50.9 937.7 144.0 3082.1 279.3
0.1 360.9 96.0 809.3 144.8 2255.7 341.8

ICMP 1 377.1 166.8 1037.5 417.0 5381.6 2409.0
Path MTU Discovery 10 394.9 84.3 962.7 151.9 3242.6 550.5

Portscans 100 377.0 93.4 515.1 224.0 1893.9 255.6
1000 430.8 83.1 899.6 105.1 3242.5 222.1
0.1 576.7 94.5 1184.6 138.2 2462.9 474.4

TCP-SYN 1 549.4 146.8 1487.2 265.0 3002.6 398.0
portscans 10 534.0 81.9 1645.5 180.9 3325.2 397.7

100 555.5 67.3 1244.6 188.1 6100.0 2492.4
1000 698.8 96.3 1253.9 138.4 3084.7 247.4
0.1 478.2 59.4 943.2 96.6 2021.9 184.3

ICMP 1 452.7 76.7 1024.7 103.3 2466.8 272.6
echo ping flood 10 786.2 75.5 1616.3 150.8 4318.5 1790.1

(DoS) 100 819.4 82.9 1438.1 141.2 5565.0 2493.8
1000 639.2 119.7 1191.4 124.4 3128.4 245.2
0.1 354.3 52.9 781.2 109.8 2240.1 216.7

TCP-SYN 1 504.6 62.6 1175.5 142.7 2699.1 328.8
flood 10 724.6 118.2 2734.3 1777.2 4409.8 1666.2
(DoS) 100 471.9 90.5 1031.7 123.1 3964.1 1670.4

1000 426.0 59.2 980.4 106.8 3000.9 238.0
0.1 323.5 48.7 693.7 108.2 2025.8 506.4

UDP flood 1 300.1 61.7 907.4 113.7 2479.1 291.0
fraggle 10 421.3 54.7 2261.8 1847.1 4028.4 1893.1

100 494.2 66.7 1151.9 157.6 6565.7 3006.9
1000 578.7 62.3 1069.7 111.5 2883.7 260.8

research wing. This router handled traffic from approximately
50 hosts. Again, 3 hosts were generating attack traffic, while
the remaining hosts served as background traffic sources.

Since our attacks consisted of only TCP, UDP and ICMP
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packets, we filtered packets other protocols from the traffic cap-
ture. Also, as the attack victims were setup outside of our net-
work, only outbound traffic was retained for analysis.

3.3 Preliminary Traffic Statistics

Tables 3.1 and 3.2 show the background and attack traffic statis-
tics. From the endpoint data statistics (Table 3.1), it can be
observed that the mean traffic rate is fairly high on all three
endpoints. This is mainly because of the peer-to-peer file shar-
ing activity on these hosts. Also, note that there is a large
variance around the mean which was observed because of the
bursty video streaming applications.

Table 3.2 shows the diversity of the collected attack dataset.
At the endpoints, the background traffic rate during low rate
attacks (0.1 and 1 attack packets/sec) is two or three orders of
magnitude greater than the attack rate. On the other hand,
background traffic rate is comparable to or less than the high
rate attacks (1000 packets/sec.) At the Lab router, the low-rate
attacks are further diminished by large volumes of background
traffic. However, the high rate attacks still comprise a consider-
able fraction of the total traffic even at the Lab router. At the
Wing router, the high rate attacks have two to three times less
rate than the background traffic and therefore do not dominate
the total traffic. Based on this attack and background traffic
rate diversity, we expect that detection will become more and
more difficult as we move from the endpoints to the Wing router
mainly because the attack traffic will mix with considerable vol-
umes of background traffic.



Chapter 4

Security-Aware Packet
Sampling

Prior studies have shown that detection rate of an anomaly de-
tector degrades with a decrease in the rate of sampling [12]–
[14]. While these studies comprehensively evaluated sampling-
induced accuracy loss in ADSs, solutions to mitigate this loss
have not been investigated so far. An important question that
is still unanswered in this regard is: For a given and fixed
sampling budget, would an ADS’ accuracy improve if we can
somehow sample a larger fraction of malicious traffic? If this
question is answered in affirmative, another resultant question
is: How much improvement in accuracy should we expect with
such security-aware sampling? Finally, and most importantly,
how can we design an efficient (low-complexity, low-overhead)
security-aware packet sampler to sample higher fractions of ma-
licious packets? In this section, we empirically answer the first
two questions by evaluating ADS’ under increasing number of
malicious samples. After establishing consistent accuracy ben-
efits provided by higher volumes of malicious samples, the re-
mainder of this section is dedicated to designing and analytically
evaluating an efficient security-aware sampler.

23
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Figure 4.1: Linear, maximum and actual number of relative
detections and relative false alarms under different malicious-to-
benign sampling ratios; total sampling budget is fixed at ps =
0.05.

4.1 Impact of Increasing Malicious Packet Sam-

ples on ADS Accuracy

To empirically answer the first two questions posed above, we
use TCP portscan and TCP-SYN flood attacks at different rates.
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From each attack dataset, we created five sampled subsets each
with a sampling budget of ps = 0.05; i.e., 5 out of every 100
packets were sampled. To emulate higher malicious packet frac-
tions within this sampling budget, we respectively introduced
1%, 2%, 3%, 4% and 5% of malicious traffic samples in the five
datasets. To analyze the impact of sampling with an increasing
ratio of malicious-to-benign packets, the portscan datasets were
input to TRW and NETAD, while the TCP-SYN flood datasets
were input to Maximum Entropy and PHAD detectors.

It can be intuitively argued that a linear increase in the num-
ber of malicious packets at an ADS’ input should introduce a lin-
ear increase in accuracy; this projected linear trend is shown as
a dotted line in Fig. 4.1. The lines marked using asterisks in the
detection plots represent the total number of malicious packets
that are sampled in each dataset; i.e., the maximum number of
detections that can be achieved by an ADS. Note that for Max-
imum Entropy, TRW and PHAD, a much faster than linear im-
provement in detection rate is observed. At the same time, the
false positive rates of these detectors decrease exponentially with
an increase in malicious traffic samples. Improvements for the
NETAD detector are largely linear because the detector inher-
ently has a very high detection rate with very few false positives
even for the 1% dataset. It should be highlighted that accuracy
improvements get more and more pronounced with an increase
in the number of malicious sampled traffic. The detection rates
of Maximum Entropy, TRW and PHAD quickly approach the
maximum with an increase in the fraction of malicious packets.
For instance, the PHAD detector achieves approximately 80%
detection for the 5% dataset as opposed to only 25% detection
rate for the 1% dataset. These detection rate improvements are
complemented by drastically reduced false positives rates.

Based on the proof-of-concept results of this section, we con-
clude that a loss of sampling-induced accuracy in an ADS is pro-
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portional to the malicious-to-benign traffic samples at its input.
Thus, in addition to being detected, these additional malicious
packets also facilitate detection of other packets. The better-
than-linear accuracy improvements achieved by increasing the
number of malicious packets in a traffic ensemble motivates the
need for a security-aware packet sampling algorithm which can
sample higher volumes of malicious traffic. We propose such a
technique in subsequent section.

4.2 Design Constraints

While having high malicious sampling rates, a practical security-
aware sampler should satisfy these design constraints:

1. It should sample high volumes of malicious traffic;

2. It should be generic or algorithm-independent so that it
can be seamlessly integrated with any anomaly detector;

3. It should have low (if any) communication overhead to al-
low inline realization; and

4. It should have low complexity1 to facilitate its real-time
implementation. Consequently, while we will allow our ap-
proach to incorporate some changes to the nodes’ opera-
tion and for some information to be communicated between
nodes, these changes must have very low complexity and
communication overhead.

1We define complexity in terms of run-time complexity and memory usage.
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4.3 Progressive Security-Aware Packet Sam-

pling

At this point, we have established the considerable accuracy ben-
efits of sampling higher volumes of malicious traffic. Therefore,
we turn our attention to the last question of how a security-
aware sampler will sample higher volumes of malicious traffic.
While having high malicious sampling rates, a practical security-
aware sampler must also satisfy the other design constraints set
forth in Section 2

We propose a Progressive Security Aware Sampling (PSAS)
algorithm which operates on the following principle: ADSs are
deployed progressively on nodes on a packet’s path. These ADSs
communicate with each other by encoding their binary score
(malicious or benign) of a packet inside the packet’s header be-
fore forwarding it to the next hop node. The first node uses
random sampling since it has no prior information to perform
informed (security-aware) sampling. The security-aware sam-
pler (PSAS) operating at the next hop uses this score as side
information to sample packets marked as malicious (by the last
hop node) with higher probabilities, while adhering to a given
sampling budget. It should be clear that when a packet is classi-
fied as malicious at a node k− 1 it may or may not be classified
as malicious at the next node k. Specifically, node k − 1 marks
sampled and potentially-malicious packets to facilitate sampling
at node k. Under a given packet sampling budget p(k)

s at node k,
traffic which has been classified and then marked as malicious by
the ADS at node k−1 is sampled with a high probability p(k)

so
at

next node k. After this security-aware sampling, the remaining
packet sampling budget is exhausted by random samples from
unmarked traffic.

The ADS deployed at each node k marks the classified as
malicious packets independent of the fact that a packet was pre-
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Algorithm 1: PSAS Algorithm
Input: Input Traffic D, Sampling Budget ps, Security-Aware Sampling rate pso , and a random

number generator rnd.
Output: Sampled Traffic d

begin1

d̂ ← 0; */ d̂ is the number of sampled marked packets. */2

foreach (Packet p in D) do3

fs ← ps − pso × d̂
|D| ;4

/* score is a bit that contains the packet’s security mark. */5

if p.score == malicious then6

generate rnd;7

if rnd ≤ pso then8

d.add(p);9

d̂ = d̂ + 1;10

/* packets sampled by PSAS sampler become input to the ADS at each11
PSAS node. The ADS process and calculate its malicious score. */

p.score = processPacket(p);12

end13

end14

else15

generate rnd;16

if rnd ≤ fs then17
d.add(p);18

/* packets sampled by PSAS sampler become input to the ADS at each19
PSAS node. The ADS process and calculate its malicious score. */

p.score = processPacket(p);20

end21

end22
/* forward packet p to the next hop node */23

p.forward(p.destIP );24

end25

end26

viously marked as malicious or it is previously unmarked. The
mark on a packet is used by a PSAS sampler to preferentially
sample the packets at the input of the ADS; however, the mark
is not used as side information during ADS processing. Hence,
the ADS at each node marks the classified as malicious packets
which come: 1) from the previously marked packets; and 2) from
randomly sampled packets. Consequently, as compared to ran-
dom sampling, PSAS increases the number of correctly marked
packets along a packet path as the number or nodes increases.
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To meet the sampling budget, unmarked traffic is randomly
sampled according to the following sampling function:

f (k)
s = p(k)

s − p(k)
so

(p
(k)
M̂/M

+ p
(k)
M̂/B

).

The value of f (k)
s is greater or equal to zero. In the worst

case, where all the sampled packet are marked as malicious by a
node k− 1, and sampled with p(k)

so
= 1 at the next hop k results

in f (k)
s = 0.

PSAS’ apparently simple methodology satisfies our design
constraints:

1. It can be observed intuitively—and will be mathematically
proven shortly—PSAS will sample higher volumes of mali-
cious packets if the progressive anomaly detectors are ac-
curate. In fact, since anomaly detection accuracy generally
degrades as we move from the endpoints to the network core
[32], PSAS’ sampling efficiency—which is driven by the pre-
vious hops—should improve at each progressive node.

2. PSAS can be used with any ADS. In fact, since PSAS al-
lows different ADSs to be deployed at each hop, each of
these ADSs can be customized for the traffic characteris-
tics and attack vulnerabilities for a given point of network
deployment.

3. PSAS has no additional communication overhead because
progressive nodes communicate using only a single bit which
can be encoded in unused IP packet headers, thereby pre-
cluding the need for an additional communication channel
[15, 16] between nodes.

4. PSAS has very low complexity; empirical results substan-
tiate this claim in the following section.
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Stepwise execution of the proposed PSAS algorithm is shown
in Algorithm 1. The following section mathematically proves
that under certain realistic conditions PSAS always samples
more malicious packets than blind random sampling.

4.4 Analytical Comparison of PSAS and Ran-

dom Sampling

We first detail our assumptions and system model which is fol-
lowed by analytical comparison of the two sampling approaches.

4.4.1 System Model and Assumptions

For analytical comparison, we make the following realistic as-
sumptions:

� The total sampling budget is fixed to p(k)
s ;

� All the attacking nodes belong to the same subnet and each
node i of them generates the malicious traffic at λMi packets
per unit time;

� Benign traffic increases at each node along the path;

� Probability of correct detection of malicious packets p
(k)
d is

greater or equal to probability of false positives p
(k)
f ; and

� p(k)
s◦ = 1; this assumption is invoked to simplify mathemat-

ical exposition.

Based on the above assumptions, the rate of malicious traffic
at each node is the same λM , while the rate of benign traffic
at the k-th hop is

∑k
i=1 λ

(i)
B . The k-th node samples the incom-

ing traffic with probability p(k)
s and passes it to the ADS which

marks it based on its maliciousness level. Two types of traffic
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Table 4.1: Symbols Definitions
Symbol Definition

λ
(k)
B Rate of benign traffic at k-th hop.

λ
(k)
M Rate of malicious traffic at k-th hop.

p
(k)
d Probability that a malicious packet will be detected at k-th

hop.

p
(k)
f Probability that a benign packet will be misclassified as ma-

licious at k-th hop.

p
(k)
B|B Probability that an unmarked benign packet is received at

k-th hop.

p
(k)
M |M Probability that an unmarked malicious packet is received at

k-th hop.

p
(k)

M̂ |B Probability that a benign packet mistakenly marked as mali-
cious is received at k-th hop.

p
(k)

M̂ |M Probability that a malicious packet correctly marked as ma-
licious is received at k-th hop.

are received at each node: marked traffic (i.e., traffic marked as
malicious) and unmarked traffic (i.e., traffic marked as benign
or previously unsampled traffic).

To analytically model the packet sampling operation, we adopt
a unique perspective: We treat sampling and the malicious traf-
fic detection algorithm at each node as a channel. The input
of this channel comprises four types of traffic called symbols
in communication theory literature. The four symbols are: 1)
unmarked benign packets, 2) unmarked malicious packets, 3)
packets marked as malicious which are in fact malicious (correct
detections), and 4) packets marked as malicious which are in
fact benign (false positives). We follow the notation described
in Table 4.1.

The probabilities that one symbol will get mapped to another
is dependent on the accuracy (p

(k)
f and p

(k)
d ) of the k-th hop ADS

as shown in Fig. 4.2. For instance, the probability that once
sampled a marked malicious packet will again be marked as
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Figure 4.2: Probabilistic model of an ADS operating on security-
aware traffic samples.
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Figure 4.3: Security-aware sampling algorithm as a cascaded
channel.

malicious is p
(k)
d . These probabilities are tuned in accordance

with the sampling function f (k)
s defined earlier.
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At the first node, we only have two types of traffic (unmarked
benign and unmarked malicious); i.e., the probability of all other
symbols is zero. Progressive packet markings by subsequent
nodes will result in the cascaded channel shown in Fig. 4.3.

4.4.2 Malicious Traffic Sampling Rates

We now analytically compare the malicious traffic sampling rate
of the proposed security-aware sampling with random sampling.
In security-aware sampling, we sample from two different types
of traffic: marked (as malicious) and unmarked (unsampled or
marked as benign). We state the first result based on the above
sampling function as follows.

Lemma 1. The ratio of malicious packets in marked traffic is
higher than the ratio of malicious packets in unmarked traffic at
any node k for all p

(k)
d ≥ p

(k)
f , where k = 1, 2, . . ..

Proof. The ratio of malicious packets in marked traffic is ε
M̂

=
p
(k)

M̂ |M
p
(k)

M̂ |M+p
(k)

M̂ |B
, while the ratio of malicious packets in unmarked traf-

fic is εM =
p
(k)
M |M

p
(k)
B|B+p

(k)
M |M

. To prove that security-aware sampling al-

gorithm samples more malicious packets than random sampling,
we need to show that ε

M̂
is greater than εM . That is, we have

to show that:

p
(k)
B|Bp

(k)
M̂ |M > p

(k)
M |Mp

(k)
M̂ |B.

Putting values from our system model shown in Fig. 4.2, we get

[
p
(k−1)
B|B

(
1− f (k)

s p
(k)
f

)
+ p

(k−1)

M̂ |B

(
1− p

(k)
f

)]
×

[
p
(k−1)

M̂ |M p
(k)
d + p

(k−1)
M |M f (k)

s p
(k)
d

]

Q
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[
p
(k−1)
M |M

(
1− f (k)

s p
(k)
f

)
+ p

(k−1)

M̂ |M

(
1− p

(k)
d

)]
×

[
p
(k−1)

M̂ |B p
(k)
f + p

(k−1)
B|B f (k)

s p
(k)
f

]

⇒ p
(k−1)
B|B p

(k−1)
M |M

(
1− f (k)

s p
(k)
f

)
f (k)

s

(
p
(k)
d − p

(k)
f

)
+ p

(k−1)
B|B p

(k−1)

M̂ |M

(
p
(k)
d − f (k)

s p
(k)
f

)

+p
(k−1)

M̂ |B p
(k−1)

M̂ |M

(
p
(k)
d − p

(k)
f

)

Q
p
(k−1)
M |M p

(k−1)

M̂ |B

[(
1− f (k)

s p
(k)
f

)
p
(k)
f −

(
1− p

(k)
f

)
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(4.1)

All the terms at the left hand side (LHS) of (4.1) are positive
(> 0), while the term on the right hand side (RHS) may or
may not be positive. In general, all the terms on the LHS will
sum to a much larger probability than the RHS terms. Even
in the worst case, comparing the uncertain term on the RHS of
equation (4.1) with a term on the LHS yields:

p
(k−1)
B|B p

(k−1)
M̂ |M ≥ p

(k−1)
M |M p

(k−1)
M̂ |B

where the inequality holds as long as p
(k)
d > p

(k)
f and the benign

traffic rate is higher than the malicious traffic rate.

The p
(k)
d ≥ p

(k)
f condition in the above lemma is quite relaxed.

Recall that, as opposed to random sampling which samples from
the entire traffic randomly, the proposed PSAS sampler samples
packets marked as malicious with higher probability. Hence, in
essence the above lemma states that for a given sampling budget
p(k)

s , the fraction of malicious traffic will be higher in security-
aware sampled traffic.

By further constraining the relation between p
(k)
d and p

(k)
f

within realistic limits, we reach the following corollary.

Corollary 1. The ratio of malicious packets in marked traffic
is much higher than the ratio of malicious packets in unmarked
traffic at any node k for all p

(k)
d ≥ 2p

(k)
f , where k = 1, 2, . . ..
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Proof. Equation (4.1) can be written as:
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(4.2)

All the terms in the above equation are positive as long as p
(k)
d ≥

p
(k)
f . The term at the right side of the above equation is smaller

than the second term at the left side which implies that the left
side is much greater than the right side. By taking only the
second term from the left side, we get

p
(k−1)
B|B p

(k−1)
M̂ |M

(
p

(k)
d − f (k)

s p
(k)
f

)
> p

(k−1)
M |M p

(k−1)
M̂ |B p

(k)
f ,

which is true if p
(k)
d − f (k)

s p
(k)
f ≥ p

(k)
f , a condition that is satisfied

when p
(k)
d ≥ 2p

(k)
f .

This corollary states that, under the very reasonable condi-
tion of p

(k)
f = p

(k)
d /2, PSAS will always sample considerably more

malicious packets than random sampling. Note that these con-
straints on detection and false positive rates should be satisfied
by any practical ADS. Hence, irrespective of the ADS used at
each hop, PSAS should always sample higher fractions of mali-
cious traffic than random sampling.

4.5 Summary and Discussion

Fig. 4.4 shows the system-level operation of the proposed security-
aware sampling algorithm. As with existing commercial prod-
ucts [3, 4, 5, 6], the sampling algorithm and ADS are anticipated
to be incorporated inside the router as shown in Fig. 4.4. Since
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Figure 4.4: Pictorial representation of security-aware sampling.

the complexity of the proposed sampling algorithm is negligible
as compared to the existing sampling and anomaly detection
logics, we do not expect it to be an overhead. The only over-
head is that multiple integrated Sampler-ADS-Router need to
be deployed in the network path. This overhead can be mini-
mized by deploying these devices only at one or two hops near
the gateway router. Such a strategy–as shown in the follow-
ing section–will yield the best results because at these hops a
random sampler will not be able to sample enough malicious
packets due to overwhelmingly high volumes of benign packets.



Chapter 5

Performance Evaluation

5.1 Accuracy Evaluation

Random sampling mainly causes an increase in missed detec-
tions. To cater for these missed detections, an ADS’ classifica-
tion threshold is generally decreased so that the few malicious
packets which have been randomly sampled can be classified cor-
rectly. Interestingly, such a strategy results in more false positive
because many benign packets are classified as malicious due to
the low threshold. Therefore, random sampling affects both the
detection rate and false alarm rate of an ADS. PSAS mitigates
this problem by sampling malicious packets preferentially.

We use Receiver Operating Characteristic (ROC) curves to
evaluate the accuracy improvements provided by PSAS. We de-
ploy the same ADS at each hop and repeat the experiment for
each of the four ADSs. ADSs are evaluated on TCP-SYN flood,
UDP flood, and TCP portscans. We separately input security-
aware and randomly sampled packets into these ADSs. Other
sampling parameters are as follows: p(k)

s = 0.05; p(k)
so

= 1; k =
0, 1, 2.

We designed an experimental setup for three cascaded nodes
(Endpoint, lab router, and research wing router). The first node
(endpoint) on a packet’s path has no prior information about

37
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the maliciousness of the packet. We randomly sample packets
at this first node. The second node along the packet path (first
hop lab router) has some knowledge about the maliciousness of
the traffic. The second node samples the packet marked by the
first node as malicious with higher probability and the remaining
sampling budget, if any, is exhausted by sampling the remaining
budget randomly. The ADS at this second node marks any
packets detected as malicious and similarly the third node along
the packet path (e.g., the second hop research wing router in our
experiments) follows the same procedure of sampling the marked
packets with higher probability, marking any of the sampled
traffic that is considered malicious by the ADS at that node
and forwarding the (marked or unmarked) packet to the next
hop along the path.

We obtain the results on the ADSs in offline mode. First,
we input the randomly sampled endpoint traffic of the collected
dataset to the ADSs. The ADSs mark the classified as mali-
cious packets and then we use these marked packets as side in-
formation for the PSAS sampler to sample the marked packets
preferentially in the lab router’s traffic in the collected dataset.
Similarly, the PSAS sampler uses the marked packets from the
lab router traffic to sample the second hop research wing traffic
of the dataset.

5.1.1 Averaged Accuracy Results

This section shows averaged accuracy results for all three at-
tacks. Fig. 5.1 show that PSAS introduces a significant and
consistent improvement in anomaly detection accuracy at the
first hop. The most significant improvements are observed for
the flood attacks; for instance, at a false positive rate of 0.03 for
the TCP flood, approximately 3 and 2 times higher detection
rate than random sampling are observed for Maximum Entropy
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(d) NETAD

Figure 5.1: ROC-based accuracy evaluation at the first hop;
results are computed by averaging over all the attack packets of
a particular attack.

and PHAD, respectively. Even for the portscan attacks, 3 and
10 times improvements in detection rate (at 0.03 false positive
rate) over random sampling are respectively achieved for Max-
imum Entropy and PHAD. Similar improvements are observed
for TRW-CB and NETAD at the first hop. For instance, at a
false positive rate of 0.03, TRW-CB achieved 5 times improve-
ment on TCP flood and 3 times on TCP Portscans datasets are
achieved. Improvements of TRW-CB for UDP flood are not pro-
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(d) NETAD

Figure 5.2: ROC-based accuracy evaluation at the second hop;
results are computed by averaging over all the attack packets of
a particular attack.

nounced mainly because TRW is specifically designed to detect
TCP portscans. NETAD at first hop achieved 4 times improve-
ment for TCP portscans and TCP flood on a relatively lower
false alarm rate of 0.012.

The improvements in accuracies are also quite pronounced
at the second hop [Fig. 5.2]. For TCP portscans, TRW can
achieve twice as many detections as random sampling for a false
positive rate of 0.01. NETAD at the second hop has very low
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false positive rates but its detection rate saturates under random
sampling. For the same false positive rate, PSAS allows NETAD
to double its number of detections. Maximum Entropy on the
second hop achieved 8 times improvement for the flood attacks
and 4 times for the portscans attacks on a false alarm rate of
0.015. Similarly PHAD, at a false alarm rate of 0.02, achieved
5 times improvement for TCP flood and 3 times for UDP flood
attacks’ datasets.

We observed that PSAS’ accuracy improvements get progres-
sively more pronounced as the packets traverse through security-
aware nodes. For instance, for the TCP portscan attack the
Maximum Entropy detector could achieve approximately 100%
increase in detection rate at hop 1, while the accuracy improve-
ment at hop 2 was approximately 300%. Similar trends can be
seen for other ADSs and attacks.

5.1.2 Accuracy Results Under Varying Attack Rates

This section shows the accuracy results of PSAS and random
packet sampling for different attacks under varying rates. Re-
sults on lowest and highest attack rates are shown in this sec-
tion. Results on medium attack rates are available at http://

wisnet.seecs.edu.pk/publications/2010/PSAS/. Accuracy
results for each ADS, under varying attack rates, are detailed
separately as under:

� Maximum Entropy
Fig. 5.3 illustrates the accuracy results of Maximum En-
tropy under varying attack rates. It can be seen that the
detection accuracy is improved more than double of the ac-
curacy for random sampling at both first and second hops.
The improvement is 3 times for low-rate (10 pkts/sec) at-
tacks and 2 times for high-rate (1000 pkts/sec) attacks.
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Figure 5.3: Accuracy of Maximum Entropy ADS under varying
attack intensities; results are computed separately for low and
high rate attacks.

� NETAD
Accuracy results of NETAD follow a trend similar to Max-
imum Entripy; while the false alarm rate is relatively very
low. Fig. 5.4 illustrates the accuracy results of NETAD un-
der varying (high and low-rate) attack rates. Improvement
of PSAS on low rate attacks is 3 times while improvement
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1000 pkts/sec

Figure 5.4: Accuracy of NETAD ADS under varying attack in-
tensities; results are computed separately for low and high rate
attacks.

on high rate attacks is more than doubled.

� PHAD
PHAD produced good results on TCP and UDP flood at-
tacks; while the detection rate is relatively lower for the
TCP portscans attacks but still the improvement is more
than doubled. Fig. 5.5 illustrates the accuracy results of
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(d) Second hop: attack rate
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Figure 5.5: Accuracy of PHAD ADS under varying attack in-
tensities; results are computed separately for low and high rate
attacks.

PHAD under varying (high and low-rate) attack rates. Im-
provement for the low-rate attacks (10 pkts/sec) is slightly
prominent than the results for high-rate attacks.
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Figure 5.6: Accuracy of TRW-CB ADS under varying attack
intensities; results are computed separately for low and high
rate attacks.

� TRW-CB
TRW-CB did not perform very well on TCP flood attacks
i.e., the detection rate is relatively lower than TCP portscans.
The reason of not performing well on flood attacks is that
TRW is designed specifically for the detection of portscans
attacks. Fig. 5.6 shows the accuracy results of TRW-CB
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under varying attack rates. It can be seen that the accept-
able detection rates are more than doubled for PSAS than
using random packet sampling irrespective of the attack
type and rate.

5.1.3 Discussion on Accuracy Evaluation

It is concluded from the accuracy results (generated by averag-
ing different attack rates) [Figures 5.1,5.2] and from the results
(generated separately for each attack rate) [Figures 5.3-5.6] that
the detection accuracy is improved by a significant factor irre-
spective of attack rate and type. For example, in the case of
a low-rate attack (considered more difficult to accurately de-
tect as compared to high-rate attacks), the detection accuracies
are more than double of the accuracies achieved using random
packet sampling. Thus, we conclude that PSAS can improve
anomaly detection accuracies regardless of the underlying at-
tack rates and types.

We do not show the results of the ADSs on 0.1 and 1 pkts/sec
attack intensities.The reason is that the affect of sampling on
very low rate attacks is most severe and these attacks remain
undetectable. In our scenario, under sampling budget of 5%, the
intensities of 0.1 and 1 pkts/sec attacks decrease to 0.005 and
0.05 pkts/sec respectively. Detection of such low rate attacks at
today’s high speed links is very difficult to realize and therefore
we observed a 0% detection rate for all ADSs.

5.2 Complexity and Communication Overhead

As emphasized earlier, our proposed PSAS algorithm allows dif-
ferent nodes in the network to communicate using only a binary
score which can be easily encoded inside an IP packet. This
procedure does not utilize any additional bandwidth or commu-
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Table 5.1: Complexity of PSAS and Random Sampling to Sam-
ple One Second of Traffic

PSAS Random PSAS Random
Attack rate (pkts/sec) 10 10 1000 1000

Time (sec) 0.074 0.082 0.0578 0.0765

nication overhead. Moreover, PSAS does not require any extra
memory because the packet marks are stored inside the packet.
Therefore, additional data structures are not required by PSAS
and its data memory requirements are identical to random sam-
pling.

Table 5.1 shows that the run-time complexity1 of PSAS is
comparable to random sampling at low attack rates. Interest-
ingly, the run-time complexity of PSAS is lower than random
sampling at high attack rates. This was observed because the
random sampler generates a random number rnd, between 0 and
1, for each incoming packet and samples the packet when the
rnd is less than or equal to the sampling budget p(k)

s ; in our ex-
periments we use p(k)

so
= 1 and consequently the PSAS’ sampling

simply involved picking up a large number of marked malicious
packets and the overhead of random number generation was re-
duced.

We argue that our sampling algorithm is substantially less
expensive as compared to the normal operation of a typical Gi-
gabit network router which has to extract and change destina-
tion MAC addresses from each packet, as well as update the
CRC value. In comparison, checking and modifying a single bit
value in each packet has negligible complexity.

The computational complexity of PSAS may be further im-
proved by modifying the packet marking technique as under:
when a packet is marked as malicious at a node k, all the sub-

1Complexity is measured using the hprof tool on a dual core 2.2 GHz Intel machine.
File I/O is not included in complexity.
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sequent packets of the same flow can be marked as malicious
without the need of inspecting each individual sampled packet
by the ADS. However, this technique does not necessarily pro-
vide higher detection accuracy because the detection by the ADS
might be incorrect.



Chapter 6

Limitations and
Countermeasures

We now highlight some limitations of the proposed PSAS tech-
nique and offer solutions to circumvent these limitations.

� Since PSAS samples every marked packet with probability
p(k)

s◦ , if a malicious packet is skipped at node k − 1, it will
likely continue to be skipped further along its path. To
counter this issue, the sampling parameters p(k)

s and p(k)
s◦

can be tuned to support detection of new malicious packets
while sustaining previously detected threats.

� A solution which depends on coordination among routers
or network devices causes the system to be more complex
as compared to typical ADS deployments. PSAS, how-
ever, has a simple communication scheme which does not
have any additional bandwidth overhead. Thus, a marginal
change in ADS implementation and deployment may be
considered a worthwhile trade-off for the substantial secu-
rity improvements brought about.

� Malicious packets can evade sampling by increasing the rate
of attack so that the sampling budget is exhausted; e.g.,
DoS attacks can be used to hide portscan attacks. This

49
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type of evasion can be mitigated by maintaining a list of
malicious hosts observed in window n and then sampling
these hosts preferentially in window n + 1.

� Inline intrusion detection can have an adverse affect on de-
lay sensitive applications; for example, undesirable jitter
may be introduced in a multimedia application. Such a
scenario will only arise if the delay-sensitive packets are
marked as malicious. This problem can only be mitigated
by improving anomaly detection accuracy.
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Conclusions and Future Work

7.1 Conclusions

At high-speed links, it is not feasible for network devices to
analyze each and every packet. Real-time high-speed anomaly
detection systems use packet sampling to realize traffic analysis
at wire speed. Sampling is a lossy process which results in an
incomplete and biased approximation of the underlying traffic.
Packet sampling can introduce significant accuracy degradations
in an ADS [11]–[14], solutions to mitigate this accuracy loss are
largely unexplored in research literature.

In this thesis, we propose a solution to simultaneously ad-
dress these open problems by enabling an inline ADS to achieve
higher accuracy under sampling by correlating traffic from dif-
ferent points of deployment in a network.

We propose a Progressive Security Aware Sampling (PSAS)
algorithm which operates on the following principle: ADSs are
deployed progressively on nodes on a packets path. These ADSs
communicate with each other by encoding their binary score
(malicious or benign) of a packet inside the packets header be-
fore forwarding it to the next hop node. The security-aware
sampler (PSAS) operating at the next hop uses this score as
side information to sample packets marked as malicious (by the
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last hop node) with higher probabilities, while adhering to a
given sampling budget.

We show that the proposed simple collaboration model, re-
ferred to as Progressive Security-Aware Sampling (PSAS), en-
ables inline anomaly detectors to achieve significantly higher
accuracies by mitigating the information loss under sampling.

While there exist a few public and labeled traffic attack datasets;
these datasets do not satisfy our requirements (see chapter 3).
Therefore, we collect our own traffic dataset. For repeatable per-
formance evaluation, our labeled dataset is publicly available at
http://wisnet.seecs.edu.pk/datasets/.

We analytically proved that, under some realistic constraints
on detection and false alarm rates, PSAS always sample consid-
erably more malicious packets than random sampling. Note that
these constraints on detection and false positive rates should be
satisfied by any practical ADS. Hence, irrespective of the ADS
used at each hop, PSAS should always sample higher fractions
of malicious traffic than random sampling.

PSAS sampling is efficient, having no communication over-
head and low complexity. From the accuracy results, we con-
clude that the sampling-induced accuracy degradation in an
ADS can be significantly mitigated irrespective of attack rate
and type. We also observed that PSAS accuracy improvements
get progressively more pronounced as the packets traverse through
securityaware nodes.

To the best of the author’s knowledge, this thesis proposes
the first known solution to mitigate sampling-induced accuracy
loss in an anomaly detection system, with promising avenues for
further research in this area.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 53

7.2 Future Work

This research work is based on progressive marking of packets
along its path and hence needs the ADS(s) to be deployed on
multiple hops. As a future work, a distributed packet sampling
algorithm can be devised which can somehow intelligently sam-
ple the malicious packets without the need to get the binary
decision from the previous hop. Such a Distributed Security-
Aware Sampling (DSAS) may be based on a technique which
logs some information about the packets/flows marked as mali-
cious in window k and that information can be used to sample
packets in the (K + 1)th window.
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