

Performance Evaluation of Flow Transfer Mode (FTM) with QoS and

Comparative Analysis with OBS

By

Muhammad Imran
2007-NUST-MS PhD-IT-26

Thesis Supervisor:

Dr. Khurram Aziz

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science (SEECS),

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(April 2011)

i

APPROVAL

It is certified that the contents and form of thesis entitled “Performance Evaluation of Flow Transfer

Mode (FTM) with QoS and Comparative Analysis with OBS” submitted by Muhammad Imran have been

found satisfactory for the requirement of the degree.

Advisor: Dr. Khurram Aziz

Signature: _________________

Date: _____________________

 Committee Member1: Dr. S.M.H. Zaidi

 Signature _________________________

 Date: ____________________________

 Committee Member2: Mr. Muhammad Ramzan

 Signature _________________________

 Date: ____________________________

 Committee Member3: Ms. Savera Tanvir

 Signature _________________________

 Date: ____________________________

ii

Dedication

Dedicated to dearest of all, my Parents and Teachers

Whose prayers and support stimulate my spirits

to achieve higher ideals of life.

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at NUST-SEECS or

at any other educational institute, except where due acknowledgement has been made in the

thesis. Any contribution made to the research by others, with whom I have worked at NUST

SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project's design and conception or in style, presentation and

linguistics which has been acknowledged.

Author Name: Muhammad Imran

Signature:

iv

Acknowledgments

First and foremost, I am immensely thankful to Almighty Allah for letting me pursue and fulfill

my dreams. Nothing could have been possible without His blessings.

I would like to thank my parents for their support throughout my educational career They have

always supported and encouraged me to do my best in all matters of life.

My heartfelt thanks to my committee members, class fellows and all the others who have

contributed in any way towards the successful completion of this thesis.

Finally, this thesis would not have been possible without the expert guidance of my advisor, Dr.

Khurram Aziz, who has been a great source of inspiration for me during these years of research.

Despite all the assistance provided by Dr. Khurram Aziz and committee members, I alone remain

responsible for any errors or omissions which may unwittingly remain.

Muhammad Imran

v

Table of Contents

List of Abbreviations ... vii

List of Tables .. viii

List of Figures ... ix

Abstract ... xi

1. Introduction .. 1

1.1 Introduction & Background .. 1

1.2 Contribution .. 3
1.2.1 Problem Statement ... 4
1.2.1 Problem Breakdown .. 4

1.3 Thesis Organization .. 4

2. Literature Review .. 6

2.1 Optical Circuit Switching: .. 6

2.2 Optical Packet Switching: .. 7

2.3 Optical Burst Switching: .. 10
2.3.1 Burst Aggregation: ... 11
2.3.2 Burst Reservation Protocols: ... 12
2.3.3 Scheduling Algorithms .. 13
2.3.4 Contention Resolution: .. 15
2.3.5 Quality of Service in OBS ... 16
2.3.6 Comparisons of QoS mechanisms in OBS. ... 18

3. Flow Transfer Mode (FTM) ... 20

3.1 Introduction ... 20

3.2 Modes of FTM ... 20
3.2.1 Packet mode: .. 21
3.2.2 Burst mode: .. 22
3.2.3 Periodic streaming mode: .. 22
3.2.4 Continuous streaming mode: ... 22

3.3 Current and Future Networks Architecture .. 22

3.4 FTM Layered Network Architecture .. 23

3.5 Node architectures in FTM .. 24

3.6 Operational Issues in FTM ... 25

3.7 Advantages of FTM Over OBS .. 26

4. Proposed QoS Provisioning in FTM .. 27

vi

5. Performance Evaluation .. 30

5.1 Network Model .. 30

5.2 Simulation Technique ... 31

5.3 Performance Metrics .. 31

5.5 Implementation Detail .. 32
5.5.1 OBS Implementation Detail ... 32
5.5.2 FTM Implementation Detail .. 35
5.5.3 FTM Implementation with QoS Provisioning ... 38

5.6 Results .. 39

6. Summary and Conclusions .. 55

6.1 Conclusions .. 55

6.2 Future Work .. 56

References .. 57

Appendices .. 59

Appendix A : Poisson Process * ... 59

Appendix B: Exponential Distribution* ... 61

Appendix C : Simulation Code .. 63

vii

List of Abbreviations

ACK Acknowledgement

ADSL Asymmetric Digital Subscriber Line

ATM Asynchronous Transfer Mode

CP Control Packet

DWDM Dense Wavelength Division Multiplexing

FDL Fiber Delay Line

FTM Flow Transfer Mode

FTTH Fiber to the Home

HP High Priority

IP Internet Protocol

JET Just Enough Time

JIT Just In Time

LAUC Latest Available Unused Channel

LAUC-VF Latest Available Unused Channel with Void Filling

LP Low Priority

Min-SV Minimum Starting Void

Min-EV Minimum Ending Void

MP Medium Priority

NAK Negative Acknowledgement

OBS Optical Burst Switching

OCS Optical Circuit Switching

OPS Optical Packet Switching

OTD Offset Time Differentiation

OXC Optical Cross-connect

O-E-O Optical to Electrical to Optical

PD Preemptive Dropping

P2P Pear to Pear

QoS Quality of Service

RAM Random Access Memory

SDH Synchronous Digital Hierarchy

SONET Synchronous Optical Networking

VoIP Voice Over IP

WDM Wavelength Division Multiplexing

WLAN Wireless Local Area Network

viii

List of Tables

Table 2-1: Comparison of QoS Mechanisms in OBS [22] .. 19

ix

List of Figures

Figure 1.1 Architecture of DWDM Network [5] .. 2

Figure 2.1: Optical Circuit switching [14] .. 7

Figure 2.2: Data arrives at the core node [14] .. 8

Figure 2.3: Processing at core node [14] .. 9

Figure 2.4: Data transmitted by core node [14] ... 9

Figure 2.5: OBS Network [14] ... 11

Figure 2.6: An Illustration of Scheduling Algorithms [4] ... 14

Figure 2.7 QoS Mechanisms in OBS .. 18

Figure 3.1 Modes of FTM .. 21

Figure 3.2: Current layered network architecture [12] .. 23

Figure 3.3: Future layered network architecture [12] .. 23

Figure 3.4: FTM Layered Architecture [12] ... 24

Figure 3.5: Edge Node Architecture [12] .. 25

Figure 3.6: Core Node Architecture [12] ... 25

Figure 4.1: Priority classes with respect to modes ... 28

Figure 4.2: Preemptive dropping at core node ... 29

Figure 5.1: Network Model ... 30

Figure 5.2: Traffic Generation in OBS ... 32

Figure 5.3: Read Eventlist & Schedule Channel .. 33

Figure 5.4: LAUC-VF .. 33

Figure 5.5: Schedule Channel using LAUC ... 34

Figure 5.6: Schedule Channel using LAUC (Empty) ... 34

Figure 5.7: Traffic generation of burst mode .. 35

Figure 5.8: Traffic Generation of Continuous Mode ... 36

x

Figure 5.9: Traffic Generation of Periodic Streaming Mode ... 36

Figure 5.10: Scheduling in FTM ... 37

Figure 5.11: QoS Provisioning in FTM ... 38

Figure 5.12 : Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 1Mb streams with equal load, 6 wavelengths & periodic

streaming with LAUC-VF. .. 42

Figure 5.13: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 0.5 Mb streams with equal load, 6 wavelengths &

periodic streaming with LAUC-VF. .. 44

Figure 5.14: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 1 Mb streams with different load, 6 wavelengths &

periodic streaming with LAUC-VF. .. 47

Figure 5.15: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 1 Mb streams with equal load, 6 wavelengths & periodic

streaming with LAUC... 49

Figure 5.16: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 1Mb streams with equal load, 12 wavelengths & periodic

streaming with LAUC-VF. .. 51

Figure 5.17 : Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in

different classes which are calculated by using 1Mb streams with equal load, 18 wavelengths & periodic

streaming with LAUC-VF. .. 53

xi

Abstract

Demand of multimedia traffic is increasing day by day due to broadband internet

access and new end-user business applications as well as the continuing

paradigm shift from voice to data services. Multimedia applications require large

bandwidth. Optical networks are a good choice for multimedia applications due

to huge bandwidth support. Optical Circuit Switching (OCS), Optical Packet

Switching (OPS) and Optical Burst Switching (OBS) are some of the switching

techniques available in optical networks. All techniques have some limitations

and advantages over one another. OCS has round trip delay and bandwidth

under-utilization issues. OPS has limitations of unavailability of appropriate

optical RAM as well as output port contention, and OBS has problems of burst

losses and throughput maximization. Flow Transfer Mode (FTM) is another

technique which has tried to address limitations of the existing switching

techniques. It is a universal switching method which classifies traffic flows into

different modes. Each flow is followed by a control packet that is send in

advance just like OBS. Flow can be long in case of continuous or periodic modes

and small in case of burst or packet mode. Thus, it is considered as a

generalization of OBS. FTM is a generic idea which has not yet been

implemented or even tested experimentally. We evaluate the performance of

FTM and perform comparative analysis with OBS. For this, we simulate FTM

and OBS under different network scenarios. Also we propose and employ QoS

provisioning in FTM and evaluate its performance with QoS. Our results show

improvement in burst loss ratio, bandwidth utilization and throughput.

1

1. Introduction

1.1 Introduction & Background

Demand of multimedia traffic is increasing day by day due to broadband internet access and new

end-user business applications as well as the continuing paradigm shift from voice to data

services. The applications like peer-to-peer (P2P), data/multimedia, file exchange, video

broadcasting, grid services and real time applications are the most bandwidth hungry

applications and the trend of usage of these applications is increasing due to immense progress in

the deployment of broadband access network technologies (e.g., ADSL, WLAN, or FTTH)

which generate huge traffic on the metro and core transport networks. As a result, the next

generation future networks should provide high transmission and switching technologies in order

to fulfill the requirements of increasing traffic demanding applications. Another trend is

increasing due to expansion of the Internet which demands more bandwidth is the shifting of

paradigm from voice to data services. This is happening because telecommunication industry is

migrating from voice services to IP-centric data services.

So in order to meet future requirements of bandwidth hungry applications, optical network has

been considered as the reasonable solution for the next generation future network due to

provisioning of high bandwidth and its services. Large bandwidth support has been made

possible due to its career i.e optical fiber. In theory, optical fiber can provide bandwidth up to

12.5 Tbits/s [1]. Aside from this, they are cheap and also have low bit loss rate [2] as compared

to copper cables.

Figure 1.1 provides a basic architecture of optical network. Optical network consists of source

and destination edge nodes and intermediate core nodes which are connected with each other by

optical fibers. Client networks (IP, ATM, SONET/SDH, etc.) are connected to the edge nodes.

Edge nodes are responsible for conversion of data signal from its input form i.e electrical form to

an optical format. The optical format data is transmitted through optical fiber towards core

nodes. Several data signals can be traveled at single fiber using Dense Wavelength Division

Multiplexing (DWDM). DWDM allocates different wavelengths to different signals. Core nodes

are responsible for processing of control information and all-optical switching of data signals. In

CHAPTER 1. INTRODUCTION

2

most cases the processing of control information is performed electronically. Data is again

converted into its client signal format when it arrives at the destination edge node.

Figure 1.1 Architecture of DWDM Network [5]

On the basis of network architecture of optical network, a few network architectures exists i.e.

Optical Circuit Switching (OCS) [5,6,7], Optical Packet Switching (OPS) [5,8] and Optical Burst

[3,4] Switching (OBS). All techniques have some limitations and advantages over one another.

Optical Circuit Switching (OCS) is connection oriented optical switching technique. In OCS,

before data transmission, the connection is established on pre-defined paths from a sending

identity to receiving identity which is called light-path. Light-path is a dedicated connection

between sender and receiver for the transmission of data. Therefore OCS has issues of round trip

delay due to connection establishment and bandwidth under-utilization due to dedicated

bandwidth reservation.

OPS is same as of packet switching. In OPS, packet comprises two parts i.e. data and header.

Both header and data in packet are in optical domain. When packet arrives at core node, the

header is separated from the packet and is converted into electrical domain. During this time,

packet has to be buffer in core node. If output port is not free, then packet will have to be buffer

CHAPTER 1. INTRODUCTION

3

or ultimately will drop. Since the technology of optical buffers is not very much mature therefore

OPS has limitations of unavailability of appropriate optical RAM and output port contention.

OBS technology can be seen as a promising solution. OBS differs from other paradigms because

control information is sent via control packets in advance of the data payload which are called

bursts. Reserved optical channel is dedicated for control packets. These control packets are then

processed electronically to reserve channel for burst which come after offset time. But OBS also

has some of the issues like burst losses, unfairness in access to transmission resources,

complexity of control and throughput maximization.

In order to address limitations in above technologies a universal switching method named as

Flow Transfer Modes (FTM) was proposed in [9-13]. Just like OBS, FTM also consists of

control plane and data plane. Control plane is kept for control packets and data plane is reserved

for data to be sent from source to destination. Basic difference between FTM and OBS is that

FTM classify traffic according to different data flows which are called modes. It provides 4

different modes i.e. Continuous Streaming Mode, Periodic Streaming Mode, Burst Mode and

Packet Mode. Data transmissions of each mode start after control packet which is sent a fixed

time before actual data transmission which is called offset time.

 The author in [9-13] has given generic idea for FTM which will likely to be used as universal

switching technique in all optical future networks. In this thesis, we evaluate the performance of

FTM and perform comparative analysis with OBS. For this, we simulate FTM and OBS under

same simulation parameters and different network scenarios. Then we also propose and employ

QoS provisioning in FTM because bandwidth hungry applications generally require QoS

provisioning. We evaluate performance of FTM with QoS. Our results show improvement in

burst loss ratio, bandwidth utilization and throughput.

1.2 Contribution

This thesis provides the first implementation of FTM and provision of QoS in FTM according to

the best of authors’ knowledge. We have done comparative analysis with OBS and our results

show that FTM shows better performance than OBS. Also by provisioning of QoS, FTM

performance is further improved.

CHAPTER 1. INTRODUCTION

4

1.2.1 Problem Statement

 “To propose quality of service mechanism in flow transfer mode, evaluate its performance and

perform comparative analysis with OBS.”

1.2.1 Problem Breakdown

The problem is broken down into following steps to achieve specific objectives:

 Implementation of OBS: First of all OBS network is implemented using simulation by on

the basis of network design and simulation parameters that we assumed before

simulation. Then results of OBS are compared with existing implementations of OBS in

order to assure simulation is correct.

 Implementation of FTM: After OBS implementation, FTM is implemented using same

network design and simulation parameters in OBS.

 QoS Provisioning in FTM: The objective of this step is to propose QoS provisioning

mechanisms in FTM and implement FTM using same simulation parameters and network

design.

 Performance Evaluation: In this step, comparative analysis and performance evaluation

of FTM with OBS and then with QoS provisioning in FTM has been done.

1.3 Thesis Organization

The remaining part of this thesis is arranged as follows:

In chapter 2, a detailed discussion on some of the existing optical switching techniques i.e.

OCS, OPS, OBS has been provided. Their functionality, advantages, limitations and comparison

is being done in this chapter. In the end different QoS employment techniques in OBS is

described

Chapter 3 provides detailed description of FTM, i.e. different modes of FTM, current and

future networking architectures and FTM layered architecture.

In Chapter 4, proposed mechanism of QoS in FTM is presented briefly.

CHAPTER 1. INTRODUCTION

5

In Chapter 5, Implementation techniques of OBS, FTM, and FTM with QoS is discussed.

Then their performance is evaluated and comparative analysis has been done. Limitations of the

proposed technique are also discussed.

In Chapter 6, we briefly summarize this work and discuss future direction of this thesis.

6

2. Literature Review

In this chapter, a detailed discussion on some of the existing optical switching techniques has

been provided. In optical network, there are three switching techniques which are used to achieve

better performance at very high data rates. There are classified as:

 Optical circuit switching (OCS)

 Optical packet switching (OPS)

 Optical burst switching (OBS)

2.1 Optical Circuit Switching:

Optical Circuit Switching (OCS) is connection oriented optical switching technique. In OCS,

before data transmission, the connection is established on pre-defined paths from a sending

identity to receiving identity which is called light-path and is shown in the figure2.1. Light-path

is dedicated connection between sender and receiver for the data transmission.

OCS switching nodes are called optical cross-connects (OXC). All optical switching is provided

by an OXC. OXC has input and output ports. OXC receives data at incoming port by using a

particular wavelength and forwards it to an outgoing port to the same wavelength. If same output

wavelength is not available or free then wavelength converters can be employed. Wavelength

converters convert input wavelength to output wavelength.[5]

To establish the connection, control packet is send from source to destination and then back to

source which carries control information for the connection establishment and it is considered an

overhead. Typical connection durations are expected to be even as low as some seconds and the

connection setup and release can be performed during some ms [5].

There are two major issues which is associated with OCS.

 Complete round trip delay

 Bandwidth under utilization

CHAPTER 2: LITERATURE REVIEW

7

Complete round trip delay occurs before data transmission during connection establishment. It

depends on the transmission channel capacity and distance from sources to destinations. Second

issue is related with under utilization of bandwidth. Because connection is dedicated for source

to destination and when source does not send data then bandwidth is under utilized.

Contention can be occurred if there are not enough wavelengths for the incoming request. In

result of this, request may be delayed, blocked or dropped.

Figure 2.1: Optical Circuit switching [14]

2.2 Optical Packet Switching:

The concept of Optical Packet Switching (OPS) is same as of packet switching. In packet

switching, data is divided into different size of chunks which are called packets. Packets are

delivered to the next-door router. The routing mechanism is performed on hop-by-hop basis.

Routing decision is carried on the basis of destination address independently and irrespective of

the routing decisions in other routers. The network also does not maintain state of the packet

other than the routing tables [14].

The routers do forwarding on the basis of store-and-forward mechanism in which IP packets are

stored temporarily in the RAM of routers during processing and then transmitted. During

CHAPTER 2: LITERATURE REVIEW

8

network congestion, packets may also need to be stored locally and if the system undergoes short

of memory, then packets are discarded.

In OPS, packet comprises two parts i.e. data and header. Both header and data in packet are in

optical domain as shown in Figure 2.2. When packet arrives at core node, the header is separated

from the packet and is converted into electrical domain. Core node does processing for the next

hop and then converts header again into optical domain and merge with payload again. During

processing time payload has to wait at the core node. In this way, header goes through optical to

electrical to optical (O-E-O) conversion. Wavelength resources are shared between packets

belonging to different transmission. Concept of an entirely optical OPS router is also available

which is supposed to process this control information in an optical way but due to still immature

all-optical processing the header is usually converted to its electrical form and processed in an

electronic node controller [14].

Processing in OPS is done in three steps. In first step, packet arrives at core node which is shown

in the figure2.2. In step 2, header is separated from the packet and is converted into electrical

domain for processing as shown in the figure2.3. In step 3, after processing header is again

converted into optical domain and is merged with the payload for transmission as shown in the

figure2.4.[14]

Figure 2.2: Data arrives at the core node [14]

CHAPTER 2: LITERATURE REVIEW

9

Figure 2.3: Processing at core node [14]

Figure 2.4: Data transmitted by core node [14]

There are three main issues which are concerned in OPS.

 Lack of optical RAM (Random Access Memory)

 Output port contention

 Processing overhead at each node

In first issue, optical RAM is not available. For limited buffering, fiber delay lines (FDL) can be

employed as alternative but it is costly solution and is not viable and effective as well because of

limited time storage.

Second issue is related with output port contention. If network is congested, then packet will be

dropped.

CHAPTER 2: LITERATURE REVIEW

10

Third issue is related with processing overhead at each node. For example, during transmission

of a video stream, every packet will have to be individually scheduled and processed at each

node which ultimately incorporates more delay.

2.3 Optical Burst Switching:

Optical burst switching (OBS) [3,4] is a an emerging technique that is considered a more

appropriate solution than optical packet switching (OPS) and optical circuit switching (OCS).

OBS basically unites the features of OCS and OPS. In OBS neither circuit is established as in

OCS or OEO conversion for the data is required at core nodes as in OPS.

OBS differs from other techniques in such a way that control information is sent via control

packets in advance of the data payload which are called bursts. Control packets are processed in

electrical domain for reservation of channel for burst which comes after offset time [15].

Reserved optical channel is dedicated for control packets.

Similar to OPS, the wavelength resources are shared between different connections in OBS. OBS

network in shown in the figure2.5. Packets arrive at the source edge nodes of an OBS network

from legacy networks (e.g., IP, ATM networks) and are aggregated into large optical bursts. For

time duration equal to offset time, these bursts are temporarily stored at edge node before

transmission. Before burst transmission, a control packet is send. The control packet and burst

are transmitted separately on reserved wavelengths.

Burst is send after particular time of control packet which is called offset time. In offset time,

controller of the core node processes the control information and setups the switching matrix for

the incoming burst. The burst travels already configured nodes all the way in optical domain.

The duration of typical burst, which aggregates a group of packets, can last from some micro

seconds to several hundreds of milli seconds depending upon burst size and transmission line

capacity.

http://en.wikipedia.org/w/index.php?title=Optical_packet_switching&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Optical_circuit_switching&action=edit&redlink=1

CHAPTER 2: LITERATURE REVIEW

11

Figure 2.5: OBS Network [14]

Partition of data and control plane is the main characteristics of OBS network. O-E-O

conversions takes place in case of control packets while in there is no O-E-O conversions i.e.

data travels all optically. Because of the absence of O-E-O conversion in data plane delay is

reduced to a large extent.

2.3.1 Burst Aggregation:

In OBS network, packets which arrive at the source edge node are combined to form a burst on

the basis of destination. Formation of burst from the incoming packets is known as burst

aggregation. [4]

Following are the types of aggregation algorithm [16]:

2.3.1.1 Timer-Based algorithm:

In this algorithm, burst is formed after a particular fixed time. A timer starts from the beginning

and after a predefined time, the packets which have come in edge node within that timeframe are

combined to form a burst. Timer should not be small or large for example in case of short timer

there will be more overheads in terms of control packets and in case of large timer there will be

more delay.

CHAPTER 2: LITERATURE REVIEW

12

2.3.1.2 Burst-Length Based algorithm:

In this algorithm burst is formed when packets in a destination queue of edge node are reached to

a certain threshold value for burst length. Threshold length value should not be small or too large

because if it is kept small, then there will be more overheads in terms of control packets and if it

is large then large amount of data can be lost in case of burst loss.

2.3.1.3 Hybrid Approach:

It is a combined approach to overcome inefficiencies which are present with the above

techniques. In this technique, the threshold value for burst length is reached or timer is finished

then the burst is formed.

2.3.1.4 Adaptive Assembly based algorithm:

This algorithm is same as of hybrid approach but parameters of both time and threshold length is

dynamically adjusted.

2.3.2 Burst Reservation Protocols:

Burst reservation protocols are of two types [4].

 One way signaling

 Two way signaling

Two way signaling protocols also called Tell and Wait signaling protocol. In this technique

source sends a control packet from source to destination for wavelength reservation. Control

packet is passed through intermediate nodes. Every intermediate node processes this control

packet and reserves a wavelength for incoming burst. If the wavelength is successfully allocated

on the path all the way through, then an acknowledgment (ACK) is sent back to sender and

sender sends burst immediately; If channel is not reserved then a negative acknowledgment

(NAK) is send to free the wavelength which was reserved earlier and retransmit again by sending

control packet again after back off time. These algorithms focus on minimal burst losses. They

are less efficient because of complete round trip delay which is occurred before transmission of

burst.

CHAPTER 2: LITERATURE REVIEW

13

One way signaling protocols are also named as Tell and Go protocols. The conventional OBS

uses one way signaling protocol. In one way signaling protocol, after offset time burst is

transmitted without waiting for acknowledgement. But in these protocols, there is a chance of

burst loss as the switch may be blocked.

Following are the two important protocols for practical implementation of OBS. Though there

are other mechanisms available for signaling but they are derived from the following two.

 Just in Time (JIT)

 Just enough Time (JET)

2.3.2.1 Just In Time (JIT) Protocol:

Just-In-Time (JIT), was proposed in [17], and is based on tell-and-wait technique with slight

variations. In JIT, control packet is sent to a central node which is responsible for scheduling

purposes. The central node then notifies all the respective nodes the exact time of the burst

transmission. Another variation of JIT which is called Reservation with Just-In-Time was

proposed in [18] to incorporate more scalability and robustness in JIT. In this algorithm, copy of

the request is sent to all nodes simultaneously. The schedulers exchange information of link

status and are synchronized in time with each other.

2.3.2.2 Just Enough Time (JET) Protocol:

JET [3,21] is the most commonly used protocol in OBS networks. Optical buffering or any type

of delay is not required at core nodes. This happens due to control packet which carries offset

time information. In JET, total burst reservation time is equal to arrival time of the burst and

actual duration of burst. In JET, the bandwidth is reserved from the burst’s incoming time

regardless of incoming time of control packet which was the case in JIT. Offset time is reduced

with respect to the processing time at all intermediate core nodes [4].

2.3.3 Scheduling Algorithms

By assuming wavelength conversion using wavelength converter, an incoming burst can be

scheduled at any output wavelength on required port. Scheduling algorithm will decide which

CHAPTER 2: LITERATURE REVIEW

14

wavelength to be scheduled for output port. There are some scheduling algorithms exist and is

shown in the figure2.6.

Figure2.6: An Illustration of Scheduling Algorithms [4]

The latest availabe time at which the channel can be schedule is known as scheduling horizon. In

figure. 2.6, for example, time t1,t2,t3,t4,t5 are the scheduling horizons for channel C1, C2, C3,

C4 and C5 respectiverly.

Consider a simple algorithm, latest available unscheduled channel (LAUC) algorithm in [19]. In

this algorithm, a single horizon is retained for each wavelength. Only channels are considered

available which has less horizons than incoming burst’s arrival time and the channel who has

latest horizon is selected. By using this technique, C3 will be selected as shown in the figure 2.6.

LAUC has advantage of simplicity and implementation but gaps between two already configured

wavelength are wasted. Therefore void filling algorithms were introduced to avoid this problem.

Void filling algorithms can make new resewations within existing gaps. Latest Availabe Unused

Channel with void filling (LAUC-VF), was presented in [19]. Due to capability of scheduling

burst between already scheduled bursts, channel Cl will be selected. In this way the gap which

was wasted in LAUC is utilized by uing LAUC-VG algorithm. Then few variations in LAUC-

VF algorithm were proposed in [20] i.e. Min-SV (Starting Void), Min-EV(Ending Void) and

Best Fit. Min-SV is theoretically similar to LAUC-VF but it is implemented using a different

CHAPTER 2: LITERATURE REVIEW

15

method in [20]. While Min-EV tries to decrease the new gap produced between already

scheduled burst’s incoming time and incoming burst’s ending time, while Best Fit is based on the

minimum of both of the length of starting and ending voids. These scheduling techniques and

there outcomes is presented in the figure2.6. The comparative analysis of these techniques in

[20], illustrates that all void filling algorithms have higher link utilization and less burst loss ratio

as compared to Horizon-based algorithms without void filling[4].

2.3.4 Contention Resolution:

Contention can be occurred if no wavelength is available at desire output port for incoming

bursts. If contention is not resolved then incoming burst is dropped. Following are few of the

techniques which are used to avoid contentions in OBS network [14].

 Fiber Delay Lines (FDL),

 Deflection Routing,

 Wavelength Conversion.

 Segmentation based dropping

Fiber Delay Lines (FDL) can be used to provide temporary storage of bursts but this technique is

not very efficient due to expensive FDL lines.

Deflection Routing is another technique in which incoming conflicting burst is tried to schedule

using another physical path to the same destination. This approach can be used when network

size is reasonably high i.e. there are more physical paths available between two edge nodes.

In wavelength conversion, wavelength converters are used in order to convert one wavelength to

another. When there are two bursts destined for same output port, the core node assigns a

different wavelength to the incoming burst. Although wavelength converters are expensive but

many scheduling algorithms assume full wavelength converters.

Segmentation based dropping is another technique in which only the segment which overlaps

with existing burst is dropped.

CHAPTER 2: LITERATURE REVIEW

16

2.3.5 Quality of Service in OBS

Quality of service (QoS) mechanisms in a network can be classified into two types [14]:

1) QoS provisioning mechanisms

2) QoS improvement mechanisms

QoS provisioning in a network is further divided into two types i.e.

1) Relative QoS provisioning

2) Absolute QoS provisioning.

With relative QoS provisioning, traffic is divided into difference classes. Some classes are

assigned high priority over other classes and then performance of classes are measured and

compared with other classes. In this way, higher priority classes show better performance as

compared to lower priority classes.

The absolute QoS model in OBS assumes to give quantitative loss guarantees to traffic classes in

worst-case scenarios as well. Absolute QoS mechanisms discriminates classes on the basis of

absolute threshold values.

QoS improvement mechanism is defined as any technique which progresses the overall network

performance. These mechanisms are very important to provide desired services to the end users.

As in Survery of QoS in OBS in [22], QoS can be employed as:

 QoS differentiation with one-way signaling

 QoS differentiation with two-way signaling

 QoS differentiation with control plane methods

Figure 2.7 shows different mechanisms for QoS provisioning in OBS network. There are two

different data plane and control plane in OBS network. In data plane some of the techniques use

one way signaling while rest of them uses two way signaling protocol methods.

CHAPTER 2: LITERATURE REVIEW

17

In control plane there are two techniques which can provide QoS mechanism in OBS as shown in

the fig. In Signaling technique we can use control packets to provide QoS provisioning. In

routing technique we can use deflection routing to provide QoS provisioning.

Data plane is further classified into core nodes and edge nodes. Some of the techniques can be

applied at edge nodes and rest of them will be applied at core nodes.

In edge nodes there are two most promising technique that can provide QoS provisioning as

shown in the figure 2.7. In offset time based mechanism, higher priority classes will assign

additional offset time as contrast to lower priority class. In this way higher priority class burst

will have higher chances of burst schedule as compared to lower priority class due to early

reservations by increasing offset time. In varying burst assembly parameters, higher priority

burst will be schedule faster as compared to lower priority burst.

At core nodes, QoS provisioning can further be divided into two categories i.e burst dropping

schemes and differentiation of control packets.

In burst dropping schemes there are three most popular techniques i.e. pre-emptive dropping,

threshold based dropping and intentional burst dropping.

In pre emptive dropping when a conflict occurs between bursts of two priority class, then higher

priority class burst will be schedule and lower priority class burst will be dropped.

In threshold based dropping, we can assign threshold values e.g. wavelengths to certain class so

that this class cannot use more resources as is decided. If threshold reaches then burst will be

dropped.

In intentional based dropping, low priority class burst will be intentionally dropped on the basis

of certain parameters.

And in the last we can provide QoS provisioning by using scheduling algorithm in control

packets.

CHAPTER 2: LITERATURE REVIEW

18

Figure 2.7 QoS Mechanisms in OBS

2.3.5.1 QoS Performance Metrics

There are two major QoS metrics that are used to provide QoS provisioning in OBS. There are :

 Burst Losses

 Delay

In most of them burst losses is the main parameter as shown in the figure 2.1. All techniques

support burst losses and few of them support delay as well with burst losses. Table 2.1 shows

comparison of different QoS techniques with supported parameter and advantages/disadvantages.

2.3.6 Comparisons of QoS mechanisms in OBS.

Brief comparisons of QoS mechanisms in OBS network is described in [22] and is shown in the

table 2.1 below.

QoS Provisioning
in OBS

Control Plane Data Plane

Signalling Routing Core Node

Scheduling
Differentiation

of Control Packets

Edge Node

Offset-time
Differentiation

Varying Assembly
Parameters

Pre-emptive
Dropping

Intentional Burst
Dropping

Burst Dropping
Schemes

Threshold Based
Dropping

QoS Provisioning
in OBS

Control Plane Data Plane

Signalling Routing Core Node

Scheduling
Differentiation

of Control Packets

Edge Node

Offset-time
Differentiation

Varying Assembly
Parameters

Pre-emptive
Dropping

Intentional Burst
Dropping

Burst Dropping
Schemes

Threshold Based
Dropping

CHAPTER 2: LITERATURE REVIEW

19

Table 2-1: Comparison of QoS Mechanisms in OBS [22]

20

3. Flow Transfer Mode (FTM)

3.1 Introduction

In literature review we have described different switching techniques which are used in OBS

network. Every technique has some advantages and disadvantages over one another. For example

OCS has round trip delay and bandwidth under-utilization issue. OPS has limitations of

unavailability of appropriate optical RAM as well as output port contention, and OBS has

problem of burst losses and throughput maximization.

In order to overcome and address limitations in all technique a generic technique named as Flow

Transfer Mode (FTM) was proposed in [9-13].

FTM is defined as:

“FTM is a universal switching method with a layer-1 switching technology, and layer-2 or layer-

3 control for scheduling continuous or periodic data flows as well as short flows consisting of a

single packet or a burst of aggregated packets. Each flow is triggered by a control packet that is

transmitted due time in advance just like OBS. Thus, it is regarded as a generalization of OBS”.

[12]

The author in [9-13] has given generic idea for FTM which will likely to be used as universal

switching technique in all optical future networks.

Just like OBS, FTM has also consists of data plane and control plane. Control plane is reserved

for transmission of control packets and data plane is reserved for data to be sent from source to

destination.

3.2 Modes of FTM

Basic difference between FTM and OBS is that FTM classify traffic according to different data

flows which are called modes. It provides 4 different modes i.e.

o Continuous Streaming Mode.

CHAPTER 3: FLOW TRANSFER MODE (FTM)

21

o Periodic Streaming Mode.

o Burst Mode.

o Packet Mode.

Each mode is followed by a control packet that is send particular time (offset time) in advance.

From networking point of view, layer 1 is used for switching technique and layer 2 or 3 is used

for reservation of different data flows. Data flows are small in case of packet or burst mode but it

can be very large for continuous and periodic streaming modes. Flows are established on the

basis of destination edge nodes similar to OBS. Thus it is regarded as generalization of OBS.

Four modes of flow transfer modes as described in the figure 3.1.

Figure 3.1 Modes of FTM

3.2.1 Packet mode:

Processing overhead in packet mode is same as of OPS, because number of data packets are

same as of number of control packets but network performance can still be improve due to

rearrangement / rescheduling of packets before packets actually arrive at core node.

Continuous Streaming Mode

Data Channel

Burst Mode

Periodic Streaming Mode

Control Channel

Packet Mode

Control Packet

Offset Time

CHAPTER 3: FLOW TRANSFER MODE (FTM)

22

3.2.2 Burst mode:

As compared to packet mode, burst mode decreases processing overhead due to creation of

bursts. Burst generation can be done either with a length or time based or mixed. This mode is

similar to OBS.

3.2.3 Periodic streaming mode:

Periodic streaming is just like conventional circuit-switching technique. It requires a single

control packet which travels from sender to receiver for wavelength reservation. This mode can

be used for the sender which frequently generates a certain amount of data, e.g. VoIP etc.

3.2.4 Continuous streaming mode:

This mode is used when high volume of data is to be transmitted among two end systems. For

example for applications which require huge bandwidth i.e. real time applications or multimedia

applications this mode can be used. This mode can also be used when huge amount of data is to

be transmitted between two end systems.

3.3 Current and Future Networks Architecture

The communications network architecture can easily be described as on the basis of functionality

in which network is divided into layer model like OSI reference model. There are two major

areas to be considered in this layer model i.e. transport and network. Current and future states of

networking are shown in the figure 3.2 and 3.3. Switching is central plane in this network

architecture which also contains all the networking components of all switching technologies.

In this switching plane all equipments and communication media can use electrical or optical

plane. This is where FTM comes into play. With current networking state signaling and

switching is being done on electrical domain but with the use of FTM, electrical domain will

only be reserved for signaling domain and all of the switching will be done in optical domain.

Fig. 3.2 and 3.3 shows the evolution towards FTM which integrates circuit, burst, and packet

switching into one single generic method. [12].

CHAPTER 3: FLOW TRANSFER MODE (FTM)

23

Figure 3.2: Current layered network architecture [12]

Figure 3.3: Future layered network architecture [12]

3.4 FTM Layered Network Architecture

FTM layered architecture is divided into five layered according to functionality and is shown in

the figure 3.4. Forwarding and forwarding control layers are the bases of this architecture and the

three upper layers depict latest communication technologies including protocol and whole

networking systems.

CHAPTER 3: FLOW TRANSFER MODE (FTM)

24

1) Service delivery and network intelligence: It is the upper most layer of FTM layered

architecture. This layer includes all the protocols, technologies and services through which

human interact with devices

2) Signaling plane: To start communication between two end users, end to end connection is

required. This is done in this section.

3) Virtual topologies: This layer consists of protocols for paths establishment, routing

mechanisms and technique for network resilience which are used to build network topologies.

4) Control plane: Source sends a control packet before sending actual data which travels along

the path which are established by virtual topologies all the way from sender to receiver. Control

plane transmission is kept on different wavelengths or fiber from the data plane because in data

plane, data units are scheduled with inspection using already configured wavelength.

5) Forwarding plane: This layer only provides forwarding / switching of data. The devices which

are used in forwarding plane are switches, amplifiers, wavelength converters and FDL.

Figure 3.4: FTM Layered Architecture [12]

3.5 Node architectures in FTM

Edge nodes: Data preparation is the main task of edge node. It is responsible for the preparations

of different data flows according to requirement. Each data flow is followed by a control packet.

Packets are maintained in destination queues for burst mode, and then all the packets in a queue

are combined to make a single burst similar to OBS as shown in the figure3.5.

CHAPTER 3: FLOW TRANSFER MODE (FTM)

25

Figure 3.5: Edge Node Architecture [12]

Core nodes: A core node is shown in the figure 3.6. Core node consists of a scheduling, control

and a data switching part. Scheduling is done in electrical domain and forwarding is done in

optical domain. Control part is responsible to control overall switching mechanism. E.g. if

conflicts occurs then wavelength conversion is done using wavelength converters or delay lines

are used temporarily.

Figure 3.6: Core Node Architecture [12]

3.6 Operational Issues in FTM

Time synchronization: Time synchronization between nodes is required so that nodes can

forward optical data without any assessment. Optical data flows are separated by small time so

that signals cannot overlap with each other and this time is called guard bands

Flow notification: The control packet which is send with an offset time. Offset time also contains

total propagation delay, processing delay and switching delay along the path in all the nodes. All

CHAPTER 3: FLOW TRANSFER MODE (FTM)

26

the nodes should have information regarding this delay. It can be done by using a special registry

for flow notification and this information can be exchanged with DNS.

3.7 Advantages of FTM Over OBS

Biggest advantage of FTM lies in case of multimedia traffic. Streaming modes of FTM seems to

provide better performance than OBS.

For example, consider a case of video transfer.

 FTM will generate only 1 control packet but OBS will generate multiple control packets

depending upon size of burst and video which results in large amount of processing and

delay in OBS.

 Considerable amount of time will also be spent in OBS edge nodes processing in creation

of burst assembly and de-assembly and also transmission of burst separately.

In the end we can say that FTM is a universal switching mechanism. FTM combines all

switching mechanisms in one single technique. FTM classifies traffic to different modes. The

applications decide which mode should be used for incoming traffic. The big advantage of FTM

seems to be lie in case of multimedia streaming traffic due to constant network end to end delay.

27

4. Proposed QoS Provisioning in FTM

Author in [4-8] has only given the idea of FTM. It has not been tested experimentally or

evaluated by using simulation or any other technique. We have implemented FTM as

generalization of OBS so that we can compare FTM with OBS under similar parameters. We

have done performance evaluation of FTM by using simulation and then perform comparative

analysis of FTM with OBS.

In Offset Time Differentiation (OTD), an extra/additional offset time is allocated to high priority

(HP) class which results in prior reservation for HP bursts as compared to low priority (LP)

bursts. In this way HP bursts have higher probability of being reserved as compared to LP burst.

Question arises about the length of extra offset time. Length of the extra offset time should not

be less than mean burst size of low priority bursts in order to achieve perfect isolation of HP and

LP classes.

In Preemptive dropping (PD): when a request for high priority class burst comes at the core node

and wavelength in the output port can not be reserved, then the wavelength which is already

reserved an LP burst is assigned to overlapping HP burst and LP burst is dropped. There are two

variations of preemptive dropping technique, i.e. full preemption and partial preemption. In full

preemption whole LP burst is dropped to schedule HP burst while in partial preemption only

overlapping part of LP burst is dropped.

We have used full Preemptive Dropping technique with the combination of Offset Time

Differentiation. In Pre-emptive Burst dropping technique, there are two classes of traffic. Traffic

is divided according to three classes i.e. Class 0, Class 1 and Class 2 and assign priorities to three

classes as:

 Class 0 for High Priority.

 Class 1 for Medium Priority.

 Class 2 for Low Priority.

CHAPTER 4: PROPOSED QoS PROVISIONING IN FTM

28

As there are four modes in FTM, but we have used three modes. Packet mode is not considered

in our implementation because we have to compare it with OBS and we have implemented it as

generalization of OBS. We use different classes for different modes as:

 Class 0 is used for continuous streaming mode.

 Class 1 is used for periodic streaming mode.

 Class 2 is used for burst mode.

Different classes are assigned and different modes and assigned different priorities. This is

shown in the figure 4.1 below.

Figure 4.1: Priority classes with respect to modes

The procedure for burst preemptive dropping is shown in the figure 4.2 below. Consider there is

burst of MP or LP class which is already scheduled. After that a request for HP class burst comes

for same destination port. Scheduler tries to schedule burst but does not find any free

wavelength, then scheduler tries to find overlapping LP burst and if it finds then it drops. If it

does not find any LP burst then it tries to find overlapping MP class burst and if it finds then it

drops and schedule HP class burst. If scheduler does not find any LP or MP class burst, then

incoming HP class is dropped.

Continuous

Streaming Mode

High Priority Class 0

Periodic Streaming

Mode

Medium Priority Class 1

Burst Mode Low Priority Class 2

CHAPTER 4: PROPOSED QoS PROVISIONING IN FTM

29

Figure 4.2: Preemptive dropping at core node

Extra offset time for HP class burst is increased four times of the LP class burst. No extra offset

time is assigned to MP class.

MP or LP

HP

HP

Input 1

Input 2

Output
 Time

30

5. Performance Evaluation

In order to evaluate performance of proposed technique, simulation technique is used. First we

have simulated OBS network, then we have simulated FTM under similar parameters and its

performance is compared with OBS, and then we have simulated FTM with QoS provisioning

and its performance is compared with both OBS and FTM. Simulation is written in java

language.

5.1 Network Model

The network model which is used for simulation is shown in the figure. There are three source

edge nodes (ingress nodes) which generate bursts for single destination edge node (egress node)

which are connected via single core node. In case OBS network, traffic is not distinguished but

in case of FTM traffic is distinguished as follows:

 Source A generates Burst Mode traffic

 Source B generates Periodic Mode traffic

 Source C generates Continuous Streaming Mode traffic

Figure 5.1: Network Model

Ingress Nodes

Core

Node

Egress

Node

A

B

C

CHAPTER 5: PERFORMANCE EVALUATION

31

5.2 Simulation Technique

We have used discrete event simulation technique. For traffic generation we have used Poisson

arrival of bursts at core node. Detailed description of Poisson process is given in Appendix A.

Mean burst size is assumed as 50 kilo bytes. Burst size is negative exponentially distributed and

is calculated in the following formula:

• Burst size= - (mean burst size) * log(r)

where r is the random number between 0 and 1. Exponential distribution is described briefly in

Appendix B. Data rate is kept at 10 Giga bits per second. Propagation delay is considered 1 mili

second. Arrival rate λ is taken from 0.01 to 0.9 for different readings. Burst inter-arrival time is

also negatively exponentially distributed and is calculated using following formula:

• Inter arrival time = - 1/λ * log (r)

For burst signaling, JET protocol is used and for wavelength reservation LAUC-VF algorithm is

used. Simulation parameters were considered as in [23].

5.3 Performance Metrics

Performance metrics which are used to evaluate performance of FTM are burst loss ratio, link

utilization and normalized throughput against load offered to the network. All of the metrics are

calculated using following formulae:

 Load = mean burst length / mean inter-arrival time

 Total Load in FTM = Load in OBS Mode + Load in Periodic Mode + Load in

Continuous Mode

 Burst Loss Ratio = No of bursts dropped / Total number of bursts send

 Network Throughput = Total no of bits passed / Total Simulation Time.

o Network throughput is measured in Gbits/sec

 Bandwidth Utilization = Average Network Throughput / Available Bandwidth

 Normalized Throughput = Total no of burst scheduled / Total number of bursts send

CHAPTER 5: PERFORMANCE EVALUATION

32

 95 % Confidence Interval = mean ± (1.96 * standard deviation)

5.5 Implementation Detail

Implementation phase of our thesis is divided into three phases i.e.

 OBS Implementation

 FTM Implementation

 FTM Implementation with QoS Provisioning

5.5.1 OBS Implementation Detail

The first phase in implementation detail is OBS implementation. First phase in OBS

implementation is traffic generation which is done using Poisson distribution. Traffic is

generated and placed in event list as shown in the figure 5.2 below. Clock is incremented till

simulation time. Source is selected randomly from 3 different sources. Then inter-arrival time

and burst length is calculated using exponential distribution. Then control packet is generated

and placed in event list which contains all of the information of incoming burst. In this way event

list contains all the control packets which will be scheduled using scheduling algorithm.

Figure 5.2: Traffic Generation in OBS

Select Source Randomly

Calculate Inter-arrival time

(exponential dist)

Clock <

Simulation time
yes

Calculate burst size

(exponential dist)

Generate Control Packets
(CP)_and placed in Eventlist

Clock += inter-arrival-time

CHAPTER 5: PERFORMANCE EVALUATION

33

Next step is shown in the figure 5.3. In this step eventlist is read and channel is schedule using

LAUC-VF algorithm. No of burst send and dropped will be incremented depending upon

successful or failure of burst reservation.

Figure 5.3: Read Eventlist & Schedule Channel

Detail of implementation of LAUC-VF algorithm is described in figure 5.4, 5.5 and 5.6. LAUC-

VF first tries to schedule channel using void filling as shown in the figure 5.4

Figure 5.4: LAUC-VF

Read Channel
yes

Check channel
for Void Filling

no

Find If current
channel has

minimum starting
void

yes

Select this channel

for scheduling

yes

no

schedule= true

Get Control Packet
Read Eventlist

yes

Schedule

Channel

 (start,end)

burst_schedule ++ burst_dropp ++

Yes

No

CHAPTER 5: PERFORMANCE EVALUATION

34

If channel is not successful schedule then LAUC algorithm is used which is shown in the figure

5.5 and 5.6.

Figure 5.5: Schedule Channel using LAUC

Figure 5.6: Schedule Channel using LAUC (Empty)

Read

channels

yes If channel is

empty

no

Select this channel for

scheduling

yes

no

schedule= true

If schedule=

true

no

break

yes

Return schedule

 i = 0 ; i<

channels; i++
yes

 If burststart
time > channel’s

last burst

 ending time

no

Find if current
channel has

minimum difference

yes

Select this channel for

scheduling

yes

no

schedule= true

If schedule=

true

no

break

yes

Return schedule

CHAPTER 5: PERFORMANCE EVALUATION

35

5.5.2 FTM Implementation Detail

First step in FTM implementation detail is also traffic generation. Here we have three types of

traffic for 3 different modes of FTM. Control packets for each type of traffic is generated and

placed in the event list. In the end event list is sorted. Burst mode traffic generation is similar to

traffic generation in OBS and is shown in the figure 5.7. Only priority assignment step is

additional traffic generation of burst mode in FTM.

Figure 5.7: Traffic generation of burst mode

Figure 5.8 shows traffic generation of continuous mode in FTM. Burst size and inter-arrival time

is calculated using exponential distribution. Extra offset time is increased by 4 times and high

priority is assigned to continuous mode traffic. We have considered 2 streams for Periodic

Streaming modes of FTM. i.e. 1 Mb stream and 0.5 Mb stream. In 1 Mb stream, there will be 20

bursts while in case of 0.5 Mb stream, there will 10 burst in stream considering the mean burst

size of 50 bytes. Figure 5.9 shows traffic generation of periodic streaming mode. Gap between

successive burst is kept equal to inter-arrival time of first burst in periodic streaming mode.

Calculate Inter-arrival time

(exponential dist)

Clock<simula

tion-time

yes

Calculate burst size

(exponential dist)

Priority = low
Generate CP and

placed in Eventlist

Clock += inter-arrival-time

Clock = 0

CHAPTER 5: PERFORMANCE EVALUATION

36

Figure 5.8: Traffic Generation of Continuous Mode

Figure 5.9: Traffic Generation of Periodic Streaming Mode

For scheduling, same LAUC-VF algorithm is used. Scheduling technique is shown in the figure

5.10. Burst mode and continuous mode scheduling is same as in OBS. Only difference is of

length of streams in continuous mode which will be 10 bursts in case of half Mb stream and 20

bursts in case of 1 Mb stream. In this way whole stream is schedule using LAUC-VF in one

Calculate burst size

(exponential dist)

Clock<simul

ation-time

yes

Stream duration = burst size * no of burst

 in streaming mode

Generate CP and

placed in Eventlist

Clock += inter-arrival-time

Clock = 0

Calculate Inter-arrival time (exponential

dist)

& increase by no of bursts in streaming

mode

Extra offset time = 4 * mean burst size

Priority = high

Calculate burst size

(exponential dist)

Clock<simula

tion-time

yes

Set inter arrival time of successive bursts

for control packet

Clock += inter-arrival-time * no of bursts in

streaming mode

Clock = 0

Calculate Inter-arrival time (exponential

dist)

Priority = medium

Generate CP and placed in Eventlist

CHAPTER 5: PERFORMANCE EVALUATION

37

channel. For periodic streaming, we have considered 2 cases. If we use LAUC for periodic

stream then whole stream will be schedule in one channel but if we use LAUC-VF algorithm,

then different bursts in stream will be scheduled on different channels. We have evaluated

performance of both cases and is described in results section of this thesis.

Figure 5.10: Scheduling in FTM

Arrange eventlist according

to CP arrival time

Get object at first position

counter<

eventlistsize

no
If mode is

periodic

Schedule
Channel

(start,end, mode)

burst_schedule++ burst_drop++

yes yes

Read Bursts in

streaming mode

Schedulechannel
(start,end,mode)

burst_schedule++ burst_drop++

yes

yes no

start = end + interarrival time

= start + duration

no

CHAPTER 5: PERFORMANCE EVALUATION

38

5.5.3 FTM Implementation with QoS Provisioning

Figure 5.11 shows QoS provisioning in FTM. High priority is assigned to continuous mode

traffic. If high priority stream is not successfully scheduled using LAUC-VF algorithm, then pre-

emptive dropping mechanism is used which is shown in the figure 5.11. First of all, overlapping

bursts of burst mode is investigated. If overlapping bursts of burst mode is found then minimum

of these burst is dropped and continuous stream is scheduled. If bursts of burst mode did not find

then algorithm tries to find overlapping periodic mode burst. If overlapping bursts of periodic

mode find then minimum number of these bursts dropped and continuous stream is scheduled. If

both cases fail, then continuous stream is dropped.

Figure 5.11: QoS Provisioning in FTM

If mode =

continuous

And schedule =

false
yes

Drop low priority bursts

Schedule class0 burst

Select channel which

drop

minimum no of burst

Find channels
with class 2

burst overlap

Find channels
with class 1

burst
overlap

Drop low priority bursts

Schedule class 0 burst

Select channel which

drop

minimum no of burst

yes no

no

yes

Drop low priority bursts

Drop class 0

 burst

CHAPTER 5: PERFORMANCE EVALUATION

39

5.6 Results

In this section, we have presented detailed description of different results which are generated by

using different combinations of parameters. We have considered following cases for results and

have done performance evaluation of OBS, FTM and FTM with QoS provisioning in each case.

Our results also show 95 % confidence interval. Following cases are considered for simulation:

1. 1Mb Streams with equal load, 6 wavelengths and periodic streaming with LAUC-VF.

2. 0.5 Mb Streams with equal load, 6 wavelengths and periodic streaming with LAUC-VF.

3. 1Mb Streams with different load, 6 wavelengths and periodic streaming with LAUC-VF.

4. 1Mb Streams with equal load, 6 wavelengths and periodic streaming with LAUC.

5. 1Mb Streams with equal load, 12 wavelengths and periodic streaming with LAUC-VF.

6. 1Mb Streams with equal load, 18 wavelengths and periodic streaming with LAUC-VF.

In first case, 1 Mb streams of both continuous and periodic mode is considered. Load is equally

divided among all three modes, 6 wavelengths for data channels are considered, and for

scheduling of periodic streaming LAUC-CF algorithm is used. When we use LAUC-VF

algorithm then all the bursts in periodic stream will not schedule in same channel i.e. some bursts

might take different channels. When we use LAUC algorithm for periodic streaming then all the

bursts in the stream will schedule in the same channel. We have evaluated performance of

periodic streaming mode by using both algorithms. In case of periodic streaming with LAUC-VF

algorithm, control packet will have to store additional information for each burst while in case of

LAUC only a gap between successive bursts is stored.

Continuous stream will follow same channel in all cases because we have used LAUC-VF for

whole stream and not for individual burst. We also tried different lengths of streams and also

tried different loads for different modes. Different performance metrics are calculated against

load. Load is kept from 0 to 1.

Different results are presented from figure 5.12 to 5.17. Each figure is subdivided into 4 parts for

different performance metrics calculation.

CHAPTER 5: PERFORMANCE EVALUATION

40

Consider figure 5.12. Different performance metrics i.e. burst loss ratio, bandwidth utilization,

normalized throughput and burst losses in different classes are calculated against load. In this

case 1Mb streams with equal load for different modes by using 6 wavelengths. For periodic

streaming LAUC-VF algorithm is used so that bursts in periodic streaming will follow different

channels. Figure 5.12 (a) shows that FTM has low burst losses as compared to OBS and this ratio

is further reduced by using our proposed QoS mechanism in FTM. Figure 5.12 (b) shows that our

proposed mechanism has higher bandwidth utilization as compared to both FTM and OBS. Same

is the case with normalized throughput as well. In figure 5.12 (d), burst loss ratio of 3 classes are

compared with and without QoS provisioning which shows that by employing QoS mechanisms

continuous stream mode has low burst losses as compared to other classes due to high priority is

assigned to this mode.

(a) Load vs Burst Loss Ratio

CHAPTER 5: PERFORMANCE EVALUATION

41

(b) Load vs Bandwidth Utilization

 (c) Load vs Normalized Throughput

CHAPTER 5: PERFORMANCE EVALUATION

42

(d) FTM Modes with & without QoS Provisioning

Figure 5.12 : Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes
which are calculated by using 1Mb streams with equal load, 6 wavelengths & periodic streaming with LAUC-VF.

Performance is improved due to streaming modes of FTM and specially continuous streaming

mode of FTM, because by using streaming modes maximum number of bursts are scheduled

which ultimately results in lower burst losses and higher bandwidth utilization and normalized

throughput.

Same case is considered again by taking 0.5 Mb streams and results are shown in the figure 5.13.

There is not much difference between these results with the results in figure 5.12. However

performance of proposed QoS mechanism is improved in both cases as compared to OBS and

FTM.

CHAPTER 5: PERFORMANCE EVALUATION

43

(a) Load vs Burst Loss Ratio

(b) Load vs Bandwidth Utilization

CHAPTER 5: PERFORMANCE EVALUATION

44

(c) Load vs Normalized Throughput

(d) FTM Modes with & without QoS Provisioning

Figure 5.13: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes which
are calculated by using 0.5 Mb streams with equal load, 6 wavelengths & periodic streaming with LAUC-VF.

Results with different loads are generated in figure 5.14. In this case, load for burst mode is kept

at 50 %, load for periodic mode is kept at 35 % and load for continuous mode is kept at 15 %.

CHAPTER 5: PERFORMANCE EVALUATION

45

Figure 5.14 shows that there is still improvement of performance in all the metrics but not very

much as was in previous two cases. The reason for this is that load for continuous mode is

decreased from 33% to 15 % in this case and also overall load of streaming modes i.e. 66% is

decreased to 50 % in this case. As streaming mode traffic is decreased, then FTM will behave

like OBS and when load of streaming modes is increased then there will be more improvement in

performance of overall network.

(a) Load vs Burst Loss Ratio

CHAPTER 5: PERFORMANCE EVALUATION

46

(b) Load vs Bandwidth Utilization

(c) Load vs Normalized Throughput

CHAPTER 5: PERFORMANCE EVALUATION

47

(d) FTM Modes with & without QoS Provisioning

Figure 5.14: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes which
are calculated by using 1 Mb streams with different load, 6 wavelengths & periodic streaming with LAUC-VF.

In Figure 5.15, another algorithm i.e. LAUC is used for periodic streaming mode. In this way all

the burst in periodic streaming will be tried to schedule in same channel. Results show that

overall network performance is improved with QoS provisioning in FTM, but performance of

FTM has been declined as compared to previous cases but still it is better than OBS. Decline to

some extent is caused by LAUC algorithm which has high burst losses and less bandwidth

utilization as compared to LAUC-VF. This is shown in the figure 5.15 (d), as it is clearly seen

that periodic mode has slightly high burst losses with and without QoS provisioning in FTM as

compared to previous cases.

CHAPTER 5: PERFORMANCE EVALUATION

48

(a) Load vs Burst Loss Ratio

(b) Load vs Bandwidth Utilization

CHAPTER 5: PERFORMANCE EVALUATION

49

(c) Load vs Normalized Throughput

(d) FTM Modes with & without QoS Provisioning

Figure 5.15: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes which
are calculated by using 1 Mb streams with equal load, 6 wavelengths & periodic streaming with LAUC.

In figure 5.16, we have presented same results as were in 1 by increasing wavelengths. Here

wavelength is increased from 6 to 12. If we compare figure 5.12(a) with figure 5.16(a), then it

CHAPTER 5: PERFORMANCE EVALUATION

50

can be seen that burst loss ratio is decreased by increasing wavelengths. Here overall network

performance is further improved by adding more data channels to the network.

(a) Load vs Burst Loss Ratio

(b) Load vs Bandwidth Utilization

CHAPTER 5: PERFORMANCE EVALUATION

51

(c) Load vs Normalized Throughput

(d) FTM Modes with & without QoS Provisioning

Figure 5.16: Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes which
are calculated by using 1Mb streams with equal load, 12 wavelengths & periodic streaming with LAUC-VF.

Again in figure 5.17, we have presented same results as were in case 1 by increasing

wavelengths. Here wavelength is increased from 6 to 18. If we compare figure 5.12(a) with

figure 5.16(a), then it can be seen that burst loss ratio is decreased by increasing wavelengths.

CHAPTER 5: PERFORMANCE EVALUATION

52

Here overall network performance is further improved by adding more data channels to the

network.

(a) Load vs Burst Loss Ratio

(b) Load vs Bandwidth Utilization

CHAPTER 5: PERFORMANCE EVALUATION

53

(c) Load vs Normalized Throughput

(d) FTM Modes with & without QoS Provisioning

Figure 5.17 : Load vs. burst loss ratio, bandwidth utilization, normalized throughput and burst losses in different classes
which are calculated by using 1Mb streams with equal load, 18 wavelengths & periodic streaming with LAUC-VF.

CHAPTER 5: PERFORMANCE EVALUATION

54

Finally we can see that in all cases, FTM has better performance in terms of burst loss ratio,

bandwidth utilization and normalized throughput and performance of FTM is further improved

by employing QoS provisioning mechanisms in FTM.

55

6. Summary and Conclusions

6.1 Conclusions

Optical networks are ultimate choice for increasing demand of bandwidth hungry applications

due to huge bandwidth support. OCS, OPS and OBS are some of the switching techniques

available in optical networks. All techniques have some limitations and advantages over one

another. OCS has round trip delay and bandwidth under-utilization issue. OPS has limitation of

unavailability of appropriate optical RAM as well as output port contention, and OBS has

problem of burst losses and throughput maximization.

In order to overcome deficiencies in current switching techniques, an integrated type f approach

was proposed named as Flow Transfer Mode. Flow Transfer Mode (FTM) is a universal

switching technology based on the theory of OBS and is regarded as the extension /

generalization of OBS. FTM integrates all switching mechanisms in one single technique. FTM

classifies traffic to different modes. The applications decide which mode should be used for

incoming traffic. The big advantages of FTM seem to be lie in case of multimedia streaming

traffic due to constant network end to end delay.

Since FTM was the generic idea. There is need for the FTM to be implemented and evaluated its

performance. In this thesis, we have implemented FTM using simulation and evaluated its

performance. Performance evaluation has been done using comparative analysis of FTM with

OBS. We have simulated both OBS and FTM under similar circumstances. Our results show that

FTM has low burst loss ratio and more normalized throughput as compared to OBS. There is

also improvement in bandwidth utilization in FTM as compared to OBS.

In our results, we find that performance of FTM is improved due to its streaming modes. Also

the streaming modes are specially used for multimedia streaming traffic. Multimedia streaming

traffic generally requires QoS provisioning. So there is need for the employment of QoS

provisioning in FTM. So in this thesis, we have also proposed QoS provisioning for FTM to

further improve its performance. Our proposed technique shows improvement as compared to

CHAPTER 6: SUMMARY AND CONCLUSIONS

56

both FTM and OBS in terms of burst loss ratio, bandwidth utilization and normalized

throughput.

6.2 Future Work

This research work is based on the performance evaluation of FTM using simulation.

Performance evaluation can be done using analytical modeling of FTM.

We have considered burst losses as the main parameter for QoS metrics, for future directions of

this work, delay can also be calculated using two way signaling protocols.

We have assumed fixed length of continuous and periodic streams. For future directions,

dynamic approach can be devised to dynamically choose a length of streams.

We have used full preemptive dropping technique, for future directions, partial pre-emptive

dropping of lower priority bursts can be employed.

57

References

[1] Document available at http://www.axiom.fr/upload/fiber-techno.pdf

[2] L. Xu, H.G. Perros, and G Rouskas, “Techniques for optical packet switching and optical

burst switching” IEEE Communications Magazine, pp.136-142, Jan. 2001.

[3] C. Qiao and M. Yoo, “Optical Burst Switching (OBS) - A New Paradigm for an Optical

Internet,” Journal of High Speed Networks, vol. 8, no.1, pp. 69-84, Jan. 1999.

[4] Yang Chen, Chunming Qiao, Xiang Yu; “Optical burst switching: a new area in optical

networking research”, Journal, IEEE Network, vol 18, no.3, May-June 2004, pp. 16-23

[5] Ph.D thesis of Miroslaw Klinkowski “Offset Time-Emulated Architecture for Optical Burst

Switching - Modelling and Performance Evaluation”.

[6] Chlamtac, A. Ganz, and G. Karmi. Lightpath communications:An approach to high-

bandwidth optical wans. IEEE Transactions on Communications, 40(7):1171{1182, July

1992.

[7] M. Veeraraghavan, R. Karry, T. Moors, M. Karol, and R. Grobler. Architectures and

protocols that enable new applications on optical networks. IEEE Communications

Magazine, 39(3):118{127, March 2001.

[8] L. Xu, H.G. Perros, and G. Rouskas. Techniques for optical packet switching and optical

burst switching. IEEE Communications Magazine, 39(1):136{142, January 2001.

[9] Harmen R. van As “Flow Transfer Mode as Generalization of Optical Burst Switching

(OBS)” Networks & Optical Communications NOC-2008.

[10] Harmen R. van As “Time for a Change in Electronic and Photonic Switching”, Transparent

Optical Network, ICTON-2008. Vol- 1, pp.140-143.

[11] Harmen R. van As “Design of flow transfer mode switches for generalized optical burst

switching” International Workshop on Optical Burst/Packet Switching WOBS2008.

[12] Harmen R. van As “Flow Transfer Mode (FTM) as Universal Switching Method in

Electronic and Photonic Networks ” IEEE Conference of Local Computer Networks LCN

2008.

[13] Harmen R. van As “Driving Optical Network Innovation by Extensively Using Transparent

Domains” IEEE Conference Transparent Optical Network, ICTON-2010.

[14] Final Draft of Usman Afzal and Talha Imran “QoS in Bimodal Burst Switching” NUST-

SEECS Students.

http://www.axiom.fr/upload/fiber-techno.pdf

58

[15] http://en.wikipedia.org/wiki/Optical_ burst_switching

[16] Theoretical Background Chapter on Optical Burst Switching, From thesis of Mr. Faiz

Hussain Rizvi, MS(IT) Student at NUST-SEECS.

[17] D. L. Mills et al, “Highball: A High Speed, Reserved-Access, Wide-Area Network," Tech.

rep. W-9-3. Elec Eng. Dept., Univ. of Delaware, 1990.

[18] G. C. Hudek and D. J. Muder, "Signalling Analysis for a Multi-Switch All-Optical

Network," Proc. IEEE ICC, vol . 2, 1995, pp. 1206-10.

[19] Y. Xiong, M. Vandenhoute, md H. Conkoya, "Control Architecture in Optical Burst

switched WDM Network IEEE JSAC, Vol 18. Oct 2000 pp 1838-51.

[20] J. Xu et al., "Efficient Channel Scheduling Algorithms in Optical Burst Switched

Networks." Proc . INFOCOM, 2003. vol. 3, pp. 2268-78

[21] M. Yoo and C. Qiao, "Just-Enough-Time (JET): A High Speed Protocol for Bursty Traffic

in Optical Networks," Proc. IEEE / LEOS Cod Tech. Global Info. Infrastructure, Aug.

1997, pp. 26-27.

[22] Nail Akar, Ezhan Karasan,Kyriakos G. Vlachos, Emmanouel A. Varvarigos, Davide

Careglio, Miroslaw Klinkowski, and Josep Solé-Pareta “A survey of quality of service

differentiation mechanisms for optical burst switching networks” journal of sciencedirect

2010.

[23] M. Nandi, A. K. Turuk, D. K. Puthal and S. Dutta “Best Fit Void Filling Algorithm in

Optical Burst Switching Networks” Second International Conference on Emerging Trends

in Engineering and Technology, ICETET-09.

59

Appendices

Appendix A : Poisson Process *

The Poisson Distribution is a discrete distribution which takes on the values X = 0, 1, 2, 3, It

is often used as a model for the number of events in a specific time period, e.g. the number of

bursts request arriving at core node within given timeframe.

Probability Mass Function

The Poisson distribution is determined by one parameter, lambda. The distribution function for

the Poisson distribution is

The formula for the Poisson probability mass function is

 is the shape parameter which indicates the average number of events in the given time interval.

The following is the plot of the Poisson probability density function for four values of .

Cumulative Distribution Function

The formula for the Poisson cumulative probability function is

* source: http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm

 http://www.math.csusb.edu/faculty/stanton/probstat/poisson.html

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm
http://www.math.csusb.edu/faculty/stanton/probstat/poisson.html

APPENDIX A : POISSON PROCESS

60

The following is the plot of the Poisson cumulative distribution function with the same values

of as the pdf plots above.

Common Statistics

Mean

Mode For non-integer , it is the largest integer less than . For integer ,

x = and x = - 1 are both the mode.

Range 0 to positive infinity

Standard Deviation

Coefficient of Variation

Skewness

Kurtosis

Parameter Estimation

The maximum likelihood estimator of is where is the sample mean.

61

Appendix B: Exponential Distribution*

In probability theory and statistics, the exponential distribution (a.k.a. negative exponential

distribution) is a family of continuous probability distributions. It describes the time between

events in a Poisson process, i.e. a process in which events occur continuously and independently

at a constant average rate. In our case, it is used to calculate inter-arrival time of bursts and also

used to calculate burst length.

Probability Density Function

The general formula for the probability density function of the exponential distribution is

where is the location parameter and is the scale parameter(the scale parameter is often

referred to as which equals). The case where = 0 and = 1 is called the standard

exponential distribution. The equation for the standard exponential distribution is

The general form of probability functions can be expressed in terms of the standard distribution.

Subsequent formulas in this section are given for the 1-parameter (i.e., with scale parameter)

form of the function.

The following is the plot of the exponential probability density function.

*source: http://itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
http://en.wikipedia.org/wiki/Exponential_distribution

http://itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PDF
http://itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda364.htm#FORMULAS
http://itl.nist.gov/div898/handbook/eda/section3/eda3667.htm

APPENDIX B: EXPONENTIAL DISTRIBUTION

62

Cumulative Distribution Function

The formula for the cumulative distribution function of the exponential distribution is

The following is the plot of the exponential cumulative distribution function.

Common Statistics

Mean

Median

Mode Zero

Range Zero to plus infinity

Standard Deviation

Coefficient of Variation 1

Skewness 2

Kurtosis 9

http://itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF

63

Appendix C : Simulation Code

// This class is used for simulation of OBS Network.
import java.util.*;
import java.text.DecimalFormat;
import java.io.*;
/*
@Author Muhammad Imran
*/
public class OBSSimulation{

public static double meanload=0, meanbandwidth=0, meanlossrate=0, meaninterarrivaltime=0, meanloadinper=0, inter=0,
mean_length=0;
public static double indload=0, indband=0, indloss=0, indthroughput=0, bitspassed=0, bitsdropped=0,
indnormalizedthroughput=0;

 int controlchannels=1;
 double datarate = 10000000000.00;
 int nodes = 4;
 int wv=18; // Total number of wavelength per node
 public static Random r; // Random number generator
 public static Random r1; // Random number generator
 double mean_burst_size = 50*1000*8;
 double[] utilization = new double [wv]; // Bandwidth utilization
 double[] wv_utilization = new double [wv]; // Bandwidth used per node

ArrayList<ArrayList<ArrayList>> channel_list = new ArrayList<ArrayList<ArrayList>>();
public void runSimulation(double mean_arrival_rate){
 try{
 r = new Random();
 r1 = new Random();
 double simulation_time = 100000;

meanload=0;meanbandwidth=0; meanlossrate=0; meaninterarrivaltime=0; meanloadinper=0; inter=0; mean_length=0;
indload=0; indband=0; indloss=0; indthroughput=0; bitspassed=0; bitsdropped=0; indnormalizedthroughput=0;

 for (int x=0; x<wv; x++)
 {
 wv_utilization[x] = 0.0;
 utilization[x] = 0.0;
 }
 channel_list.clear();
 for (int i=0;i<wv;i++)
 {
 channel_list.add(i,new ArrayList<ArrayList>());
 }
 LinkedList eventlist=new LinkedList(); //create event list
 LinkedList schedule_burst = new LinkedList();
 LinkedList unschedule_burst = new LinkedList();
 int counter=0;
 node n1=null;
 int MCL = 0;
 Comp2 comp = new Comp2();
 Collections.sort(eventlist,comp);
 int propogaration_delay = 1000;
 int configuration_delay = 3;
 int burst_id=0;
 int cp_id=0;
 int dest = 3;
 double total_utilization=0;
 while (counter<simulation_time){

 int source = (int)Math.round(r.nextDouble()*(nodes-2));

double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
 MCL += inter_arrival_time;
 meaninterarrivaltime += inter_arrival_time;
 double burst_size = calculate_burst_size(mean_burst_size);
 double burst_duration = Math.round((burst_size)/10000);

APPENDIX C : SIMULATION CODE

64

CP cp = new CP(0, source, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+inter_arrival_time, cp_id+"p",burst_duration);

 node n2 = new node(2,cp.getArrival_time(), 1, cp);
 n2.setBhc(cp);
 eventlist.add(n2);
 cp_id++;
 burst_id++;
 counter+=inter_arrival_time;
 }
 Collections.sort(eventlist,comp);
 int size = eventlist.size();
 n1= (node) eventlist.get(0);
 int count = 0;
 double master_clock=0;
 double initialclock = n1.getBhc().getOffset_time();
 while (count<size)
 {
 Collections.sort(eventlist,comp);
 n1= (node) eventlist.get(count);
 master_clock= n1.getClock();
 double periority = n1.getBhc().getPeriority();
 double start = n1.getBhc().getOffset_time();
 double end = start + n1.getBhc().getBurst_duration();
 boolean found = scheduleChannel(start, end,periority);
 if (found){
 schedule_burst.add(n1.getBhc().getBhc_id());

bitspassed += (n1.getBhc().getBurst_duration()*10000);
 }
 else{
 unschedule_burst.add(n1.getBhc().getBhc_id());

bitsdropped += (n1.getBhc().getBurst_duration()*10000);
 }
 eventlist.remove(count);
 size = eventlist.size();
 }

double totalBurst = schedule_burst.size()+ unschedule_burst.size();
 double unschburst = unschedule_burst.size();
 double schburst = schedule_burst.size();

for (int i=0;i<wv;i++)
 {
 total_utilization += wv_utilization[i];
 }
 total_utilization = (total_utilization / (wv));
 double bandwidth_util = total_utilization / master_clock;
 double lossratio = (unschburst / totalBurst) ;
 indloss = lossratio;
 meanload += schedule_burst.size()+unschedule_burst.size();
 meanlossrate += lossratio;
 meanbandwidth +=bandwidth_util;
 indnormalizedthroughput = schburst/totalBurst;
 inter += meaninterarrivaltime/meanload;

double bitsthroughput = bitspassed / (bitspassed+bitsdropped);
 bitspassed = bitspassed / (1000 * 1000 *1000);
 simulation_time = simulation_time / (1000 * 1000);
 indthroughput = ((bitspassed / simulation_time))/wv;// G bits per second
 indband = (indthroughput / 10) ; // percentage
 mean_length += mean_burst_size/10000;

double load = (1/(meaninterarrivaltime/meanload)) / (1/(mean_burst_size/10000));
 meanloadinper +=(load/wv);
 indload = (load/wv);
 }catch(Exception e){

 System.out.println("Exception"+e.getMessage()+e.getLocalizedMessage());
 }

APPENDIX C : SIMULATION CODE

65

 }
public boolean scheduleChannel(double starttime, double endtime,double periority){
 int channel=0;
 boolean schedule = false;
 boolean scheduleusingvoid = false;
 boolean scheduleusinglauc = false;

 try{
 double[] startingvoid = new double[wv];
 double[] endingvoid = new double[wv];

for (int i=0;i<wv;i++){
if (channel_list.get(i).size() > 0){
double startingdiff = 0;
double endingdiff = 0;
for (int j=0;j<channel_list.get(i).size();j++){
if(starttime > Double.parseDouble (channel_list.get(i).get(j).get(2).toString())){
if (Double.parseDouble (channel_list.get(i).get(j).get(2).toString()) > startingdiff)
{
startingdiff = Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
startingvoid[i] = starttime- Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
}
}
}
double temp = 999999999999.0;
for (int j=0;j<channel_list.get(i).size();j++){
if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())>startingdiff){
if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())<temp){
temp = Double.parseDouble(channel_list.get(i).get(j).get(1).toString());
 }
}
if(temp==999999999999.0)
{

}else{
 endingvoid[i]=temp-endtime;
 }
 }
}

double minvoid = startingvoid[0];
boolean foundvoid=false;
for (int i=0;i<wv;i++){
if(startingvoid[i]<=minvoid && endingvoid[i]>0.0 && startingvoid[i]>0.0){

minvoid = startingvoid[i];
foundvoid=true;
channel = i;

 schedule=true;
 }
}
if(foundvoid){
channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
channel_list.get(channel).get(channel_list.get(channel).size()-1) .add(periority);
channel_list.get(channel).get(channel_list.get(channel).size()-1) .add(starttime);
channel_list.get(channel).get(channel_list.get(channel).size()-1) .add(endtime);
wv_utilization[channel]+=(endtime-starttime);
}else{
 boolean foundusinglauc=false;
 double[] laucend = new double[wv];
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size() > 0){
 double maxlauc =0;
 for (int j=0;j<channel_list.get(i).size();j++){
if(Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>maxlauc)

 maxlauc=Double.parseDouble(channel_list.get(i).get(j).get(2).toString());

 }

APPENDIX C : SIMULATION CODE

66

 laucend[i]=maxlauc;
 }
 }
 double maxlauc =0;
 for (int i=0;i<wv;i++){
 if(laucend[i]>=maxlauc && laucend[i]<starttime){
 maxlauc = laucend[i];
 foundusinglauc=true;
 channel = i;
 }
 }
 if(foundusinglauc){
 schedule=true;

channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(periority);
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(starttime);
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(endtime);
wv_utilization[channel]+=(endtime-starttime);

 }
 else{
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size()==0){
 channel = i;
 channel_list.get(channel).add(0,new ArrayList());
 channel_list.get(channel).get(0).add(periority);
 channel_list.get(channel).get(0).add(starttime);
 channel_list.get(channel).get(0).add(endtime);
 schedule = true;
 wv_utilization[channel]+=(endtime-starttime);

System.out.println("Channel : "+channel+" "+ channel_list.get(channel));
 break;
 }

 }
 }
}
}
catch(Exception e){
 System.out.println(e.getMessage());
}
return schedule;
}
public double calculate_arrival_time(double mean){
 double random=r.nextDouble();
 double exp_time=(-1/mean)*Math.log(random);
 return Math.round(exp_time);
}

public double calculate_burst_size(double mean){
 double random=r1.nextDouble();
 double exp_time=(-mean)*Math.log(random);
 return Math.round(exp_time);
 }
public static void main(String agrs[])
{
 OBSSimulation f = new OBSSimulation();

double mean_arrival_rate = 0.38;
 for (double m = mean_arrival_rate; mean_arrival_rate<=0.451;

mean_arrival_rate+=0.045){

 int samplesize = 20;
 double[] loss = new double[samplesize];

 double[] band = new double[samplesize];
 double[] load = new double[samplesize];
 double[] throughput = new double[samplesize];
 double[] northroughput = new double[samplesize];

APPENDIX C : SIMULATION CODE

67

double losssum=0, bandsum=0, loadsum=0, throughputsum=0, northroughputsum=0;
 try {
 FileWriter fstream = new FileWriter("obs18.txt",true);
 BufferedWriter out = new BufferedWriter(fstream);
 for(int i=0; i<samplesize;i++){
 f.runSimulation(mean_arrival_rate);

load[i]=indload;
 loadsum+=load[i];
 loss[i]=indloss;
 losssum+=loss[i];
 band[i]=indband;
 bandsum+=band[i];
 throughput[i]=indthroughput;
 throughputsum+=throughput[i];

northroughput[i]=indnormalizedthroughput;
 northroughputsum+=northroughput[i];
 }
 double meanloss = losssum / samplesize;
 double meanband= bandsum / samplesize;
 double meanload= loadsum / samplesize;
 double meanthrouput= throughputsum / samplesize;
 double meannorthrouput= northroughputsum / samplesize;
 System.out.println("Mean Load "+meanload);
 System.out.println("Mean Band" +meanband);
 System.out.println("Mean Throughput" +meanthrouput);
 System.out.println("Mean Normalized Throughput" +meannorthrouput);

double xxmeansum = 0.0,xxmeanband=0.0,xxmeanthroughput=0.0, xxmeannorthroughput=0;
for (int j = 0; j < samplesize; j++) {
xxmeansum += (loss[j] - meanloss) * (loss[j] - meanloss);
xxmeanband += (band[j] - meanband) * (band[j] - meanband);
xxmeanthroughput += (throughput[j] - meanthrouput) * (throughput[j] - meanthrouput);
xxmeannorthroughput += (northroughput[j] - meannorthrouput) * (northroughput[j] - meannorthrouput);
 }
 double varianceloss = xxmeansum / (samplesize - 1);
 double varianceband = xxmeanband / (samplesize - 1);
 double variancethroughput = xxmeanthroughput / (samplesize - 1);
 double variancenorthroughput = xxmeannorthroughput / (samplesize - 1);
 double stddevloss = Math.sqrt(varianceloss);
 double stddevband = Math.sqrt(varianceband);
 double stddevthroughput = Math.sqrt(variancethroughput);
 double stddevnorthroughput = Math.sqrt(variancenorthroughput);
 double loloss = meanloss - (1.96 * stddevloss);
 double hiloss = meanloss + (1.96 * stddevloss);
 double loband = meanband - (1.96 * stddevband);
 double hiband = meanband + (1.96 * stddevband);
 double lothroughput = meanthrouput - (1.96 * stddevthroughput);
 double hithroughput = meanthrouput + (1.96 * stddevthroughput);

 double lonorthroughput = meannorthrouput - (1.96 * stddevnorthroughput);
 double hinorthroughput = meannorthrouput + (1.96 * stddevnorthroughput);

 System.out.println("average loss = " + meanloss);
 System.out.println("sample variance loss = " + varianceloss);
 System.out.println("sample stddev loss = " + stddevloss);
 System.out.println("95% approximate confidence interval");
 System.out.println("[" + (loloss-meanloss) + ", " + (hiloss-meanloss) + "]");

 System.out.println("average band = " + meanband);
 System.out.println("sample variance band = " + varianceband);
 System.out.println("sample stddev band = " + stddevband);
 System.out.println("95% approximate confidence interval");
 System.out.println("[" + (loband-meanband) + ", " + (hiband-meanband) + "]");

 out.newLine();
 out.write(Double.toString(meanload));
 out.write(" ");

APPENDIX C : SIMULATION CODE

68

 out.write(Double.toString(meanloss));
 out.write(" ");
 out.write(Double.toString((hiloss-meanloss)));
 out.write(" ");
 out.write(Double.toString(meanband));
 out.write(" ");

 out.write(Double.toString((hiband-meanband)));
 out.write(" ");
 out.write(Double.toString(meanthrouput));
 out.write(" ");
 out.write(Double.toString((hithroughput-meanthrouput)));

 out.write(" ");
 out.write(Double.toString(meannorthrouput));
 out.write(" ");
 out.write(Double.toString((hinorthroughput-meannorthrouput)));
 out.close();

}catch(Exception e){
 System.out.println("Geo "+ e.getLocalizedMessage());
}
finally {
// write.close();
 }

 }

 }
}
// This class is used for sorting of event list
class Comp2 implements Comparator {
 public int compare (Object n1, Object n2) {

 if(((node)n1).getClock() > ((node)n2).getClock())
 return 1;
 else if(((node)n1).getClock() == ((node)n2).getClock()) return 0;
 else return -1;

 }
}
// this class gives the variables and methods for each event in the event list
package FTMSimulation;
/*
@Author Muhammad Imran
*/
public class node{
 int eventNo; // event number is 1 for arrival , 2 for departure
 double clock; // time at which the evnt will occur
 int type; // 1 for control signal and 2 for burst
 int[] path; // stores the wavelengths on a path from source to destination
 double arrival_time;
 long size;
 Burst b ;
 int current_node; //
 int current_node_type; // 0 for edge and 1 for core node
 CP bhc ;
 boolean schedule = false;
 public node ()
 {
 }
 public node(int eventNo, double clock, int type, CP bhc) {
 super();
 this.eventNo = eventNo;

APPENDIX C : SIMULATION CODE

69

 this.clock = clock;
 this.type = type;
 this.bhc = bhc;
 current_node= bhc.getSource();
 current_node_type=0;
 }
 public node(int eventNo, double clock, int type, Burst b) {
 super();
 this.eventNo = eventNo;
 this.clock = clock;
 this.type = type;
 this.b = b;
 current_node= b.getSource();
 current_node_type=0;
 }

 public node(int m,int c, int type){
 this.eventNo=m;
 this.clock=c;
 this.type=type;
 }
 public int getEventNo() {
 return eventNo;
 }
 public void setEventNo(int eventNo) {
 this.eventNo = eventNo;
 }
 public double getClock() {
 return clock;
 }
 public void setClock(double clock) {
 this.clock = clock;
 }
 public int getType() {
 return type;
 }
 public void setType(int type) {
 this.type = type;
 }
 public int[] getPath() {
 return path;
 }
 public void setPath(int[] path) {
 this.path = path;
 }
 public double getArrival_time() {
 return arrival_time;
 }
 public void setArrival_time(double arrival_time) {
 this.arrival_time = arrival_time;
 }
 public long getSize() {
 return size;
 }
 public void setSize(long size) {
 this.size = size;
 }
 public Burst getB() {
 return b;
 }
 public void setB(Burst b) {
 this.b = b;
 }
 public int getCurrent_node() {
 return current_node;
 }

APPENDIX C : SIMULATION CODE

70

 public void setCurrent_node(int current_node) {
 this.current_node = current_node;
 }
 public int getCurrent_node_type() {
 return current_node_type;
 }

 public void setCurrent_node_type(int current_node_type) {
 this.current_node_type = current_node_type;
 }
 public CP getBhc() {
 return bhc;
 }
 public void setBhc(CP bhc) {
 this.bhc = bhc;
 }
 public boolean isSchedule() {
 return schedule;
 }
 public void setSchedule(boolean schedule) {
 this.schedule = schedule;
 }
}
// this class is used for maintaining states of control packets
package FTMSimulation;
/*
@Author Muhammad Imran
*/
public class CP {
int source=0, destination=0,propogation_delay=0,configuration_time=0, periority=0;
double departure_time=0, arrival_time=0,burst_duration=0,interarrivaltime=0;
double offset_time=0;
String bhc_id=null;
public CP(int periority, int source, int destination, int propogation_delay,
int configuration_time, double departure_time, double arrival_time,
double offset_time, String bhc_id, double burst_duration) {
super();
 this.periority=periority;
 this.source = source;
 this.destination = destination;
 this.propogation_delay = propogation_delay;
 this.configuration_time = configuration_time;
 this.departure_time = departure_time;
 this.arrival_time = arrival_time;
 this.offset_time = offset_time;
 this.bhc_id = bhc_id;
 this.burst_duration= burst_duration;
}
public CP(int periority, int source, int destination, int propogation_delay,
 int configuration_time, double departure_time, double arrival_time, double offset_time, String bhc_id, double
burst_duration, double interarrivaltime) {
 super();
 this.periority=periority;
 this.source = source;
 this.destination = destination;
 this.propogation_delay = propogation_delay;
 this.configuration_time = configuration_time;
 this.departure_time = departure_time;
 this.arrival_time = arrival_time;
 this.offset_time = offset_time;
 this.bhc_id = bhc_id;
 this.burst_duration= burst_duration;
 this.interarrivaltime= interarrivaltime;
 }
 public double getInterarrivaltime() {
 return interarrivaltime;

APPENDIX C : SIMULATION CODE

71

 }
 public void setInterarrivaltime(double interarrivaltime) {
 this.interarrivaltime = interarrivaltime;
 }
 public double getBurst_duration() {
 return burst_duration;
 }
 public void setBurst_duration(double burst_duration) {
 this.burst_duration = burst_duration;
 }
 public int getSource() {
 return source;
 }
 public void setSource(int source) {
 this.source = source;
 }
 public int getDestination() {
 return destination;
 }
 public void setDestination(int destination) {
 this.destination = destination;
 }
 public int getPropogation_delay() {
 return propogation_delay;
 }
 public void setPropogation_delay(int propogation_delay) {
 this.propogation_delay = propogation_delay;
 }
 public int getConfiguration_time() {
 return configuration_time;
 }
 public void setConfiguration_time(int configuration_time) {
 this.configuration_time = configuration_time;
 }
 public double getDeparture_time() {
 return departure_time;
 }
 public void setDeparture_time(double departure_time) {
 this.departure_time = departure_time;
 }
 public double getArrival_time() {
 return arrival_time;
 }
 public void setArrival_time(double arrival_time) {
 this.arrival_time = arrival_time;
 }
 public double getOffset_time() {
 return offset_time;
 }
 public void setOffset_time(double offset_time) {
 this.offset_time = offset_time;
 }
 public String getBhc_id() {
 return bhc_id;
 }
 public void setBhc_id(String bhc_id) {
 this.bhc_id = bhc_id;
 }
 public int getPeriority() {
 return periority;
 }
 public void setPeriority(int periority) {
 this.periority = periority;
 }
}
// this class is used for bursts

APPENDIX C : SIMULATION CODE

72

package FTMSimulation;
/*
@Author Muhammad Imran
*/
public class Burst {
String burst_id;
long size; //burst size in bytes
int packets; //how much packets to include rom queue
double departure_time; //when will the packet be ready for transmission
 int propagation_time;
 int source;
 int destination;
 double arrival_time;
 double burst_duration;
 boolean schedule = false;
 public Burst(String burst_id, double departure_time,
 int propagation_time, int source, int destination,

double arrival_time, double burst_duration) {
 super();
 this.burst_id = burst_id;
 this.departure_time = departure_time;
 this.propagation_time = propagation_time;
 this.source = source;
 this.destination = destination;
 this.arrival_time = arrival_time;
 this.burst_duration = burst_duration;
 }
 public String getBurst_id() {
 return burst_id;
 }
 public void setBurst_id(String burst_id) {
 this.burst_id = burst_id;
 }
 public long getSize() {
 return size;
 }
 public void setSize(long size) {
 this.size = size;
 }
 public int getPackets() {
 return packets;
 }
 public void setPackets(int packets) {
 this.packets = packets;
 }
 public double getDeparture_time() {
 return departure_time;
 }
 public void setDeparture_time(double departure_time) {
 this.departure_time = departure_time;
 }
 public int getPropagation_time() {
 return propagation_time;
 }
 public void setPropagation_time(int propagation_time) {
 this.propagation_time = propagation_time;
 }
 public int getSource() {
 return source;
 }
 public void setSource(int source) {
 this.source = source;
 }
 public int getDestination() {
 return destination;
 }

APPENDIX C : SIMULATION CODE

73

 public void setDestination(int destination) {
 this.destination = destination;
 }
 public double getArrival_time() {
 return arrival_time;
 }
 public void setArrival_time(double arrival_time) {
 this.arrival_time = arrival_time;
 }
 public double getBurst_duration() {
 return burst_duration;
 }
 public void setBurst_duration(double burst_duration) {
 this.burst_duration = burst_duration;
 }
 public boolean isSchedule() {
 return schedule;
 }
 public void setSchedule(boolean schedule) {
 this.schedule = schedule;
 }

}
// this class is used for simulating FTM Network With QoS Provisioning
package FTMSimulation;
import java.util.*;
import java.text.DecimalFormat;
import java.io.*;
import FTMSimulation.*;
/*
@Author Muhammad Imran

*/
public class FTMWithQos{
public static double
totalbursts=0,meanbandwidth=0,meanlossrate=0,totalinterarrivaltime=0,totalburstssizes=0,meanloadinper=0,inter=0,mean_length=0;
public static double indload=0,indband=0,indloss=0,indthroughput=0,bitspassed=0,bitsdropped=0, indnormalizedthroughput=0, indcont
=0,indper=0,indnorm=0;
public static double indobsload=0,indcontload=0,indperload=0,totalintarrivalcont=0,totalintarrivalper=0, totalperburstsizes=0;
int controlchannels=1;
double datarate = 10000000000.00;
int nodes = 4;
int wv=6; // Total number of wavelength per node
public static Random r;// Random number generator
public static Random r1; // Random number generator
public static Random r2; // Random number generator
double mean_burst_size = 50*1000*8;
double mean_burst_size_continuous = 500*1000*8;
double[] utilization = new double [wv]; // Bandwidth utilization
double[] wv_utilization = new double [wv]; // Bandwidth used per node
ArrayList<ArrayList<ArrayList>> channel_list = new ArrayList<ArrayList<ArrayList>>();
int burst_schedule = 0;
int burst_dropped =0;
double continuous_bursts_dropped=0,continuous_bursts_successful=0;;
double periodic_bursts_dropped=0,periodic_bursts_successful=0;
double normal_bursts_dropped=0,normal_bursts_successful=0;

public void runSimulation(double mean_arrival_rate){
try{
 r=new Random(); // Random number generator
 r1=new Random(); // Random number generator
 r2=new Random(); // Random number generator
 double simulation_time = 500000;
totalbursts=0; meanbandwidth=0; meanlossrate=0; totalinterarrivaltime=0 ;meanloadinper=0 ; inter=0; mean_length=0;
burst_schedule = 0;totalburstssizes=0;
burst_dropped =0;

APPENDIX C : SIMULATION CODE

74

indthroughput=0;bitspassed=0;bitsdropped=0;
continuous_bursts_dropped=0;continuous_bursts_successful=0;;
periodic_bursts_dropped=0;periodic_bursts_successful=0;
normal_bursts_dropped=0;normal_bursts_successful=0;
indcont =0;indper=0;indnorm=0;
indobsload=0;indcontload=0;indperload=0;totalintarrivalcont=0;
indload=0;indband=0;indloss=0;indthroughput=0;bitspassed=0;bitsdropped=0; indnormalizedthroughput=0; indcont =0;indper=0;indnorm=0;
indobsload=0;indcontload=0;indperload=0;totalintarrivalcont=0;totalintarrivalper=0; totalperburstsizes=0;
indnormalizedthroughput=0;
totalperburstsizes=0;
indload=0;indband=0;indloss=0;
totalintarrivalper=0;
for (int x=0; x<wv; x++)
{
wv_utilization[x] = 0.0;
utilization[x] = 0.0;
}
 channel_list.clear();
 for (int i=0;i<wv;i++)

 {
 channel_list.add(i,new ArrayList<ArrayList>());

 }
 LinkedList eventlist=new LinkedList(); //create event list
 int counter=0;
 node n1=null;
 int MCL = 0;
 Comp1 comp = new Comp1();
 Collections.sort(eventlist,comp);
 int propogaration_delay = 1000;
 int configuration_delay = 3;
 int cont_burst=10;
 int periodic_burst = 10;
 int cp_id=1;
 int dest = 3;
 double total_utilization=0;
 int mode =0;
// Obs mode generation
while (counter<simulation_time){
double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
MCL += inter_arrival_time;
totalinterarrivaltime += inter_arrival_time;
double burst_size = calculate_burst_size(mean_burst_size);
double burst_duration = Math.round((burst_size)/10000);
 CP cp;
// totalburstssizes += burst_duration;
cp = new CP(0, 0, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+inter_arrival_time, cp_id+"p",burst_duration);
 counter+=inter_arrival_time;
 node n2 = new node(2,cp.getArrival_time(), 1, cp);
 n2.setBhc(cp);
 eventlist.add(n2);

cp_id++;
}

// Continuous Stream Generation
MCL = 0;
counter =0;
while (counter<simulation_time){

double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);

inter_arrival_time = inter_arrival_time * cont_burst;
MCL += inter_arrival_time;
totalintarrivalcont += inter_arrival_time;

APPENDIX C : SIMULATION CODE

75

double burst_size = calculate_burst_size(mean_burst_size_continuous);
double burst_duration = Math.round((burst_size)/10000);
double extraoffset = (mean_burst_size/10000) * 4;
CP cp;
cp = new CP(2,2, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+inter_arrival_time+extraoffset, cp_id+"p",burst_duration);
counter+= inter_arrival_time;
node n2 = new node(2,cp.getArrival_time(), 1, cp);
n2.setBhc(cp);
eventlist.add(n2);
cp_id++;
}

// Periodic Stream Generation
MCL = 0;
counter =0;
while (counter<simulation_time){
double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
inter_arrival_time = inter_arrival_time;
MCL += inter_arrival_time;
totalintarrivalper += inter_arrival_time;
double burst_size = calculate_burst_size(mean_burst_size);
double burst_duration = Math.round((burst_size)/10000);
totalperburstsizes += burst_duration*periodic_burst;
CP cp;
cp = new CP(1, 1, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+(inter_arrival_time), cp_id+"p",burst_duration,inter_arrival_time);
totalintarrivalper += inter_arrival_time*(periodic_burst-1);
counter+= inter_arrival_time*(periodic_burst-1);
MCL+= inter_arrival_time*(periodic_burst-1);
node n2 = new node(2,cp.getArrival_time(), 1, cp);
n2.setBhc(cp);
eventlist.add(n2);
cp_id++;
}
Collections.sort(eventlist,comp);
int size = eventlist.size();
n1= (node) eventlist.get(0);
int count = 0;
double master_clock=0, last_clock=0;
double initialclock = n1.getBhc().getOffset_time();
while (count<size)
{
Collections.sort(eventlist,comp);
n1= (node) eventlist.get(count);
master_clock= n1.getClock();
double start = 0;
double end = 0 ;
double periority = n1.getBhc().getPeriority();
boolean found =false;
if (periority==1) {
start = n1.getBhc().getOffset_time();
end = start + n1.getBhc().getBurst_duration();
for(int i =0; i<periodic_burst ; i++){
found = scheduleChannel(start, end,periority);
if(found){
 burst_schedule++;
 periodic_bursts_successful++;

bitspassed += (n1.getBhc().getBurst_duration()*10000);
 if(end > last_clock)
 last_clock = end;
}
else{
 burst_dropped++;
 periodic_bursts_dropped++;
 bitsdropped += (n1.getBhc().getBurst_duration()*10000);

APPENDIX C : SIMULATION CODE

76

}
start = end + n1.getBhc().getInterarrivaltime();
end = start + n1.getBhc().getBurst_duration();
}
}
else
if (periority==2) {
 start = n1.getBhc().getOffset_time();
 end = start + n1.getBhc().getBurst_duration();
 found = scheduleChannel(start, end,periority);
if(found){
 burst_schedule +=cont_burst;
 continuous_bursts_successful +=cont_burst;
 bitspassed += (n1.getBhc().getBurst_duration()*10000);
if (end>last_clock) {
 last_clock = end;
}
}
else{

burst_dropped+=cont_burst;
 continuous_bursts_dropped+=cont_burst;

bitsdropped += (n1.getBhc().getBurst_duration()*10000);
}
}
else
{
start =n1.getBhc().getOffset_time();
end = start + n1.getBhc().getBurst_duration();
found = scheduleChannel(start, end,periority);
if (found){
burst_schedule++;
//schedule_burst.add(n1.getBhc().getBhc_id());
 normal_bursts_successful++;
 bitspassed += (n1.getBhc().getBurst_duration()*10000);
if (end > last_clock)
 last_clock = end;
}
else{
 //unschedule_burst.add(n1.getBhc().getBhc_id());
 normal_bursts_dropped++;
 burst_dropped++;
 bitsdropped += (n1.getBhc().getBurst_duration()*10000);

 }
 }
 eventlist.remove(count);
 size = eventlist.size();

 }
double totalBurst = burst_schedule+burst_dropped;
indnormalizedthroughput = burst_schedule / totalBurst;
indcont = continuous_bursts_dropped / (continuous_bursts_dropped+continuous_bursts_successful);
 indper = periodic_bursts_dropped / (periodic_bursts_dropped+periodic_bursts_successful);
 indnorm = normal_bursts_dropped / (normal_bursts_dropped+normal_bursts_successful);
 for (int i=0;i<wv;i++)
 {
 total_utilization += wv_utilization[i];
 }
 total_utilization = (total_utilization / (wv));

 double bandwidth_util = total_utilization / simulation_time;
 double lossratio = (burst_dropped / totalBurst) ;
 indloss = lossratio;
 totalbursts += burst_dropped+burst_schedule;

 bitspassed = bitspassed / (1000 * 1000 *1000);

APPENDIX C : SIMULATION CODE

77

 simulation_time = simulation_time / (1000 * 1000);

indthroughput = ((bitspassed / simulation_time))/wv;// G bits per second
 indband = (indthroughput / 10) ;

double meaninterarrivaltimeobs = totalinterarrivaltime/(normal_bursts_dropped + normal_bursts_successful);

double meanintarrivaltimecont = totalintarrivalcont / (continuous_bursts_successful+continuous_bursts_dropped) ;
double meanintarrivaltimeperiodic = totalintarrivalper / periodic_bursts_dropped+periodic_bursts_successful);
double mean_burst_length_per = totalperburstsizes / (periodic_bursts_dropped+periodic_bursts_successful);
double mean_burst_length = mean_burst_size/10000;
double mean_burst_length_cont = (mean_burst_size_continuous/cont_burst)/10000;
indobsload = ((1/meaninterarrivaltimeobs) / (1/ mean_burst_length))/wv;
indperload = ((1/meanintarrivaltimeperiodic) / (1/ mean_burst_length_per))/wv;
indcontload = ((1/meanintarrivaltimecont) / (1/ mean_burst_length_cont))/wv;
indload = ((indobsload + indcontload + indperload));
}catch(Exception e){
 System.out.println("Exception"+e.getMessage()+e.getLocalizedMessage());
 }
}
public boolean scheduleChannel(double starttime, double endtime,double periority){
 int channel=0;
 boolean schedule = false;
 boolean scheduleusingvoid = false;
 boolean scheduleusinglauc = false;

 try{
 double[] startingvoid = new double[wv];
 double[] endingvoid = new double[wv];
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size() > 0){
 double startingdiff = 0;
 double endingdiff = 0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(starttime > Double.parseDouble(channel_list.get(i).get(j).get(2).toString())){
 if (Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>startingdiff){
 startingdiff = Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 startingvoid[i] = starttime-Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 }
 }
 }
 double temp = 999999999999.0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())>startingdiff){
 if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())<temp){
 temp = Double.parseDouble(channel_list.get(i).get(j).get(1).toString());
 }
 }
 if(temp==999999999999.0)
 {
 }else{
 endingvoid[i]=temp-endtime;
 }
 }
}
}
double minvoid = startingvoid[0];
boolean foundvoid=false;
for (int i=0;i<wv;i++){
 if(startingvoid[i]<=minvoid && endingvoid[i]>0.0 && startingvoid[i]>0.0){
 minvoid = startingvoid[i];
 foundvoid=true;
 channel = i;
 schedule=true;
 }

APPENDIX C : SIMULATION CODE

78

}
if(foundvoid){

channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(periority);
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(starttime);
channel_list.get(channel).get(channel_list.get(channel).size()-1).add(endtime);
wv_utilization[channel]+=(endtime-starttime);

}else{
 boolean foundusinglauc=false;
 double[] laucend = new double[wv];
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size() > 0){
 double maxlauc =0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>maxlauc)
 maxlauc=Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 }
 laucend[i]=maxlauc;
 }
}
double maxlauc =0;
for (int i=0;i<wv;i++){
if(laucend[i]>=maxlauc && laucend[i]<starttime){
 maxlauc = laucend[i];
 foundusinglauc=true;
 channel = i;
}
}
if(foundusinglauc){
 schedule=true;
 channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(periority);
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(starttime);

channel_list.get(channel).get(channel_list.get(channel).size()-1).add(endtime);
 wv_utilization[channel]+=(endtime-starttime);
}
else{
for (int i=0;i<wv;i++){
 if (channel_list.get(i).size()==0){
 channel = i;
 channel_list.get(channel).add(0,new ArrayList());
 channel_list.get(channel).get(0).add(periority);
 channel_list.get(channel).get(0).add(starttime);
 channel_list.get(channel).get(0).add(endtime);
 schedule = true;
 wv_utilization[channel]+=(endtime-starttime);
 //System.out.println("Channel : "+channel+" "+ channel_list.get(channel));
 break;
}

}
}
}
if(periority==2 && schedule==false){
 // System.out.println("testing");
 int[] channel_for_periority = new int[wv];
 int[] check_for_class2 = new int[wv];
 int[] check_for_class1 = new int[wv];
 int[] check_for_class0 = new int[wv];
 double[] size_ofbursts_class0 = new double[wv];
 double[] size_ofbursts_class1 = new double[wv];
 ArrayList<ArrayList> channel_to_drop_burst = new ArrayList<ArrayList>();
 channel_to_drop_burst.clear();
 for (int i=0;i<wv;i++){
 channel_for_periority[i]=0;
 check_for_class2[i]=0;

APPENDIX C : SIMULATION CODE

79

 check_for_class1[i]=0;
 check_for_class0[i]=0;
 size_ofbursts_class1[i]=0;
 size_ofbursts_class0[i]=0;
 channel_to_drop_burst.add(i,new ArrayList<ArrayList>());
 // System.out.println("Size"+channel_list.get(i).size());
 for (int j=0;j<channel_list.get(i).size();j++){

if ((Double.parseDouble(channel_list.get(i).get(j).get(1).toString())>starttime &&
Double.parseDouble(channel_list.get(i).get(j).get(1).toString())<endtime) ||
(Double.parseDouble(channel_list.get(i).get(j).get(2).toString())<endtime &&
Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>starttime)){

 channel_for_periority[i]++;
 channel_to_drop_burst.get(i).add(j);

double sizebur = (Double.parseDouble(channel_list.get(i).get(j).get(1).toString())) -
(Double.parseDouble(channel_list.get(i).get(j).get(1).toString()));

 //System.out.println("geo "+j);
 if(Double.parseDouble(channel_list.get(i).get(j).get(0).toString())==2)
 {
 check_for_class2[i]++;
 }
 else
 if(Double.parseDouble(channel_list.get(i).get(j).get(0).toString())==1)
 {
 check_for_class1[i]++;
 size_ofbursts_class1[i] += sizebur;

}
 else{
 check_for_class0[i]++;
 size_ofbursts_class0[i] += sizebur;
 }
 }
 }
 }
 double minp = 9999999999999.0 ;

int chnl=0;
 boolean foundp=false;
 for (int k=0; k<wv; k++)
 {
 if (channel_for_periority[k] <= minp && check_for_class2[k]==0 && check_for_class1[k]==0 && channel_for_periority[k]!=0){
 minp = channel_for_periority[k];
 }
}
 double mins = 9999999999999.0 ;
 for (int k=0; k<wv; k++)
 {
 if (channel_for_periority[k] == minp && check_for_class2[k]==0 && check_for_class1[k]==0 && channel_for_periority[k]!=0){

if(size_ofbursts_class0[k]<= mins){
 mins = size_ofbursts_class0[k];
 chnl = k;
 foundp = true;
 }
 // System.out.println("Chnl 2nd"+chnl);
 }
 }
 if (foundp==false){
 minp = 9999999999999.0 ;
 for (int k=0; k<wv; k++)
 {
 if (channel_for_periority[k] <= minp && check_for_class2[k]==0 && channel_for_periority[k]!=0){
 minp = channel_for_periority[k];
 }
 }
 mins = 9999999999999.0 ;
 for (int k=0; k<wv; k++)
 {
 if (channel_for_periority[k] == minp && check_for_class2[k]==0 && channel_for_periority[k]!=0){

APPENDIX C : SIMULATION CODE

80

 if(size_ofbursts_class1[k]<= mins){
 mins = size_ofbursts_class0[k];
 chnl = k;
 foundp = true;
 }
 // System.out.println("Chnl 1st"+chnl);
 }
 }
 }
 if(foundp){
 schedule=true;
 burst_dropped+= channel_to_drop_burst.get(chnl).size();
 burst_schedule -= channel_to_drop_burst.get(chnl).size();
 for (int l =0 ; l< channel_to_drop_burst.get(chnl).size();l++){
 channel_list.get(chnl).remove(channel_to_drop_burst.get(chnl).get(l));
 int ind = Integer.parseInt(channel_to_drop_burst.get(chnl).get(l).toString());
 double strt = Double.parseDouble(channel_list.get(chnl).get(ind).get(1).toString());
 double ent = Double.parseDouble(channel_list.get(chnl).get(ind).get(2).toString());
 wv_utilization[chnl]-= (ent-strt);
 bitsdropped += (ent-strt);
 }
 channel_list.get(chnl).add(channel_list.get(chnl).size(),new ArrayList());
 channel_list.get(chnl).get(channel_list.get(chnl).size()-1).add(periority);
 channel_list.get(chnl).get(channel_list.get(chnl).size()-1).add(starttime);
 channel_list.get(chnl).get(channel_list.get(chnl).size()-1).add(endtime);
 wv_utilization[chnl]+=(endtime-starttime);
 bitspassed += (endtime-starttime);
 }
 // System.out.println("Schedule: "+ schedule);
 }

 }catch(Exception e){
 System.out.println(e.getMessage());
 }
 return schedule;
}
public double calculate_arrival_time(double mean){
 //return Math.round(-Math.log(1 - Math.random()) / mean);
 double random=r.nextDouble();

double exp_time=(-1/mean)*Math.log(random);
 return Math.round(exp_time);
}
public double calculate_burst_size(double mean){

double random=r1.nextDouble();
double exp_time=(-mean)*Math.log(random);

 return Math.round(exp_time);
}
public static void main(String agrs[])
{
 FTMWithQos f = new FTMWithQos();

double mean_arrival_rate = 0.043;
 for (double m = mean_arrival_rate; mean_arrival_rate<=0.09; mean_arrival_rate+=0.005){
 int samplesize = 20;

 double[] loss = new double[samplesize];
 double[] band = new double[samplesize];
 double[] load = new double[samplesize];
 double[] throughput = new double[samplesize];
 double[] northroughput = new double[samplesize];
 double[] contloss = new double[samplesize];
 double[] perloss = new double[samplesize];
 double[] norloss = new double[samplesize];
 double losssum=0,bandsum=0,loadsum=0, throughputsum=0, northroughputsum=0, contsum=0,persum=0,norsum=0;
 try {
 FileWriter fstream = new FileWriter("qos.txt",true);
 BufferedWriter out = new BufferedWriter(fstream);
 for(int i=0; i<samplesize;i++){

APPENDIX C : SIMULATION CODE

81

 f.runSimulation(mean_arrival_rate);
 load[i]=indload;
 loadsum+=load[i];
 loss[i]=indloss;
 losssum+=loss[i];
 band[i]=indband;
 bandsum+=band[i];
 throughput[i]=indthroughput;
 throughputsum+=throughput[i];
 northroughput[i]=indnormalizedthroughput;
 northroughputsum+=northroughput[i];
 contloss [i] = indcont;
 contsum += contloss[i];
 perloss [i] = indper;
 persum += perloss[i];
 norloss [i] = indnorm;
 norsum += norloss[i];
 }
double meanloss = losssum / samplesize;
double meanband= bandsum / samplesize;
double meanload= loadsum / samplesize;
double meanthrouput= throughputsum / samplesize;
double meannorthrouput= northroughputsum / samplesize;

double meancontloss = contsum / samplesize;
double meanperloss = persum / samplesize;
double meannorloss = norsum / samplesize;
double xxmeansum = 0.0,xxmeanband=0.0, xxmeanthroughput=0.0,xxmeannorthroughput=0, xxmeancontloss =0,
xxmeanperloss=0,xxmeannorloss=0;
for (int j = 0; j < samplesize; j++) {
xxmeansum += (loss[j] - meanloss) * (loss[j] - meanloss);
xxmeanband += (band[j] - meanband) * (band[j] - meanband);
xxmeanthroughput += (throughput[j] - meanthrouput) * (throughput[j] - meanthrouput);
xxmeannorthroughput += (northroughput[j] - meannorthrouput) * (northroughput[j] - meannorthrouput);
xxmeancontloss += (contloss[j] - meancontloss) * (contloss[j] - meancontloss);
xxmeanperloss += (perloss[j] - meanperloss) * (perloss[j] - meanperloss);
xxmeannorloss += (norloss[j] - meannorloss) * (norloss[j] - meannorloss);
 }
double varianceloss = xxmeansum / (samplesize - 1);
double varianceband = xxmeanband / (samplesize - 1);
double variancethroughput = xxmeanthroughput / (samplesize - 1);
double variancenorthroughput = xxmeannorthroughput / (samplesize - 1);
double variancecontloss = xxmeancontloss / (samplesize -1);
double varianceperloss = xxmeanperloss / (samplesize -1);
double variancenorloss = xxmeannorloss / (samplesize -1);
double stddevloss = Math.sqrt(varianceloss);
double stddevband = Math.sqrt(varianceband);
double stddevthroughput = Math.sqrt(variancethroughput);
double stddevnorthroughput = Math.sqrt(variancenorthroughput);
double stddevcontloss = Math.sqrt(variancecontloss);
double stddevperloss = Math.sqrt(varianceperloss);
double stddevnorloss = Math.sqrt(variancenorloss);
double loloss = meanloss - (1.96 * stddevloss);
double hiloss = meanloss + (1.96 * stddevloss);
double loband = meanband - (1.96 * stddevband);
double hiband = meanband + (1.96 * stddevband);
double lothroughput = meanthrouput - (1.96 * stddevthroughput);
double hithroughput = meanthrouput + (1.96 * stddevthroughput);
double lonorthroughput = meannorthrouput - (1.96 * stddevnorthroughput);
double hinorthroughput = meannorthrouput + (1.96 * stddevnorthroughput);
double locontloss = meancontloss - (1.96 * stddevcontloss);
double hicontloss = meancontloss + (1.96 * stddevcontloss);
double loperloss = meanperloss - (1.96 * stddevperloss);
double hiperloss = meanperloss + (1.96 * stddevperloss);
double lonorloss = meannorloss - (1.96 * stddevnorloss);
double hinorloss = meannorloss + (1.96 * stddevnorloss);

APPENDIX C : SIMULATION CODE

82

 out.newLine();
 out.write(Double.toString(meanload));
 out.write(" ");
 out.write(Double.toString(meanloss));
 out.write(" ");
 out.write(Double.toString((hiloss-meanloss)));
 out.write(" ");
 out.write(Double.toString(meanband));
 out.write(" ");
 out.write(Double.toString((hiband-meanband)));
 out.write(" ");
 out.write(Double.toString(meannorthrouput));
 out.write(" ");
 out.write(Double.toString((hinorthroughput-meannorthrouput)));
 out.write(" ");
 out.write(Double.toString(meancontloss));
 out.write(" ");
 out.write(Double.toString((hicontloss-meancontloss)));
 out.write(" ");
 out.write(Double.toString(meanperloss));
 out.write(" ");
 out.write(Double.toString((hiperloss-meanperloss)));
 out.write(" ");
 out.write(Double.toString(meannorloss));
 out.write(" ");
 out.write(Double.toString((hinorloss-meannorloss)));
 out.close();

}catch(Exception e){
 System.out.println("Geo "+ e.getLocalizedMessage());
 }
 finally {
 // write.close();
 }

 }

 }

}
// this class is used for simulation FTM Network Without QoS Provisioning
package FTMSimulation;
import java.util.*;
import java.text.DecimalFormat;
import java.io.*;
import FTMSimulation.*;
/*
@Author Muhammad Imran

*/
public class FTMSimulation{
public static double
totalbursts=0,meanbandwidth=0,meanlossrate=0,totalinterarrivaltime=0,totalburstssizes=0,meanloadinper=0,inter=0,mean_length=0;
public static double indload=0,indband=0,indloss=0,indthroughput=0,bitspassed=0,bitsdropped=0, indnormalizedthroughput=0, indcont
=0,indper=0,indnorm=0;
public static double indobsload=0,indcontload=0,indperload=0,totalintarrivalcont=0,totalintarrivalper=0, totalperburstsizes=0;
int controlchannels=1;
double datarate = 10000000000.00;
int nodes = 4;
int wv=6; // Total number of wavelength per node
public static Random r;// Random number generator
public static Random r1; // Random number generator
public static Random r2; // Random number generator
double mean_burst_size = 50*1000*8;
double mean_burst_size_continuous = 500*1000*8;

APPENDIX C : SIMULATION CODE

83

double[] utilization = new double [wv]; // Bandwidth utilization
double[] wv_utilization = new double [wv]; // Bandwidth used per node
ArrayList<ArrayList<ArrayList>> channel_list = new ArrayList<ArrayList<ArrayList>>();
int burst_schedule = 0;
int burst_dropped =0;
double continuous_bursts_dropped=0,continuous_bursts_successful=0;;
double periodic_bursts_dropped=0,periodic_bursts_successful=0;
double normal_bursts_dropped=0,normal_bursts_successful=0;
public void runSimulation(double mean_arrival_rate){
try{
r=new Random(); // Random number generator
r1=new Random(); // Random number generator
r2=new Random(); // Random number generator
double simulation_time = 500000;
totalbursts=0;meanbandwidth=0;meanlossrate=0;totalinterarrivaltime=0;
meanloadinper=0;inter=0;mean_length=0;
burst_schedule = 0;totalburstssizes=0;
burst_dropped =0;
indthroughput=0;bitspassed=0;bitsdropped=0;
continuous_bursts_dropped=0;continuous_bursts_successful=0;;
periodic_bursts_dropped=0;periodic_bursts_successful=0;
normal_bursts_dropped=0;normal_bursts_successful=0;
indcont =0;indper=0;indnorm=0;
indobsload=0;indcontload=0;indperload=0;totalintarrivalcont=0;
indload=0;indband=0;indloss=0;indthroughput=0;bitspassed=0;bitsdropped=0; indnormalizedthroughput=0; indcont =0;indper=0;indnorm=0;

indobsload=0;indcontload=0;indperload=0;totalintarrivalcont=0;totalintarrivalper=0; totalperburstsizes=0;
 indnormalizedthroughput=0;
 totalperburstsizes=0;
 indload=0;indband=0;indloss=0;
 totalintarrivalper=0;
for (int x=0; x<wv; x++)
{
wv_utilization[x] = 0.0;
utilization[x] = 0.0;
}
channel_list.clear();
for (int i=0;i<wv;i++)
{
channel_list.add(i,new ArrayList<ArrayList>());
}
LinkedList eventlist=new LinkedList(); //create event list
int counter=0;
node n1=null;
int MCL = 0;
Comp1 comp = new Comp1();
Collections.sort(eventlist,comp);
int propogaration_delay = 1000;
int configuration_delay = 3;
int cont_burst=10;
int periodic_burst = 10;
int cp_id=1;
int dest = 3;
double total_utilization=0;
int mode =0;
//Obs mode generation
while (counter<simulation_time){
double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
MCL += inter_arrival_time;
totalinterarrivaltime += inter_arrival_time;
double burst_size = calculate_burst_size(mean_burst_size);
double burst_duration = Math.round((burst_size)/10000);
CP cp;
// totalburstssizes += burst_duration;
cp = new CP(0, 0, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+inter_arrival_time, cp_id+"p",burst_duration);

APPENDIX C : SIMULATION CODE

84

counter+=inter_arrival_time;
node n2 = new node(2,cp.getArrival_time(), 1, cp);
n2.setBhc(cp);
eventlist.add(n2);
cp_id++;
}

// Continuous Stream Generation
MCL = 0;
counter =0;
while (counter<simulation_time){
double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
 inter_arrival_time = inter_arrival_time * cont_burst;
 MCL += inter_arrival_time;
 totalintarrivalcont += inter_arrival_time;
 double burst_size = calculate_burst_size(mean_burst_size_continuous);
 double burst_duration = Math.round((burst_size)/10000);
 CP cp;
cp = new CP(2,2, dest, propogaration_delay,configuration_delay, MCL, MCL+propogaration_delay,
MCL+propogaration_delay+inter_arrival_time , cp_id+"p",burst_duration);
 counter+= inter_arrival_time;
 node n2 = new node(2,cp.getArrival_time(), 1, cp);
 n2.setBhc(cp);
 eventlist.add(n2);
 cp_id++;
}

// Periodic Stream Generation

MCL = 0;
counter =0;
while (counter<simulation_time){
double inter_arrival_time = calculate_arrival_time(mean_arrival_rate);
inter_arrival_time = inter_arrival_time;
MCL += inter_arrival_time;
totalintarrivalper += inter_arrival_time;
double burst_size = calculate_burst_size(mean_burst_size);
double burst_duration = Math.round((burst_size)/10000);
totalperburstsizes += burst_duration*periodic_burst;
CP cp;
cp = new CP(1, 1, dest, propogaration_delay,configuration_delay, MCL,
MCL+propogaration_delay,MCL+propogaration_delay+(inter_arrival_time), cp_id+"p",burst_duration,inter_arrival_time);
totalintarrivalper += inter_arrival_time*(periodic_burst-1);
counter+= inter_arrival_time*(periodic_burst-1);
MCL+= inter_arrival_time*(periodic_burst-1);
node n2 = new node(2,cp.getArrival_time(), 1, cp);
n2.setBhc(cp);
eventlist.add(n2);
cp_id++;
}
Collections.sort(eventlist,comp);
int size = eventlist.size();
n1= (node) eventlist.get(0);
int count = 0;
double master_clock=0, last_clock=0;
double initialclock = n1.getBhc().getOffset_time();
while (count<size)
{
Collections.sort(eventlist,comp);
n1= (node) eventlist.get(count);
master_clock= n1.getClock();
double start = 0;
double end = 0 ;
double periority = n1.getBhc().getPeriority();
boolean found =false;
if (periority==1) {

APPENDIX C : SIMULATION CODE

85

start = n1.getBhc().getOffset_time();
end = start + n1.getBhc().getBurst_duration();
for(int i =0; i<periodic_burst ; i++){
 found = scheduleChannel(start, end,periority);
if(found){
 burst_schedule++;
 periodic_bursts_successful++;

bitspassed += (n1.getBhc().getBurst_duration()*10000);
 if(end > last_clock)
 last_clock = end;
 }
 else{
 burst_dropped++;
 periodic_bursts_dropped++;
 bitsdropped += (n1.getBhc().getBurst_duration()*10000);
 }
start = end + n1.getBhc().getInterarrivaltime();
end = start + n1.getBhc().getBurst_duration();

}
}
else
if (periority==2) {
 start = n1.getBhc().getOffset_time();
 end = start + n1.getBhc().getBurst_duration();
 found = scheduleChannel(start, end,periority);
if(found){
burst_schedule +=cont_burst;
continuous_bursts_successful +=cont_burst;
bitspassed += (n1.getBhc().getBurst_duration()*10000);
if (end>last_clock) {
 last_clock = end;
}
}
else{
burst_dropped+=cont_burst;
continuous_bursts_dropped+=cont_burst;
bitsdropped += (n1.getBhc().getBurst_duration()*10000);
}
}
else
{
start =n1.getBhc().getOffset_time();
end = start + n1.getBhc().getBurst_duration();
found = scheduleChannel(start, end,periority);
if (found){
burst_schedule++;
///schedule_burst.add(n1.getBhc().getBhc_id());
 normal_bursts_successful++;
 bitspassed += (n1.getBhc().getBurst_duration()*10000);

 if (end > last_clock)
 last_clock = end;
 }
 else{
 normal_bursts_dropped++;

burst_dropped++;
 bitsdropped += (n1.getBhc().getBurst_duration()*10000);
 }
 }

eventlist.remove(count);
 size = eventlist.size();
 }
 double totalBurst = burst_schedule+burst_dropped;
 indnormalizedthroughput = burst_schedule / totalBurst;
 indcont = continuous_bursts_dropped / (continuous_bursts_dropped+continuous_bursts_successful);

APPENDIX C : SIMULATION CODE

86

 indper = periodic_bursts_dropped / (periodic_bursts_dropped+periodic_bursts_successful);
 indnorm = normal_bursts_dropped / (normal_bursts_dropped+normal_bursts_successful);
 for (int i=0;i<wv;i++)
 {
 total_utilization += wv_utilization[i];
 }

total_utilization = (total_utilization / (wv));
 double bandwidth_util = total_utilization / simulation_time;
 double lossratio = (burst_dropped / totalBurst) ;
 indloss = lossratio;
 totalbursts += burst_dropped+burst_schedule;
 bitspassed = bitspassed / (1000 * 1000 *1000);
 simulation_time = simulation_time / (1000 * 1000);
 indthroughput = ((bitspassed / simulation_time))/wv;// G bits per second
 indband = (indthroughput / 10) ;
 double meaninterarrivaltimeobs = totalinterarrivaltime/(normal_bursts_dropped + normal_bursts_successful);
 double meanintarrivaltimecont = totalintarrivalcont / (continuous_bursts_successful+continuous_bursts_dropped) ;
 double meanintarrivaltimeperiodic = totalintarrivalper / (periodic_bursts_dropped+periodic_bursts_successful);
 double mean_burst_length_per = totalperburstsizes / (periodic_bursts_dropped+periodic_bursts_successful);
 double mean_burst_length = mean_burst_size/10000;
 double mean_burst_length_cont = (mean_burst_size_continuous/cont_burst)/10000;
 indobsload = ((1/meaninterarrivaltimeobs) / (1/ mean_burst_length))/wv;
 indperload = ((1/meanintarrivaltimeperiodic) / (1/ mean_burst_length_per))/wv;
 indcontload = ((1/meanintarrivaltimecont) / (1/ mean_burst_length_cont))/wv;
 indload = ((indobsload + indcontload + indperload));
}catch(Exception e){
System.out.println("Exception"+e.getMessage()+e.getLocalizedMessage());
 }
 }
public boolean scheduleChannel(double starttime, double endtime,double periority){
 int channel=0;
 boolean schedule = false;
 boolean scheduleusingvoid = false;
 boolean scheduleusinglauc = false;
 try{
 double[] startingvoid = new double[wv];
 double[] endingvoid = new double[wv];
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size() > 0){
 double startingdiff = 0;
 double endingdiff = 0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(starttime > Double.parseDouble(channel_list.get(i).get(j).get(2).toString())){
 if (Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>startingdiff){
 startingdiff = Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 startingvoid[i] = starttime-Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 }
 }
 }
 double temp = 999999999999.0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())>startingdiff){
 if(Double.parseDouble(channel_list.get(i).get(j).get(1).toString())<temp){
 temp = Double.parseDouble(channel_list.get(i).get(j).get(1).toString());
 }
 }
 if(temp==999999999999.0)
 {
 }else{
 endingvoid[i]=temp-endtime;
 }
 }
 }
 }
 double minvoid = startingvoid[0];
 boolean foundvoid=false;

APPENDIX C : SIMULATION CODE

87

 for (int i=0;i<wv;i++){
 if(startingvoid[i]<=minvoid && endingvoid[i]>0.0 && startingvoid[i]>0.0){
 minvoid = startingvoid[i];
 foundvoid=true;
 channel = i;
 schedule=true;
 }
 }
 if(foundvoid){
 channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(periority);
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(starttime);
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(endtime);
 wv_utilization[channel]+=(endtime-starttime);
 }else{
 boolean foundusinglauc=false;
 double[] laucend = new double[wv];
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size() > 0){
 double maxlauc =0;
 for (int j=0;j<channel_list.get(i).size();j++){
 if(Double.parseDouble(channel_list.get(i).get(j).get(2).toString())>maxlauc)
 maxlauc=Double.parseDouble(channel_list.get(i).get(j).get(2).toString());
 }
 laucend[i]=maxlauc;
 }
 }
 double maxlauc =0;
 for (int i=0;i<wv;i++){
 if(laucend[i]>=maxlauc && laucend[i]<starttime){
 maxlauc = laucend[i];
 foundusinglauc=true;
 channel = i;
 }
 }
 if(foundusinglauc){
 schedule=true;
 channel_list.get(channel).add(channel_list.get(channel).size(),new ArrayList());
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(periority);
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(starttime);
 channel_list.get(channel).get(channel_list.get(channel).size()-1).add(endtime);
 wv_utilization[channel]+=(endtime-starttime);
 }
 else{
 for (int i=0;i<wv;i++){
 if (channel_list.get(i).size()==0){
 channel = i;
 channel_list.get(channel).add(0,new ArrayList());
 channel_list.get(channel).get(0).add(periority);
 channel_list.get(channel).get(0).add(starttime);
 channel_list.get(channel).get(0).add(endtime);
 schedule = true;
 wv_utilization[channel]+=(endtime-starttime);
 //System.out.println("Channel : "+channel+" "+ channel_list.get(channel));
 break;
 }
 }
 }
 }
 }catch(Exception e){
 System.out.println(e.getMessage());
 }
 return schedule;
}

 public double calculate_arrival_time(double mean){

APPENDIX C : SIMULATION CODE

88

 double random=r.nextDouble();
 double exp_time=(-1/mean)*Math.log(random);
 return Math.round(exp_time);
 }

 public double calculate_burst_size(double mean){

 double random=r1.nextDouble();
 double exp_time=(-mean)*Math.log(random);
 return Math.round(exp_time);
 }
 public static void main(String agrs[])
 {
 FTMSimulation f = new FTMSimulation();
 double mean_arrival_rate = 0.043;
 for (double m = mean_arrival_rate; mean_arrival_rate<=0.09; mean_arrival_rate+=0.005){
 int samplesize = 20;

 double[] loss = new double[samplesize];
 double[] band = new double[samplesize];
 double[] load = new double[samplesize];
 double[] throughput = new double[samplesize];
 double[] northroughput = new double[samplesize];
 double[] contloss = new double[samplesize];

 double[] perloss = new double[samplesize];

 double[] norloss = new double[samplesize];

 double losssum=0,bandsum=0,loadsum=0, throughputsum=0, northroughputsum=0, contsum=0,persum=0,norsum=0;
 try {
 FileWriter fstream = new FileWriter("eqhmbftm.txt",true);
 BufferedWriter out = new BufferedWriter(fstream);
 for(int i=0; i<samplesize;i++){
 f.runSimulation(mean_arrival_rate);
 load[i]=indload;
 loadsum+=load[i];
 loss[i]=indloss;
 losssum+=loss[i];
 band[i]=indband;
 bandsum+=band[i];
 throughput[i]=indthroughput;
 throughputsum+=throughput[i];
 northroughput[i]=indnormalizedthroughput;
 northroughputsum+=northroughput[i];
 contloss [i] = indcont;
 contsum += contloss[i];
 perloss [i] = indper;
 persum += perloss[i];
 norloss [i] = indnorm;
 norsum += norloss[i];
 }
 double meanloss = losssum / samplesize;
 double meanband= bandsum / samplesize;
 double meanload= loadsum / samplesize;
 double meanthrouput= throughputsum / samplesize;
 double meannorthrouput= northroughputsum / samplesize;
 double meancontloss = contsum / samplesize;
 double meanperloss = persum / samplesize;
 double meannorloss = norsum / samplesize;
 System.out.println("Mean Load "+meanload);

 System.out.println("Mean Band " +meanband);
 System.out.println("Mean Throughput " +meanthrouput);
 System.out.println("Mean Normalized Throughput " +meannorthrouput);
 System.out.println("Mean Continous Loss " +meancontloss);
 System.out.println("Mean Periodic Loss " +meanperloss);

APPENDIX C : SIMULATION CODE

89

 System.out.println("Mean Normal loss " +meannorloss);
 double xxmeansum = 0.0,xxmeanband=0.0, xxmeanthroughput=0.0,xxmeannorthroughput=0, xxmeancontloss =0,
xxmeanperloss=0,xxmeannorloss=0;
 for (int j = 0; j < samplesize; j++) {
 xxmeansum += (loss[j] - meanloss) * (loss[j] - meanloss);
 xxmeanband += (band[j] - meanband) * (band[j] - meanband);
 xxmeanthroughput += (throughput[j] - meanthrouput) * (throughput[j] - meanthrouput);
 xxmeannorthroughput += (northroughput[j] - meannorthrouput) * (northroughput[j] - meannorthrouput);
 xxmeancontloss += (contloss[j] - meancontloss) * (contloss[j] - meancontloss);
 xxmeanperloss += (perloss[j] - meanperloss) * (perloss[j] - meanperloss);
 xxmeannorloss += (norloss[j] - meannorloss) * (norloss[j] - meannorloss);
 }
 double varianceloss = xxmeansum / (samplesize - 1);
 double varianceband = xxmeanband / (samplesize - 1);
 double variancethroughput = xxmeanthroughput / (samplesize - 1);
 double variancenorthroughput = xxmeannorthroughput / (samplesize - 1);
 double variancecontloss = xxmeancontloss / (samplesize -1);
 double varianceperloss = xxmeanperloss / (samplesize -1);
 double variancenorloss = xxmeannorloss / (samplesize -1);
 double stddevloss = Math.sqrt(varianceloss);
 double stddevband = Math.sqrt(varianceband);
 double stddevthroughput = Math.sqrt(variancethroughput);
 double stddevnorthroughput = Math.sqrt(variancenorthroughput);
 double stddevcontloss = Math.sqrt(variancecontloss);
 double stddevperloss = Math.sqrt(varianceperloss);
 double stddevnorloss = Math.sqrt(variancenorloss);
 double loloss = meanloss - (1.96 * stddevloss);
 double hiloss = meanloss + (1.96 * stddevloss);
 double loband = meanband - (1.96 * stddevband);
 double hiband = meanband + (1.96 * stddevband);
 double lothroughput = meanthrouput - (1.96 * stddevthroughput);
 double hithroughput = meanthrouput + (1.96 * stddevthroughput);
 double lonorthroughput = meannorthrouput - (1.96 * stddevnorthroughput);
 double hinorthroughput = meannorthrouput + (1.96 * stddevnorthroughput);
 double locontloss = meancontloss - (1.96 * stddevcontloss);
 double hicontloss = meancontloss + (1.96 * stddevcontloss);
 double loperloss = meanperloss - (1.96 * stddevperloss);
 double hiperloss = meanperloss + (1.96 * stddevperloss);
 double lonorloss = meannorloss - (1.96 * stddevnorloss);
 double hinorloss = meannorloss + (1.96 * stddevnorloss);
 System.out.println("average loss = " + meanloss);
 System.out.println("sample variance loss = " + varianceloss);
 System.out.println("sample stddev loss = " + stddevloss);
 System.out.println("95% approximate confidence interval");
 System.out.println("[" + (loloss-meanloss) + ", " + (hiloss-meanloss) + "]");
 System.out.println("average band = " + meanband);
 System.out.println("sample variance band = " + varianceband);
 System.out.println("sample stddev band = " + stddevband);
 System.out.println("95% approximate confidence interval");
 System.out.println("[" + (loband-meanband) + ", " + (hiband-meanband) + "]");
 out.newLine();
 out.write(Double.toString(meanload));
 out.write(" ");
 out.write(Double.toString(meanloss));
 out.write(" ");
 out.write(Double.toString((hiloss-meanloss)));
 out.write(" ");
 out.write(Double.toString(meanband));
 out.write(" ");
 out.write(Double.toString((hiband-meanband)));
 // out.write(" ");
 // out.write(Double.toString(meanthrouput));
 // out.write(" ");
 // out.write(Double.toString((hithroughput-meanthrouput)));
 out.write(" ");
 out.write(Double.toString(meannorthrouput));

APPENDIX C : SIMULATION CODE

90

 out.write(" ");
 out.write(Double.toString((hinorthroughput-meannorthrouput)));
 out.write(" ");
 out.write(Double.toString(meancontloss));
 out.write(" ");
 out.write(Double.toString((hicontloss-meancontloss)));
 out.write(" ");
 out.write(Double.toString(meanperloss));
 out.write(" ");
 out.write(Double.toString((hiperloss-meanperloss)));
 out.write(" ");
 out.write(Double.toString(meannorloss));
 out.write(" ");
 out.write(Double.toString((hinorloss-meannorloss)));
 out.close();
}catch(Exception e){
 System.out.println("Geo "+ e.getLocalizedMessage());
}
finally {
// write.close();
}

}

 }

}
class Comp1 implements Comparator {
 public int compare (Object n1, Object n2) {

 if(((node)n1).getClock() > ((node)n2).getClock())
 return 1;
 else if(((node)n1).getClock() == ((node)n2).getClock()) return 0;
 else return -1;

 } }

