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                                ABSTRACT 
 

Bluetooth is a new wireless technology standard developed by a 
consortium of telecommunication and software companies aimed at 
standardizing short range wireless communication the world over. This 
project aims to provide a flexible protocol stack, implementing the rules of 
communication and data transfer in the standard, which can be easily 
integrated into any Bluetooth enabled device that needs to make use of the 
unique features and services offered by Bluetooth. 
This project deals with the design of the protocol layers that comprise the 
Bluetooth communication stack. Our project focuses on the design and 
testing of Bluetooth specific layers, namely the L2CAP, Baseband, Service 
Discovery Protocol layers as well as the RFCOMM layer used for serial port 
emulation. A basic description of the functionality of each layer and their 
role in Bluetooth based data transmission is as follows:- 

Bluetooth Baseband: 
           

The Baseband is the physical layer of the Bluetooth, managing 
physical channels and links apart from other services like error correction, 
data whitening, hop selection and Bluetooth security. It lies on top of the 
Bluetooth radio layer in the bluetooth stack. The baseband protocol is 
implemented as a Link Controller  , which works with the link manager for 
carrying out link level routines like link connection and power control. The 
baseband also manages asynchronous and synchronous links, handles 
packets and does paging and inquiry to access and inquire Bluetooth devices 
in the area. 
 

Logical Link Control and Adaptation Protocol 
(L2CAP): 

L2CAP packets carry payloads which are carried to the upper layer 
protocols. L2CAP is layered over the Baseband Protocol and resides in the 
data link layer.L2CAP provides connection-oriented and connectionless data 
services to upper layer protocols with protocol multiplexing capability, 
segmentation and reassembly operation, and group abstractions. L2CAP 
permits higher level protocols and applications to transmit and receive 
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L2CAP data packets up to 64 kilobytes in length. The functional 
requirements for L2CAP include protocol multiplexing, segmentation and 
reassembly (SAR), and group management. L2CAP lies above the Baseband 
Protocol and interfaces with other communication protocols such as the 
Bluetooth Service Discovery Protocol (SDP), RFCOMM , and Telephony. 

Service Discovery Protocol (SDP):  
Using SDP, device information, services allowed and characteristics 

of the services are queried between Bluetooth enabled devices. The service 
discovery protocol (SDP) provides a means for applications to discover 
which services are available and to determine the characteristics of those 
available services. 
 
RFCOMM 
 
   RFCOMM is a simple transport protocol, which provides emulation of 
RS232 serial ports over the L2CAP protocol.The protocol is based on the 
ETSI standard TS 07.10. Only a subset of the TS 07.10 standard is used and 
an RFCOMM - specific extension is added. 
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                                  INTRODUCTION 
 

Bluetooth is the code name for an alliance between mobile 
communications and mobile computing companies to develop a short-range 
communications standard allowing wireless data communications at ranges 
of about 10 meters to 100 meters. The technology allows users to make 
effortless, instant connections between a wide range of communication 
devices. Conceived by Ericsson, the Bluetooth technology is the result of the 
joint achievements of nine leading companies including Motorola, Nokia, 
Ericsson, IBM, Intel, Toshiba, 3Com, Lucent and Microsoft. Bluetooth will 
facilitate wireless Local Area Networking in which networks of different 
hand held mobile computing terminals can communicate and exchange data, 
even on the move when there is no line-of-sight between those devices.  
         The standard was developed by a group of electronics manufacturers 
that allows any sort of electronic equipment -- from computers and cell 
phones to keyboards and headphones -- to make its own connections, 
without wires, cables or any direct action from a user. The companies 
belonging to the Bluetooth Special Interest Group (SIG), and there are more 
than 1,000 of them, want to let Bluetooth's radio communications take the 
place of wires for connecting peripherals, telephones and computers. The 
hardware vendors, which include Siemens, Intel, Toshiba, Motorola and 
Ericsson, have developed a specification for a very small radio module to be 
built into computer, telephone and entertainment equipment.  

It is mainly a cable-replacement technology. The standard has been 
developed for a small, cheap radio chip to be plugged into computers, 
printers, mobile phones, etc. A Bluetooth chip is designed to replace cables 
by taking the information normally carried by the cable, and transmitting it 
at a special frequency to a receiver Bluetooth chip, which will then give the 
information received to the computer, phone. It works by using short-range 
radio links, intended to replace the cable(s) connecting portable and/or fixed 
electronic devices. It is envisaged that it will allow for the replacement of 
the many propriety cables that connect one device to another with one 
universal radio link. Its key features are robustness, low complexity, low 
power and low cost. Designed to operate in noisy frequency environments, 
the Bluetooth radio uses a fast acknowledgement and frequency hopping 
scheme to make the link  robust. Bluetooth radio modules operate in the 
unlicensed ISM band at 2.4GHz which has been set aside by international 
agreement for the use of industrial, scientific and medical devices (ISM, and 
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avoid interference from other signals by hopping to a new frequency after 
transmitting or receiving a packet. Compared with other systems in the same 
frequency band, the Bluetooth radio hops faster and uses shorter packets.  

  The wireless technology inherent in Bluetooth revolutionizes the 
personal connectivity market by providing freedom from wired connections 
enabling links between mobile computers, mobile phones, portable handheld 
devices, and connectivity to the Internet. Interfacing, synchronization, 
exchange of data, you name it and Bluetooth has the ability to implement it. 

Hardware that complies with the Bluetooth wireless specification 
ensures communication compatibility worldwide. As a low cost, low power 
solution with industry wide support, Bluetooth wireless technology allows 
the user to bring connectivity with himself. In fact given the market 
coverage provided by the members of the Bluetooth signatorium, a user 
owning a Bluetooth enabled device would be able to have connectivity 
almost anywhere in the world. The secret of this almost universal 
connectivity is the establishment of Bluetooth as an industry standard. This 
means integrating well tested technology with the power efficiency and low-
cost of a compliant radio system. Furthermore it also requires having a group 
of industry leading promoter companies who drive the specification forward 
(members of the Bluetooth SIG). Bluetooth technology works because it has 
been developed as a cross industry solution that marries a vision of 
engineering innovation with an understanding of business and consumer 
expectations. Its continued existence and further development can be 
explained by the fact that Bluetooth wireless technology is supported by 
product and application development in a wide range of market segments, 
including software developers, silicon vendors, peripheral and camera 
manufacturers, mobile PC manufacturers and handheld device developers, 
consumer electronics manufacturers, car manufacturers, and test and 
measurement equipment manufacturers. 

Because Bluetooth wireless technology is an open platform, all 
members of the Bluetooth SIG have permission to use Bluetooth wireless 
technology in their products and services. There are three levels of 
membership with unique benefits: Promoter, Associate and Adopter. 

The SIG was founded in February 1998, and initially consisted of the 
five companies Ericsson, Intel, Toshiba, Nokia & IBM. Today more than 
1800 companies have joined the SIG to work for an open standard for the 
Bluetooth concept. 
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    Today the SIG consists of 9 promoter members Motorola, Lucent, 
Toshiba, Lucent, Microsoft, 3Com, IBM, Intel, Nokia & Ericsson, and 1790 
Adopter/Associate member companies. By signing a zero cost agreement, 
companies can join the SIG and qualify for a royalty-free license to build 
products based on the Bluetooth technology. To avoid different 
interpretations of the Bluetooth standard regarding how a specific type of 
application should be mapped to Bluetooth, the SIG has defined a number of 
user models and protocol profiles. 

The name Bluetooth itself comes from a Danish Viking and King, 
Harald Blåtand (translated as Bluetooth in English), who lived in the latter 
part of the 10th century. Harald Blåtand united and controlled Denmark and 
Norway (hence the inspiration on the name: uniting devices through 
Bluetooth). He got his name from his very dark hair which was unusual for 
Vikings, Blåtand means dark complexion. However a more popular, (but 
less likely reason), was that Old Harald had a inclination towards eating 
Blueberries , so much so his teeth became stained with the colour, leaving 
Harald with a rather unique set of molars. 

The complete Bluetooth stack is formed by the following seven 
constituent protocol layers:- 

 
1. Baseband  
2. Link Manager Protocol  
3. Logical Link Control and Adaptation Protocol  
4. Service Discovery Protocol  
5. RFCOMM Protocol  
6. Telephony Control Protocol  
7. Adopted Protocols  

The complete Bluetooth protocol stack  has been designed to include 
the existing protocols as much as possible (like TCP, UDP, OBEX) as 
well as Bluetooth specific protocols like LMP and L2CAP. The protocol 
reuse ensures smooth interoperability between existing applications and 
hardware. The Link Manager Protocol is optional and can be bypassed, 
allowing direct communication between the Baseband and L2CAP 
layers. The upper portion of the stack, above the RFCOMM layer 
consists of some of the existing protocols specified above. 
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          BASEBAND PROTOCOL 
 
1.1     GENERAL DESCRIPTION 
           

As specified before Bluetooth operates in the unlicensed ISM band at 
2.4 GHz. A frequency hop transceiver is applied to combat interference and 
fading. A shaped, binary FM modulation is applied to minimize transceiver 
complexity. The symbol rate is 1 Ms/s. A slotted channel is applied with a 
nominal slot length of 625 µs. For full duplex transmission, a Time-Division 
Duplex (TDD) scheme is used. On the channel, information is exchanged 
through packets. Each packet is transmitted on a different hop frequency. A 
packet nominally covers a single slot, but can be extended to cover up to five 
slots. 
           The Bluetooth protocol uses a combination of circuit and packet 
switching. Slots can be reserved for synchronous packets. Bluetooth can 
support an asynchronous data channel, up to three simultaneous synchronous 
voice channels, or a channel which simultaneously supports asynchronous 
data and synchronous voice. The asynchronous channel has been 
implemented which supports maximum 723.2 kb/s asymmetric (and still up 
to 57.6 kb/s in the return direction), or 433.9 kb/s symmetric.  
           The baseband protocol is implemented as within a link controller 
which can also carry out other low level routines. These low level routines 
are used to interact with the radio layer which in the simulation is 
represented by the Local Network over which the communication is taking 
place.  
           The system provides a point-to-point connection (only two Bluetooth 
units involved), or a point-to-multipoint connection, see Figure 1.1. In the 
point-to-multipoint connection, the channel is shared among several 
Bluetooth units. Two or more units sharing the same channel form a piconet. 
One Bluetooth unit acts as the master of the piconet, whereas the other 
unit(s) act as slave(s). Up to seven slaves can be active in the piconet. In 
addition, many more slaves can remain locked to the master in a so-called 
parked state. These parked slaves cannot be active on the channel, but 
remain synchronized to the master. Both for active and parked slaves, the 
channel access is controlled by the master. Multiple piconets with 
overlapping coverage areas form a scatternet. Each piconet can only have a 
single master. However, slaves can participate in different piconets on a 
time-division multiplex basis. In addition, a master in one piconet can be a 
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slave in another piconet. The piconets shall not be frequency-synchronized. 
Each piconet has its own hopping channel. 
 

     
     Figure 1.1 Piconets with a single slave operation (a), a multi-slave operation (b) and a scatternet 
operation (c). 

 
1.2 PHYSICAL CHANNEL 
 
1.2.1 DEFINITION 
 

The channel is represented by a pseudo-random hopping sequence 
hopping through the 79 or 23 RF channels. The sequence is unique for the 
piconet and is determined by the Bluetooth device address of the master; the 
phase in the sequence is determined by the Bluetooth clock of the master. 
The channel is divided into time slots where each slot corresponds to an RF 
hop frequency. Consecutive hops correspond to different RF hop 
frequencies. The nominal hop rate is 1600 hops/s. All Bluetooth units 
participating in the piconet are time- and hop-synchronized to the channel. 
 
1.2.2 TIME SLOTS 
 

The channel is divided into time slots, each 625 µs in length. The time 
slots are numbered according to the Bluetooth clock of the piconet master. 
The slot numbering ranges from 0 to 227 -1 and is cyclic with a cycle length 
of 2 27 . In the time slots, master and slave can transmit packets. 

A TDD scheme is used where master and slave alternatively transmit. 
See Figure 1.2 . The master starts its transmission in even-numbered time 
slots only, and the slave starts its transmission in odd-numbered time slots 
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only. The packet start is aligned with the slot start. Packets transmitted by 
the master or the slave may extend over up to five time slots. The RF hop 
frequency remains fixed for the duration of the packet. For a single packet, 
the RF hop frequency to be used is derived from the current Bluetooth clock 
value. For a multi-slot packet, the RF hop frequency to be used for the entire 
packet is derived from the Bluetooth clock value in the first slot of the 
packet. The RF hop frequency in the first slot after a multi-slot packet shall 
use the frequency as determined by the current Bluetooth clock value. Figure 
1.3 illustrates the hop definition on single- and multi-slot packets. If a packet 
occupies more than one time slot, the hop frequency applied shall be the hop 
frequency as applied in the time slot where the packet transmission was 
started. 
  
 

     
      Figure 1.2 TDD and Timing 
 

       
     Figure 1.3 Multi-slot Packets 
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1.3 PHYSICAL LINKS 
  
1.3.1 GENERAL      
     

 Between master and slave(s), the Asynchronous Connection-Less 
(ACL) link is established The ACL link is a point-to-multipoint link between 
the master and all the slaves participating on the piconet. The master can 
establish an ACL link on a per-slot basis to any slave, in another link. 
 
1.3.2 ACO LINKS 
       

The ACL link provides a packet-switched connection between the 
master and all active slaves participating in the piconet. Both asynchronous 
and isochronous services are supported. Between a master and a slave only a 
single ACL link can exist. For most ACL packets, packet retransmission is 
applied to assure data integrity. 

A slave is permitted to return an ACL packet in the slave-to-master 
slot if and only if it has been addressed in the preceding master-to-slave slot. 
If the slave fails to decode the slave address in the packet header, it is not 
allowed to transmit. ACL packets not addressed to a specific slave are 
considered as broadcast packets and are read by every slave. If there is no 
data to be sent on the ACL link and no polling is required, no transmission 
shall take place. 
 
1.4 PACKETS 
 
1.4.1 GENERAL DESCRIPTION 
 
         The bit ordering when defining packets and messages in the Baseband 
Layer, follows the Little Endian format, i.e., the following rules apply: 
 
• The least significant bit (LSB) corresponds to b0 ; 
• The LSB is the first bit sent over the air; 
• In illustrations, the LSB is shown on the left side; 
 

The link controller interprets the first bit arriving from a higher 
software layer as b0; i.e. this is the first bit to be sent over the air. 
Furthermore, data fields generated internally at baseband level, such as the 
packet header fields and pay-load header length, are transmitted with the 
LSB first. For instance, a 3-bit parameter X=3 is sent as over the air b0b1b2 
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where 0 is sent first and 2 is sent last. The data on the piconet channel is 
conveyed in packets. The general packet format is shown in Figure 1.4. Each 
packet consists of 3 entities: the access code, the header, and the payload. In 
the figure, the number of bits per entity is indicated. 
 

            
            Figure 1.4 Standard Packet Format 

 
The access code and header are of fixed size : 72 bits and 54 bits 

respectively. The payload can range from zero to a maximum of 2745 bits. 
Different packet types have been defined. Packets may consist of the 
(shortened) access code only  of the access code header, or of the access 
code header payload. 
 
1.4.2 ACCESS CODE 
 

Each packet starts with an access code. If a packet header follows, the 
access code is 72 bits long, otherwise the access code is 68 bits long. This 
access code is used for synchronization, DC offset compensation and 
identification. The access code identifies all packets exchanged on the 
channel of the piconet: all packets sent in the same piconet are preceded by 
the same channel access code.  

The access code is also used in paging and inquiry procedures. In this 
case, the access code itself is used as a signalling message and neither a 
header nor a payload is present. The access code consists of a preamble, a 
sync word, and possibly a trailer, as shown in Figure 1.5. 
 

       
      Figure 1.5 Access Code Format 
 
1.4.2.1 ACCESS CODE TYPES 
 
There are three different types of access codes defined: 
 
• Channel Access Code (CAC) 
• Device Access Code (DAC) 
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• Inquiry Access Code (IAC) 
 

The respective access code types are used for a Bluetooth unit in 
different operating modes. The channel access code identifies a piconet. This 
code is included in all packets exchanged on the piconet channel. The device 
access code is used for special signalling procedures, e.g., paging and 
response to paging. For the inquiry access code there are two variations. A 
general inquiry access code (GIAC) is common to all devices. The GIAC 
can be used to discover which other Bluetooth units are in range. The 
dedicated inquiry access code (DIAC) is common for a dedicated group of 
Bluetooth units that share a common characteristic. The DIAC can be used 
to discover only these dedicated Bluetooth units in range. The CAC consists 
of a preamble, sync word, and trailer and its total length is 72 bits. When 
used as self-contained messages without a header, the DAC and IAC do not 
include the trailer bits and are of length 68 bits. The different access code 
types use different Lower Address Parts (LAPs) to construct the sync word. 
A summary of the different access code types can be found In Table 1.1.  
 

                   
                   Table 1.1 Summary of Access Code Types 
 
1.4.2.2. PREAMBLE 
 

The preamble is a fixed zero-one pattern of 4 symbols used to 
facilitate DC compensation. The sequence is either 1010 or 0101, depending 
whether the LSB of the following sync word is 1 or 0, respectively. The 
preamble is shown In Figure 1.6. 
 

    
   Figure 1.6 Preamble 
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1.4.2.3 SYNCH WORD 
 

The sync word is a 64-bit code word derived from a 24 bit address 
(LAP); for the CAC the master’s LAP is used; for the GIAC and the DIAC, 
reserved, dedicated LAPs are used; for the DAC, the slave unit LAP is used. 
The good auto correlation properties of the sync word improve on the timing 
synchronization process. 
 
1.4.2.4 TRAILER 
 
The trailer is appended to the sync word as soon as the packet header 
follows the access code. This is typically the case with the CAC, but the 
trailer is also used in the DAC and IAC when these codes are used in FHS 
packets exchanged during page response and inquiry response procedures. 
The trailer is a fixed zero-one pattern of four symbols. The trailer together 
with the three MSBs of the sync word form a 7-bit pattern of alternating 
ones and zeroes which may be used for extended DC compensation. The 
trailer sequence is either 1010 or 0101 depending on whether the MSB of the 
sync word is 0 or 1, respectively. The choice of trailer is illustrated in Figure 
1.7. 
 

 
Figure 1.7: Trailer in CAC when MSB of sync word is 0 (a), and when MSB of sync word is 1 (b). 
 

1.4.3 PACKET HEADER 
 
The header contains link control (LC) information and consists of 5 fields: 
 
• AM_ADDR: 3- bit active member address 
• TYPE: 4-bit type code 
• FLOW: 1-bit flow control 
• ARQN: 1-bit acknowledge indication 
• SEQN: 1-bit sequence number 
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The total header consists of 10 bits, see Figure 1.8 resulting in a 54-bit 
header. Note that the AM_ADDR and TYPE fields are sent with their LSB 
first. The function of the different fields will be explained next. 
  

                        
                             Figure 1.8: Header format 
 
1.4.3.1 AM_ADDR 
 

The AM_ADDR represents a member address and is used to 
distinguish between the active members participating on the piconet. In a 
piconet, one or more slaves are connected to a single master. To identify 
each slave separately, each slave is assigned a temporary 3-bit address to be 
used when it is active. Packets exchanged between the master and the slave 
all carry the AM_ADDR of this slave; that is, the AM_ADDR of the slave is 
used in both master-to-slave packets and in the slave-to-master packets. The 
all-zero address is reserved for broadcasting packets from the master to the 
slaves. An exception is the FHS packet which may use the all-zero member 
address but is not a broadcast message. Slaves that are disconnected or 
parked give up their AM_ADDR. A new AM_ADDR has to be assigned 
when they re-enter the piconet. 
 
1.4.3.2 TYPE 
 

Sixteen different types of packets can be distinguished. The 4-bit 
TYPE code specifies which packet type is used. Important to note is that the 
interpretation of the TYPE code depends on the physical link type associated 
with the packet. First, it shall be determined whether the packet is sent on an 
ACL link. Then it can be determined which type of ACL packet has been 
received. The TYPE code also reveals how many slots the current packet 
will occupy. This allows the non-addressed receivers to refrain from 
listening to the channel for the duration of the remaining slots. Each packet 
type is described in more detail further on. 
  
1.4.3.3 FLOW 
 

This bit is used for flow control of packets over the ACL link. When 
the RX buffer for the ACL link in the recipient is full and is not emptied, a 
STOP indication (FLOW=0) is returned to stop the transmission of data 
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temporarily. Packets including only link control information (ID, POLL and 
NULL packets) can still be received. When the RX buffer is empty, a GO 
indication (FLOW=1) is returned. When no packet is received, or the 
received header is in error, a GO is assumed implicitly. In this case, the slave 
can receive a new packet with CRC although its RX buffer is still not 
emptied. The slave shall then return a NAK in response to this packet even if 
the packet passed the CRC check. 
 
1.4.3.4 ARQN 
 

The 1-bit acknowledgment indication ARQN is used to inform the 
source of a successful transfer of payload data with CRC, and can be 
positive acknowledge ACK or negative acknowledge NAK. If the reception 
was successful, an ACK (ARQN=1) is returned, otherwise a NAK 
(ARQN=0) is returned. When no return message regarding acknowledge is 
received, a NAK is assumed implicitly. NAK is also the default return 
information. The ARQN is piggy-backed in the header of the return packet.  
An unnumbered ARQ scheme which means that the ARQN relates to the 
latest received packet from the same source, is used.  
 
1.4.3.5 SEQN 
 

The SEQN bit provides a sequential numbering scheme to order the 
data packet stream. For each new transmitted packet the SEQN bit is 
inverted. This is required to filter out retransmissions at the destination; if a 
retransmission occurs due to a failing ACK, the destination receives the 
same packet twice. By comparing the SEQN of consecutive packets, 
correctly received retransmissions can be discarded. For broadcast packets, a 
modified sequencing method is used. 
 
1.4.4 PACKET TYPES 
 

The packets used on the piconet are related to the physical links they 
are used in. For each link, 12 different packet types can be defined. Four 
control packets are common to all link types: their TYPE code is unique 
irrespective of the link type. To indicate the different packets on a link, the 
4-bit TYPE code is used. The packet types have been divided into four 
segments. The first segment is reserved for the four control packets common 
to all physical link types; all four packet types have been defined. The 
second segment is reserved for packets occupying a single time slot; six 
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packet types have been defined. The third segment is reserved for packets 
occupying three time slots; two packet types have been defined. The fourth 
segment is reserved for packets occupying five time slots; two packet types 
have been defined. The slot occupancy is reflected in the segmentation and 
can directly be derived from the type code. Table 1.2 summarizes the 
packets defined so far for the ACL link types. 
 
 
 
 

                 
                Table 1.2: Packets defined for ACL link type 
 
1.4.4.1  PACKET TYPES 
 

There are five packets. In addition to the types listed in segment 1 of 
the previous table, there is the ID packet not listed. Each packet will now be 
examined in more detail. 
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1.4.4.1.1 ID packet 
 

The identity or ID packet consists of the device access code (DAC) or 
inquiry access code (IAC). It has a fixed length of 68 bits. It is a very robust 
packet since the receiver uses a bit correlator to match the received packet to 
the known bit sequence of the ID packet. The packet is used, for example, in 
paging, inquiry, and response routines. 
 
1.4.4.1.2 NULL packet 
 

The NULL packet has no payload and therefore consists of the 
channel access code and packet header only. Its total (fixed) length is 126 
bits. The NULL packet is used to return link information to the source 
regarding the success of the previous transmission (ARQN), or the status of 
the RX buffer (FLOW). The NULL packet itself does not have to be 
acknowledged.  
 
1.4.4.1.3 POLL packet 
 

The POLL packet is very similar to the NULL packet. It does not have 
a pay-load either. In contrast to the NULL packet, it requires a confirmation 
from the recipient. It is not a part of the ARQ scheme. The POLL packet 
does not affect the ARQN and SEQN fields. Upon reception of a POLL 
packet the slave must respond with a packet. This return packet is an implicit 
acknowledgement of the POLL packet. This packet can be used by the 
master in a piconet to poll the slaves, which must then respond even if they 
do not have information to send.  
 
1.4.4.1.4 FHS packet 
 

The FHS packet is a special control packet revealing, among other 
things, the Bluetooth device address and the clock of the sender. The 
payload contains 144 information bits. The FHS packet covers a single time 
slot. Figure 1.9 illustrates the format and contents of the FHS payload. The 
payload consists of eleven fields. The FHS packet is used in page master 
response, inquiry response and in master slave switch. In page master 
response or master slave switch, it is retransmitted until its reception is 
acknowledged or a timeout has exceeded. In inquiry response, the FHS 
packet is not acknowledged. The FHS packet contains real-time clock 
information. This clock information is updated before each retransmission. 
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The retransmission of the FHS payload is thus somewhat different from the 
retransmission of ordinary data payloads where the same payload is used for 
each retransmission. The FHS packet is used for frequency hop 
synchronization before the piconet channel has been established, or when an 
existing piconet changes to a new piconet. In the former case, the recipient 
has not been assigned an active member address yet, in which case the 
AM_ADDR field in the FHS packet header is set to all-zeroes; however, the 
FHS packet should not be considered as a broadcast packet. In the latter case 
the slave already has an AM_ADDR in the existing piconet, which is then 
used in the FHS packet header. 
 

     
     Figure 1.9: Format of the FHS payload 
 
Parity Bits: This 34-bit field contains the parity bits that form the first part 
of the sync word of the access code of the unit that sends the FHS packet. 
These bits are derived from the LAP. 
 
LAP:  This 24-bit field contains the lower address part of the unit that sends 
the FHS packet. 
 
SR: This 2-bit field is the scan repetition field and indicates the interval 
between two consecutive page scan windows. 
 
SP: This 2-bit field is the scan period field and indicates the period in which 
the mandatory page scan mode is applied after transmission of an inquiry 
response message. 
 
UAP: This 8-bit field contains the upper address part of the unit that sends 
the FHS packet. 
 
NAP: This 16-bit field contains the non-significant address part of the unit 
that sends the FHS packet (see also section  on page for LAP, UAP, and 
NAP). 
 
Class of device: This 24-bit field contains the class of device of the unit that 
sends the FHS packet. The field is defined in Bluetooth Assigned Numbers. 
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AM_ADDR: This 3-bit field contains the member address the recipient shall 
use if the FHS packet is used at call setup or master-slave switch. A slave 
responding to a master or a unit responding to an inquiry request message 
shall include an all-zero AM_ADDR field if it sends the FHS packet.  
 
CLK 27-2: This 26-bit field contains the value of the native system clock of 
the unit that sends the FHS packet, sampled at the beginning of the 
transmission of the access code of this FHS packet. This clock value has a 
resolution of 1.25ms (two-slot interval). For each new transmission, this 
field is updated so that it accurately reflects the real-time clock value. 
 
Page scan mode : This 3-bit field indicates which scan mode is used by 
default by the sender of the FHS packet. The interpretation of the page scan 
mode is illustrated in Table 1.5. Currently, the standard supports one 
mandatory scan mode and up to three optional scan modes. 
 
 

                    
                    Table 1.3: Contents of SR field 
 

                     
                     Table 1.4: Contents of SP field 
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                      Table 1.5: Contents of page scan mode field 
 

The LAP, UAP, and NAP together form the 48-bit IEEE address of 
the unit that sends the FHS packet. Using the parity bits and the LAP, the 
recipient can directly construct the channel access code of the sender of the 
FHS packet. 
 
1.4.4.1.5 DM1 PACKET 
 

The DM1 packet is a packet that carries data information only. DM 
stands for Data Medium rate. The payload contains up to 18 information 
bytes (including the 1-byte payload header) plus a 16-bit CRC code. The 
DM1 packet may cover up to a single time slot. The payload header in the 
DM1 packet is only 1 byte long. The length indicator in the payload header 
specifies the number of user bytes. 
 
1.4.5 PAYLOAD FORMAT 
 

The ACL packets only have a data field in their payload. 
 
1.4.5.1 DATA FIELD 
 

The data field consists of three segments: a payload header, a payload 
body, and possibly a CRC code. 
 
1. Payload header 
 

Only data fields have a payload header. The payload header is one or 
two bytes long. Packets in segments one and two have a 1-byte payload 
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header; packets in segments three and four have a 2-bytes payload header. 
The payload header specifies the logical channel (2-bit L_CH indication), 
controls the flow on the logical channels (1-bit FLOW indication), and has a 
payload length indicator (5 bits and 9 bits for 1-byte and 2-bytes payload 
header, respectively). In the case of a 2-byte payload header, the length 
indicator is extended by four bits into the next byte. The remaining four bits 
of the second byte are reserved for future use and shall be set to zero. The 
formats of the 1-byte and 2-bytes payload headers are shown in the figures 
given below. 
 

       
       Figure 1.10: Payload header format for single-slot packets. 
 

             Figure 1.11: Payload header format for multi-slot packets. 
 

The L_CH field is transmitted first, the length field last. In the table 
given below more details about the contents of the L_CH field are listed. 
 

               Table 1.6: Logical channel L_CH field contents 
 

An L2CAP message can be fragmented into several packets. Code 10 
is used for an L2CAP packet carrying the first fragment of such a message; 
code 01 is used for continuing fragments. If there is no fragmentation, code 
10 is used for every packet. Code 11 is used for LMP messages. Code 00 is 
reserved for future use. 

The flow indicator in the payload is used to control the flow at the 
L2CAP level. It is used to control the flow per logical channel (when 
applicable). FLOW=1 means flow-on (“OK to send") and FLOW=0 means 
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flow-off ("stop"). After a new connection has been established the flow 
indicator should be set to FLOW=1. When a Bluetooth unit receives a 
payload header with the flow bit set to "stop" (FLOW=0), it shall stop the 
transmission of ACL packets before an additional amount of payload data is 
sent. This amount can be defined as the flow control lag, expressed with a 
number of bytes. 

The shorter the flow control lag, the less buffering the other Bluetooth 
device must dedicate to this function. If the packets containing the payload 
flow bit of "stop" is received with a valid packet header but bad payload, the 
payload flow control bit will not be recognized. 

The packet level ACK contained in the packet header will be received 
and a further ACL packet can be transmitted. Each occurrence of this 
situation allows a further ACL packet to be sent in spite of the flow control 
request being sent via the payload header flow control bit. It is 
recommended that Bluetooth units that use the payload header flow bit 
should ensure that no further ACL packets are sent until the payload flow bit 
has been correctly received. This can be accomplished by simultaneously 
turning on the flow bit in the packet header and keeping it on until an ACK 
is received back (ARQN=1). This will typically be only one round trip time. 
The link manager is responsible for setting and processing the flow bit in the 
payload header. Real-time flow control is carried out at the packet level by 
the link controller via the flow bit in the packet header. With the payload 
flow bit, traffic from the remote end can be controlled. 

It is allowed to generate and send an ACL packet with payload length 
zero irrespective of flow status. L2CAP start- and continue-fragment 
indications (L_CH=10 and L_CH=01) also retain their meaning when the 
payload length is equal to zero (i.e. an empty start-fragment should not be 
sent in the middle of an on-going L2CAP packet transmission). It is always 
safe to send an ACL packet with payload length=0 and L_CH=01. The pay-
load flow bit has its own meaning for each logical channel (UA/I or LM. On 
the LM channel, no flow control is applied and the payload flow bit is 
always set at one. 
  

    
   Table 1.7: Use of payload header flow bit on the logical channels. 
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The length indicator indicates the number of bytes (i.e. 8-bit words) in 
the payload excluding the payload header; i.e. the payload body only. The 
MSB of the length field in a 1-byte header is the last (right-most) bit in the 
payload header; the MSB of the length field in a 2-byte header is the fourth 
bit (from left) of the second byte in the payload header. 
 
2. Payload body 
 

The payload body includes the user host information and determines 
the effective user throughput. The length of the payload body is indicated in 
the length field of the payload header. 
 
1.4.6 PACKET SUMMARY 
 

     
    Table 1.8: Link control packets 
 

      
    Table 1.9: Data packet 
 
 
 

1.5 LOGICAL CHANNELS 
 
In the designed system, three logical channels are defined: 
 
• LC control channel 
• UA user channel 
• UI user channel 
 

The control channel LC is used at the link control level. The user 
channels UA, UI are used to carry asynchronous and isochronous 
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respectively. The LC channel is carried in the packet header; all other 
channels are carried in the packet payload. The  UA, and UI channels are 
indicated in the L_CH field in the payload header. The UA and UI channels 
are carried by the ACL link. 
 
1.5.1 LC CHANNEL (LINK CONTROL) 
 

The LC control channel is mapped onto the packet header. This 
channel carries low level link control information like ARQ, flow control, 
and payload characterization. The LC channel is carried in every packet 
except in the ID packet which has no packet header. 
 
1.5.2 UA/UI CHANNEL  
(USER ASYNCHRONOUS/ISOCHRONOUS DATA) 
 

The UA channel carries L2CAP transparent asynchronous user data. 
This data may be transmitted in one or more baseband packets. For 
fragmented messages, the start packet uses an L_CH code of 10 in the 
payload header. Remaining continuation packets use L_CH code 01. If there 
is no fragmentation, all packets use the L2CAP start code 10. Isochronous 
data channel is supported by timing start packets properly at higher levels. 
At the baseband level, the L_CH code usage is the same as the UA channel. 
 
1.5.3 CHANNEL MAPPING 
 

The LC channel is mapped onto the packet header. All other channels 
are mapped onto the payload. All channels are mapped on the ACL packets.  
 
1.6 TRANSMIT/RECEIVE TIMING 
 

The Bluetooth transceiver applies a time-division duplex (TDD) 
scheme. This means that it alternately transmits and receives in a 
synchronous manner. It depends on the mode of the Bluetooth unit what the 
exact timing of the TDD scheme is. In the normal connection mode, the 
master transmission always starts at even numbered time slots (master 
CLK1=0) and the slave transmission shall always start at odd numbered 
time slots (master CLK1=1). Due to packet types that cover more than a 
single slot, master transmission may continue in odd numbered slots and 
slave transmission may continue in even numbered slots. All timing 
diagrams shown in this chapter are based on the signals as present at the 
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antenna. The term “exact” when used to describe timing refers to an ideal 
transmission or reception and neglects timing jitter and clock frequency 
imperfections. 

The average timing of master packet transmission does not drift faster 
than 20 ppm relative to the ideal slot timing of 625 µs while the 
instantaneous timing does not deviate more than 1 µs from the average 
timing as per specifications.       
 
1.6.1 MASTER/SLAVE TIMING SYNCHRONIZATION 
 

The piconet is synchronized by the system clock of the master. The 
master never adjusts its system clock during the existence of the piconet: it 
keeps an exact interval of Mx625 µs (where M is an even, positive integer 
larger than 0) between consecutive transmissions. The slaves adapt their 
native clocks with a timing offset in order to match the master clock. This 
offset is updated each time a packet is received from the master: by 
comparing the exact RX timing of the received packet with the estimated 
RX timing, the slaves correct the offset for any timing misalignments. The 
slave RX timing can be corrected with any packet sent in the master-to-slave 
slot, since only the channel access code is required to synchronize the slave. 

The slave TX timing is based on the most recent slave RX timing. The 
RX timing is based on the latest successful trigger during a master-to-slave 
slot. For ACL links, this trigger must have occurred in the master-to-slave 
slot directly preceding the current slave transmission. The slave shall be able 
to receive the packets and adjust the RX timing as long as the timing 
mismatch remains within the 312µs uncertainty window. The master TX 
timing is strictly related to the master clock. The master shall keep an exact 
interval of Mx1250 µs (where M is a positive integer larger than 0) between 
the start of successive transmissions; the RX timing is based on this TX 
timing with a shift of exactly Nx625 µs (where N is an odd, positive integer 
larger than 0). During the master RX cycle, the master will also use the 
uncertainty window to allow for slave misalignments. The master will adjust 
the RX processing of the considered packet accordingly, but will not adjust 
its RX/TX timing for the following TX and RX cycles. During periods when 
an active slave is not able to receive any valid channel access codes from the 
master, the slave may increase its receive uncertainty window and/or use 
predicted timing drift to increase the probability of receiving the master’s 
bursts when reception resumes. Timing behavior may differ slightly 
depending on the current state of the unit. The different states are described 
in the next sections.  



 27

 
1.6.2 CONNECTION STATE 
 

In the connection mode, the Bluetooth transceiver transmits and 
receives alternately. In the figures, only single-slot packets are shown as an 
example. Depending on the type and the payload length, the packet size can 
be up to 366 µs. Each RX and TX transmission is at a different hop 
frequency. For multi-slot packets, several slots are covered by the same 
packet, and the hop frequency used in the first slot will be used throughout 
the transmission. 
 

        
       Figure 1.12: RX/TX cycle of Bluetooth master transceiver in normal mode for single-slot 
         packets. 
 

The master TX/RX timing is shown in the Figure In the figures shown 
here f(k) is used for the frequencies of the page hopping sequence and f'(k) 
denotes the corresponding page response sequence frequencies. The channel 
hopping frequencies are indicated by g(m). After transmission, a return 
packet is expected Nx625 µs after the start of the TX burst where N is an 
odd, positive integer. N depends on the type of the transmitted packet. To 
allow for some time slipping, an uncertainty window is defined around the 
exact receive timing. During normal operation, the window length is 20 µs, 
which allows the RX burst to arrive up to 10 µs too early or 10 µs too late. 
During the beginning of the RX cycle, the access correlator searches for the 
correct channel access code over the uncertainty window. If no trigger event 
occurs, the receiver goes to sleep until the next RX event. If in the course of 
the search, it becomes apparent that the correlation output will never exceed 
the final threshold, the receiver may go to sleep earlier. If a trigger event 
does occur, the receiver remains open to receive the rest of the packet.The 
current master transmission is based on the previous master transmission: 
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it is scheduled Mx125s after the start of the previous master TX burst where 
M depends on the transmitted and received packet type. Note that the master 
TX timing is not affected by time drifts in the slave(s). If no transmission 
takes place during a number of consecutive slots, the master will take the TX 
timing of the latest TX burst as reference. The slave’s transmission is 
scheduled Nx62�s after the start of the slave’s RX burst. If the slave’s RX 
timing drifts, so will its TX timing. If no reception takes place during a 
number of consecutive slots, the slave takes the RX timing of the latest RX 
burst as reference.  
 
1.6.3 RETURN FROM HOLD MODE 
 

In the connection state, the Bluetooth unit can be placed in a hold 
mode. In the hold mode, a Bluetooth transceiver neither transmits nor 
receives information. When returning to the normal operation after a hold 
mode in a slave Bluetooth unit, the slave must listen for the master before it 
may send information. In that case, the length of the search window in the 
slave unit may be increased from � µs to a larger value X µs. Note that only 
RX hop frequencies are used: the hop frequency used in the master-to-slave 
(RX) slot is also used in the uncertainty window extended into the preceding 
time interval normally used for the slave-to-master (TX) slot. If the length of 
search window (X) exceeds 1250 µs, consecutive windows shall not be 
centered at the start of RX hops g(2m), g(2m+2), ... g(2m+2i) (where ‘i’ is 
an integer) to avoid overlapping search windows. Consecutive windows 
should instead be centered at g(2m), g(2m+4), ... g(2m+4i), which gives a 
maximum value X=2500 µs, or even at g(2m), g(2m+6), ...g(2m+6i) which 
gives a maximum value X=3750 µs. The RX hop frequencies used shall 
correspond to the RX slot numbers. Single slot packets are used upon return 
from hold to minimize the synchronization time, especially after long hold 
periods that require search windows exceeding 625 µs. 
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      Figure 1.13: RX timing of slave returning from hold state. 
 
1.6.4 PARK AND SNIFF MODES WAKE-UP 
 

The park and sniff modes is similar to the hold mode. A slave in park 
or sniff mode periodically wakes up to listen to transmissions from the 
master and to re-synchronize its clock offset. As in the return from hold 
mode, a slave in park or sniff mode when waking up may increase the length 
of the search window from 312µs to a larger value X µs as illustrated in 
Figure 1.13. 
 
1.6.5 PAGE STATE 
 

In the page state, the master transmits the device access code (ID 
packet) corresponding to the slave to be connected, rapidly on a large 
number of different hop frequencies. Since the ID packet is a very short 
packet, the hop rate can be increased from 1600 hops/s to 3200 hops/s. In a 
single TX slot interval, the paging master transmits on two different hop 
frequencies. In a single RX slot interval, the paging transceiver listens on 
two different hop frequencies; see Figure 1.14. During the TX slot, the 
paging unit sends an ID packet at the TX hop frequencies f(k) and f(k+1). In 
the RX slot, it listens for a response on the corresponding RX hop 
frequencies f’(k) and f’(k+1). The listening periods are exactly timed 625 µs 
after the corresponding paging packets, and include a �µs uncertainty 
window.  
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Figure 1.14: RX/TX cycle of Bluetooth transceiver in PAGE mode. 
 
1.6.6 FHS PACKET 
 

At connection setup and during a master-slave switch, an FHS packet 
is transferred from the master to the slave. This packet will establish the 
timing and frequency synchronization. After the slave unit has received the 
page message, it will return a response message which again consists of the 
ID packet and follows exactly 625 µs after the receipt of the page message. 
The master will send the FHS packet in the TX slot following the RX slot in 
which it received the slave response, according to the RX/TX timing of the 
master. The time difference between the response and the FHS message will 
depend on the timing of the page message the slave received. In figure 1.15, 
the slave receives the paging message sent first in the master-to-slave slot. It 
will then respond with an ID packet in the first half of the slave-to-master 
slot. The timing of the FHS packet is based on the timing of the page 
message sent first in the preceding master-to-slave slot: there is an exact 
1250 µs delay between the first page message and the FHS packet. The 
packet is sent at the hop frequency f(k+1) which is the hop frequency 
following the hop frequency f(k) the page message was received in. In 
Figure 1.16, the slave receives the paging message sent secondly in the 
master-to-slave slot. It will then respond with an ID packet in the second 
half of the slave-to-master slot exactly 625 µs after the receipt of the page 
message. The timing of the FHS packet is still based on the timing of the 
page message sent first in the preceding master-to-slave slot: there is an 
exact 1250 µs delay between the first page message and the FHS packet. 
The packet is sent at the hop frequency f(k+2) which is the hop frequency 
following the hop frequency f(k+1) the page message was received in.  
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      Figure 1.15: Timing of FHS packet on successful page in first half slot. 
 

The slave will adjust its RX/TX timing according to the reception of 
the FHS packet (and not according to the reception of the page message). 
That is, the second response message that acknowledges the reception of the 
FHS packet is transmitted 625 µs after the start of the FHS packet.  
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        Figure 1.16: Timing of FHS packet on successful page in second half slot. 
 
1.6.7 MULTI-SLAVE OPERATION 
 

As was mentioned in the beginning of this chapter, the master always 
starts the transmission in the even-numbered slots whereas the slaves start 
their transmission in the odd-numbered slots. This means that the timing of 
the master and the slave(s) is shifted by one slot (625 µs), see Figure 1.17. 
Only the slave that is addressed by its AM_ADDR can return a packet in the 
next slave-to-master slot. If no valid AM_ADDR is received, the slave may 
only respond if it concerns its reserved SCO slave-to-master slot. In case of 
a broadcast message, no slave is allowed to return a packet (an exception is 
found in the access window for access requests in the park mode. 
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         Figure 1.17: RX/TX timing in multi-slave configuration 
 

1.7. CHANNEL CONTROL 
 
1.7.1 SCOPE 
 

This section describes how the channel of a piconet is established and 
how units can be added to and released from the piconet. Several states of 
operation of the Bluetooth units are defined to support these functions. In 
addition, the operation of several piconets sharing the same area, the so-
called scatter-net, is discussed. A special section is attributed to the 
Bluetooth clock which plays a major role in the FH synchronization. 
 
1.7.2 MASTER-SLAVE DEFINITION 
 

The channel in the piconet is characterized entirely by the master of 
the piconet. The Bluetooth device address (BD_ADDR) of the master 
determines the FH hopping sequence and the channel access code; the 
system clock of the master determines the phase in the hopping sequence 
and sets the timing. In addition, the master controls the traffic on the channel 
by a polling scheme. By definition, the master is represented by the 
Bluetooth unit that initiates the connection (to one or more slave units). Note 
that the names ‘master’ and ‘slave’ only refer to the protocol on the channel: 
the Bluetooth units themselves are identical; that is, any unit can become a 
master of a piconet. Once a piconet has been established, master-slave roles 
can be exchanged.  
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1.7.3 BLUETOOTH CLOCK 
 

Every Bluetooth unit has an internal system clock which determines 
the timing and hopping of the transceiver. The Bluetooth clock is derived 
from a free running native clock which is never adjusted and is never turned 
off. For synchronization with other units, only offsets are used that, added to 
the native clock, provide temporary Bluetooth clocks which are mutually 
synchronized. It should be noted that the Bluetooth clock has no relation to 
the time of day; it can therefore be initialized at any value. The Bluetooth 
clock provides the heart beat of the Bluetooth transceiver. Its resolution is at 
least half the TX or RX slot length, or 312.5 µs. The clock has a cycle of 
about a day. If the clock is implemented with a counter, a 28-bit counter is 
required that wraps around at 2 28 -1. The LSB ticks in units of 312.5 µs, 
giving a clock rate of 3.2 kHz. The timing and the frequency hopping on the 
channel of a piconet is determined by the Bluetooth clock of the master. 
When the piconet is established, the master clock is communicated to the 
slaves. Each slave adds an offset to its native clock to be synchronized to the 
master clock. Since the clocks are free-running, the offsets are updated 
regularly for accuracy. The clock determines critical periods and triggers the 
events in the Bluetooth receiver. Four periods are important in the Bluetooth 
system: 312.5 ��s, 625 ��s, 1.25 ms, and 1.28 s; these periods correspond 
to the timer bits CLK 0 , CLK 1 , CLK 2 , and CLK 12 , respectively, see 
Figure 1.18. Master-to-slave transmission starts at the even-numbered slots 
when CLK 0 and CLK 1 are both zero. 
 

       
      Figure 1.18: Bluetooth clock. 
 
In the different modes and states a Bluetooth unit can reside in, the clock has 
different appearances: 
 
• CLKN native clock 
• CLKE estimated clock 
• CLK master clock 
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CLKN is the free-running native clock and is the reference to all other clock 
appearances. In states with high activity, the native clock is driven by the 
reference crystal oscillator with worst case accuracy of +/-20ppm. In the low 
power states, like STANDBY, HOLD, PARK and SNIFF, the native clock 
may be driven by a low power oscillator (LPO) with relaxed accuracy (+/-
250ppm). CLKE and CLK are derived from the reference CLKN by adding 
an offset. CLKE is a clock estimate a paging unit makes of the native clock 
of the recipient; i.e. an offset is added to the CLKN of the pager to 
approximate the CLKN of the recipient, see Figure 1.19. By using the 
CLKN of the recipient, the pager speeds up the connection establishment. 
CLK is the master clock of the piconet. It is used for all timing and 
scheduling activities in the piconet. All Bluetooth devices use the CLK to 
schedule their transmission and reception. The CLK is derived from the 
native clock CLKN by adding an offset, see Figure 1.20. The offset is zero 
for the master since CLK is identical to its own native clock CLKN. Each 
slave adds an appropriate offset to its CLKN such that the CLK corresponds 
to the CLKN of the master. Although all CLKNs in the Bluetooth devices 
run at the same nominal rate, mutual drift causes inaccuracies in CLK. 
Therefore, the offsets in the slaves are regularly updated such that CLK is 
approximately CLKN of the master.  
 

     
    Figure 1.19: Derivation of CLKE 
 
 
 
 

     
      Figure 1.20: Derivation of CLK in master (a) and in slave (b). 
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1.7.4 OVERVIEW OF STATES 
 

Figure 1.21 shows a state diagram illustrating the different states used 
in the Bluetooth link controller. There are two major states: STANDBY and 
CONNECTION; in addition, there are seven substates, page, page scan, 
inquiry, inquiry scan, master response, slave response, and inquiry 
response. The substates are interim states that are used to add new slaves to 
a piconet. To move from one state to the other, either commands from the 
Blue-tooth link manager are used, or internal signals in the link controller 
are used (such as the trigger signal from the correlator and the timeout 
signals). 
 
1.7.5 STANDBY STATE 
 

The STANDBY state is the default state in the Bluetooth unit. In this 
state, the Bluetooth unit is in a low-power mode. Only the native clock is 
running at the accuracy of the LPO (or better). The controller may leave the 
STANDBY state to scan for page or inquiry messages, or to page or inquiry 
itself. When responding to a page message, the unit will not return to the 
STANDBY state but enter the CONNECTION state as a slave. When 
carrying out a successful page attempt, the unit will enter the 
CONNECTION state as a master.  
 
1.7.6 ACCESS PROCEDURES 
 
1.7.6.1 General 
 

In order to establish new connections the procedures inquiry and 
paging are used. The inquiry procedure enables a unit to discover which 
units are in range, and what their device addresses and clocks are. With the 
paging procedure, an actual connection can be established. Only the 
Bluetooth device address is required to set up a connection. Knowledge 
about the clock will accelerate the setup procedure. A unit that establishes a 
connection will carry out a page procedure and will automatically be the 
master of the connection. In the paging and inquiry procedures, the device 
access code (DAC) and the inquiry access code (IAC) are used, respectively. 
A unit in the page scan or inquiry scan substate correlates against these 
respective access codes with a matching correlator. For the paging process, 
several paging schemes can be applied. There is one mandatory paging 
scheme which has to be supported by each Bluetooth device. This 
mandatory scheme is used when units meet for the first time, and in case the 
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paging process directly follows the inquiry process. Two units, once 
connected using a mandatory paging/scanning scheme, may agree on an 
optional paging/scanning scheme. Optional paging schemes are discussed in. 
In the current chapter, only the mandatory paging scheme is considered. 
 
1.7.6.2 Page scan 
 

In the page scan substate, a unit listens for its own device access code 
for the duration of the scan window T w page scan . During the scan 
window, the unit listens at a single hop frequency, its correlator matched to 
its device access code. The scan window shall be long enough to completely 
scan 16 page frequencies. When a unit enters the page scan substate, it 
selects the scan frequency according to the page hopping sequence 
corresponding to this unit. This is a 32-hop sequence (or a 16-hop sequence 
in case of a reduced-hop system) in which each hop frequency is unique. 
The page hopping sequence is determined by the unit’s Bluetooth device 
address (BD_ADDR). The phase in the sequence is determined by CLKN 
16-12 of the unit’s native clock (CLKN 15-12 in case of a reduced-hop 
system); that is, every 1.28s a different frequency is selected. If the 
correlator exceeds the trigger threshold during the page scan, the unit will 
enter the slave response substate. The page scan substate can be entered 
from the STANDBY state or the CONNECTION state. In the STANDBY 
state, no connection has been established and the unit can use all the 
capacity to carry out the page scan. Before entering the page scan substate 
from the CONNECTION state, the unit preferably reserves as much 
capacity for scanning. If desired, the unit may place ACL connections in the 
HOLD mode or even use the PARK mode The scan interval T page scan is 
defined as the interval between the beginnings of two consecutive page 
scans. A distinction is made between the case where the scan interval is 
equal to the scan window T w page scan (continuous scan), the scan interval 
is maximal 1.28s, or the scan interval is maximal 2.56s. These three cases 
determine the behavior of the paging unit; that is, whether the paging unit 
shall use R0, R1 or R2. 

The scan interval information is included in the SR field in the FHS 
packet. 
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Table1.10: Relationship between scan interval, train repetition, and paging modes R0, R1 and R2. 
 
1.7.6.3 Page 
 

The page substate is used by the master (source) to activate and 
connect to a slave (destination) which periodically wakes up in the page 
scan substate. The master tries to capture the slave by repeatedly 
transmitting the slave’s device access code (DAC) in different hop channels. 
Since the Bluetooth clocks of the master and the slave are not synchronized, 
the master does not know exactly when the slave wakes up and on which 
hop frequency. Therefore, it transmits a train of identical DACs at different 
hop frequencies, and listens in between the transmit intervals until it receives 
a response from the slave. The page procedure in the master consists of a 
number of steps. First, the slave’s device address is used to determine the 
page hopping sequence. This is the sequence the master will use to reach the 
slave. For the phase in the sequence, the master uses an estimate of the 
slave’s clock. This estimate can for example be derived from timing 
information that was exchanged during the last encounter with this particular 
device (which could have acted as a master at that time), or from an inquiry 
procedure. With this estimate CLKE of the slave’s Bluetooth clock, the 
master can predict on which hop channel the slave will start page scan. The 
page substate can be entered from the STANDBY state or the CONNEC-
TION state. In the STANDBY state, no connection has been established and 
the unit can use all the capacity to carry out the page. Before entering the 
page substate from the CONNECTION state, the unit shall free as much 
capacity as possible for scanning. 
 
1.7.6.4 Page response procedures 
 

When a page message is successfully received by the slave, there is a 
coarse FH synchronization between the master and the slave. Both the 
master and the slave enter a response routine to exchange vital information 
to continue the connection setup. Important for the piconet connection is that 
both Bluetooth units use the same channel access code, use the same channel 
hopping sequence, and that their clocks are synchronized. These parameters 
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are derived from the master unit. The unit that initializes the connection 
(starts paging) is defined as the master unit (which is thus only valid during 
the time the piconet exists). The channel access code and channel hopping 
sequence are derived from the Bluetooth device address (BD_ADDR) of the 
master. The timing is determined by the master clock. An offset is added to 
the slave’s native clock to temporarily synchronize the slave clock to the 
master clock. At start-up, the master parameters have to be transmitted from 
the master to the slave. The messaging between the master and the slave at 
start-up will be considered in this section. The initial messaging between 
master and slave is shown in Table 1.10and in Figure 1.21 and Figure 1.22. 
In those two figures frequencies f (k), f(k+1), etc. are the frequencies of the 
page hopping sequence determined by the slave’s BD_ADDR. The 
frequencies f’(k), f’(k+1), etc. are the corresponding page_response 
frequencies (slave-to-master). The frequencies g(m) belong to the channel 
hopping sequence.  
 

        
       Table 1.11: Initial messaging during start-up. 
 

In step 1  the master unit is in page substate and the slave unit in the 
page scan substate. Assume in this step that the page message  ( slave’s 
device access code) sent by the master reaches the slave.  On recognizing its 
device access code, the slave enters the slave response in step 2. The master 
waits for a reply from the slave and when this arrives in step 2, it will enter 
the master response in step 3. Note that during the initial mes-sage 
exchange, all parameters are derived from the slave’s BD_ADDR, and that 
only the page hopping and page_response hopping sequences are used 
(which are also derived from the slave’s BD_ADDR). Note that when the 
master and slave enter the response states, their clock input to the page and 
page_response hop selection is frozen.  
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       Figure 1.21: Messaging at initial connection when slave responds to first page message. 
 

       
       Figure 1.22: Messaging at initial connection when slave responds to second page message. 
 
1.7.6.4.1 Slave response 
 

After having received its own device access code in step 1, the slave 
unit transmits a response message in step 2. This response message again 
only consists of the slave’s device access code. The slave will transmit this 
response 625 microseconds after the beginning of the received page message 
(slave ID packet) and at the response hop frequency that corresponds to the 
hop frequency in which the page message was received. The slave 
transmission is therefore time aligned to the master transmission. During 
initial messaging, the slave still uses the page response hopping sequence to 
return information to the master. 

The clock input CLKN 16-12 is frozen at the value it had at the time 
the page message was received. After having sent the response message, the 
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slave’s receiver is activated (312.5 microseconds after the start of the 
response message) and awaits the arrival of a FHS packet. Note that a FHS 
packet can already arrive 312.5 micros after the arrival of the page message 
as shown in Figure 1.23, and not after 625 micros as is usually the case in 
the RX/TX timing. If the setup fails before the CONNECTION state has 
been reached, the following procedure is carried out. The slave will keep 
listening as long as no FHS packet is received until pagerespTO is 
exceeded. Every 1.25 ms, however, it will select the next master-to-slave 
hop frequency according to the  page hop sequence. If nothing is received 
after pagerespTO, the slave returns back to the page scan substate for one 
scan period. If no page message is received during this additional scan 
period, the slave will resume scanning at its regular scan interval and return 
to the state it was in prior to the first page scan state. If a FHS packet is 
received by the slave in the slave response substate, the slave returns a 
response (slave’s device access code only) in step 4 to acknowledge the 
reception of the FHS packet (still using the page response hopping 
sequence). The transmission of this response packet is based on the 
reception of the FHS packet. Then the slave changes to the channel 
(master’s) access code and clock as received from the FHS packet. Only the 
26 MSBs of the master clock are transferred: the timing is assumed such that 
CLK 1 and CLK 0 are both zero at the time the FHS packet was received as 
the master transmits in even slots only. From the master clock in the FHS 
packet, the off-set between the master’s clock and the slave’s clock is 
determined and reported to the slave’s link manager. 

Finally, the slave enters the CONNECTION state in step 5. From 
then on, the slave will use the master’s clock and the master BD_ADDR to 
determine the channel hopping sequence and the channel access code. The 
connection mode starts with a POLL packet transmitted by the master. The 
slave responds with any type of packet. If the POLL packet is not received 
by the slave, or the response packet is not received by the master, within 
newconnectionTO number of slots after FHS packet acknowledgement, the 
master and the slave will return to page and page scan substates, 
respectively.  
 
1.7.6.4.2 Master response 
 

When the master has received a response message from the slave in 
step 2, it will enter the master response routine. It freezes the current clock 
input to the page hop selection scheme. Then the master will transmit a FHS 
packet in step 3 containing the master’s real-time Bluetooth clock, the 
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master’s 48-bit BD_ADDR address, the BCH parity bits, and the class of 
device. The FHS packet contains all information to construct the channel 
access code without requiring a mathematical derivation from the master 
device address. The FHS packet is transmitted at the beginning of the 
master-to-slave slot following the slot in which the slave has responded. So 
the TX timing of the FHS is not based on the reception of the response 
packet from the slave. The FHS packet may therefore be sent 312.5 micros 
after the reception of the response packet like shown in Figure 1.23 and not 
625 micros after the received packet as is usual in the RX/TX timing. After 
the master has sent its FHS packet, it waits for a second response from the 
slave in step 4 which acknowledges the reception of the FHS packet. Again 
this is only the slave’s device access code. If no response is received, the 
master retransmits the FHS packet, but with an updated clock and still using 
the slave’s parameters. It will retransmit (the clock is updated every 
retransmission) until a second slave response is received, or the timeout of 
pagerespTO is exceeded. In the latter case, the master turns back to the page 
substate and sends an error message to the link manager. During the 
retransmissions of the FHS packet, the master keeps using the page hopping 
sequence. If the slave’s response is indeed received, the master changes to 
the master parameters, so the channel access code and the master clock. The 
lower clock bits CLK 0 and CLK 1 are zero at the start of the FHS packet 
transmission and are not included in the FHS packet. Finally, the master 
enters the CONNECTION state in step 5. The master BD_ADDR is used to 
change to a new hopping sequence, the channel hopping sequence. The 
channel hopping sequence uses all 79 hop channels in a (pseudo) random 
fashion. The master can now send its first traffic packet in a hop determined 
with the new (master) parameters. This first packet will be a POLL packet. 
The master can now send its first traffic packet in a hop determined with the 
new (master) parameters. The first packet in this state is a POLL packet sent 
by the master. This packet will be sent within newconnectionTO number of 
slots after reception of the FHS packet acknowledgement. The slave will 
respond with any type of packet. If the POLL packet is not received by the 
slave or the POLL packet response is not received by the master within new-
connectionTO number of slots, the master and the slave will return to page 
and page scan substates, respectively.  
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1.7.7 INQUIRY PROCEDURES 
 
1.7.7.1 General 
 

In the Bluetooth system, an inquiry procedure is defined which is used 
in applications where the destination’s device address is unknown to the 
source. One can think of public facilities like printers or facsimile machines, 
or access points to a LAN. Alternatively, the inquiry procedure can be used 
to discover which other Bluetooth units are within range. During an inquiry 
substate, the discovering unit collects the Bluetooth device addresses and 
clocks of all units that respond to the inquiry message. It can then, if desired, 
make a connection to any one of them by means of the previously described 
page procedure. The inquiry message broadcast by the source does not 
contain any information about the source. However, it may indicate which 
class of devices should respond. There is one general inquiry access code 
(GIAC) to inquire for any Bluetooth device, and a number of dedicated 
inquiry access codes (DIAC) that only inquire for a certain type of devices. 
The inquiry access codes are derived from reserved Bluetooth device 
addresses and are further described in. A unit that wants to discover other 
Bluetooth units enters an inquiry substate.  
 

In this substate, it continuously transmits the inquiry message (which 
is the ID packet at different hop frequencies. The inquiry hop sequence is 
always derived from the LAP of the GIAC. Thus, even 
when DIACs are used, the applied hopping sequence is generated from the 
GIAC LAP. A unit that allows itself to be discovered, regularly enters the 
inquiry scan substate to respond to inquiry messages. The following 
sections describe the message exchange and contention resolution during 
inquiry response. The inquiry response is optional: a unit is not forced to 
respond to an inquiry message.  
 
1.7.7.2 Inquiry scan 
 

The inquiry scan substate is very similar to the page scan substate. 
However, instead of scanning for the unit's device access code, the receiver 
scans for the inquiry access code long enough to completely scan for 16 
inquiry frequencies. The length of this scan period is denoted T 
w_inquiry_scan . The scan is performed at a single hop frequency. As in the 
page procedure, the inquiry procedure uses 32 dedicated inquiry hop 
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frequencies according to the inquiry hopping sequence. These frequencies 
are determined by the general inquiry address. The phase is determined by 
the native clock of the unit carrying out the inquiry scan; the phase changes 
every 1.28s. 

Instead or in addition to the general inquiry access code, the unit may 
scan for one or more dedicated inquiry access codes. However, the scanning 
will follow the inquiry scan hopping sequence which is determined by the 
general inquiry address. If an inquiry message is recognized during an 
inquiry wake-up period, the Bluetooth unit either performs a backoff in 
CONNECTION or STANDBY state before reentering the inquiry scan 
substate or enters the inquiry response substate if a random backoff was 
performed before entering the inquiry scan substate. The inquiry scan 
substate can be entered from the STANDBY state or the CONNECTION 
state. In the STANDBY state, no connection has been established and the 
unit can use all the capacity to carry out the inquiry scan. Before entering 
the inquiry scan substate from the CONNECTION state, the unit 
preferably reserves as much capacity as possible for scanning. If desired, the 
unit may place ACL connections in the HOLD mode or even use the PARK 
mode. The scan window, T w inquiry scan , shall be increased to increase 
the probability to respond to an inquiry message. The scan interval T inquiry 
scan is defined as the interval between two consecutive inquiry scans. The 
inquiry scan interval shall be at most 2.56 s. 
 
1.7.7.3 Inquiry 
 

The inquiry substate is used by the unit that wants to discover new 
devices. This substate is very similar to the page substate, the same TX/RX 
timing is used as used for paging. The TX and RX frequencies follow the 
inquiry hopping sequence and the inquiry response hopping sequence, and 
are determined by the general inquiry access code and the native clock of the 
discovering device. In between inquiry transmissions, the Bluetooth receiver 
scans for inquiry response messages. When found, the entire response packet 
(which is in fact a FHS packet) is read, after which the unit continues with 
the inquiry transmissions. So the Bluetooth unit in an inquiry substate does 
not acknowledge the inquiry response messages. It keeps probing at different 
hop channels and in between listens for response packets. Like in the page 
substate, two 10 ms trains A and B are defined, splitting the 32 frequencies 
of the inquiry hopping sequence into two 16-hop parts. A single train must 
be repeated for at least N inquiry =256 times before a new train is used. In 
order to collect all responses in an error-free environment, at least three train 
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switches must have taken place. As a result, the inquiry substate may have 
to last for 10.24 s unless the inquirer collects enough responses and 
determines to abort the inquiry substate earlier. If desired, the inquirer can 
also prolong the inquiry substate to increase the probability of receiving all 
responses in an error-prone environment. If an inquiry procedure is 
automatically initiated periodically (say a 10 s period every minute), then the 
interval between two inquiry instances must be determined randomly. This is 
done to avoid two Bluetooth units to synchronize their inquiry procedures. 
The inquiry substate is continued until stopped by the Bluetooth link 
manager (when it decides that it has sufficient number of responses), or 
when a timeout has been reached (inquiryTO). The inquiry substate can be 
entered from the STANDBY state or the CONNECTION state. In the 
STANDBY state, no connection has been established and the unit can use all 
the capacity to carry out the inquiry. Before entering the inquiry substate 
from the CONNECTION state, the unit shall free as much capacity as 
possible for scanning. To ensure this, it is recommended that the ACL 
connections are put on hold or park.  
 
1.7.7.4 Inquiry response 
 

For the inquiry operation, there is only a slave response, no master 
response. The master listens between inquiry messages for responses, but 
after reading a response, it continues to transmit inquiry messages. The slave 
response routine for inquiries differs completely from the slave response 
routine applied for pages. When the inquiry message is received in the 
inquiry scan substate, a response message containing the recipient’s address 
must be returned. This response message is a conventional FHS packet 
carrying the unit’s parameters. However, a contention problem may arise 
when several Bluetooth units are in close proximity to the inquiring unit and 
all respond to an inquiry message at the same time. First of all, every 
Bluetooth unit has a free running clock; therefore, it is highly unlikely that 
they all use the same phase of the inquiry hopping sequence. However, in 
order to avoid collisions between units that do wake up in the same inquiry 
hop channel simultaneously, the following protocol in the slave’s inquiry 
response is used. If the slave receives an inquiry message, it generates a 
random number RAND between 0 and 1023. The slave then returns to the 
CONNECTION or STANDBY state for the duration of RAND time slots. 
Before returning to the CONNECTION or STANDBY state, the unit may 
go through the page scan substate; this page scan must use the mandatory 
page scan scheme. After at least RAND slots, the unit will return to the 
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inquiry scan substate. On the first inquiry message received in this substate 
the slave goes into the inquiry response substate and returns an FHS 
response packet to the master 625 µs after the inquiry message was  
received. If during the scan no trigger occurs within a timeout period of 
inqre-spTO, the slave returns to the STANDBY or CONNECTION state. If 
the unit does receive an inquiry message and returns an FHS packet, it adds 
an offset of 1 to the phase in the inquiry hop sequence (the phase has a 1.28 
s resolution) and enters the inquiry scan substate again. If the slave is 
triggered again, it repeats the procedure using a new RAND. The offset to 
the clock accumulates each time a FHS packet is returned. During a 1.28 s 
probing window, a slave on average responses 4 times, but on different 
frequencies and at different times. Possible SCO slots should have priority 
over response packets; that is, if a response packet overlaps with an SCO 
slot, it is not sent but the next inquiry message is awaited. In step 1, the 
master transmits an inquiry message using the inquiry access code and its 
own clock. The slave responds with the FHS packet which contains the 
slave’s device address, native clock and other slave information. This FHS 
packet is returned at a semi-random time. The FHS packet is not 
acknowledged in the inquiry routine, but it is retransmitted at other times 
and frequencies as long as the master is probing with inquiry messages.  
 

    
   Table 1.12: Messaging during inquiry routines. 
 

If the scanning unit uses an optional scanning scheme, after 
responding to an inquiry with an FHS packet, it will perform page scan 
using the mandatory page scan scheme for T mandatory pscan period. Every 
time an inquiry response is sent the unit will start a timer with a timeout of T 
mandatory pscan . The timer will be reset at each new inquiry response. 
Until the timer times out, when the unit per-forms page scan, it will use the 
mandatory page scanning scheme in the SR mode it uses for all its page scan 
intervals. Using the mandatory page scan scheme after the inquiry procedure 
enables all units to connect even if they do not support an optional paging 
scheme (yet). In addition to using the mandatory page scan scheme, an 
optional page scan scheme can be used in parallel for the T mandatory pscan 
period. The T mandatory pscan period is included in the SP field of the FHS 
packet returned in the inquiry response routine.  
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 Table 1.13: Mandatory scan periods for P0, P1, P2 scan period modes. 
 
 
1.7.8 CONNECTION STATE 
 

In the CONNECTION state, the connection has been established and 
packets can be sent back and forth. In both units, the channel (master) access 
code and the master Bluetooth clock are used. The hopping scheme uses the 
channel hopping sequence. The master starts its transmission in even slots 
(CLK 1- 0 =00), the slave starts its transmission in odd slots (CLK 1-0 =10) 
The CONNECTION state starts with a POLL packet sent by the master to 
verify the switch to the master’s timing and channel frequency hopping. The 
slave can respond with any type of packet. If the slave does not receive the 
POLL packet or the master does not receive the response packet for 
newconnectionTO number of slots, both devices will return to page/page 
scan substates. The first information packets in the CONNECTION state 
contain control messages that characterize the link and give more details 
regarding the Bluetooth units. These messages are exchanged between the 
link managers of the units Then the transfer of user information can start by 
alternately transmitting and receiving packets. The CONNECTION state is 
left through a detach or reset command. The detach command is used if the 
link has been disconnected in the normal way. All configuration data in the 
Bluetooth link controller is still valid. The reset command is a hard reset of 
all controller processes. After a reset, the controller has to be reconfigured. 
The Bluetooth units can be in several modes of operation during the 
CONNECTION state: active mode, sniff mode, hold mode, and park mode. 
These modes are now described in more detail.  
 
1.7.8.1 Active mode 
 

In the active mode, the Bluetooth unit actively participates on the 
channel. The master schedules the transmission based on traffic demands to 
and from the different slaves. In addition, it supports regular transmissions to 
keep slaves synchronized to the channel. Active slaves listen in the master-
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to-slave slots for packets. If an active slave is not addressed, it may sleep 
until the next new master transmission. From the type indication in the 
packet, the number of slots the master has reserved for its transmission can 
be derived; during this time, the non-addressed slaves do not have to listen 
on the master-to-slave slots. A periodic master transmission is required to 
keep the slaves synchronized to the channel. Since the slaves only need the 
channel access code to synchronize with, any packet type can be used for 
this purpose.  
 
1.7.8.2 Sniff mode 
 

In the sniff mode, the duty cycle of the slave’s listen activity can be 
reduced. If a slave participates on an ACL link, it has to listen in every ACL 
slot to the master traffic. With the sniff mode, the time slots where the 
master can start transmission to a specific slave is reduced; that is, the 
master can only start transmission in specified time slots. These so-called 
sniff slots are spaced regularly with an interval of T sniff. The slave starts 
listening at the sniff slots for N sniff attempt consecutive receive slots unless 
a packet with matching AM_ADDR is received. After every reception of a 
packet with matching AM_ADDR, the slave continues listening at the 
subsequent N sniff timeout or remaining of the receive slots, whichever is 
greater. 

So, for N sniff timeout > 0, the slave continues listening as long as it 
receives packets with matching AM_ADDR. Note that Receive slots here 
are every odd-numbered slots, in which the master may start sending a 
packet. Note that N sniff attempt =1 and N sniff timeout =0 cause the slave 
to listen only at the first sniff slot, irrespective of packets received from the 
master. Note that N sniff attempt =0 is not allowed. To enter the sniff mode, 
the master or slave shall issue a sniff command via the LM protocol. This 
message will contain the sniff interval T sniff and an offset D sniff. The 
timing of the sniff mode is then determined similar as for the SCO links. In 
addition, an initialization flag indicates whether initialization procedure 1 or 
2 is being used. The device uses initialization 1 when the MSB of the cur-
rent master clock (CLK 27 ) is 0; it uses initialization 2 when the MSB of 
the current master clock (CLK 27 ) is 1. The slave shall apply the 
initialization method as indicated by the initialization flag irrespective of its 
clock bit value CLK 27. The master-to-slave sniff slots determined by the 
master and the slave shall be initialized on the slots for which the clock 
satisfies the following equation CLK 27-1 mod T sniff = D sniff for 
initialization 1(CLK 27 ,CLK 26-1 ) mod T sniff = D sniff for initialization 2 
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The slave-to-master sniff slot determined by the master and the slave shall 
be initialized on the slots after the master-to-slave sniff slot defined above. 
After initialization, the clock value CLK(k+1) for the next master-to-slave 
SNIFF slot is found by adding the fixed interval T sniff to the clock value of 
the current master to-slave sniff slot: CLK(k+1) = CLK(k) + T sniff  
 
1.7.8.3 Hold mode 
 

During the CONNECTION state, the ACL link to a slave can be put 
in a hold mode. This means that the slave temporarily does not support ACL 
packets on the channel any more. With the hold mode, capacity can be made 
free to do other things like scanning, paging, inquiring, or attending another 
piconet. The unit in hold mode can also enter a low-power sleep mode. 
During the hold mode, the slave unit keeps its active member address 
(AM_ADDR). Prior to entering the hold mode, master and slave agree on 
the time duration the slave remains in the hold mode. A timer is initialized 
with the holdTO value. When the timer is expired, the slave will wake up, 
synchronize to the traffic on the channel and will wait for further master 
instructions. 
 
1.7.8.4 Polling schemes 
 
1.7.8.4.1 Polling in active mode 
 

The master always has full control over the piconet. Due to the 
stringent TDD scheme, slaves can only communicate with the master and 
not to other slaves. In order to avoid collisions on the ACL link, a slave is 
only allowed to transmit in the slave-to-master slot when addressed by the 
AM_ADDR in the packet header in the preceding master-to-slave slot. If the 
AM_ADDR in the preceding slot does not match, or an AM_ADDR cannot 
be derived from the preceding slot, the slave is not allowed to transmit. On 
the SCO links, the polling rule is slightly modified. The slave is allowed to 
transmit in the slot reserved for his SCO link unless the (valid) AM_ADDR 
in the preceding slot indicates a different slave. If no valid AM_ADDR can 
be derived in the preceding slot, the slave is still allowed to transmit in the 
reserved SCO slot. 
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1.7.8.5 Broadcast scheme 
 

The master of the piconet can broadcast messages which will reach all 
slaves. A broadcast packet is characterized by the all-zero AM_ADDR. Each 
new broadcast message (which may be carried by a number of packets) shall 
start with the flush indication (L_CH=10). 

A broadcast packet is never acknowledged. In an error-prone 
environment, the master may carry out a number of retransmissions to 
increase the probability for error-free delivery. 
 
1.7.9 SCATTERNET 
 
1.7.9.1 General 

 
Multiple piconets may cover the same area. Since each piconet has a 

different master, the piconets hop independently, each with their own 
channel hopping sequence and phase as determined by the respective master. 
In addition, the packets carried on the channels are preceded by different 
channel access codes as determined by the master device addresses. As more 
piconets are added, the probability of collisions increases; a graceful 
degradation of performance results as is common in frequency-hopping 
spread spectrum systems. If multiple piconets cover the same area, a unit can 
participate in two or more overlaying piconets by applying time 
multiplexing. To participate on the proper channel, it should use the 
associated master device address and proper clock offset to obtain the 
correct phase. A Bluetooth unit can act as a slave in several piconets, but 
only as a master in a single piconet: since two piconets with the same master 
are synchronized and use the same hopping sequence, they are one and the 
same piconet. A group of piconets in which connections consists between 
different piconets is called a scatternet. A master or slave can become a 
slave in another piconet by being paged by the master of this other piconet. 
On the other hand, a unit participating in one piconet can page the master or 
slave of another piconet. Since the paging unit always starts out as master, a 
master-slave role exchange is required if a slave role is desired.  
 
1.7.9.2 Inter-piconet communications 
 

Time multiplexing must be used to switch between piconets. In case 
of ACL links only, a unit can request to enter the hold or park mode in the 
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current piconet during which time it may join another piconet by just 
changing the channel parameters. Units in the sniff mode may have 
sufficient time to visit another piconet in between the sniff slots.. In the four 
slots in between, one other piconet can be visited. Since the multiple 
piconets are not synchronized, guard time must be left to account for 
misalignment.  
 

Since the clocks of two masters of different piconets are not 
synchronized, a slave unit participating in two piconets has to take care of 
two offsets that, added to its own native clock, create one or the other master 
clock. Since the two master clocks drift independently, regular updates of 
the offsets are required in order for the slave unit to keep synchronization to 
both masters. 
 
1.7.9.3 Master-slave switch 
 

There are several occasions when a master-slave (MS) switch is 
desirable. Firstly, a MS switch is necessary when a unit paging the master of 
an existing piconet wants to join this piconet, since, by definition, the paging 
unit initially is master of a "small" piconet only involving the pager (master) 
and the paged (slave) unit. Secondly, when a slave in an existing piconet 
wants to set up a new piconet, involving itself as master and the current 
piconet master as slave. The latter case implies a double role of the original 
piconet master; it becomes a slave in the new piconet while still maintaining 
the original piconet as master. Thirdly, a much more complicated example is 
when a slave wants to fully take over an existing piconet, i.e., the switch also 
involves transfer of other slaves of the existing piconet to the new piconet. 
Clearly, this can be achieved by letting the new master setup a completely 
new piconet through the conventional paging scheme. However, that would 
require individual paging of the old slaves, and, thus, take unnecessarily 
long time. Instead, letting the new master utilize timing knowledge of the 
old master is more efficient. As a consequence of the MS switch, the slaves 
in the piconet have to be transferred to the new piconet, changing their 
timing and their hopping scheme. The MS switch is described in step1 
through step 3 below. For the third example involving the transfer, new 
piconet parameters have to be communicated to each slave.  
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1.8 BLUETOOTH ADDRESSING 
 
1.8.1 BLUETOOTH DEVICE ADDRESS (BD_ADDR) 
 

Each Bluetooth transceiver is allocated a unique 48-bit Bluetooth 
device address (BD_ADDR). This address is derived from the IEEE802 
standard. This 48-bit address is divided into three fields: 

 
• LAP field: lower address part consisting of 24 bits 
• UAP field: upper address part consisting of 8 bits 
• NAP field: non-significant address part consisting of 16 bits 
 

The LAP and UAP form the significant part of the BD_ADDR. The 
total address space obtained is 2 32 . 
Figure 13.1: Format of BD_ADDR 

          
         Figure 1.26: Format of BD_ADDR 
 
1.8.2 ACCESS CODES 
 

In the Bluetooth system, 72-bit and 68-bit access codes are used for 
signaling purposes. Three different access codes are defined:- 
 
• device access code (DAC) 
• channel access code (CAC) 
• inquiry access code (IAC) 
 

There is one general IAC (GIAC) for general inquiry operations and 
there are 63 dedicated IACs (DIACs) for dedicated inquiry operations. All 
codes are derived from a LAP of the BD_ADDR. The device access code is 
used during page, page scan and page response substates. It is a code derived 
from the unit’s BD_ADDR. The channel access code characterizes the 
channel of the piconet and forms the preamble of all packets exchanged on 
the channel. The channel access code is derived from the LAP of the master 
BD_ADDR. Finally, the inquiry access code is used in inquiry operations. A 
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general inquiry access code is common to all Bluetooth units; a set of 
dedicated inquiry access codes is used to inquire for classes of devices. The 
access code is also used to indicate to the receiver the arrival of a packet. It 
is used for timing synchronization and offset compensation. The receiver 
correlates against the entire sync word in the access code, providing a very 
robust signalling. During channel setup, the code itself is used as an ID 
packet to sup-port the acquisition process. In addition, it is used during 
random access procedures in the PARK state. The access code consists of 
preamble, sync word and a trailer. 
 
1.8.3 ACTIVE MEMBER ADDRESS (AM_ADDR) 
 

Each slave active in a piconet is assigned a 3-bit active member 
address (AM_ADDR). The all-zero AM_ADDR is reserved for broadcast 
messages. The master does not have an AM_ADDR. Its timing relative to 
the slaves distinguishes it from the slaves. A slave only accepts a packet 
with a matching AM_ADDR and broadcast packets. The AM_ADDR is 
carried in the packet header. The AM_ADDR is only valid as long as a slave 
is active on the channel. 

As soon as it is disconnected or parked, it loses the AM_ADDR. The 
AM_ADDR is assigned by the master to the slave when the slave is 
activated. This is either at connection establishment or when the slave is 
unparked. At connection establishment, the AM_ADDR is carried in the 
FHS payload (the FHS header itself carries the all-zero AM_ADDR). When 
unparking, the AM_ADDR is carried in the unpark message. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 54

1.9 STATE DIAGRAM BASEBAND 
 

 
Figure 1.27: State diagram of Bluetooth link controller. 
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1.10 BASEBAND SEQUENCE DIAGRAMS 

Sequence of inquiry:- 

 

Sequence of Paging:-  

      

SLAVE MASTER 

General/Dedicated Inquiry Access Code 

FHS Packet

( Bluetooth Device Addr Of Slave ) 

MASTER SLAVE 

General/Dedicated Inquiry Access Code 

FHS Packet

( Bluetooth Device Addr Of Slave ) 

SLAVE MASTER 

Slave Device Access Code

ID Packet 

( Slave DAC )

FHS Packet

( Slave DAC )

ID Packet

( Slave DAC )

Poll Packet

( Master DAC )

Poll Packet

( Master DAC )
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                           L2CAP  PROTOCOL 
 

This section of the Bluetooth Specification defines the Logical Link 
Control and Adaptation Layer Protocol, referred to as L2CAP. L2CAP is 
layered over the Baseband Protocol and resides in the data link layer as 
shown in Figure. L2CAP provides connection-oriented and connectionless 
data services to upper layer protocols with protocol multiplexing capability, 
segmentation and reassembly operation, and group abstractions. L2CAP 
permits higher level protocols and applications to transmit and receive 
L2CAP data packets up to 64 kilobytes in length. 
 

 
 
Figure 2.1: L2CAP within protocol layers 
 

The format of the ACL payload header for the L2CAP Layer is shown 
here is shown below. Figure 2.2 displays the payload header used for single-
slot packets and Figure 2.3 displays the header used in multi-slot packets. 
The only difference is the size of the length field. The packet type (a field in 
the Baseband header) distinguishes single-slot packets from multi-slot 
packets.  

 

 
Figure 2.2: ACL Payload Header for single-slot packets 
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Figure 2.3: ACL Payload Header for multi-slot packets 
 
The 2-bit logical channel (L_CH) field, defined in Table 1.1, distinguishes 
L2CAP packets. The remaining code is reserved for future use. 
 

 
Table 2.1: Logical channel L_CH field contents 
 

The FLOW bit in the ACL header is managed by the Link Controller 
(LC), a Baseband implementation entity, and is normally set to1 (‘flow on’). 
It is set to 0 (‘flow off’) when no further L2CAP traffic shall be sent over the 
ACL link. Sending an L2CAP packet with the FLOW bit set to 1 resumes 
the flow of incoming L2CAP packets.  
 
2.1 L2CAP FUNCTIONAL REQUIREMENTS 
 

The functional requirements for L2CAP include protocol 
multiplexing, segmentation and reassembly (SAR), and group management. 
Figure 1.4 illustrates how L2CAP fits into the Bluetooth Protocol Stack. 
L2CAP lies above the Base-band Protocol and interfaces with other 
communication protocols such as the Bluetooth Service Discovery Protocol 
(SDP) RFCOMM and Telephony Control. Packetized audio data, such as 
IPTelephony, may be sent using communication protocols running over 
L2CAP. 
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Figure 2.4: L2CAP in Bluetooth Protocol Architecture 
 

Essential protocol requirements for L2CAP include simplicity and low 
over-head. L2CAP does not consume excessive power since that 
significantly sacrifices power efficiency achieved by the Bluetooth Radio. 
Memory requirements for protocol implementation are also kept to a 
minimum. The protocol complexity is acceptable to personal computers, 
PDAs, digital cellular phones, wireless headsets, joysticks and other wireless 
devices supported by Bluetooth so that maximum coverage of devices 
targeted for installation is achieved. Furthermore, the protocol is designed to 
achieve reasonably high bandwidth efficiency. 
 
• Protocol Multiplexing 
 

L2CAP supports protocol multiplexing because the Baseband 
Protocol does not support any ’type’ field identifying the higher layer 
protocol being multiplexed above it. L2CAP therefore distinguishes between 
upper layer protocols such as the Service Discovery Protocol, RFCOMM , 
and Telephony Control . 
 
• Segmentation and Reassembly 
 

Compared to other wired physical media, the data packets defined by 
the Baseband Protocol are limited in size. Exporting a maximum 
transmission unit (MTU) associated with the largest Baseband payload limits 
the efficient use of bandwidth for higher layer protocols that are designed to 
use larger packets. Large L2CAP packets must be segmented into multiple 
smaller Baseband packets prior to their transmission over the air. Similarly, 
multiple received Baseband packets may be reassembled into a single larger 
L2CAP packet following a simple integrity check. The Segmentation and 
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Reassembly (SAR) functionality is absolutely necessary to support protocols 
using packets larger than those supported by the Baseband.  
 
• Quality of Service 
 

The L2CAP connection establishment process allows the exchange of 
information regarding the quality of service (QoS) expected between two 
Blue-tooth units. Each L2CAP implementation must monitor the resources 
used by the protocol and ensure that QoS contracts are honored.  
 
• Groups 
 

Many protocols include the concept of a group of addresses. The 
Baseband Protocol supports the concept of a piconet, a group of devices 
synchronously hopping together using the same clock. The L2CAP group 
abstraction permits implementations to efficiently map protocol groups on to 
piconets. Without a group abstraction, higher level protocols would need to 
be exposed to the Baseband Protocol and Link Manager functionality in 
order to manage groups efficiently. 
 
2.2 ASSUMPTIONS 
 
The protocol design makes the following assumptions: 
 
1. The ACL link between two units is set up using the Link Manager 
Protocol. The Baseband provides orderly delivery of data packets, although 
there might be individual packet corruption and duplicates. No more than 1 
ACL link exists between any two devices. 
 
2. The Baseband always provides the impression of full-duplex 
communication channels. This does not imply that all L2CAP 
communications are bidirectional. Multicasts and unidirectional traffic (e.g., 
video) do not require duplex channels. 
 
3. L2CAP provides a reliable channel using the mechanisms available at the 
Baseband layer. The Baseband always performs data integrity checks when 
requested and resends data until it has been successfully acknowledged or a 
timeout occurs. Because acknowledgements may be lost, timeouts may 
occur even after the data has been successfully sent. The Baseband protocol 
uses a 1-bit sequence number that removes duplicates. The use of Baseband 
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broadcast packets is prohibited if reliability is required since all broadcasts 
start the first segment of an L2CAP packet with the same sequence bit. 
 
2.3 GENERAL OPERATION 
 

The Logical Link Control and Adaptation Protocol (L2CAP) is based 
around the concept of ’channels’. Each one of the end-points of an L2CAP 
channel is referred to by a channel identifier. 
 
2.3.1 CHANNEL IDENTIFIERS 
 

Channel identifiers (CIDs) are local names representing a logical 
channel end-point on the device. Identifiers from 0x0001 to 0x003F are 
reserved for specific L2CAP functions. The null identifier (0x0000) is 
defined as an illegal identifier and must never be used as a destination end-
point. Implementations are free to manage the remaining CIDs in a manner 
best suited for that particular implementation, with the provision that the 
same CID is not reused as a local L2CAP channel endpoint for multiple 
simultaneous L2CAP channels between a local device and some remote 
device. Table 2.2 summarizes the definition and partitioning of the CID 
name space. 

CID assignment is relative to a particular device and a device can 
assign CIDs independently from other devices (unless it needs to use any of 
the reserved CIDs shown in the table below). Thus, even if the same CID 
value has been assigned to (remote) channel endpoints by several remote 
devices connected to a single local device, the local device can still uniquely 
associate each remote CID with a different device.  
 
2.3.2 OPERATION BETWEEN DEVICES 
 

The connection-oriented data channels represent a connection 
between two devices, where a CID identifies each endpoint of the channel. 
The connectionless channels restrict data flow to a single direction. These 
channels are used to support a channel ’group’ where the CID on the source 
represents one or more remote devices. There are also a number of CIDs 
reserved for special purposes. The signalling channel is one example of a 
reserved channel. This channel is used to create and establish connection-
oriented data channels and to negotiate changes in the characteristics of 
these channels. Support for a signalling channels within an L2CAP entity is  
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Table 2.2: CID Definitions 
 
mandatory. Another CID is reserved for all incoming connectionless data 
traffic. In the example below, a CID is used to represent a group consisting 
of device #3 and #4. Traffic sent from this channel ID is directed to the 
remote channel reserved for connectionless data traffic. 
 

 
Figure 2.5: Channels between devices 
 
  Table 2.3 describes the various channels and their source and 
destination identifiers. An ’allocated’ channel is created to represent the 
local endpoint and should be in the range 0x0040 to 0xFFFF.  the 
state machine associated with each connection-oriented channel.  
 

 
  Table 2.3: Types of Channel Identifiers 
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2.3.3 OPERATION BETWEEN LAYERS 
 

L2CAP implementations should follow the general architecture 
described below. L2CAP implementations must transfer data between higher 
layer protocols and the lower layer protocol. This document lists a number 
of services that should be exported by any L2CAP implementation. Each 
implementation must also support a set of signalling commands for use 
between L2CAP implementations. 

L2CAP implementations should also be prepared to accept certain 
types of events from lower layers and generate events to upper layers. The 
L2Cap events are passed to the upper and lower layers in the form of 
constant integers identifying each specific event.  
 

 
Figure 2.6: L2CAP Architecture 
 
2.4 SEGMENTATION AND REASSEMBLY 
 

Segmentation and reassembly (SAR) operations are used to improve 
efficiency by supporting a maximum transmission unit (MTU) size larger 
than the largest Baseband packet. This reduces overhead by spreading the 
network and transport packets used by higher layer protocols over several 
Baseband packets. All L2CAP packets may be segmented for transfer over 
Baseband packets. The protocol does not perform any segmentation and 
reassembly operations but the packet format supports adaptation to smaller 
physical frame sizes. An L2CAP implementation exposes the outgoing (i.e., 
the remote host’s receiving) MTU and segments higher layer packets into 
’chunks’ that can be passed to the Link Manager. On the receiving side, an 
L2CAP implementation receives ’chunks’ and reassembles those chunks 
into L2CAP packets using information from the packet header. 
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Figure 2.7: L2CAP SAR Variables 
 

Segmentation and Reassembly is implemented using very little 
overhead in Baseband packets. The two L_CH bits defined in the first byte 
of Baseband payload (also called the frame header) are used to signal the 
start and continuation of L2CAP packets. L_CH shall be ’10’ for the first 
segment in an L2CAP packet and ’01’ for a continuation segment.  
 

 
Figure 2.8: L2CAP segmentation 
 
2.4.1 SEGMENTATION PROCEDURES 
 

The L2CAP maximum transmission unit (MTU) will be exported 
using an implementation specific service interface. It is the responsibility of 
the higher layer protocol to limit the size of packets sent to the L2CAP layer 
below the MTU limit. An L2CAP implementation will segment the packet 
into protocol data units (PDUs) to send to the lower layer. If L2CAP runs 
directly over the Baseband Protocol, an implementation may segment the 
packet into Baseband packets for transmission over the air. If L2CAP runs 
above the host controller interface (typical scenario), an implementation may 
send block-sized chunks to the host controller where they will be converted 
into Baseband packets. All L2CAP segments associated with an L2CAP 
packet must be passed through to the Baseband before any other L2CAP 
packet destined to the same unit may be sent. 
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2.4.2 REASSEMBLY PROCEDURES 
 

The Baseband Protocol delivers ACL packets in sequence and 
protects the integrity of the data using a 16-bit CRC. The Baseband also 
supports reliable connections using an automatic repeat request (ARQ) 
mechanism. As the Baseband controller receives ACL packets, it either 
signals the L2CAP layer on the arrival of each Baseband packets, or 
accumulates a number of packets before the receive buffer fills up or a timer 
expires before signalling the L2CAP layer. L2CAP implementations must 
use the length field in the header of L2CAP packets. If channel reliability is 
not needed, packets with improper lengths may be silently discarded. For 
reliable channels, L2CAP implementations must indicate to the upper layer 
that the channel has become unreliable. Reliable channels are defined by 
having an infinite flush timeout value. The figure illustrates segmentation 
and reassembly in the case of a single large PDU one-to-one mapping 
between a high layer PDU and an L2CAP packet, the segment size used by 
the segmentation and reassembly routines is left to the implementation and 
may differ from the sender to the receiver.  
 
2.5 STATE MACHINE 
 

This section describes the L2CAP connection-oriented channel state 
machine. The section defines the states, the events causing state transitions, 
and the actions to be performed in response to events. This state machine is 
only pertinent to bi-directional CIDs and is not representative of the 
signalling channel or the uni-directional channel. 
 
 

 
 Figure 2.9: L2CAP Layer Interactions 
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Figure 2.7 illustrates the events and actions performed by the 
implementation of the L2CAP layer. Client and Server simply represent the 
initiator of the request and the acceptor of the request respectively. An 
application-level Client would both initiate and accept requests. The naming 
convention is as follows. The interface between two layers (vertical 
interface) uses the prefix of the lower layer offering the service to the higher 
layer, e.g., L2CA. The interface between two entities of the same layer 
(horizontal interface) uses the prefix of the protocol (adding a P to the layer 
identification), e.g., L2CAP. Events coming from above are called Requests 
(Req) and the corresponding replies are called Confirms (Cfm). Events 
coming from below are called Indications (Ind) and the corresponding 
replies are called Responses (Rsp). Responses requiring further processing 
are called Pending (Pnd). The notation for Confirms and Responses assumes 
positive replies. Negative replies are denoted by a ’Neg’ suffix such as 
L2CAP_ConnectCfmNeg. While Requests for an action always result in a 
corresponding Confirmation (for the successful or unsuccessful satisfaction 
of the action), Indications do not always result into corresponding 
Responses. The latter is especially true, if the Indications are informative 
about locally triggered events. 
 
 

 
Figure 2.10:MSC of Layer Interactions 
 

Figure 2.8 uses a message sequence chart (MSC) to illustrate the 
normal sequence of events. The two outer vertical lines represent the L2CA 
interface on the initiator (the device issuing a request) and the acceptor (the 
device responding to the initiator’s request). Request commands at the 
L2CA interface result in Requests defined by the protocol. When the 
protocol communicates the request to the acceptor, the remote L2CA entity 
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presents the upper protocol with an Indication. When the acceptor’s upper 
protocol responds, the response is packaged by the protocol and 
communicated back the to initiator. The result is passed back to the 
initiator’s upper protocol using a Confirm message.  
 
2.5.1 EVENTS 
 

Events are all incoming messages to the L2CA layer along with 
timeouts. Events are partitioned into five categories: Indications and 
Confirms from lower layers, Requests and Responses from higher layers, 
data from peers, signal Requests and Responses from peers, and events 
caused by timer expirations. 
 
2.5.1.1 Lower-Layer Protocol (LP) to L2CAP events 
 
• LP_ConnectCfm 
Confirms the request  to establish a lower layer (Baseband) connection. This 
includes passing the authentication challenge if authentication is required to 
establish the physical link.  
 
• LP_ConnectCfmNeg 
Confirms the failure of the request to establish a lower layer (Baseband) 
connection failed. This could be because the device could not be contacted, 
refused the request, or the LMP authenti-cation challenge failed. 
 
• LP_ConnectInd 
Indicates the lower protocol has successfully established connection. In the 
case of the Baseband, this will be an ACL link. An L2CAP entity may use to 
information to keep track of what physical links exist.  
 
• LP_DisconnectInd 
Indicates the lower protocol (Baseband) has been shut down by LMP 
commands or a timeout event. 
 
• LP_QoSCfm 
Confirms the request  for a given quality of service. 
 
• LP_QoSCfmNeg 
Confirms the failure of the request for a given quality of service. 
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• LP_QoSViolationInd 
Indicates the lower protocol has detected a violation of the QoS agreement 
specified in the previous LP_QoSReq 
 
2.5.1.2 L2CAP to L2CAP Signalling events 
 

L2CAP to L2CAP signalling events are generated by each L2CAP 
entity following the exchange of the corresponding L2CAP signalling PDUs. 
L2CAP signalling PDUs, like any other L2CAP PDUs, are received from a 
lower layer via a lower protocol indication event. For simplicity of the 
presentation , we avoid a detailed description of this process, and we assume 
that signaling events are exchanged directly between the L2CAP peer 
entities  
 
• L2CAP_ConnectReq 
A Connection Request packet has been received. 
 
• L2CAP_ConnectRsp 
A Connection Response packet has been received with a positive result 
indicating that the connection has been established. 
 
• L2CAP_ConnectRspPnd 
A Connection Response packet has been received indicating the remote 
endpoint has received the request and is processing it. 
 
• L2CAP_ConnectRspNeg 
A Connection Response packet has been received, indicating that the 
connection could not be established. 
 
• L2CAP_ConfigReq 
A Configuration Request packet has been received indicating the remote 
endpoint wishes to engage in negotiations concerning channel parameters. 
 
• L2CAP_ConfigRsp 
A Configuration Response packet has been received indicating the remote 
endpoint agrees with all the parameters being negotiated. 
 
• L2CAP_ConfigRspNeg 
A Configuration Response packet has been received indicating the remote 
endpoint does not agree to the parameters received in the response packet. 
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• L2CAP_DisconnectReq 
A Disconnection Request packet has been received and the channel must 
initiate the disconnection process. Following the completion of an L2CAP 
channel disconnection process, an L2CAP entity should return the 
corresponding local CID to the pool of ’unassigned’ CIDs. 
 
• L2CAP_DisconnectRsp 
A Disconnection Response packet has been received. Following the receipt 
of this signal, the receiving L2CAP entity may return the corresponding 
local CID to the pool of unassigned CIDs. There is no corresponding 
negative response because the Disconnect Request must succeed.  
 
 
2.5.1.3 L2CAP to L2CAP Data events 
 
• L2CAP_Data 
A Data packet has been received. 
 
2.5.1.4 Upper-Layer to L2CAP events 
 
• L2CA_ConnectReq 
Request from upper layer for the creation of a channel to a remote   device. 
 
• L2CA_ConnectRsp 
Response from upper layer to the indication of a connection request from a 
remote device . 
 
• L2CA_ConnectRspNeg 
Negative response (rejection) from upper layer to the indication of a 
connection request from a remote device. 
 
• L2CA_ConfigReq 
Request from upper layer to (re)configure the channel. 
 
• L2CA_ConfigRsp 
Response from upper layer to the indication of a (re) configuration request 
 
• L2CA_ConfigRspNeg 
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A negative response from upper layer to the indication of a (re) 
configuration request . 
 
• L2CA_DisconnectReq 
Request from upper layer for the immediate disconnection of a channel. 
 
• L2CA_DisconnectRsp 
Response from upper layer to the indication of a disconnection request . 
There is no corresponding negative response, the disconnect indication must 
always be accepted. 
 
 
• L2CA_DataRead 
Request from upper layer for the transfer of received data from L2CAP 
entity to upper layer. 
 
• L2CA_DataWrite 
Request from upper layer for the transfer of data from the upper layer to 
L2CAP entity for transmission over an open channel. 
 
2.5.1.5 Timer events 
 
• RTX 
The Response Timeout eXpired (RTX) timer is used to terminate the 
channel when the remote endpoint is unresponsive to signalling requests. 
This timer is started when a signalling request is sent to the remote device. 
This timer is disabled when the response is received. If the initial timer 
expires, a duplicate Request message may be sent or the channel identified 
in the request may be disconnected. If a duplicate Request message is sent, 
the RTX timeout value must be reset to a new value at least double the 
previous value. Implementations have the responsibility to decide on the 
maximum number of Request retransmissions performed at the L2CAP level 
before terminating the channel identified by the Requests. The one exception 
is the signaling CID that should never be terminated. The decision should be 
based on the flush timeout of the signalling link. The longer the flush 
timeout, the more retransmissions may be performed at the physical layer 
and the reliability of the channel improves, requiring fewer retransmissions 
at the L2CAP level. For example, if the flush timeout is infinite, no 
retransmissions should be performed at the L2CAP level. When terminating 
the channel, it is not necessary to send a L2CAP DisconnectReq and enter 
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disconnection state. Channels should be transitioned directly to the Closed 
state. 
• The  minimum initial value is 1 second and the maximum initial value is 
60 seconds. One RTX timer MUST exist for each outstanding signalling 
request, including each Echo Request. The timer disappears on the final 
expiration, when the response is received, or the physical link is lost. The 
maximum elapsed time between the initial start of this timer and the 
initiation of channel termination (if no response is received) is 60 seconds. 
ERTX The Extended Response Timeout eXpired (ERTX) timer is used in 
place of the RTX timer when it is suspected the remote endpoint is 
performing additional processing of a request signal. This timer is started 
when the remote endpoint responds that a request is pending, e.g., when an 
L2CAP_ConnectRspPnd event is received. This timer is disabled when the 
formal response is received or the physical link is lost. If the initial timer 
expires, a duplicate Request may be sent or the channel may be 
disconnected. If a duplicate Request is sent, the particular ERTX timer 
disappears, replaced by a new RTX timer and the whole timing procedure 
restarts as described previously for the RTX timer. 

The minimum initial value is 60 seconds and the maximum initial 
value is 300 seconds. Similar to RTX, there MUST be at least one ERTX 
timer for each outstanding request that received a Pending response. There 
should be at most one (RTX or ERTX) associated with each outstanding 
request. The maximum elapsed time between the initial start of this timer 
and the initiation of channel termination (if no response is received) is 300 
seconds. When terminating the channel, it is not necessary to send a L2CAP 
DisconnectReq and enter disconnection state. Channels should be 
transitioned directly to the Closed state. 
 
2.5.2 ACTIONS 
 

Actions are partitioned into five categories: Confirms and Indications 
to higher layers, Request and Responses to lower layers, Requests and 
Responses to peers, data transmission to peers, and setting timers. 
 
2.5.2.1 L2CAP to Lower Layer actions 
 
• LP_ConnectReq 
L2CAP requests the lower protocol to create a connection. If a physical link 
to the remote device does not exist, this message must be sent to the lower 
protocol to establish the physical connection. Since no more than a single 
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ACL link between two devices can exist additional L2CAP channels 
between these two devices must share the same baseband ACL link. 
Following the processing of the request, the lower layer returns with an 
LP_ConnectCfm or an LP_ConnectCfmNeg to indicate whether the request 
has been satisfied or not, respectively.  
 
• LP_QoSReq 
L2CAP requests the lower protocol to accommodate a particular QoS 
parameter set. Following the processing of the request, the lower layer 
returns with an LP_QoSCfm or an LP_QoSCfmNeg to indicate whether the 
request has been satisfied or not, respectively 
 
• LP_ConnectRsp 
A positive response accepting the previous connection indication request. 
 
• LP_ConnectRspNeg 
A negative response denying the previous connection indication request . 
 
2.5.2.2 L2CAP to L2CAP Signalling actions 
 
These actions define the events having the same names identified in the first 
section except the actions refer to the transmission, rather than reception, of 
these messages. 
 
2.5.2.3 L2CAP to L2CAP Data actions 
 
This section is the counterpart of 2.4.1.3. Data transmission is the action 
performed here. 
 
2.5.2.4 L2CAP to Upper Layer actions 
 
• L2CA_ConnectInd 
Indicates a Connection Request has been received from a remote device. 
 
• L2CA_ConnectCfm 
Confirms that a Connection Request has been accepted (see 
following the receipt of a Connection message from the remote device. 
 
• L2CA_ConnectCfmNeg 
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Negative confirmation (failure) of a Connection Request. An RTX timer 
expiration for an outstanding Connect Request can substitute for a negative 
Connect Response and result in this action. 
 
• L2CA_ConnectPnd 
Confirms that a Connection Response (pending) has been received from the 
remote device. 
 
• L2CA_ConfigInd 
Indicates a Configuration Request has been received from a remote device. 
 
• L2CA_ConfigCfm 
Confirms that a Configuration Request has been accepted  following the 
receipt of a Configuration Response from the remote device. 
 
• L2CA_ConfigCfmNeg 
Negative confirmation (failure) of a Configuration Request. An RTX timer 
expiration for an outstanding Connect Request can substitute for a negative 
Connect Response and result in this action. 
 
• L2CA_DisconnectInd 
Indicates a Disconnection Request has been received from a remote device 
or the remote device has been disconnected because it has failed to respond 
to a signalling request.  
 
• L2CA_DisconnectCfm 
Confirms that a Disconnect Request has been processed by the remote 
device following the receipt of a Disconnection Response from the remote 
device. An RTX timer expiration for an outstanding Disconnect Request can 
substitute for a Disconnect Response and result in this action. Upon 
receiving this event the upper layer knows the L2CAP channel has been 
terminated. There is no corresponding negative confirm.  
 
• L2CA_TimeOutInd 
Indicates that a RTX or ERTX timer has expired. This indication occurs 
once sending a L2CA_DisconnectInd. 
 
• L2CA_QoSViolationInd 
Indicates that the quality of service agreement has been violated. 
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2.5.3 CHANNEL OPERATIONAL STATES 
 
• CLOSED 
In this state, there is no channel associated with this CID. This is the only 
state when a link level connection (Baseband) may not exist. Link 
disconnection forces all other states into the CLOSED state. 
 
• W4_L2CAP_CONNECT_RSP 
In this state, the CID represents a local end-point and an 
L2CAP_ConnectReq message has been sent referencing this endpoint and it 
is now waiting for the corresponding L2CAP_ConnectRsp message. 
 
• W4_L2CA_CONNECT_RSP 
In this state, the remote end-point exists and an L2CAP_ConnectReq has 
been received by the local L2CAP entity. An L2CA_ConnectInd has been 
sent to the upper layer and the part of the local L2CAP entity processing the 
received L2CAP_ConnectReq waits for the corresponding response. The 
response may require a security check to be performed.  
 
• CONFIG 
In this state, the connection has been established but both sides are still 
negotiating the channel parameters. The Configuration state may also be 
entered when the channel parameters are being renegotiated. Prior to 
entering the CONFIG state, all outgoing data traffic should be suspended 
since the traffic parameters of the data traffic are to be renegotiated. 
Incoming data traffic must be accepted until the remote channel endpoint has 
entered the CONFIG state. 

In the CONFIG state, both sides must issue L2CAP_ConfigReq 
messages if only defaults are being used, a null message should be sent. If a 
large amount of parameters need to be negotiated, multiple messages may be 
sent to avoid any MTU limitations and negotiate incrementally. Moving 
from the CONFIG state to the OPEN state requires both sides to be ready. 
An L2CAP entity is ready when it has received a positive response to its 
final request and it has positively responded to the final request from the 
remote device. 
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• OPEN 
In this state, the connection has been established and configured, and data 
flow may proceed. 
 
• W4_L2CAP_DISCONNECT_RSP 
In this state, the connection is shutting down and an L2CAP_DisconnectReq 
message has been sent. This state is now waiting for the corresponding 
response. 
 
• W4_L2CA_DISCONNECT_RSP 
In this state, the connection on the remote endpoint is shutting down and an 
L2CAP_DisconnectReq message has been received. An 
L2CA_DisconnectInd has been sent to the upper layer to notify the owner of 
the CID that the remote endpoint is being closed. This state is now waiting 
for the corresponding response from the upper layer before responding to the 
remote endpoint. 
 
2.5.4 MAPPING EVENTS TO ACTIONS 
 
The Table defines the actions taken in response to events that occur in a 
particular state. Events that are not listed in the table, nor have actions 
marked N/C (for no change), are assumed to be errors and silently discarded. 
Data input and output events are only defined for the Open and 
Configuration states. Data may not be received during the initial 
Configuration state, but may be received when the Configuration state is re-
entered due to a reconfiguration process. Data received during any other 
state should be silently discarded. 
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Table 2.4: L2CAP Channel State Machine 
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Table 2.4: L2CAP Channel State Machine 
 
An example state diagram and sequence diagram illustrating the flow of 
events and actions within the L2CAP Layer moving it from one state to 
another are given at the end of the chapter. 
 
2.6 DATA PACKET FORMAT 
 

L2CAP is packet-based but follows a communication model based on 
channels. A channel represents a data flow between L2CAP entities in 
remote devices. Channels may be connection-oriented or connectionless. All 
packet4 fields use Little Endian byte order. 
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2.6.1 CONNECTION-ORIENTED CHANNEL 
 

Figure 2.10 illustrates the format of the L2CAP packet (also referred 
to as the L2CAP PDU) within a connection-oriented channel. 
 

 
Figure 2.11: L2CAP Packet (field sizes in bits) 
 
The fields shown are: 
• Length: 2 octets (16 bits) 
Length indicates the size of information payload in bytes, excluding the 
length of the L2CAP header. The length of an information payload can be up 
to 65535 bytes. The Length field serves as a simple integrity check of the 
reassembled L2CAP packet on the receiving end.  
 
• Channel ID: 2 octets 
The channel ID identifies the destination channel endpoint of the packet. 
The scope of the channel ID is relative to the device the packet is being sent 
to. 
 
• Information: 0 to 65535 octets 
This contains the payload received from the upper layer protocol (outgoing 
packet), or delivered to the upper layer protocol (incoming packet). The 
minimum supported MTU for connection-oriented packets (MTU cno ) is 
negotiated during channel configuration. The minimum supported MTU for 
the signalling packet (MTU sig ) is 48 bytes. 
 
2.7 SIGNALLING 
 

This section describes the signalling commands passed between two 
L2CAP entities on remote devices. All signalling commands are sent to CID 
0x0001. The L2CAP implementation must be able to determine the 
Bluetooth address (BD_ADDR) of the device that sent the commands. 
Figure 2.11 illustrates the general format of all L2CAP packets containing 
signalling commands. Multiple commands may be sent in a single (L2CAP) 
packet and packets are sent to CID 0x0001. Commands take the form of 
Requests and Responses. All L2CAP implementations must support the 
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reception of signalling packets whose MTU (MTU sig ) does not exceed 48 
bytes. L2CAP implementations should not use signalling packets beyond 
this size without first testing whether the implementation can support larger 
signalling packets. Implementations must be able to handle the reception of 
multiple commands in an L2CAP packet as long as the 
MTU is not exceeded.  
 

      
      Figure.2.12: Signalling Command Packet Format 
 
 

          
      Figure 2.13: Command format 
 
The fields shown are: 
• Code: 1 octet 
The Code field is one octet long and identifies the type of command. When a 
packet is received with an unknown Code field, a Command Reject packet is 
sent in response. Table 2.5 lists the codes used. All codes are specified with 
the most significant bit in the left-most position 
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                                     Table 2.5: Signalling Command Codes 
 
• Identifier: 1 octet 
The Identifier field is one octet long and helps matching a request with the 
reply. The requesting device sets this field and the responding device uses 
the same value in its response. A different Identifier must be used for each 
original command. Identifiers should not be recycled until a period of 360 
seconds has elapsed from the initial transmission of the command using the 
identifier. On the expiration of a RTX or ERTX timer, the same identifier 
should be used if a duplicate Request is re-sent. A device receiving a 
duplicate request should reply with a duplicate response. A command 
response with an invalid identifier is silently discarded. Signalling identifier 
0x0000 is defined to be an illegal identifier and shall never be used in any 
command. 
 
• Length: 2 octets 
The Length field is two octets long and indicates the size in octets of the data 
field of the command only, i.e., it does not cover the Code, Identifier, and 
Length fields. 
 
• Data: 0 or more octets 
The Data field is variable in length and discovered using the Length field.  
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2.7.1 COMMAND REJECT (CODE 0x01) 
 

A Command Reject packet is sent in response to a command packet 
with an unknown command code or when sending the corresponding 
Response is inappropriate. The format of the packet is displayed in the 
adjoining figure. The Identifier should match the Identifier of the packet 
containing the unidentified code field. Implementations must always send 
these packets in response to unidentified signalling packets. Command 
Reject packets should not be sent in response to an identified Response 
packet. When multiple commands are included in an L2CAP packet and the 
packet exceeds the MTU of the receiver, a single Command Reject packet is 
sent in response. The identifier should match the first Request command in 
the L2CAP packet. If only Responses are recognized, the packet shall be 
silently discarded. The Code field determines the format of the Data field. 
 

      
      Figure 2.14: Command Reject Packet 
 
• Length = 0x0002 or more octets 
• Reason: 2 octets 
The Reason field describes why the Request packet was rejected. 
 

                         
                         Table 2.6: Reason Code Descriptions 
 
• Data: 0 or more octets 
The length and content of the Data field depends on the Reason code. If the 
Reason code is 0x0000, “Command not understood”, no Data field is used. 
If the Reason code is 0x0001, “Signalling MTU Exceeded”, the 2-octet Data 
field represents the maximum signalling MTU the sender of this packet can 
accept. If a command refers to an invalid channel then the Reason code 
0x0002 will be returned. Typically a channel is invalid because it does not 
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exist. A 4- octet data field on the command reject contains the local (first) 
and remote (second) channel endpoints (relative to the sender of the 
Command Reject) of the disputed channel. The latter endpoints are obtained 
from the corresponding rejected command. If the rejected command contains 
only one of the channel endpoints, the other one is replaced by the null CID 
0x0000. 
 

                               
                              Table 2.7: Reason Data values 
 
2.7.2 CONNECTION REQUEST (CODE 0x02) 
 
 Connection request packets are sent to create a channel between two 
devices. The channel connection must be established before configuration 
may begin. Figure 2.15 illustrates a Connection Request packet. 
 

        
        Figure 2.15: Connection Request Packet 
 
• Length = 0x0004 or more octets 
• Protocol/Service Multiplexor (PSM): 2 octets (minimum) 
The PSM field is two octets (minimum) in length. The structure of the PSM 
field is based on the ISO 3309 extension mechanism for address fields. All 
PSM values must be ODD, that is, the least significant bit of the least 
significant octet must be ’1’. Also, all PSM values must be assigned such 
that the least significant bit of the most significant octet equals ’0’. This 
allows the PSM field to be extended beyond 16 bits. PSM values are 
separated into two ranges. Values in the first range are assigned by the 
Bluetooth SIG and indicate protocols. The second range of values are 
dynamically allocated and used in conjunction with the Service Discovery 
Protocol (SDP). The dynamically assigned values may be used to support 
multiple implementations of a particular protocol. 
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                          Table 2.8: Defined PSM Values 
 
• Source CID (SCID): 2 octets 
The source local CID is two octets in length and represents a channel end-
point on the device sending the request. Once the channel has been 
configured, data packets flowing to the sender of the request must be send to 
this CID. In this section, the Source CID represents the channel endpoint on 
the device sending the request and receiving the response. 
 
2.7.3 CONNECTION RESPONSE (CODE 0x03) 
 
When a unit receives a Connection Request packet, it must send a 
Connection Response packet. The format of the connection response packet 
is shown in 
 

      
       Figure 2.16: Connection Response Packet 
 
• Length = 0x0008 octets 
 
• Destination Channel Identifier (DCID): 2 octets 
The field contains the channel end-point on the device sending this 
Response packet. In this section, the Destination CID represents the chan-nel 
endpoint on the device receiving the request and sending the response. 
 
• Source Channel Identifier (SCID): 2 octets 
The field contains the channel end-point on the device receiving this 
Response packet. 
  
• Result: 2 octets 
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The result field indicates the outcome of the connection request. The result 
value of 0x0000 indicates success while a non-zero value indicates the 
connection request failed or is pending. A logical channel is established on 
the receipt of a successful result. If the result field is not zero. The DCID and 
SCID fields should be ignored when the result field indicates the connection 
was refused. 
 

                              
                              Table 2.9: Result values 
 
• Status: 2 octets 
Only defined for Result = Pending. Indicates the status of the connection. 
 
 

                                   
                                   Table 2.10: Status values 
 
 
 
 
2.7.4 CONFIGURATION REQUEST (CODE 0x04) 
 

Configuration Request packets are sent to establish an initial logical 
link transmission contract between two L2CAP entities and also to re-
negotiate this contract whenever appropriate. During a re-negotiation 
session, all data traffic on the channel is suspended pending the outcome of 
the negotiation. Each configuration parameter in a Configuration Request is 
related exclusively either with the outgoing or the incoming data traffic but 
not both of them. If an L2CAP entity receives a Configuration Request while 



 85

it is waiting for a response it does not block sending the Configuration 
Response, otherwise the configuration process may result in deadlock. If no 
parameters need to be negotiated, no options need to be inserted and the C-
bit is cleared. L2CAP entities in remote devices negotiate all parameters 
defined in this document whenever the default values are not acceptable. 
Any missing configuration parameters are assumed to have their most 
recently (mutually) explicitly or implicitly accepted values. Event if all 
default values are acceptable, a Configuration Request packet with no 
options is sent. Since most of the values are implicitly accepted they are 
infact the default values for each parameter negotiated for the specific 
channel under configuration. 

Each configuration parameter is one-directional and relative to the 
direction implied by the sender of a Configuration Request. If a device needs 
to establish the value of a configuration parameter in the opposite direction 
than the one implied by a Configuration Request, a new Configuration 
Request with the desired value of the configuration parameter is sent in the 
direction opposite the one used for the original ConfigurationRequest. The 
amount of time (or messages) spent on arbitrating the channel parameters 
before terminating the negotiation is minimal due to acceptance of default 
values. 

The figure defines the format of the Configuration Request packet. 
 

       
       Figure 2.17: Configuration Request Packet 
 
• Length = 0x0004 or more octets 
• Destination CID (DCID): 2 octets 
The field contains the channel end-point on the device receiving this 
Request packet. 
 
• Flags: 2 octets 
The Figure displays the two-octet Flags field. Note the most significant bit is 
shown on the left. 
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        Figure 2.18: Configuration Request Flags field format 
 
Of the C - continuation flag. When all configuration options cannot fit into 
the receiver's MTU sig , the are passed in multiple configuration command 
packets. If all options fit into the receiver's MTU, then the continuation bit is 
not used. Each Configuration Request contains an integral number of 
options. Each Request is tagged with a different Identifier and matched with 
a Response with the same Identifier. 

When used in the Configuration Request, the continuation flag 
indicates the responder should expect to receive multiple request packets. 
The responder replies to each request packet. The responder may reply to 
each Configuration Request with a Configuration Response containing the 
same option(s) present in the Request, except for those error conditions more 
appropriate for a Command Reject, or the responder may reply with a 
"Success" Configuration Response packet containing no options, delaying 
those options until the full Request has been received. The Configuration 
Request packet with the configuration flag cleared is treated as the 
Configuration Request event in the channel state machine. When used in the 
Configuration Response, the continuation flag must be set if the flag is set in 
the Request. If the configuration flag is set in the Response when the 
matching Request does not set the flag, it indicates the responder has 
additional options to send to the requestor. In this situation, the requestor 
sends null-option Configuration Requests (with cleared C-flag) to the 
responder until the responder replies with a Configuration Response where 
the continuation flag is clear. The Configuration Response packet with the 
configuration flag cleared shall be treated as the Configuration Response 
event in the channel state machine. The result of the configuration 
transaction is the union of all the result values. All the result values must 
succeed for the configuration transaction to succeed. Other flags are reserved 
and are therefore cleared. These are ignored by the L2Cap Layer. 
 
Configuration Options 

The list of the parameters and their values to be negotiated. 
Configuration Requests may contain no options (referred to as an empty or 
null configuration request) and can be used to request a response. For an 
empty configuration request the length field is set to 0x0004. 
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2.7.5 CONFIGURE RESPONSE (CODE 0X05) 
 

Configure Response packets are sent in reply to Configuration 
Request packets except when the error condition id is covered by a 
Command Reject response. Each configuration parameter value (if any is 
present) in a Configuration Response reflects an ’adjustment’ to a 
configuration parameter value that has been sent (or, in case of default 
values, implied) in the corresponding Configuration Request. The options 
sent in the Response depend on the value in the Result field.  
 

        
       Figure 2.19: Configuration Response Packet 
 
• Length = 0x0006 or more octets 
 
• Source CID (SCID): 2 octets 
The field contains the channel end-point on the device receiving this 
Response packet. The device receiving the Response checks that the 
Identifier field matches the same field in the corresponding configuration 
request command and the SCID matches its local CID paired with the 
original DCID. 
 
 
• Flags: 2 octets 
The Figure displays the two-octet Flags field. Note the most significant bit is 
shown on the left. 
 

          
         Figure 2.20: Configuration Response Flags field format 
 
C – more configuration responses will follow when set to 1. This flag 
indicates that the parameters included in the response are a partial subset of 
parameters being sent by the device sending the Response packet. Other 
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flags are reserved and are cleared. L2CAP implementations ignore these 
bits. 
 
• Result: 2 octets 
The Result field indicates whether or not the Request was acceptable.  

                           
                           Table 2.11: Configuration Response Result codes 
 
 
• Configuration Options 
This field contains the list of parameters being negotiated. 
 
2.7.6 DISCONNECTION REQUEST (CODE 0x06) 
 

Terminating an L2CAP channel requires that a disconnection request 
packet be sent and acknowledged by a disconnection response packet. 
Disconnection is requested using the signalling channel since all other 
L2CAP packets sent to the destination channel automatically get passed up 
to the next protocol layer. The figure displays a disconnection packet 
request. The receiver must ensure both source and destination CIDs match 
before initiating a connection disconnection. Once a Disconnection Request 
is issued, all incoming data in transit on this L2CAP channel will be 
discarded and any new additional outgoing data is not allowed. Once a 
disconnection request for a channel has been received, all data queued to be 
sent out on that channel may be discarded.  
 

       
       Figure 2.21: Disconnection Request Packet 
 
• Length = 0x0004 octets 
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• Destination CID (DCID): 2 octets 
This field specifies the end-point of the channel to be shutdown on the 
device receiving this request. 
 
• Source CID (SCID): 2 octets 
This field specifies the end-point of the channel to be shutdown on the 
device sending this request. The SCID and DCID are relative to the sender 
of this request and matches those of the channel to be disconnected. If the 
DCID is not recognized by the receiver of this message, a CommandReject 
message with ’invalid CID’ result code is sent in response. If the receivers 
finds a DCID match but the SCID fails to find the same match, the request is 
silently discarded. 
 
2.7.7 DISCONNECTION RESPONSE (CODE 0x07) 
 
Disconnection responses are sent in response to each disconnection 
request.  
 
 

        
        Figure 2.22 : Disconnection Response Packet 
 
• Length = 0x0004 octets 
 
• Destination CID (DCID): 2 octets 
This field identifies the channel end-point on the device sending the 
response. 
 
• Source CID (SCID): 2 octets 

This field identifies the channel end-point on the device receiving the 
response. The DCID and the SCID (which are relative to the sender of the 
request), and the Identifier fields match those of the corresponding 
disconnection request command. If the CIDs do not match, the response is 
silently discarded at the receiver. 
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2.7.8 ECHO REQUEST (CODE 0x08) 
 

Echo requests are used to solicit a response from a remote L2CAP 
entity. These requests may be used for testing the link or passing vendor 
specific information using the optional data field. L2CAP entities respond to 
well-formed Echo Request packets with an Echo Response packet. The Data 
field is optional and implementation-dependent. L2CAP entities ignore the 
contents of this field. 
 

 
 Figure 2.23: Echo Request Packet 
 
 
2.7.9 ECHO RESPONSE (CODE 0x09) 
 

Echo responses are sent upon receiving Echo Request packets. The 
identifier in the response matches the identifier sent in the Request. The 
optional and implementation-dependent data field may contain the contents 
of the data field in the Request, different data, or no data at all.  
 

       
       Figure 2.24: Echo Response Packet 
 
2.7.10 INFORMATION REQUEST (CODE 0X0A) 
 

Information requests are used to solicit implementation-specific 
information from a remote L2CAP entity. L2CAP entities respond to well-
formed Information Request packets with an Information Response packet. 
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    Figure 2.25: Information Request Packet 
 
• Length = 0x0002 octets 
 
• InfoType: 2 octets 
The InfoType defines the type of implementation-specific information being 
solicited. 
   

                    
                    Table 2.11: InfoType definitions 
 
 
2.7.11 INFORMATION RESPONSE (CODE 0X0B) 

Information responses are sent upon receiving Information Request 
packets. The identifier in the response matches the identifier sent in the 
Request. The optional data field may contain the contents of the data field in 
the Request, different data, or no data at all. 
 

 
Figure 2.26: Information Response Packet 
 
• InfoType: 2 octets 
Same value sent in the request. 
 
• Result: 2 octets 
The Result contains information about the success of the request. If result is 
"Success", the data field contains the information as specified in Table 2.12. 
If result is "Not supported", no data is returned. 
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Table 2.12: Information Response Result values 
 
• Data: 0 or more octets 
The contents of the Data field depends on the InfoType. For the Connection 
MTU request, the data field contains the remote entity’s 2-octet acceptable  
connectionless MTU.  
 

 
Table 2.13: Information Response Data fields 
 

 
 
2.8 CONFIGURATION PARAMETER OPTIONS 
 

Options are a mechanism to extend the ability to negotiate different 
connection requirements. Options are transmitted in the form of information 
elements comprising an option type, an option length, and one or more 
option data fields. Figure 2.27 illustrates the format of an option. 
 

     
    Figure 2.27: Configuration option format 
 
• Type: 1 octet 
The option type field defines the parameters being configured. The most 
significant bit of the type determines the action taken if the option is not 
recognized. The semantics assigned to the bit are defined below. 
 
0 - option must be recognized; refuse the configuration request 
1 - option is a hint; skip the option and continue processing 
 
• Length: 1 octet 
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The length field defines the number of octets in the option payload. So an 
option type with no payload has a length of 0. 
 
• Option data 
The contents of this field are dependent on the option type. 
 
2.8.1 MAXIMUM TRANSMISSION UNIT (MTU) 

This option specifies the payload size the sender is capable of 
accepting. The type is 0x01, and the payload length is 2 bytes, carrying the 
two-octet MTU size value as the only information element. MTU is not 
really a negotiated value but rather an informational parameter to the remote 
device that the local device can accommodate in this channel an MTU larger 
than the minimum required. In the unlikely case that the remote device is 
only willing to send L2CAP packets in this channel that are larger than the 
MTU announced by the local device, then this Configuration Request will 
receive a negative response in which the remote device will include the 
value of MTU that is indented to transmit. In this case, The device will stop 
configuration negotiation and try send data according to the default values 
otherwise the request is denied and connection establishment is attempted 
with another device. The remote device in its positive Configuration 
Response will include the actual MTU to be used on this channel for traffic 
flowing into the local device which is minimum{ MTU in configReq, 
outgoing MTU capability of remote device }. The MTU to be used on this 
channel but for the traffic flowing in the opposite direction will be 
established when the remote device (with respect to this discussion)sends its 
own Configuration Request. 
 

 
 Figure 2.28: MTU Option Format  
 
• Maximum Transmission Unit (MTU) Size: 2 octets 
The MTU field represents the largest L2CAP packet payload, in bytes, that 
the originator of the Request can accept for that channel. The MTU is 
asymmetric and the sender of the Request shall specify the MTU it can 
receive on this channel if it differs from the default value. The value is 672 
bytes. 
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2.8.2 FLUSH TIMEOUT OPTION 
 

This option is used to inform the recipient of the amount of time the 
originator’s link controller / link manager will attempt to successfully 
transmit an L2CAP segment before giving up and flushing the packet. The 
type is 0x02 and the payload size is 2 octets. 
 
 

         
         Figure 2.29: Flush Timeout 
 
• Flush Timeout 

This value represents units of time measured in milliseconds. The 
value of 1 implies no retransmissions at the Baseband level should be 
performed since the minimum polling interval is 1.25 ms. The value of all 
1’s indicates an infinite amount of retransmissions. This is also referred to as 
’reliable channel’. In this case, the link manager continues retransmitting a 
segment until physical link loss occurs. This is an asymmetric value and the 
sender of the Request shall specify its flush timeout value if it differs from 
the default value of 0xFFFF. 
 
2.8.3 CONFIGURATION PROCESS 
 

Negotiating the channel parameters involves three steps: 
 
1. Informing the remote side of the non-default parameters that the local side 
will accept using a Configuration Request 
 
2. Remote side responds, agreeing or disagreeing to these values, including 
the default ones, using a Configuration Response.The local and remote 
devices repeat steps (1) and (2) as needed. 
 
3. Repeat steps (1) and (2) exactly once more for the reverse direction. This 
process can be abstracted into the initial Request negotiation path and a 
Response negotiation path, followed by the reverse direction phase. 
Reconfiguration follows a similar two-phase process by requiring 
negotiation in both directions. 
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2.8.3.1 Request Path 
 

The Request Path negotiates the incoming MTU, flush timeout, and 
outgoing flowspec. Table 2.13 defines the configuration options that may be 
placed in the Configuration Request message and their semantics. 
  

                              
                             Table 2.13: Parameters allowed in Request 
 
 
2.8.3.2 Response Path 
 
The Response Path negotiates the outgoing MTU (remote side’s incoming 
MTU), the remote side’s flush timeout, and incoming flowspec (remote 
side’soutgoing flowspec). If a request-oriented parameter is not present in 
the Request message (reverts to default value), the remote side may 
negotiate for a non-default value by including the proposed value in a 
negative Response message. 
 
 

                                 
                                Table 2.14: Parameters allowed in Response 
 
2.8.3.3 Configuration State Machine 
 
The configuration state machine shown below depicts two paths. Before 
leaving the CONFIG state and moving into the OPEN state, both paths must 
reach closure. The request path requires the local device to receive a positive 
response to reach closure while the response path requires the local device to 
send a positive response to reach closure.  
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       Figure 2.30: Configuration State Machine 
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2.9 SAMPLE STATE DIAGRAM 
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2.10  SEQUENCE OF EVENTS IN L2CAP INTERACTION 
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           SERVICE  DICOVERY PROTOCOL       
 
3.1 INTRODUCTION 
 
3.1.1 GENERAL DESCRIPTION 
 

The service discovery protocol (SDP) provides a means for 
applications to discover which services are available and to determine the 
characteristics of those available services. 
 
3.1.2 MOTIVATION 
 

Service Discovery in the Bluetooth environment, where the set of 
services that are available changes dynamically based on the RF proximity 
of devices in motion, is qualitatively different from service discovery in 
traditional network-based environments. The service discovery protocol 
defined in this specification is intended to address the unique characteristics 
of the Bluetooth environment.  
 
3.1.3 CAPABILITIES 
 

The following capabilities are present in the Service Discovery 
Protocol. 
 
1. SDP  provides the ability for clients to search for needed services based 
on specific attributes of those services. 
 
2. SDP permits services to be discovered based on the class of service. 
 
3. SDP enables browsing of services without a priori knowledge of the 
specific characteristics of those services. 
 
4. SDP provides the means for the discovery of new services that become 
available when devices enter RF proximity with a client device as well as 
when a new service is made available on a device that is in RF proximity 
with the client device. 
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5. SDP provides  a mechanism for determining when a service becomes 
unavailable when devices leave RF proximity with a client device as well as 
when a service is made unavailable on a device that is in RF proximity with 
the client device. 
 
6. SDP provides for services, classes of services, and attributes of services to 
be uniquely identified. 
 
7. SDP allows a client on one device to discover a service on another 
device without consulting a third device. 
 
8. SDP is suitable for use on devices of limited complexity. 
 
9. SDP provides a mechanism to incrementally discover information about 
the services provided by a device. This is intended to minimize the quantity 
of data that must be exchanged in order to determine that a particular service 
is not needed by a client. 
 
10.SDP supports the caching of service discovery information by 
intermediary agents to improve the speed or efficiency of the discovery 
process. 
 
11.SDP is transport independent. 
 
12.SDP  functions while using L2CAP as its transport protocol. 
 
13.SDP permits the discovery and use of services that provide access to 
other service discovery protocols. 
 
14.SDP supports the creation and definition of new services without 
requiring registration with a central authority. 
 
3.1.4 CONVENTIONS 
 
3.1.4.1 Bit And Byte Ordering Conventions 
 

When multiple bit fields are contained in a single byte and represented 
in a drawing in this specification, the more significant (high-order) bits are 
shown toward the left and less significant (low-order) bits toward the right. 
Multiple-byte fields are drawn with the more significant bytes toward the 
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left and the less significant bytes toward the right. Multiple-byte fields are 
transferred in network byte order.   
 
3.2 OVERVIEW 
 
3.2.1 SDP CLIENT-SERVER INTERACTION 
 

             
            Figure 3.1 
 

The service discovery mechanism provides the means for client 
applications to discover the existence of services provided by server 
applications as well as the attributes of those services. The attributes of a 
service include the type or class of service offered and the mechanism or 
protocol information needed to utilize the service. As far as the Service 
Discovery Protocol (SDP) is concerned, the configuration shown in Figure 1 
may be simplified to that shown in Figure 2.  
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Figure 3.2: 
 

SDP involves communication between an SDP server and an SDP 
client. The server maintains a list of service records that describe the 
characteristics of services associated with the server. Each service record 
contains information about a single service. A client may retrieve 
information from a service record maintained by the SDP server by issuing 
an SDP request. If the client, or an application associated with the client, 
decides to use a service, it must open a separate connection to the service 
provider in order to utilize the service. SDP provides a mechanism for 
discovering services and their attributes (including associated service access 
protocols), but it does not provide a mechanism for utilizing those services 
(such as delivering the service access protocols). There is a maximum of one 
SDP server per Bluetooth device. (If a Bluetooth device acts only as a client, 
it needs no SDP server.) A single Bluetooth device may function both as an 
SDP server and as an SDP client. If multiple applications on a device 
provide services, an SDP server may act on behalf of those service providers 
to handle requests for information about the services that they provide. 
Similarly, multiple client applications may utilize an SDP client to query 
servers on behalf of the client applications. The set of SDP servers that are 
available to an SDP client can change dynamically based on the RF 
proximity of the servers to the client. When a server becomes available, a 
potential client must be notified by a means other than SDP so that the client 
can use SDP to query the server about its services. Similarly, when a server 
leaves proximity or becomes unavailable for any reason, there is no explicit 
notification via the service discovery protocol. However, 
 the client may use SDP to poll the server and may infer that the server is not 
available if it no longer responds to requests.  
 
3.2.2 SERVICE RECORD 
 

A service is any entity that can provide information, perform an 
action, or control a resource on behalf of another entity. A service may be 
implemented as software, hardware, or a combination of hardware and 
software. All of the information about a service that is maintained by an 
SDP server is contained within a single service record. The service record 
consists entirely of a list of service attributes. 
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Figure 3.3: Service Record 
 

A service record handle is a 32-bit number that uniquely identifies 
each service record within an SDP server. It is important to note that, in 
general, each handle is unique only within each SDP server. If SDP server 
S1 and SDP server S2 both contain identical service records (representing 
the same service), the service record handles used to reference these 
identical service records are completely independent. The handle used to 
reference the service on S1 will be meaningless if presented to S2. The 
service discovery protocol does not provide a mechanism for notifying 
clients when service records are added to or removed from an SDP server. 
While an L2CAP (Logical Link Control and Adaptation Protocol) 
connection is established to a server, a service record handle acquired from 
the server will remain valid unless the service record it represents is 
removed. If a service is removed from the server, further requests to the 
server (during the L2CAP connection in which the service record handle was 
acquired) using the service’s (now stale) record handle will result in an error 
response indicating an invalid service record handle. An SDP server must 
ensure that no service record handle values are reused while an L2CAP 
connection remains established. The service record handles remain valid 
across successive L2CAP connections while the ServiceDatabaseState 
attribute value remains unchanged. There is one service record handle whose 
meaning is consistent across all SDP servers. This service record handle has 
the value 0x00000000 and is a handle to the service record that represents 
the SDP server itself. This service record contains attributes for the SDP 
server and the protocol it supports. For example, one of its attributes is the 
list of SDP protocol versions supported by the server. Service record handle 
values 0x00000001-0x0000FFFF are reserved. 
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3.2.3 SERVICE ATTRIBUTE 
 
Each service attribute describes a single characteristic of a service. Some 
examples of service attributes are: 
 

 
 
Service providers can also define their own service attributes. A service 
attribute consists of two components: an attribute ID and an attribute value.  
 

 
Figure 3.4: Service Attribute 
 
3.2.4 ATTRIBUTE ID 
 

An attribute ID is a 16-bit unsigned integer that distinguishes each 
service attribute from other service attributes within a service record. The 
attribute ID also identifies the semantics of the associated attribute value. A 
service class definition specifies each of the attribute IDs for a service class 
and assigns a meaning to the attribute value associated with each attribute 
ID. For example, assume that service class C specifies that the attribute 
value associated with attribute ID 12345 is a text string containing the date 
the service was created. Assume further that service A is an instance of 
service class C. If service A’s service record contains a service attribute with 
an attribute ID of 12345, the attribute value must be a text string containing 
the date that service A was created. However, services that are not instances 
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of service class C may assign a different meaning to attribute ID 12345. All 
services belonging to a given service class assign the same meaning to each 
particular attribute ID. In the Service Discovery Protocol, an attribute ID is 
often represented as a data element. 
 

 
Figure 3.5: 
 
3.2.5 ATTRIBUTE VALUE 
 

The attribute value is a variable length field whose meaning is 
determined by the attribute ID associated with it and by the service class of 
the service record in which the attribute is contained. In the Service 
Discovery Protocol, an attribute value is represented as a data element. 
Generally, any type of data element is permitted as an attribute value, 
subject to the constraints specified in the service class definition that assigns 
an attribute ID to the attribute and assigns a meaning to the attribute value.  
 
3.2.6 SERVICE CLASS 
 

Each service is an instance of a service class. The service class 
definition provides the definitions of all attributes contained in service 
records that represent instances of that class. Each attribute definition 
specifies the numeric value of the attribute ID, the intended use of the 
attribute value, and the format of the attribute value. A service record 
contains attributes that are specific to a service class as well as universal 
attributes that are common to all services. Each service class is also assigned 
a unique identifier. This service class identifier is contained in the attribute 
value for the ServiceClassIDList attribute, and is represented as a UUID 
Since the format and meanings of many attributes in a service record are 
dependent on the service class of the service record, the ServiceClassIDList 
attribute is very important. Its value is examined or verified before any class-
specific attributes are used. Since all of the attributes in a service record  
conform to all of the service’s classes, the service class identifiers contained 
in the ServiceClassIDList attribute are related. Typically, each service class 
is a subclass of another class whose identifier is contained in the list. A 
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service subclass definition differs from its superclass in that the subclass 
contains additional attribute definitions that are specific to the subclass. The 
service class identifiers in the ServiceClassIDList attribute are listed in order 
from the most specific class to the most general class. When a new service 
class is defined that is a subclass of an existing service class, the new service 
class retains all of the attributes defined in its super-class. Additional 
attributes will be defined that are specific to the new service class. In other 
words, the mechanism for adding new attributes to some of the instances of 
an existing service class is to create a new service class that is a subclass of 
the existing service class.  
 
3.2.7 SEARCHING FOR SERVICES 
 

Once an SDP client has a service record handle, it may easily request 
the values of specific attributes, but how does a client initially acquire a 
service record handle for the desired service records? The Service Search 
transaction allows a client to retrieve the service record handles for 
particular service records based on the values of attributes contained within 
those service records. The capability search for service records based on the 
values of arbitrary attributes is not provided. Rather, the capability is 
provided to search only for attributes whose values are Universally Unique 
Identifiers 1 (UUIDs). Important attributes of services that can be used to 
search for a service are represented as UUIDs. 
 
3.2.7.1 UUID 
 
A UUID is a universally unique identifier that is guaranteed to be unique 
across all space and all time. UUIDs can be independently created in a 
distributed fashion. No central registry of assigned UUIDs is required. A 
UUID is a 128-bit value. 

To reduce the burden of storing and transferring 128-bit UUID values, 
a range of UUID values has been pre-allocated for assignment to often-used, 
registered purposes. The first UUID in this pre-allocated range is known as 
the Bluetooth Base UUID and has the value 00000000-0000-1000-8000-
00805F9B34FB, from the Bluetooth Assigned Numbers document. UUID 
values in the pre-allocated range have aliases that are represented as 16-bit 
or 32-bit values. These aliases are often called 16-bit and 32-bit UUIDs, but 
it is important to note that each actually represents a 128-bit UUID value. 
The full 128-bit value of a 16-bit or 32-bit UUID may be computed by a 
simple arithmetic operation. 128_bit_value = 16_bit_value * 2 96 + 
Bluetooth_Base_UUID 128_bit_value = 32_bit_value * 2 96 + 
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Bluetooth_Base_UUID A 16-bit UUID may be converted to 32-bit UUID 
format by zero-extending the 16-bit value to 32-bits. An equivalent method 
is to add the 16-bit UUID value to a zero-valued 32-bit UUID. Note that two 
16-bit UUIDs may be compared directly, as may two 32-bit UUIDs or two 
128-bit UUIDs. If two UUIDs of differing sizes are to be compared, the 
shorter UUID must be converted to the longer UUID format before 
comparison. 
 
3.2.7.2 Service Search Patterns 
 

A service search pattern is a list of UUIDs used to locate matching 
service records. A service search pattern is said to match a service record if 
each and every UUID in the service search pattern is contained within any of 
the service record’s attribute values. The UUIDs need not be contained 
within any specific attributes or in any particular order within the service 
record. The service search pattern matches if the UUIDs it contains 
constitute a subset of the UUIDs in the service record’s attribute values. The 
only time a service search pattern does not match a service record is if the 
service search pattern contains at least one UUID that is not contained 
within the service record’s attribute values. Note also that a valid service 
search pattern must contain at least one UUID. 
 
3.2.8 BROWSING FOR SERVICES 
 
Normally, a client searches for services based on some desired 
characteristic(s) (represented by a UUID) of the services. However, there are 
times when it is desirable to discover which types of services are described 
by an SDP server’s service records without any a priori information about 
the services. This process of looking for any offered services is termed 
browsing. In SDP, the mechanism for browsing for services is based on an 
attribute shared by all service classes. This attribute is called the 
BrowseGroupList attribute. The value of this attribute contains a list of 
UUIDs. Each UUID represents a browse group with which a service may be 
associated for the purpose of browsing. When a client desires to browse an 
SDP server’s services, it creates a service search pattern containing the 
UUID that represents the root browse group. All services that may be 
browsed at the top level are made members of the root browse group by 
having the root browse group’s UUID as a value within the 
BrowseGroupList attribute. Normally, if an SDP server has relatively few 
services, all of its services will be placed in the root browse group. However, 
the services offered by an SDP server may be organized in a browse group 
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hierarchy, by defining additional browse groups below the root browse 
group. Each of these additional browse groups is described by a service 
record with a service class of BrowseGroupDescriptor. A browse group 
descriptor service record defines a new browse group by means of its Group 
ID attribute. In order for a service contained in one of these newly defined 
browse groups to be browseable, the browse group descriptor service record 
that defines the new browse group must in turn be browseable. The 
hierarchy of browseable services that is provided by the use of browse group 
descriptor service records allows the services contained in an SDP server to 
be incrementally browsed and is particularly useful when the SDP server 
contains many service records.  
 
3.3 DATA REPRESENTATION 
 

Attribute values can contain information of various types with 
arbitrary complexity; thus enabling an attribute list to be generally useful 
across a wide variety of service classes and environments. SDP defines a 
simple mechanism to describe the data contained within an 
attribute value. The primitive construct used is the data element.  
 
3.3.1 DATA ELEMENT 
 

A data element is a typed data representation. It consists of two fields: 
a header field and a data field. The header field, in turn, is composed of two 
parts: a type descriptor and a size descriptor. The data is a sequence of bytes 
whose length is specified in the size descriptor and whose meaning is 
(partially) specified by the type descriptor.  
 
3.3.2 DATA ELEMENTTYPE DESCRIPTOR 
 

A data element type is represented as a 5-bit type descriptor. The type 
descriptor is contained in the most significant (high-order) 5 bits of the first 
byte of the data element header. The following types have been defined. 
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Table 3.1 
 
3.3.3 DATA ELEMENT SIZE DESCRIPTOR 
 

The data element size descriptor is represented as a 3-bit size index 
followed by 0, 8, 16, or 32 bits. The size index is contained in the least 
significant (low-order) 3 bits of the first byte of the data element header. The 
size index is encoded as follows. 
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3.4 PROTOCOL DESCRIPTION 
 

SDP is a simple protocol with minimal requirements on the 
underlying transport. It can function over a reliable packet transport (or even 
unreliable, if the client implements timeouts and repeats requests as 
necessary). SDP uses a request/response model where each transaction 
consists of one request protocol data unit (PDU) and one response PDU. In 
the case where SDP is used with the Bluetooth L2CAP transport protocol, 
only one SDP request PDU per connection to a given SDP server may be 
outstanding at a given instant. In other words, a client must receive a 
response to each request before issuing another request on the same L2CAP 
connection. Limiting SDP to sending one unacknowledged request PDU 
provides a simple form of flow control.  
 
3.4.1 TRANSFER BYTE ORDER 
 

The service discovery protocol transfers multiple-byte fields in 
standard net-work byte order (Big Endian), with more significant (high-
order) bytes being transferred before less-significant (low-order) bytes. 
 
 
3.4.2 PROTOCOL DATA UNIT FORMAT 
 

Every SDP PDU consists of a PDU header followed by PDU-specific 
parameters. The header contains three fields: a PDU ID, a Transaction 
ID, and a ParameterLength. Each of these header fields is described 
here. Parameters may include a continuation state parameter, 
described below; PDU-specific parameters for each PDU type are 
described later in separate PDU descriptions.  

 

        
       Figure 3.6: 
 



 112

          
 
 
 
 
 
3.4.3 PARTIAL RESPONSES AND CONTINUATION STATE 
 

Some SDP requests may require responses that are larger than can fit 
in a single response PDU. In this case, the SDP server will generate a partial 
response along with a continuation state parameter. The continuation state 
parameter can be supplied by the client in a subsequent request to retrieve 
the next portion of the complete response. The continuation state parameter 
is a variable length field whose first byte contains the number of additional 
bytes of continuation information in the field. The format of the continuation 
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information is not standardized among SDP servers. Each continuation state 
parameter is meaningful only to the SDP server that generated it. 
 

        
        Figure 3.7: Continuation State Format 
 
 

After a client receives a partial response and the accompanying 
continuation state parameter, it can re-issue the original request (with a new 
transaction ID) and include the continuation state in the new request 
indicating to the server that the remainder of the original response is desired. 
The maximum allowable value of the InfoLength field is 16 (0x10). An SDP 
server can split a response at any arbitrary boundary when it generates a 
partial response. The SDP server may select the boundary based on the 
contents of the reply, but is not required to do so. After a client receives a 
partial response and the accompanying continuation state parameter, it can 
re-issue the original request (with a new transaction ID) and include the 
continuation state in the new request indicating to the server that the 
remainder of the original response is desired. The maximum allowable value 
of the InfoLength field is 16 (0x10). Note that an SDP server can split a 
response at any arbitrary boundary when it generates a partial response. The 
SDP server may select the boundary based on the contents of the reply, but 
is not required to do so. 
 
3.4.4 ERROR HANDLING 
 

Each transaction consists of a request and a response PDU. Generally, 
each type of request PDU has a corresponding type of response PDU. 
However, if the server determines that a request is improperly formatted or 
for any reason the server cannot respond with the appropriate PDU type, it 
will respond with an SDP_ErrorResponse PDU. 

 
Figure 3.8: 
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3.4.4.1 SDP_ErrorResponse PDU 
 

 
 
Description: 

The SDP server generates this PDU type in response to an improperly 
formatted request PDU or when the SDP server, for whatever reason, cannot 
generate an appropriate response PDU. 
 
PDU Parameters: 
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3.4.5 SERVICESEARCH TRANSACTION 
 

 
 
3.4.5.1 SDP_ServiceSearchRequest PDU 
 

 
 
 
Description: 

The SDP client generates an SDP_ServiceSearchRequest to locate 
service records that match the service search pattern given as the first 
parameter of the PDU. Upon receipt of this request, the SDP server will 
examine its service record data base and return an 
SDP_ServiceSearchResponse containing the service record handles of 
service records that match the given service search pattern. No mechanism is 
provided to request information for all service records.  
 
PDU Parameters: 
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3.4.5.2 SDP_ServiceSearchResponse PDU 
 

 
 
Description: 

The SDP server generates an SDP_ServiceSearchResponse upon 
receipt of a valid SDP_ServiceSearchRequest. The response contains a list 
of service record handles for service records that match the service search 
pattern given in the request. Note that if a partial response is generated, it 
must contain an integral number of complete service record handles; a 
service record handle value may not be split across multiple PDUs. 
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3.4.6 SERVICEATTRIBUTE TRANSACTION 
 

 
 
3.4.6.1 SDP_ServiceAttributeRequest PDU  
 

 
 
Description: 

The SDP client generates an SDP_ServiceAttributeRequest to retrieve 
specified attribute values from a specific service record. The service record 
handle of the desired service record and a list of desired attribute IDs to be 
retrieved from that service record are supplied as parameters. 
Command Parameters: 
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3.4.6.2 SDP_ServiceAttributeResponse PDU 
 

 
 
Description: 

The SDP server generates an SDP_ServiceAttributeResponse upon 
receipt of a valid SDP_ServiceAttributeRequest. The response contains a list 
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of attributes (both attribute ID and attribute value) from the requested 
service record. 
 
PDU Parameters: 
 

      
 
3.4.7 SERVICESEARCHATTRIBUTE TRANSACTION 
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3.4.7.1 SDP_ServiceSearchAttributeRequest PDU 
 

 
 
Description: 

The SDP_ServiceSearchAttributeRequest transaction combines the 
capabilities of the SDP_ServiceSearchRequest and the 
SDP_ServiceAttributeRequest into a single request. As parameters, it 
contains both a service search pattern and a list of attributes to be retrieved 
from service records that match the service search pattern. The 
SDP_ServiceSearchAttributeRequest and its response are more complex and 
may require more bytes than separate SDP_ServiceSearch and 
SDP_ServiceAttribute transactions. However, using 
SDP_ServiceSearchAttributeRequest may reduce the total number of SDP 
transactions, particularly when retrieving multiple service records. The 
service record handle for each service record is contained in the 
ServiceRecordHandle attribute of that service and may be requested along 
with other attributes. 
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3.4.7.2 SDP_ServiceSearchAttributeResponse PDU 
 

 
 
Description: 

The SDP server generates an SDP_ServiceSearchAttributeResponse 
upon receipt of a valid SDP_ServiceSearchAttributeRequest. The response 
contains a list of attributes (both attribute ID and attribute value) from the 
service records that match the requested service search pattern. 
 
PDU Parameters: 
 

 
 
 
 
 
 
 



 124

 
 

 
 

3.5 SERVICE ATTRIBUTE DEFINITIONS 
 
3.5.1 UNIVERSAL ATTRIBUTE DEFINITIONS 
 

Universal attributes are those service attributes whose definitions are 
common to all service records. Note that this does not mean that every 
service record must contain values for all of these service attributes. 
However, if a service record has a service attribute with an attribute ID 
allocated to a universal attribute, the attribute value must conform to the 
universal attribute’s definition. 

Only two attributes are required to exist in every service record 
instance. They are the ServiceRecordHandle (attribute ID 0x0000) and the 
ServiceClassIDList (attribute ID 0x0001). All other service attributes are 
optional within a service record. 
 
3.5.1.1 ServiceRecordHandle Attribute 
 

 
 
 
Description: 

A service record handle is a 32-bit number that uniquely identifies 
each service record within an SDP server. It is important to note that, in 
general, each handle is unique only within each SDP server. If SDP server 
S1 and SDP server S2 both contain identical service records (representing 
the same service), the service record handles used to reference these 
identical service records are completely independent. The handle used to 
reference the service on S1 will, in general, be meaningless if presented to 
S2. 
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3.5.1.2 ServiceClassIDList Attribute 
 

 
 
Description: 

The ServiceClassIDList attribute consists of a data element sequence 
in which each data element is a UUID representing the service classes that a 
given service record conforms to. The UUIDs are listed in order from the 
most specific class to the most general class. The ServiceClassIDList must 
contain at least one service class UUID. 
 
3.5.1.3 ServiceName Attribute 
 

 
 
Description: 

The ServiceName attribute is a string containing the name of the 
service represented by a service record. It should be brief and suitable for 
display with an Icon representing the service. The offset 0x0000 must be 
added to the attribute ID base (contained in the 
LanguageBaseAttributeIDList attribute) in order to compute the attribute ID 
for this attribute.  
 
3.5.1.4 ServiceDescription Attribute 
 

 
 
Description: 

This attribute is a string containing a brief description of the service. It 
should be less than 200 characters in length. The offset 0x0001 must be 
added to the attribute ID base (contained in the 
LanguageBaseAttributeIDList attribute) in order to compute the attribute ID 
for this attribute. 
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3.5.1.5 ProviderName Attribute 
 

 
 
Description: 

This attribute is a string containing the name of the person or 
organization providing the service. The offset 0x0002 must be added to the 
attribute ID base (contained in the LanguageBaseAttributeIDList attribute) 
in order to compute the attribute ID for this attribute. 
 

Bluetooth Service Discovery Protocol (SDP) addresses service 
discovery specifically for the Bluetooth environment. It is optimized for the 
highly dynamic nature of Bluetooth communications. SDP focuses primarily 
on discovering services available from or through Bluetooth devices. SDP 
does not define methods for accessing services; once services are discovered 
with SDP, they can be accessed in various ways, depending upon the 
service. This might include the use of other service discovery and access 
mechanisms such as those mentioned above; SDP provides a means for other 
protocols to be used along with SDP in those environments where this can 
be beneficial. While SDP can coexist with other service discovery protocols, 
it does not require them. In Bluetooth environments, services can be 
discovered using SDP and can be accessed using other protocols defined by 
Bluetooth. 
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4.1 INTRODUCTION 
 

The RFCOMM protocol provides emulation of serial ports over the 
L2CAP protocol. The protocol is based on the ETSI standard TS 07.10. 
 
4.1.1 OVERVIEW 
 

RFCOMM is a simple transport protocol, with additional provisions 
for emulating the 9 circuits of RS-232 (EIATIA-232-E) serial ports. The 
RFCOMM protocol supports up to 60 simultaneous connections between 
two Bluetooth devices.  
 
4.1.2 DEVICE TYPES 
 

For the purposes of RFCOMM, a complete communication path 
involves two applications running on different devices (the communication 
endpoints) with a communication segment between them. Figure 4.1hows 
the complete communication path. (In this context, the term application may 
mean other things than end-user application; e.g. higher layer protocols or 
other services acting on behalf of end-user applications.) 
 

 
Figure 4.1: RFCOMM Communication Segment 
 

RFCOMM is intended to cover applications that make use of the 
serial ports of the devices in which they reside. In the simple configuration, 
the communication segment is a Bluetooth link from one device to another 
(direct connect),see Figure 4.2. Where the communication segment is 
another network, Blue-tooth wireless technology is used for the path 
between the device and a net-work connection device like a modem. 
RFCOMM is only concerned with the connection between the devices in the 
direct connect case, or between the device and a modem in the network case. 
RFCOMM can support other configurations, such as modules that 
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communicate via Bluetooth wireless technology on one side and provide a 
wired interface on the other side. These devices are not really modems but 
offer a similar service. They are therefore not explicitly discussed here. 
Basically two device types exist that the RFCOMM accommodates.  
 
Type 1 

Devices are communication end points such as computers and 
printers. 
 
Type 2  

Devices are those that are part of the communication segment; e.g. 
modems. Though RFCOMM does not make a distinction between these two 
device types in the protocol, accommodating both types of devices impacts 
the RFCOMM protocol. 
 

 
 
 

 
Figure 4.2 RFCOMM interaction in Bluetooth devices 
 

The information transferred between two RFCOMM entities has been 
defined to support both type 1 and type 2 devices. Some information is only 
needed by type 2 devices while other information is intended to be used by 
both. In the protocol, no distinction is made between type 1 and type 2. It is 
therefore up to the RFCOMM implementers to determine if the information 
passed in the RFCOMM protocol is of use to the implementation. Since the 
device is not aware of the type of the other device in the communication 
path, each must pass on all available information specified by the protocol. 
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4.1.3 BYTE ORDERING 
This implementation uses the same byte ordering as the TS 07.10 

specification; i.e. all binary numbers are in Least Significant Bit to Most 
Significant Bit order, reading from left to right. 
 
4.2 RFCOMM SERVICE OVERVIEW 
 

RFCOMM emulates RS-232 (EIATIA-232-E) serial ports. The 
emulation includes transfer of the state of the non-data circuits. RFCOMM 
has a built-in scheme for null modem emulation. In the event that a baud rate 
is set for a particular port through the RFCOMM service interface, that will 
not affect the actual data throughput in RFCOMM; i.e. RFCOMM does not 
incur artificial rate limitation or pacing. However, if either device is a type 2 
device (relays data onto other media), or if data pacing is done above the 
RFCOMM service interface in either or both ends, actual throughput will, on 
an average, reflect the baud rate setting. RFCOMM supports emulation of 
multiple serial ports between two devices and also emulation of serial ports 
between multiple devices. 
 
4.2.1 RS-232 CONTROL SIGNALS 
 

RFCOMM emulates the 9 circuits of an RS-232 interface. The circuits 
are listed below. 
 

 
Table 4.1: Emulated RS-232 circuits in RFCOMM 
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4.2.2 MULTIPLE EMULATED SERIAL PORTS 
 
4.2.2.1 Multiple Emulated Serial Ports between two Devices 
 

Two Bluetooth devices using RFCOMM in their communication may 
open multiple emulated serial ports. RFCOMM supports up to 60 open 
emulated ports. A Data Link Connection Identifier (DLCI) identifies an 
ongoing connection between a client and a server application. The DLCI is 
represented by 6 bits, but its usable value range is 2…61; in TS 07.10, DLCI 
0 is the dedicated control channel, DLCI 1 is unusable due to the concept of 
Server Channels, and DLCI 62-63 is reserved. The DLCI is unique within 
one RFCOMM session between two devices. To account for the fact that 
both client and server applications may reside on both sides of an RFCOMM 
session, with clients on either side making connections independent 
of each other, the DLCI value space is divided between the two 
communicating devices using the concept of RFCOMM server channels.  

 
 Figure 4.3: Multiple Emulated Serial Ports. 
 
4.2.2.2 Multiple Emulated Serial Ports and Multiple Bluetooth Devices 
 

If a Bluetooth device supports multiple emulated serial ports and the 
connections are allowed to have endpoints in different Bluetooth devices, 
then the RFCOMM entity  can run multiple TS 07.10 multiplexer sessions. 
Each multiplexer session in the figure uses its own L2CAP channel ID 
(CID).  
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Figure 4.4: Emulating serial ports coming from two Bluetooth devices. 
 

4.3 SERVICE INTERFACE DESCRIPTION 
 

RFCOMM is intended to define a protocol that is used to emulate 
serial ports.  Hence RFCOMM is part of a port driver which includes a 
serial port emulation entity. 
 
4.3.1 SERVICE DEFINITION MODEL 
 

The figure below shows a model of how RFCOMM fits into a typical 
system. This figure represents the RFCOMM reference model. 
 

 
Figure 4.5: RFCOMM reference model 
 
The elements of the RFCOMM reference model are described below. 
 



 133

      
 

4.4 INTERACTION WITH OTHER ENTITIES 
 
4.4.1 PORT EMULATION AND PORT PROXY ENTITIES 
 

This section defines how the RFCOMM protocol should be used to 
emulate serial ports. Figure 4.6 shows the two device types that the 
RFCOMM protocol supports. 
 

 
Figure 4.6: The RFCOMM communication model 
 
Type 1 devices are communication endpoints such as computers and 
printers. 
Type 2 devices are part of a communication segment; e.g. modems. 
 
4.4.1.1 Port Emulation Entity 

The port emulation entity maps a system specific communication 
interface (API) to the RFCOMM services. 
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4.4.1.2 Port Proxy Entity 

The port proxy entity relays data from RFCOMM to an external RS-
232 inter-face linked to a DCE. The communications parameters of the RS-
232 interface are set according to received RPN commands. 
 
4.4.2 SERVICE REGISTRATION AND DISCOVERY 
 
Registration of individual applications or services, along with the 
information needed to reach those (i.e. the RFCOMM Server Channel) is the 
responsibility of each application respectively (or possibly a Bluetooth 
configuration application acting on behalf of legacy applications not directly 
aware of Bluetooth). Below is description of developing service records for 
a given service or profile using RFCOMM. It illustrates the inclusion of the 
ServiceClassList with a single service class, a ProtocolDescriptor List with 
two protocols (although there may be more protocols on top of RFCOMM). 
One other universal attribute namely (ServiceName) is also used in the 
process. For each service running on top of RFCOMM, appropriate SDP-
defined universal attributes and/or service-specific attributes will apply. The 
attributes that a client application needs (at a minimum) to connect to a 
service on top of RFCOMM are the ServiceClassIDList and the 
ProtocolDescriptorList (corresponding to the shaded rows in the table 
below). 
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4.4.3  Reliability 

    RFCOMM uses the services of L2CAP to establish L2CAP channels to 
RFCOMM entities on other devices. An L2CAP channel is used for the 
RFCOMM/TS 07.10 multiplexer session. 

    RFCOMM requires L2CAP to provide channels with maximum reliability, 
to ensure that all frames are delivered in order, and without duplicates. 
Should an L2CAP channel fail to provide this, RFCOMM will expect a link 
loss notification, which should be handled by RFCOMM. 

For the purposes of RFCOMM, a complete communication path 
involves two applications running on different devices (the communication 
endpoints) with a communication segment between them. 
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CDocument
(f rom Application Architecture)

CBluetoothDoc

CFormView
(from Views)

CEditCtrlView CLeftPaneView CViewBaseband CViewBbSlave CViewL2cap CViewRfcomm CViewSDP

CObject
(f rom CObject Classes)

CLineChartItem

CAddService

CHistory

CSearch

CSel

CUUIDs

CMainFrame

CRightPaneFrame

CMacProgressCtrl CBluetoothView

CSplitterView

CLineChartCtrl

CStatusArea

CView
(f rom Views)

CWnd
(f rom Window Support)

CProgressCtrl
(from Controls)

CFrameWnd
(f rom Frame Windows)

CDialog
(f rom Dialog Boxes)

CSocket
(f rom Windows Sockets)

CBaseband CMySock

CMaster

DataElement

SDP attribute

CSerialPort

CSlave

CPacketCL2cap
CArray<BYTE,BYTE&>

service_attributesrfcomm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 138

CSearch
m_sel : CString
m_uuid : CString
m_opt : int
m_lcid : UINT
m_store : BOOL
am[7] : BYTE
UUID[10] : short
total_uuid : BYTE
error : BOOL
total_am : BOOL
sel_am : BYTE

<<afx_msg>> OnHelp()
<<virtual>> OnOK()
<<virtual>> OnInitDialog()
<<afx_msg>> OnRadio1()
<<afx_msg>> OnRadio3()
<<afx_msg>> OnRadio2()
<<virtual>> DoDataExchange()
CSearch()
setparent()

CDialog
(f rom Dialog Boxes)

CUUIDs

<<virtual>> OnInitDialog()
<<virtual>> DoDataExchange()
CUUIDs()

CWnd
(f rom Window Support)

CView
(f rom Views)

CFrameWnd
(f rom Frame Windows)

CBluetoothView

<<afx_msg>> OnTimer()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CBluetoothView()
<<virtual>> WindowProc()
<<virtual>> OnUpdate()
<<virtual>> OnEndPrinting()
<<virtual>> OnBeginPrinting()
<<virtual>> OnPreparePrinting()
<<virtual>> PreCreateWindow()
<<virtual>> OnDraw()
GetDocument()
CBluetoothView()

CMainFrame

<<afx_msg>> OnSize()
<<afx_msg>> OnCreate()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CMainFrame()
<<virtual>> WindowProc()
<<virtual>> OnCreateClient()
<<virtual>> PreCreateWindow()
CMainFrame()
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CViewBaseband
total : int
m_master : int
m_selindex : int

<<afx_msg>> OnShowWindow()
<<afx_msg>> OnDblclkInqlist()
<<afx_msg>> OnSlave()
<<afx_msg>> OnMaster()
<<afx_msg>> OnInquire()
<<afx_msg>> OnSize()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> DoDataExchange()
<<virtual>> PreTranslateMessage()
<<virtual>> Create()
<<virtual>> OnInitialUpdate()
update()
<<virtual>> ~CViewBaseband()
CViewBaseband()

CFormView
(from Views)

CViewL2cap
start : int
isvisible : BOOL
list1sel : int
list2sel : int
LCID[10] : int
change : BOOL

<<afx_msg>> OnRButtonDown()
<<afx_msg>> OnRclickList2()
<<afx_msg>> OnRclickList1()
<<afx_msg>> OnSize()
<<afx_msg>> OnTimer()
<<afx_msg>> OnTCard()
<<afx_msg>> OnClickList1()
<<afx_msg>> OnShowWindow()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> OnActivateView()
<<virtual>> DoDataExchange()
<<virtual>> OnInitialUpdate()
<<virtual>> Create()
update()
update2()
return_constant_name()
<<virtual>> ~CViewL2cap()
CViewL2cap()

CViewSDP
showing : int
rect_service : CRect
rect_search : CRect
m_cx : int
m_cy : int
am_addr_of : BYTE
count : BYTE
success : BYTE
LCID : BYTE
counter : BYTE
m_services_clist : int

<<afx_msg>> OnTimer()
<<afx_msg>> OnSearchService()
<<afx_msg>> OnSelchangedTree()
<<afx_msg>> OnAddservice()
<<afx_msg>> OnDblclkServicesList()
<<afx_msg>> OnCreate()
<<afx_msg>> OnService()
<<afx_msg>> OnSearch()
<<afx_msg>> OnSize()
<<afx_msg>> OnMouseMove()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> OnDraw()
<<virtual>> DoDataExchange()
<<virtual>> Create()
<<virtual>> OnInitialUpdate()
<<virtual>> ~CViewSDP()
CViewSDP()
within()
reshow()
uuid_string()
service_notavailable()
conncreated()

CViewRfcomm
sendbuffersize : DWORD
rfcomm_lcid : DWORD
isvisible : BOOL
counter_error : int
connected : BOOL
m_success : BYTE
flush : BYTE
m_am : BYTE
m_sent : CString
m_rec : CString
m_rcid : CString
m_lcid : CString

<<afx_msg>> OnDis()
<<afx_msg>> OnButton2()
<<afx_msg>> OnSize()
<<afx_msg>> OnSel()
<<afx_msg>> OnShowWindow()
<<afx_msg>> OnTimer()
<<afx_msg>> OnCreate()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> DoDataExchange()
<<virtual>> OnInitialUpdate()
<<virtual>> Create()
OnCommunication()
OnDSR()
pac_recieve()
OnRing()
reshow()
conncreated()
conncreated2()
flush_pac()
<<virtual>> ~CViewRfcomm()
CViewRfcomm()

CSerialPort
m_nWriteBufferSize : DWORD
m_dwCommEvents : DWORD
m_szWriteBuffer : char*
m_nPortNr : UINT
m_hEventArray[3] : HANDLE
m_hWriteEvent : HANDLE
m_hComm : HANDLE
m_hShutdownEvent : HANDLE
m_bThreadAlive : BOOL

<<static>> WriteChar()
<<static>> ReceiveChar()
<<static>> CommThread()
ProcessErrorMessage()
WriteToPort()
GetDCB()
GetCommEvents()
GetWriteBufferSize()
StopMonitoring()
RestartMonitoring()
StartMonitoring()
InitPort()
<<virtual>> ~CSerialPort()
CSerialPort()
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CBluetoothDoc
log : CString
rfcomm_len : DWORD
rfcomm_pac_ready : BOOL
rfcomm_pac : LPBYTE
rfcomm_lcid : DWORD
sdp_pac_ready : BOOL
sdp_pac : LPBYTE
sdp_len : DWORD
sdp_am : BYTE
sdp_lcid : DWORD
sdp_threadstate : int
sdp_req : BOOL
cc_from : BYTE
cc_am : BYTE
animateicon : BOOL
fortrayicon : int
m_proginq : BYTE
showballoon : BYTE
packetr_lcid : DWORD
packetr_len : DWORD
packetr_rec_ready : BOOL
packetr_rec : LPBYTE
packet_am : BYTE
packet_lcid : DWORD
packet_len : DWORD
packet_rec_ready : BOOL
packet_rec : LPBYTE
HMutex : HANDLE
data_of : int

<<afx_msg>> OnHistory()
<<afx_msg>> OnTopen()
<<afx_msg>> OnExit()
<<afx_msg>> OnEchoReq()
<<afx_msg>> OnConfigReq()
<<afx_msg>> OnClickPropertie()
<<afx_msg>> OnDisconnect()
<<afx_msg>> OnClickConnect()
<<virtual, const>> Dump()
<<virtual, const>> AssertValid()
<<virtual>> ~CBluetoothDoc()
Ontemp()
inquire()
page()
ontimer()
update()
makemaster()
write_log()
tol2cap()
tobaseband()
packet_recfun()
cc_fun()
<<virtual>> Serialize()
<<virtual>> OnNewDocument()
CBluetoothDoc()

CDocument
(f rom Application Architecture)

CBluetoothApp

<<afx_msg>> OnAppAbout()
<<virtual>> InitInstance()
CBluetoothApp()

CWinApp
(f rom Application Architecture)
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CMaster
initial_state : BYTE
message : CString
flag[7] : int
page_lap : int
isMaster : BOOL
timer_on : BOOL
polled_am : BYTE

recieve()
send_initial_packet()
to_l2cap()
find_amaddr()
find_lap()
get_empty()
slaves_count()
froml2cap()
sent_poll()
<<virtual>> ~CMaster()
CMaster()

CSlave
initial_state : BYTE
message : CString
expSEQN : BYTE
SEQN : BYTE
rclk : DWORD
rACK : BYTE
ACK : BYTE
r_baseband_flow : BYTE
r_l2cap_flow : BYTE
l2cap_flow : BYTE
rLAP : int
am_addr : BYTE
wasAddressed : BOOL
isActive : BOOL
isMaster : BOOL

recieve()
send_initial_packet()
to_l2cap()
froml2cap()
<<virtual>> ~CSlave()
CSlave()

CSocket
(f rom Windows Sockets)

CBaseband
init : BOOL
baseband_initial_timer : BYTE
even : BOOL
isMaster : BOOL

<<virtual>> OnReceive()
recieve()
send()
timer()
page()
inquire()
anypacketready()
makemaster()
write_log()
tol2cap()
froml2cap()
<<virtual>> ~CBaseband()
CBaseband()

CPacket
length_bytes : int
packet_ready : BOOL

add_array()
CPacket()

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 142

DataElement
data_start : BYTE
message : CString
sequence : BOOL
size : BYTE
type : BYTE
data : LPBYTE
initialize : BOOL

equalto()
getactualvalue()
getvalue()
get_actual_size_value()
setvalue()
get_seq()
make_seq()
make_seq()
DataElement()
DataElement()
init()
init()
opname()

attribute
seriveID : short
AttributeValue : dataelement

attribute()
attribute()
operator=()

SDP
att_bytecount : DWORD
message : CString
rTID : short
TID : short
service_count : short
total_serv_records : int
pend_TID : int
busy : BOOL
am : BYTE
lcid : DWORD
serviceRecords : service_attributes

sdp_recieve()
service_att_res()
service_att_req()
sdp_send()
service_search_res()
service_search_req()
add_service()
short_to_BYTE()
SDP()
search_request()

service_attributes
ser_attribute : attribute

service_attributes()
service_attributes()
operator=()

CL2cap
change : BOOL
data_of : int
m_on_connreq : BYTE
IDENT : BYTE
CID : short
m_fto : short
m_mtu : short

short_to_BYTE()
BYTE_to_short()
signal_command()
signal()
setparent()
getchannel_ref()
set_timer()
RTX_event()
killtimer()
l2cap_send()
channel_initialize()
on_l2cap_echorsp()
on_l2cap_echoreq()
on_l2cap_disconnectrsp()
on_l2cap_disconnectreq()
on_l2cap_configrsp()
on_l2cap_configreq()
on_l2cap_connectrsp()
on_l2cap_connectreq()
l2cap_sig_cmd_rec()
l2cap_event()
l2cap_action()
CL2cap()
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As specified above the protocol layers were implemented as a distributed 
simulation. Since the design of a radio chip, implementing a frequency 
hopping mechanism, to which the protocol stack could be ported was 
beyond the scope of this project, the sofware was adapted to run on a LAN 
in a distribute manner each PC running the software simulating the actions 
of a bluetooth device communicating using the rules and procedures defined 
in the stack.  
 
6.1 Visual C++: An Appropriate Choice   
 
The choice of Visual C++ as the environment for implementing the protocol 
stack, on of the requirements of the project, was a natural one given the 
excellent support provided for hardware interaction using it’s service 
primitives present in the language. The fact that the code is written in C++ 
means that the process of porting it to assembly code for hardware 
implementation is straightforward. The extensive GUI support present meant 
that a viable application interface for the simulation could be designed, 
allowing the detailed depiction of the features and capabilities of the 
protocol stack.  
 
6.2 SIMULATION 
 
The simulation demonstrates the entire bluetooth communication process. 
The part played by each protocol in the process and the actions carried out 
by each layer during connection establishment and data transfer is displayed 
sequentially. The next section explains in brief the steps involved:- 
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The left pane shows the layers of the bluetooth that are implemented. 
Clicking on one of them opens the view related to that layer.The right pane 
shows the current view.The pane at the bottom shows the history of 
messages and different events and action occurring in the protocol.  
 

 
Fig 1:This figure shows the inquiry procedure that on completion 
is indicating that a device  with addr 11-10-280 has entered the 
vicinity. 
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Fig 2: Paging procedure is shown. The right progress bar shows the process 
of paging procedure. 
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Fig 3: L2CAP view is shown in this figure. First list box shows devices 
connected with this computer. The second  list box shows the L2CAP 
channels made on each baseband link. Red circles indicate the channel is 
closed and has expired. Yellow circle shows that the channel is in 
configuration state and green circle shows that the channel is open for data 
transfer 
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Fig 4: This figure shows SDP (services on this computer ) view. The green 
box shows the attributes of the services listed on left list box. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig 5: Dialog box for adding a 
service 
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Fig 6: Dialog box for 
searching a service. Three 
choices are available for 
searching. To search all 
the connected devices for 
a particular service or to 
search a particular device 
or to search through a 
manually created channel. 
 
 
 
 

 
Fig 7: The figure shows the view when a search is in progress. 
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Fig 8: This figure shows the result of a service search.(Serial port and Basic 
Printing service) 
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Fig 9: This figure shows that some of the services are not available (red 
circle) and some are available (green circle).To find services attributes the 
service is clicked and then the SDP client contacts the server hosting that 
particular service to find its attributes. 
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Fig 10: This figure shows RFCOMM view. The dialog box shows all the 
searched serial port services on the connected devices. In order to connect to 
one of them Am-Addr of the device is written in the edit box. 
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Fig 11: This figures shows that this computer is connected to the remote 
device through local CID = 100. It also shows the number of bytes sent and 
received. The graph shows bytes /sec sent and received. 
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Fig 12: This figure shows the dialog box that appears when we click the 
status area icon of this program. It shows the devices connected and transfer 
of data. 
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                                                     CONCLUSION 
 

The work done in our project was mainly aimed at the implementation 
of the communication and data transfer aspects of Bluetooth. The protocols 
implemented provide the primary blueprint for carrying out communication 
between two Bluetooth capable devices. The baseband layer is used to 
establish a connection between communicating Bluetooth devices by 
establishing a piconet. The innovative use of frequency hopping and 
synchronization between devices using the Bluetooth clock of the master are 
some of the unique features that give Bluetooth it’s capability to function 
over short ranges without interference and without needing the line of sight  
requirements necessary for other short range communication methods such 
as Infrared. The L2CAP Layer further facilitates the process of 
communication, it’s segmentation and reassembly, negotiated parameter 
features allowing the integration of higher level protocols such as WAP, 
TCP/IP and PTP on top of the main Bluetooth protocol stack. This increases 
the range and use of Bluetooth immeasurably allowing  a Bluetooth capable 
device to access internet services using the above mentioned protocols. This 
capability is further enhanced by the guarantees provided in L2CAP for 
reliable communication. The Bluetooth SDP Layer’s ability to dynamically 
detect all services provided by Bluetooth capable devices without needing to 
register them separately allow great flexibility in choices and probable 
actions to a device implanting the protocol. The specific attributes defined 
for each class of services enable their rapid detection as soon as the 
associated Bluetooth device comes within range. The RFCOMM use as a 
serial port emulating protocol over the Bluetooth stack allows it carry out 
data transfer and other command calls using the unique capabilities of the 
protocol stack.  
     Although this stack has been implemented as a simulation the features 
and capabilities of these layer are sufficiently well implemented to provide 
an excellent display of Bluetooth’s practical application. Infact the software 
has been designed so that it can easily be hardcoded into a chip carrying out 
frequency hopping at the radio level, creating a complete Bluetooth unit.  
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                                      RECOMMENDATIONS 
The following recommendations are made on the basis of the work done in 
this project: 

1. As designing and implementing a hardware device carrying out  
frequency hopping was outside our area of expertise, this project is in 
the form of a simulation. Further work may involve integrating the 
software stack design here with frequency hopping hardware to obtain 
a complete Bluetooth unit. 

     2.  Communication has been implemented for asynchronous data 
channels. Support may be developed for synchronous data channels 
allowing for transfer of voice data.  

     3. User Authentication: Only a device may be authenticated    under  the 
current security architecture. In order to authenticate a user, 
application level security has to be used. 

4.  Bi-directional traffic: Once a connection is established, data flow is 
bi-directional. It is not possible to enforce uni-directional data flow.  

5.    Preset service authorization: There is no mechanism to define preset   
authorizations for services.  
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