

Collaborative Linked Open Data Editor

Final Year Project

 Ali Akram 2008-NUST-BIT-159

 Muhammad Umar Farooq 2008-NUST-BIT-123

A project report submitted in partial fulfillment of the

requirement for the degree of Bachelors in information technology

Department of Computing

School Of Electrical Engineering & Computer Sciences

National University Of Science & Technology

Islamabad, Pakistan

 2012

2

PROJECT APPROVAL

It is certified that the contents and form of thesis entitled “Web Based Linked Open Data

Editor” submitted by Ali Akram (2008-NUST-BIT-159), Muhammad Umer Farooq (2008-

NUST-BIT-123) have been found satisfactory for the requirement of the degree.

Advisor: __________________________

(Dr. Khalid Latif)

Co-Advisor: __________________________

(Sana Khaliq)

3

We want to dedicate our work to our parents, who always prayed

for our success, encouraged us for -hard work and dedicated all their life

to make our life comfortable.

Surely they are the pillars of strength for us.

4

Table of Contents
List of Figures: ... 7

List of Abbreviations: ... 8

Abstract .. 9

INTRODUCTION ... 10

Importance .. 10

Project Goal ... 11

Ontologies ... 11

RESTful Web Services .. 11

Serialization ... 12

LITERATURE REVIEW.. 13

Background History ... 13

Release 2.0 .. 13

Release 3.0 .. 13

Release 4.0 .. 14

Application Architecture Overview .. 14

MVC Architecture .. 14

Comparative study of other Ontology Editors .. 15

Protégé .. 15

OntoEdit .. 16

WebOnto ... 16

OilEd .. 16

FUNCTIONALITY AND DESIGN .. 17

SEECS Infrastructure Example .. 17

Application Architecture .. 18

Architecture details ... 19

Request ... 19

Controller .. 19

Model .. 19

Response ... 19

Web Socket ... 20

How WebSocket Help in CLODE ... 20

5

PULL Request ... 21

PUSH Request .. 21

RESULTS & DISCUSSION ... 22

Basic Functionality ... 22

Create ontology ... 22

Upload/Load from Repository .. 23

Collaborative Work .. 23

Real time change reflection ... 24

Comparative Analysis .. 24

Creating classes ... 25

Adding Annotations: .. 25

Adding Description: ... 26

Comparative Analysis: ... 27

Discussion: .. 29

RECOMENDATIONS ... 31

Access permissions .. 31

Import/Export ... 31

Link Multiple Ontology Models .. 32

Visual Representation in the form of Graphs ... 32

Developing ontology using Drag/Drop tool in Graphs... 32

Introduce in community .. 32

Cloud Deployment ... 32

CONCLUSION ... 33

Real time collaboration .. 33

Scalability .. 34

User friendly interaction .. 34

Central Repository ... 34

Security ... 34

Cost Effective... 34

Time Saving ... 35

Dependency Reduction .. 35

Reduce inconsistency .. 35

6

REFERENCES: ... 36

7

List of Figures:

Figure 2.1 …………………………………………………………………….…………………… MVC Architecture

Figure 3.1……………………………………….…………………………………………………..SEECS ontology

Figure 3.2…………………………………………………………….. Web Based Linked Open Data Editor

Figure 3.3……………………………………….…………………….……….…..…. Web Socket Architecture

Figure 4.1………………………………………………………….………..……. Login Screen CLODE Figure

Figure 4.2……………………………………………………………….…….…….……. Load Ontology CLODE

Figure 4.3………………………………………………………………………….…………...…… Classes adding

Figure 4.4………………………………………………………………………….…….…… annotations adding

Figure 4.5………………………………………………………………………………..……… adding restriction

Figure 4.6…………………………………………………………………………………………..…… Comparison

Figure 4.7……………………………………………………………………………………… Change Operations

8

List of Abbreviations:

MVC……………………………………………………………………………………….……Model View Controller

CLODE……………………………………….………………………..Collaborative Linked Open Data Editor

SOAP…………………………………………………………………..Service Oriented Architecture Protocol

REST……………………………………………….………………………..…. Representational State Transfer

WSDL……………………………………………………………………. Web Services Description Language

RDF………………………………………………………………………………….Resource Description Format

DAML…………………………………………………………………………… Darpa Agent Markup Language

http://www.google.com.pk/url?sa=t&rct=j&q=wsdl%20abbreviation&source=web&cd=3&sqi=2&ved=0CFkQFjAC&url=http%3A%2F%2Facronyms.thefreedictionary.com%2FWeb%2BServices%2BDescription%2BLanguage&ei=VnjbT6n8MsnqrQe3s_SPCQ&usg=AFQjCNEppc-Zc0Jh0yb5NIv4pEQBNWhu9A&cad=rja

9

Abstract

Ontology is widely used as framework to model the domain knowledge. Knowledge

modeling for a specific domain is done by multiple agents. At a time only one agent works on

the model and passes it to the next agent when his part is done. It makes a long time to develop a

complete ontology.

A lot of tools have been already developed to design and maintain centralized ontology for

various domains. All these tools provide schema management but lack in linked data

management and real time collaborative knowledge modeling. So there is need of a tool that

provides an environment where a group of knowledge experts can do collaborative knowledge

modeling in real time.

The proposed system consumes the following objectives:

A group of people can work, collaborate and manage ontology in real time. The use of

web socket enables the change to reflect on each user’s screen instantly. Moreover,

everyone is aware of up-to date model. Collaborative work reduces time cost. Web socket

helps to resolve the inconsistency and conflicts among different agents instantly.

In a nut shell, this tool provides real time collaborative knowledge sharing and modeling

along with the basic functionalities that previously developed tools provide e.g. Ontology

creating and editing.

10

Chapter 1

INTRODUCTION

In context of knowledge sharing Ontology means a specification of a conceptualization.

It is used to share common understanding of the structure of information in an organization.

CLODE (Web Based Linked Open Data Editor) is a tool that will provide us a web based

solution to create and manage Ontologies and share it between the people and software agents. It

will also help people in an organization to administer Linked open data on a centralized

repository collaboratively. It uses RESTful web services for communication that provide user

friendly environment to its clients.

There are many tools available for ontology development and its management with their

own consequences. But the functionality due to which CLODE dominates all previous tools is

linked data management on central repository and designing ontology collaboratively. That

means it provides collaborative interaction between users, consistency and structural integrity

that make it stable.

Importance
Ontologies have become common on the World-Wide Web. In this era of Web

Ontologies are being used on large scale ranging from large taxonomies categorizing Web sites

(such as Yahoo!, Google) to the categorization of products for sale and their features(such as on

Amazon).

Many disciplines now a day’s develop standardized ontologies that domain experts can

use to share and annotate domain knowledge in their fields. But there is no user friendly

administration of Ontology where ontology is defined by a domain expert and others share it and

interact collaboratively. Also most of the domain experts want linked data of their organization

managed and manipulated at single place. So there is need for collaborative ontology

development as well as administration of linked open data on a central repository.

11

Project Goal
The goal of the project is to:

 Develop a web based tool with support of collaborative ontology development.

 Provide a common place (i.e. central repository) for linked open data administration.

 Provide user friendly interaction with Ontologies and Linked open data.

 Improve performance by saving time cost.

 Reduce complexity and inconsistency in ontology management.

Ontologies
Ontologies are being used to share common understanding of the structure of the

information among people and software agents. It is one common knowledge and data model

that is computer readable and understandable. It facilitates domain experts to reuse domain

knowledge. There is a concept of classes, relationship, instances and properties that make it easy

to implement the domain concepts. It defines the real world association between objects and

what the meaning of that association is. In specific term ontology development includes defining

classes, creating relationships between them and applying different types of conditions and

constraints on them.

RESTful Web Services

Representational State Transfer defines a set of rules to design Web Services and how

resources are addressed and transferred using HTTP protocols. REST got populated in recent

years and is being used and implemented on large scale organizations. It has such a large impact

on Web that it dominated SOAP and WSDL based architecture designs because of its simplicity,

ease in use, reliability and stability. In the beginning it didn’t have too much fame but with the

passage of time major frameworks for REST have started to appear and are still being developed

and become an integral part of JAVA 6.

12

Serialization

Serialization is the concept of flattening and marshalling data and objects. This concept is

used when we have to transfer objects over the internet. Objects are flattened into a serialized

form are send over the internet. SOAP and REST Web Services use serialization mechanism for

communication. There are different formats are available for serialization For example:

"RDF/XML", "RDF/XML-ABBREV", "N-TRIPLE", "N3" and "TURTLE“.

13

Chapter 2

LITERATURE REVIEW

Technology has started interacting more frequently than it has been doing. Design and

development field has also emerged with the same trend. So, as a developer while designing and

development there are number of factors to be considered i.e., ease of API use application scope

and user interaction style etc. Ext JS is a good open source technology that provides rich UI

widgets including windows, buttons, dropdown, dialogs and menu and user driver control

approach. Ext JS gets its plus points due to less processing at the server side ultimately making

application faster. Ext JS is compatible with any server processing POST requests and return

data in structural format.

Background History
Ext JS was truly a set of utilities and extensions build as yahoo YUI framework by 2006,

idea initiated by Jack Slocum. It started with version 1.1, initially named YUI-ext 1.1.With the

time its use increases and it got much popularity in market. Company then officially released

version 1.1.Far after integration of JQTouch and Raphael with Ext named the company as

sencha.

Release 2.0

In December 2007, company released version 2.0.comprising more interactive features

and comprehensive documentation and samples. For the time being backward compatibility to

version 1.1 is not provided.

Release 3.0

July 2008, version 3.0 released with new emerging features and controls including list

view and flash charting. Version 3.0 is having facility of backward compatibility to version 2.0.

14

Release 4.0

April 2011, company released version 4.0 having rich and enhanced elements and

controls. Revised drawing and theme packages provided. One change in architecture was the use

of MVC architecture that made the code easy and reliable.

Application Architecture Overview
For application development to be successful and easy there is need of a well defined

code organization and over all architecture. This helps to place it at best in market.

Architecture of this System is MVC architecture. That helps it organizing communication

between clients and server in efficient way and writing organized understandable and reusable

code.

MVC Architecture

It consists of three parts model, view and controller. There would be multiple views that

will interact and interchange data with model and controller. A high level architecture diagram is

shown below. Detailed architecture information would be provided later in next chapter.

 (Figure 2.1)

15

Model

 Model is invoked by controller. It communicates with underlying Data Store and

ontology to fetch requested data and hands over this data to controller. And controller is

responsible to generate response.

View

This layer is responsible for presentation of received data to the client side.

Controller

Controller receives requests from clients, fetches data from model and generates response

accordingly. Requests could any of PUT, POST or DELETE data.

Comparative study of other Ontology Editors

Since with the change of data model and structure of ontologies, there are number of

ontology editors in market observing different functionalities. But there are certain problems in

the sense of interaction and collaboration while working on them. Before building up a new

ontology editor there is need to have a look at the existing editors for their functionality,

problems and scope. So a brief comparison of various features for major and prominent ontology

editor is listed below:

Protégé

A web based as well as desktop tool using for browsing, editing and updating ontologies.

It has the support for graph view. Have no support for collaborative work and exception

handling. Furthermore, we cannot clearly express hierarchy if a class has more than one

parent.XML and RDF is the supported serialization formats. Do not support for data

administration.

16

OntoEdit

Normally support for the maintenance for ontologies through the graphical view.

Serialization formats used are XML, RDF, DAML+OIL .Allow the users to have collaborative

interaction to the ontology .Does not support for data administration.

WebOnto

A web based editor that supports collaborative browsing along with the editing and

browsing the ontologies. Provide a graphical interface that presents the ontology as a mesh like

structure. Have a limited support for checking consistency and data integrity. Do not support for

exploring and data administration.

OilEd

It is a simpler tool for creating and analyzing ontologies on a limited scale. Do not

support for XML format. Multiuser collaborative approach is also not available. Oiled is also

lack of merging, exploring and data administration facilities.

After all, the proposed solution contains all the missing functionalities that the above ontology

editors have. Moreover, there are two new features in this solution i.e. Data administration and

Classes Exploring that are not in any ontology editor we have previously discussed.

17

 Chapter 3

FUNCTIONALITY AND DESIGN

Web Based Linked Open Data Editor is a web based tool that will help domain experts to

design ontology collaboratively that means users would be able to see instant changes in

ontology as well as Linked Open Data administration. Let’s demonstrate the functionality of this

tool with an example.

SEECS Infrastructure Example

The basic idea is to provide a service that help to design the open infrastructure of

SEECS. Dr. Arshad hired some professionals to design and manage SEECS infrastructure. They

recommended him to use “Web Based Linked Open Data Editor” to design the domain model of

SEECS. Dr. Arshad approved it. They designed the ontology collaboratively using this tool and

shared it with each other (shown in figure 2). This ontology contains information of courses,

departments, faculty, administration and students. There are 4 people each of them is managing

data of one department (Dept. of Computing, Dept. of Electrical Engineering, Dept. of Basic

Sciences and Dept. of Humanities). Now there is structural change request in infrastructure and

there is a need to add a new faculty member, new student or some new department in the

ontology. So administrator will just add information to the ontology and this change will reflect

to the other members and they just don’t need to update their own ontologies because they are

working on the ontology that is on the central web server.

 (Figure 3.1)

Department

s

Courses

Teacher

s

Students

Person
DoE

E

DoC

DoCS

DoH

Typ

e

Typ

e

Typ

e

Typ

e

Is a
Is a

Teache

s

Tak

es

Teaches in

18

Application Architecture

Architecture followed to develop this web based application is MVC. It provided a lot of

benefits in the design and development of the overall system. Architectural diagram of Web

Based Linked Open Data Editor is given below.

(Figure 3.2)

19

Architecture details

Client Side is implemented in JQuery easy UI/JavaScript and on the Server Side there is a

controller that uses Jersey to implement RESTful web services and a Model that uses SPARQL

to query the ontology and fetch results in JSON format. There is a sequence of events that occur

when client requests some data from server.

Request

Client side generates request (GET, PUT and POST) to fetch data from server. Since

multiple users are accessing and using ontology so, multiple requests may be generated from

multiple clients.

Controller

On the server side Controller receives the request from client and on the basis of the

argument passed it asks Model to fetch data from the Ontology file or Data Store. Controller

implements RESTful web services using Jersey API. RESTful web service is used to represent

resources with URI.

Model

After that Model quires TDB Data Store or Ontology file to fetch data. Query is written

in SPARQL that is Query language of Semantic Web. Then Model returns results to the

Controller.

Response

Now here comes the interesting part. Controller receives the data from Model and

generates response to the client. In fact there are four kinds of request GET, PUT, POST and

DELETE. In case of GET request it just returns the results to the client who requested the data.

But in the case of PUT, POST and DELETE it affects changes on the server as well as there is

need to tell other clients about changes affected in Ontology or Data store. To do this CLODE

20

uses PUSH protocol to affect changes to the other clients and to implement PUST protocol it

uses Web Sockets.

Traditionally a client server application uses half duplex architecture. Here in this case

there are multiple users that are sending requests to the server at a time. And an updated view is

required for each user, so pooling is one solution for this kind of situation.

But, the common issue with the client server application i.e. burden over the server and delayed

response still lies there in this technique. Web socket help to avoid less traffic rendering among

the client and server using PUSH based architecture.

Web Socket

Web Socket is client server technology used for real time full duplex communication.

Mainly it is implemented in the web browsers. Before web sockets this type of communication

was implementing using comet channels but they have overhead issues. Web socket solves these

problems easily without comprising the security assumptions of the web.

(Figure 3.3)

How WebSocket Help in CLODE

As discussed above Web socket play an important role in CLODE. There are two kind of

request that are generated whenever it needs changes in the model.

21

PULL

PUSH

PULL Request

Whenever a client needs data from web service it generates pull request that fetches data

from the service and renders it on the client side using JQuery.

PUSH Request

This is the request that is generated from the server side whenever any kind of changes

occur on the model server need to notify these changes to all the other clients so that they can

render/ update their views also.

22

Chapter 4

RESULTS & DISCUSSION

The implementation of the proposed solution lead to some useful results those not only

include the basic principle of existing ontology editors rather some extended functionalities. The

extracted results are mainly residing on both client and server end but on the basis of their

functionality they are divided into following major components.

Basic Functionality
Like the other existing desktop and web based ontology editors, it facilitates the user to

create, edit and update the ontology. Later we will discuss about them in detail.

Create ontology

 User after having an account on CLODE can create a new ontology from scratch. User

can create classes and properties and define their annotations accordingly class can have

restriction on some property that will be editable and delete able. Below the figure shows the

working environment while creating ontology.

 (Figure 4.1)

23

Upload/Load from Repository

Once the user has created the ontology, he has options to share that ontology with the

other users working on the same tool. There are access privileges are defined i.e. public and

private. User is shown all the ontologies created by him, he can choose some user and name set

some ontology to public or private for that user. This sharing mechanism helps to have access to

their ontology and can manipulate that.

 (Figure 4.2)

Collaborative Work
The second component and one of the major objectives of proposed solution is the

collaborative work of people on CLODE at the same time. CLODE provides the functionality to

multiple users to get login and work on certain ontology concurrently. This helps the concept to

be built in relatively less time than the conventional solution takes. Changes and updating made

by the other users are viewable.

24

Real time change reflection
The most important and main objective achieved is the real time change reflection to

other user for a particular change. This functionally not yet developed in any web or desktop

ontology editor. So it provides the users more real time environment while developing some

concept collaboratively.

Comparative Analysis

In order to test and verify the results of our tool we have created sample ontology of

Cancer Diagnosis .There are two doctors as agents working on this ontology. After the making of

ontology over the network by multiple clients working collaboratively we have tested the

extracted results by making ontology on desktop protégé. Results are shown below.

25

Creating classes

 As the class should be a noun so here the agent creates 3 classes named as Doctor,

Cancer, and Patient. Below is the result of both CLODE and desktop protégé.

 (Figure 4.3)

Adding Annotations:

After adding the classes the agents adds some annotations on these classes for the help of their

identification easily.

 Label

 SeeAlso

 IsdefinedBy

 VersionInfo

 Comments

26

Agents can add the any of the annotations one or multiple times on a certain class. Below is the

figure showing some added comments. Below is the result of both CLODE and desktop protégé.

 (Figure 4.4)

Adding Description:

Super Class

 Here agent create a sample cancer class named as DMC and add its super as Cancer.

Restriction

Agent creates some restriction by selecting some property from object property tab and restricts

it with some class selected from the classes tab.

Individuals

Agent adds some individuals for Doctor Class named as Smith, Jhon and Rony.

27

Equivalent

Agent class adds any class that has same properties as equivalent class to some other class.

Disjoint

Similarly can add disjoint class for some selected class.

Below is the result of both CLODE and desktop protégé.

 (Figure 4.5)

Comparative Analysis:

Below is a table showing a high level functionality comparison of our tool with the

existing ontology editors.

28

 (Figure 4.6)

 Tool Web Based Multiple user

access

Real-time

Changes

Collaborative

Protégé

Web Protégé

OntEdit

CLODE

29

Discussion:

The web based linked open data editor is a complete package to create ontology and

update/manipulate new as well as existing ontologies providing the extended

functionalities and user friendly interaction.

Below is a snapshot of Michel Klein’s PhD thesis written on topic Change

Management for Distributed Ontologies. The research described in this thesis has been

performed within the KIRMIT project and has been carried out under the auspices of SIKS,

the Dutch Graduate School for Information and Knowledge Systems.

Here Michel has mentioned some must have change operations on ontology editing

and according to him it is a challenging task to implement all these change operations in a

single ontology editor.

30

 (Figure 4.7)

Our ontology editor has not only implemented the changes operations mentioned by

Klein rather it contains some extended functionalities as well.

31

Chapter 5

 RECOMENDATIONS

Although Collaborative Linked Open Data Editor is providing all the required functionalities.

It meets the objective of the project but we can improve this tool further by adding some more

functionality in it. Some of recommend changes are given below.

 Access permissions

 Import/Export

 Link Multiple Ontology Models

 Visual Representation in the form of Graphs

 Developing ontology using Drag/Drop tool in Graphs

 Introduce in community

 Cloud Deployment

Access permissions
 Currently there are two types of access permissions to the ontology files private/public.

What we can do, we can put more restriction on the access for example before sharing model we

can ask agent to specify the email addresses of the people with whom he wants to share the

ontology. We can also set permission like if the model is readable only or writeable only few

components.

Import/Export
 Currently there is only feature of uploading the file to the ontology editor. Whenever user

want to save his own file to the repository he needs to upload that file after login. We can further

improve it by adding import/export feature in which a user can export the ontology file to his

local system and do local changes and after that upload it again.

32

Link Multiple Ontology Models

 There may be multiple ontology models that are being developed in an organization,

maybe there is merger of two businesses and we need merge their models too. So we can add

functionality of linking two models and resolving the conflicts between them.

Visual Representation in the form of Graphs
 Currently in CLODE there are no graphs are being used for the visualizing model in the

form of nodes and links between them. We can use some JavaScript based graph library like

High Charts etc. to represent our ontology model in the form of graph, that would be helpful if

want to have a look to our overall ontology and links between nodes.

Developing ontology using Drag/Drop tool in Graphs
 We can also add a drag/drop feature for the adding/deleting of classes, properties and

individuals and add links between them. In this way agents will be able to develop ontology in

graphical mode using drag/drop feature.

Introduce in community
 We can introduce CLODE in semantic web community so that people know its benefits

and start using it frequently to get better performance.

Cloud Deployment
 To make our solution faster and scalable we can deploy this product on the cloud, as we

know the benefits of clouds like high performance, high availability data storage accessible via

industry standard interfaces.

33

Chapter 6

CONCLUSION

As we know that ontology are widely being developed for different domains because of

its benefits like interoperability, reusability and fast searching, Collaborative Linked Open Data

Editor will help organizations to model the concepts of their related domain collaboratively.

The organizations which are using Ontology in their businesses require changes and

updating in their Ontology instantly. Before Collaborative Linked Open Data Editor there were a

lot of tools being used for Ontology development but Collaborative Linked Open Data Editor

provides a scalable solution for real time collaborative ontology development. Here are some

non-functional features that CLODE is composed of.

 Real time collaboration

 Scalability

 User friendly interaction

 Central Repository

 Security

 Cost Effective

 Time Saving

 No Dependency

 Reduce inconsistency

Real time collaboration
 In an organization multiple agents work in the form of groups to model the knowledge of

some domain, so everyone should have knowledge of up-to-date model of that domain. CLODE

provides functionality to see instant changes being done on the model instantly that will keep the

Ontology model up-to-date.

34

Scalability

 Scalability has been a big issue for the web based applications. When number of users

increase web based applications dose not perform well. Usage of Restful web services and in

memory processing of the models in CLODE provides scalable solution, in which increase in the

user requests does not affect application performance too much.

User friendly interaction
 Interactivity in the application makes it useable and use full. CLODE uses JQuery

libraries that provide user friendly interaction as well as simplicity with beautiful controls and

components that increase the worth of application.

Central Repository
 Keeping information about model up-to-date when multiple agents are working on the

same model is difficult when every agent has a separate copy of that model. They face a lot of

difficulties while merging and updating their files to get final result. Model needs to be collected

from each agent when model is complete. CLODE provides a central repository for the storage

of files and it is shared between each member of the group working on the same ontology.

Security
 Security is a big issue when we have to place files on the central repository. CLODE

provides feature of access permissions like private and public. If you don’t want to share

ontology with others you can keep it private and to share it with others change the status of file

to public, it will be visible to every other members automatically.

Cost Effective
 In web applications there are different kinds of cost involved for example network cost,

I/O cost, when we need to fetch data from the file stored on the Disk or fetching data from

databases. In the case of CLODE it does in memory processing on the model, it loads model into

the memory and after handling the multiple requests if the model is dirty it writes back model to

the Ontology file. There are different kind of services running at the backend that keep on

checking the model if it is dirty and needs to update the file.

35

Time Saving

 In previously developed tools only one agent is able to work on the model file at a time

that takes a lot of time. But CLODE provided collaborative platform for Ontology development

that saves the time of developers developing the model.

Dependency Reduction
 While working in a group agent are some time dependent on the output of other agents to

do their tasks, it creates a lot of dependency if number of agents are large. CLODE provides the

feature of multiple accesses to the same model through which multiple agents can access model

at a time and can do instant changes. In this way time is saved and efficiency increases.

Reduce inconsistency
 Some times changes in a file by multiple agents create inconsistency, for example it may

occur that at the same time two agent are trying to change in same thing. CLODE using web

sockets provide the mechanism of queue processing for multiple requests.

36

REFERENCES:

http://roseindia.net [Ajax and JavaScript]

http://docs.sencha.com/ext-js/4-0/#/guide/application_architecture [MVC Architecture]

http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html [Ontology Editor Survey Result]

http://docs.sencha.com/ext-js/4-0/#!/guide/getting_started [Getting Started]

http://en.wikipedia.org/wiki/Ext_JS [EXT JS]

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData [Linking Open Data]

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html

[Toward Distributed System of Large Scale Ontologies]

http://www.ibm.com/developerworks/webservices/library/ws-restful/

[RESTful web services The Basic]

http://www.dl.acm.org/citation.cfm?id=1041421

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html [What is ontology?]

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/uebergreifend/er/IFI/AGStaab/Teaching/SS09/sw09/Ontology101.pdf

[Macieg Janik, Information system and semantic web, ontology design principle: 2]

http://www.sencha.com/deploy/dev/docs/

http://www.sencha.com/forum

http://www.sencha.com/blog

http://openjena.org/

http://protegewiki.stanford.edu/

http://www.oracle.com/technetwork/articles/javase/index-137171.html

http://roseindia.net/
http://docs.sencha.com/ext-js/4-0/#/guide/application_architecture
http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html%20%5bOntolog
http://docs.sencha.com/ext-js/4-0/#!/guide/getting_started [Getting
http://en.wikipedia.org/wiki/Ext_JS
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData%20%5bLinking
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html%5bToward
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html%5bToward
http://www.ibm.com/developerworks/webservices/library/ws-restful/%20%20%5bRESTful
http://www.ibm.com/developerworks/webservices/library/ws-restful/%20%20%5bRESTful
http://www.dl.acm.org/citation.cfm?id=1041421
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html%20%5bWhat
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/uebergreifend/er/IFI/AGStaab/Teaching/SS09/sw09/Ontology101.pdf

37

http://www.ibm.com/developerworks/webservices/library/wa-jaxrs/index.html

http://www.w3.org/TeamSubmission/turtle/

http://en.wikipedia.org/wiki/Ontology_(information_science)

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

http://www.vogella.de/articles/REST/article.html

http://www.ibm.com/developerworks/web/library/wa-aj-tomcat/

