
 1

 ABSTRACT

Bluetooth is a new wireless technology standard developed by a
consortium of telecommunication and software companies aimed at
standardizing short range wireless communication the world over. This
project aims to provide a flexible protocol stack, implementing the rules of
communication and data transfer in the standard, which can be easily
integrated into any Bluetooth enabled device that needs to make use of the
unique features and services offered by Bluetooth.
This project deals with the design of the protocol layers that comprise the
Bluetooth communication stack. Our project focuses on the design and
testing of Bluetooth specific layers, namely the L2CAP, Baseband, Service
Discovery Protocol layers as well as the RFCOMM layer used for serial port
emulation. A basic description of the functionality of each layer and their
role in Bluetooth based data transmission is as follows:-

Bluetooth Baseband:

The Baseband is the physical layer of the Bluetooth, managing
physical channels and links apart from other services like error correction,
data whitening, hop selection and Bluetooth security. It lies on top of the
Bluetooth radio layer in the bluetooth stack. The baseband protocol is
implemented as a Link Controller , which works with the link manager for
carrying out link level routines like link connection and power control. The
baseband also manages asynchronous and synchronous links, handles
packets and does paging and inquiry to access and inquire Bluetooth devices
in the area.

Logical Link Control and Adaptation Protocol
(L2CAP):

L2CAP packets carry payloads which are carried to the upper layer
protocols. L2CAP is layered over the Baseband Protocol and resides in the
data link layer.L2CAP provides connection-oriented and connectionless data
services to upper layer protocols with protocol multiplexing capability,
segmentation and reassembly operation, and group abstractions. L2CAP
permits higher level protocols and applications to transmit and receive

 2

L2CAP data packets up to 64 kilobytes in length. The functional
requirements for L2CAP include protocol multiplexing, segmentation and
reassembly (SAR), and group management. L2CAP lies above the Baseband
Protocol and interfaces with other communication protocols such as the
Bluetooth Service Discovery Protocol (SDP), RFCOMM , and Telephony.

Service Discovery Protocol (SDP):
Using SDP, device information, services allowed and characteristics

of the services are queried between Bluetooth enabled devices. The service
discovery protocol (SDP) provides a means for applications to discover
which services are available and to determine the characteristics of those
available services.

RFCOMM

 RFCOMM is a simple transport protocol, which provides emulation of
RS232 serial ports over the L2CAP protocol.The protocol is based on the
ETSI standard TS 07.10. Only a subset of the TS 07.10 standard is used and
an RFCOMM - specific extension is added.

 3

 INTRODUCTION

Bluetooth is the code name for an alliance between mobile
communications and mobile computing companies to develop a short-range
communications standard allowing wireless data communications at ranges
of about 10 meters to 100 meters. The technology allows users to make
effortless, instant connections between a wide range of communication
devices. Conceived by Ericsson, the Bluetooth technology is the result of the
joint achievements of nine leading companies including Motorola, Nokia,
Ericsson, IBM, Intel, Toshiba, 3Com, Lucent and Microsoft. Bluetooth will
facilitate wireless Local Area Networking in which networks of different
hand held mobile computing terminals can communicate and exchange data,
even on the move when there is no line-of-sight between those devices.
 The standard was developed by a group of electronics manufacturers
that allows any sort of electronic equipment -- from computers and cell
phones to keyboards and headphones -- to make its own connections,
without wires, cables or any direct action from a user. The companies
belonging to the Bluetooth Special Interest Group (SIG), and there are more
than 1,000 of them, want to let Bluetooth's radio communications take the
place of wires for connecting peripherals, telephones and computers. The
hardware vendors, which include Siemens, Intel, Toshiba, Motorola and
Ericsson, have developed a specification for a very small radio module to be
built into computer, telephone and entertainment equipment.

It is mainly a cable-replacement technology. The standard has been
developed for a small, cheap radio chip to be plugged into computers,
printers, mobile phones, etc. A Bluetooth chip is designed to replace cables
by taking the information normally carried by the cable, and transmitting it
at a special frequency to a receiver Bluetooth chip, which will then give the
information received to the computer, phone. It works by using short-range
radio links, intended to replace the cable(s) connecting portable and/or fixed
electronic devices. It is envisaged that it will allow for the replacement of
the many propriety cables that connect one device to another with one
universal radio link. Its key features are robustness, low complexity, low
power and low cost. Designed to operate in noisy frequency environments,
the Bluetooth radio uses a fast acknowledgement and frequency hopping
scheme to make the link robust. Bluetooth radio modules operate in the
unlicensed ISM band at 2.4GHz which has been set aside by international
agreement for the use of industrial, scientific and medical devices (ISM, and

 4

avoid interference from other signals by hopping to a new frequency after
transmitting or receiving a packet. Compared with other systems in the same
frequency band, the Bluetooth radio hops faster and uses shorter packets.

 The wireless technology inherent in Bluetooth revolutionizes the
personal connectivity market by providing freedom from wired connections
enabling links between mobile computers, mobile phones, portable handheld
devices, and connectivity to the Internet. Interfacing, synchronization,
exchange of data, you name it and Bluetooth has the ability to implement it.

Hardware that complies with the Bluetooth wireless specification
ensures communication compatibility worldwide. As a low cost, low power
solution with industry wide support, Bluetooth wireless technology allows
the user to bring connectivity with himself. In fact given the market
coverage provided by the members of the Bluetooth signatorium, a user
owning a Bluetooth enabled device would be able to have connectivity
almost anywhere in the world. The secret of this almost universal
connectivity is the establishment of Bluetooth as an industry standard. This
means integrating well tested technology with the power efficiency and low-
cost of a compliant radio system. Furthermore it also requires having a group
of industry leading promoter companies who drive the specification forward
(members of the Bluetooth SIG). Bluetooth technology works because it has
been developed as a cross industry solution that marries a vision of
engineering innovation with an understanding of business and consumer
expectations. Its continued existence and further development can be
explained by the fact that Bluetooth wireless technology is supported by
product and application development in a wide range of market segments,
including software developers, silicon vendors, peripheral and camera
manufacturers, mobile PC manufacturers and handheld device developers,
consumer electronics manufacturers, car manufacturers, and test and
measurement equipment manufacturers.

Because Bluetooth wireless technology is an open platform, all
members of the Bluetooth SIG have permission to use Bluetooth wireless
technology in their products and services. There are three levels of
membership with unique benefits: Promoter, Associate and Adopter.

The SIG was founded in February 1998, and initially consisted of the
five companies Ericsson, Intel, Toshiba, Nokia & IBM. Today more than
1800 companies have joined the SIG to work for an open standard for the
Bluetooth concept.

 5

 Today the SIG consists of 9 promoter members Motorola, Lucent,
Toshiba, Lucent, Microsoft, 3Com, IBM, Intel, Nokia & Ericsson, and 1790
Adopter/Associate member companies. By signing a zero cost agreement,
companies can join the SIG and qualify for a royalty-free license to build
products based on the Bluetooth technology. To avoid different
interpretations of the Bluetooth standard regarding how a specific type of
application should be mapped to Bluetooth, the SIG has defined a number of
user models and protocol profiles.

The name Bluetooth itself comes from a Danish Viking and King,
Harald Blåtand (translated as Bluetooth in English), who lived in the latter
part of the 10th century. Harald Blåtand united and controlled Denmark and
Norway (hence the inspiration on the name: uniting devices through
Bluetooth). He got his name from his very dark hair which was unusual for
Vikings, Blåtand means dark complexion. However a more popular, (but
less likely reason), was that Old Harald had a inclination towards eating
Blueberries , so much so his teeth became stained with the colour, leaving
Harald with a rather unique set of molars.

The complete Bluetooth stack is formed by the following seven
constituent protocol layers:-

1. Baseband
2. Link Manager Protocol
3. Logical Link Control and Adaptation Protocol
4. Service Discovery Protocol
5. RFCOMM Protocol
6. Telephony Control Protocol
7. Adopted Protocols

The complete Bluetooth protocol stack has been designed to include
the existing protocols as much as possible (like TCP, UDP, OBEX) as
well as Bluetooth specific protocols like LMP and L2CAP. The protocol
reuse ensures smooth interoperability between existing applications and
hardware. The Link Manager Protocol is optional and can be bypassed,
allowing direct communication between the Baseband and L2CAP
layers. The upper portion of the stack, above the RFCOMM layer
consists of some of the existing protocols specified above.

 6

BLUETOOTH RADIO

BASEBAND

L2CAP

LMP

RFCOMM

APPLICATION

SDP

PPP

IP

UDP TCP

WAP

 7

 BLUETOOTH BASEBAND
PROTOCOL

 8

 BASEBAND PROTOCOL

1.1 GENERAL DESCRIPTION

As specified before Bluetooth operates in the unlicensed ISM band at
2.4 GHz. A frequency hop transceiver is applied to combat interference and
fading. A shaped, binary FM modulation is applied to minimize transceiver
complexity. The symbol rate is 1 Ms/s. A slotted channel is applied with a
nominal slot length of 625 µs. For full duplex transmission, a Time-Division
Duplex (TDD) scheme is used. On the channel, information is exchanged
through packets. Each packet is transmitted on a different hop frequency. A
packet nominally covers a single slot, but can be extended to cover up to five
slots.
 The Bluetooth protocol uses a combination of circuit and packet
switching. Slots can be reserved for synchronous packets. Bluetooth can
support an asynchronous data channel, up to three simultaneous synchronous
voice channels, or a channel which simultaneously supports asynchronous
data and synchronous voice. The asynchronous channel has been
implemented which supports maximum 723.2 kb/s asymmetric (and still up
to 57.6 kb/s in the return direction), or 433.9 kb/s symmetric.
 The baseband protocol is implemented as within a link controller
which can also carry out other low level routines. These low level routines
are used to interact with the radio layer which in the simulation is
represented by the Local Network over which the communication is taking
place.
 The system provides a point-to-point connection (only two Bluetooth
units involved), or a point-to-multipoint connection, see Figure 1.1. In the
point-to-multipoint connection, the channel is shared among several
Bluetooth units. Two or more units sharing the same channel form a piconet.
One Bluetooth unit acts as the master of the piconet, whereas the other
unit(s) act as slave(s). Up to seven slaves can be active in the piconet. In
addition, many more slaves can remain locked to the master in a so-called
parked state. These parked slaves cannot be active on the channel, but
remain synchronized to the master. Both for active and parked slaves, the
channel access is controlled by the master. Multiple piconets with
overlapping coverage areas form a scatternet. Each piconet can only have a
single master. However, slaves can participate in different piconets on a
time-division multiplex basis. In addition, a master in one piconet can be a

 9

slave in another piconet. The piconets shall not be frequency-synchronized.
Each piconet has its own hopping channel.

 Figure 1.1 Piconets with a single slave operation (a), a multi-slave operation (b) and a scatternet
operation (c).

1.2 PHYSICAL CHANNEL

1.2.1 DEFINITION

The channel is represented by a pseudo-random hopping sequence
hopping through the 79 or 23 RF channels. The sequence is unique for the
piconet and is determined by the Bluetooth device address of the master; the
phase in the sequence is determined by the Bluetooth clock of the master.
The channel is divided into time slots where each slot corresponds to an RF
hop frequency. Consecutive hops correspond to different RF hop
frequencies. The nominal hop rate is 1600 hops/s. All Bluetooth units
participating in the piconet are time- and hop-synchronized to the channel.

1.2.2 TIME SLOTS

The channel is divided into time slots, each 625 µs in length. The time
slots are numbered according to the Bluetooth clock of the piconet master.
The slot numbering ranges from 0 to 227 -1 and is cyclic with a cycle length
of 2 27 . In the time slots, master and slave can transmit packets.

A TDD scheme is used where master and slave alternatively transmit.
See Figure 1.2 . The master starts its transmission in even-numbered time
slots only, and the slave starts its transmission in odd-numbered time slots

 10

only. The packet start is aligned with the slot start. Packets transmitted by
the master or the slave may extend over up to five time slots. The RF hop
frequency remains fixed for the duration of the packet. For a single packet,
the RF hop frequency to be used is derived from the current Bluetooth clock
value. For a multi-slot packet, the RF hop frequency to be used for the entire
packet is derived from the Bluetooth clock value in the first slot of the
packet. The RF hop frequency in the first slot after a multi-slot packet shall
use the frequency as determined by the current Bluetooth clock value. Figure
1.3 illustrates the hop definition on single- and multi-slot packets. If a packet
occupies more than one time slot, the hop frequency applied shall be the hop
frequency as applied in the time slot where the packet transmission was
started.

 Figure 1.2 TDD and Timing

 Figure 1.3 Multi-slot Packets

 11

1.3 PHYSICAL LINKS

1.3.1 GENERAL

 Between master and slave(s), the Asynchronous Connection-Less
(ACL) link is established The ACL link is a point-to-multipoint link between
the master and all the slaves participating on the piconet. The master can
establish an ACL link on a per-slot basis to any slave, in another link.

1.3.2 ACO LINKS

The ACL link provides a packet-switched connection between the
master and all active slaves participating in the piconet. Both asynchronous
and isochronous services are supported. Between a master and a slave only a
single ACL link can exist. For most ACL packets, packet retransmission is
applied to assure data integrity.

A slave is permitted to return an ACL packet in the slave-to-master
slot if and only if it has been addressed in the preceding master-to-slave slot.
If the slave fails to decode the slave address in the packet header, it is not
allowed to transmit. ACL packets not addressed to a specific slave are
considered as broadcast packets and are read by every slave. If there is no
data to be sent on the ACL link and no polling is required, no transmission
shall take place.

1.4 PACKETS

1.4.1 GENERAL DESCRIPTION

 The bit ordering when defining packets and messages in the Baseband
Layer, follows the Little Endian format, i.e., the following rules apply:

• The least significant bit (LSB) corresponds to b0 ;
• The LSB is the first bit sent over the air;
• In illustrations, the LSB is shown on the left side;

The link controller interprets the first bit arriving from a higher
software layer as b0; i.e. this is the first bit to be sent over the air.
Furthermore, data fields generated internally at baseband level, such as the
packet header fields and pay-load header length, are transmitted with the
LSB first. For instance, a 3-bit parameter X=3 is sent as over the air b0b1b2

 12

where 0 is sent first and 2 is sent last. The data on the piconet channel is
conveyed in packets. The general packet format is shown in Figure 1.4. Each
packet consists of 3 entities: the access code, the header, and the payload. In
the figure, the number of bits per entity is indicated.

 Figure 1.4 Standard Packet Format

The access code and header are of fixed size : 72 bits and 54 bits

respectively. The payload can range from zero to a maximum of 2745 bits.
Different packet types have been defined. Packets may consist of the
(shortened) access code only of the access code header, or of the access
code header payload.

1.4.2 ACCESS CODE

Each packet starts with an access code. If a packet header follows, the
access code is 72 bits long, otherwise the access code is 68 bits long. This
access code is used for synchronization, DC offset compensation and
identification. The access code identifies all packets exchanged on the
channel of the piconet: all packets sent in the same piconet are preceded by
the same channel access code.

The access code is also used in paging and inquiry procedures. In this
case, the access code itself is used as a signalling message and neither a
header nor a payload is present. The access code consists of a preamble, a
sync word, and possibly a trailer, as shown in Figure 1.5.

 Figure 1.5 Access Code Format

1.4.2.1 ACCESS CODE TYPES

There are three different types of access codes defined:

• Channel Access Code (CAC)
• Device Access Code (DAC)

 13

• Inquiry Access Code (IAC)

The respective access code types are used for a Bluetooth unit in
different operating modes. The channel access code identifies a piconet. This
code is included in all packets exchanged on the piconet channel. The device
access code is used for special signalling procedures, e.g., paging and
response to paging. For the inquiry access code there are two variations. A
general inquiry access code (GIAC) is common to all devices. The GIAC
can be used to discover which other Bluetooth units are in range. The
dedicated inquiry access code (DIAC) is common for a dedicated group of
Bluetooth units that share a common characteristic. The DIAC can be used
to discover only these dedicated Bluetooth units in range. The CAC consists
of a preamble, sync word, and trailer and its total length is 72 bits. When
used as self-contained messages without a header, the DAC and IAC do not
include the trailer bits and are of length 68 bits. The different access code
types use different Lower Address Parts (LAPs) to construct the sync word.
A summary of the different access code types can be found In Table 1.1.

 Table 1.1 Summary of Access Code Types

1.4.2.2. PREAMBLE

The preamble is a fixed zero-one pattern of 4 symbols used to
facilitate DC compensation. The sequence is either 1010 or 0101, depending
whether the LSB of the following sync word is 1 or 0, respectively. The
preamble is shown In Figure 1.6.

 Figure 1.6 Preamble

 14

1.4.2.3 SYNCH WORD

The sync word is a 64-bit code word derived from a 24 bit address
(LAP); for the CAC the master’s LAP is used; for the GIAC and the DIAC,
reserved, dedicated LAPs are used; for the DAC, the slave unit LAP is used.
The good auto correlation properties of the sync word improve on the timing
synchronization process.

1.4.2.4 TRAILER

The trailer is appended to the sync word as soon as the packet header
follows the access code. This is typically the case with the CAC, but the
trailer is also used in the DAC and IAC when these codes are used in FHS
packets exchanged during page response and inquiry response procedures.
The trailer is a fixed zero-one pattern of four symbols. The trailer together
with the three MSBs of the sync word form a 7-bit pattern of alternating
ones and zeroes which may be used for extended DC compensation. The
trailer sequence is either 1010 or 0101 depending on whether the MSB of the
sync word is 0 or 1, respectively. The choice of trailer is illustrated in Figure
1.7.

Figure 1.7: Trailer in CAC when MSB of sync word is 0 (a), and when MSB of sync word is 1 (b).

1.4.3 PACKET HEADER

The header contains link control (LC) information and consists of 5 fields:

• AM_ADDR: 3- bit active member address
• TYPE: 4-bit type code
• FLOW: 1-bit flow control
• ARQN: 1-bit acknowledge indication
• SEQN: 1-bit sequence number

 15

The total header consists of 10 bits, see Figure 1.8 resulting in a 54-bit
header. Note that the AM_ADDR and TYPE fields are sent with their LSB
first. The function of the different fields will be explained next.

 Figure 1.8: Header format

1.4.3.1 AM_ADDR

The AM_ADDR represents a member address and is used to
distinguish between the active members participating on the piconet. In a
piconet, one or more slaves are connected to a single master. To identify
each slave separately, each slave is assigned a temporary 3-bit address to be
used when it is active. Packets exchanged between the master and the slave
all carry the AM_ADDR of this slave; that is, the AM_ADDR of the slave is
used in both master-to-slave packets and in the slave-to-master packets. The
all-zero address is reserved for broadcasting packets from the master to the
slaves. An exception is the FHS packet which may use the all-zero member
address but is not a broadcast message. Slaves that are disconnected or
parked give up their AM_ADDR. A new AM_ADDR has to be assigned
when they re-enter the piconet.

1.4.3.2 TYPE

Sixteen different types of packets can be distinguished. The 4-bit
TYPE code specifies which packet type is used. Important to note is that the
interpretation of the TYPE code depends on the physical link type associated
with the packet. First, it shall be determined whether the packet is sent on an
ACL link. Then it can be determined which type of ACL packet has been
received. The TYPE code also reveals how many slots the current packet
will occupy. This allows the non-addressed receivers to refrain from
listening to the channel for the duration of the remaining slots. Each packet
type is described in more detail further on.

1.4.3.3 FLOW

This bit is used for flow control of packets over the ACL link. When
the RX buffer for the ACL link in the recipient is full and is not emptied, a
STOP indication (FLOW=0) is returned to stop the transmission of data

 16

temporarily. Packets including only link control information (ID, POLL and
NULL packets) can still be received. When the RX buffer is empty, a GO
indication (FLOW=1) is returned. When no packet is received, or the
received header is in error, a GO is assumed implicitly. In this case, the slave
can receive a new packet with CRC although its RX buffer is still not
emptied. The slave shall then return a NAK in response to this packet even if
the packet passed the CRC check.

1.4.3.4 ARQN

The 1-bit acknowledgment indication ARQN is used to inform the
source of a successful transfer of payload data with CRC, and can be
positive acknowledge ACK or negative acknowledge NAK. If the reception
was successful, an ACK (ARQN=1) is returned, otherwise a NAK
(ARQN=0) is returned. When no return message regarding acknowledge is
received, a NAK is assumed implicitly. NAK is also the default return
information. The ARQN is piggy-backed in the header of the return packet.
An unnumbered ARQ scheme which means that the ARQN relates to the
latest received packet from the same source, is used.

1.4.3.5 SEQN

The SEQN bit provides a sequential numbering scheme to order the
data packet stream. For each new transmitted packet the SEQN bit is
inverted. This is required to filter out retransmissions at the destination; if a
retransmission occurs due to a failing ACK, the destination receives the
same packet twice. By comparing the SEQN of consecutive packets,
correctly received retransmissions can be discarded. For broadcast packets, a
modified sequencing method is used.

1.4.4 PACKET TYPES

The packets used on the piconet are related to the physical links they
are used in. For each link, 12 different packet types can be defined. Four
control packets are common to all link types: their TYPE code is unique
irrespective of the link type. To indicate the different packets on a link, the
4-bit TYPE code is used. The packet types have been divided into four
segments. The first segment is reserved for the four control packets common
to all physical link types; all four packet types have been defined. The
second segment is reserved for packets occupying a single time slot; six

 17

packet types have been defined. The third segment is reserved for packets
occupying three time slots; two packet types have been defined. The fourth
segment is reserved for packets occupying five time slots; two packet types
have been defined. The slot occupancy is reflected in the segmentation and
can directly be derived from the type code. Table 1.2 summarizes the
packets defined so far for the ACL link types.

 Table 1.2: Packets defined for ACL link type

1.4.4.1 PACKET TYPES

There are five packets. In addition to the types listed in segment 1 of
the previous table, there is the ID packet not listed. Each packet will now be
examined in more detail.

 18

1.4.4.1.1 ID packet

The identity or ID packet consists of the device access code (DAC) or
inquiry access code (IAC). It has a fixed length of 68 bits. It is a very robust
packet since the receiver uses a bit correlator to match the received packet to
the known bit sequence of the ID packet. The packet is used, for example, in
paging, inquiry, and response routines.

1.4.4.1.2 NULL packet

The NULL packet has no payload and therefore consists of the
channel access code and packet header only. Its total (fixed) length is 126
bits. The NULL packet is used to return link information to the source
regarding the success of the previous transmission (ARQN), or the status of
the RX buffer (FLOW). The NULL packet itself does not have to be
acknowledged.

1.4.4.1.3 POLL packet

The POLL packet is very similar to the NULL packet. It does not have
a pay-load either. In contrast to the NULL packet, it requires a confirmation
from the recipient. It is not a part of the ARQ scheme. The POLL packet
does not affect the ARQN and SEQN fields. Upon reception of a POLL
packet the slave must respond with a packet. This return packet is an implicit
acknowledgement of the POLL packet. This packet can be used by the
master in a piconet to poll the slaves, which must then respond even if they
do not have information to send.

1.4.4.1.4 FHS packet

The FHS packet is a special control packet revealing, among other
things, the Bluetooth device address and the clock of the sender. The
payload contains 144 information bits. The FHS packet covers a single time
slot. Figure 1.9 illustrates the format and contents of the FHS payload. The
payload consists of eleven fields. The FHS packet is used in page master
response, inquiry response and in master slave switch. In page master
response or master slave switch, it is retransmitted until its reception is
acknowledged or a timeout has exceeded. In inquiry response, the FHS
packet is not acknowledged. The FHS packet contains real-time clock
information. This clock information is updated before each retransmission.

 19

The retransmission of the FHS payload is thus somewhat different from the
retransmission of ordinary data payloads where the same payload is used for
each retransmission. The FHS packet is used for frequency hop
synchronization before the piconet channel has been established, or when an
existing piconet changes to a new piconet. In the former case, the recipient
has not been assigned an active member address yet, in which case the
AM_ADDR field in the FHS packet header is set to all-zeroes; however, the
FHS packet should not be considered as a broadcast packet. In the latter case
the slave already has an AM_ADDR in the existing piconet, which is then
used in the FHS packet header.

 Figure 1.9: Format of the FHS payload

Parity Bits: This 34-bit field contains the parity bits that form the first part
of the sync word of the access code of the unit that sends the FHS packet.
These bits are derived from the LAP.

LAP: This 24-bit field contains the lower address part of the unit that sends
the FHS packet.

SR: This 2-bit field is the scan repetition field and indicates the interval
between two consecutive page scan windows.

SP: This 2-bit field is the scan period field and indicates the period in which
the mandatory page scan mode is applied after transmission of an inquiry
response message.

UAP: This 8-bit field contains the upper address part of the unit that sends
the FHS packet.

NAP: This 16-bit field contains the non-significant address part of the unit
that sends the FHS packet (see also section on page for LAP, UAP, and
NAP).

Class of device: This 24-bit field contains the class of device of the unit that
sends the FHS packet. The field is defined in Bluetooth Assigned Numbers.

 20

AM_ADDR: This 3-bit field contains the member address the recipient shall
use if the FHS packet is used at call setup or master-slave switch. A slave
responding to a master or a unit responding to an inquiry request message
shall include an all-zero AM_ADDR field if it sends the FHS packet.

CLK 27-2: This 26-bit field contains the value of the native system clock of
the unit that sends the FHS packet, sampled at the beginning of the
transmission of the access code of this FHS packet. This clock value has a
resolution of 1.25ms (two-slot interval). For each new transmission, this
field is updated so that it accurately reflects the real-time clock value.

Page scan mode : This 3-bit field indicates which scan mode is used by
default by the sender of the FHS packet. The interpretation of the page scan
mode is illustrated in Table 1.5. Currently, the standard supports one
mandatory scan mode and up to three optional scan modes.

 Table 1.3: Contents of SR field

 Table 1.4: Contents of SP field

 21

 Table 1.5: Contents of page scan mode field

The LAP, UAP, and NAP together form the 48-bit IEEE address of
the unit that sends the FHS packet. Using the parity bits and the LAP, the
recipient can directly construct the channel access code of the sender of the
FHS packet.

1.4.4.1.5 DM1 PACKET

The DM1 packet is a packet that carries data information only. DM
stands for Data Medium rate. The payload contains up to 18 information
bytes (including the 1-byte payload header) plus a 16-bit CRC code. The
DM1 packet may cover up to a single time slot. The payload header in the
DM1 packet is only 1 byte long. The length indicator in the payload header
specifies the number of user bytes.

1.4.5 PAYLOAD FORMAT

The ACL packets only have a data field in their payload.

1.4.5.1 DATA FIELD

The data field consists of three segments: a payload header, a payload
body, and possibly a CRC code.

1. Payload header

Only data fields have a payload header. The payload header is one or
two bytes long. Packets in segments one and two have a 1-byte payload

 22

header; packets in segments three and four have a 2-bytes payload header.
The payload header specifies the logical channel (2-bit L_CH indication),
controls the flow on the logical channels (1-bit FLOW indication), and has a
payload length indicator (5 bits and 9 bits for 1-byte and 2-bytes payload
header, respectively). In the case of a 2-byte payload header, the length
indicator is extended by four bits into the next byte. The remaining four bits
of the second byte are reserved for future use and shall be set to zero. The
formats of the 1-byte and 2-bytes payload headers are shown in the figures
given below.

 Figure 1.10: Payload header format for single-slot packets.

 Figure 1.11: Payload header format for multi-slot packets.

The L_CH field is transmitted first, the length field last. In the table
given below more details about the contents of the L_CH field are listed.

 Table 1.6: Logical channel L_CH field contents

An L2CAP message can be fragmented into several packets. Code 10
is used for an L2CAP packet carrying the first fragment of such a message;
code 01 is used for continuing fragments. If there is no fragmentation, code
10 is used for every packet. Code 11 is used for LMP messages. Code 00 is
reserved for future use.

The flow indicator in the payload is used to control the flow at the
L2CAP level. It is used to control the flow per logical channel (when
applicable). FLOW=1 means flow-on (“OK to send") and FLOW=0 means

 23

flow-off ("stop"). After a new connection has been established the flow
indicator should be set to FLOW=1. When a Bluetooth unit receives a
payload header with the flow bit set to "stop" (FLOW=0), it shall stop the
transmission of ACL packets before an additional amount of payload data is
sent. This amount can be defined as the flow control lag, expressed with a
number of bytes.

The shorter the flow control lag, the less buffering the other Bluetooth
device must dedicate to this function. If the packets containing the payload
flow bit of "stop" is received with a valid packet header but bad payload, the
payload flow control bit will not be recognized.

The packet level ACK contained in the packet header will be received
and a further ACL packet can be transmitted. Each occurrence of this
situation allows a further ACL packet to be sent in spite of the flow control
request being sent via the payload header flow control bit. It is
recommended that Bluetooth units that use the payload header flow bit
should ensure that no further ACL packets are sent until the payload flow bit
has been correctly received. This can be accomplished by simultaneously
turning on the flow bit in the packet header and keeping it on until an ACK
is received back (ARQN=1). This will typically be only one round trip time.
The link manager is responsible for setting and processing the flow bit in the
payload header. Real-time flow control is carried out at the packet level by
the link controller via the flow bit in the packet header. With the payload
flow bit, traffic from the remote end can be controlled.

It is allowed to generate and send an ACL packet with payload length
zero irrespective of flow status. L2CAP start- and continue-fragment
indications (L_CH=10 and L_CH=01) also retain their meaning when the
payload length is equal to zero (i.e. an empty start-fragment should not be
sent in the middle of an on-going L2CAP packet transmission). It is always
safe to send an ACL packet with payload length=0 and L_CH=01. The pay-
load flow bit has its own meaning for each logical channel (UA/I or LM. On
the LM channel, no flow control is applied and the payload flow bit is
always set at one.

 Table 1.7: Use of payload header flow bit on the logical channels.

 24

The length indicator indicates the number of bytes (i.e. 8-bit words) in
the payload excluding the payload header; i.e. the payload body only. The
MSB of the length field in a 1-byte header is the last (right-most) bit in the
payload header; the MSB of the length field in a 2-byte header is the fourth
bit (from left) of the second byte in the payload header.

2. Payload body

The payload body includes the user host information and determines
the effective user throughput. The length of the payload body is indicated in
the length field of the payload header.

1.4.6 PACKET SUMMARY

 Table 1.8: Link control packets

 Table 1.9: Data packet

1.5 LOGICAL CHANNELS

In the designed system, three logical channels are defined:

• LC control channel
• UA user channel
• UI user channel

The control channel LC is used at the link control level. The user
channels UA, UI are used to carry asynchronous and isochronous

 25

respectively. The LC channel is carried in the packet header; all other
channels are carried in the packet payload. The UA, and UI channels are
indicated in the L_CH field in the payload header. The UA and UI channels
are carried by the ACL link.

1.5.1 LC CHANNEL (LINK CONTROL)

The LC control channel is mapped onto the packet header. This
channel carries low level link control information like ARQ, flow control,
and payload characterization. The LC channel is carried in every packet
except in the ID packet which has no packet header.

1.5.2 UA/UI CHANNEL
(USER ASYNCHRONOUS/ISOCHRONOUS DATA)

The UA channel carries L2CAP transparent asynchronous user data.
This data may be transmitted in one or more baseband packets. For
fragmented messages, the start packet uses an L_CH code of 10 in the
payload header. Remaining continuation packets use L_CH code 01. If there
is no fragmentation, all packets use the L2CAP start code 10. Isochronous
data channel is supported by timing start packets properly at higher levels.
At the baseband level, the L_CH code usage is the same as the UA channel.

1.5.3 CHANNEL MAPPING

The LC channel is mapped onto the packet header. All other channels
are mapped onto the payload. All channels are mapped on the ACL packets.

1.6 TRANSMIT/RECEIVE TIMING

The Bluetooth transceiver applies a time-division duplex (TDD)
scheme. This means that it alternately transmits and receives in a
synchronous manner. It depends on the mode of the Bluetooth unit what the
exact timing of the TDD scheme is. In the normal connection mode, the
master transmission always starts at even numbered time slots (master
CLK1=0) and the slave transmission shall always start at odd numbered
time slots (master CLK1=1). Due to packet types that cover more than a
single slot, master transmission may continue in odd numbered slots and
slave transmission may continue in even numbered slots. All timing
diagrams shown in this chapter are based on the signals as present at the

 26

antenna. The term “exact” when used to describe timing refers to an ideal
transmission or reception and neglects timing jitter and clock frequency
imperfections.

The average timing of master packet transmission does not drift faster
than 20 ppm relative to the ideal slot timing of 625 µs while the
instantaneous timing does not deviate more than 1 µs from the average
timing as per specifications.

1.6.1 MASTER/SLAVE TIMING SYNCHRONIZATION

The piconet is synchronized by the system clock of the master. The
master never adjusts its system clock during the existence of the piconet: it
keeps an exact interval of Mx625 µs (where M is an even, positive integer
larger than 0) between consecutive transmissions. The slaves adapt their
native clocks with a timing offset in order to match the master clock. This
offset is updated each time a packet is received from the master: by
comparing the exact RX timing of the received packet with the estimated
RX timing, the slaves correct the offset for any timing misalignments. The
slave RX timing can be corrected with any packet sent in the master-to-slave
slot, since only the channel access code is required to synchronize the slave.

The slave TX timing is based on the most recent slave RX timing. The
RX timing is based on the latest successful trigger during a master-to-slave
slot. For ACL links, this trigger must have occurred in the master-to-slave
slot directly preceding the current slave transmission. The slave shall be able
to receive the packets and adjust the RX timing as long as the timing
mismatch remains within the 312µs uncertainty window. The master TX
timing is strictly related to the master clock. The master shall keep an exact
interval of Mx1250 µs (where M is a positive integer larger than 0) between
the start of successive transmissions; the RX timing is based on this TX
timing with a shift of exactly Nx625 µs (where N is an odd, positive integer
larger than 0). During the master RX cycle, the master will also use the
uncertainty window to allow for slave misalignments. The master will adjust
the RX processing of the considered packet accordingly, but will not adjust
its RX/TX timing for the following TX and RX cycles. During periods when
an active slave is not able to receive any valid channel access codes from the
master, the slave may increase its receive uncertainty window and/or use
predicted timing drift to increase the probability of receiving the master’s
bursts when reception resumes. Timing behavior may differ slightly
depending on the current state of the unit. The different states are described
in the next sections.

 27

1.6.2 CONNECTION STATE

In the connection mode, the Bluetooth transceiver transmits and
receives alternately. In the figures, only single-slot packets are shown as an
example. Depending on the type and the payload length, the packet size can
be up to 366 µs. Each RX and TX transmission is at a different hop
frequency. For multi-slot packets, several slots are covered by the same
packet, and the hop frequency used in the first slot will be used throughout
the transmission.

 Figure 1.12: RX/TX cycle of Bluetooth master transceiver in normal mode for single-slot
 packets.

The master TX/RX timing is shown in the Figure In the figures shown
here f(k) is used for the frequencies of the page hopping sequence and f'(k)
denotes the corresponding page response sequence frequencies. The channel
hopping frequencies are indicated by g(m). After transmission, a return
packet is expected Nx625 µs after the start of the TX burst where N is an
odd, positive integer. N depends on the type of the transmitted packet. To
allow for some time slipping, an uncertainty window is defined around the
exact receive timing. During normal operation, the window length is 20 µs,
which allows the RX burst to arrive up to 10 µs too early or 10 µs too late.
During the beginning of the RX cycle, the access correlator searches for the
correct channel access code over the uncertainty window. If no trigger event
occurs, the receiver goes to sleep until the next RX event. If in the course of
the search, it becomes apparent that the correlation output will never exceed
the final threshold, the receiver may go to sleep earlier. If a trigger event
does occur, the receiver remains open to receive the rest of the packet.The
current master transmission is based on the previous master transmission:

 28

it is scheduled Mx125s after the start of the previous master TX burst where
M depends on the transmitted and received packet type. Note that the master
TX timing is not affected by time drifts in the slave(s). If no transmission
takes place during a number of consecutive slots, the master will take the TX
timing of the latest TX burst as reference. The slave’s transmission is
scheduled Nx62�s after the start of the slave’s RX burst. If the slave’s RX
timing drifts, so will its TX timing. If no reception takes place during a
number of consecutive slots, the slave takes the RX timing of the latest RX
burst as reference.

1.6.3 RETURN FROM HOLD MODE

In the connection state, the Bluetooth unit can be placed in a hold
mode. In the hold mode, a Bluetooth transceiver neither transmits nor
receives information. When returning to the normal operation after a hold
mode in a slave Bluetooth unit, the slave must listen for the master before it
may send information. In that case, the length of the search window in the
slave unit may be increased from � µs to a larger value X µs. Note that only
RX hop frequencies are used: the hop frequency used in the master-to-slave
(RX) slot is also used in the uncertainty window extended into the preceding
time interval normally used for the slave-to-master (TX) slot. If the length of
search window (X) exceeds 1250 µs, consecutive windows shall not be
centered at the start of RX hops g(2m), g(2m+2), ... g(2m+2i) (where ‘i’ is
an integer) to avoid overlapping search windows. Consecutive windows
should instead be centered at g(2m), g(2m+4), ... g(2m+4i), which gives a
maximum value X=2500 µs, or even at g(2m), g(2m+6), ...g(2m+6i) which
gives a maximum value X=3750 µs. The RX hop frequencies used shall
correspond to the RX slot numbers. Single slot packets are used upon return
from hold to minimize the synchronization time, especially after long hold
periods that require search windows exceeding 625 µs.

 29

 Figure 1.13: RX timing of slave returning from hold state.

1.6.4 PARK AND SNIFF MODES WAKE-UP

The park and sniff modes is similar to the hold mode. A slave in park
or sniff mode periodically wakes up to listen to transmissions from the
master and to re-synchronize its clock offset. As in the return from hold
mode, a slave in park or sniff mode when waking up may increase the length
of the search window from 312µs to a larger value X µs as illustrated in
Figure 1.13.

1.6.5 PAGE STATE

In the page state, the master transmits the device access code (ID
packet) corresponding to the slave to be connected, rapidly on a large
number of different hop frequencies. Since the ID packet is a very short
packet, the hop rate can be increased from 1600 hops/s to 3200 hops/s. In a
single TX slot interval, the paging master transmits on two different hop
frequencies. In a single RX slot interval, the paging transceiver listens on
two different hop frequencies; see Figure 1.14. During the TX slot, the
paging unit sends an ID packet at the TX hop frequencies f(k) and f(k+1). In
the RX slot, it listens for a response on the corresponding RX hop
frequencies f’(k) and f’(k+1). The listening periods are exactly timed 625 µs
after the corresponding paging packets, and include a �µs uncertainty
window.

 30

Figure 1.14: RX/TX cycle of Bluetooth transceiver in PAGE mode.

1.6.6 FHS PACKET

At connection setup and during a master-slave switch, an FHS packet
is transferred from the master to the slave. This packet will establish the
timing and frequency synchronization. After the slave unit has received the
page message, it will return a response message which again consists of the
ID packet and follows exactly 625 µs after the receipt of the page message.
The master will send the FHS packet in the TX slot following the RX slot in
which it received the slave response, according to the RX/TX timing of the
master. The time difference between the response and the FHS message will
depend on the timing of the page message the slave received. In figure 1.15,
the slave receives the paging message sent first in the master-to-slave slot. It
will then respond with an ID packet in the first half of the slave-to-master
slot. The timing of the FHS packet is based on the timing of the page
message sent first in the preceding master-to-slave slot: there is an exact
1250 µs delay between the first page message and the FHS packet. The
packet is sent at the hop frequency f(k+1) which is the hop frequency
following the hop frequency f(k) the page message was received in. In
Figure 1.16, the slave receives the paging message sent secondly in the
master-to-slave slot. It will then respond with an ID packet in the second
half of the slave-to-master slot exactly 625 µs after the receipt of the page
message. The timing of the FHS packet is still based on the timing of the
page message sent first in the preceding master-to-slave slot: there is an
exact 1250 µs delay between the first page message and the FHS packet.
The packet is sent at the hop frequency f(k+2) which is the hop frequency
following the hop frequency f(k+1) the page message was received in.

 31

 Figure 1.15: Timing of FHS packet on successful page in first half slot.

The slave will adjust its RX/TX timing according to the reception of
the FHS packet (and not according to the reception of the page message).
That is, the second response message that acknowledges the reception of the
FHS packet is transmitted 625 µs after the start of the FHS packet.

 32

 Figure 1.16: Timing of FHS packet on successful page in second half slot.

1.6.7 MULTI-SLAVE OPERATION

As was mentioned in the beginning of this chapter, the master always
starts the transmission in the even-numbered slots whereas the slaves start
their transmission in the odd-numbered slots. This means that the timing of
the master and the slave(s) is shifted by one slot (625 µs), see Figure 1.17.
Only the slave that is addressed by its AM_ADDR can return a packet in the
next slave-to-master slot. If no valid AM_ADDR is received, the slave may
only respond if it concerns its reserved SCO slave-to-master slot. In case of
a broadcast message, no slave is allowed to return a packet (an exception is
found in the access window for access requests in the park mode.

 33

 Figure 1.17: RX/TX timing in multi-slave configuration

1.7. CHANNEL CONTROL

1.7.1 SCOPE

This section describes how the channel of a piconet is established and
how units can be added to and released from the piconet. Several states of
operation of the Bluetooth units are defined to support these functions. In
addition, the operation of several piconets sharing the same area, the so-
called scatter-net, is discussed. A special section is attributed to the
Bluetooth clock which plays a major role in the FH synchronization.

1.7.2 MASTER-SLAVE DEFINITION

The channel in the piconet is characterized entirely by the master of
the piconet. The Bluetooth device address (BD_ADDR) of the master
determines the FH hopping sequence and the channel access code; the
system clock of the master determines the phase in the hopping sequence
and sets the timing. In addition, the master controls the traffic on the channel
by a polling scheme. By definition, the master is represented by the
Bluetooth unit that initiates the connection (to one or more slave units). Note
that the names ‘master’ and ‘slave’ only refer to the protocol on the channel:
the Bluetooth units themselves are identical; that is, any unit can become a
master of a piconet. Once a piconet has been established, master-slave roles
can be exchanged.

 34

1.7.3 BLUETOOTH CLOCK

Every Bluetooth unit has an internal system clock which determines
the timing and hopping of the transceiver. The Bluetooth clock is derived
from a free running native clock which is never adjusted and is never turned
off. For synchronization with other units, only offsets are used that, added to
the native clock, provide temporary Bluetooth clocks which are mutually
synchronized. It should be noted that the Bluetooth clock has no relation to
the time of day; it can therefore be initialized at any value. The Bluetooth
clock provides the heart beat of the Bluetooth transceiver. Its resolution is at
least half the TX or RX slot length, or 312.5 µs. The clock has a cycle of
about a day. If the clock is implemented with a counter, a 28-bit counter is
required that wraps around at 2 28 -1. The LSB ticks in units of 312.5 µs,
giving a clock rate of 3.2 kHz. The timing and the frequency hopping on the
channel of a piconet is determined by the Bluetooth clock of the master.
When the piconet is established, the master clock is communicated to the
slaves. Each slave adds an offset to its native clock to be synchronized to the
master clock. Since the clocks are free-running, the offsets are updated
regularly for accuracy. The clock determines critical periods and triggers the
events in the Bluetooth receiver. Four periods are important in the Bluetooth
system: 312.5 ��s, 625 ��s, 1.25 ms, and 1.28 s; these periods correspond
to the timer bits CLK 0 , CLK 1 , CLK 2 , and CLK 12 , respectively, see
Figure 1.18. Master-to-slave transmission starts at the even-numbered slots
when CLK 0 and CLK 1 are both zero.

 Figure 1.18: Bluetooth clock.

In the different modes and states a Bluetooth unit can reside in, the clock has
different appearances:

• CLKN native clock
• CLKE estimated clock
• CLK master clock

 35

CLKN is the free-running native clock and is the reference to all other clock
appearances. In states with high activity, the native clock is driven by the
reference crystal oscillator with worst case accuracy of +/-20ppm. In the low
power states, like STANDBY, HOLD, PARK and SNIFF, the native clock
may be driven by a low power oscillator (LPO) with relaxed accuracy (+/-
250ppm). CLKE and CLK are derived from the reference CLKN by adding
an offset. CLKE is a clock estimate a paging unit makes of the native clock
of the recipient; i.e. an offset is added to the CLKN of the pager to
approximate the CLKN of the recipient, see Figure 1.19. By using the
CLKN of the recipient, the pager speeds up the connection establishment.
CLK is the master clock of the piconet. It is used for all timing and
scheduling activities in the piconet. All Bluetooth devices use the CLK to
schedule their transmission and reception. The CLK is derived from the
native clock CLKN by adding an offset, see Figure 1.20. The offset is zero
for the master since CLK is identical to its own native clock CLKN. Each
slave adds an appropriate offset to its CLKN such that the CLK corresponds
to the CLKN of the master. Although all CLKNs in the Bluetooth devices
run at the same nominal rate, mutual drift causes inaccuracies in CLK.
Therefore, the offsets in the slaves are regularly updated such that CLK is
approximately CLKN of the master.

 Figure 1.19: Derivation of CLKE

 Figure 1.20: Derivation of CLK in master (a) and in slave (b).

 36

1.7.4 OVERVIEW OF STATES

Figure 1.21 shows a state diagram illustrating the different states used
in the Bluetooth link controller. There are two major states: STANDBY and
CONNECTION; in addition, there are seven substates, page, page scan,
inquiry, inquiry scan, master response, slave response, and inquiry
response. The substates are interim states that are used to add new slaves to
a piconet. To move from one state to the other, either commands from the
Blue-tooth link manager are used, or internal signals in the link controller
are used (such as the trigger signal from the correlator and the timeout
signals).

1.7.5 STANDBY STATE

The STANDBY state is the default state in the Bluetooth unit. In this
state, the Bluetooth unit is in a low-power mode. Only the native clock is
running at the accuracy of the LPO (or better). The controller may leave the
STANDBY state to scan for page or inquiry messages, or to page or inquiry
itself. When responding to a page message, the unit will not return to the
STANDBY state but enter the CONNECTION state as a slave. When
carrying out a successful page attempt, the unit will enter the
CONNECTION state as a master.

1.7.6 ACCESS PROCEDURES

1.7.6.1 General

In order to establish new connections the procedures inquiry and
paging are used. The inquiry procedure enables a unit to discover which
units are in range, and what their device addresses and clocks are. With the
paging procedure, an actual connection can be established. Only the
Bluetooth device address is required to set up a connection. Knowledge
about the clock will accelerate the setup procedure. A unit that establishes a
connection will carry out a page procedure and will automatically be the
master of the connection. In the paging and inquiry procedures, the device
access code (DAC) and the inquiry access code (IAC) are used, respectively.
A unit in the page scan or inquiry scan substate correlates against these
respective access codes with a matching correlator. For the paging process,
several paging schemes can be applied. There is one mandatory paging
scheme which has to be supported by each Bluetooth device. This
mandatory scheme is used when units meet for the first time, and in case the

 37

paging process directly follows the inquiry process. Two units, once
connected using a mandatory paging/scanning scheme, may agree on an
optional paging/scanning scheme. Optional paging schemes are discussed in.
In the current chapter, only the mandatory paging scheme is considered.

1.7.6.2 Page scan

In the page scan substate, a unit listens for its own device access code
for the duration of the scan window T w page scan . During the scan
window, the unit listens at a single hop frequency, its correlator matched to
its device access code. The scan window shall be long enough to completely
scan 16 page frequencies. When a unit enters the page scan substate, it
selects the scan frequency according to the page hopping sequence
corresponding to this unit. This is a 32-hop sequence (or a 16-hop sequence
in case of a reduced-hop system) in which each hop frequency is unique.
The page hopping sequence is determined by the unit’s Bluetooth device
address (BD_ADDR). The phase in the sequence is determined by CLKN
16-12 of the unit’s native clock (CLKN 15-12 in case of a reduced-hop
system); that is, every 1.28s a different frequency is selected. If the
correlator exceeds the trigger threshold during the page scan, the unit will
enter the slave response substate. The page scan substate can be entered
from the STANDBY state or the CONNECTION state. In the STANDBY
state, no connection has been established and the unit can use all the
capacity to carry out the page scan. Before entering the page scan substate
from the CONNECTION state, the unit preferably reserves as much
capacity for scanning. If desired, the unit may place ACL connections in the
HOLD mode or even use the PARK mode The scan interval T page scan is
defined as the interval between the beginnings of two consecutive page
scans. A distinction is made between the case where the scan interval is
equal to the scan window T w page scan (continuous scan), the scan interval
is maximal 1.28s, or the scan interval is maximal 2.56s. These three cases
determine the behavior of the paging unit; that is, whether the paging unit
shall use R0, R1 or R2.

The scan interval information is included in the SR field in the FHS
packet.

 38

Table1.10: Relationship between scan interval, train repetition, and paging modes R0, R1 and R2.

1.7.6.3 Page

The page substate is used by the master (source) to activate and
connect to a slave (destination) which periodically wakes up in the page
scan substate. The master tries to capture the slave by repeatedly
transmitting the slave’s device access code (DAC) in different hop channels.
Since the Bluetooth clocks of the master and the slave are not synchronized,
the master does not know exactly when the slave wakes up and on which
hop frequency. Therefore, it transmits a train of identical DACs at different
hop frequencies, and listens in between the transmit intervals until it receives
a response from the slave. The page procedure in the master consists of a
number of steps. First, the slave’s device address is used to determine the
page hopping sequence. This is the sequence the master will use to reach the
slave. For the phase in the sequence, the master uses an estimate of the
slave’s clock. This estimate can for example be derived from timing
information that was exchanged during the last encounter with this particular
device (which could have acted as a master at that time), or from an inquiry
procedure. With this estimate CLKE of the slave’s Bluetooth clock, the
master can predict on which hop channel the slave will start page scan. The
page substate can be entered from the STANDBY state or the CONNEC-
TION state. In the STANDBY state, no connection has been established and
the unit can use all the capacity to carry out the page. Before entering the
page substate from the CONNECTION state, the unit shall free as much
capacity as possible for scanning.

1.7.6.4 Page response procedures

When a page message is successfully received by the slave, there is a
coarse FH synchronization between the master and the slave. Both the
master and the slave enter a response routine to exchange vital information
to continue the connection setup. Important for the piconet connection is that
both Bluetooth units use the same channel access code, use the same channel
hopping sequence, and that their clocks are synchronized. These parameters

 39

are derived from the master unit. The unit that initializes the connection
(starts paging) is defined as the master unit (which is thus only valid during
the time the piconet exists). The channel access code and channel hopping
sequence are derived from the Bluetooth device address (BD_ADDR) of the
master. The timing is determined by the master clock. An offset is added to
the slave’s native clock to temporarily synchronize the slave clock to the
master clock. At start-up, the master parameters have to be transmitted from
the master to the slave. The messaging between the master and the slave at
start-up will be considered in this section. The initial messaging between
master and slave is shown in Table 1.10and in Figure 1.21 and Figure 1.22.
In those two figures frequencies f (k), f(k+1), etc. are the frequencies of the
page hopping sequence determined by the slave’s BD_ADDR. The
frequencies f’(k), f’(k+1), etc. are the corresponding page_response
frequencies (slave-to-master). The frequencies g(m) belong to the channel
hopping sequence.

 Table 1.11: Initial messaging during start-up.

In step 1 the master unit is in page substate and the slave unit in the
page scan substate. Assume in this step that the page message (slave’s
device access code) sent by the master reaches the slave. On recognizing its
device access code, the slave enters the slave response in step 2. The master
waits for a reply from the slave and when this arrives in step 2, it will enter
the master response in step 3. Note that during the initial mes-sage
exchange, all parameters are derived from the slave’s BD_ADDR, and that
only the page hopping and page_response hopping sequences are used
(which are also derived from the slave’s BD_ADDR). Note that when the
master and slave enter the response states, their clock input to the page and
page_response hop selection is frozen.

 40

 Figure 1.21: Messaging at initial connection when slave responds to first page message.

 Figure 1.22: Messaging at initial connection when slave responds to second page message.

1.7.6.4.1 Slave response

After having received its own device access code in step 1, the slave
unit transmits a response message in step 2. This response message again
only consists of the slave’s device access code. The slave will transmit this
response 625 microseconds after the beginning of the received page message
(slave ID packet) and at the response hop frequency that corresponds to the
hop frequency in which the page message was received. The slave
transmission is therefore time aligned to the master transmission. During
initial messaging, the slave still uses the page response hopping sequence to
return information to the master.

The clock input CLKN 16-12 is frozen at the value it had at the time
the page message was received. After having sent the response message, the

 41

slave’s receiver is activated (312.5 microseconds after the start of the
response message) and awaits the arrival of a FHS packet. Note that a FHS
packet can already arrive 312.5 micros after the arrival of the page message
as shown in Figure 1.23, and not after 625 micros as is usually the case in
the RX/TX timing. If the setup fails before the CONNECTION state has
been reached, the following procedure is carried out. The slave will keep
listening as long as no FHS packet is received until pagerespTO is
exceeded. Every 1.25 ms, however, it will select the next master-to-slave
hop frequency according to the page hop sequence. If nothing is received
after pagerespTO, the slave returns back to the page scan substate for one
scan period. If no page message is received during this additional scan
period, the slave will resume scanning at its regular scan interval and return
to the state it was in prior to the first page scan state. If a FHS packet is
received by the slave in the slave response substate, the slave returns a
response (slave’s device access code only) in step 4 to acknowledge the
reception of the FHS packet (still using the page response hopping
sequence). The transmission of this response packet is based on the
reception of the FHS packet. Then the slave changes to the channel
(master’s) access code and clock as received from the FHS packet. Only the
26 MSBs of the master clock are transferred: the timing is assumed such that
CLK 1 and CLK 0 are both zero at the time the FHS packet was received as
the master transmits in even slots only. From the master clock in the FHS
packet, the off-set between the master’s clock and the slave’s clock is
determined and reported to the slave’s link manager.

Finally, the slave enters the CONNECTION state in step 5. From
then on, the slave will use the master’s clock and the master BD_ADDR to
determine the channel hopping sequence and the channel access code. The
connection mode starts with a POLL packet transmitted by the master. The
slave responds with any type of packet. If the POLL packet is not received
by the slave, or the response packet is not received by the master, within
newconnectionTO number of slots after FHS packet acknowledgement, the
master and the slave will return to page and page scan substates,
respectively.

1.7.6.4.2 Master response

When the master has received a response message from the slave in
step 2, it will enter the master response routine. It freezes the current clock
input to the page hop selection scheme. Then the master will transmit a FHS
packet in step 3 containing the master’s real-time Bluetooth clock, the

 42

master’s 48-bit BD_ADDR address, the BCH parity bits, and the class of
device. The FHS packet contains all information to construct the channel
access code without requiring a mathematical derivation from the master
device address. The FHS packet is transmitted at the beginning of the
master-to-slave slot following the slot in which the slave has responded. So
the TX timing of the FHS is not based on the reception of the response
packet from the slave. The FHS packet may therefore be sent 312.5 micros
after the reception of the response packet like shown in Figure 1.23 and not
625 micros after the received packet as is usual in the RX/TX timing. After
the master has sent its FHS packet, it waits for a second response from the
slave in step 4 which acknowledges the reception of the FHS packet. Again
this is only the slave’s device access code. If no response is received, the
master retransmits the FHS packet, but with an updated clock and still using
the slave’s parameters. It will retransmit (the clock is updated every
retransmission) until a second slave response is received, or the timeout of
pagerespTO is exceeded. In the latter case, the master turns back to the page
substate and sends an error message to the link manager. During the
retransmissions of the FHS packet, the master keeps using the page hopping
sequence. If the slave’s response is indeed received, the master changes to
the master parameters, so the channel access code and the master clock. The
lower clock bits CLK 0 and CLK 1 are zero at the start of the FHS packet
transmission and are not included in the FHS packet. Finally, the master
enters the CONNECTION state in step 5. The master BD_ADDR is used to
change to a new hopping sequence, the channel hopping sequence. The
channel hopping sequence uses all 79 hop channels in a (pseudo) random
fashion. The master can now send its first traffic packet in a hop determined
with the new (master) parameters. This first packet will be a POLL packet.
The master can now send its first traffic packet in a hop determined with the
new (master) parameters. The first packet in this state is a POLL packet sent
by the master. This packet will be sent within newconnectionTO number of
slots after reception of the FHS packet acknowledgement. The slave will
respond with any type of packet. If the POLL packet is not received by the
slave or the POLL packet response is not received by the master within new-
connectionTO number of slots, the master and the slave will return to page
and page scan substates, respectively.

 43

1.7.7 INQUIRY PROCEDURES

1.7.7.1 General

In the Bluetooth system, an inquiry procedure is defined which is used
in applications where the destination’s device address is unknown to the
source. One can think of public facilities like printers or facsimile machines,
or access points to a LAN. Alternatively, the inquiry procedure can be used
to discover which other Bluetooth units are within range. During an inquiry
substate, the discovering unit collects the Bluetooth device addresses and
clocks of all units that respond to the inquiry message. It can then, if desired,
make a connection to any one of them by means of the previously described
page procedure. The inquiry message broadcast by the source does not
contain any information about the source. However, it may indicate which
class of devices should respond. There is one general inquiry access code
(GIAC) to inquire for any Bluetooth device, and a number of dedicated
inquiry access codes (DIAC) that only inquire for a certain type of devices.
The inquiry access codes are derived from reserved Bluetooth device
addresses and are further described in. A unit that wants to discover other
Bluetooth units enters an inquiry substate.

In this substate, it continuously transmits the inquiry message (which
is the ID packet at different hop frequencies. The inquiry hop sequence is
always derived from the LAP of the GIAC. Thus, even
when DIACs are used, the applied hopping sequence is generated from the
GIAC LAP. A unit that allows itself to be discovered, regularly enters the
inquiry scan substate to respond to inquiry messages. The following
sections describe the message exchange and contention resolution during
inquiry response. The inquiry response is optional: a unit is not forced to
respond to an inquiry message.

1.7.7.2 Inquiry scan

The inquiry scan substate is very similar to the page scan substate.
However, instead of scanning for the unit's device access code, the receiver
scans for the inquiry access code long enough to completely scan for 16
inquiry frequencies. The length of this scan period is denoted T
w_inquiry_scan . The scan is performed at a single hop frequency. As in the
page procedure, the inquiry procedure uses 32 dedicated inquiry hop

 44

frequencies according to the inquiry hopping sequence. These frequencies
are determined by the general inquiry address. The phase is determined by
the native clock of the unit carrying out the inquiry scan; the phase changes
every 1.28s.

Instead or in addition to the general inquiry access code, the unit may
scan for one or more dedicated inquiry access codes. However, the scanning
will follow the inquiry scan hopping sequence which is determined by the
general inquiry address. If an inquiry message is recognized during an
inquiry wake-up period, the Bluetooth unit either performs a backoff in
CONNECTION or STANDBY state before reentering the inquiry scan
substate or enters the inquiry response substate if a random backoff was
performed before entering the inquiry scan substate. The inquiry scan
substate can be entered from the STANDBY state or the CONNECTION
state. In the STANDBY state, no connection has been established and the
unit can use all the capacity to carry out the inquiry scan. Before entering
the inquiry scan substate from the CONNECTION state, the unit
preferably reserves as much capacity as possible for scanning. If desired, the
unit may place ACL connections in the HOLD mode or even use the PARK
mode. The scan window, T w inquiry scan , shall be increased to increase
the probability to respond to an inquiry message. The scan interval T inquiry
scan is defined as the interval between two consecutive inquiry scans. The
inquiry scan interval shall be at most 2.56 s.

1.7.7.3 Inquiry

The inquiry substate is used by the unit that wants to discover new
devices. This substate is very similar to the page substate, the same TX/RX
timing is used as used for paging. The TX and RX frequencies follow the
inquiry hopping sequence and the inquiry response hopping sequence, and
are determined by the general inquiry access code and the native clock of the
discovering device. In between inquiry transmissions, the Bluetooth receiver
scans for inquiry response messages. When found, the entire response packet
(which is in fact a FHS packet) is read, after which the unit continues with
the inquiry transmissions. So the Bluetooth unit in an inquiry substate does
not acknowledge the inquiry response messages. It keeps probing at different
hop channels and in between listens for response packets. Like in the page
substate, two 10 ms trains A and B are defined, splitting the 32 frequencies
of the inquiry hopping sequence into two 16-hop parts. A single train must
be repeated for at least N inquiry =256 times before a new train is used. In
order to collect all responses in an error-free environment, at least three train

 45

switches must have taken place. As a result, the inquiry substate may have
to last for 10.24 s unless the inquirer collects enough responses and
determines to abort the inquiry substate earlier. If desired, the inquirer can
also prolong the inquiry substate to increase the probability of receiving all
responses in an error-prone environment. If an inquiry procedure is
automatically initiated periodically (say a 10 s period every minute), then the
interval between two inquiry instances must be determined randomly. This is
done to avoid two Bluetooth units to synchronize their inquiry procedures.
The inquiry substate is continued until stopped by the Bluetooth link
manager (when it decides that it has sufficient number of responses), or
when a timeout has been reached (inquiryTO). The inquiry substate can be
entered from the STANDBY state or the CONNECTION state. In the
STANDBY state, no connection has been established and the unit can use all
the capacity to carry out the inquiry. Before entering the inquiry substate
from the CONNECTION state, the unit shall free as much capacity as
possible for scanning. To ensure this, it is recommended that the ACL
connections are put on hold or park.

1.7.7.4 Inquiry response

For the inquiry operation, there is only a slave response, no master
response. The master listens between inquiry messages for responses, but
after reading a response, it continues to transmit inquiry messages. The slave
response routine for inquiries differs completely from the slave response
routine applied for pages. When the inquiry message is received in the
inquiry scan substate, a response message containing the recipient’s address
must be returned. This response message is a conventional FHS packet
carrying the unit’s parameters. However, a contention problem may arise
when several Bluetooth units are in close proximity to the inquiring unit and
all respond to an inquiry message at the same time. First of all, every
Bluetooth unit has a free running clock; therefore, it is highly unlikely that
they all use the same phase of the inquiry hopping sequence. However, in
order to avoid collisions between units that do wake up in the same inquiry
hop channel simultaneously, the following protocol in the slave’s inquiry
response is used. If the slave receives an inquiry message, it generates a
random number RAND between 0 and 1023. The slave then returns to the
CONNECTION or STANDBY state for the duration of RAND time slots.
Before returning to the CONNECTION or STANDBY state, the unit may
go through the page scan substate; this page scan must use the mandatory
page scan scheme. After at least RAND slots, the unit will return to the

 46

inquiry scan substate. On the first inquiry message received in this substate
the slave goes into the inquiry response substate and returns an FHS
response packet to the master 625 µs after the inquiry message was
received. If during the scan no trigger occurs within a timeout period of
inqre-spTO, the slave returns to the STANDBY or CONNECTION state. If
the unit does receive an inquiry message and returns an FHS packet, it adds
an offset of 1 to the phase in the inquiry hop sequence (the phase has a 1.28
s resolution) and enters the inquiry scan substate again. If the slave is
triggered again, it repeats the procedure using a new RAND. The offset to
the clock accumulates each time a FHS packet is returned. During a 1.28 s
probing window, a slave on average responses 4 times, but on different
frequencies and at different times. Possible SCO slots should have priority
over response packets; that is, if a response packet overlaps with an SCO
slot, it is not sent but the next inquiry message is awaited. In step 1, the
master transmits an inquiry message using the inquiry access code and its
own clock. The slave responds with the FHS packet which contains the
slave’s device address, native clock and other slave information. This FHS
packet is returned at a semi-random time. The FHS packet is not
acknowledged in the inquiry routine, but it is retransmitted at other times
and frequencies as long as the master is probing with inquiry messages.

 Table 1.12: Messaging during inquiry routines.

If the scanning unit uses an optional scanning scheme, after
responding to an inquiry with an FHS packet, it will perform page scan
using the mandatory page scan scheme for T mandatory pscan period. Every
time an inquiry response is sent the unit will start a timer with a timeout of T
mandatory pscan . The timer will be reset at each new inquiry response.
Until the timer times out, when the unit per-forms page scan, it will use the
mandatory page scanning scheme in the SR mode it uses for all its page scan
intervals. Using the mandatory page scan scheme after the inquiry procedure
enables all units to connect even if they do not support an optional paging
scheme (yet). In addition to using the mandatory page scan scheme, an
optional page scan scheme can be used in parallel for the T mandatory pscan
period. The T mandatory pscan period is included in the SP field of the FHS
packet returned in the inquiry response routine.

 47

 Table 1.13: Mandatory scan periods for P0, P1, P2 scan period modes.

1.7.8 CONNECTION STATE

In the CONNECTION state, the connection has been established and
packets can be sent back and forth. In both units, the channel (master) access
code and the master Bluetooth clock are used. The hopping scheme uses the
channel hopping sequence. The master starts its transmission in even slots
(CLK 1- 0 =00), the slave starts its transmission in odd slots (CLK 1-0 =10)
The CONNECTION state starts with a POLL packet sent by the master to
verify the switch to the master’s timing and channel frequency hopping. The
slave can respond with any type of packet. If the slave does not receive the
POLL packet or the master does not receive the response packet for
newconnectionTO number of slots, both devices will return to page/page
scan substates. The first information packets in the CONNECTION state
contain control messages that characterize the link and give more details
regarding the Bluetooth units. These messages are exchanged between the
link managers of the units Then the transfer of user information can start by
alternately transmitting and receiving packets. The CONNECTION state is
left through a detach or reset command. The detach command is used if the
link has been disconnected in the normal way. All configuration data in the
Bluetooth link controller is still valid. The reset command is a hard reset of
all controller processes. After a reset, the controller has to be reconfigured.
The Bluetooth units can be in several modes of operation during the
CONNECTION state: active mode, sniff mode, hold mode, and park mode.
These modes are now described in more detail.

1.7.8.1 Active mode

In the active mode, the Bluetooth unit actively participates on the
channel. The master schedules the transmission based on traffic demands to
and from the different slaves. In addition, it supports regular transmissions to
keep slaves synchronized to the channel. Active slaves listen in the master-

 48

to-slave slots for packets. If an active slave is not addressed, it may sleep
until the next new master transmission. From the type indication in the
packet, the number of slots the master has reserved for its transmission can
be derived; during this time, the non-addressed slaves do not have to listen
on the master-to-slave slots. A periodic master transmission is required to
keep the slaves synchronized to the channel. Since the slaves only need the
channel access code to synchronize with, any packet type can be used for
this purpose.

1.7.8.2 Sniff mode

In the sniff mode, the duty cycle of the slave’s listen activity can be
reduced. If a slave participates on an ACL link, it has to listen in every ACL
slot to the master traffic. With the sniff mode, the time slots where the
master can start transmission to a specific slave is reduced; that is, the
master can only start transmission in specified time slots. These so-called
sniff slots are spaced regularly with an interval of T sniff. The slave starts
listening at the sniff slots for N sniff attempt consecutive receive slots unless
a packet with matching AM_ADDR is received. After every reception of a
packet with matching AM_ADDR, the slave continues listening at the
subsequent N sniff timeout or remaining of the receive slots, whichever is
greater.

So, for N sniff timeout > 0, the slave continues listening as long as it
receives packets with matching AM_ADDR. Note that Receive slots here
are every odd-numbered slots, in which the master may start sending a
packet. Note that N sniff attempt =1 and N sniff timeout =0 cause the slave
to listen only at the first sniff slot, irrespective of packets received from the
master. Note that N sniff attempt =0 is not allowed. To enter the sniff mode,
the master or slave shall issue a sniff command via the LM protocol. This
message will contain the sniff interval T sniff and an offset D sniff. The
timing of the sniff mode is then determined similar as for the SCO links. In
addition, an initialization flag indicates whether initialization procedure 1 or
2 is being used. The device uses initialization 1 when the MSB of the cur-
rent master clock (CLK 27) is 0; it uses initialization 2 when the MSB of
the current master clock (CLK 27) is 1. The slave shall apply the
initialization method as indicated by the initialization flag irrespective of its
clock bit value CLK 27. The master-to-slave sniff slots determined by the
master and the slave shall be initialized on the slots for which the clock
satisfies the following equation CLK 27-1 mod T sniff = D sniff for
initialization 1(CLK 27 ,CLK 26-1) mod T sniff = D sniff for initialization 2

 49

The slave-to-master sniff slot determined by the master and the slave shall
be initialized on the slots after the master-to-slave sniff slot defined above.
After initialization, the clock value CLK(k+1) for the next master-to-slave
SNIFF slot is found by adding the fixed interval T sniff to the clock value of
the current master to-slave sniff slot: CLK(k+1) = CLK(k) + T sniff

1.7.8.3 Hold mode

During the CONNECTION state, the ACL link to a slave can be put
in a hold mode. This means that the slave temporarily does not support ACL
packets on the channel any more. With the hold mode, capacity can be made
free to do other things like scanning, paging, inquiring, or attending another
piconet. The unit in hold mode can also enter a low-power sleep mode.
During the hold mode, the slave unit keeps its active member address
(AM_ADDR). Prior to entering the hold mode, master and slave agree on
the time duration the slave remains in the hold mode. A timer is initialized
with the holdTO value. When the timer is expired, the slave will wake up,
synchronize to the traffic on the channel and will wait for further master
instructions.

1.7.8.4 Polling schemes

1.7.8.4.1 Polling in active mode

The master always has full control over the piconet. Due to the
stringent TDD scheme, slaves can only communicate with the master and
not to other slaves. In order to avoid collisions on the ACL link, a slave is
only allowed to transmit in the slave-to-master slot when addressed by the
AM_ADDR in the packet header in the preceding master-to-slave slot. If the
AM_ADDR in the preceding slot does not match, or an AM_ADDR cannot
be derived from the preceding slot, the slave is not allowed to transmit. On
the SCO links, the polling rule is slightly modified. The slave is allowed to
transmit in the slot reserved for his SCO link unless the (valid) AM_ADDR
in the preceding slot indicates a different slave. If no valid AM_ADDR can
be derived in the preceding slot, the slave is still allowed to transmit in the
reserved SCO slot.

 50

1.7.8.5 Broadcast scheme

The master of the piconet can broadcast messages which will reach all
slaves. A broadcast packet is characterized by the all-zero AM_ADDR. Each
new broadcast message (which may be carried by a number of packets) shall
start with the flush indication (L_CH=10).

A broadcast packet is never acknowledged. In an error-prone
environment, the master may carry out a number of retransmissions to
increase the probability for error-free delivery.

1.7.9 SCATTERNET

1.7.9.1 General

Multiple piconets may cover the same area. Since each piconet has a

different master, the piconets hop independently, each with their own
channel hopping sequence and phase as determined by the respective master.
In addition, the packets carried on the channels are preceded by different
channel access codes as determined by the master device addresses. As more
piconets are added, the probability of collisions increases; a graceful
degradation of performance results as is common in frequency-hopping
spread spectrum systems. If multiple piconets cover the same area, a unit can
participate in two or more overlaying piconets by applying time
multiplexing. To participate on the proper channel, it should use the
associated master device address and proper clock offset to obtain the
correct phase. A Bluetooth unit can act as a slave in several piconets, but
only as a master in a single piconet: since two piconets with the same master
are synchronized and use the same hopping sequence, they are one and the
same piconet. A group of piconets in which connections consists between
different piconets is called a scatternet. A master or slave can become a
slave in another piconet by being paged by the master of this other piconet.
On the other hand, a unit participating in one piconet can page the master or
slave of another piconet. Since the paging unit always starts out as master, a
master-slave role exchange is required if a slave role is desired.

1.7.9.2 Inter-piconet communications

Time multiplexing must be used to switch between piconets. In case
of ACL links only, a unit can request to enter the hold or park mode in the

 51

current piconet during which time it may join another piconet by just
changing the channel parameters. Units in the sniff mode may have
sufficient time to visit another piconet in between the sniff slots.. In the four
slots in between, one other piconet can be visited. Since the multiple
piconets are not synchronized, guard time must be left to account for
misalignment.

Since the clocks of two masters of different piconets are not
synchronized, a slave unit participating in two piconets has to take care of
two offsets that, added to its own native clock, create one or the other master
clock. Since the two master clocks drift independently, regular updates of
the offsets are required in order for the slave unit to keep synchronization to
both masters.

1.7.9.3 Master-slave switch

There are several occasions when a master-slave (MS) switch is
desirable. Firstly, a MS switch is necessary when a unit paging the master of
an existing piconet wants to join this piconet, since, by definition, the paging
unit initially is master of a "small" piconet only involving the pager (master)
and the paged (slave) unit. Secondly, when a slave in an existing piconet
wants to set up a new piconet, involving itself as master and the current
piconet master as slave. The latter case implies a double role of the original
piconet master; it becomes a slave in the new piconet while still maintaining
the original piconet as master. Thirdly, a much more complicated example is
when a slave wants to fully take over an existing piconet, i.e., the switch also
involves transfer of other slaves of the existing piconet to the new piconet.
Clearly, this can be achieved by letting the new master setup a completely
new piconet through the conventional paging scheme. However, that would
require individual paging of the old slaves, and, thus, take unnecessarily
long time. Instead, letting the new master utilize timing knowledge of the
old master is more efficient. As a consequence of the MS switch, the slaves
in the piconet have to be transferred to the new piconet, changing their
timing and their hopping scheme. The MS switch is described in step1
through step 3 below. For the third example involving the transfer, new
piconet parameters have to be communicated to each slave.

 52

1.8 BLUETOOTH ADDRESSING

1.8.1 BLUETOOTH DEVICE ADDRESS (BD_ADDR)

Each Bluetooth transceiver is allocated a unique 48-bit Bluetooth
device address (BD_ADDR). This address is derived from the IEEE802
standard. This 48-bit address is divided into three fields:

• LAP field: lower address part consisting of 24 bits
• UAP field: upper address part consisting of 8 bits
• NAP field: non-significant address part consisting of 16 bits

The LAP and UAP form the significant part of the BD_ADDR. The
total address space obtained is 2 32 .
Figure 13.1: Format of BD_ADDR

 Figure 1.26: Format of BD_ADDR

1.8.2 ACCESS CODES

In the Bluetooth system, 72-bit and 68-bit access codes are used for
signaling purposes. Three different access codes are defined:-

• device access code (DAC)
• channel access code (CAC)
• inquiry access code (IAC)

There is one general IAC (GIAC) for general inquiry operations and
there are 63 dedicated IACs (DIACs) for dedicated inquiry operations. All
codes are derived from a LAP of the BD_ADDR. The device access code is
used during page, page scan and page response substates. It is a code derived
from the unit’s BD_ADDR. The channel access code characterizes the
channel of the piconet and forms the preamble of all packets exchanged on
the channel. The channel access code is derived from the LAP of the master
BD_ADDR. Finally, the inquiry access code is used in inquiry operations. A

 53

general inquiry access code is common to all Bluetooth units; a set of
dedicated inquiry access codes is used to inquire for classes of devices. The
access code is also used to indicate to the receiver the arrival of a packet. It
is used for timing synchronization and offset compensation. The receiver
correlates against the entire sync word in the access code, providing a very
robust signalling. During channel setup, the code itself is used as an ID
packet to sup-port the acquisition process. In addition, it is used during
random access procedures in the PARK state. The access code consists of
preamble, sync word and a trailer.

1.8.3 ACTIVE MEMBER ADDRESS (AM_ADDR)

Each slave active in a piconet is assigned a 3-bit active member
address (AM_ADDR). The all-zero AM_ADDR is reserved for broadcast
messages. The master does not have an AM_ADDR. Its timing relative to
the slaves distinguishes it from the slaves. A slave only accepts a packet
with a matching AM_ADDR and broadcast packets. The AM_ADDR is
carried in the packet header. The AM_ADDR is only valid as long as a slave
is active on the channel.

As soon as it is disconnected or parked, it loses the AM_ADDR. The
AM_ADDR is assigned by the master to the slave when the slave is
activated. This is either at connection establishment or when the slave is
unparked. At connection establishment, the AM_ADDR is carried in the
FHS payload (the FHS header itself carries the all-zero AM_ADDR). When
unparking, the AM_ADDR is carried in the unpark message.

 54

1.9 STATE DIAGRAM BASEBAND

Figure 1.27: State diagram of Bluetooth link controller.

 55

1.10 BASEBAND SEQUENCE DIAGRAMS

Sequence of inquiry:-

Sequence of Paging:-

SLAVE MASTER

General/Dedicated Inquiry Access Code

FHS Packet

(Bluetooth Device Addr Of Slave)

MASTER SLAVE

General/Dedicated Inquiry Access Code

FHS Packet

(Bluetooth Device Addr Of Slave)

SLAVE MASTER

Slave Device Access Code

ID Packet

(Slave DAC)

FHS Packet

(Slave DAC)

ID Packet

(Slave DAC)

Poll Packet

(Master DAC)

Poll Packet

(Master DAC)

 56

 BLUETOOTH L2CAP
PROTOCOL

 57

 L2CAP PROTOCOL

This section of the Bluetooth Specification defines the Logical Link
Control and Adaptation Layer Protocol, referred to as L2CAP. L2CAP is
layered over the Baseband Protocol and resides in the data link layer as
shown in Figure. L2CAP provides connection-oriented and connectionless
data services to upper layer protocols with protocol multiplexing capability,
segmentation and reassembly operation, and group abstractions. L2CAP
permits higher level protocols and applications to transmit and receive
L2CAP data packets up to 64 kilobytes in length.

Figure 2.1: L2CAP within protocol layers

The format of the ACL payload header for the L2CAP Layer is shown
here is shown below. Figure 2.2 displays the payload header used for single-
slot packets and Figure 2.3 displays the header used in multi-slot packets.
The only difference is the size of the length field. The packet type (a field in
the Baseband header) distinguishes single-slot packets from multi-slot
packets.

Figure 2.2: ACL Payload Header for single-slot packets

 58

Figure 2.3: ACL Payload Header for multi-slot packets

The 2-bit logical channel (L_CH) field, defined in Table 1.1, distinguishes
L2CAP packets. The remaining code is reserved for future use.

Table 2.1: Logical channel L_CH field contents

The FLOW bit in the ACL header is managed by the Link Controller
(LC), a Baseband implementation entity, and is normally set to1 (‘flow on’).
It is set to 0 (‘flow off’) when no further L2CAP traffic shall be sent over the
ACL link. Sending an L2CAP packet with the FLOW bit set to 1 resumes
the flow of incoming L2CAP packets.

2.1 L2CAP FUNCTIONAL REQUIREMENTS

The functional requirements for L2CAP include protocol
multiplexing, segmentation and reassembly (SAR), and group management.
Figure 1.4 illustrates how L2CAP fits into the Bluetooth Protocol Stack.
L2CAP lies above the Base-band Protocol and interfaces with other
communication protocols such as the Bluetooth Service Discovery Protocol
(SDP) RFCOMM and Telephony Control. Packetized audio data, such as
IPTelephony, may be sent using communication protocols running over
L2CAP.

 59

Figure 2.4: L2CAP in Bluetooth Protocol Architecture

Essential protocol requirements for L2CAP include simplicity and low
over-head. L2CAP does not consume excessive power since that
significantly sacrifices power efficiency achieved by the Bluetooth Radio.
Memory requirements for protocol implementation are also kept to a
minimum. The protocol complexity is acceptable to personal computers,
PDAs, digital cellular phones, wireless headsets, joysticks and other wireless
devices supported by Bluetooth so that maximum coverage of devices
targeted for installation is achieved. Furthermore, the protocol is designed to
achieve reasonably high bandwidth efficiency.

• Protocol Multiplexing

L2CAP supports protocol multiplexing because the Baseband
Protocol does not support any ’type’ field identifying the higher layer
protocol being multiplexed above it. L2CAP therefore distinguishes between
upper layer protocols such as the Service Discovery Protocol, RFCOMM ,
and Telephony Control .

• Segmentation and Reassembly

Compared to other wired physical media, the data packets defined by
the Baseband Protocol are limited in size. Exporting a maximum
transmission unit (MTU) associated with the largest Baseband payload limits
the efficient use of bandwidth for higher layer protocols that are designed to
use larger packets. Large L2CAP packets must be segmented into multiple
smaller Baseband packets prior to their transmission over the air. Similarly,
multiple received Baseband packets may be reassembled into a single larger
L2CAP packet following a simple integrity check. The Segmentation and

 60

Reassembly (SAR) functionality is absolutely necessary to support protocols
using packets larger than those supported by the Baseband.

• Quality of Service

The L2CAP connection establishment process allows the exchange of
information regarding the quality of service (QoS) expected between two
Blue-tooth units. Each L2CAP implementation must monitor the resources
used by the protocol and ensure that QoS contracts are honored.

• Groups

Many protocols include the concept of a group of addresses. The
Baseband Protocol supports the concept of a piconet, a group of devices
synchronously hopping together using the same clock. The L2CAP group
abstraction permits implementations to efficiently map protocol groups on to
piconets. Without a group abstraction, higher level protocols would need to
be exposed to the Baseband Protocol and Link Manager functionality in
order to manage groups efficiently.

2.2 ASSUMPTIONS

The protocol design makes the following assumptions:

1. The ACL link between two units is set up using the Link Manager
Protocol. The Baseband provides orderly delivery of data packets, although
there might be individual packet corruption and duplicates. No more than 1
ACL link exists between any two devices.

2. The Baseband always provides the impression of full-duplex
communication channels. This does not imply that all L2CAP
communications are bidirectional. Multicasts and unidirectional traffic (e.g.,
video) do not require duplex channels.

3. L2CAP provides a reliable channel using the mechanisms available at the
Baseband layer. The Baseband always performs data integrity checks when
requested and resends data until it has been successfully acknowledged or a
timeout occurs. Because acknowledgements may be lost, timeouts may
occur even after the data has been successfully sent. The Baseband protocol
uses a 1-bit sequence number that removes duplicates. The use of Baseband

 61

broadcast packets is prohibited if reliability is required since all broadcasts
start the first segment of an L2CAP packet with the same sequence bit.

2.3 GENERAL OPERATION

The Logical Link Control and Adaptation Protocol (L2CAP) is based
around the concept of ’channels’. Each one of the end-points of an L2CAP
channel is referred to by a channel identifier.

2.3.1 CHANNEL IDENTIFIERS

Channel identifiers (CIDs) are local names representing a logical
channel end-point on the device. Identifiers from 0x0001 to 0x003F are
reserved for specific L2CAP functions. The null identifier (0x0000) is
defined as an illegal identifier and must never be used as a destination end-
point. Implementations are free to manage the remaining CIDs in a manner
best suited for that particular implementation, with the provision that the
same CID is not reused as a local L2CAP channel endpoint for multiple
simultaneous L2CAP channels between a local device and some remote
device. Table 2.2 summarizes the definition and partitioning of the CID
name space.

CID assignment is relative to a particular device and a device can
assign CIDs independently from other devices (unless it needs to use any of
the reserved CIDs shown in the table below). Thus, even if the same CID
value has been assigned to (remote) channel endpoints by several remote
devices connected to a single local device, the local device can still uniquely
associate each remote CID with a different device.

2.3.2 OPERATION BETWEEN DEVICES

The connection-oriented data channels represent a connection
between two devices, where a CID identifies each endpoint of the channel.
The connectionless channels restrict data flow to a single direction. These
channels are used to support a channel ’group’ where the CID on the source
represents one or more remote devices. There are also a number of CIDs
reserved for special purposes. The signalling channel is one example of a
reserved channel. This channel is used to create and establish connection-
oriented data channels and to negotiate changes in the characteristics of
these channels. Support for a signalling channels within an L2CAP entity is

 62

Table 2.2: CID Definitions

mandatory. Another CID is reserved for all incoming connectionless data
traffic. In the example below, a CID is used to represent a group consisting
of device #3 and #4. Traffic sent from this channel ID is directed to the
remote channel reserved for connectionless data traffic.

Figure 2.5: Channels between devices

 Table 2.3 describes the various channels and their source and
destination identifiers. An ’allocated’ channel is created to represent the
local endpoint and should be in the range 0x0040 to 0xFFFF. the
state machine associated with each connection-oriented channel.

 Table 2.3: Types of Channel Identifiers

 63

2.3.3 OPERATION BETWEEN LAYERS

L2CAP implementations should follow the general architecture
described below. L2CAP implementations must transfer data between higher
layer protocols and the lower layer protocol. This document lists a number
of services that should be exported by any L2CAP implementation. Each
implementation must also support a set of signalling commands for use
between L2CAP implementations.

L2CAP implementations should also be prepared to accept certain
types of events from lower layers and generate events to upper layers. The
L2Cap events are passed to the upper and lower layers in the form of
constant integers identifying each specific event.

Figure 2.6: L2CAP Architecture

2.4 SEGMENTATION AND REASSEMBLY

Segmentation and reassembly (SAR) operations are used to improve
efficiency by supporting a maximum transmission unit (MTU) size larger
than the largest Baseband packet. This reduces overhead by spreading the
network and transport packets used by higher layer protocols over several
Baseband packets. All L2CAP packets may be segmented for transfer over
Baseband packets. The protocol does not perform any segmentation and
reassembly operations but the packet format supports adaptation to smaller
physical frame sizes. An L2CAP implementation exposes the outgoing (i.e.,
the remote host’s receiving) MTU and segments higher layer packets into
’chunks’ that can be passed to the Link Manager. On the receiving side, an
L2CAP implementation receives ’chunks’ and reassembles those chunks
into L2CAP packets using information from the packet header.

 64

Figure 2.7: L2CAP SAR Variables

Segmentation and Reassembly is implemented using very little
overhead in Baseband packets. The two L_CH bits defined in the first byte
of Baseband payload (also called the frame header) are used to signal the
start and continuation of L2CAP packets. L_CH shall be ’10’ for the first
segment in an L2CAP packet and ’01’ for a continuation segment.

Figure 2.8: L2CAP segmentation

2.4.1 SEGMENTATION PROCEDURES

The L2CAP maximum transmission unit (MTU) will be exported
using an implementation specific service interface. It is the responsibility of
the higher layer protocol to limit the size of packets sent to the L2CAP layer
below the MTU limit. An L2CAP implementation will segment the packet
into protocol data units (PDUs) to send to the lower layer. If L2CAP runs
directly over the Baseband Protocol, an implementation may segment the
packet into Baseband packets for transmission over the air. If L2CAP runs
above the host controller interface (typical scenario), an implementation may
send block-sized chunks to the host controller where they will be converted
into Baseband packets. All L2CAP segments associated with an L2CAP
packet must be passed through to the Baseband before any other L2CAP
packet destined to the same unit may be sent.

 65

2.4.2 REASSEMBLY PROCEDURES

The Baseband Protocol delivers ACL packets in sequence and
protects the integrity of the data using a 16-bit CRC. The Baseband also
supports reliable connections using an automatic repeat request (ARQ)
mechanism. As the Baseband controller receives ACL packets, it either
signals the L2CAP layer on the arrival of each Baseband packets, or
accumulates a number of packets before the receive buffer fills up or a timer
expires before signalling the L2CAP layer. L2CAP implementations must
use the length field in the header of L2CAP packets. If channel reliability is
not needed, packets with improper lengths may be silently discarded. For
reliable channels, L2CAP implementations must indicate to the upper layer
that the channel has become unreliable. Reliable channels are defined by
having an infinite flush timeout value. The figure illustrates segmentation
and reassembly in the case of a single large PDU one-to-one mapping
between a high layer PDU and an L2CAP packet, the segment size used by
the segmentation and reassembly routines is left to the implementation and
may differ from the sender to the receiver.

2.5 STATE MACHINE

This section describes the L2CAP connection-oriented channel state
machine. The section defines the states, the events causing state transitions,
and the actions to be performed in response to events. This state machine is
only pertinent to bi-directional CIDs and is not representative of the
signalling channel or the uni-directional channel.

 Figure 2.9: L2CAP Layer Interactions

 66

Figure 2.7 illustrates the events and actions performed by the
implementation of the L2CAP layer. Client and Server simply represent the
initiator of the request and the acceptor of the request respectively. An
application-level Client would both initiate and accept requests. The naming
convention is as follows. The interface between two layers (vertical
interface) uses the prefix of the lower layer offering the service to the higher
layer, e.g., L2CA. The interface between two entities of the same layer
(horizontal interface) uses the prefix of the protocol (adding a P to the layer
identification), e.g., L2CAP. Events coming from above are called Requests
(Req) and the corresponding replies are called Confirms (Cfm). Events
coming from below are called Indications (Ind) and the corresponding
replies are called Responses (Rsp). Responses requiring further processing
are called Pending (Pnd). The notation for Confirms and Responses assumes
positive replies. Negative replies are denoted by a ’Neg’ suffix such as
L2CAP_ConnectCfmNeg. While Requests for an action always result in a
corresponding Confirmation (for the successful or unsuccessful satisfaction
of the action), Indications do not always result into corresponding
Responses. The latter is especially true, if the Indications are informative
about locally triggered events.

Figure 2.10:MSC of Layer Interactions

Figure 2.8 uses a message sequence chart (MSC) to illustrate the
normal sequence of events. The two outer vertical lines represent the L2CA
interface on the initiator (the device issuing a request) and the acceptor (the
device responding to the initiator’s request). Request commands at the
L2CA interface result in Requests defined by the protocol. When the
protocol communicates the request to the acceptor, the remote L2CA entity

 67

presents the upper protocol with an Indication. When the acceptor’s upper
protocol responds, the response is packaged by the protocol and
communicated back the to initiator. The result is passed back to the
initiator’s upper protocol using a Confirm message.

2.5.1 EVENTS

Events are all incoming messages to the L2CA layer along with
timeouts. Events are partitioned into five categories: Indications and
Confirms from lower layers, Requests and Responses from higher layers,
data from peers, signal Requests and Responses from peers, and events
caused by timer expirations.

2.5.1.1 Lower-Layer Protocol (LP) to L2CAP events

• LP_ConnectCfm
Confirms the request to establish a lower layer (Baseband) connection. This
includes passing the authentication challenge if authentication is required to
establish the physical link.

• LP_ConnectCfmNeg
Confirms the failure of the request to establish a lower layer (Baseband)
connection failed. This could be because the device could not be contacted,
refused the request, or the LMP authenti-cation challenge failed.

• LP_ConnectInd
Indicates the lower protocol has successfully established connection. In the
case of the Baseband, this will be an ACL link. An L2CAP entity may use to
information to keep track of what physical links exist.

• LP_DisconnectInd
Indicates the lower protocol (Baseband) has been shut down by LMP
commands or a timeout event.

• LP_QoSCfm
Confirms the request for a given quality of service.

• LP_QoSCfmNeg
Confirms the failure of the request for a given quality of service.

 68

• LP_QoSViolationInd
Indicates the lower protocol has detected a violation of the QoS agreement
specified in the previous LP_QoSReq

2.5.1.2 L2CAP to L2CAP Signalling events

L2CAP to L2CAP signalling events are generated by each L2CAP
entity following the exchange of the corresponding L2CAP signalling PDUs.
L2CAP signalling PDUs, like any other L2CAP PDUs, are received from a
lower layer via a lower protocol indication event. For simplicity of the
presentation , we avoid a detailed description of this process, and we assume
that signaling events are exchanged directly between the L2CAP peer
entities

• L2CAP_ConnectReq
A Connection Request packet has been received.

• L2CAP_ConnectRsp
A Connection Response packet has been received with a positive result
indicating that the connection has been established.

• L2CAP_ConnectRspPnd
A Connection Response packet has been received indicating the remote
endpoint has received the request and is processing it.

• L2CAP_ConnectRspNeg
A Connection Response packet has been received, indicating that the
connection could not be established.

• L2CAP_ConfigReq
A Configuration Request packet has been received indicating the remote
endpoint wishes to engage in negotiations concerning channel parameters.

• L2CAP_ConfigRsp
A Configuration Response packet has been received indicating the remote
endpoint agrees with all the parameters being negotiated.

• L2CAP_ConfigRspNeg
A Configuration Response packet has been received indicating the remote
endpoint does not agree to the parameters received in the response packet.

 69

• L2CAP_DisconnectReq
A Disconnection Request packet has been received and the channel must
initiate the disconnection process. Following the completion of an L2CAP
channel disconnection process, an L2CAP entity should return the
corresponding local CID to the pool of ’unassigned’ CIDs.

• L2CAP_DisconnectRsp
A Disconnection Response packet has been received. Following the receipt
of this signal, the receiving L2CAP entity may return the corresponding
local CID to the pool of unassigned CIDs. There is no corresponding
negative response because the Disconnect Request must succeed.

2.5.1.3 L2CAP to L2CAP Data events

• L2CAP_Data
A Data packet has been received.

2.5.1.4 Upper-Layer to L2CAP events

• L2CA_ConnectReq
Request from upper layer for the creation of a channel to a remote device.

• L2CA_ConnectRsp
Response from upper layer to the indication of a connection request from a
remote device .

• L2CA_ConnectRspNeg
Negative response (rejection) from upper layer to the indication of a
connection request from a remote device.

• L2CA_ConfigReq
Request from upper layer to (re)configure the channel.

• L2CA_ConfigRsp
Response from upper layer to the indication of a (re) configuration request

• L2CA_ConfigRspNeg

 70

A negative response from upper layer to the indication of a (re)
configuration request .

• L2CA_DisconnectReq
Request from upper layer for the immediate disconnection of a channel.

• L2CA_DisconnectRsp
Response from upper layer to the indication of a disconnection request .
There is no corresponding negative response, the disconnect indication must
always be accepted.

• L2CA_DataRead
Request from upper layer for the transfer of received data from L2CAP
entity to upper layer.

• L2CA_DataWrite
Request from upper layer for the transfer of data from the upper layer to
L2CAP entity for transmission over an open channel.

2.5.1.5 Timer events

• RTX
The Response Timeout eXpired (RTX) timer is used to terminate the
channel when the remote endpoint is unresponsive to signalling requests.
This timer is started when a signalling request is sent to the remote device.
This timer is disabled when the response is received. If the initial timer
expires, a duplicate Request message may be sent or the channel identified
in the request may be disconnected. If a duplicate Request message is sent,
the RTX timeout value must be reset to a new value at least double the
previous value. Implementations have the responsibility to decide on the
maximum number of Request retransmissions performed at the L2CAP level
before terminating the channel identified by the Requests. The one exception
is the signaling CID that should never be terminated. The decision should be
based on the flush timeout of the signalling link. The longer the flush
timeout, the more retransmissions may be performed at the physical layer
and the reliability of the channel improves, requiring fewer retransmissions
at the L2CAP level. For example, if the flush timeout is infinite, no
retransmissions should be performed at the L2CAP level. When terminating
the channel, it is not necessary to send a L2CAP DisconnectReq and enter

 71

disconnection state. Channels should be transitioned directly to the Closed
state.
• The minimum initial value is 1 second and the maximum initial value is
60 seconds. One RTX timer MUST exist for each outstanding signalling
request, including each Echo Request. The timer disappears on the final
expiration, when the response is received, or the physical link is lost. The
maximum elapsed time between the initial start of this timer and the
initiation of channel termination (if no response is received) is 60 seconds.
ERTX The Extended Response Timeout eXpired (ERTX) timer is used in
place of the RTX timer when it is suspected the remote endpoint is
performing additional processing of a request signal. This timer is started
when the remote endpoint responds that a request is pending, e.g., when an
L2CAP_ConnectRspPnd event is received. This timer is disabled when the
formal response is received or the physical link is lost. If the initial timer
expires, a duplicate Request may be sent or the channel may be
disconnected. If a duplicate Request is sent, the particular ERTX timer
disappears, replaced by a new RTX timer and the whole timing procedure
restarts as described previously for the RTX timer.

The minimum initial value is 60 seconds and the maximum initial
value is 300 seconds. Similar to RTX, there MUST be at least one ERTX
timer for each outstanding request that received a Pending response. There
should be at most one (RTX or ERTX) associated with each outstanding
request. The maximum elapsed time between the initial start of this timer
and the initiation of channel termination (if no response is received) is 300
seconds. When terminating the channel, it is not necessary to send a L2CAP
DisconnectReq and enter disconnection state. Channels should be
transitioned directly to the Closed state.

2.5.2 ACTIONS

Actions are partitioned into five categories: Confirms and Indications
to higher layers, Request and Responses to lower layers, Requests and
Responses to peers, data transmission to peers, and setting timers.

2.5.2.1 L2CAP to Lower Layer actions

• LP_ConnectReq
L2CAP requests the lower protocol to create a connection. If a physical link
to the remote device does not exist, this message must be sent to the lower
protocol to establish the physical connection. Since no more than a single

 72

ACL link between two devices can exist additional L2CAP channels
between these two devices must share the same baseband ACL link.
Following the processing of the request, the lower layer returns with an
LP_ConnectCfm or an LP_ConnectCfmNeg to indicate whether the request
has been satisfied or not, respectively.

• LP_QoSReq
L2CAP requests the lower protocol to accommodate a particular QoS
parameter set. Following the processing of the request, the lower layer
returns with an LP_QoSCfm or an LP_QoSCfmNeg to indicate whether the
request has been satisfied or not, respectively

• LP_ConnectRsp
A positive response accepting the previous connection indication request.

• LP_ConnectRspNeg
A negative response denying the previous connection indication request .

2.5.2.2 L2CAP to L2CAP Signalling actions

These actions define the events having the same names identified in the first
section except the actions refer to the transmission, rather than reception, of
these messages.

2.5.2.3 L2CAP to L2CAP Data actions

This section is the counterpart of 2.4.1.3. Data transmission is the action
performed here.

2.5.2.4 L2CAP to Upper Layer actions

• L2CA_ConnectInd
Indicates a Connection Request has been received from a remote device.

• L2CA_ConnectCfm
Confirms that a Connection Request has been accepted (see
following the receipt of a Connection message from the remote device.

• L2CA_ConnectCfmNeg

 73

Negative confirmation (failure) of a Connection Request. An RTX timer
expiration for an outstanding Connect Request can substitute for a negative
Connect Response and result in this action.

• L2CA_ConnectPnd
Confirms that a Connection Response (pending) has been received from the
remote device.

• L2CA_ConfigInd
Indicates a Configuration Request has been received from a remote device.

• L2CA_ConfigCfm
Confirms that a Configuration Request has been accepted following the
receipt of a Configuration Response from the remote device.

• L2CA_ConfigCfmNeg
Negative confirmation (failure) of a Configuration Request. An RTX timer
expiration for an outstanding Connect Request can substitute for a negative
Connect Response and result in this action.

• L2CA_DisconnectInd
Indicates a Disconnection Request has been received from a remote device
or the remote device has been disconnected because it has failed to respond
to a signalling request.

• L2CA_DisconnectCfm
Confirms that a Disconnect Request has been processed by the remote
device following the receipt of a Disconnection Response from the remote
device. An RTX timer expiration for an outstanding Disconnect Request can
substitute for a Disconnect Response and result in this action. Upon
receiving this event the upper layer knows the L2CAP channel has been
terminated. There is no corresponding negative confirm.

• L2CA_TimeOutInd
Indicates that a RTX or ERTX timer has expired. This indication occurs
once sending a L2CA_DisconnectInd.

• L2CA_QoSViolationInd
Indicates that the quality of service agreement has been violated.

 74

2.5.3 CHANNEL OPERATIONAL STATES

• CLOSED
In this state, there is no channel associated with this CID. This is the only
state when a link level connection (Baseband) may not exist. Link
disconnection forces all other states into the CLOSED state.

• W4_L2CAP_CONNECT_RSP
In this state, the CID represents a local end-point and an
L2CAP_ConnectReq message has been sent referencing this endpoint and it
is now waiting for the corresponding L2CAP_ConnectRsp message.

• W4_L2CA_CONNECT_RSP
In this state, the remote end-point exists and an L2CAP_ConnectReq has
been received by the local L2CAP entity. An L2CA_ConnectInd has been
sent to the upper layer and the part of the local L2CAP entity processing the
received L2CAP_ConnectReq waits for the corresponding response. The
response may require a security check to be performed.

• CONFIG
In this state, the connection has been established but both sides are still
negotiating the channel parameters. The Configuration state may also be
entered when the channel parameters are being renegotiated. Prior to
entering the CONFIG state, all outgoing data traffic should be suspended
since the traffic parameters of the data traffic are to be renegotiated.
Incoming data traffic must be accepted until the remote channel endpoint has
entered the CONFIG state.

In the CONFIG state, both sides must issue L2CAP_ConfigReq
messages if only defaults are being used, a null message should be sent. If a
large amount of parameters need to be negotiated, multiple messages may be
sent to avoid any MTU limitations and negotiate incrementally. Moving
from the CONFIG state to the OPEN state requires both sides to be ready.
An L2CAP entity is ready when it has received a positive response to its
final request and it has positively responded to the final request from the
remote device.

 75

• OPEN
In this state, the connection has been established and configured, and data
flow may proceed.

• W4_L2CAP_DISCONNECT_RSP
In this state, the connection is shutting down and an L2CAP_DisconnectReq
message has been sent. This state is now waiting for the corresponding
response.

• W4_L2CA_DISCONNECT_RSP
In this state, the connection on the remote endpoint is shutting down and an
L2CAP_DisconnectReq message has been received. An
L2CA_DisconnectInd has been sent to the upper layer to notify the owner of
the CID that the remote endpoint is being closed. This state is now waiting
for the corresponding response from the upper layer before responding to the
remote endpoint.

2.5.4 MAPPING EVENTS TO ACTIONS

The Table defines the actions taken in response to events that occur in a
particular state. Events that are not listed in the table, nor have actions
marked N/C (for no change), are assumed to be errors and silently discarded.
Data input and output events are only defined for the Open and
Configuration states. Data may not be received during the initial
Configuration state, but may be received when the Configuration state is re-
entered due to a reconfiguration process. Data received during any other
state should be silently discarded.

 76

Table 2.4: L2CAP Channel State Machine

 77

Table 2.4: L2CAP Channel State Machine

An example state diagram and sequence diagram illustrating the flow of
events and actions within the L2CAP Layer moving it from one state to
another are given at the end of the chapter.

2.6 DATA PACKET FORMAT

L2CAP is packet-based but follows a communication model based on
channels. A channel represents a data flow between L2CAP entities in
remote devices. Channels may be connection-oriented or connectionless. All
packet4 fields use Little Endian byte order.

 78

2.6.1 CONNECTION-ORIENTED CHANNEL

Figure 2.10 illustrates the format of the L2CAP packet (also referred
to as the L2CAP PDU) within a connection-oriented channel.

Figure 2.11: L2CAP Packet (field sizes in bits)

The fields shown are:
• Length: 2 octets (16 bits)
Length indicates the size of information payload in bytes, excluding the
length of the L2CAP header. The length of an information payload can be up
to 65535 bytes. The Length field serves as a simple integrity check of the
reassembled L2CAP packet on the receiving end.

• Channel ID: 2 octets
The channel ID identifies the destination channel endpoint of the packet.
The scope of the channel ID is relative to the device the packet is being sent
to.

• Information: 0 to 65535 octets
This contains the payload received from the upper layer protocol (outgoing
packet), or delivered to the upper layer protocol (incoming packet). The
minimum supported MTU for connection-oriented packets (MTU cno) is
negotiated during channel configuration. The minimum supported MTU for
the signalling packet (MTU sig) is 48 bytes.

2.7 SIGNALLING

This section describes the signalling commands passed between two
L2CAP entities on remote devices. All signalling commands are sent to CID
0x0001. The L2CAP implementation must be able to determine the
Bluetooth address (BD_ADDR) of the device that sent the commands.
Figure 2.11 illustrates the general format of all L2CAP packets containing
signalling commands. Multiple commands may be sent in a single (L2CAP)
packet and packets are sent to CID 0x0001. Commands take the form of
Requests and Responses. All L2CAP implementations must support the

 79

reception of signalling packets whose MTU (MTU sig) does not exceed 48
bytes. L2CAP implementations should not use signalling packets beyond
this size without first testing whether the implementation can support larger
signalling packets. Implementations must be able to handle the reception of
multiple commands in an L2CAP packet as long as the
MTU is not exceeded.

 Figure.2.12: Signalling Command Packet Format

 Figure 2.13: Command format

The fields shown are:
• Code: 1 octet
The Code field is one octet long and identifies the type of command. When a
packet is received with an unknown Code field, a Command Reject packet is
sent in response. Table 2.5 lists the codes used. All codes are specified with
the most significant bit in the left-most position

 80

 Table 2.5: Signalling Command Codes

• Identifier: 1 octet
The Identifier field is one octet long and helps matching a request with the
reply. The requesting device sets this field and the responding device uses
the same value in its response. A different Identifier must be used for each
original command. Identifiers should not be recycled until a period of 360
seconds has elapsed from the initial transmission of the command using the
identifier. On the expiration of a RTX or ERTX timer, the same identifier
should be used if a duplicate Request is re-sent. A device receiving a
duplicate request should reply with a duplicate response. A command
response with an invalid identifier is silently discarded. Signalling identifier
0x0000 is defined to be an illegal identifier and shall never be used in any
command.

• Length: 2 octets
The Length field is two octets long and indicates the size in octets of the data
field of the command only, i.e., it does not cover the Code, Identifier, and
Length fields.

• Data: 0 or more octets
The Data field is variable in length and discovered using the Length field.

 81

2.7.1 COMMAND REJECT (CODE 0x01)

A Command Reject packet is sent in response to a command packet
with an unknown command code or when sending the corresponding
Response is inappropriate. The format of the packet is displayed in the
adjoining figure. The Identifier should match the Identifier of the packet
containing the unidentified code field. Implementations must always send
these packets in response to unidentified signalling packets. Command
Reject packets should not be sent in response to an identified Response
packet. When multiple commands are included in an L2CAP packet and the
packet exceeds the MTU of the receiver, a single Command Reject packet is
sent in response. The identifier should match the first Request command in
the L2CAP packet. If only Responses are recognized, the packet shall be
silently discarded. The Code field determines the format of the Data field.

 Figure 2.14: Command Reject Packet

• Length = 0x0002 or more octets
• Reason: 2 octets
The Reason field describes why the Request packet was rejected.

 Table 2.6: Reason Code Descriptions

• Data: 0 or more octets
The length and content of the Data field depends on the Reason code. If the
Reason code is 0x0000, “Command not understood”, no Data field is used.
If the Reason code is 0x0001, “Signalling MTU Exceeded”, the 2-octet Data
field represents the maximum signalling MTU the sender of this packet can
accept. If a command refers to an invalid channel then the Reason code
0x0002 will be returned. Typically a channel is invalid because it does not

 82

exist. A 4- octet data field on the command reject contains the local (first)
and remote (second) channel endpoints (relative to the sender of the
Command Reject) of the disputed channel. The latter endpoints are obtained
from the corresponding rejected command. If the rejected command contains
only one of the channel endpoints, the other one is replaced by the null CID
0x0000.

 Table 2.7: Reason Data values

2.7.2 CONNECTION REQUEST (CODE 0x02)

 Connection request packets are sent to create a channel between two
devices. The channel connection must be established before configuration
may begin. Figure 2.15 illustrates a Connection Request packet.

 Figure 2.15: Connection Request Packet

• Length = 0x0004 or more octets
• Protocol/Service Multiplexor (PSM): 2 octets (minimum)
The PSM field is two octets (minimum) in length. The structure of the PSM
field is based on the ISO 3309 extension mechanism for address fields. All
PSM values must be ODD, that is, the least significant bit of the least
significant octet must be ’1’. Also, all PSM values must be assigned such
that the least significant bit of the most significant octet equals ’0’. This
allows the PSM field to be extended beyond 16 bits. PSM values are
separated into two ranges. Values in the first range are assigned by the
Bluetooth SIG and indicate protocols. The second range of values are
dynamically allocated and used in conjunction with the Service Discovery
Protocol (SDP). The dynamically assigned values may be used to support
multiple implementations of a particular protocol.

 83

 Table 2.8: Defined PSM Values

• Source CID (SCID): 2 octets
The source local CID is two octets in length and represents a channel end-
point on the device sending the request. Once the channel has been
configured, data packets flowing to the sender of the request must be send to
this CID. In this section, the Source CID represents the channel endpoint on
the device sending the request and receiving the response.

2.7.3 CONNECTION RESPONSE (CODE 0x03)

When a unit receives a Connection Request packet, it must send a
Connection Response packet. The format of the connection response packet
is shown in

 Figure 2.16: Connection Response Packet

• Length = 0x0008 octets

• Destination Channel Identifier (DCID): 2 octets
The field contains the channel end-point on the device sending this
Response packet. In this section, the Destination CID represents the chan-nel
endpoint on the device receiving the request and sending the response.

• Source Channel Identifier (SCID): 2 octets
The field contains the channel end-point on the device receiving this
Response packet.

• Result: 2 octets

 84

The result field indicates the outcome of the connection request. The result
value of 0x0000 indicates success while a non-zero value indicates the
connection request failed or is pending. A logical channel is established on
the receipt of a successful result. If the result field is not zero. The DCID and
SCID fields should be ignored when the result field indicates the connection
was refused.

 Table 2.9: Result values

• Status: 2 octets
Only defined for Result = Pending. Indicates the status of the connection.

 Table 2.10: Status values

2.7.4 CONFIGURATION REQUEST (CODE 0x04)

Configuration Request packets are sent to establish an initial logical
link transmission contract between two L2CAP entities and also to re-
negotiate this contract whenever appropriate. During a re-negotiation
session, all data traffic on the channel is suspended pending the outcome of
the negotiation. Each configuration parameter in a Configuration Request is
related exclusively either with the outgoing or the incoming data traffic but
not both of them. If an L2CAP entity receives a Configuration Request while

 85

it is waiting for a response it does not block sending the Configuration
Response, otherwise the configuration process may result in deadlock. If no
parameters need to be negotiated, no options need to be inserted and the C-
bit is cleared. L2CAP entities in remote devices negotiate all parameters
defined in this document whenever the default values are not acceptable.
Any missing configuration parameters are assumed to have their most
recently (mutually) explicitly or implicitly accepted values. Event if all
default values are acceptable, a Configuration Request packet with no
options is sent. Since most of the values are implicitly accepted they are
infact the default values for each parameter negotiated for the specific
channel under configuration.

Each configuration parameter is one-directional and relative to the
direction implied by the sender of a Configuration Request. If a device needs
to establish the value of a configuration parameter in the opposite direction
than the one implied by a Configuration Request, a new Configuration
Request with the desired value of the configuration parameter is sent in the
direction opposite the one used for the original ConfigurationRequest. The
amount of time (or messages) spent on arbitrating the channel parameters
before terminating the negotiation is minimal due to acceptance of default
values.

The figure defines the format of the Configuration Request packet.

 Figure 2.17: Configuration Request Packet

• Length = 0x0004 or more octets
• Destination CID (DCID): 2 octets
The field contains the channel end-point on the device receiving this
Request packet.

• Flags: 2 octets
The Figure displays the two-octet Flags field. Note the most significant bit is
shown on the left.

 86

 Figure 2.18: Configuration Request Flags field format

Of the C - continuation flag. When all configuration options cannot fit into
the receiver's MTU sig , the are passed in multiple configuration command
packets. If all options fit into the receiver's MTU, then the continuation bit is
not used. Each Configuration Request contains an integral number of
options. Each Request is tagged with a different Identifier and matched with
a Response with the same Identifier.

When used in the Configuration Request, the continuation flag
indicates the responder should expect to receive multiple request packets.
The responder replies to each request packet. The responder may reply to
each Configuration Request with a Configuration Response containing the
same option(s) present in the Request, except for those error conditions more
appropriate for a Command Reject, or the responder may reply with a
"Success" Configuration Response packet containing no options, delaying
those options until the full Request has been received. The Configuration
Request packet with the configuration flag cleared is treated as the
Configuration Request event in the channel state machine. When used in the
Configuration Response, the continuation flag must be set if the flag is set in
the Request. If the configuration flag is set in the Response when the
matching Request does not set the flag, it indicates the responder has
additional options to send to the requestor. In this situation, the requestor
sends null-option Configuration Requests (with cleared C-flag) to the
responder until the responder replies with a Configuration Response where
the continuation flag is clear. The Configuration Response packet with the
configuration flag cleared shall be treated as the Configuration Response
event in the channel state machine. The result of the configuration
transaction is the union of all the result values. All the result values must
succeed for the configuration transaction to succeed. Other flags are reserved
and are therefore cleared. These are ignored by the L2Cap Layer.

Configuration Options

The list of the parameters and their values to be negotiated.
Configuration Requests may contain no options (referred to as an empty or
null configuration request) and can be used to request a response. For an
empty configuration request the length field is set to 0x0004.

 87

2.7.5 CONFIGURE RESPONSE (CODE 0X05)

Configure Response packets are sent in reply to Configuration
Request packets except when the error condition id is covered by a
Command Reject response. Each configuration parameter value (if any is
present) in a Configuration Response reflects an ’adjustment’ to a
configuration parameter value that has been sent (or, in case of default
values, implied) in the corresponding Configuration Request. The options
sent in the Response depend on the value in the Result field.

 Figure 2.19: Configuration Response Packet

• Length = 0x0006 or more octets

• Source CID (SCID): 2 octets
The field contains the channel end-point on the device receiving this
Response packet. The device receiving the Response checks that the
Identifier field matches the same field in the corresponding configuration
request command and the SCID matches its local CID paired with the
original DCID.

• Flags: 2 octets
The Figure displays the two-octet Flags field. Note the most significant bit is
shown on the left.

 Figure 2.20: Configuration Response Flags field format

C – more configuration responses will follow when set to 1. This flag
indicates that the parameters included in the response are a partial subset of
parameters being sent by the device sending the Response packet. Other

 88

flags are reserved and are cleared. L2CAP implementations ignore these
bits.

• Result: 2 octets
The Result field indicates whether or not the Request was acceptable.

 Table 2.11: Configuration Response Result codes

• Configuration Options
This field contains the list of parameters being negotiated.

2.7.6 DISCONNECTION REQUEST (CODE 0x06)

Terminating an L2CAP channel requires that a disconnection request
packet be sent and acknowledged by a disconnection response packet.
Disconnection is requested using the signalling channel since all other
L2CAP packets sent to the destination channel automatically get passed up
to the next protocol layer. The figure displays a disconnection packet
request. The receiver must ensure both source and destination CIDs match
before initiating a connection disconnection. Once a Disconnection Request
is issued, all incoming data in transit on this L2CAP channel will be
discarded and any new additional outgoing data is not allowed. Once a
disconnection request for a channel has been received, all data queued to be
sent out on that channel may be discarded.

 Figure 2.21: Disconnection Request Packet

• Length = 0x0004 octets

 89

• Destination CID (DCID): 2 octets
This field specifies the end-point of the channel to be shutdown on the
device receiving this request.

• Source CID (SCID): 2 octets
This field specifies the end-point of the channel to be shutdown on the
device sending this request. The SCID and DCID are relative to the sender
of this request and matches those of the channel to be disconnected. If the
DCID is not recognized by the receiver of this message, a CommandReject
message with ’invalid CID’ result code is sent in response. If the receivers
finds a DCID match but the SCID fails to find the same match, the request is
silently discarded.

2.7.7 DISCONNECTION RESPONSE (CODE 0x07)

Disconnection responses are sent in response to each disconnection
request.

 Figure 2.22 : Disconnection Response Packet

• Length = 0x0004 octets

• Destination CID (DCID): 2 octets
This field identifies the channel end-point on the device sending the
response.

• Source CID (SCID): 2 octets

This field identifies the channel end-point on the device receiving the
response. The DCID and the SCID (which are relative to the sender of the
request), and the Identifier fields match those of the corresponding
disconnection request command. If the CIDs do not match, the response is
silently discarded at the receiver.

 90

2.7.8 ECHO REQUEST (CODE 0x08)

Echo requests are used to solicit a response from a remote L2CAP
entity. These requests may be used for testing the link or passing vendor
specific information using the optional data field. L2CAP entities respond to
well-formed Echo Request packets with an Echo Response packet. The Data
field is optional and implementation-dependent. L2CAP entities ignore the
contents of this field.

 Figure 2.23: Echo Request Packet

2.7.9 ECHO RESPONSE (CODE 0x09)

Echo responses are sent upon receiving Echo Request packets. The
identifier in the response matches the identifier sent in the Request. The
optional and implementation-dependent data field may contain the contents
of the data field in the Request, different data, or no data at all.

 Figure 2.24: Echo Response Packet

2.7.10 INFORMATION REQUEST (CODE 0X0A)

Information requests are used to solicit implementation-specific
information from a remote L2CAP entity. L2CAP entities respond to well-
formed Information Request packets with an Information Response packet.

 91

 Figure 2.25: Information Request Packet

• Length = 0x0002 octets

• InfoType: 2 octets
The InfoType defines the type of implementation-specific information being
solicited.

 Table 2.11: InfoType definitions

2.7.11 INFORMATION RESPONSE (CODE 0X0B)

Information responses are sent upon receiving Information Request
packets. The identifier in the response matches the identifier sent in the
Request. The optional data field may contain the contents of the data field in
the Request, different data, or no data at all.

Figure 2.26: Information Response Packet

• InfoType: 2 octets
Same value sent in the request.

• Result: 2 octets
The Result contains information about the success of the request. If result is
"Success", the data field contains the information as specified in Table 2.12.
If result is "Not supported", no data is returned.

 92

Table 2.12: Information Response Result values

• Data: 0 or more octets
The contents of the Data field depends on the InfoType. For the Connection
MTU request, the data field contains the remote entity’s 2-octet acceptable
connectionless MTU.

Table 2.13: Information Response Data fields

2.8 CONFIGURATION PARAMETER OPTIONS

Options are a mechanism to extend the ability to negotiate different
connection requirements. Options are transmitted in the form of information
elements comprising an option type, an option length, and one or more
option data fields. Figure 2.27 illustrates the format of an option.

 Figure 2.27: Configuration option format

• Type: 1 octet
The option type field defines the parameters being configured. The most
significant bit of the type determines the action taken if the option is not
recognized. The semantics assigned to the bit are defined below.

0 - option must be recognized; refuse the configuration request
1 - option is a hint; skip the option and continue processing

• Length: 1 octet

 93

The length field defines the number of octets in the option payload. So an
option type with no payload has a length of 0.

• Option data
The contents of this field are dependent on the option type.

2.8.1 MAXIMUM TRANSMISSION UNIT (MTU)

This option specifies the payload size the sender is capable of
accepting. The type is 0x01, and the payload length is 2 bytes, carrying the
two-octet MTU size value as the only information element. MTU is not
really a negotiated value but rather an informational parameter to the remote
device that the local device can accommodate in this channel an MTU larger
than the minimum required. In the unlikely case that the remote device is
only willing to send L2CAP packets in this channel that are larger than the
MTU announced by the local device, then this Configuration Request will
receive a negative response in which the remote device will include the
value of MTU that is indented to transmit. In this case, The device will stop
configuration negotiation and try send data according to the default values
otherwise the request is denied and connection establishment is attempted
with another device. The remote device in its positive Configuration
Response will include the actual MTU to be used on this channel for traffic
flowing into the local device which is minimum{ MTU in configReq,
outgoing MTU capability of remote device }. The MTU to be used on this
channel but for the traffic flowing in the opposite direction will be
established when the remote device (with respect to this discussion)sends its
own Configuration Request.

 Figure 2.28: MTU Option Format

• Maximum Transmission Unit (MTU) Size: 2 octets
The MTU field represents the largest L2CAP packet payload, in bytes, that
the originator of the Request can accept for that channel. The MTU is
asymmetric and the sender of the Request shall specify the MTU it can
receive on this channel if it differs from the default value. The value is 672
bytes.

 94

2.8.2 FLUSH TIMEOUT OPTION

This option is used to inform the recipient of the amount of time the
originator’s link controller / link manager will attempt to successfully
transmit an L2CAP segment before giving up and flushing the packet. The
type is 0x02 and the payload size is 2 octets.

 Figure 2.29: Flush Timeout

• Flush Timeout

This value represents units of time measured in milliseconds. The
value of 1 implies no retransmissions at the Baseband level should be
performed since the minimum polling interval is 1.25 ms. The value of all
1’s indicates an infinite amount of retransmissions. This is also referred to as
’reliable channel’. In this case, the link manager continues retransmitting a
segment until physical link loss occurs. This is an asymmetric value and the
sender of the Request shall specify its flush timeout value if it differs from
the default value of 0xFFFF.

2.8.3 CONFIGURATION PROCESS

Negotiating the channel parameters involves three steps:

1. Informing the remote side of the non-default parameters that the local side
will accept using a Configuration Request

2. Remote side responds, agreeing or disagreeing to these values, including
the default ones, using a Configuration Response.The local and remote
devices repeat steps (1) and (2) as needed.

3. Repeat steps (1) and (2) exactly once more for the reverse direction. This
process can be abstracted into the initial Request negotiation path and a
Response negotiation path, followed by the reverse direction phase.
Reconfiguration follows a similar two-phase process by requiring
negotiation in both directions.

 95

2.8.3.1 Request Path

The Request Path negotiates the incoming MTU, flush timeout, and
outgoing flowspec. Table 2.13 defines the configuration options that may be
placed in the Configuration Request message and their semantics.

 Table 2.13: Parameters allowed in Request

2.8.3.2 Response Path

The Response Path negotiates the outgoing MTU (remote side’s incoming
MTU), the remote side’s flush timeout, and incoming flowspec (remote
side’soutgoing flowspec). If a request-oriented parameter is not present in
the Request message (reverts to default value), the remote side may
negotiate for a non-default value by including the proposed value in a
negative Response message.

 Table 2.14: Parameters allowed in Response

2.8.3.3 Configuration State Machine

The configuration state machine shown below depicts two paths. Before
leaving the CONFIG state and moving into the OPEN state, both paths must
reach closure. The request path requires the local device to receive a positive
response to reach closure while the response path requires the local device to
send a positive response to reach closure.

 96

 Figure 2.30: Configuration State Machine

 97

2.9 SAMPLE STATE DIAGRAM

 98

2.10 SEQUENCE OF EVENTS IN L2CAP INTERACTION

 99

 SERVICE DICOVERY
PROTOCOL

 100

 SERVICE DICOVERY PROTOCOL

3.1 INTRODUCTION

3.1.1 GENERAL DESCRIPTION

The service discovery protocol (SDP) provides a means for
applications to discover which services are available and to determine the
characteristics of those available services.

3.1.2 MOTIVATION

Service Discovery in the Bluetooth environment, where the set of
services that are available changes dynamically based on the RF proximity
of devices in motion, is qualitatively different from service discovery in
traditional network-based environments. The service discovery protocol
defined in this specification is intended to address the unique characteristics
of the Bluetooth environment.

3.1.3 CAPABILITIES

The following capabilities are present in the Service Discovery
Protocol.

1. SDP provides the ability for clients to search for needed services based
on specific attributes of those services.

2. SDP permits services to be discovered based on the class of service.

3. SDP enables browsing of services without a priori knowledge of the
specific characteristics of those services.

4. SDP provides the means for the discovery of new services that become
available when devices enter RF proximity with a client device as well as
when a new service is made available on a device that is in RF proximity
with the client device.

 101

5. SDP provides a mechanism for determining when a service becomes
unavailable when devices leave RF proximity with a client device as well as
when a service is made unavailable on a device that is in RF proximity with
the client device.

6. SDP provides for services, classes of services, and attributes of services to
be uniquely identified.

7. SDP allows a client on one device to discover a service on another
device without consulting a third device.

8. SDP is suitable for use on devices of limited complexity.

9. SDP provides a mechanism to incrementally discover information about
the services provided by a device. This is intended to minimize the quantity
of data that must be exchanged in order to determine that a particular service
is not needed by a client.

10.SDP supports the caching of service discovery information by
intermediary agents to improve the speed or efficiency of the discovery
process.

11.SDP is transport independent.

12.SDP functions while using L2CAP as its transport protocol.

13.SDP permits the discovery and use of services that provide access to
other service discovery protocols.

14.SDP supports the creation and definition of new services without
requiring registration with a central authority.

3.1.4 CONVENTIONS

3.1.4.1 Bit And Byte Ordering Conventions

When multiple bit fields are contained in a single byte and represented
in a drawing in this specification, the more significant (high-order) bits are
shown toward the left and less significant (low-order) bits toward the right.
Multiple-byte fields are drawn with the more significant bytes toward the

 102

left and the less significant bytes toward the right. Multiple-byte fields are
transferred in network byte order.

3.2 OVERVIEW

3.2.1 SDP CLIENT-SERVER INTERACTION

 Figure 3.1

The service discovery mechanism provides the means for client
applications to discover the existence of services provided by server
applications as well as the attributes of those services. The attributes of a
service include the type or class of service offered and the mechanism or
protocol information needed to utilize the service. As far as the Service
Discovery Protocol (SDP) is concerned, the configuration shown in Figure 1
may be simplified to that shown in Figure 2.

 103

Figure 3.2:

SDP involves communication between an SDP server and an SDP
client. The server maintains a list of service records that describe the
characteristics of services associated with the server. Each service record
contains information about a single service. A client may retrieve
information from a service record maintained by the SDP server by issuing
an SDP request. If the client, or an application associated with the client,
decides to use a service, it must open a separate connection to the service
provider in order to utilize the service. SDP provides a mechanism for
discovering services and their attributes (including associated service access
protocols), but it does not provide a mechanism for utilizing those services
(such as delivering the service access protocols). There is a maximum of one
SDP server per Bluetooth device. (If a Bluetooth device acts only as a client,
it needs no SDP server.) A single Bluetooth device may function both as an
SDP server and as an SDP client. If multiple applications on a device
provide services, an SDP server may act on behalf of those service providers
to handle requests for information about the services that they provide.
Similarly, multiple client applications may utilize an SDP client to query
servers on behalf of the client applications. The set of SDP servers that are
available to an SDP client can change dynamically based on the RF
proximity of the servers to the client. When a server becomes available, a
potential client must be notified by a means other than SDP so that the client
can use SDP to query the server about its services. Similarly, when a server
leaves proximity or becomes unavailable for any reason, there is no explicit
notification via the service discovery protocol. However,
 the client may use SDP to poll the server and may infer that the server is not
available if it no longer responds to requests.

3.2.2 SERVICE RECORD

A service is any entity that can provide information, perform an
action, or control a resource on behalf of another entity. A service may be
implemented as software, hardware, or a combination of hardware and
software. All of the information about a service that is maintained by an
SDP server is contained within a single service record. The service record
consists entirely of a list of service attributes.

 104

Figure 3.3: Service Record

A service record handle is a 32-bit number that uniquely identifies
each service record within an SDP server. It is important to note that, in
general, each handle is unique only within each SDP server. If SDP server
S1 and SDP server S2 both contain identical service records (representing
the same service), the service record handles used to reference these
identical service records are completely independent. The handle used to
reference the service on S1 will be meaningless if presented to S2. The
service discovery protocol does not provide a mechanism for notifying
clients when service records are added to or removed from an SDP server.
While an L2CAP (Logical Link Control and Adaptation Protocol)
connection is established to a server, a service record handle acquired from
the server will remain valid unless the service record it represents is
removed. If a service is removed from the server, further requests to the
server (during the L2CAP connection in which the service record handle was
acquired) using the service’s (now stale) record handle will result in an error
response indicating an invalid service record handle. An SDP server must
ensure that no service record handle values are reused while an L2CAP
connection remains established. The service record handles remain valid
across successive L2CAP connections while the ServiceDatabaseState
attribute value remains unchanged. There is one service record handle whose
meaning is consistent across all SDP servers. This service record handle has
the value 0x00000000 and is a handle to the service record that represents
the SDP server itself. This service record contains attributes for the SDP
server and the protocol it supports. For example, one of its attributes is the
list of SDP protocol versions supported by the server. Service record handle
values 0x00000001-0x0000FFFF are reserved.

 105

3.2.3 SERVICE ATTRIBUTE

Each service attribute describes a single characteristic of a service. Some
examples of service attributes are:

Service providers can also define their own service attributes. A service
attribute consists of two components: an attribute ID and an attribute value.

Figure 3.4: Service Attribute

3.2.4 ATTRIBUTE ID

An attribute ID is a 16-bit unsigned integer that distinguishes each
service attribute from other service attributes within a service record. The
attribute ID also identifies the semantics of the associated attribute value. A
service class definition specifies each of the attribute IDs for a service class
and assigns a meaning to the attribute value associated with each attribute
ID. For example, assume that service class C specifies that the attribute
value associated with attribute ID 12345 is a text string containing the date
the service was created. Assume further that service A is an instance of
service class C. If service A’s service record contains a service attribute with
an attribute ID of 12345, the attribute value must be a text string containing
the date that service A was created. However, services that are not instances

 106

of service class C may assign a different meaning to attribute ID 12345. All
services belonging to a given service class assign the same meaning to each
particular attribute ID. In the Service Discovery Protocol, an attribute ID is
often represented as a data element.

Figure 3.5:

3.2.5 ATTRIBUTE VALUE

The attribute value is a variable length field whose meaning is
determined by the attribute ID associated with it and by the service class of
the service record in which the attribute is contained. In the Service
Discovery Protocol, an attribute value is represented as a data element.
Generally, any type of data element is permitted as an attribute value,
subject to the constraints specified in the service class definition that assigns
an attribute ID to the attribute and assigns a meaning to the attribute value.

3.2.6 SERVICE CLASS

Each service is an instance of a service class. The service class
definition provides the definitions of all attributes contained in service
records that represent instances of that class. Each attribute definition
specifies the numeric value of the attribute ID, the intended use of the
attribute value, and the format of the attribute value. A service record
contains attributes that are specific to a service class as well as universal
attributes that are common to all services. Each service class is also assigned
a unique identifier. This service class identifier is contained in the attribute
value for the ServiceClassIDList attribute, and is represented as a UUID
Since the format and meanings of many attributes in a service record are
dependent on the service class of the service record, the ServiceClassIDList
attribute is very important. Its value is examined or verified before any class-
specific attributes are used. Since all of the attributes in a service record
conform to all of the service’s classes, the service class identifiers contained
in the ServiceClassIDList attribute are related. Typically, each service class
is a subclass of another class whose identifier is contained in the list. A

 107

service subclass definition differs from its superclass in that the subclass
contains additional attribute definitions that are specific to the subclass. The
service class identifiers in the ServiceClassIDList attribute are listed in order
from the most specific class to the most general class. When a new service
class is defined that is a subclass of an existing service class, the new service
class retains all of the attributes defined in its super-class. Additional
attributes will be defined that are specific to the new service class. In other
words, the mechanism for adding new attributes to some of the instances of
an existing service class is to create a new service class that is a subclass of
the existing service class.

3.2.7 SEARCHING FOR SERVICES

Once an SDP client has a service record handle, it may easily request
the values of specific attributes, but how does a client initially acquire a
service record handle for the desired service records? The Service Search
transaction allows a client to retrieve the service record handles for
particular service records based on the values of attributes contained within
those service records. The capability search for service records based on the
values of arbitrary attributes is not provided. Rather, the capability is
provided to search only for attributes whose values are Universally Unique
Identifiers 1 (UUIDs). Important attributes of services that can be used to
search for a service are represented as UUIDs.

3.2.7.1 UUID

A UUID is a universally unique identifier that is guaranteed to be unique
across all space and all time. UUIDs can be independently created in a
distributed fashion. No central registry of assigned UUIDs is required. A
UUID is a 128-bit value.

To reduce the burden of storing and transferring 128-bit UUID values,
a range of UUID values has been pre-allocated for assignment to often-used,
registered purposes. The first UUID in this pre-allocated range is known as
the Bluetooth Base UUID and has the value 00000000-0000-1000-8000-
00805F9B34FB, from the Bluetooth Assigned Numbers document. UUID
values in the pre-allocated range have aliases that are represented as 16-bit
or 32-bit values. These aliases are often called 16-bit and 32-bit UUIDs, but
it is important to note that each actually represents a 128-bit UUID value.
The full 128-bit value of a 16-bit or 32-bit UUID may be computed by a
simple arithmetic operation. 128_bit_value = 16_bit_value * 2 96 +
Bluetooth_Base_UUID 128_bit_value = 32_bit_value * 2 96 +

 108

Bluetooth_Base_UUID A 16-bit UUID may be converted to 32-bit UUID
format by zero-extending the 16-bit value to 32-bits. An equivalent method
is to add the 16-bit UUID value to a zero-valued 32-bit UUID. Note that two
16-bit UUIDs may be compared directly, as may two 32-bit UUIDs or two
128-bit UUIDs. If two UUIDs of differing sizes are to be compared, the
shorter UUID must be converted to the longer UUID format before
comparison.

3.2.7.2 Service Search Patterns

A service search pattern is a list of UUIDs used to locate matching
service records. A service search pattern is said to match a service record if
each and every UUID in the service search pattern is contained within any of
the service record’s attribute values. The UUIDs need not be contained
within any specific attributes or in any particular order within the service
record. The service search pattern matches if the UUIDs it contains
constitute a subset of the UUIDs in the service record’s attribute values. The
only time a service search pattern does not match a service record is if the
service search pattern contains at least one UUID that is not contained
within the service record’s attribute values. Note also that a valid service
search pattern must contain at least one UUID.

3.2.8 BROWSING FOR SERVICES

Normally, a client searches for services based on some desired
characteristic(s) (represented by a UUID) of the services. However, there are
times when it is desirable to discover which types of services are described
by an SDP server’s service records without any a priori information about
the services. This process of looking for any offered services is termed
browsing. In SDP, the mechanism for browsing for services is based on an
attribute shared by all service classes. This attribute is called the
BrowseGroupList attribute. The value of this attribute contains a list of
UUIDs. Each UUID represents a browse group with which a service may be
associated for the purpose of browsing. When a client desires to browse an
SDP server’s services, it creates a service search pattern containing the
UUID that represents the root browse group. All services that may be
browsed at the top level are made members of the root browse group by
having the root browse group’s UUID as a value within the
BrowseGroupList attribute. Normally, if an SDP server has relatively few
services, all of its services will be placed in the root browse group. However,
the services offered by an SDP server may be organized in a browse group

 109

hierarchy, by defining additional browse groups below the root browse
group. Each of these additional browse groups is described by a service
record with a service class of BrowseGroupDescriptor. A browse group
descriptor service record defines a new browse group by means of its Group
ID attribute. In order for a service contained in one of these newly defined
browse groups to be browseable, the browse group descriptor service record
that defines the new browse group must in turn be browseable. The
hierarchy of browseable services that is provided by the use of browse group
descriptor service records allows the services contained in an SDP server to
be incrementally browsed and is particularly useful when the SDP server
contains many service records.

3.3 DATA REPRESENTATION

Attribute values can contain information of various types with
arbitrary complexity; thus enabling an attribute list to be generally useful
across a wide variety of service classes and environments. SDP defines a
simple mechanism to describe the data contained within an
attribute value. The primitive construct used is the data element.

3.3.1 DATA ELEMENT

A data element is a typed data representation. It consists of two fields:
a header field and a data field. The header field, in turn, is composed of two
parts: a type descriptor and a size descriptor. The data is a sequence of bytes
whose length is specified in the size descriptor and whose meaning is
(partially) specified by the type descriptor.

3.3.2 DATA ELEMENTTYPE DESCRIPTOR

A data element type is represented as a 5-bit type descriptor. The type
descriptor is contained in the most significant (high-order) 5 bits of the first
byte of the data element header. The following types have been defined.

 110

Table 3.1

3.3.3 DATA ELEMENT SIZE DESCRIPTOR

The data element size descriptor is represented as a 3-bit size index
followed by 0, 8, 16, or 32 bits. The size index is contained in the least
significant (low-order) 3 bits of the first byte of the data element header. The
size index is encoded as follows.

 111

3.4 PROTOCOL DESCRIPTION

SDP is a simple protocol with minimal requirements on the
underlying transport. It can function over a reliable packet transport (or even
unreliable, if the client implements timeouts and repeats requests as
necessary). SDP uses a request/response model where each transaction
consists of one request protocol data unit (PDU) and one response PDU. In
the case where SDP is used with the Bluetooth L2CAP transport protocol,
only one SDP request PDU per connection to a given SDP server may be
outstanding at a given instant. In other words, a client must receive a
response to each request before issuing another request on the same L2CAP
connection. Limiting SDP to sending one unacknowledged request PDU
provides a simple form of flow control.

3.4.1 TRANSFER BYTE ORDER

The service discovery protocol transfers multiple-byte fields in
standard net-work byte order (Big Endian), with more significant (high-
order) bytes being transferred before less-significant (low-order) bytes.

3.4.2 PROTOCOL DATA UNIT FORMAT

Every SDP PDU consists of a PDU header followed by PDU-specific
parameters. The header contains three fields: a PDU ID, a Transaction
ID, and a ParameterLength. Each of these header fields is described
here. Parameters may include a continuation state parameter,
described below; PDU-specific parameters for each PDU type are
described later in separate PDU descriptions.

 Figure 3.6:

 112

3.4.3 PARTIAL RESPONSES AND CONTINUATION STATE

Some SDP requests may require responses that are larger than can fit
in a single response PDU. In this case, the SDP server will generate a partial
response along with a continuation state parameter. The continuation state
parameter can be supplied by the client in a subsequent request to retrieve
the next portion of the complete response. The continuation state parameter
is a variable length field whose first byte contains the number of additional
bytes of continuation information in the field. The format of the continuation

 113

information is not standardized among SDP servers. Each continuation state
parameter is meaningful only to the SDP server that generated it.

 Figure 3.7: Continuation State Format

After a client receives a partial response and the accompanying
continuation state parameter, it can re-issue the original request (with a new
transaction ID) and include the continuation state in the new request
indicating to the server that the remainder of the original response is desired.
The maximum allowable value of the InfoLength field is 16 (0x10). An SDP
server can split a response at any arbitrary boundary when it generates a
partial response. The SDP server may select the boundary based on the
contents of the reply, but is not required to do so. After a client receives a
partial response and the accompanying continuation state parameter, it can
re-issue the original request (with a new transaction ID) and include the
continuation state in the new request indicating to the server that the
remainder of the original response is desired. The maximum allowable value
of the InfoLength field is 16 (0x10). Note that an SDP server can split a
response at any arbitrary boundary when it generates a partial response. The
SDP server may select the boundary based on the contents of the reply, but
is not required to do so.

3.4.4 ERROR HANDLING

Each transaction consists of a request and a response PDU. Generally,
each type of request PDU has a corresponding type of response PDU.
However, if the server determines that a request is improperly formatted or
for any reason the server cannot respond with the appropriate PDU type, it
will respond with an SDP_ErrorResponse PDU.

Figure 3.8:

 114

3.4.4.1 SDP_ErrorResponse PDU

Description:

The SDP server generates this PDU type in response to an improperly
formatted request PDU or when the SDP server, for whatever reason, cannot
generate an appropriate response PDU.

PDU Parameters:

 115

3.4.5 SERVICESEARCH TRANSACTION

3.4.5.1 SDP_ServiceSearchRequest PDU

Description:

The SDP client generates an SDP_ServiceSearchRequest to locate
service records that match the service search pattern given as the first
parameter of the PDU. Upon receipt of this request, the SDP server will
examine its service record data base and return an
SDP_ServiceSearchResponse containing the service record handles of
service records that match the given service search pattern. No mechanism is
provided to request information for all service records.

PDU Parameters:

 116

3.4.5.2 SDP_ServiceSearchResponse PDU

Description:

The SDP server generates an SDP_ServiceSearchResponse upon
receipt of a valid SDP_ServiceSearchRequest. The response contains a list
of service record handles for service records that match the service search
pattern given in the request. Note that if a partial response is generated, it
must contain an integral number of complete service record handles; a
service record handle value may not be split across multiple PDUs.

 117

 118

3.4.6 SERVICEATTRIBUTE TRANSACTION

3.4.6.1 SDP_ServiceAttributeRequest PDU

Description:

The SDP client generates an SDP_ServiceAttributeRequest to retrieve
specified attribute values from a specific service record. The service record
handle of the desired service record and a list of desired attribute IDs to be
retrieved from that service record are supplied as parameters.
Command Parameters:

 119

3.4.6.2 SDP_ServiceAttributeResponse PDU

Description:

The SDP server generates an SDP_ServiceAttributeResponse upon
receipt of a valid SDP_ServiceAttributeRequest. The response contains a list

 120

of attributes (both attribute ID and attribute value) from the requested
service record.

PDU Parameters:

3.4.7 SERVICESEARCHATTRIBUTE TRANSACTION

 121

3.4.7.1 SDP_ServiceSearchAttributeRequest PDU

Description:

The SDP_ServiceSearchAttributeRequest transaction combines the
capabilities of the SDP_ServiceSearchRequest and the
SDP_ServiceAttributeRequest into a single request. As parameters, it
contains both a service search pattern and a list of attributes to be retrieved
from service records that match the service search pattern. The
SDP_ServiceSearchAttributeRequest and its response are more complex and
may require more bytes than separate SDP_ServiceSearch and
SDP_ServiceAttribute transactions. However, using
SDP_ServiceSearchAttributeRequest may reduce the total number of SDP
transactions, particularly when retrieving multiple service records. The
service record handle for each service record is contained in the
ServiceRecordHandle attribute of that service and may be requested along
with other attributes.

 122

 123

3.4.7.2 SDP_ServiceSearchAttributeResponse PDU

Description:

The SDP server generates an SDP_ServiceSearchAttributeResponse
upon receipt of a valid SDP_ServiceSearchAttributeRequest. The response
contains a list of attributes (both attribute ID and attribute value) from the
service records that match the requested service search pattern.

PDU Parameters:

 124

3.5 SERVICE ATTRIBUTE DEFINITIONS

3.5.1 UNIVERSAL ATTRIBUTE DEFINITIONS

Universal attributes are those service attributes whose definitions are
common to all service records. Note that this does not mean that every
service record must contain values for all of these service attributes.
However, if a service record has a service attribute with an attribute ID
allocated to a universal attribute, the attribute value must conform to the
universal attribute’s definition.

Only two attributes are required to exist in every service record
instance. They are the ServiceRecordHandle (attribute ID 0x0000) and the
ServiceClassIDList (attribute ID 0x0001). All other service attributes are
optional within a service record.

3.5.1.1 ServiceRecordHandle Attribute

Description:

A service record handle is a 32-bit number that uniquely identifies
each service record within an SDP server. It is important to note that, in
general, each handle is unique only within each SDP server. If SDP server
S1 and SDP server S2 both contain identical service records (representing
the same service), the service record handles used to reference these
identical service records are completely independent. The handle used to
reference the service on S1 will, in general, be meaningless if presented to
S2.

 125

3.5.1.2 ServiceClassIDList Attribute

Description:

The ServiceClassIDList attribute consists of a data element sequence
in which each data element is a UUID representing the service classes that a
given service record conforms to. The UUIDs are listed in order from the
most specific class to the most general class. The ServiceClassIDList must
contain at least one service class UUID.

3.5.1.3 ServiceName Attribute

Description:

The ServiceName attribute is a string containing the name of the
service represented by a service record. It should be brief and suitable for
display with an Icon representing the service. The offset 0x0000 must be
added to the attribute ID base (contained in the
LanguageBaseAttributeIDList attribute) in order to compute the attribute ID
for this attribute.

3.5.1.4 ServiceDescription Attribute

Description:

This attribute is a string containing a brief description of the service. It
should be less than 200 characters in length. The offset 0x0001 must be
added to the attribute ID base (contained in the
LanguageBaseAttributeIDList attribute) in order to compute the attribute ID
for this attribute.

 126

3.5.1.5 ProviderName Attribute

Description:

This attribute is a string containing the name of the person or
organization providing the service. The offset 0x0002 must be added to the
attribute ID base (contained in the LanguageBaseAttributeIDList attribute)
in order to compute the attribute ID for this attribute.

Bluetooth Service Discovery Protocol (SDP) addresses service
discovery specifically for the Bluetooth environment. It is optimized for the
highly dynamic nature of Bluetooth communications. SDP focuses primarily
on discovering services available from or through Bluetooth devices. SDP
does not define methods for accessing services; once services are discovered
with SDP, they can be accessed in various ways, depending upon the
service. This might include the use of other service discovery and access
mechanisms such as those mentioned above; SDP provides a means for other
protocols to be used along with SDP in those environments where this can
be beneficial. While SDP can coexist with other service discovery protocols,
it does not require them. In Bluetooth environments, services can be
discovered using SDP and can be accessed using other protocols defined by
Bluetooth.

 127

 BLUETOOTH RFCOMM
PROTOCOL

 128

4.1 INTRODUCTION

The RFCOMM protocol provides emulation of serial ports over the
L2CAP protocol. The protocol is based on the ETSI standard TS 07.10.

4.1.1 OVERVIEW

RFCOMM is a simple transport protocol, with additional provisions
for emulating the 9 circuits of RS-232 (EIATIA-232-E) serial ports. The
RFCOMM protocol supports up to 60 simultaneous connections between
two Bluetooth devices.

4.1.2 DEVICE TYPES

For the purposes of RFCOMM, a complete communication path
involves two applications running on different devices (the communication
endpoints) with a communication segment between them. Figure 4.1hows
the complete communication path. (In this context, the term application may
mean other things than end-user application; e.g. higher layer protocols or
other services acting on behalf of end-user applications.)

Figure 4.1: RFCOMM Communication Segment

RFCOMM is intended to cover applications that make use of the
serial ports of the devices in which they reside. In the simple configuration,
the communication segment is a Bluetooth link from one device to another
(direct connect),see Figure 4.2. Where the communication segment is
another network, Blue-tooth wireless technology is used for the path
between the device and a net-work connection device like a modem.
RFCOMM is only concerned with the connection between the devices in the
direct connect case, or between the device and a modem in the network case.
RFCOMM can support other configurations, such as modules that

 129

communicate via Bluetooth wireless technology on one side and provide a
wired interface on the other side. These devices are not really modems but
offer a similar service. They are therefore not explicitly discussed here.
Basically two device types exist that the RFCOMM accommodates.

Type 1

Devices are communication end points such as computers and
printers.

Type 2

Devices are those that are part of the communication segment; e.g.
modems. Though RFCOMM does not make a distinction between these two
device types in the protocol, accommodating both types of devices impacts
the RFCOMM protocol.

Figure 4.2 RFCOMM interaction in Bluetooth devices

The information transferred between two RFCOMM entities has been
defined to support both type 1 and type 2 devices. Some information is only
needed by type 2 devices while other information is intended to be used by
both. In the protocol, no distinction is made between type 1 and type 2. It is
therefore up to the RFCOMM implementers to determine if the information
passed in the RFCOMM protocol is of use to the implementation. Since the
device is not aware of the type of the other device in the communication
path, each must pass on all available information specified by the protocol.

 130

4.1.3 BYTE ORDERING
This implementation uses the same byte ordering as the TS 07.10

specification; i.e. all binary numbers are in Least Significant Bit to Most
Significant Bit order, reading from left to right.

4.2 RFCOMM SERVICE OVERVIEW

RFCOMM emulates RS-232 (EIATIA-232-E) serial ports. The
emulation includes transfer of the state of the non-data circuits. RFCOMM
has a built-in scheme for null modem emulation. In the event that a baud rate
is set for a particular port through the RFCOMM service interface, that will
not affect the actual data throughput in RFCOMM; i.e. RFCOMM does not
incur artificial rate limitation or pacing. However, if either device is a type 2
device (relays data onto other media), or if data pacing is done above the
RFCOMM service interface in either or both ends, actual throughput will, on
an average, reflect the baud rate setting. RFCOMM supports emulation of
multiple serial ports between two devices and also emulation of serial ports
between multiple devices.

4.2.1 RS-232 CONTROL SIGNALS

RFCOMM emulates the 9 circuits of an RS-232 interface. The circuits
are listed below.

Table 4.1: Emulated RS-232 circuits in RFCOMM

 131

4.2.2 MULTIPLE EMULATED SERIAL PORTS

4.2.2.1 Multiple Emulated Serial Ports between two Devices

Two Bluetooth devices using RFCOMM in their communication may
open multiple emulated serial ports. RFCOMM supports up to 60 open
emulated ports. A Data Link Connection Identifier (DLCI) identifies an
ongoing connection between a client and a server application. The DLCI is
represented by 6 bits, but its usable value range is 2…61; in TS 07.10, DLCI
0 is the dedicated control channel, DLCI 1 is unusable due to the concept of
Server Channels, and DLCI 62-63 is reserved. The DLCI is unique within
one RFCOMM session between two devices. To account for the fact that
both client and server applications may reside on both sides of an RFCOMM
session, with clients on either side making connections independent
of each other, the DLCI value space is divided between the two
communicating devices using the concept of RFCOMM server channels.

 Figure 4.3: Multiple Emulated Serial Ports.

4.2.2.2 Multiple Emulated Serial Ports and Multiple Bluetooth Devices

If a Bluetooth device supports multiple emulated serial ports and the
connections are allowed to have endpoints in different Bluetooth devices,
then the RFCOMM entity can run multiple TS 07.10 multiplexer sessions.
Each multiplexer session in the figure uses its own L2CAP channel ID
(CID).

 132

Figure 4.4: Emulating serial ports coming from two Bluetooth devices.

4.3 SERVICE INTERFACE DESCRIPTION

RFCOMM is intended to define a protocol that is used to emulate
serial ports. Hence RFCOMM is part of a port driver which includes a
serial port emulation entity.

4.3.1 SERVICE DEFINITION MODEL

The figure below shows a model of how RFCOMM fits into a typical
system. This figure represents the RFCOMM reference model.

Figure 4.5: RFCOMM reference model

The elements of the RFCOMM reference model are described below.

 133

4.4 INTERACTION WITH OTHER ENTITIES

4.4.1 PORT EMULATION AND PORT PROXY ENTITIES

This section defines how the RFCOMM protocol should be used to
emulate serial ports. Figure 4.6 shows the two device types that the
RFCOMM protocol supports.

Figure 4.6: The RFCOMM communication model

Type 1 devices are communication endpoints such as computers and
printers.
Type 2 devices are part of a communication segment; e.g. modems.

4.4.1.1 Port Emulation Entity

The port emulation entity maps a system specific communication
interface (API) to the RFCOMM services.

 134

4.4.1.2 Port Proxy Entity

The port proxy entity relays data from RFCOMM to an external RS-
232 inter-face linked to a DCE. The communications parameters of the RS-
232 interface are set according to received RPN commands.

4.4.2 SERVICE REGISTRATION AND DISCOVERY

Registration of individual applications or services, along with the
information needed to reach those (i.e. the RFCOMM Server Channel) is the
responsibility of each application respectively (or possibly a Bluetooth
configuration application acting on behalf of legacy applications not directly
aware of Bluetooth). Below is description of developing service records for
a given service or profile using RFCOMM. It illustrates the inclusion of the
ServiceClassList with a single service class, a ProtocolDescriptor List with
two protocols (although there may be more protocols on top of RFCOMM).
One other universal attribute namely (ServiceName) is also used in the
process. For each service running on top of RFCOMM, appropriate SDP-
defined universal attributes and/or service-specific attributes will apply. The
attributes that a client application needs (at a minimum) to connect to a
service on top of RFCOMM are the ServiceClassIDList and the
ProtocolDescriptorList (corresponding to the shaded rows in the table
below).

 135

4.4.3 Reliability

 RFCOMM uses the services of L2CAP to establish L2CAP channels to
RFCOMM entities on other devices. An L2CAP channel is used for the
RFCOMM/TS 07.10 multiplexer session.

 RFCOMM requires L2CAP to provide channels with maximum reliability,
to ensure that all frames are delivered in order, and without duplicates.
Should an L2CAP channel fail to provide this, RFCOMM will expect a link
loss notification, which should be handled by RFCOMM.

For the purposes of RFCOMM, a complete communication path
involves two applications running on different devices (the communication
endpoints) with a communication segment between them.

 136

 CLASS DIAGRAMS

 DETAILED STRUCTURE
 OF
 SOFTWARE IMPLMENTATION

 137

CDocument
(f rom Application Architecture)

CBluetoothDoc

CFormView
(from Views)

CEditCtrlView CLeftPaneView CViewBaseband CViewBbSlave CViewL2cap CViewRfcomm CViewSDP

CObject
(f rom CObject Classes)

CLineChartItem

CAddService

CHistory

CSearch

CSel

CUUIDs

CMainFrame

CRightPaneFrame

CMacProgressCtrl CBluetoothView

CSplitterView

CLineChartCtrl

CStatusArea

CView
(f rom Views)

CWnd
(f rom Window Support)

CProgressCtrl
(from Controls)

CFrameWnd
(f rom Frame Windows)

CDialog
(f rom Dialog Boxes)

CSocket
(f rom Windows Sockets)

CBaseband CMySock

CMaster

DataElement

SDP attribute

CSerialPort

CSlave

CPacketCL2cap
CArray<BYTE,BYTE&>

service_attributesrfcomm

 138

CSearch
m_sel : CString
m_uuid : CString
m_opt : int
m_lcid : UINT
m_store : BOOL
am[7] : BYTE
UUID[10] : short
total_uuid : BYTE
error : BOOL
total_am : BOOL
sel_am : BYTE

<<afx_msg>> OnHelp()
<<virtual>> OnOK()
<<virtual>> OnInitDialog()
<<afx_msg>> OnRadio1()
<<afx_msg>> OnRadio3()
<<afx_msg>> OnRadio2()
<<virtual>> DoDataExchange()
CSearch()
setparent()

CDialog
(f rom Dialog Boxes)

CUUIDs

<<virtual>> OnInitDialog()
<<virtual>> DoDataExchange()
CUUIDs()

CWnd
(f rom Window Support)

CView
(f rom Views)

CFrameWnd
(f rom Frame Windows)

CBluetoothView

<<afx_msg>> OnTimer()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CBluetoothView()
<<virtual>> WindowProc()
<<virtual>> OnUpdate()
<<virtual>> OnEndPrinting()
<<virtual>> OnBeginPrinting()
<<virtual>> OnPreparePrinting()
<<virtual>> PreCreateWindow()
<<virtual>> OnDraw()
GetDocument()
CBluetoothView()

CMainFrame

<<afx_msg>> OnSize()
<<afx_msg>> OnCreate()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CMainFrame()
<<virtual>> WindowProc()
<<virtual>> OnCreateClient()
<<virtual>> PreCreateWindow()
CMainFrame()

 139

CViewBaseband
total : int
m_master : int
m_selindex : int

<<afx_msg>> OnShowWindow()
<<afx_msg>> OnDblclkInqlist()
<<afx_msg>> OnSlave()
<<afx_msg>> OnMaster()
<<afx_msg>> OnInquire()
<<afx_msg>> OnSize()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> DoDataExchange()
<<virtual>> PreTranslateMessage()
<<virtual>> Create()
<<virtual>> OnInitialUpdate()
update()
<<virtual>> ~CViewBaseband()
CViewBaseband()

CFormView
(from Views)

CViewL2cap
start : int
isvisible : BOOL
list1sel : int
list2sel : int
LCID[10] : int
change : BOOL

<<afx_msg>> OnRButtonDown()
<<afx_msg>> OnRclickList2()
<<afx_msg>> OnRclickList1()
<<afx_msg>> OnSize()
<<afx_msg>> OnTimer()
<<afx_msg>> OnTCard()
<<afx_msg>> OnClickList1()
<<afx_msg>> OnShowWindow()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> OnActivateView()
<<virtual>> DoDataExchange()
<<virtual>> OnInitialUpdate()
<<virtual>> Create()
update()
update2()
return_constant_name()
<<virtual>> ~CViewL2cap()
CViewL2cap()

CViewSDP
showing : int
rect_service : CRect
rect_search : CRect
m_cx : int
m_cy : int
am_addr_of : BYTE
count : BYTE
success : BYTE
LCID : BYTE
counter : BYTE
m_services_clist : int

<<afx_msg>> OnTimer()
<<afx_msg>> OnSearchService()
<<afx_msg>> OnSelchangedTree()
<<afx_msg>> OnAddservice()
<<afx_msg>> OnDblclkServicesList()
<<afx_msg>> OnCreate()
<<afx_msg>> OnService()
<<afx_msg>> OnSearch()
<<afx_msg>> OnSize()
<<afx_msg>> OnMouseMove()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> OnDraw()
<<virtual>> DoDataExchange()
<<virtual>> Create()
<<virtual>> OnInitialUpdate()
<<virtual>> ~CViewSDP()
CViewSDP()
within()
reshow()
uuid_string()
service_notavailable()
conncreated()

CViewRfcomm
sendbuffersize : DWORD
rfcomm_lcid : DWORD
isvisible : BOOL
counter_error : int
connected : BOOL
m_success : BYTE
flush : BYTE
m_am : BYTE
m_sent : CString
m_rec : CString
m_rcid : CString
m_lcid : CString

<<afx_msg>> OnDis()
<<afx_msg>> OnButton2()
<<afx_msg>> OnSize()
<<afx_msg>> OnSel()
<<afx_msg>> OnShowWindow()
<<afx_msg>> OnTimer()
<<afx_msg>> OnCreate()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> DoDataExchange()
<<virtual>> OnInitialUpdate()
<<virtual>> Create()
OnCommunication()
OnDSR()
pac_recieve()
OnRing()
reshow()
conncreated()
conncreated2()
flush_pac()
<<virtual>> ~CViewRfcomm()
CViewRfcomm()

CSerialPort
m_nWriteBufferSize : DWORD
m_dwCommEvents : DWORD
m_szWriteBuffer : char*
m_nPortNr : UINT
m_hEventArray[3] : HANDLE
m_hWriteEvent : HANDLE
m_hComm : HANDLE
m_hShutdownEvent : HANDLE
m_bThreadAlive : BOOL

<<static>> WriteChar()
<<static>> ReceiveChar()
<<static>> CommThread()
ProcessErrorMessage()
WriteToPort()
GetDCB()
GetCommEvents()
GetWriteBufferSize()
StopMonitoring()
RestartMonitoring()
StartMonitoring()
InitPort()
<<virtual>> ~CSerialPort()
CSerialPort()

 140

CBluetoothDoc
log : CString
rfcomm_len : DWORD
rfcomm_pac_ready : BOOL
rfcomm_pac : LPBYTE
rfcomm_lcid : DWORD
sdp_pac_ready : BOOL
sdp_pac : LPBYTE
sdp_len : DWORD
sdp_am : BYTE
sdp_lcid : DWORD
sdp_threadstate : int
sdp_req : BOOL
cc_from : BYTE
cc_am : BYTE
animateicon : BOOL
fortrayicon : int
m_proginq : BYTE
showballoon : BYTE
packetr_lcid : DWORD
packetr_len : DWORD
packetr_rec_ready : BOOL
packetr_rec : LPBYTE
packet_am : BYTE
packet_lcid : DWORD
packet_len : DWORD
packet_rec_ready : BOOL
packet_rec : LPBYTE
HMutex : HANDLE
data_of : int

<<afx_msg>> OnHistory()
<<afx_msg>> OnTopen()
<<afx_msg>> OnExit()
<<afx_msg>> OnEchoReq()
<<afx_msg>> OnConfigReq()
<<afx_msg>> OnClickPropertie()
<<afx_msg>> OnDisconnect()
<<afx_msg>> OnClickConnect()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CBluetoothDoc()
Ontemp()
inquire()
page()
ontimer()
update()
makemaster()
write_log()
tol2cap()
tobaseband()
packet_recfun()
cc_fun()
<<virtual>> Serialize()
<<virtual>> OnNewDocument()
CBluetoothDoc()

CDocument
(f rom Application Architecture)

CBluetoothApp

<<afx_msg>> OnAppAbout()
<<virtual>> InitInstance()
CBluetoothApp()

CWinApp
(f rom Application Architecture)

 141

CMaster
initial_state : BYTE
message : CString
flag[7] : int
page_lap : int
isMaster : BOOL
timer_on : BOOL
polled_am : BYTE

recieve()
send_initial_packet()
to_l2cap()
find_amaddr()
find_lap()
get_empty()
slaves_count()
froml2cap()
sent_poll()
<<virtual>> ~CMaster()
CMaster()

CSlave
initial_state : BYTE
message : CString
expSEQN : BYTE
SEQN : BYTE
rclk : DWORD
rACK : BYTE
ACK : BYTE
r_baseband_flow : BYTE
r_l2cap_flow : BYTE
l2cap_flow : BYTE
rLAP : int
am_addr : BYTE
wasAddressed : BOOL
isActive : BOOL
isMaster : BOOL

recieve()
send_initial_packet()
to_l2cap()
froml2cap()
<<virtual>> ~CSlave()
CSlave()

CSocket
(f rom Windows Sockets)

CBaseband
init : BOOL
baseband_initial_timer : BYTE
even : BOOL
isMaster : BOOL

<<virtual>> OnReceive()
recieve()
send()
timer()
page()
inquire()
anypacketready()
makemaster()
write_log()
tol2cap()
froml2cap()
<<virtual>> ~CBaseband()
CBaseband()

CPacket
length_bytes : int
packet_ready : BOOL

add_array()
CPacket()

 142

DataElement
data_start : BYTE
message : CString
sequence : BOOL
size : BYTE
type : BYTE
data : LPBYTE
initialize : BOOL

equalto()
getactualvalue()
getvalue()
get_actual_size_value()
setvalue()
get_seq()
make_seq()
make_seq()
DataElement()
DataElement()
init()
init()
opname()

attribute
seriveID : short
AttributeValue : dataelement

attribute()
attribute()
operator=()

SDP
att_bytecount : DWORD
message : CString
rTID : short
TID : short
service_count : short
total_serv_records : int
pend_TID : int
busy : BOOL
am : BYTE
lcid : DWORD
serviceRecords : service_attributes

sdp_recieve()
service_att_res()
service_att_req()
sdp_send()
service_search_res()
service_search_req()
add_service()
short_to_BYTE()
SDP()
search_request()

service_attributes
ser_attribute : attribute

service_attributes()
service_attributes()
operator=()

CL2cap
change : BOOL
data_of : int
m_on_connreq : BYTE
IDENT : BYTE
CID : short
m_fto : short
m_mtu : short

short_to_BYTE()
BYTE_to_short()
signal_command()
signal()
setparent()
getchannel_ref()
set_timer()
RTX_event()
killtimer()
l2cap_send()
channel_initialize()
on_l2cap_echorsp()
on_l2cap_echoreq()
on_l2cap_disconnectrsp()
on_l2cap_disconnectreq()
on_l2cap_configrsp()
on_l2cap_configreq()
on_l2cap_connectrsp()
on_l2cap_connectreq()
l2cap_sig_cmd_rec()
l2cap_event()
l2cap_action()
CL2cap()

 143

 SOFTWARE SIMULATION
 &
 TESTING

 144

As specified above the protocol layers were implemented as a distributed
simulation. Since the design of a radio chip, implementing a frequency
hopping mechanism, to which the protocol stack could be ported was
beyond the scope of this project, the sofware was adapted to run on a LAN
in a distribute manner each PC running the software simulating the actions
of a bluetooth device communicating using the rules and procedures defined
in the stack.

6.1 Visual C++: An Appropriate Choice

The choice of Visual C++ as the environment for implementing the protocol
stack, on of the requirements of the project, was a natural one given the
excellent support provided for hardware interaction using it’s service
primitives present in the language. The fact that the code is written in C++
means that the process of porting it to assembly code for hardware
implementation is straightforward. The extensive GUI support present meant
that a viable application interface for the simulation could be designed,
allowing the detailed depiction of the features and capabilities of the
protocol stack.

6.2 SIMULATION

The simulation demonstrates the entire bluetooth communication process.
The part played by each protocol in the process and the actions carried out
by each layer during connection establishment and data transfer is displayed
sequentially. The next section explains in brief the steps involved:-

 145

The left pane shows the layers of the bluetooth that are implemented.
Clicking on one of them opens the view related to that layer.The right pane
shows the current view.The pane at the bottom shows the history of
messages and different events and action occurring in the protocol.

Fig 1:This figure shows the inquiry procedure that on completion
is indicating that a device with addr 11-10-280 has entered the
vicinity.

 146

Fig 2: Paging procedure is shown. The right progress bar shows the process
of paging procedure.

 147

Fig 3: L2CAP view is shown in this figure. First list box shows devices
connected with this computer. The second list box shows the L2CAP
channels made on each baseband link. Red circles indicate the channel is
closed and has expired. Yellow circle shows that the channel is in
configuration state and green circle shows that the channel is open for data
transfer

 148

Fig 4: This figure shows SDP (services on this computer) view. The green
box shows the attributes of the services listed on left list box.

Fig 5: Dialog box for adding a
service

 149

Fig 6: Dialog box for
searching a service. Three
choices are available for
searching. To search all
the connected devices for
a particular service or to
search a particular device
or to search through a
manually created channel.

Fig 7: The figure shows the view when a search is in progress.

 150

Fig 8: This figure shows the result of a service search.(Serial port and Basic
Printing service)

 151

Fig 9: This figure shows that some of the services are not available (red
circle) and some are available (green circle).To find services attributes the
service is clicked and then the SDP client contacts the server hosting that
particular service to find its attributes.

 152

Fig 10: This figure shows RFCOMM view. The dialog box shows all the
searched serial port services on the connected devices. In order to connect to
one of them Am-Addr of the device is written in the edit box.

 153

Fig 11: This figures shows that this computer is connected to the remote
device through local CID = 100. It also shows the number of bytes sent and
received. The graph shows bytes /sec sent and received.

 154

Fig 12: This figure shows the dialog box that appears when we click the
status area icon of this program. It shows the devices connected and transfer
of data.

 155

 RECOMMENDATIONS
 &
 CONCLUSIONS

 156

 CONCLUSION

The work done in our project was mainly aimed at the implementation
of the communication and data transfer aspects of Bluetooth. The protocols
implemented provide the primary blueprint for carrying out communication
between two Bluetooth capable devices. The baseband layer is used to
establish a connection between communicating Bluetooth devices by
establishing a piconet. The innovative use of frequency hopping and
synchronization between devices using the Bluetooth clock of the master are
some of the unique features that give Bluetooth it’s capability to function
over short ranges without interference and without needing the line of sight
requirements necessary for other short range communication methods such
as Infrared. The L2CAP Layer further facilitates the process of
communication, it’s segmentation and reassembly, negotiated parameter
features allowing the integration of higher level protocols such as WAP,
TCP/IP and PTP on top of the main Bluetooth protocol stack. This increases
the range and use of Bluetooth immeasurably allowing a Bluetooth capable
device to access internet services using the above mentioned protocols. This
capability is further enhanced by the guarantees provided in L2CAP for
reliable communication. The Bluetooth SDP Layer’s ability to dynamically
detect all services provided by Bluetooth capable devices without needing to
register them separately allow great flexibility in choices and probable
actions to a device implanting the protocol. The specific attributes defined
for each class of services enable their rapid detection as soon as the
associated Bluetooth device comes within range. The RFCOMM use as a
serial port emulating protocol over the Bluetooth stack allows it carry out
data transfer and other command calls using the unique capabilities of the
protocol stack.
 Although this stack has been implemented as a simulation the features
and capabilities of these layer are sufficiently well implemented to provide
an excellent display of Bluetooth’s practical application. Infact the software
has been designed so that it can easily be hardcoded into a chip carrying out
frequency hopping at the radio level, creating a complete Bluetooth unit.

 157

 RECOMMENDATIONS
The following recommendations are made on the basis of the work done in
this project:

1. As designing and implementing a hardware device carrying out
frequency hopping was outside our area of expertise, this project is in
the form of a simulation. Further work may involve integrating the
software stack design here with frequency hopping hardware to obtain
a complete Bluetooth unit.

 2. Communication has been implemented for asynchronous data
channels. Support may be developed for synchronous data channels
allowing for transfer of voice data.

 3. User Authentication: Only a device may be authenticated under the
current security architecture. In order to authenticate a user,
application level security has to be used.

4. Bi-directional traffic: Once a connection is established, data flow is
bi-directional. It is not possible to enforce uni-directional data flow.

5. Preset service authorization: There is no mechanism to define preset
authorizations for services.

 158

 REFERENCES

1. Bluetooth Specifications-Core 1.1.pdf.
2. www.palowireless.com/infotooth
3. www.bluetooth.com
4. www.ibm.com/bluetoothresources
5. www.bluetooth.net

