
Real-Time 3D Rendering Engine

By Uzair Hashmi

Project Supervisor: Dr Saeed Murtaza

Dissertation submitted as partial fulfillment of the requirements of
MCS/NUST for the award of BE degree in Software Engineering

Department of Computer Sciences

Military College of Signals

Rawalpindi

May 2003.

32

Dedication

I humbly dedicate this dissertation and the research reported herein to my

teachers at MCS, and particularly to Dr Saeed Murtaza for his encouragement.

I also dedicate it to my parents.

32

Declaration

I declare that the research and development work reported in this thesis was

performed solely for the purpose of the final year degree project and was not

part of any other project.

32

Acknowledgement

First of all my thanks go out to Dr Saeed Murtaza for originally teaching me

the mathematics (linear algebra) so essential to 3D graphics, and later on for

providing lots of encouragement.

This project would not have been possible without the inspiration and insight

I received from the pioneers of 3D graphics and 3D gaming, particularly John

Carmack of id Software.

32

Contents

Part 1 - Introduction ...7

1.1 Style Conventions .. 7

1.2 Aims and Objectives ... 8
1.2.1 Basic Aim..8
1.2.2 Feature Set...8

1.3 Development Model .. 9

1.4 Work Scheduling... 9

1.5 Introduction to 3D Graphics .. 9
1.5.1 What it is about ...9
1.5.2 Possibilities of 3D Graphics ...10

1.6 Tools Used in Development ...11
1.6.1 Platform...11
1.6.2 Compiler..12
1.6.3 Graphics Hardware API..12

1.7 Reason for Choosing OpenGl as the Graphics API ..12
1.7.1 3D Graphics Cards..12
1.7.2 Contemporary Graphics API’s ...12

Part 2 – OpenGl and the Graphics Pipeline...14

2.1 Objective ...14

2.2 Rendering Pipeline ...14

2.3 OpenGL as a State Machine..15

2.4 OpenGL Rendering Pipeline...15
2.4.1 Display Lists ...16
2.4.2 Evaluators..17
2.4.3 Per-Vertex Operations ..17
2.4.4 Primitive Assembly...17
2.4.5 Pixel Operations..18
2.4.6 Texture Assembly ...18

32

2.4.7 Rasterization..19
2.4.8 Fragment Operations...19

Part 3 – eXtreme Engine Details ..20

3.1 Overall Architecture ..21

3.1.1 Renderer Pipeline..21

3.2 OpenGl Window Creation and Game Code ..22

3.3 OpenGl Initialization ...23

3.4 Loading Map Data ...25
3.4.1 Date Structures used ...25
3.4.2 Format of Map File ...26
3.4.3 File Loading ..26

3.5 Loading Textures ...26
3.5.1 Texture Structure ..26
3.5.2 Texture Loading..27

3.6 Drawing the Scene..27

3.7 Lighting ...29
Lighting Normals ...29

Part 4 – Appendices...32

Appendix A: In-Engine Screenshots...32

Appendix B: Mathematics behind the rendering pipeline transforms........................... 2
Translation..2
Rotation ..2
Perspective Projection..3

32

Part 1 - Introduction

This thesis was written as part of my final year project at Military College of

Signals. The title of the project was eXtreme Engine: a Real-Time 3D Rendering

Engine. This thesis will attempt to explain all aspects related to the

development of the project, and information related to the field of 3D

graphics.

This part serves as an introduction to the thesis. First the style conventions are

enumerated. That is followed by stating the objectives, and then the

scheduling of work is described.

1.1 Style Conventions

In this project report the following style conventions are used:

– The actual text of the report (other than the headings) is written in

Palatino Linotype, 12 pt.

– Code is written in Courier New, 10 pt.

– OpenGl functions start with ‘gl’.

– OpenGl constants start with ‘GL_’

32

1.2 Aims and Objectives

1.2.1 Basic Aim

As defined by the title of the project, the basic aim was to produce a 3D

graphics engine capable of producing realistic-looking visual environments in

real-time. However, while this is the stated aim, the real advantage of

developing and implementing such an engine is that it would (and has)

enabled me to understand the workings of any modern 3D graphics engine.

Following the incremental model, while the engine has been developed to the

required goals, it can be extended to include more features. These features

could be such that the engine can be used for producing a game, an

architectural planner, or any number of applications which require the

simulation of a 3D world in 2D. But while the application and utilities of the

project will be studied in more detail later, the goals set at the time of

commencing the project were to produce just such an engine which can be

extended for any 3D application.

1.2.2 Feature Set

The engine has the following feature set:

– Triangle representation of the world

– Texture-mapping

– Lightmapping

– User movement through keyboard input

32

1.3 Development Model

In software engineering terms, a combination of the incremental and

prototyping models was used in order to conduct the necessary research and

develop the engine. First a simple system was built as a prototype, and then

built again but with increased complexity, efficiency and size. Also, in

learning the technology many small programs were built, and then the

concepts and algorithms were incorporated in the engine code.

1.4 Work Scheduling

– Research: 8 weeks

– Simple BGI Engine: 2 weeks

– OpenGl technology research: 2 weeks

– Implementation: 4 weeks

– Testing and debugging: 2 weeks

– Documentation: 1 week

1.5 Introduction to 3D Graphics

1.5.1 What it is about

The following section is for those not familiar with the realm of 3D graphics.

Its purpose is to acquaint the reader with what the term ‘3D graphics’ is all

about and what a vast field it encompasses.

In brief, the goal of 3D graphics is to simulate on a 2D surface any 3D object.

This very definition opens up a vast range of possibilities. Not only can we

simulate anything in the real world, but anything that can exist in our

32

imagination. This immediately opens up vast possibilities for movies and

computer gaming.

Consider a photo. Sure it looks good. But we can look at only from a very

specific angle, range, and lighting conditions. Using a 3D engine, we can

render(that is, draw) that (almost as real) image from any place we wish, and by

changing anything we want in the image.

Now take a movie. A movie is simply a collection of photos, appearing very

swiftly to give the impression of motion. But nothing in the movie can be

changed; once it has been shot, it remains that way forever. We cannot, if we

wish, look around the corner to see if the monster is standing there or not; the

information needed is simply not there. With a real-time engine, we don’t

have a series of photos, but the world itself is defined, and we draw the

picture as it appears to the camera. This means that we can produce

interactive movies. This is exactly what 3D games are: interactive movies in

which the player is the ‘hero’ of the movie.

This type of drawing of pictures which appear so fast that it looks like a

movie is called real-time rendering. The term real-time implies that the process

of rendering is so fast, animation can be simulated. This of course is the same

as TV, where 30 frames are flashed on the screen every second. Similarly a

real-time engine tries to render its frames so fast the user cannot tell that they

are separate.

1.5.2 Possibilities of 3D Graphics

The ability to simulate just about anything graphically opens a huge range of

uses for 3D engines. A few of them are:

32

– CAD

– Scientific visualization

– Computer gaming

– Medical imaging

– Military training

– Architectural design and evaluation

– Flight simulators for pilot training

– User interface for operating systems of the future?

1.6 Tools Used in Development

1.6.1 Platform

Windows was chosen as the OS on which the engine would run because:

– It is the most widely used OS in the world, and hence any commercial

application (such as one that could be based on this engine) would find

a large market by supporting Windows.

– I have experience working/programming with Windows.

32

1.6.2 Compiler

Microsoft Visual C++ 6.0 was used.

1.6.3 Graphics Hardware API

OpenGl was chosen as the API for interacting with the graphics hardware.

1.7 Reason for Choosing OpenGl as the Graphics API

1.7.1 3D Graphics Cards

Realistic rendering of 3D images is a computationally expensive process

containing a huge number of mathematical calculations. The demands of

executing the rendering quickly are increased when the engine has to be real-

time. To meet this demand special graphics hardware has been developed.

These 3D graphics cards perform many of the mathematical functions

required.

1.7.2 Contemporary Graphics API’s

However the problem with 3D cards is that dozens of them exist, with

different capabilities and more importantly for the graphics programmer,

interfaces. To overcome this, two standard API’s have evolved:

DirectX

DirectX is a Microsoft owned API. For this reason, it only runs on Microsoft’s

OS, Windows. It has absolutely no support on other platforms, such as

Macintosh or Linux.

OpenGl

32

OpenGl (Open Graphics library) was developed by Silicon Graphics

Interactive (SGI) in the early 1990’s. It has implementations on a whole slew of

platforms, including:

– Windows

– Linux and Unix

– Macintosh

– BeOS

– Amiga

among others (less obscure).

OpenGl is the API of choice in all professional applications such as CAD

programs, modeling programs (like the very sophisticated 3D Studio Max)

and for scientific visualization.

The one great advantage for me in choosing OpenGl instead of DirectX is

simply that OpenGl is much simpler to learn and use as compared to DirectX.

Also, a huge amount of resources are available for learning OpenGl on the

Internet, as compared to DirectX.

32

Part 2 – OpenGl and the Graphics

Pipeline

2.1 Objective

This part of the report will serve as a brief tutorial to anyone not familiar with

3D technology and particularly OpenGl. The next part will be the main part of

the report describing the engine developed.

2.2 Rendering Pipeline

As has been explained before, the process of creating the picture is called

rendering. The whole process is very simply conceptualized as:

Thus the purpose of the rendering pipeline is simply to transform whatever

data the 3D models contain into a 2D form for output on a display device. The

Rendering Pipeline
3D

models
Output

device
Model

data

Screen

data

32

reason it is called a pipeline is that it actually consists of a number of stages,

where data is sent down each stage, one after the other, somewhat like the

flow of material through connected pipes forming a pipeline.

Before the advent of 3D graphics cards, the pipeline was implemented

entirely in software code. But through an API like OpenGl the pipeline stages

on the 3D card can be accessed.

2.3 OpenGL as a State Machine

OpenGL is a state machine. It is put it into various states (or modes) that then

remain in effect until they are changed. For instance, the current color is a

state variable. The current color can be set to white, red, or any other color,

and thereafter every object is drawn with that color until the current color is

set to something else. The current color is only one of many state variables

that OpenGL maintains. Others control such things as the current viewing

and projection transformations, line and polygon stipple patterns, polygon

drawing modes, pixel-packing conventions, positions and characteristics of

lights, and material properties of the objects being drawn. Many state

variables refer to modes that are enabled or disabled with the command

glEnable() or glDisable(). Each state variable or mode has a default value,

and at any point the system can be queried for each variableʹs current value.

One of the six following commands is used to do this: glGetBooleanv(),

glGetDoublev(), glGetFloatv(), glGetIntegerv(), glGetPointerv(), or

glIsEnabled().

2.4 OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series

of processing stages called the OpenGL rendering pipeline. This ordering, as

32

shown in the figure below, is not a strict rule of how OpenGL is implemented

but provides a reliable guide for predicting what OpenGL will do.

Geometric data(vertices, lines, and polygons) follow the path through the row

of boxes that includes evaluators and per-vertex operations, while pixel data

(pixels, images, and bitmaps) are treated differently for part of the process.

Both types of data undergo the same final steps (rasterization and per-

fragment operations) before the final pixel data is written into the

framebuffer.

Order of Operation

2.4.1 Display Lists

All data, whether it describes geometry or pixels, can be saved in a display list

for current or later use. (The alternative to retaining data in a display list is

processing the data immediately - also known as immediate mode.) When a

display list is executed, the retained data is sent from the display list just as if

it were sent by the application in immediate mode

32

2.4.2 Evaluators

All geometric primitives are eventually described by vertices. Parametric

curves and surfaces may be initially described by control points and

polynomial functions called basis functions. Evaluators provide a method to

derive the vertices used to represent the surface from the control points. The

method is a polynomial mapping, which can produce surface normal, texture

coordinates, colors, and spatial coordinate values from the control points.

2.4.3 Per-Vertex Operations

For vertex data, next is the ʺper-vertex operationsʺ stage, which converts the

vertices into primitives. Some vertex data (for example, spatial coordinates)

are transformed by 4 x 4 floating-point matrices. Spatial coordinates are

projected from a position in the 3D world to a position on your screen. If

advanced features are enabled, this stage is even busier. If texturing is used,

texture coordinates may be generated and transformed here. If lighting is

enabled, the lighting calculations are performed using the transformed vertex,

surface normal, light source position, material properties, and other lighting

information to produce a color value.

2.4.4 Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of

geometry which fall outside a half-space, defined by a plane. Point clipping

simply passes or rejects vertices; line or polygon clipping can add additional

vertices depending upon how the line or polygon is clipped. In some cases,

this is followed by perspective division, which makes distant geometric

objects appear smaller than closer objects. Then viewport and depth (z

coordinate) operations are applied. If culling is enabled and the primitive is a

32

polygon, it then may be rejected by a culling test. Depending upon the

polygon mode, a polygon may be drawn as points or lines. The results of this

stage are complete geometric primitives, which are the transformed and

clipped vertices with related color, depth, and sometimes texture-coordinate

values and guidelines for the rasterization step.

2.4.5 Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline,

pixel data takes a different route. Pixels from an array in system memory are

first unpacked from one of a variety of formats into the proper number of

components. Next the data is scaled, biased, and processed by a pixel map.

The results are clamped and then either written into texture memory or sent

to the rasterization step. If pixel data is read from the frame buffer, pixel-

transfer operations (scale, bias, mapping, and clamping) are performed. Then

these results are packed into an appropriate format and returned to an array

in system memory. There are special pixel copy operations to copy data in the

framebuffer to other parts of the framebuffer or to the texture memory.

A single pass is made through the pixel transfer operations before the data is

written to the texture memory or back to the framebuffer.

2.4.6 Texture Assembly

An OpenGL application may wish to apply texture images onto geometric

objects to make them look more realistic Some OpenGL implementations may

have special resources to accelerate texture performance. There may be

specialized, high-performance texture memory. If this memory is available,

the texture objects may be prioritized to control the use of this limited and

valuable resource.

32

2.4.7 Rasterization

Rasterization is the conversion of both geometric and pixel data into

fragments. Each fragment square corresponds to a pixel in the framebuffer.

Line and polygon stipples, line width, point size, shading model, and

coverage calculations to support antialiasing are taken into consideration as

vertices are connected into lines or the interior pixels are calculated for a filled

polygon. Color and depth values are assigned for each fragment square.

2.4.8 Fragment Operations

Before values are actually stored into the framebuffer, a series of operations

are performed that may alter or even throw out fragments. All these

operations can be enabled or disabled. The first operation which may be

encountered is texturing, where a texel (texture element) is generated from

texture memory for each fragment and applied to the fragment. Then fog

calculations may be applied, followed by the scissor test, the alpha test, the

stencil test, and the depth-buffer test (the depth buffer is for hidden-surface

removal). Failing an enabled test may end the continued processing of a

fragmentʹs square. Then, blending, dithering, logical operation, and masking

by a bitmask may be performed. Finally, the thoroughly processed fragment

is drawn into the appropriate buffer, where it has finally advanced to be a

pixel.

32

Part 3 – eXtreme Engine Details

This part is where I will explain all the workings of the engine that has been

developed, along with the associated code.

32

3.1 Overall Architecture

The architecture of the engine can be seen in the figure

below:

3.1.1 Renderer Pipeline

As mentioned before, it is the job of the renderer to draw each frame. The

steps performed in the renderer are:

Map renderer
Game

Engine

Init OpenGl

Windows API

display

Map data

Required OpenGl state

Game

command

OpenGl Window

frame

32

1. Transforms (rotation, translation, scaling)

2. Transform from World Space to View Space

3. View Projection

4. Trivial Accept/Reject Culling

5. Perspective Divide - Transform to Clip Space

6. Clipping

7. Transform to Screen Space

Each of these operations is performed by setting up the appropriate OpenGl

states and calling the associated functions on the graphics hardware.

The following sections will describe each major module and its functions.

3.2 OpenGl Window Creation and Game Code

In many ways the setting up a window for the display in Windows was one of

the more difficult tasks of the project, as it involves many steps related to

Windows programming. Since the purpose of this report is to explain the

principles underlying 3D graphics and those which underlie the engine I have

developed I will not go into the details.

WinMain() is of course the first function that runs in the program. It calls

win_CreateGLWindow(), where the actual window is created. Also, there is

32

win_KillGLWindow() function called when the program exits to properly kill

the window.

WinMain() runs an infinite loop until the user presses escape or an error

condition occurs. During each loop it calls r_main(), which is responsible for

the actual drawing and is explained later.

WinMain() is also responsible for flipping the buffers. Two buffers are used,

one in which the current scene is being drawn and another in which the

previous one is displayed to the user. When the drawing is complete

WinMain() interchanges the two buffers. This ensures that the user does not

have to wait while the frame being rendered but instead watches a

continuous collection of frames.

As the key input handling interface is inside WinMain(), therefore the game

code responsible for player movement around the world has also been

included in it. Moving forward or backward, for instance, changes the current

player x and z positions. Also, to simulate a more realistic motion, ‘view

bobbing’ is incorporated in the code for moving forwards or back. The sine

curve is used to make it look like the player’s head is bobbing up and down.

3.3 OpenGl Initialization

In order to properly run the engine, it is not just enough to create a window.

As stated before OpenGl is a state machine which keeps track of a large

number of state variables. The requisite state variables have to be set to

proper values. This is done in the function r_Init(), called after the OpenGl

window has been created.

32

r_init(), before doing any of its processing, loads the world and its specified

textures, These functions will be explained later. Since each line is important

at this stage, I will explain them all:

Since the engine uses texture mapping, it must be enabled:

 glEnable(GL_TEXTURE_2D);

The next line sets the blending function:

 glBlendFunc(GL_SRC_ALPHA,GL_ONE);

The background color should be black, so:

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

The Depth Buffer holds the z-values of each pixel in a frame. This is necessary

for hidden surface removel. It is enabled by:

 glClearDepth(1.0);
 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST);

For proper lighting smooth shading needs to be enabled:

 glShadeModel(GL_SMOOTH);

glHint () tells OpenGL that we want the best perspective correction to be

done. This causes a small performance penalty, but makes the perspective

view look a bit better:

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);

The next few lines actually deal with lighting setup and are explained later.

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambience);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse);

32

 glLightfv(GL_LIGHT0, GL_POSITION, LightPosition1);
 glLightfv(GL_LIGHT1, GL_POSITION, LightPosition2);

 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glEnable(GL_LIGHTING);

3.4 Loading Map Data

3.4.1 Date Structures used

First I’ll explain the data structures used to describe objects to be rendered. At

the lowest level there is a vertex of a triangle:

typedef struct vertex_struct
{
 float x, y, z;
 float u, v;
} tri_vertex;

The u and v coordinates are used in texture mapping to properly map a

texture image to its associated triangle.

Triangles are used to represent the world. A triangle consists of an array of 3

vertexes and a an identifier tri_texture for the texture which is associated with

this particular triangle.

typedef struct triangle_struct
{
 tri_vertex vertex[3];
 int tri_texture;
} triangle;

Finally a model is defined as consisting of a pointer to triangles and the

number of triangles in the model. This is useful if models such as cars,

humans etc are to be introduced.

typedef struct model_struct
{
 int numtriangles;
 triangle * tri;

32

} model;

3.4.2 Format of Map File

Based on the above definitions, the file was decided to have the format:

NUMTEXTURES 3
NUMTRIS 36

X1 Y1 Z1 U1 V1 tex1
X2 Y2 Z2 U2 V2 tex1
X3 Y3 Z3 U3 V3 tex1

X1 Y1 Z1 U1 V1 tex2
X2 Y2 Z2 U2 V2 tex2
X3 Y3 Z3 U3 V3 tex2

Each horizontal line thus contains the definition of one vertex.

3.4.3 File Loading

The file is loaded into model1 by the function InitWorld(). It first stores the

number of triangles and number of textures. Then it creates model1,

allocating memory dynamically based on the number of triangles. Reading

one line (thus one vertex) at a time, it assigns values for x, y, z, u, v, and

tri_texture to the triangles in model1.

3.5 Loading Textures

3.5.1 Texture Structure
typedef struct tex_Struct
{
 GLubyte *image_data;
 GLuint bits_per_pixel;
 GLuint width;

GLuint height;
GLuint texture_id;

} Texture_Image;

This structure is very straightforward and self-explanatory. The image_data

pointer points to actual place in memory where the image of the texture is

32

placed. texture_id is necessary because in OpenGl textures are bound by

GLuint.

3.5.2 Texture Loading

InitTextures() allocates an array of Texture_Images, using the number of

texes found in InitWorld() and saved in numtexes. Then it loops through each

textures[] element, and calls BindTGA_toTexture() with the texture index and

the name of the TGA file holding the texture.

BindTGA_toTexture() fills in the fields of textures[i], by opening the TGA file.

I have decided to use TGA files because they are simple to work with (no

compression) and because unlike bitmaps they support the alpha channel.

3.6 Drawing the Scene

This is most important part of the engine. It is here that the scene is drawn.

OpenGl uses all the state variables defined previously in r_init in drawing the

scene. r_init() is called from WinMain() repeatedly until the end of the

program.

First the screen and depth buffers are cleared as this is a fresh frame:

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

OpenGl maintains 4 x 4 modelview and projection matrices for drawing the

scene. This function call resets the modelview matrix:

 glLoadIdentity();

These floats are used to hold the value of each coordinate of each triangle:

 GLfloat vert1_x, vert1_y, vert1_z,
 vert2_x, vert2_y, vert2_z,
 vert3_x, vert3_y, vert3_z;

32

 GLfloat u_current, v_current;

These values hold the values by which the modelview matrix should

transform the vertices:

 GLfloat translate_x = -x_pos;
 GLfloat translate_z = -z_pos;
 GLfloat translate_y = -movement_bobbing-0.25f;
 GLfloat rotate_y = 360.0f - y_rotation;

 int numtriangles;

Thses commands work on the modelview matrix to specify the view:

Rotate up snd down to look up and down:

 glRotatef(x_rotation,1.0f, 0, 0);

Rotate based on direction player is facing:

 glRotatef(rotate_y, 0, 1.0f, 0);

Translate the scence based on played position:

 glTranslatef(translate_x, translate_y, translate_z);

 numtriangles is assigned the number of triangles in the model.

After the each triangle is processed:

It is bound to its associated texture in textures[] with:

 int tex_id;
 tex_id = model1.tri[tri_loop].tri_texture;
 glBindTexture(GL_TEXTURE_2D,
textures[tex_id].texture_id);

32

Then the vertices of the triangle and texture coordinates are defined between

a glBegin() and glEnd pair, like:

glTexCoord2f(u_current, v_current);
 glVertex3f(vert1_x, vert1_y, vert1_z);

However during this stage the engine also does lighting calculations, as

explained in the next section.

3.7 Lighting

Lighting is a crucial part of any 3D engine. Without decent lighting no scene

would look real, even it was very complex. To implement lighting 2 lights, an

ambient light (coming from all directions) and a diffuse light (localized) are

defined in r_init:

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambience);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse);

Their positions are specified here:

glLightfv(GL_LIGHT0, GL_POSITION, LightPosition1);
 glLightfv(GL_LIGHT1, GL_POSITION, LightPosition2);

Each light is enabled, along with lighting:

glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
glEnable(GL_LIGHTING);

Lighting Normals

However for proper lighting OpenGl needs to know the normal to each

triangle. Thus functions are defined in math_lib.c for calculating the normal:

3D vector:

32

typedef struct vec_3f_struct
{
 float x, y, z;
} vec_3f;

Vector operations:

Vector subtraction:

vec_3f Sub_vec_3f(vec_3f vec1, vec_3f vec2)
{
 vec1.x -= vec2.x;
 vec1.y -= vec2.y;
 vec1.z -= vec2.z;

 return vec1;
}

Vector addition:

vec_3f DotProduct_vec3f(vec_3f vec1, vec_3f vec2)
{
 vec_3f tempVec;
 tempVec.x = vec1.y * vec2.z - vec1.z * vec2.y;
 tempVec.y = vec1.z * vec2.x - vec1.x * vec2.z;
 tempVec.z = vec1.x * vec2.y - vec1.y * vec2.x;

 return tempVec;
}

OpenGl specifies that all normals be unit length. Thus for normalization

(setting to unity) of a vector its magnitude is required:

float Magnitude_vec3f(vec_3f vec)
{
 return (float)sqrt(vec.x*vec.x + vec.y*vec.y +
vec.z*vec.z);
}

vec_3f Normalize_vec3f(vec_3f vec)
{
 vec_3f tempVec;
 float mag_vec = Magnitude_vec3f(vec);

 tempVec.x = vec.x / mag_vec;
 tempVec.y = vec.y / mag_vec;
 tempVec.z = vec.z / mag_vec;

 return tempVec;
}

32

 glNormal3f(normal_vector.x, normal_vector.y, normal_vector.z
);

Then the normal for the triangle is calculated in r_main as:

 vec_3f normal_vector,
 vec1, vec2, vec3;

 vec1.x = vert1_x;
 vec1.y = vert1_y;
 vec1.z = vert1_z;

 vec2.x = vert2_x;
 vec2.y = vert2_y;
 vec2.z = vert2_z;

 vec3.x = vert3_x;
 vec3.y = vert3_y;
 vec3.z = vert3_z;

normal_vector = Normalize_vec3f(DotProduct_vec3f(Sub_vec_3f(vec1,
vec2), Sub_vec_3f(vec2, vec3)));

And in glBegin() the normal is defined before the vertices as:

glNormal3f(normal_vector.x, normal_vector.y, normal_vector.z);

This ensures that all lights behave properly as they would in the real world.

32

Part 4 – Appendices

Appendix A: In-Engine Screenshots

Yellow light turned on:

32

Blue light also on:

32

Appendix B: Mathematics behind the rendering pipeline

transforms

The functions called in r_main() actually create certain matrices for OpenGl to

multliply with the current matrix. Thus these matrices can be thought of as

transformation matrices. What these matrices really are is defined below.

Translation

The call glTranslate*(x, y, z) generates T, where

T =


















1000
010
010
001

z
y
x

Rotation

The call glRotate*(a, x, y, z) generates R as follows:

Let v = (x, y, z)T, and u = v/||v|| = (xʹ, yʹ, zʹ)T.

Also let

S =
















−
−

−

0''
'0'

''0

xy
xz
yz

 and m = uuT + (cos a) (1 – uuT) + (sin a)S

Then

32

R =


















1000
0
0
0

mmm
mmm
mmm

 where m represents elements from M, which is a 3x3

matrix.

For instance, if the rotation is about the x-axis:

glRotate*(a, 1, 0, 0):

















−

1000
0cossin0
0sincos0
0001

aa
aa

Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where

R =
()

























−
−

−
−
+−

−
+

−

−
+

−

0100

200

0
1
20

0
1
10

1
2

nf
fn

nf
nf
bt
bt

b
n

r
r

r
n

