
Hybrid ARQ Based Data Reliability
Framework for WSNs using LDPC

Codes

By
Umay Kulsoom

2008-NUST-MS PhD-IT-43

Supervisor
Dr. Saad Bin Qaisar

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(March 2012)

Approval

It is certified that the contents and form of the thesis entitled “Hybrid
ARQ Based Data Reliability Framework for WSNs using LDPC
Codes” submitted by Umay Kulsoom have been found satisfactory for
the requirement of the degree.

Advisor: Dr. Saad Bin Qaisar

Signature:
Date:

Committee Member 1: Dr. Adeel Baig

Signature:
Date:

Committee Member 2: Dr. Anjum Naveed

Signature:
Date:

Committee Member 3: Dr. Zawar Hussain

Signature:
Date:

———————————————————————

i

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by an-
other person, nor material which to a substantial extent has been accepted
for the award of any degree or diploma at National University of Sciences
& Technology (NUST) School of Electrical Engineering & Computer Science
(SEECS) or at any other educational institute, except where due acknowl-
edgement has been made in the thesis. Any contribution made to the research
by others, with whom I have worked at NUST SEECS or elsewhere, is ex-
plicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Umay Kulsoom

Signature:

ii

To my parents

iii

Acknowledgments

First of all I would like to express my deepest gratitude to ALLAH The
Almighty. Its only the belief in Him that makes it possible for me to complete
my thesis. I can never enough acknowledge Him as being an ordinary human
being, but all what I have achieved in my life till today is just His blessing.

I would like to express my gratitude to my supervisor, Dr. Saad Qaisar,
whose expertise, understanding, and patience, added considerably to my
graduate experience. I appreciate his vast knowledge and skill in many ar-
eas and his assistance in writing reports, which have on occasion made me
”GREEN” with envy.

I would like to thank the my committee members for the assistance they
provided at all levels of this thesis.

Special thanks to my friends and lab mates. You people have always
been there for me and and the support that I get from you people is just
marvellous.

Last but not the least this would not have been possible without my par-
ents. My parents have provided me immense support, love and care through-
out my life and in particular during MS thesis. Thanks Allah for blessing me
with great parents.

Umay Kulsoom

iv

Contents

1 Introduction and Motivation 1
1.1 Introduction . 1
1.2 Key Contributions . 2
1.3 Thesis Organization . 3

2 Literature Review 4
2.1 Error Control . 4

2.1.1 Backward Error Control: Automatic Repeat Request . 4
2.1.2 Forward Error Correction(FEC) 5
2.1.3 Hybrid ARQ . 5
2.1.4 Link Quality Estimation 6
2.1.5 Low Density Parity Check Codes 6

2.1.5.1 Encoding . 7
2.2 Related Work . 7

3 Problem Formulation 9

4 Proposed Methodology 12
4.1 Hybrid ARQ based Data Reliability Framework 12
4.2 Error Control Mechanism . 12

4.2.1 Hop by Hop Decision Making 13
4.2.2 Link Quality Estimation 13
4.2.3 Buffers . 14
4.2.4 Partial Processing . 14
4.2.5 Error Detection Mechanism at Relay Nodes 14

4.3 Energy Consumption . 18
4.3.1 Packet Reception Ratio 19
4.3.2 Noise Floor Estimation 20

5 Experimental Setup and Evaluation 21
5.1 Sensor Network Implementation 21

v

CONTENTS vi

6 Conclusion and Future Work 28
6.1 Conclusion . 28
6.2 Future Work . 29

7 OpenEmbedded 34
7.1 Installation . 34

7.1.1 Creating Directory . 34
7.1.2 Obtaining BitBake . 35
7.1.3 Obtaining OpenEmbedded 35
7.1.4 Local Configurations 36
7.1.5 Building Images . 39

8 Linux Installation and Network Setup for Imote2 40
8.1 Linux Installation . 40

8.1.1 Flashing images on Imotes 41
8.1.2 USBnet Setup . 43
8.1.3 SSH Configuration . 45
8.1.4 Updating CC2420 Driver 46

List of Figures

4.1 Overview of Proposed Solution 15
4.2 SNR . 16
4.3 Efficiency . 17
4.4 Set up to Measure Current 18

5.1 Performance of LDPC Codes over AWGN Channel 23
5.2 Performance of LDPC Codes in terms of Iterations 24
5.3 BER for Different Schemes . 25
5.4 Retransmissions . 26
5.5 Energy Consumption in the Network for Different Reliability

Providing Schemes . 27

vii

List of Tables

4.1 Routing Table . 15

5.1 Experimental Set Up . 21
5.2 Fields in Message Structure 22

viii

Abstract

Reliability is the most important feature of event-driven wireless sensor net-
works. Due to the resource constrained nature of sensor networks, achieving
reliability is challenging with efficient utilization of communication resources.
Designing energy-efficient data communication mechanisms plays a vital role
in maximizing the life-time of wireless sensor networks. Since communica-
tion is accomplished through lossy error prone wireless link where errors are
introduced in a packet while transmission from the source to destination.
Motivated by above mentioned challenges, we propose a distributed HARQ
based data reliability framework for reliable data delivery adaptable to vary-
ing network conditions. Proposed error-correction framework is capable of
transmitting data reliably with least amount of retransmissions. Our work
is based on the fact that rate of energy depletion is higher in transmission
and reception as compared to processing at sensor CPU. We integrated Low
Density Parity Check (LDPC) codes in order to achieve high level of relia-
bility in distributed fashion for efficient data communications. Intermediate
relay nodes perform certain degree of processing in order to partially recover
corrupted data. Such approach has significant impact on the lifetime of net-
work and helps in reducing the bit error rate at destination. Framework is
implemented using Crossbow Imote2. Actual on-sensor implementation of
the proposed and traditional techniques enabled us to show the efficacy of
our framework with fair comparison.

ix

Chapter 1

Introduction and Motivation

1.1 Introduction

Wireless sensors are battery powered self configuring devices that collabo-
rate with each other and form an adhoc multi-hop wireless network. Tech-
nological advancements and miniaturization of electronic devices have made
Wireless Sensor Networks indispensable in our practical lives with wide range
of applications from security to health care. Indeed development and high
integration of WSNs in our daily lives enhances human capabilities regarding
data collection and monitoring of inaccessible areas even. The observations
could be light intensity, temperature, pressure, sound intensity, images, and
so on. WSNs are generally placed in human inaccessible environments with-
out any fixed power sources. They are therefore required to last on the
order of years on power sources such as batteries, solar cells, vibrations, and
thermo-electric effects [22]. These factors raise issues not only for hardware
design but also in the approach taken when designing the protocols and al-
gorithms for these devices. Most of the design strategies for networks such
as wireless LANs do not work effectively for WSNs due to the inherently dif-
ferent design constraints. In spite of application targeted by WSN, ultimate
goal is ‘reliable data delivery’ accomplished through unreliable and dynamic
error prone wireless links. Typically, WSNs are deployed in two types of
scenarios: Single-hop and Multi-hop. In Single-hop communication, the in-
formation sink or the base station is within one hop transmission distance of
source node. In Multi-hop topology, there are multiple communication hops
between the sensor and the base station. Intermediate sensors at each hop
act as routers which forward packets from a sensor towards the base station.
However traversal of data through different nodes increases data corruption.
Reliability has remained one of the challenging issue and an open research

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

area.
‘Energy’ is one of limited resource and requires to be utilized intelligently

for prolonged network lifetime. The two main sources of energy depletion on
a wireless sensor are local computations and bit transmissions/receptions. A
generally accepted fact is that energy required for one bit transmission/reception
by a sensor’s radio significantly exceeds the energy required for local compu-
tation on a sensor’s CPU [21].

Design of sensor network is mostly application specific and reliability
requirements vary with the scope of application. For instance applications
that collect and send data periodically like temperature, habitat monitoring
can tolerate loss and corruption in data. However, event-driven networks got
critical information pertaining to the event and requires reliable transmission
to the central node or base stations. Such applications where data of each
node is important and critical information has to be transferred reliably and
maximum error free are the main motivation of this thesis to come up with
techniques of reliable communication.

1.2 Key Contributions

Present work proposes communication protocol to deliver data adaptable to
network conditions and aims to provide maximum reliability with minimum
energy consumption. Main contributions of thesis work are as follows:

• We developed insight into reliability requirements of sensor network
applications where individual node data is important and maximum
data reliability needs to be achieved. Since maximum reliability is
possible at the cost of high energy consumption so we worked out to find
a trade-off between providing maximum data protection at reasonable
energy usage.

• We have proposed Hybrid ARQ based framework for reliable data
transmission in the network adaptable to dynamic changes taking place.
Our basic objective energy efficient communication; vital for the life-
time maximization of wireless sensor networks is achieved through
transmission of data with minimum retransmission and hop by hop re-
liability is provided. We have used Low Density Parity Check (LDPC)
codes to protect data from corruption and loss is informed to source
node by using negative acknowledgements.

• Error detection mechanism has been proposed at the intermediate nodes
making them intelligent in decision making for forwarding and/or pro-

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

cessing of data. Processing at relay nodes has been proposed to mini-
mize the number of errors induced in the packet and reducing retrans-
missions. We exploited the iterative nature of LDPC codes to detect
error and to correct them.

• Proposed protocol has been evaluated using Crossbow Imote2 designed
around the low-power PXA271 XScale micro- controller with 802.15.4
radio and surface mount 2.4 GHz antenna. Experimental evaluation of
proposed protocol has been carried out indoor environments.

1.3 Thesis Organization

Rest of the thesis is organized as follows.Chapter 2 provides a brief back-
ground and reviews the related work. Data reliability framework has been
explained and discussed in chapter 3. In chapter 4 we summarize the per-
formance evaluation of our proposed framework. Finally, we conclude in
Chapter 5 with the list of possible future extension.

Chapter 2

Literature Review

Background

2.1 Error Control

Unreliable and error prone lossy wireless links induce errors in the packet
corrupting data and making it useless for receiver. To achieve reliability we
need some error control technique to protect our data.

2.1.1 Backward Error Control: Automatic Repeat Re-
quest

Automatic repeat request (ARQ) ensures that data stream is delivered accu-
rately to the user despite of transmission errors [13]. Stop and Wait (SW),
Go-back-N (GbN) and Selective Repeat (SR) are three types of ARQ. SW
is most simplest of all and data delivery progresses packet by packet with
acknowledgement of each. If packet is not acknowledged in a particular time
slot, packet is retransmitted however if packet contains erroneous data then
there is no mechanism for error correction at receiver end. GbN in contrast to
ARQ,transmits a stream of packets number specified by window size. When
maximum window size is approached and there are outstanding packets that
have not been acknowledged then GbN would start retransmission from the
packet that has not been acknowledged despite the fact the preceding packets
are acknowledged. This feature made GbN infeasible for highly error prone
links. To counter unlimited retransmission, SR selectively retransmits the
missing packets. However it requires large size of buffers available at the
source to hold the transmitted packets making it inappropriate for sensors.
Therefore SW-ARQ; inherently simple is ideal for wireless sensor networks

4

CHAPTER 2. LITERATURE REVIEW 5

when channel error rate is not high.

2.1.2 Forward Error Correction(FEC)

Forward Error Correction adds up redundancy in the packet to protect data
from corruption. Careful selection of redundancy allows receiver to detect
and correct limited number of message bits without requiring any retrans-
mission from the source. FEC allow us to protect data either by compressing
data at source node known as source coding or by adding redundancy to
data to make noisy channel appear as noiseless. Channel Coding helps in
catering the noise inherent in wireless links. Simple channel coding schemes
allow the received of the transmitted data signal to detect errors, while more
advanced channel coding schemes provide the ability to recover a finite about
of corrupted data.

Although channel coding provides reliability and cutting down the re-
transmission requirement however there is an overhead with transmission of
extra bit.

2.1.3 Hybrid ARQ

Both ARQ and FEC have their own advantages and disadvantages in different
network conditions. Wireless sensor networks operate in varying network
conditions therefore we need to have such solution that take advantage of
both schemes while intelligently conserving energy and providing reliability.
HybridARQ is such a tradeoff between ARQ and FEC that functions on top
of benefits of both schemes. There are two types of HARQ schemes; Type I
and Type II. HARQ-I allow us to first transmit an uncoded packet or a packet
coded with a lower error correction capability. If this packet get corrupted
and negative acknowledgement(NACK) is received then packet is re-sent with
a powerful FEC code. In Type-II only redundant bits are retransmitted for
successful recovery of packet at receiver. Type I eliminate the buffer / packet
storage requirement at sender however Type II reduces bandwidth usage. We
intend to use Type I Hybrid ARQ in our thesis

As mentioned above sensor networks may face time varying links therefore
if we make Hybrid ARQ channel aware then it not only helps in decision
making regarding coding rate (amount of redundancy added to the packet)
but also helps in reducing retransmission(s).

CHAPTER 2. LITERATURE REVIEW 6

2.1.4 Link Quality Estimation

Wireless communication is hampered by numerous factors for instance harsh
environments where devices are operating in, interference, shadowing, multi-
path effects etc. Simultaneous transmission by the devices coexisting in the
channel cause interference while attenuation, scattering, reflection and ob-
stacles are the reasons for multi-path fading and shadowing. Strong signal
requires higher transmission power!. Higher transmission power means strong
transmitting signal and fewer errors yet sensors are intended to be deployed
for a longer period of time and frequent battery replenishment is not possible
therefore they need to conserve energy while transmission. Quality of radio
links available in Wireless Sensor Networks experiences dynamic variation
over time and space thus making communication over them extremely un-
reliable. Therefore, carrying out reliable communication in such networks
require transmissions to be adaptable to network conditions. Link quality
estimators are link quality measurement metrics which help us in determi-
nation how good communication links are. Several Link Quality Estimators
(LQEs) [5] have been reported in the literature; broadly categorized as re-
ceiver side estimators, sender side estimators and hybrid side estimators.
Prominent receiver based estimators are:

1. Received Signal Strength Indicator (RSSI): is the strength of a received
RF signal.

2. Signal to Noise Ratio (SNR): expressed in decibel (dB) is a hardware
metric that quantifies how much a signal has been corrupted by noise.
It is the ratio of signal power to the noise power corrupting the signal.

3. Link Quality Indicator (LQI): is a measure of chip error rate.

4. Packet Reception Ratio (PRR): is the ratio of packets received to the
number of packets sent. Lost and received gives the total number of
sent packets while packet losses at receiver end are determined with
the gap in sequence numbers and counting them.

In such situation we need such packet delivery mechanism that not only
ensure successful packet delivery but also protect and correct errors induced
in packet

2.1.5 Low Density Parity Check Codes

Low Density Parity Check codes (LDPC) [8] are class of linear block codes
introduced by Gallagar in 1963 and are proven to be most efficient codes for

CHAPTER 2. LITERATURE REVIEW 7

Wireless Sensor Networks. These codes are asymptotically good and perform
close to Shannon capacity as block length increases.

2.1.5.1 Encoding

Generator Matrix Representations

2.2 Related Work

Reliability is important for every kind of WSNs applications but critical for
health and military applications. Some applications are loss- tolerant and
require a particular ratio/level of reliability. DTC [30], TSS [9] , PSFQ [1],
RMST [2], RCRT [27] provide 100% reliability for most of the wireless sensor
network applications. However, these protocols do not provide same mech-
anism for loss-detection and recovery. ESRT [29], DTSN [31] and SCTP[28]
provide classes of probability for the application.

SCTP [28] and RCRT [27] utilize sequence numbers at the receiver end for
loss-detection and retransmissions are carried out from source node. These
protocols provide end-to-end recovery, however this approach is not energy-
efficient and new protocols enable intermediate nodes to cache segments.
Caching segments at intermediate node reduces the cost and number of total
exchanged messages between source and receiver. Two kinds of intermedi-
ate nodes are used by most of the protocols. First does not detect losses
but reacts when it receives a NACK message by retransmitting missing seg-
ment. The second kind detects losses and requests a retransmission from its
neighbours.

TSS [9] and ERTP [32] use implicit acknowledgement (IACK). This mech-
anism requires that each node i after sending a packet the next node to the
sink overheads the next forwarding. The forwarding of packet by node i+1
is considered as an acknowledgement to the node i.

Flush [21] is a reliable single-flow bulk transport protocol for large diam-
eter WSNs. However, Flush only supports one data flow using an end-to-end
approach robust to node failures. Flush requires that the sink node sends
the sequence numbers of packets it did not receive back to the data source.
When a source node receives a NACK packet, it retransmits the missing data.
Flush proposes also a rate allocation scheme for adapting dynamically the
sending rate of the sensor nodes while considering the broadcast nature of
medium and the interference between nodes. The rate allocation algorithm
follows two basic rules: 1) Rule 1: A node should only transmit when its
successor is free from interference. 2) Rule 2: A node’s sending rate cannot
exceed the sending rate of its successor. These two rules reduce contention

CHAPTER 2. LITERATURE REVIEW 8

and thus collision in the wireless network and minimize losses due to the
queue overflows for all nodes.Flush is compared to fixed rate algorithms and
it was seen that Flush provides more reliability and a better average through-
put. However, Reliability is not given in numbers and therefore its not very
much that how much reliability is provided. Energy Efficiency of proposed
algorithm is also missing

[12] Considers rayeligh fading channel and proposes channel aware ARQ
protocol. They have used probing protocol with time interval for the trans-
mission of probing packet dependent on length of fading. The protocol show
improvement with channel awareness and use of probing protocol however
pilot and data packets are of same size resulting in increased overhead plus
comparative faster depletion of energy

[25] has proved that BCH codes are 15% more energy efficient than best
performing convolutional codes. Moreover thy have shown that LDPC codes
provide reliable communication and are 42% more energy efficient than BCH
codes

Joint source and channel modelling for WSN has been frequently investi-
gated by researchers. Hasan et. al [13] has exploited the advantages of joint
source and channel coding particularly related with aggregation and security
of data in WSNs, with primary focus on source coding. However end-to-end
channel coding is used, which leads to relative high draining of sensor nodes
power.

A work related to ours is found in [26] where Radha et. al have proposed
a framework using partial processing in the network. They propose to use
LDPC codes to perform certain processing i.e. partially decode the received
packet and then forward the processed packet. Such processing results in
significantly reducing the error rate in packets however, this processing has
not been made compatible with network conditions which may cause over-
head and high use of scarce resource when channel quality is comparatively
better!

Chapter 3

Problem Formulation

Energy efficiency plays a vital role in maximizing the lifetime of wireless sen-
sor network. Limited battery constraint dominates lifetime and efficiency of
almost all kinds of WSN application. Wireless channels are highly prone to
errors and the error rate on these links accumulates exponentially as network
size become large[11]. Therefore, maximum error free data transmission to
the destination node is of high importance to meet the target of WSN appli-
cation. However maximum reliability is achieved at the cost of high energy
consumption. So, in order to transmit energy efficiently we need to protect
our data from errors introduced in a packet while transmission through wire-
less link. Also, large number of retransmissions result in faster depletion of
energy. So we need to design a protocol for wireless sensor that can deliver
data ‘reliably’ and ‘energy efficiently’.

In this thesis we evaluated

Can we design a HARQ Protocol for wireless sensor networks that
performs better than ARQ and LDPC in delivering data reliably
and energy efficiently?

Protocol designing for wireless sensor network require careful considera-
tion of various factors from data generation to transmission. Starting our
discussion from source node, ideally we want that source node transmits
maximum data for which we need large packet size. Higher number of errors
would be introduced by the erroneous wireless link(s) traversed from source
to destination resulting in retransmission(s) costs high in terms of energy
consumption. If small packet size is used then packet error rate would be
less however there would be high packetization overhead. Similar to packet
size, another problem is the selection of optimal transmission power. In case
of high transmission power, lower error rates are achieved but depletion rate

9

CHAPTER 3. PROBLEM FORMULATION 10

of battery of a node is high. Lower transmission power results in saving
of battery but higher error rate is the resultant. So we need a trade-off
between large and small packet size as well as high and low transmission
power. Once packet is ready for transmission next thing that comes is chan-
nel. We are well-aware that wireless links are highly unreliable and dynamic
so next consideration is that do we need an estimation of channel quality
before transmission or not? Talking from data reliability perspective, max-
imum possible error free data transmission is required. In order to protect
data from the corruption introduced by wireless links; either we may like to
have a backward error control (ARQ) where each or a bunch of packets is
acknowledged by the receiver or forward error control (FEC) where redun-
dancy is added to data to protect it. For backward error control we need
feedback mechanism; playing a major role in providing reliability but at the
cost of some extra communication. Another issue in feedback based schemes
is in the selection of decision-making nodes thus providing feed back to the
sender. Most of the time, providing feedback is the responsibility of des-
tination node i.e. end-to-end approach however its energy consuming and
packet loss is high when wireless links are highly error prone. Some times,
intermediate nodes provide acknowledgement of each packet or cumulative
ACK/ NACK for the bunch of packets. Forward error control does not need
any feedback mechanism but redundant data transmission costs high when
network is operating under favourable condition. Therefore, code rate selec-
tion is an important issue while dealing with FEC. Its a well known fact that
communication cost is higher in sensor networks as compared to computa-
tions and processing performed at node local CPU. So we need to figure out
that whether it is beneficial for us to do some processing on the packet as
compared to as-is forwarding of packet!

Based on above discussion following questions need to be answered care-
fully while designing data reliability protocol for wireless sensor networks:

1. What should be data transmission mechanism under different network
conditions?

2. Do ‘channel awareness’ helps in achieving reliability?

3. What should be the feedback mechanism? Are Implicit Acknowledge-
ments good enough to ensure reliability or Explicit acknowledgements
are required?

4. What kind of error recovery mechanism between end-to-end and hop-
by-hop provides reliability at reasonable energy consumption?

CHAPTER 3. PROBLEM FORMULATION 11

5. How the code rate (amount of redundancy added to packet to protect
data) should be defined?

6. Is it efficient to make code rate adaptive to channel quality?

7. Is it beneficial to make the intermediate node(s) intelligent regarding
processing and/or forwarding of packet?

Chapter 4

Proposed Methodology

For reliable data communication at optimal energy consumption we followed
Hybrid ARQ based approach to deliver data from source to destination. For
doing so, we opted methodology stated and explained in this chapter.

4.1 Hybrid ARQ based Data Reliability Frame-

work

We have categorized nodes in our network as source nodes, rely nodes and
destination node. Assuming that network is formed and each node is equipped
with its routing table having knowledge of number of nodes required to be
traversed to reach the destination / base station. Nodes are considered to be
placed in line topology with variable distance between them

4.2 Error Control Mechanism

Errors inherent in wireless communication corrupt data in a packet and hence
make it useless for receiver. Since energy consumed by radio circuit in trans-
mission or reception of 1 bit is much higher than the processing of bit at the
node. Considering this fact we have proposed a data reliability framework
whose key features are:

• Hop by Hop Reliability

• Link Quality Estimation

• Buffers

• Partial Processing

12

CHAPTER 4. PROPOSED METHODOLOGY 13

Two main types of error control codes used in an FEC system are block
codes and convolutional codes [4,9,11]. [25] proves that BCH code are 15%
more energy-efficient than the best performing convolution codes proposed
to date for WSNs. Block codes are also easier to implement on resource-
constrained devices and the encoding energy required for them can generally
be considered negligible [17]. FEC helps in more reliable communication
since they increase the effective transmission range of a node as compared to
ARQ using same transmission power and eliminates retransmission.

4.2.1 Hop by Hop Decision Making

Wireless sensor networks are mostly deployed in multihop fashion to transmit
data from source node to destination. Data packet traverses several nodes
in the network hence errors introduced in packets influence the selection of
error control mechanism. To date several mechanisms have been proposed
to overcome packet losses over the harsh channel broadly categorized as end-
to-end (E2E) and hop-by-hop (HBH) schemes [1, 2]. HBH considers 100%
reliability and overall energy consumption is less as compared to E2E where
retransmission takes place all the way from the source node to the destination
node.

Frequency of retransmission(s) is reduced by ensuring successful deliv-
ery of data hop by hop. Present work relies on the fact that if packet get
corrupted at one of the initial hops then energy expenditure would be in
transmission of packet from source to a specific node which has received cor-
rupted packet as compared to complete retransmission all the way from the
source to destination [15]. So, energy could be conserved providing an op-
portunity to use adaptive scheme. Strong error control technique is used for
packets travelling more hops and weak error control for packets with fewer
hops primarily depending on channel quality.

Retransmission limit has been set to 3 in proposed HARQ. If packet is
unable to be recovered in three retransmissions it would be discarded instead
of further retransmissions resulting in higher depletion of battery.

4.2.2 Link Quality Estimation

Protocol efficiency is highly improved with link quality estimation. However,
improvement in efficiency is closely tied up with the accuracy of link quality
estimates.

Imote2 uses CC2420 radio which provides RSSI and LQI. RSSI which is
the estimate of received signal power is calculated over 8 symbol periods and

CHAPTER 4. PROPOSED METHODOLOGY 14

stored in theRSSI VAL register. Chipcon specifies the following formula to
compute the received signal power:

P = RSSI VAL+ RSSI OFFSET

where: RSSI OFFSET is about -45 dBm.

LQI; chip error rate is calculated over 8 bits following the start frame
delimiter (SFD) and its values are usually between 110 and 50 corresponding
to maximum and minimum quality frames respectively.Computation of LQI
is vendor specific. Therefore, we are using RSSI as link quality indicator
metric in our framework.

Code rate; amount of redundancy added to the packet depends on RSSI
value. Source node picks up the coding rate in accordance to channel quality
explained in detail later.

4.2.3 Buffers

Buffers are used to achieve the desired reliability holding failed packets for
a small time interval. Due to limitation of sensor hardware, it cannot be as-
sumed that size of available buffers is infinite [12]. Thus, we need to quantify
the effect of this limited buffer on the performance of proposed framework.
If link state appears to be ‘good’ frequently, we may not need a large buffer.
Contrary to this if ‘bad’ state continues for a long time, we have to have a
big buffer.

4.2.4 Partial Processing

Energy consumed by a sensor node in transmission and/or reception is much
higher as compared to local processing and computation. Taking advantage
of this fact, we propose to perform some computation for accurate decision
making about retransmission of the packet. Packet forwarding and/or re-
questing for retransmission is dependent on the processing performed by As
we know LDPC codes are iterative in nature so relay node are required to
perform 1 iteration; subject to energy availability and channel quality.

4.2.5 Error Detection Mechanism at Relay Nodes

Following figure gives an overview of the proposed protocol:

Assuming that network has been formed and all links are established
therefore each node is equipped with its routing table (of the form shown

CHAPTER 4. PROPOSED METHODOLOGY 15

Figure 4.1: Overview of Proposed Solution

in following table) and RSSI value through the exchange of beacon packets
during routing phase.

Table 4.1: Routing Table
Address Hops to Base Next Hope
1001 2 1002
1002 1 1003

An event is sensed by an source node who is aware of the channel quality.
Based on channel quality source encodes the data and sends it over to the
wireless link. Data is received by the relay node. In case the channel quality
is sufficiently good, relay nodes checks CRC and forwards the data to the
next node.

If the channel quality is worst which is mostly the case then relay node
partially decodes the data i.e. it checks its energy found sufficient enough
then it performs 1 iteration on the packet. After one iteration, percentage bit
change is detected by the decoder. Percentage bit change is the number of
bits required to change to retrieve original code word. Based on the routing
table, we know the number of hops to the destination and next hop; so
decision regarding the forwarding or retransmission is made as follows.

If bit change is the number of bit change detected by the decoder and

CHAPTER 4. PROPOSED METHODOLOGY 16

Figure 4.2: SNR

no hops destination are the number of hops that have to be traversed yet
by a packet, then we adapt the following criterion to decide either to make
request for retransmission or forward the packet:

retr var ≤ bit change ∗ no hops

N

where N is the total number of nodes in network.
When retr var satisfies above criterion, the relay node does not request

for retransmission of received packet and transmits it to its next node. In
contrast, the relay node request retransmission when X does not satisfy this
criterion. If channel quality is good the load of relay nodes decreases because
the relay nodes will not use decoding process and decision is made on the
basis of CRC. It is pertinent to mention here that if any of the relay node
does not have sufficient energy to carry out decoding process then partial
decode and detection would be carried out at next node.

Protocol for Rate Adaptation Based on Link Quality

Source node start of data transmission start with a higher data rate depend-
ing on channel quality. If channel quality degrades with time detected by

CHAPTER 4. PROPOSED METHODOLOGY 17

the sequence of failed packets, increase number of redundant bits and reduce
number of data bits in the packet. However increase data bits when channel
quality with higher RSSI is reported

Figure 4.3: Efficiency

Receiver appends the RSSI value when sending NACK back to sender.
From Figure 4.2, following observations are made on the relationship

between data bits in a packets and SNR versus PRR. Packet of size 100
bytes is assumed with varying number data bits i.e. for instance 20 bytes
actual data and rest is considered redundancy:

• The difference in PRR occurs in the SNR range of 1 dB to 6 dB. For
SNR ≤ 1 dB, PRR is 0 for all packet size; for SNR ≥ 6 dB, PRR is
almost 1 for all packet size. While restricting ourselves in the same
SNR range; we can say

• For same SNR, lower data size has higher PRR.

• The difference in PRR increases as the SNR decreases. For example,
PRR at SNR 5 dB is almost the same (about 0.98) for both 20 and
100 bytes data size. On the other hand, at SNR 2.5 dB, PRR for 100
bytes payload size is almost 0, while the PRR for 20 bytes payload size
at the same SNR is about 0.4.

CHAPTER 4. PROPOSED METHODOLOGY 18

From Figure 4.3,we observe that payload size 100 bytes has the best
efficiency atSNR ≥ 4.5 dB; 80 bytes payload size has the best efficiency in
SNR range 3.5 db ∼ 4.5 dB; and 20 payload size has best efficiency in lower
SNR range.

4.3 Energy Consumption

Figure 4.4: Set up to Measure Current

Energy is a scarce resource of WSNs and needs to be consumed intelli-
gently. We use PC based oscilloscope for actual current measurement. Figure
4.4 shows experimental setup to measure energy. Resistance of 2.2ohms is
introduced and graph shown on the right of figure 4.4 obtained are processed
in Matlab to find current values.

A. Transmission/Reception Energy: Transmission and reception en-
ergy is computed using:

Tx/Rx Energy = Voltage ∗ Current ∗ Total Bits/Bit Rate

where Voltage are calculated with voltmeter set to 4.5V . To transmit at
0 dBm, CC2420 draws a current of 17.4mA and operating at 104MhZ66mA
current is consumed [25]. Summing up the two current values gives us the
total transmission current. In reception 18.4mA current is drawn. Total time
is computed by dividing the total number of buts transmitted by bit rate i.e.
250 kbps.

B. Computation Energy: Using Imote2, we have captured physical
energy consumption for each scheme under consideration. Total energy con-

CHAPTER 4. PROPOSED METHODOLOGY 19

sumed by the mote for encoding data at source node and decoding at relay
and destination node is calculated by the following formula:

Encoding Energy = Voltage ∗ Current ∗ Execution Time

where Execution Time is time to encode the data or to decode a packet

C. Network Communication Energy: IEEE 802.15.4 specifies that
there is a header of 9 bytes for every data packet [20]. If there are N hops be-
tween source and destination then total energy consumption in such network
is calculated by:

N(Tx) + N − 1(Rx)

4.3.1 Packet Reception Ratio

Packet Reception Rate (PRR) is a function of Bit Error Rate (BER) and
packet size, i.e.

PRR = (1− BER)f

where f is the packet size in bits and

BER = f (
Eb

No
)

where (Eb/No) is the ratio of average energy per bit to single sided noise
power spectral density. Signal to Noise Ratio (SNR) can be calculated as:

SNR =
Eb

No
.
R

B

where R is the data rate and B is the bandwidth. Since SNR is the ratio
of received signal strength to the channel noise power therefore SNR can
roughly be approximated by using the following equation:

SNR =
RSSI

N

or

RSSI = SNR .N =
Eb

No

R

B
N

where N is channel noise power and can be calculated as:

N = kTRB

CHAPTER 4. PROPOSED METHODOLOGY 20

where k is Boltzman Constant 1.38x106, T is temperature , R is data rate
which 250kbps. So,

Eb

No
=

RSSI

kTR

Since k, T are constants, Eb/N0 only depends upon the RSSI and data rate
R.

As defined above, Bit Error Rate (BER) is a function of Eb
No

and PRR is
again a function of BER. Hence, PRR is a function of RSSI and R. We get:

PRR = g .
RSSI

R

4.3.2 Noise Floor Estimation

Noise floor can also be obtained by sampling RSSI register with no motes
transmitting enabling us to have a rough approximation of SNR using fol-
lowing equation:

SNR ≈ 10log10
RSSI − Pn

Pn

where Pn is the noise floor. The above equation is an estimation and
neglects interference from other sources that maybe included in the RSSI
value. Noise floor can be analytically calculated by:

Pn = FkToB

where F is noise figure of CC2420 radio equal to 11/12 dB, To is ambient
temperature , B is noise equivalent noise bandwidth approximately 3MHz.
So, Pn comes out to be:

Pn(dB) = 12− (−228.6) + 10log(300) + 10log(3x106)

Pn(dB) ≈ −97dBm

This value obtained would be fed to decoder at receiving node to calculate
the likelihood ratios in recovering codeword.

Chapter 5

Experimental Setup and
Evaluation

5.1 Sensor Network Implementation

Actual sensor network implementation has been achieved via the Crossbow
Imote2 platform [33]; designed around the low-power PXA271 XScale micro-
controller with 802.15.4 radio and surface mount 2.4 GHz antenna. Following
table shows the experimental setup.

Table 5.1: Experimental Set Up
Parameter Value

Number of Motes 3 Crossbow Imote2
Data Rate 250 Kbps
Topology Line
Channel AWGN

Channel Estimator RSSI
Payload Size 32 bytes

Transmission Power 3dBm

Data Collection

We used three Crossbow Intel Imotes to collect data and evaluate the perfor-
mance of reliability protocols. The Imote2 comes with TinyOS pre-installed
however we need Linux to be installed on Imote in order to evaluate FEC
based reliability protocol. Since no bootloader or similar mechanism is in-
stalled to allow re?ashing of the device. JTAG available on the interface

21

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 22

board is used with OpenOCD and a JTAGKeyTiny adapter to bootstrap
Linux system on Imote2. Details of building Linux image for Imotes and
flashing images can be found in appendix A and B.

On top of Linux, we used following message structure during the commu-
nication between the motes. the RSSI value anytime from the chip register.
RSSI gives us a good estimation of signal strength. For received packet, RSSI
is the sum of noise level and packet signal strength. When there is no traffic,
RSSI measures the ambient RF energy.

The test-bed is WiFi enabled indoor environment. The environment is
under controlled. There is no moving object and sensors are places statically
during experiments. Among the three motes, one is sender middle one is
relay node responsible for forwarding data to receiver. The source can com-
municate with the receiver through relay node only. Event is generated for
the sender and sender generate data bits, combine data bits with parity sym-
bols (for LDPC encoding) and sends packet to relay nodes after appending
header.

Message Structure

We have used message structure compliant to TinyOS MAC layer. Following
is the message structure used for the current thesis.

Table 5.2: Fields in Message Structure
u8length; Data length of Payload
u8fcfhi; Frame Control Field higher byte
u8fcflo; Frame Control Field lower byte
u8dsn; Sequence Number
u8destpan; Destination PAN
u8addr; Destination Address
u8type; Type ID ; 1 for Data, 2 for ACK
u8group; Group id as the same as tinyos has
s8data[TOSH DATA LENGTH]; Payload
u8strength; RSSI
u8lqi; LQI
u8crc; CRC
u8ack; Acknowledgement
u16time; Time Stamp of Packet

The type of the fields is an unsigned integer with the given amount of
bits. The first field defines the data length of the payload, followed by a 2
bytes Frame Control Field and a sequence number. Addressing is divided into

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 23

the specification of the destination PAN8 and the mote ID, each represented
by 2 bytes. After setting the Active Message Type as of TinyOS and a
user defined group id, the payload is represented as an array with the size
defined by TOSH DATA LENGTH. In case of the Imote2 default payload
is 28 bytes long. The following fields are destined for transmission purpose
such as received signal strength indicator (rssi) link quality indicator (lqi)
and the cyclic redundancy check (crc).

We use distance as attenuator to adjust RF transmission energy. Since
the noise is stable in the testbed, we get different SNR by collecting data at
difference distance.

Figure 5.1: Performance of LDPC Codes over AWGN Channel

The maximum packet payload size is 116 bytes for Imote2 and by default
it uses 28 bytes. We carried out experiments for packet payload size 32
bytes with varying size of data bits. The size of data bits is dependent on
the code rate used for the current scenario. LDPC codes are used for error
detection and correction in proposed HARQ framework. Figure 5.1 shows the
performance of LDPC codes over AWGN channel against different code rates.
Higher code rate shows (0.9) shows pretty good performance over Code rate
0.5 covers operates over a wide range of SNR however resource constrained
sensors restricts us from using such lower code rate for transmission in fairly
good channel quality.

Figure 5.2 shows performance of LDPC codes over AWGN channel in
terms of iterations required to perform to retrieve the original codeword.

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 24

Figure 5.2: Performance of LDPC Codes in terms of Iterations

Number of iterations help in selecting the code rate according to channel
quality. Higher code rate (0.9) helps in achieving satisfactory performance
as far as channel quality is good while code rate of 0.7 is useful for moderate
and 0.5 for worst channel conditions.

Figure 5.3 shows the performance of traditional data delivery schemes
ARQ, FEC and proposes HARQ scheme in terms of Bit Error Rate against
different channel conditions. In ARQ as channel condition degrades, corrup-
tion in uncoded packet increases and packets get completely corrupted when
signal strength is reported with signal strength higher than -45dB. Talking
about FEC, when no partial processing is performed and relay nodes per-
form as-is forwarding, tolerable error correction and detection can be seen
till -60dB. Corruption increases as signal strength drops beyond -60dB. Sig-
nificant decrease in BER can be seen with proposed HARQ scheme. With
partial processing at intermediate nodes helps in achieving lower BER.

One of the main objective of this research is to reduce the number of
retransmissions. ARQ, FEC with end-to-end retransmission and HARQ are
compared in figure 5.4. Maximum retransmission limit has been set to 3
for all schemes to make a fair comparison. ARQ fails to deliver packet in
channel condition with RSSI 0f -44/-45dB and even after maximum retries
limit message received by the receiver is completely corrupted and is useless.
With FEC end to end retransmission is performed and for HARQ hop by
hop retransmission is done. Selection of code rate in accordance to prevail-
ing network conditions and partial processing helps in reducing number of

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 25

Figure 5.3: BER for Different Schemes

retransmissions.
Energy is one of the most important resource of sensor node. The current

research target reliability critical application therefore we aimed to provide
maximum reliability at reasonable energy consumption. Energy consumption
in the network by different schemes is shown in figure 5.5

Proposed HARQ is compared against ARQ, FEC, FEC with end-to-end
error recovery and FEC with partial processing but end-to-end error recov-
ery mechanism. Considering ARQ, sender sends a packet and waits for an
acknowledgement by the receiver. When channel condition is good enough,
ARQ outperforms the other schemes however as channel quality starts to
degrade, number of retransmissions start increasing resulting in more energy
usage as compared to other schemes. This is due to the fact that energy
consumed in communication is higher than local processing, In case of FEC,
there is no error recovery mechanism therefore, constant energy consumption
can be seen in the figure 5.5. For, FEC with E2E error correction is provided
however in worst channel condition retransmission costs higher in terms of
energy consumption. If partial processing is done at each relay node and end
to end error recovery is provided, some decrease in energy consumption is
observed however again the same coding rate for all channel conditions and
end to end retransmission consumes higher energy.

Significant decrease in energy consumption of proposed HARQ can be
observed. One of the major reason of this significant decrease is channel

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 26

Figure 5.4: Retransmissions

awareness. Since encoding is done according to prevailing network condi-
tion and receiving node is channel aware therefore, decision of performing
processing (partial decoding) is made accordingly. When channel of higher
quality is available for transmission then there is no requirement for the in-
termediate node to process the data rather it just as-is forward the packet.
When channel errors increases, intermediate nodes perform partial process-
ing which helps in partially recovering the corrupted and achieving lower
BER also evident from figure 5.3. If the packet has traversed the channel at
instant when channel quality was low, hop-by-hop error recovery mechanism
not only helped in cutting down the transmission cost all the way from source
to receiver but also enabled the source node to perform encoding with higher
code rate protecting data from future errors reducing retransmission(s).

CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION 27

Figure 5.5: Energy Consumption in the Network for Different Reliability
Providing Schemes

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Wireless Sensor Networks have proven themselves as indispensable part of
our daily lives. Despite the application nature targeted by WSN, we are
ultimately interested in reception of correct data collected by sensor nodes
especially in event-driven networks. Due to the resource constrained nature
of sensor networks, achieving reliable data communication is not a trivial
task with efficient utilization of communication resources. Designing energy-
efficient data communication mechanisms plays a vital role in maximizing
the life-time of wireless sensor networks. Since communication is accom-
plished through lossy error prone wireless link where errors are introduced
in a packet while transmission from the source to destination therefore it is
highly required to protect our data from errors induced by the channel. Mo-
tivated by above mentioned challenges, we have proposed a Hybrid ARQ for
event driven wireless sensor network where data reliability is critical. Pro-
posed framework is adaptable to dynamic network conditions and is capable
of transmitting data reliably with least amount of retransmissions. Our work
is based on the fact that rate of energy depletion is higher in transmission and
reception as compared to processing at sensor CPU. We integrated Low Den-
sity Parity Check (LDPC) codes in order to achieve high level of reliability
in distributed fashion for efficient data communications.Partial Processing is
proposed to be performed at relay nodes that helps in achieving reduced Bit
error rate at destination. Iterative nature of LDPC codes helps in partially
recovering the corrupted data and thus minimizes retransmission and saves
energy. However partial processing is dependent on channel condition. If
RSSI at receiving node reports degraded channel quality and node has suffi-
cient energy then node is required to perform 1 iteration on packet. However

28

CHAPTER 6. CONCLUSION AND FUTURE WORK 29

if channel quality is reported with good quality then relay nodes would just
forward the data.

Framework is implemented using Crossbow Intel Imote2. Actual on-
sensor implementation of the proposed and traditional techniques enabled us
to show the efficacy of our framework with fair comparison. PC based oscil-
loscope is used to measure current and actual energy measurements are done
with actual transmission, reception and processing of data and/or packet.

6.2 Future Work

We intend to test our proposed framework with large number of nodes and
therefore with clustered network. Routing and reliable data transmission is
very interesting extension of this problem. It also comes up with optimization
problem and task assignment to different nodes in the network. Moreover,
currently we performed experiments with simple data. We would like to test
our HARQ framework with different types of data for instance images and/or
videos.

Investigation of joint source and channel coding is another aspect of ex-
tending the current work. Another interesting research problem is an opti-
mization problem regarding number of iterations required to be performed at
relaying nodes. We have proposed a heuristic regarding the number of itera-
tions being performed by intermediate nodes so its experimental evaluation
is primarily the first step towards the extension of this thesis.

Bibliography

[1] C. Y. Wan, A. T. Campbell, and L. Krishnamurthy, “A reliable trans-
port protocol for wireless sensor networks”, ACM International Work-
shop on Wireless Sensor Networks and Applications,pp.1-11, Sept. 2002.

[2] F. Stann and J. Heidemann, “Reliable data transport in sensor net-
works,” IEEE International Workshop on Sensor Network Protocols and
Applications, pp.102-112, May 2003.

[30] A. Ayadi, P. Maille, D. Ros, “Improving Distributed TCP Caching for
Wireless Sensor Networks”, Proceedings of the 9th IFIP Annual Mediter-
ranean Ad Hoc Networking Workshop, Med-Hoc-Net 2010, 978-1-4244-
8436-2, IEEE, Juan Les Pins, France (2010), pp. 16

[4] M. C. Vuran and I. F. Akyildiz, “Error Control in Wireless Sensor Net-
works: A Cross Layer Analysis”, IEEE/ACM Transactions on Network-
ing, vol. 17, no. 4, pp. 1186-1199, Aug. 2009.

[5] N. Baccour, A. Kouba, M. Jama, H. Youssef, M. Zuniga, M. Alves, “A
Comparative Simulation Study of Link Quality Estimators in Wireless
Sensor Networks”, 17th IEEE/ACM International Symposium on Mod-
elling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS’09), UK, September 21-23, 2009.

[6] C. Guo, J. Zhou, P. Pawelczak, and R. Hekmat, “Improving packet
delivery ratio estimation for indoor ad hoc and wireless sensor networks”,
Proceedings of IEEE CCNC 2009, Las Vegas, Nevada, U.S., Jan. 2009.

[7] J. H. Kleinschmidt, W. C. Borelli, M. E. Pellenz, “An Analytical Model
for Energy Efficiency of Error Control Schemes in Sensor Networks”,
ICC 2007, 3895-3900, 2007.

[8] R. Gallagar, “Low-density Parity Check Codes”, IRE Transactions In-
formation Theory,pp. 21-28, Jan, 1962.

30

BIBLIOGRAPHY 31

[9] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity ap-
proaching irregular low-density parity-check codes”, IEEE Transactions
on Information Theory ,47(2),pp. 619-637, 2001.

[10] G. Pei, C. Chien, “Low power TDMA in Large Wireless Sensor Net-
works”, Proceedings of IEEE MILCOM 2001, pp. 347- 351, Vol. 1, 2001.

[11] W. Ye, J. Heidemann, D. Estrin, “An Energy-Efficient MAC pro-
tocol for Wireless Sensor Networks”, Proceedings of IEEE Infocom,
USC/Information Sciences Institute, IEEE, New York, NY, USA, pp.
1567- 1576, 2002.

[12] S. De and H. D. Cavdar, “Channel-aware link layer ARQ strategies
in Wireless Networks”, Proceedings IWCMC ’08, Crete Island, Greece,
Aug. 2008.

[13] K. S. Kumar, R. Chandramouli, and K. P. Subbalakshmi, “On Stochas-
tic Learning in Predictive Wireless ARQ”, Wireless Communication and
Mobile Computing, 8(7):871-883, 2008.

[14] M. Zorzi and R. R. Rao, “Energy Constrained Error Control for Wireless
Channels”, IEEE Personal Communications Magazine, December 4, pp.
27-33, 1997

[15] Weihuan Shu, Kumar Padmanabh, Puneet Gupta, “Prioritized Buffer
Management Policy for Wireless Sensor Nodes”, International Confer-
ence on Advanced Information Networking and Applications Workshops,
pp.787-792, 2009.

[16] H. Karl , A. Willig, “Protocols and Architectures for Wireless Sensor
Networks”, John Wiley & Sons, 2005.

[17] M. Sartipi, F. Fekri, “Source and Channel Coding in Wireless Sensor
Networks using LDPC Codes”,ICSACN, pp. 309-316, October 2004.

[18] J. Zhu, S. Chen, B. Bensaou, K.-L. Hung, “Tradeoff between Lifetime
and Rate allocation in Wireless Sensor Networks: A Cross Layer Ap-
proach”, Proceedings of the IEEE INFOCOM, 2007.

[19] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, “An Application-
Specific Protocol Architecture for Wireless Microsensor Networks”,
IEEE Transactions on Wireless Communications, (4), 2002 660670.

BIBLIOGRAPHY 32

[20] D. O’Rourke and C. Brennan, “A Practical Implementation of an Im-
proved Packet Combining Scheme for Wireless Sensor Networks”, Pro-
ceedings of the ICC, 2008.

[21] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S.
Shenker, and I. Stoica, “Flush: a reliable bulk transport protocol for
multihop wireless networks”, In SenSys 07; Proceedings of the 5th in-
ternational conference on Embedded Networked Sensor Systems, pages
351365, Nov. 2007.

[22] S. Lin and D. Costello, “Error Control Coding”, Prentice Hall, Second
edition, 2004.

[23] T. T. Kwok, Y. Kwok, “Computation and Energy Efficient Image Pro-
cessing in Wireless Sensor Networks Based on Reconfigurable Com-
puting”, International Conference on Parallel Processing Workshops
(ICPPW’06), 2006.

[24] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless
sensor networks: a survey”, Computer Networks Elsevier, 38 (4) (2002)
393422, 2005.

[25] Mina Sartipi, F.Fekri, “Distributed source coding using short to moder-
ate length rate-compatible LDPC codes: the entire Slepian-Wolf rate re-
gion”, IEEE Transactions on Communications 56(3), pp. 400-411, 2008.

[26] S.B. Qaisar, H. Radha, “Optimal Progressive error Recovery for Wireless
Sensor Networks using Irregular LDPC Codes”, CISS, Paper#80.

[27] J. Paek , R. Govindan, “RCRT: rate-controlled reliable transport for
wireless sensor networks”, Proceedings of the 5th international confer-
ence on Embedded networked sensor systems, November 06-09, 2007,
Sydney, Australia.

[28] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad, “Stream
Control Transmission Protocol (SCTP) Partial Reliability Extension”,
RFC 3758, (Proposed Standard), May 2004.

[29] A. Ayadi, “Energy-Efficient and Reliable Transport Protocols for Wire-
less Sensor Networks: State-of-Art”, Wireless Sensor Network, Vol. 3
No. 3, 2011, pp. 106-113.

[30] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, “Distributed TCP Caching
for Wireless Sensor Networks”, Proceedings of the 3rd Annual Mediter-
ranean Ad-Hoc Networks Workshop, Bodrum, Turkey (June 2004).

BIBLIOGRAPHY 33

[31] B. Marchi, A. Grilo, M.Nunes, “DTSN - Distributed Transport for Sen-
sor Networks”, Proceedings of the IEEE Symposium on Computers and
Communications (ISCC 2007), Aveiro, Portugal, 2007.

[32] Tuan, Le, Hu, Wen, Corke, Peter, S.Jha , “ERTP : Energy-efficient
and reliable transport protocol for data streaming in wireless sensor
networks”, Computer Communications, 32(7-10), pp. 1154-1171, 2009.

[33] Crossbow Inc., “Imote2 Hardware Reference Manual”, Septem-
ber 2007. http://memsic.com/support/documentation/

wireless-sensor-networks/category/6-user-manuals.html?

download=56\%3Aimote2-hardware-reference-manual

[34] Texas Instruments, “CC2420 Datasheet”, March 2007. http://www.ti.
com/lit/gpn/cc2420

Chapter 7

OpenEmbedded

OpenEmbedded (OE)1 is a build framework for embedded Linux and provides
a collection of configurations to create Linux images. These configurations
provide information about the distribution the images are build from and
the machine type they are supposed to run on. The actual building is done
by BitBake; task-based build tool written in Python.

Both BitBake and OpenEmbedded are constantly changing. In case of
BitBake the latest version should be obtained from the project page2. As
explained below OpenEmbedded is installed from a git repository. Therefore,
it is a development snapshot which is updated on regular basis.

7.1 Installation

OpenEmbedded is currently supported on UNIX-like operating systems only.
Number of dependencies are required to build OE successfully and lists of all
required software and tools is provided at3. Installation instructions for all
supported operating systems are provided at4

Following details are based on “Getting Started” instructions on project
webpage5.

7.1.1 Creating Directory

Base directory of your Openembedded environment (mostly /stuff/) is the
location where sources will be checked out (or unpacked). To create a direc-

1http://www.openembedded.org/
2http://developer.berlios.de/projects/bitbake/
3http://www.openembedded.org/wiki/Required_software
4http://wiki.openembedded.org/index.php/OEandYourDistro
5http://www.openembedded.org/wiki/Getting_started

34

CHAPTER 7. OPENEMBEDDED 35

tory structure:

$ mkdir -p /stuff/build/conf
$ cd /stuff/

7.1.2 Obtaining BitBake

Latest version of BitBake is mostly not included in the host repositories,
therefore it should be installed from the BitBake installation page

http://developer.berlios.de/projects/bitbake/

It is recommended to run bitbake without installing it, as a sibling di-
rectory of openembedded/ and build/ directories. Unpack the downloaded
archive and modify ’PATH’ variable. Modification of ’PATH’ variable com-
pletes installation. Temporary modification is done using following com-
mand:

export $PATH= /some directory/bitbake/bin:$PATH

This modification can be made permanent by appending the mentioned
command to “/home/user name/bash profile”

7.1.3 Obtaining OpenEmbedded

Openembedded resides in a Git repository. In order to obtain OE we need
to:

1. Install git

2. Go to base directory of OpenEmbedded environment

Following command is used to check OpenEmbedded from a git reposi-
tory which will create a directory ”openembedded” and download all contents
into it:

$ cd /stuff/
$ git clone git://git.openembedded/openembedded

Updating

It is a good practice to update OE frequently. To do so execute the following
command:

$ git pull −−rebase

CHAPTER 7. OPENEMBEDDED 36

7.1.4 Local Configurations

Important locations of open embedded are the directories recipes, sources
and build. Recipes directory contain BitBake configuration files which are
part of OE and define build process and required dependencies. BitBake
download the required packages into the source directory and put the build
output into the location defined by “build”.

We can use default local.conf.sample file and modify it to according to
the requirements of host system. In order to use the default file, copy the
file from ‘openembedded’ folder to ‘build’ folder as:

$ cd /stuff/
$ cp openembedded/conf/local.conf.sample build/conf/local.conf
$ gedit build/conf/local.conf

Since kernel modules would be build into the image therefore we need to
customize both Imote2 machine configuration and the imote2-image config-
uration as described below.

Imote2 Machine Configuration

For machine configurations, we need to make changes to ‘/build/conf/local.conf’,
‘/openembedded/conf/machine/imote2.conf’ and ‘/openembedded/recipes/images/imote2-
image.bb’.

In /build/conf/local.conf, BBFILES specifies the location of OE configu-
ration files for BitBake while MACHINE sets the target platform. DISTRO
variable specifies the used distribution and can theoretically be set to one of
the distributions mentioned in /stuff/openembedded/conf/distro. However
best choice for Imote2 platform is the ‘Angstrom’ distribution.

Following changes would be made to /build/conf/local.conffile.

CHAPTER 7. OPENEMBEDDED 37

local.conf
location where BitBake should place the downloaded sources into
DL DIR = “/stuff/sources”

location of the .bb files
BBFILES := “/path/to/openembedded/recipes/*/*.bb”

DISTRO = “ angstrom −2008.1”

MACHINE = “imote2”

ENABLE BINARY LOCALE GENERATION = “1”

GLIBC GENERATE LOCALES = “en GB.UTF−8 en US.UTF−8”

IMAGE KEEPROOTFS = “1”

PARALLEL MAKE = “−j 8”

IMAGE FSTYPES = “jffs2 tar.bz2”

PREFERRED PROVIDER virtual/kernel = “linux”

PREFERRED VERSION linux-libc-headers = “2.6.33”

PREFERRED VERSION udev = “142”

Following are the machine configurations that need to be made in /open-
embedded/conf/machine/imote2.conf

CHAPTER 7. OPENEMBEDDED 38

#@TYPE: Machine
#@Name: Crossbow iMote2

#@DESCRIPTION: Machine configuration for Crossbow iMote 2

TARGET ARCH = “arm”

PREFERRED PROVIDER virtual/kernel = “linux”

PACKAGE EXTRA ARCHS = “iwmmxt”

KERNEL IMAGETYPE = “zImage”

IMAGE FSTYPE += “jffs2”

EXTRA IMAGECMD jffs2 =“−−l −−pad=0x01DC0000 −−eraseblock
= 0x20000”

CMDLINE=“root=/dev/mtdblock2 rootfstype=jffs2 console=ttyS2,
115200”

SERIAL CONSOLE = “115200 ttyS2”

require conf/machine/include/tune-xscale.inc

ROOT FLASH SIZE = “30”

MACHINE FEATURES = “kernel26 usbgadget alsa iwmmxt”

Also, we need to change in the recipe file of imote2 i.e. in /openembedded/recipes/images/imote2-
image.bb

CHAPTER 7. OPENEMBEDDED 39

imote2-image.bb

DISTRO SSH DAEMON = “dropbear”

IMAGE PREPROCESS COMMAND = “create etc timestamp”

IMAGE INSTALL = “task-boot r
util-linux-ng-mount util-linux-ng-umount r
$DISTRO SSH DAEMON r
lowpan−tools r
ibrdtnd r
angstrom−version r
kernel−modules r
”
export IMAGE BASENAME =“imote2-image”
IMAGE LINGUAS = “”

inherit image

Setting Environment Variable

After installation of OpenEmbedded and BitBake some environment vari-
ables are required to be set as described here:

export OEBASE = /stuff/
export BBPATH = $OEBASE/build:$OEBASE/openembedded
export BB ENV EXTRAWHITE = “OEBASE”

7.1.5 Building Images

BitBake uses the meta-data provided by OpenEmbedded to actually build
the software and the resulting firmware and kernel images.Complete firmware
image is build by executing BitBake as follows:

/stuff/build $ bitbake linux
/stuff/build $ bitbake imote2−image

The images can be found in /stuff/build/tmp/deploy/glibc/images/imote2/
once build has been finished.

Chapter 8

Linux Installation and Network
Setup for Imote2

Major tasks in configuring Imote2 network for encoding and data transmis-
sion are:

• Flashing Linux kernel

• Radio Configuration

• Cross Compiler

• Assigning Node IDs

8.1 Linux Installation

Linux one of the most prominent computer operating systems is installed on
a wide variety of computer hardware, ranging from embedded devices, mobile
phones to supercomputers, making it suitable candidate for installation on
Imote2 with powerful functionality. Linux Installation on Imote2 requires:

1. PC with Linux OS

2. OpenOCD Linux

3. Intel JTAG cable

4. IIB2400 debugger board

5. USB cable

40

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE241

FTDI Drivers

To work properly with Imote2 debug board and optional the Olimex ARM-
USB-TINY adapter the host system needs a ft2232 USB driver. Necessary
drivers for Microsoft Windows can be found on FTDI-website 1.

Virtual COM port (VCP) drivers cause the USB device to appear as an
additional COM port available to the PC. Application software can access
the USB device in the same way as it would access a standard COM port. A
detailed installation instruction for Windows 98/ME/2000/XP can be found
on the intel-research site 2

8.1.1 Flashing images on Imotes

With a transfer rate of about 8 kB/s the Olimex ARM-USB-TINY adapter
allows faster flashing of images on IMote2 .For flashing the images Open
On-Chip Debugger (OpenOCD) is used.

OpenOCD on Linux

OpenOCD can be found on project page3 and can also be obtained from git
repository4. Latest version should be preferred always regardless of stability.

#bootstrap only necessary for the git-version
user@ubuntu:/path/to/OpenOCD/$./bootstrap
user@ubuntu:/path/to/OpenOCD/$./configure−−enable−ft2232 libftdi
user@ubuntu:/path/to/OpenOCD/$ make
user@ubuntu:/path/to/OpenOCD/$ make install

Once connection is established, next step is of flashing images on imote2
using telnet console. Following set of instructions are required to be followed
for flashing:

1http://www.ftdichip.com/FTDrivers.htm
2http://embedded.seattle.intel-research.net/wiki/index.php?title=

SettinguptheFTDIUSBdriver
3http://developer.berlios.de/projects/openocd/
4git://openocd.git.sourceforge.net/gitroot/openocd/openocd

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE242

user@ubuntu:/OpenOCD Directory/$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Open On-Chip Debugger

#reset and halt mote
> reset halt

#disable flash protection for sectors 0 to 258 on flash bank 0
> flash protect 0 0 258 off

#erase flash
> flash erase sector 0 0 258

#write bootloader
> flash write image blob 0x0

#write kernel
> flash write image zImage 0x40000

#write file-system
> flash write image fs.jffs2 0x240000

OpenOCD needs to be started from the directory which contains the im-
ages and without modifying the device permissions. After starting OpenOCD
a telnet connection into the debugger is established. Since to OpenOCD mote
is in an unknown state it needs to be reset first. After halting the mote and
disabling the flash protection, the flash memory can be erased and the im-
ages can be downloaded. Following shows how to establish connection of
OpenOCD with imote2 via the telnet console.

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE243

user@ubuntu:/path/to/images/$ sudo openocd -f ./tcl/interface/olimex-
jtag-tiny.cfg -f ./tcl/board/crossbow tech imote2.cfg

Open On-Chip Debugger 0.4.0 (2010-03-24-21:47)
Licensed under GNU GPL v2. For bug reports, read
http://openocd.berlios.de/doc/doxygen/bugs.html

jtag nsrst delay: 260

jtag ntrst delay: 250

Info : imote2.cpu: hardware has 2 breakpoints and 2 watchpoints

jtag nsrst delay: 800

trst and srst separate srst gates jtag trst push pull srst open drain

Info : clock speed 6000 kHz

Info : JTAG tap: imote2.cpu tap/device found: 0x79265013 (mfg:
0x009, part:0x9265, ver: 0x7)

Info : accepting ‘telnet’ connection from 0

Configurations

Now Linux has been built on Imote2 and Imote2 can communicate with Linux
computers, therefore in this section we will setup some necessary configura-
tions to make Imote2 communicate with host PC as an ‘Ethernet Gadget’.

8.1.2 USBnet Setup

After flashing images on imote, remove JTAG cable. Now connect USB to
an interface board and plug into PC. After getting connected, a new inter-
face USB0 will appear on host PC. TO assign an IP to mote, we would
configuration Imote2 IP tables with host PC as its gateway. Static IP ad-
dress 192.168.99.101 is assigned to Imote while Host PC will have an IP
192.168.99.100. In order to do so, following set of instructions are required
to be followed:

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE244

1). Static IP Address on Host PC On host PC, issue following com-
mand on terminal:

sudo gedit /etc/network/interfaces

and make changes according to following.

auto usb0
iface usb0
inet static address 192.168.99.100
netmask 255.255.255.0
gateway 192.168.99.0

2). Restart NIC Network Interface Card (NIC) is required to be reboot
once. In order to do so issue the following command on terminal:

root@localhost# /etc/init.d/networking restart
root@localhost# ifconfig

Following configuration would be shown once the setup on host PC is
successful.

usb0
link encapsulation: Ethernet hardware address 32:D2:83:A1:D6:48
inet address: 192.168.99.100 broadcast: 192.168.99.255 maks:
255.255.255.0
inet6 address: fe80::30d2::8ff3::fea1:d648/64 Scope: Link UP BROAD-
CAST RUNNING MULTICAST MTU: 1500 jump number: 1
packets received: 724 error: 0 lost: 0 overflow: 0 frame: 0
packets send: 478 error: 0 lost: 0 overflow: 0 carrierwave: 0
collision: 0 send queue length: 1000
byte receive: 62960 (61.4KB) byte send: 132596 (129.4KB)

On terminal; issue the following command to enter Imote2:

root@localhost# minicom
SG2-3 login: root
Password: (No initial password. Set it as e.g. 123 by command
“passwd”)
root@192.168.99.101 /root #

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE245

Modify /etc./network/interfaces with a static IP address and host PC as
its gateway as:

auto lo iface lo inet loopback
auto usb0
iface usb0
inet static address 192.168.99.100
netmask 255.255.255.0
gateway 192.168.99.100

Run the configuration and reboot Imote2.

root@192.168.99.101 /root # ./configure
root@192.168.99.101 /root # reboot

In contrary to imote2-linux images, OpenEmbedded images boot up into
runlevel 5. On current images all links to the start scripts reside in /etc/rcS.d/
and are supposed to be executed whenever the runlevel changes. This at-
tempt failed and the Imote2 will not be reachable via the network after
booting. To enable network access the respective link ”S40networking” is
required in /etc/rc5.d/. Connecting to the mote via the debug device as
explained above allows fxing this issue with the following command:

cp /etc/rcS.d/S40networking /etc/rc5.d/

The parameters of the dropbear SSH server are set in its start script in
/etc/init.d. The designated way of changing the configuration is to create
a configuration file instead of editing the script. The configuration file is
named ”dropbear” and is located in /etc/default/.

8.1.3 SSH Configuration

Secure SHell (SSH) allows data exchange through a secure channel between
networked devices, After following configurations, we are able to communi-
cate with Imote2 without interface board any more.

CHAPTER 8. LINUX INSTALLATION ANDNETWORK SETUP FOR IMOTE246

root@192.1689.99.101:/root # /usr/bin/ssh-keygen-f/etc/ssh/ssh-host-
rsa-key-t rsa
Generating public/private rsa key pair
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /etc/ssh/ssh-host-rsa-key.
Your public key has been saved in /etc/ssh/ssh-host-rsa-key.pub.
The key fingerprint is:
ba:46:aa:f6:13:41:b1:5b:7e:fa:0d:f6:53:e3:d5:fc
root@192.168.99.101 / root # /usr/bin/ssh-keygen-f/etc/ssh/ssh-host-
rsa-key-t dsa

8.1.4 Updating CC2420 Driver

If OE images are used then we do not need to update CC2420 driver used for
wireless communication. However, if linux-images for imote2 are used then
we need to update the said driver.

1. Download the driver available at http://code.google.com/p/imote2-localization/.
Copy driver from host PC to imote2 using “scp” with command for-
mat: ‘scp [file name] [Imote IP Address]: [destination folder]’.

root@ubuntu # cp /home/user/downloads/tos mac.ko
root@192.168.99.101:/lib/modules/2.6.14 r1.1/kernel/drivers/tosmac

2. Edit the /etc/modules file and add tosmac at the end of file.

3. Restart the Imote2.

4. Issue following commands at Imote2 terminal:

$ cat /proc/devices
$ mknod /dev/tosmac c 240 0

Following above steps would update mote for wireless communication.

