
Autonomic Resource Discovery service

Infrastructure for Grid (ARDIG)

By

NC Mudassar Ali (Syndicate Leader)
PC Ammarah Kahlon

PC Shoaib Anwar

Submitted to the Faculty of Computer Science Military College of Signals
National University of Sciences and Technology, Rawalpindi In partial fulfillment for the

requirements of a B.E. Degree in Computer Software Engineering

March 2008

Abstract

Traditional Grid monitoring and discovery services are mainly

responsible to discover shared computing resources spanning multiple

administrative domains and present their unified functionality to the users.

Often these discovery services are not fault tolerant, and popular Grid

middleware deploy discovery services which do not tolerate high resources

churn. Moreover, some Grids deploy centralized discovery service solutions

which severely limit the scalability of the Grid. Although solutions such as

heart beat systems for dynamic resource availability, super peer discovery

services which cater for scalability, have been devised to address this

problem. However no unified discovery architecture has been proposed and

implemented for next generation dynamic, decentralized, pervasive Grids. In

this report, architecture is proposed which integrates an autonomic

infrastructure into Grid monitoring and discovery services in order to

provide for a more flexible, robust and self-healing Grid. The proposed

architecture will lead towards a generic implementation which will be used

to transparently extend existing discovery services.

Declaration

No portion of the work presented in this dissertation has been submitted in

support of another award or qualification either at this institute or elsewhere.

Acknowledgements

Above all we must thank to Allah Almighty for giving us power,

ability and opportunity to complete this challenging task. And after this we

are grateful to our parents who provided us with their full support and

spiritual guidance not only during this project but throughout our course

work at the Military College of Signals. Also we are highly grateful to our

internal supervisor, Athar Mohsin Zaidi, for having confidence in us and

providing us initial impetus of taking up this task and for extending his

outmost technical support and guidance throughout our project. We also

express special thanks to Dr Ashiq Anjum (CERN) who supervised and

managed all the research activities related to the project, and we must say

thanks to Mr. Irfan Habib for his devoted guidance and support.

Achievement

“Autonomic Grid Discovery Service Infrastructure”

Paper accepted in the 3th IEEE International Conference on Grid and

Cooperative Computing, May 2008, Kunming, China

Table of Contents

Chapter 1 ... 1
1. Introduction .. 1
1.2. Introduction .. 1
1.3. Problem Statement ... 2
1.4. Scope .. 2
1.5. Related Work ... 3
1.6. Organization of project report .. 4
Chapter 2 ... 5
2. Literature Review... 5
2.2. Introduction .. 5
2.3. Grid Computing ... 5
2.3.1. Architecture of Grids ... 6
2.3.2. Standards in Grid Computing .. 7
2.4. Autonomic Computing... 8
2.4.1. Features of autonomic computing systems .. 9
2.3.2 Basic working of Autonomic System .. 10
2.5. Summary .. 11
Chapter3 .. 12
3. Architectural Design .. 12
3.1. Introduction .. 12
3.2. Architecture of ARDIG .. 12
3.3. Benefits of proposed system .. 13
3.4. ERM of ARDIG ... 14
3.5. Class Diagram .. 15
3.6. Integration with Phantom OS ... 17
3.7. Summary .. 20
Chapter 4 ... 21
4. Discovery Service .. 21
4.1. Introduction .. 21
4.2. Two Tier Architecture .. 21
4.3 Sub Grid level Resource discovery .. 23
4.4 Region Level Resource discovery ... 23
4.5. Summary .. 27
Chapter 5 ... 28
5 Autonomic Resource Discovery Framework ... 28
5.1. Introduction .. 28
5.2. Self Healing ... 29
5.3. SubGrid Workload Prediction.. 31
5.4. Self Organizing .. 32
5.5. Optimizing Process .. 33
5.5.1 Node Assessment ... 34
5.5.2 Threshold determination .. 35

5.5.3 Weight calculation ... 35
5.6. Summary .. 36
Chapter 6 ... 37
6. Resource Broker ... 37
6.1. Introduction .. 37
6.2. Resource Filtering .. 39
6.3. System Selection .. 41
6.4. Performance Metrics for the Resource Broker .. 42
6.5. Summary .. 43
Chapter 7 ... 44
7. Heart Beat Monitoring ... 44
7.1. Introduction .. 44
7.2. Monitoring in ARDIG.. 44
7.3. Summary .. 45
Chapter 8 ... 46
8. Analysis and Testing .. 46
8.1. Introduction .. 46
8.2. Self Healing Testing .. 46
8.3. Simulation parameters and analysis ... 46
8.4. Simulation Result ... 47
8.5. Simulation Graph ... 49
8.6. Simulation Discovery Code ... 50
8.7. Summary .. 50
Chapter 9 ... 51
9. Epilogue ... 51
9.1. Conclusion ... 51
9.2. Future Work ... 51
Appendix- A ... 53
Bibliography ... 59

List of Figures

Figure No Figure Caption Page No

1.1 Objective of Autonomic Resource Discovery 2

2.1 Autonomic Element Composition 11

3.1 Proposed System Architecture 13

3.2 ERM of ARDIG 15

3.3 Class Diagram of ARDIG 16

3.4 Integrated System Architecture 18

3.5 Phantom OS Architecture 19

4.1 Two tier super peer architecture 22

4.2 Service Registration Process 24

4.3 Discovery Service Sign in Process 25

4.4 Discovery Service Sign out Process 26

4.5 Discovery Service Resource Request Process 27

5.1

Architecture Overview of Autonomic Resource

Discovery Framework 28

5.2 Scenario where super peer goes down 30

5.2 Scenario where new super peer is elected 30

5.4 New super election algorithm 31

5.5 Scenario where external node is added to the Sub Grid. 33

5.6 Organization of Nodes and Shifting procedure 33

5.7 Algorithm for shifting nodes 34

6.1 Resource Broker architecture 39

6.2 Architectural overview of the Matchmaking Framework 42

7.1

Algorithm to determine which subGrid is below

threshold 44

7.2 Heart Beat Monitoring Activity Diagram 45

8.1 Simulation Result 48

List of Graphs

Graph No Graph Caption Page No

8.1 Performance of Self Organization algorithm 51

8.2 Performance of SubGrid after optimization 51

1

 C h a p t e r 1

1. Introduction

1.2. Introduction

The heterogeneity and growing nature of Grid has made it difficult for Grid

System to have optimal working environment at all time. Nodes membership is dynamic,

leading to suboptimal organization of Grids, network congestion and issue of load

balancing which effects Node performance and availability.

The Grid solutions so far are aimed towards fulfilling Grid standards such as GGF

standards in order to make it efficient but these approaches have some short comings.

e.g., such a system lacks intelligence as most of the decisions from establishing and

configuring to maintenance are done manually. For it to be more effective and adaptable

such system approach should be focused towards autonomic Grid services hence user’s

participation in many complex configuration and maintenance decision requiring

extensive knowledge about the Grid would be minimized.

This project chooses an approach which aims at improving the existing grid

infrastructure by incorporating autonomic discovery infrastructure. The goal is to provide

it with an adaptable discovery service in its environment. This discovery service would

be able to not only discover the resources for any Grid application; it could also manage

the Grid system which includes healing the network if any faults occur and organizing the

Grid system in order to optimize the performance of Grid. This same thing is summarized

in the figure1.1.

2

Figure 1.1: Objective of Autonomic Resource Discovery

1.3. Problem Statement

To develop a decentralized autonomic infrastructure and integrate it into Grid

monitoring and discovery services in order to provide for more flexible, robust and self-

healing Grids.

1.4. Scope

Building a unified architecture for decentralized self-optimizing, self-healing and

self-organizing pervasive Grids, implement a decentralized resource broker and

scheduling algorithm, distributed Heart Beat monitoring to cater for scalability and robust

architecture and develop virtual organization creation system which would facilitate the

scheduling and execution of Grid applications by aggregating Sub Grids into a single

3

virtual Sub Grid, electing a leader which would manage the scheduling and eventual

execution.

1.5. Related Work

In the current Grid climate in which there are Grid middleware, clusters software

which provide such Grid facility like Condor and Grid Operation System in which, the

level of autonomy is basic as they only make decision on some scenario which they are

configure to do so. Among Grid middleware Globus [1], Glite are the most famous ones.

 Current version of Globus which is Globus 4which uses a method known as

MDS4 which is responsible for monitoring and discovery of resources. It uses indexing

services as an aggregator service. This is basically a registry like UDDI which collects

information and publishes them so the aggregator source (consumer) can use it, triggering

services which collects and compares information to make decision and archiving

services. The index service especially the trigger service provides some level of

autonomy but these services are not tolerant to harsh and unforeseen environment.

Glite uses Service Discovery module which is not yet fully grown enough to be a

separate service in Glite Architecture instead it is provided as client library. And it is

coupled with Information and Monitoring Service so it cannot be modified without

causing changes to the other modules. This Information Monitoring Service is based on

producer and consumer approach so only that produced information matters which would

caused significant amount of changes in order to incorporate new information or

constraints.

Other autonomic projects on Grid are as follows .Optimal Grid Middleware which

is a research prototype of grid-enabled middleware designed to hide complexities of

4

partitioning, distributing, and load balancing. (IBM Almaden Research Center,San

Jose,California), Organic Grid which is biologically inspired and fully-decentralized

approach to the organization of computation that is based on the autonomous scheduling

of strongly mobile agents on a peer-to-peer network. (Ohio State University) and

AutoMate, which enable the development of conceptual models and implementation

architecture to enable self managing Grid application autonomic (TASSL, a research lab

at Rutgers University)

1.6. Organization of project report

Chapter 2, deals with the literature stuff of the project followed by Chapter 3

which is about the overall architecture of ARDIG and how components relate to each

other and phantom OS and then comes Chapter 3 to 8 which starts with the series of

chapters which methodically deal individual components developed in Project. Finally

Chapter 9 is about the conclusion.

5

Chapter 2

2. Literature Review

2.2. Introduction

The chapter gives background knowledge of Grid Computing, its architecture and

its standards as well about autonomic Computing, its feature and its composition.

Detailed overview about the foundation concepts of autonomicy in Grids and its

evolution in the research world is also given.

2.3. Grid Computing

 Grid computing (or, more precisely a “grid computing system”) is a virtualized

distributed computing environment. Such an environment aims at enabling the dynamic

“Runtime” selection, sharing, and aggregation of (geographically) distributed

autonomous resources based on the availability, capability, performance, and cost of

these computing resources, and simultaneously, also based on an organization’s specific

baseline and/or burst processing requirements. When people think of a grid, the idea of an

interconnected system for the distribution of electricity, especially a network of high-

tension cables and power stations, comes to mind. In the mid-1990s the grid metaphor

was applied to computing, by extending and advancing the 1960s concept of “computer

time sharing.” The grid metaphor strongly illustrates the relation to, and the dependency

on, a highly interconnected networking infrastructure.

To solve mainly scientific computing and data intensive problems, the

middleware approach to Grid computing was developed in science laboratories where

6

clusters distributed across the world were linked together in order to create Grids. The

role of the Grid middleware in this paradigm was to ‘glue’ the clusters together to

achieve interoperability. Notable Grid middleware include Globus , GLite and

UNICORE [2].

The heterogeneity and growing nature of Grid has made it difficult for Grid

System to have optimal working environment at all time. Nodes membership is dynamic,

leading to suboptimal organization of Grids, network congestion and issue of load

balancing which effects Node performance and availability. The Grid solutions so far are

aimed towards fulfilling Grid standards such as GGF [3] standards in order to make it

efficient but these approaches have some short comings. e.g., such a system lacks

intelligence as most of the decisions from establishing and configuring to maintenance

are done manually. For it to be more effective and adaptable such system approach

should be focused towards autonomic Grid services hence user’s participation in many

complex configuration and maintenance decision requiring extensive knowledge about

the Grid would be minimized. Although these middleware have basic level of autonomy

but the required focus to have autonomic attributes is still lacking.

2.3.1. Architecture of Grids

Perhaps the most important standard that has emerged recently is the Open Grid

Services Architecture (OGSA), which was developed by the GGF. OGSA is an

Informational specification that aims to define a common, standard and open architecture

for Grid based Applications. The goal of OGSA is to standardize almost all the services

that a grid application may use, for example job and resource management services,

communications and security. OGSA specifies a Service-Oriented Architecture (SOA)

7

for the Grid that realizes a model of a computing system as a set of distributed computing

patterns realized using Web services as the underlying technology. Basically, the OGSA

standard defines service interfaces and identifies the protocols for invoking these

services. OGSA was first announced at GGF4 in February 2002. In March 2004, at

GGF10, it was declared as the GGF’s flagship architecture. The OGSA document, first

released at GGF11 in June 2004, explains the OGSA Working Group’s current thinking

on the required capabilities and was released in order to stimulate further discussion.

Instantiations of OGSA depend on emerging specifications (e.g. WS-RF and WS-

Notification). Currently the OGSA document does not contain sufficient information to

develop an actual implementation of an OSGA-based system. A comprehensive analysis

of OGSA was undertaken by Gannon et al., and is well worth reading.

2.3.2. Standards in Grid Computing

There are many standards involved in building service oriented Grid architecture,

which form the basic building blocks that allow applications execute service requests.

The Web services based standards and specifications include, Program-to-program

interaction (SOAP, WSDL and UDDI) [4], Data sharing (eXtensible Markup Language –

XML), Messaging (SOAP and WS-Addressing), Managing resources (WS-RF or Web

Services Resource Framework), Handling metadata (WSDL, UDDI and WS-Policy),

Building and integrating Web Services architecture over a Grid, Triggering process flow

events (WS-Notification).

As the aforementioned list indicates, developing a solid and concrete instantiation

of OGSA is currently difficult as there is a moving target – as the choice of which

standard or specification will emerge and/or become popular is unknown. This is causing

8

the Grid community a dilemma as to exactly what route to use to develop their

middleware.

2.4. Autonomic Computing

In this section, autonomic computing is introduced, e.g. why it is needed, what

kinds of features an autonomic system has, how to apply autonomic computing to the

Grid and what kinds of benefits it can bring to the Grid. Finally, some current works on

autonomic computing are reviewed. Broadly speaking, autonomic computing refers to an

infrastructure that automatically adapts to meet the demands of the applications that are

running in it. Autonomic computing is a self-managing computing model named after,

and patterned on, a human body’s autonomic nervous system. An autonomic computing

system is one that is resilient, and able to take both pre-emptive and post facto measures

to ensure a high quality of service with a minimum of human intervention, in the same

way that the autonomic nervous system regulates body systems without conscious input

from the individual. The goal of autonomic computing is to reduce the complexity in the

management of large computing systems such as the Grid. The Grid needs autonomic

computing for following reasons. Complexity as Grid is complex in nature because it

tries to couple large-scale disparate, distributed and heterogeneous resources – such as

data, computers, operating systems, database systems, applications and special devices –

which may run across multiple virtual organizations to provide a uniform computing

platform. And the Grid is a dynamic computing environment in these resources and

services can join and leave at any time.

9

2.4.1. Features of autonomic computing systems

A system that is to be classified as an autonomic system should have the these

major features. It should be self-protecting system so that it can detect and identify

hostile behaviour and take autonomous actions to protect itself against intrusive

behaviour. Self-protecting systems, as envisioned, could safeguard themselves against

two types of behaviour: accidental human errors and malicious intentional actions. To

protect themselves against accidental human errors, e.g. self-protecting systems could

provide a warning if the system administrators were to initiate a process that might

interrupt services. To defend it against malicious intentional actions, self-protecting

systems would scan for suspicious activities and react accordingly without users being

aware that such protection is in process. Besides simply responding to component failure

or running periodic checks for symptoms, an autonomic system will always remain on

alert, anticipating threats and preparing to take necessary actions. Autonomic systems

also aim to provide the right information to the right users at the right time through

actions that grant access based on the users’ roles and pre-established policies. It should

be have self-optimizing components, to dynamically tune themselves to meet end-user or

business needs with minimal human intervention. The tuning actions involve the

reallocation of resources based on load balancing functions and system run-time state

information to improve overall resource utilization and system performance. Self-healing

is another ability of a system in which system recovers from faults that might cause some

parts of it to malfunction. For a system to be self-healing, it must be able to recover from

a failed component by first detecting and isolating the failed component, taking it off line,

fixing and reintroducing the fixed or replacement component into service without any

10

apparent overall disruption. A self-healing system will also need to predict problems and

take actions to prevent the failure from having an impact on applications. The self-

healing objective must be to minimize all outages in order to keep the system up and

available at all times. The system should be self-configuring because installing,

configuring and integrating large, complex systems is challenging, time consuming and

error-prone even for experts. A self-configuring system can adapt automatically to

dynamically changing environments in that system components including software

components and hardware components can be dynamically added to the system with no

disruption of system services and with minimum human intervention. Autonomic system

should be based on open standards and provide a standard way to interoperate with other

systems. An autonomic system should be integrated with a machine learning component

that can build knowledge rules based on a certain time of the system running to improve

system performance, robustness and resilience and anticipating foreseeable failures.

2.3.2 Basic working of Autonomic System

The Figure 2.1 shows how the autonomic system works in Grid (Plant). Basically

it is divided into two parts manager and managed element. Manage element is Grid while

manager includes sensor to expose the Grid information which analyzer processes with

help of planner to decide the action to be taken and Knowledge Base of information

containing events with corresponding action to be taken . Then comes policy which is the

only component which interacts with the human, it is where human define the criteria for

a action to be performed and finally the actuator which operates on the Grid with action

selected.

11

Figure 2.1 Autonomic Element Compositions

2.5. Summary

This chapter gave the basic idea about Grid computing and autonomic computing

and its characteristics.

12

C h a p t e r 3

3. Architectural Design

3.1. Introduction

In this chapter different architectural diagram are shown describing ARDIG from

different prospective. Starting from the high level architecture, ERM to the low level

diagrams showing the Class details have been explained with visual aids. The chapter

also contains the integration details with Phantom OS.

3.2. Architecture of ARDIG

Figure 3.1 shows different components in three different types of nodes.

GridNode is responsible for SuperNode failure detection and mirroring its vital

information. It provides the resource Broker information for SuperNode to aid with

discovery service. SuperNode hosts the heartbeat component and local discovery service

within the subGrid. Heartbeat component determines the availability of the GridNodes

and increments the mean availability factor of the GridNode. Regional relays all the

communication among the subGrids by providing Global Discovery service, organizing

and optimizing services.

13

Figure 3.1: Proposed System Architecture

3.3. Benefits of proposed system

The proposed solution is to aid the discovery services in its decision making

process by providing autonomic Grid service which would heal, organize and optimize

the Grid System as depicted in the Figure. It could become part of any existing Grid

System and would be interoperable with other Grid System. It would provide the

following benefits; the existing grid infrastructure would benefit from it by having

adaptable discovery services to its environment. This discovery service would be able to

14

not only discovery the resources for any Grid application it could also manage the Grid

system which include healing the network if any faults occur and organize the Grid

system in order to optimize the performance of Grid, Another promising benefit would be

to Grid OS [8]. Grid OS have reduced the complexity of setup and configuring the Grid

system on any node by self configuring some of the decision which users would have

been given. Example of such OS is phantom Os . This proposed solution would be added

as an extra layer of modules to the Grid and by using this autonomic Grid Service better

Quality of Service for Grid application can be provided like Intel built into its Itanium 2

[10] processor features of autonomic computing called the Machine Check Architecture

(MCA). The MCA is an infrastructure that allows systems to continue executing

transactions as it recovers from error conditions, it has the capability to analyze data and

respond in a way that provides higher overall system quality therefore such services

would reduce response time, number of node failure or availability and would make more

efficient use of resources.

3.4. ERM of ARDIG

The figure 3.2 below is the ERM diagram of the ARDIG database. It shows the

entities which include Regional Peer, SubGrid, SuperPeer, GridNodes, Job, User

15

Figure 3.2: ERM of ARDIG

3.5. Class Diagram

The figure 3.3 below is the Class diagram of the ARDIG database. It shows the

classes which include Regional Peer, SubGrid, Super Peer, GridNodes, Job, User and

basically shows the web service related classes and also the method implementation.

16

where X =
" 0 if all jobs handled
" 1 if M-1 jobs handled
" 1< x < M if otherwise

1

 X

 M

Regional node
threshold
rating_array
subgrid_IDs

monitor()
discover ()
optimize()
register_subgrid()
unregister_subgrid()

Super Peer
subgridload
nodeResource
agregateMem
lmips
name

getResource()
subgridAgregatePerf()
getNodeDes()
ReqResrcReg()
directJob()
avail()
donater()
mean()

Jobs
input_size
output_size
length
memory
status

directs

Grid Node
IP
job_status
subgrid_id
mean
avail

getmem()
getJobStatus()
TotalCpu()
migrateJob()
register()
unregister()
make_unavailable()

nn

generates

resourcebroker
mips
memload
memory
bandwidth
cpuload

getmips()
getmemload()
getmemory()
getbandwidth()
getcpuload()

heartbeat
totalTime

getTotalTime()

SuperPeerWebservInt

registerNode()
unregisterNode()
isAlive()
getResource()
disconnect()
updateRemoteDB()
updateIPaddress()

PeerWebservInt

registerNode()
unregisterNode()
isAlive()
getResource()
disconnect()
updateRemoteDB()
updateIPaddress()

RegionalPeerWebservInt

unregisterNode()
isAlive()
getResource()
disconnect()
updateRemoteDB()
updateIPaddress()
registerNode()

Figure 3.3: Class Diagram of ARDIG

17

3.6. Integration with Phantom OS

The Figure 3.4 below shows a sample architectural interaction between Grid OS

components when the user submits a job. The Autonomic Discovery Infrastructure

module basically provides an additional layer of abstraction which aids in managing;

organizing and optimising the node organization by provide vital information and

functions.

The user executes an application and the operating system’s Grid Enabled Process

Management system automatically detects that this is a Grid enabled job and creates its

execution threads, which it then forwards to the Resource Brokering and Scheduling

engine where the threads are moved for processing to nodes that are more powerful than

the user’s own node. The communication between the nodes takes place via the P2P

subsystem, which is also responsible for the discovery of resource while the autonomic

discovery infrastructure layer provides a virtual link among each node.

18

Figure 3.4: Integrated System Architecture

The ARDIG project comprises a major portion in the Middleware level and

resource Broker part of the User space in the Phantom OS [11] Architecture.

19

Fig 3.5 Phantom OS Architecture

In figure 3.5 the PhantomOS can be seen from two perspectives: An integrated

Grid Stack to allow for rapid deployment of Grids, while making administration of Grids

easy. And as an Operating system which provides built in support for Grid computing.

The components which have a dotted background show those components which are

relevant to PhantomOS as a Grid Stack others are for PhantomOS as a complete

Operating System. There is overlap between both modes. For example the Super Peer

module is used for both for PhantomOS as an OS and PhantomOS as a Grid Stack.

PhantomOS is designed after a modular paradigm. Kernel changes can be turned off by

unloading the appropriate kernel modules. If an organization chooses to use the stack

configuration it can easily unload the kernel space modifications and use Grid computing

from a user and middleware level.

20

As related to the project Scope the following modules have been implemented in

ARDIG; Discovery Service, Self Healing of Grid, Self Organization of SubGrids,

Resource Broker, Heartbeat Monitoring, Discovery Service

3.7. Summary

This chapter gives us the understanding about the architecture of ARDIG, its link

with Phantom OS and what components of ARDIG which were implemented as part of

the Degree Project. The following chapters will describe each component in more detail.

21

Chapter 4

4. Discovery Service

4.1. Introduction

The discovery scheme is an enhancement over P2P discovery and centralizes

discovery technique. The enhancements target certain limitations, primarily dealing with

the adaptability of the algorithm to hybrid Grids and limiting the overhead of

communication between the nodes in a single instance of resource discovery and usage.

Certain enhancements deal with limiting the potential for all–to-all communication which

plague existing peer to peer networks. There are many Grid Resource discovery

mechanisms [12, 13, 14, and 15] but none of them is network topology-aware [16].

4.2. Two Tier Architecture

Here two-tier based super peer architecture is introduced: the lowest tier is a

machine level granularity sub-grid, which consists of machines that have good network

connectivity between them. Each sub-grid is represented by a super-peer, which is the

most available machine within the vicinity of the sub-grid. At the top-most tier the

granularity is in terms of sub-grids, and these are grouped into regions depending on

geographical proximity of the super peers. The regions are represented by a region peer,

as shown in Figure 4.1. A virtual organization (VO) in this system can be at any level: it

can consist of individual machines or be an aggregation of entire subgrids or of entire

regions. Interactive applications will be handled at a machine-level VO, whereas large-

scale Grid applications will require aggregations of entire sub grids.

22

Figure 4.1 Two tier super peer architecture

The whole concept of two-tier super peer based system was developed for three

main reasons; to improve the network usage, by allowing a resource request to propagate

to peers in close proximity, thus limiting overall network traffic, and improving response

latency, to improve the quality of results, by propagating the request until a suitable

resource has been found, while limiting the network traffic as much as possible; to

provide a scalable and efficient framework for Grid OS, by dynamically grouping nodes

into sub-grids, and clustering sub-grids into regions, QoS is ensured for individual nodes,

and the overall network efficiency is enhanced by limiting the flow of resource requests

and to enable the creation of different kinds of Grids, as required in different domains,

23

from simple cluster oriented Grids of today to the ad-hoc Grids relevant to common users

and businesses resource discovery mechanism will be explained separately in terms of

tiers.

4.3 Sub Grid level Resource discovery

The sub-grid is analogous to a cluster of computers, and is the lowest tier in the

system. Resource discovery and brokering is done internally in the sub-grid in a semi-

centralized fashion. The central server in the sub-grid is the super peer, which

corresponds to the most available machine in the cluster, and has the responsibility of

handling, managing requests and providing a registration interface to new nodes. Upon

joining a sub-grid members register their presence with the super peer. When a node of a

sub-grid needs a resource, it sends a request query to its super-peer which returns the list

of resources matching the user’s query constraints, if matching resources are available. If

the super-peer cannot satisfy the request, it then forwards the query request to the region

peer. Once the requesting machine has a list of the machines within the sub-grid it

contacts each in a P2P fashion and the resource broker determines the suitability of the

discovered nodes to execute the user application, leading to eventual migration of the job.

4.4 Region Level Resource discovery

If a resource request cannot be satisfied from within the subGrid, the region peer

comes into play. The region peer has a notion of the cumulative power of a sub-grid, and

based on it takes a decision on which sub-grids have the required resources to compute

the job. The cumulative power of a subGrid is determined by aggregating individual

resource descriptions and calculating a theoretical peak. When such sub-grids are found,

24

the job request is forwarded to them and then the resource brokering and scheduling

process takes place within the new sub-grid. If the region cannot satisfy the resource

requirements it then contacts other regions in a P2P manner.

The figure 4.2 shows how the discovery service registers the node in with the

super peer.

 Figure 4.2 Discovery Service Registration Process

The figure 4.3 shows the process in which the discovery service performs the

signing in operation when ever node comes online.

25

 Figure 4.3 Discovery Service Sign in Process

The figure 4.4 below shows how the Grid Node is signed in with the super peer.

Basically the heart beat is responsible for determining the availability of the Grid Node as

soon as it detects the presence of Grid Node it tags the avail attribute of the node in

sg_members table in database to 1 showing its availability.

26

 Figure 4.4 Discovery Service Sign out Process

The discovery service resource request comprises of two major steps. One in

which the resource is looked up in the subGrid which is simpler as it looks in the

sg_members table and finds any node which is available and matches the requirement.

This is also described in the figure below.

27

 Figure 4.5 Discovery Service Resource Request Process

4.5. Summary

This chapter includes detail about discovery service, different level of different

service and the registration, signing in and out process.

28

Chapter 5

5 Autonomic Resource Discovery Framework

5.1. Introduction

The Autonomic Resource Discovery Infrastructure builds on the Grid system and

OGSA and extends Discovery services to support autonomic behaviour. This component

operates in parallel with other components. Its specialized discovery service should be

used to employ autonomic services. The purpose of this component is to provide

autonomic infrastructure to the existing grid system.

Figure 5.1: Architecture Overview of Autonomic Resource Discovery Framework

29

Figure 5.1 shows different components, the autonomic component which is

optimizer and healing system are based on statistic figures relating to resource usage,

deficiency, reputation, performance and frequency of changes related to discovery

information to determine usage pattern which would be used to adjust the threshold and

weights used in organizing and healing the subGrids.

The important thing is that the design of this infrastructure should be

customizable to replace its components or to add new components. So that if any new

components like to put into the equation some other information about node then this

component should be plugged to this module without causing any chain of reaction to

accommodate these changes. For example in order to cater to network unreliability it was

decided to modify the delivery semantics of any remote invocation so that such functions

could be added with ease.

5.2. Self Healing

The basic idea behind this feature is to provide healing of any damage that could

occur in the Grid system. For example nodes could crash, network congestion and super

peer failure. The proposed infrastructure would provide fault tolerance to such problems

and also would have the element to deal with unexpected faults. In the following two

figures 5.2 and 5.3 a failure scenario is shown which shows what are the action taken as

soon as the super peer goes down and the next figure shows the organization of node of

electing new super peer. In this case the autonomic self healing part of the infrastructure

would have to do two things to re-establish the system. One is to record the information

that is lost by the super peer and the other is to elect new super peer from the rest of the

peers in the organizations

30

Figure 5.2: Scenario where super peer goes down.

Figure 5.3: Scenario where new super peer is elected

31

The concept behind this is to mirror the data in the Super Node among N no of

Grid Nodes. Super Node would be the primary node while the rest of the N nodes are

secondary node. In case primary node malfunction then any one of the N backup nodes is

upgrade to primary node avoiding any loss of information and delays with the operation

current executing.

The self Healing algorithm given in figure 5.4 below shows the procedure how

nodes are elected.

Primary node and secondary node approach

 Primary node is the current active SuperNode

 Secondary node are backup SuperNode

Mirroring data among Secondary

Election Criteria

 Ideally node with best performance and less load and higher online probability

among secondary node.

 Such nodes can be acquired from other SubGrid. In such case there would be

some delay as it has to updated with the subGrid information.

Figure 5.4: New super election algorithm

5.3. SubGrid Workload Prediction

Prediction of workload is vital for optimizing the subGrid as it aids to take

proactive measure in case subGrids expect heavy loads in future. SubGrid workload

depends upon no of factors [19]. Like the amount of free resource available and the rate

at which jobs are generated. In simple scenario the subGrid optimization factors ‘H’

32

depends upon H=(N*C-R*P) where N is no of jobs generated, C is cost of processing

job, R is the no of resource available, P is the free of resource available. But in reality

resource would not be available at all time; the current rate of job generation wouldn’t be

enough to predict future loads and estimation of cost for jobs is also another issue. So

keeping in mind these issues the more appropriate equation to represent this factor is as

follows:

H= £ (Rate*(JR*L))-£(R*M*(RS-RL)) 5.1

Where JS is the job resource requirement and L is job Length, M is the mean

active time and RS is resource capability and RL is the load on the resource.

5.4. Self Organizing

System would facilitate the scheduling and execution of Grid applications by

aggregating Sub Grids into a single virtual Sub Grid, electing a leader which would

manage the scheduling and eventual execution. This part of the proposed idea is also

concern with the reorganization of the virtual organization among the nodes. This

reorganization would optimize the setup by readjusting the nodes such that the load

would be balanced among the nodes. Sub Grids which are idle or have low activity would

be selected to donate node to other Sub Grid. Figure 5.5 depicts the Scenario where

external node is added to the Sub Grid.

33

Figure 5.5: External node addition to the Sub Grid.

5.5. Optimizing Process

The aim is to organized nodes such that each subGrid has enough resources with

respect to the history of job loads it carried. The figure 5.6 below is a sequence diagram

showing how the optimization is conducted.

S u p e r N o d e
S u b S t a n d a r d

R e g i o n a l N o d e S u p e rN o d e s

r e q u e s t O p t i m z a t i o n (S u b G r i d ID)

g e t A g g r e g a t e S p e c s ()
s p e c s

r a t e E a c h S u b G r i d s

[N o t S u p e r N o d e = Y e s A N D D o n a t o r S u b G r i d R a t i n g > M e a n] g e t B e s t N o d e ()

N o d e

[N o N o d e A va i l a b l e = T r u e] s w i t c h S u b G r i d ()

[D o n a t o r = Y e s A N D S u b G r i d > m e a n] s e l e c t S u b G r i d (())

n o d e

c a l c u l a t e M e a n ()

[B e l o w A ve r a g e = F a l s e] c o n t i n u e

Figure 5.6: Organizations of Nodes and Shifting Procedure

34

There are two optimization strategies as follows; Shift higher free resource

GridNode performance with less local nodes from donator subGrid and shift higher job

generating node from target subGrid.

Let ‘Th’ be threshold as defined earlier and ‘recieverSubGrid’ be the subGrid

which is been denoted a node and ‘denotorSubGrid’ is the subGrid which denotes node.

Note the calculation of threshold and nodes rating are discussed in coming sections.

Below figure 5.7 shows how the organization is done.

While (recieverSubGrid < Th AND denotorSubGrid > Th)

 selectedNode = max (nodeRating (denotorSubGrid,for all g))

 recieverSubGrid.add (selectedNode)

 denotorSubGrid.remove (selectedNode)

 Figure 5.7: Algorithm for shifting nodes

The donator subGrid is the subGrid with the best rating. Note only the subGrid

which wants to denote will participate. Node elected shouldn’t be Super Node as well.

Each time shifting is done the rating of both subGrid is updated. If the donator subGrid

would be lower than threshold after denoting then in this case the denote SubGrid would

be shifted to the next subGrid with the best rating.

5.5.1 Node Assessment

Most vital issue during organization is comparing nodes proving which is better.

To resolve this, the following formula in figure 5.8 has been used:

Node Rating = (weightCPU * free_Cpu + weightMemory * free_memory) +

weightBandwidth * Bandwidth + weightMean * meanActiveTime 5.2

35

The reason why free resource is chosen is because it is unbiased. For example a

machine with high specs is not necessary ideal because it could have higher load too.

This equation can be used to rate node as well as subGrid without making any changes.

5.5.2 Threshold determination

Threshold value is used during optimization to provide stoppage criteria. It stops

from taking too many nodes from the donator subGrids and it also allows how much

nodes would be enough to satisfy the receiver subGrid. The threshold value is given as in

figure 5.9:

Threshold = sum (rating of subGrids)/No of subGrids 5.3

History of threshold would be archived in order to avoid optimization in case

there is minor change in its value.

5.5.3 Weight calculation

Let ‘agCPU’ is the aggregate value of all the Grid Node processor power in all

subGrids in contact with particular regional peer and ‘agMemory’ is the aggregate value

of all the Grid Node total memory in all subGrids in contact with particular regional peer

‘agBandwidth’ is the aggregate value of all the Grid Node bandwidth in all subGrids in

contact with particular regional peer and ‘agLCPU ‘is the aggregate value of all the Grid

Node CPU load in all subGrids in contact with particular regional peer

‘agLMemory’ is the aggregate value of all the Grid Node memory load in all subGrids in

contact with particular regional peer and ‘agLBandwidth’ is the aggregate value of all

the Grid Node bandwidth usage in all subGrids in contact with particular regional peer

36

and ‘agMean’ is the average value of all the Grid Node mean availability factor in all

subGrids in contact with particular regional peer

‘10’ is used because it is being scaled from 1 to 10

Note: this formula would be used among all those subGrids which are in contact

with particular regional peer. (No use of shifting nodes among subGrids in different

regions) The reason for calculating weight is because in order to determine which Node is

better, is that its specs, loads and availability has to be compared but during optimization

the ideal node elected to shift is the one which match best with the requirement of certain

characteristic of resource for the subGrid so these weights are used to make these

characteristic visible during comparison. Figure 5.11 shows how this theory is being

calculated

weightCPU= (agLCPU/agCPU)*10

weightMemory= (agLMemory/agMemory)*10

weightBandwidth=(agLBandwidth/agBandwidh)*10weightMean= (agMean)*10

............... 5.4

5.6. Summary

This chapter summaries the main component of ARDIG that is self healing and

self organization, it contains the design and algorithm related to the components in detail.

37

C h a p t e r 6

6. Resource Broker

6.1. Introduction

A Resource Broker is a central component in a Grid computing environment. The

purpose of a Grid resource broker is to dynamically find, identify, characterize, evaluate,

select, allocate and coordinate resources with different characteristics most suitable to the

user’s submitted job. Most existing resource brokers require too much user intervention

and involvement to operate, and these are designed for batch applications. Thus these

Brokers are not feasible for the end user who is just concerned with the ease of use, and

high response and minimum turnaround time of interactive applications, which are not

supported by existing Grid resource brokers. Present desktop operating systems take

brokering and scheduling decisions taking only the local resources into consideration.

The Grid computing environment is a dynamic environment where status and load

on resources are subjected to changes. Hence in such kind of environment it is very

complex for the Broker to predict the performance and efficiency of the application on

particular given resource. This problem is being addressed by current Grid middleware

through policy based scheduling, policy negotiation and advance resource reservation

schemes. In this scenario the Broker has some kind of exclusive control over system’s

resources in order to improve its performance and decision making ability. For the Grid

operating system a brokering and scheduling engine built upon the underlying OS kernel

which takes entire pool of resources available across the Grid is envisioned.

38

A Peer to Peer resource broker framework, in which everything from

matchmaking of requirements and available resources, down to the scheduling is done

cooperatively with Peers, is proposed. Thus enabling compute intensive and memory

intensive applications to make best use of the Grid resources in order to achieve high

throughput. In the proposed framework each resource in the system will advertise their

most recent status dynamically. The task of the Broker is to collect this information and

select most optimum machine among the eligible machines based on the job’s

characteristics and requirements that is submitted by the user. The Job requirements, the

computational demands of the application, will be specified in the SQL database. The

resource broker will assume that this information is collected by the Job Analyzer

(Estimation service) of the resource management system of Grid OS. Resource broker

waits for the job to be submitted by the user through console. On the submission of the

job the first step taken by the resource broker is to interact with the Job Estimation

service to retrieve the job execution requirements of job constraints.

39

Figure 6.1: Resource Broker architecture

Figure 6.1 shows the basic architecture and working of the resource broker in the

Grid environment. Every authenticated machine in the Grid which is willing to provide

its computation resources to other machines runs a resource broker service on top of its

underlying operating system. Job is received by the resource broker client and it interacts

with all other discovered set of machines in the P2P Grid environment, and each running

resource broker service inside.

6.2. Resource Filtering

The first task performed by the Resource Broker server is to carry out resource

filtering i.e. filtering out itself among the discovered set of machines if it does not fulfils

the minimum requirement eligibility criteria. Therefore only those machines will respond

back to the resource broker client which passes the filtering test.

40

All those machines which are registered themselves with the Grid and are running

Grid OS module in their kernel must have some static information attached with them.

Such as; CPU processing speed, RAM capacity, LAN connectivity.

 This is the information on the basis of which resource filtering will be performed.

Broker has already extracted the job’s constraints information. It will pass on these

constraints to all of the authenticated discovered machines inside the Grid. So each

machine in the Grid receives those job constraints and only that machine will respond

back to the Broker client which fulfils those minimum set of constraints. Hence those set

of machines which do not fulfil the minimum requirement criteria are filtered out right

from the beginning. Now only limited set of machines (resources) fulfilling the

minimum application requirements is left in the system. The machines fulfilling the

requirements respond back to the Broker client along with their dynamic resource

descriptions in order to compete for the Job.

In this project just the above highlighted constraints for the job are considered i.e.

CPU processing speed, memory and required library or DLL. For example if Job

requirement for the minimum CPU processing speed is 2.6 GHz and minimum RAM

capacity of 256 MB, then those machines which has CPU processing speed less than 2.6

GHz and RAM less than 256 MB will not respond to the Brokers request. And in other

case if the application requires some specific libraries and DLLs at the remote location

then all those resources will be filtered out from the competition if these required libraries

and DLLs are not present there. An important consideration is when an application is

developed using JAVA, because JAVA applications require specific JVM installed in the

machine without which any JAVA application is unable to run. So this will also be the

41

task of resource filter service of the broker to neglect all the machines without having

proper version of JVM installed in it. And similarly C/C++ applications require glibc for

the applications to execute successfully. Hence detailed investigation is performed only

on that reduced set for selecting the most optimum machine among them. In other words

it can be said that the DRD service will only run for that reduced set of machines.

 This is very critical in order to reduce the congestion and traffic load across the

network. It surely improves the efficiency of the system. Because only those machines

which are eligible for job execution will send their dynamic resource descriptions across

the network, and other do not even respond back.

6.3. System Selection
So finally Resource Broker client will get its input from DRD service in the form

of dynamic description of resources. After getting this input the Broker will perform

appropriate calculations on it in order to select the best optimum node for the job so that

it will complete its execution there. The broker will basically act as a Match-Maker i.e.

matching available resource to the user’s request. Broker will select a machine after

rating all of the machines. For this it will implement a rating algorithm to rank the

machines.

There are few things to consider by the Broker which are; CPU utilization and

CPU cycles availability, Memory availability, Bandwidth utilization, Network latency.

As already described in this project, three factors are being considered i.e. CPU, memory

and data rate available across the network (bandwidth).

Broker has to make calculations for Time and Cost factors and it will select the

node with having the greatest response time (i.e. the greatest turnaround time for the

42

submitted application) and the lowest incurring cost which will definitely depends upon

the processor and memory availability along with the communication channel and

network characteristics which are considered by the Broker while making its final

decision regarding optimum system selection.

Main task of a resource broker is to perform matchmaking i.e. matching available

resources to user’s request. Matchmaking performed by broker is described in Figure 6.2

below.

Figure 6.2: Architectural overview of the Matchmaking Framework

6.4. Performance Metrics for the Resource Broker
There must be some metrics and criteria on the basis of which broker will select

the best optimum node. At the end what Broker wants is; The machine which gives

43

maximum processing speed. This will depend on the processing speed of the available

machine and also how much free CPU it has to entertain the job. This metrics is

important for the computational intensive jobs, the machine which gives the maximum

RAM storage capacity. This will be important for the applications having very large

footprint. Efficiency is achieved only in the case when all of the instructions and data

reside simultaneously inside the RAM, the machine which after being accessed provides

minimum network latency. This is definitely dependent on the network traffic on the path

and on the frequency at which other machines on the network are accessing the machine

or at least accessing the same network path. This will be important for the

communication intensive applications, also Broker has to take care of the data and files

which are required by the application to complete its execution and produce results. The

required data and files must be present at the remote machine. But for the time being this

factor is not considered in this project until distributed data and file management system

for Grid OS is completed, another important requirement is the presence of standard API

libraries and includes files required by the executable of the application. Without which

application will be unable to execute at the remote machine. This is one of the static

constraints and all the machines not fulfilling this are filtered out right from the beginning

and in the end, the required result with respect to user is the machine which provides

minimum turnaround time for the Job or in other words the machine having the quickest

response back to the client along with the results.

6.5. Summary
In this chapter the detail of the working of resource broker and its subcomponents

is described.

44

Chapter 7

7. Heart Beat Monitoring

7.1. Introduction

This chapter introduces the concept of Heart Beat Monitoring and its inclusion in

ARDIG. Heart Beat Monitoring is the process where a server monitors the availability of

other nodes in the cluster. Heart Beat monitoring is used in two contexts in ARDIG, in

monitoring node availability rate and process level node activity.

7.2. Monitoring in ARDIG

ARDIG heartbeat monitoring is completely decentralized except for the HB

monitor which monitors node availability rate. This component is responsible for

monitoring nodes [18]. It initiates a polling thread which checks each node availably and

reports back to Super Node which updates the mean available time for each Node. It’s

another major task is to monitor the subGrid workload report to regional Peer incase

subGrid goes below par. Figure 7.1 is the activity diagram of the heart beat monitoring in

ARDIG and figure 7.2 shows the algorithm of how to determine where the subGrid is

below the threshold level in ARDIG.

• Let threshold be ‘th’ define the determining factor to go for optimizing or not. Its

calculation mechanism is discussed in coming section.

• Let rating of each subGrid be define as ‘subRatin[x]’ where x is the id of subGrid

Optimization process is initiated in case any ‘x’ is below th factor is true.

subRating[x]<th

45

Fig 7.1 Algorithm to determine where subGrid is below threshold

Fig 7.1 Hearts Beat Monitoring Activity Diagram

Heart Beat Monitoring is an important component in maintaining fault tolerance

and stability in a ARDIG cluster and maintaining a good level of quality of service.

7.3. Summary

Heart Beat Monitoring is an important component in maintaining fault tolerance

and stability in a cluster and maintaining a good level of quality of service. Two types of

Heart Beat Systems are deployed Node Churn, which is used by the Super peer, and the

process-level which is used by nodes which are executing processes remotely.

46

Chapter 8

8. Analysis and Testing

8.1. Introduction

Numerous algorithms have been developed for resource brokering in Grid

environments [24]. Most are customized to Grids working at the virtual organization

(VO) or cluster level granularity. Grid OS aims to support both interactive user

applications and resource intensive Grid applications. For interactive user applications

resource brokering with machine-level granularity is required, whereas Grid applications

require cluster level granularity. Here discussion is restricted to grid enabling interactive

user applications which are not supported in the existing Grid infrastructure. Resource

brokering and scheduling algorithms which work at machine level granularity are mostly

derived from intra-cluster level algorithms.

8.2. Self Healing Testing

Testing was done with three Grid Node and one super node and all the possible

test cases were carried out to determine the effectiveness of the system.

8.3. Simulation parameters and analysis

Simulation was done with GridSim and the following are the simulation

parameters. Grid environment was emulated with 30 subGrids each with 10 GridNodes

and a total of 300 GridNodes.

47

Jobs were varied from 1 to 100 GridLets per subGrids. Job Specfication are as

follows; Gridlet length describes the mips rating for the job was varied from 2000 to

3000., Gridlet file size that varies within the range 100 + (10% to 40%), Gridlet output

size that varies within the range 250 + (10% to 50%).

The resource Characteristics for the GridNodes are as follows; Speed =300 to

2000 Mips Bandwidth= 100 to 1000 MB, Memory= 128 to 2048 GB, Availability= (0,1),

peak Load = 0.5, Off Peak Load = 0.2

The result followed by the graph shows the total processing cost in actual CPU

time with respect No of GridLets. The graph shows three different scenarios, red one is

the cost of processing without job migration, blue one is with migration and the last one

in little green shows the cost after the subGrids have been organized.

8.4. Simulation Result

The table below shows three different result set for three different scenarios. In

each result set the no of GridLets were increased by 10 to check the corresponding effect

on the total processing cost in seconds of the subGrids.

48

Table 8.1: Simulation Result of three difference scenarios

No of
GridLets

Total Cost
with
migration

No of
GridLets

Total Cost
without
migration

No of
GridLets

Total Cost after
organizing

10 789.0282299 10 909.9495616 10 834.6781595

20 1314.69789 20 1301.481755 20 1146.73238

30 1963.578062 30 2321.987233 30 1946.167598

40 2339.632028 40 2169.977062 40 2186.705823

50 3387.617063 50 2684.91103 50 3275.155291

60 4423.494961 60 3347.310068 60 4365.642813

70 6065.173859 70 5972.556734 70 4714.741766

80 6187.643585 80 7673.393012 80 5304.134499

90 5495.314802 90 5895.314802 90 4861.958735

100 9356.003681 100 9564.517624 100 6187.693023

49

8.5. Simulation Graph

Graph 8.2: Performance of Self Organization algorithm

The graph below shows the cost before and after organization.

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

No of GridL ets

T
o
ta
l
C
o
st
 o
f
S
u
b
G
ri
d
 i
n
 S
ec

Before Organiz ation

After Organiz ation

Graph 8.3: Performance of SubGrid after optimization

50

The first graph 8.2 shows the one with maximum cost and increase due to the fact

that each job is taking more time at later stage resource is becoming busier. While the

scenario with job migration has little less increase rate as in case of increase in machine

load job is migrated to resource with more free resource. It is depicted from the result that

the rate of increase in cost after the organization of nodes is much less as compare to the

others. This is because the amount of job migration from one subGrid to the other has

been reduced

8.6. Simulation Discovery Code

Refer to appendix-B

8.7. Summary

This chapter demonstrates show the discovery algorithm used in ARDIG is most

efficient in a number of environments, hence proving its suitability to multiple user-

centric computing environments.

51

 Chapter 9

9. Epilogue

9.1. Conclusion

Grid computing has made promising progress, there are many projects involved in

developing high performance Grids but the fact still remain that such huge projects need

to have the autonomic infrastructure to deal with dynamic, pervasive and decentralize

nature of Grid. At this stage, a Grid service can provide transient and state full services,

and it also has some knowledge about itself. For example, what kind of input and output

it semantically needs and what kind of domain it applies to. However, it does not have

any autonomic features. It is envisioned that in future Grid system would compose of

autonomic Grid Services.

Our proposed architecture would provide a solution to numerous issues, due to

lacking autonomy in existing systems which required thorough analysis, extensive Grid

Computing knowledge and time to deal with. It would automate the low level task buying

more time to concentrate on other issues.

9.2. Future Work

In future this system would be integrated with Phantom OS to make Phantom OS

decentralized, fault tolerant and pervasive. And also make the system compatible with

DIANA schedulers. Apart from this another main work area is node access.

52

As nodes are assumed to have static and direct access in our project but in reality

this would be real so solution to deal with issue involving accessing GridNodes behind

Gateway and proxy would be required.

Regional node dependency needs to be eliminated as well. This can be done by

make use of overlay network like PGrid.

53

Appendix- A

54

1 Self Organization Algorithm

 private void selfOrganize()

 {

 System.out.println("self organize");

 int i=0;

 int j=noSubGrids-1;

 rateAllSubGrids(A,B,C,D);

 double mean=calculateMean();

 System.out.println(mean);

 for (int i1=0;i1<noSubGrids;i1++)

 sortSubGrid(i1,A,B,C,D);

 int mid=noSubGrids/2;

 while (i<mid && j>mid)

 {

 shNode(j,i,mean,A,B,C,D);

 i++;

 j--;

 }

 }

55

2 Node Shifting Algorithm

private void shNode(int subGridDId,int subGridTId,double
mean,double wS,double wM,double wB,double wA)
 {
 System.out.println("Shifting nodes");
 double
drating=rateSubGrid(subGrids[subGridDId],wS,wM,wB,wA);
 double
trating=rateSubGrid(subGrids[subGridTId],wS,wM,wB,wA);

 double dNrating=0;
 double tNrating=0;

 int i=0,j=subGrids[subGridDId].size()-1;
 int dId=0,tId=0;;
 while (drating>mean && trating<mean){

 dId = ((Integer)subGrids[subGridDId].get(j)
).intValue();
 dNrating=nodeRating(dId,wS,wM,wB,wA);

 tId = ((Integer)subGrids[subGridTId].get(i)
).intValue();
 tNrating=nodeRating(tId,wS,wM,wB,wA);

 if ((drating-dNrating)>mean)
 {
 trating+=dNrating;
 drating-=dNrating;

 subGrids[subGridTId].add(subGrids[subGridDId].get(j));
 subGrids[subGridDId].remove(j);
 j--;
 }else if ((trating-tNrating+dNrating)<mean)
 {
 trating=trating-tNrating+dNrating;
 drating=drating-dNrating+tNrating;
 Object
temp=subGrids[subGridTId].remove(i);
 subGrids[subGridDId].add(temp);

 subGrids[subGridTId].add(subGrids[subGridDId].get(j));
 subGrids[subGridDId].remove(j);
 i++;
 j--;

56

 }
 }

 }

3 Mean Calculations

 private double calculateMean()

 {

 System.out.println("calculate mean");

 double average=0;

 for (int i=0;i<agRating.length-1;i++)

 average+=agRating[i];

 average=average/agRating.length;

 return average;

 }

4 Super Node Election Algorithm

private int SuperNodeElection(LinkedList resList)

 {

 System.out.println("super node election");

 int tempid=0;

 double tempc=0;

 String tempn="";

57

 int resID[] = new int[resList.size()];

 double resCost[] = new double[resList.size()];

 String resName[] = new String[resList.size()];

 ResourceCharacteristics resChar = null;

 int i = 0;

 // a loop to get all the resources available

 for (i = 0; i < resList.size(); i++)

 {

 // Resource list contains list of resource

IDs not grid resource

 // objects.

 resID[i] = ((Integer)resList.get(i)

).intValue();

 // Requests to resource entity to send its

characteristics

 super.send(resID[i],

GridSimTags.SCHEDULE_NOW,

 GridSimTags.RESOURCE_CHARACTERISTICS, this.ID_);

 // waiting to get a resource characteristics

58

 resChar = (ResourceCharacteristics)

super.receiveEventObject();

 resName[i] = resChar.getResourceName();

 resCost[i] = resChar.getCostPerSec();

 if (resChar.getMIPSRating() > tempc)

 {

 tempid = resID[i];

 tempc=resChar.getMIPSRating();

 tempn=resName[i];

 }

 }

 System.out.println();

 System.out.println("ELECTED SUPER PEER IS ### ID:

" +tempid +" # NAME: " + tempn + " # COST: " + tempc);

 System.out.println();

 return tempid ;

 }

59

Bibliography

[1] Globus: A Metacomputing Infrastructure Toolkit. I. Foster, C. Kesselman. Intl J.

Supercomputer, Applications, 11(2):115-128, 1997.

[2] D. W. Erwin & D. F. Snelling, UNICORE: A Grid Computing Environment,

Lecture Notes in Computer Science, Springer 2001, Volume 2150, pages 825-834.

[3] Global Grid Forum, Global Grid Forum Conference, March 4-9, 2001, Amsterdam.

[4] P Padala and J N Wilson. GridOS: Operating System Services for Grid

Architectures. In Proceedings of International Conference On H.P computing 2002

[5] IntelItanium2,http://www.intel.com/products/server/processors/server/ itanium2/.

[6] C. Mastroianni, D. Talia & O. Verta, A Super-Peer Model for Building Resource

Discovery Services in Grids: Design and Simulation Analysis, EGC 2005, LNCS,

Volume 3470, pages. 132-143 .

[7] R. Raman, M. Livny & M. Solomon, Resource Management through Multilateral

Matchmaking, Proceedings of the Ninth IEEE Symposium on High Performance

Distributed Computing, Pittsburgh, Pennsylvania, August 2000, pages 290-291.

[8] P. Trunfio et al., Peer-to-Peer Models for Resource Discovery on Grids. In Proc. of

the 2nd CoreGRID Workshop on Grid and Peer to Peer Systems Architecture, Paris,

France, January 2006

[9] B. Yang, H. Garcia-Molina, Designing a Super-peer Network, In Proceedings of the

19th International Conference on Data Engineering (ICDE), March 2003, Bangalore,

India.

60

[10] Jeanvoine, E.; Rilling, L.;Morin, C; Leprince, D, “Using Overlay Networks to

Build Operating System Services for Large Scale Grids”, The Fifth International

Symposium on Parallel and Distributed Computing, 2006. ISPDC '06, July 2006

[11] C. Mastroianni, D. Talia & O. Verta, A Super-Peer Model for Building Resource

Discovery Services in Grids: Design and Simulation Analysis, EGC 2005, LNCS,

Volume 3470, pages. 132-143 .

[12] R. Raman, M. Livny & M. Solomon, Resource Management through Multilateral

Matchmaking, Proceedings of the Ninth IEEE Symposium on High Performance

Distributed Computing, Pittsburgh, Pennsylvania, August 2000, pages 290-291.

[13] P. Trunfio et al., Peer-to-Peer Models for Resource Discovery on Grids. In Proc.

of the 2nd CoreGRID Workshop on Grid and Peer to Peer Systems Architecture,

Paris, France, January 2006

[14] B. Yang, H. Garcia-Molina, Designing a Super-peer Network, In Proceedings of

the 19th International Conference on Data Engineering (ICDE), March 2003,

Bangalore, India.

[15] C. Yang et al., Resource Broker for Computing Nodes Selection in Grid

Computing Environments, GCC 2004, LNCS Volume 3251/2004, ISSN 0302-9743,

pages 931-934

[16] Jeanvoine, E.; Rilling, L.;Morin, C; Leprince, D, “Using Overlay Networks to

Build Operating System Services for Large Scale Grids”, The Fifth International

Symposium on Parallel and Distributed Computing, 2006. ISPDC '06, July 2006

Page(s):191 – 198

