
QoS for Real-time applications using
OpenFlow in Wireless Network

By
Sayed Qaiser Ali Shah

2011-NUST-MS PhD-IT-24

Supervisor
Dr. Adeel Baig
NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(September 2014)

Approval

It is certified that the contents and form of the thesis entitled “QoS for Real-
time applications using OpenFlow in Wireless Network” submitted
by Sayed Qaiser Ali Shah have been found satisfactory for the requirement
of the degree.

Advisor: Dr. Adeel Baig

Signature:
Date:

Committee Member 1: Dr. Adnan Khalid Kiani

Signature:
Date:

Committee Member 2: Dr. Syed Ali Hassan

Signature:
Date:

Committee Member 3: Dr. Nadeem Ahmed

Signature:
Date:

i

Abstract

Network Convergence is of vital importance due to limited network resources.
On one hand it decreases network cost but on the other hand it reduces Qual-
ity of Service (QoS). Due to increase in real-time network applications, such
as video conferencing and VOIP calls, there is a need to achieve fairness in
user demand through QoS. This task is more challenging in an Infrastruc-
ture less network due to increased network losses. QoS is not implemented in
Wireless Local Area Network (WLAN) using OpenFlow. We have proposed
an algorithm to support QoS in WLAN using OpenFlow architecture for
real-time traffic, whereby efficiently utilizing bandwidth and reducing flow
starvation. We named this algorithm as Adaptive QoS algorithm. This algo-
rithm allocates queues to flows using real time traffic analysis in OpenFlow
architecture. A specific queue is allocated to a specific type of traffic and
flows are dynamically switched based on increase in traffic demand if other
queues are under use. We have implemented our work on a physical test bed
to compare it with standard QoS mechanism. The results show bandwidth
efficiency over standard QoS mechanism and decrease in Packet loss rate.
Adaptive QoS algorithm has increased the overall bandwidth and decreased
the flow starvation.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by an-
other person, nor material which to a substantial extent has been accepted
for the award of any degree or diploma at National University of Sciences
& Technology (NUST) School of Electrical Engineering & Computer Science
(SEECS) or at any other educational institute, except where due acknowl-
edgement has been made in the thesis. Any contribution made to the research
by others, with whom I have worked at NUST SEECS or elsewhere, is ex-
plicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Sayed Qaiser Ali Shah

Signature:

iii

Acknowledgment

Up and above everything all glory to ALMIGHTY ALLAH. The Benefi-
cent, The most Merciful and Most Compassionate. It’s a great blessing from
Almighty Allah that gives me the health and strength to do this research
work. It is also made possible due to prayers of Parents and their great sup-
port and help.

I would like to special thank the Supervisor Dr. Adeel Baig and Com-
mittee Members

Sayed Qaiser Ali Shah

iv

Contents

1 INTRODUCTION 1
1.1 OpenFlow . 2
1.2 Problem Statement . 2
1.3 Thesis Organization . 3

2 LITERATURE REVIEW 4
2.1 QoS in legacy IEEE 802.11 . 4
2.2 QoS in IEEE 802.11e . 5
2.3 QoS with HCCA . 5
2.4 Software Defined Networks . 6

2.4.1 OpenFlow Specification 7

3 IMPLEMENTATION 11
3.1 Tools to be used . 11
3.2 Experimental Setup Architecture 11
3.3 Priority Queue Configuration 12
3.4 IMPLEMENTATION . 13

3.4.1 QoS API . 14
3.4.2 Flow database . 15
3.4.3 Dynamic Flow Allocator 15

4 RESULTS AND DISCUSSION 19
4.1 Test-1 . 19
4.2 Test-2 . 22
4.3 Test-3 . 24
4.4 Test-4 . 25

5 CONCLUSION AND FUTURE WORK 29
5.1 Conclusion and Future Work 29

v

List of Abbreviations

Abbreviations Descriptions

QoS Quality of Service

QoE Quality of Experience

WLAN Wireless Local Area Network

LAN Local Area Network

IEEE Institute of Electrical and Electronics Engineers

DCF Distributed Co-ordinated Function

PCF Point Co-ordinated Function

TGe Task Group E

VOIP Voice over IP

CSMA Carrier Sense Multiple Access

HCF Hybrid Coordination function

EDCA Enhanced Distributed Channel Access

HCCA HCF Controlled Channel Access

MAC Medium Access Control

AIFS Arbitration Inter-frame Spacing

SIFS Short inter-frame space

TXOP Transmission Opportunity

IETF Internet Engineering Task Force

ForCES Forwarding and Control Element Separation

IP Internet Protocol

DDOS Distributed Denial of Service

D-ITG Distributed Internet Traffic Generator

vi

List of Figures

1.1 OpenFlow Architecture (1) 2

3.1 Test bed Architecture . 12
3.2 Queuing Configuration . 13
3.3 Flow Chart of the System . 14
3.4 Flow Chart . 16

4.1 Bandwidth Scenario 1 . 20
4.2 Packet Loss Rate Scenario 1 20
4.3 Delay Scenario 1 . 21
4.4 Jitter Scenario 1 . 21
4.5 Bandwidth Scenario 2 . 22
4.6 Packet Loss Rate Scenario 2 23
4.7 Delay Scenario 2 . 23
4.8 Jitter Scenario 2 . 23
4.9 Bandwidth Scenario 3 . 24
4.10 Packet Loss Rate Scenario 3 25
4.11 Delay Scenario 3 . 25
4.12 Jitter Scenario 3 . 26
4.13 Overlapping flows in random time Scenario-4 26
4.14 Bandwidth for Adaptive QoS algorithm Scenario-4 27
4.15 Bandwidth for Standard QoS algorithm Scenario-4 27
4.16 Packet Loss Rate Scenario-4 28

vii

List of Tables

2.1 OpenFlow v1.0.0 match fields 8
2.2 OpenFlow v1.1.0 match fields 9
2.3 Comparison of OpenFlow Versions 10

3.1 Bandwidth requirements for Audio Applications 12
3.2 Bandwidth requirements for Video Resolution 13

4.1 Scenario 1 Parameters . 20
4.2 Scenario 2 Parameters . 22
4.3 Scenario 3 Parameters . 24

viii

Chapter 1

INTRODUCTION

Organizations use Wireless Local Area Network (WLAN) to cater mobility in
a local area network. WLANs have many problems like limited bandwidth,
losses because of collision with other wireless signals, delay etc. Multi users
in a network can run multi applications at the same time, which can lead
to congestion and starvation of applications because of limited bandwidth.
Hence to overcome these issues in wireless network we need some Quality of
Service (QoS) mechanism. QoS as a general term refer to overall performance
of network. QoS includes bandwidth, bandwidth, packet loss rate, jitter, and
delay etc. QoS is also important in computer networks in terms of Quality of
Experience (QoE), where users can experience better services. QoS in wire-
less network has always been a great challenge for researchers as it is difficult
to achieve and also different users have different requirements. Lot of research
is being carried out on QoS in wired network; However QoS is much more
challenging in wireless network due to losses and limited bandwidth where
applications can lead to starvation. Many algorithms have been proposed to
cater QoS in wireless network. Use of Real-time applications has increased
recently. So, while using Real-time Applications like Video Conferencing or
VOIP calls, losses are not tolerable. Hence we need some QoS mechanism for
better performance and to overcome the problems in networks, especially in
wireless network for Real-Time applications. A Lot of work is being done on
QoS where queues are created, but the existing QoS mechanisms cannot ful-
fill today’s dynamic requirements. Current QoS mechanisms lack capabilities
like adaptive behavior and dynamism. These mechanisms are either static
or needs manual configuration. To overcome some of the basic problems in
networks, software defined networks are introduced.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: OpenFlow Architecture (1)

1.1 OpenFlow

Software Defined Networks use OpenFlow protocol for communication be-
tween switch and controller. OpenFlow is still an emerging technology. In a
traditional network, switch works for both data and control planes. In case
of OpenFlow, switch works only for data plane and control plane is imple-
mented on a separate controller. The architecture is shown in the Fig. 1.1

The controller takes all the control decisions by defining a rule for each
flow. The rule is than sent to the switch, which maintains flow tables to
save flow entry for an individual flow when a packet arrives to the switch, it
first checks flow tables. If a flow entry is present in a flow table the switch
takes same action defined in the table for that specific flow, if the entry is
not present, then the switch sends that packet to the controller to define
a rule for that flow. We select OpenFlow because OpenFlow controller is
open source and we can program it accordingly. OpenFlow is used in wired
network for QoS. However it is not implemented in wireless network for QoS
yet.

1.2 Problem Statement

Bandwidth Wastage and Starvation of Applications due to lack of Adaptive
QoS mechanism for real-time applications in WLAN.

CHAPTER 1. INTRODUCTION 3

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses the state of the art related to the QoS, Wireless
Network, OpenFlow, QoS in Wireless Network, QoS using OpenFlow, and
reviews the relevant literature.

In Chapter 3, we discuss Experimental Setup and Implementation and
then proposed methodology is presented.

In Chapter 4, the results are given along with detailed discussions.

In Chapter 5, the conclusion and future work is presented.

Chapter 2

LITERATURE REVIEW

In this chapter, literature and background, related to QoS and OpenFlow is
presented.

2.1 QoS in legacy IEEE 802.11

IEEE 802.11 was first designed for best-effort burst traffic. The access func-
tion used was Distributed Coordination Function (DCF), which works in
distributed manner and handles every wireless station independently. DCF
uses contention manner channel access. Due to this contention access man-
ner there were some issues like fairness, high collision, unpredictable jitter
and delay etc. which leads to inefficient channel utilization. At that time re-
searchers felt that delay sensitive services like Voice over IP (VOIP) or video
flows should be forwarded with minimum delay so, for this purpose Point
Coordination Function (PCF) was introduced, which is legacy IEEE 802.11
(4). Main idea was to schedule stations transmissions in round-robin manner
by issuing polls for PCF enabled stations. This scheme introduced QoS to
some extent but lacks flexibility and versatility. As PCF at that time was
having low QoS management in IEEE 802.11 technology so was very limited
in IEEE 802.11a/b/g commercial products. Till now IEEE 802.11 a/b/g
standards of WLANs are considered only for best-effort traffic i.e. general
data transmission. An effort was put by IEEE 802.11 Task Group-E (TGe)
resulted in amendment of IEEE 802.11 standard and named it IEEE 802.11e
(5).

4

CHAPTER 2. LITERATURE REVIEW 5

2.2 QoS in IEEE 802.11e

Carrier Sense Multiple Access (CSMA) seemed efficient in IEEE 802.11 DCF
for burst traffic but was not suitable for predictable traffic. However, PCF is
contrary of DCF and it is not suitable for burst traffic but is suitable for pre-
dictable traffic. Another coordination function named Hybrid Coordination
function (HCF) was introduced in IEEE 802.11 e which combines both DCF
and PCF which makes transmission efficient in both burst and constant bit
rate traffic. Enhanced Distributed Channel Access (EDCA) and HCF Con-
trolled Channel Access (HCCA) was introduced by enhancing DCF and PCF
MACs. Both EDCA and HCCA used HCF which exists in QoS enabled AP.
EDCA defines access categories and prioritize different traffic streams using
different channel access times and is called as Arbitration Inter-frame Spac-
ing (AIFS). To achieve efficient channel utilization if collision appears than
packets having high priority is forwarded to Physical layer. Other significant
improvement was in case of transmission of frame bursts where frames are
separated by Short inter-frame space (SIFS). The improvement was that each
packet in a burst didnt require contention so, saved large amount of band-
width hence improved channel utilization whereas IEEE 802.11 e defines
Transmission Opportunity (TXOP). TXOP value defines time limit which
transmits any number of packets in a burst that belongs to same access cat-
egory and fits in that TXOP. TXOP values in EDCA are described through
beacon frames. In case of HCCA HC calculates individual TXOP values for
each polled packet from AP but making sure not to increase delay for other
flows. The algorithm which performs this function is scheduler dependent. In
EDCF IEEE 802.11 e researchers (6) show that using TXOP in contention-
free burst improves system performance but in case of certain type of traffic
delay increases. Simulation results in (7) show priority efficiency in EDCA
but in case of high network load flows with low priority suffers starvation or
in some cases complete flow blockage. In (8) researchers show that EDCA is
not efficient in case of real time applications because EDCA cannot ensure
QoS in high network load for high priority flows, which results in random
delay because collision probability is high. In (9) researchers show voice ca-
pacity analysis using prioritizing channel access mechanisms in WLANs and
they show that delays cannot be fully controller in EDCA.

2.3 QoS with HCCA

According to IEEE 802.11e both contention and contention-free access mech-
anisms in EDCA are combined, like in legacy IEEE802.11 contentions free

CHAPTER 2. LITERATURE REVIEW 6

and contention periods were controlled by DCF and PCF. Similarly HCF
combines HCCA and EDCA modes. Just like PCF super-frame in legacy
802.11, each super-frame in HCF starts with beacon frame and consists of
alternation contention and contention-free periods. In contention-free pe-
riod, access point polls stations for data as in PCF. QoS enabled stations
receive CF poll frames having TXOP allocations. These frames indicate
burst length of stations data to be sent to AP. Just after contention-free pe-
riod, contention period starts and allow stations contending for the channel
access. This period works on the basis of EDCA mechanism, handling virtual
collisions and providing priorities for 8 different packet queues. To achieve
desired QoS, access point needs scheduler which can handle constant and
burst flows, transmission without collision, ensure fairness and can use spec-
trum efficiently. Very few schedulers can handle delay sensitive multimedia
traffic. One of the efforts was J. Roys et al. proposal. The scheduler propped
by J. Roys et al handles uplink scheduler for multimedia traffic flows, capa-
ble of achieving the QoS requirement (10). The results show improvement
in bandwidth, delay and channel utilization. Later on researcher tried to
achieve QoS for delay sensitive real-time traffic but here is no such sched-
uler or algorithm up to date which can achieve desired results for real-time
applications in wireless network.

2.4 Software Defined Networks

Limitations in hardware components compel researchers to think about soft-
ware based networks and for this purpose many proposals were presented.
The most famous software defined networks are SoftRouter(11), Forwarding
and Control Element Separation (ForCES) (12) and OpenFlow (1). The Soft-
Router architecture (11) was proposed for network layer devices that allow
dynamic binding among network elements running control elements, which
are software based and data plane. Similarly ForCES (12) was project of
Internet Engineering Task Force (IETF) and the main purpose of ForCES
was to standardize communication between network elements and control
elements. Unfortunately ForCES didnt become interest of vendor commu-
nity worldwide. Based on same data and control plane separation mecha-
nism and standardizing communication, OpenFlow (1) architecture was in-
troduced. OpenFlow basically describes the way how software applications
program flow tables of switches. OpenFlow touched hearts of researchers
and became very hot area of research. Researchers in (13) documented dif-
ferences between OpenFlow and ForCES. According to (13) both OpenFlow
and ForCES standards decouple control plane from data plane. There is

CHAPTER 2. LITERATURE REVIEW 7

one major difference between ForCES and OpenFlow. ForCES describes
networking element and forwarding element and the way how they commu-
nicate? So using ForCES network architecture doesnt change. While using
OpenFlow network architecture modifies in a sense that data plane element
becomes simple device that forwards packets according to rules defined by
control element. Another difference between ForCES and OpenFlow is that
ForCES allows decentralize approach for controlling whereas OpenFlow uses
centralize approach for control plane.

2.4.1 OpenFlow Specification

OpenFlow specification describes open standard which allows software appli-
cation to program flow table of the switch. OpenFlow architecture has three
main components i.e. an OpenFlow switch, Controller and secure channel
as described in fig. 1.1. Switches maintain flow tables to forward packets.
A flow table has flow entries. Each flow entry contains match fields, in-
structions and counters. When packet arrives the switch it is compared with
match field. Certain action will be performed on packet if match is found.
Counters keep packets statistics. Before sending packet to controller packet
will be encapsulated. An OpenFlow controller is software program which
manipulates flow table in a switch with the help of OpenFlow protocol. The
interface through which controller and switch communicates is called secure
channel. There are different versions of OpenFlow protocol. The very first
released version of OpenFlow was 0.2.0. Right after the first version, 0.8.0
and 0.8.1 versions were introduced followed by version 0.8.2. Version 0.8.2
includes Echo Request and Echo Reply messages. Additional statistic infor-
mation, IP netmasks and many other updates were included in version0.8.9.
Than OpenFlow version 0.9 was introduced and finally the most widely de-
ployed version 1.0.0 was released in 2009. Currently used versions are v1.0.0
(14), v1.1.0 (15), v1.2 (16) and v1.3.0 (17). OpenFlow version 1.0.0 flow
table entry contains the following match fields given in Tab. 2.1 OpenFlow
version 1.1.0 has some more fields in flow table other than the version 1.0.0
given in Table. 2.2 and also unlike version 1.0.0, version 1.1.0 supports mul-
tiple flow tables instead of just single flow table. The major improvements
in OpenFlow version 1.2 were IPv6 addressing and IPv6 source address and
destination address matching. Another major improvement is connectivity
of single switch to multiple controllers which helps controllers to communi-
cate and can also perform hand overs. In case of failure fast recovery will be
ensured because of multiple controllers and can also perform load balancing.

The final version of OpenFlow specification i.e. v1.3 includes control
packet rate, adding cookies to packets. Table. 2.3 shows changes between

CHAPTER 2. LITERATURE REVIEW 8

Table 2.1: OpenFlow v1.0.0 match fields

Ingress Port

Ethernet Src

Ethernet Dst

Ethernet type

VLAN id

Vlan priority CoS

IP src

IP dst

IP Proto

IP ToS bits

TCP/UDP src port

TCP/UDP dst port

versions 1.0.0, 1.1.0, 1.2 and 1.3.0 presented in (17). In order to manipu-
late flow table we need to run software applications on controller. So, we
need network operating system. It works as intermediary layer between user
application and OpenFlow switch. Some of the examples of Network Oper-
ating Systems are NOX (18) (C++ based), POX (19) (Python based), Bea-
con (20) and Maestro (21) (both Java based). Recently BigSwitch released
open Java based Floodlight (22) controller. Another researcher Foster et al
(23) proposed network programming language named Frenetic to simplify
applications development. Similarly Trema (24) was proposed by NEC to
develop applications using C and Ruby and finally DreamersLab introduced
Node.flow (25), which is used to build JavaScript controller using Node.js
(26).

After the advent of OpenFlow researcher worked a lot in the areas of
Optical Networks and some of the contribution in case of Optical Networks
is shown in (27) (28).

Similarly in Network security to detect Distributed Denial of Service
(DDOS) attack detection OpenFlow is also used and is shown in (29). In
(29) DDOS attack is detected by Traffic analysis and centralized control,
where statistic information of flow tables are used to classify normal or ma-

CHAPTER 2. LITERATURE REVIEW 9

Table 2.2: OpenFlow v1.1.0 match fields

Ingress Port

Metadata

Ether Src

Ether Dst

Ether type

VLAN id

VLAN priority

MPLS label

MPLS EXP traffic class

IPv4 src

IPv4 dst

IPv4 proto/ ARP opcode

IPv4 ToS bits

TCP/UDP/SCTP src port. ICMP Type

TCP/UDP/SCTP dst port. ICMP Type

licious traffic. Similarly another research paper (30) in Network security is
published. In (30) source address validation problem is discussed and the
problem is solved by calculating flow path and traffic analysis using Open-
Flow controller.

To handle user demands and dynamic requirement work on QoS in wired
network using OpenFlow is also done. In (31) researchers have designed an
architecture that can detect malicious packets that are not allowed to use
QoS. Whereas QoS packets will be allowed to use fastest path in a network
but in case of congestion a problem arises and all the flows from switch are
deleted by in the solution which increases overhead. Researchers in (32)
have proposed OpenFlow architecture for multiple services load balancing.
In (32) researchers used multiple OpenFlow controllers to button the load of
multiple services and hence services loads are divided among controllers.

Some of the contribution is done in almost every area of computer net-
works including QoS in wired network. As compared to wired network there

CHAPTER 2. LITERATURE REVIEW 10

Table 2.3: Comparison of OpenFlow Versions

Specification 1.0.0 1.1.0 1.2 1.3.0

Widely deployed Yes No No No

Flow table Single Multiple Multiple Multiple

MPLS matching No Yes Yes Yes, bit added at
bottom of stack

Group table No Yes Yes Yes, more flexi-
ble

IPv6 No No No Yes, new field
added

Simultaneous
communication
with multiple
controllers

No No Yes Yes, auxiliary
connections
established

is lot of problems in wireless networks like limited bandwidth, wastage of
bandwidth, high delay, large number of losses etc. So, there is need to in-
troduce some QoS mechanisms in Wireless network to minimize bandwidth
wastage and starvation of applications due to lack of Adaptive QoS mecha-
nism for real-time applications.

Chapter 3

IMPLEMENTATION

This chapter explains tools used, experimental setup and practical imple-
mentation of our research on physical testbed in detail.

3.1 Tools to be used

To implement our research we worked on a physical Test bed because of
OpenFlow based wireless scenarios limitations in simulators and emulators.
For our test bed we used TP Link WR1043ND V1.8 Switch (36) and installed
OpenWRT firmware(37) on it which is described as Linux distribution for
embedded systems. We then installed OpenFlow package on the switch to
make it OpenFlow enabled. The version of OpenFlow used is OpenFlow
1.0(1). We used POX platform (19) for controller and the version is POX
carp.

3.2 Experimental Setup Architecture

After Test bed configuration we implement our work in WLAN IEEE 802.11.
In our implementation we attached switch with controller via wired medium
and attached Laptops to switch via wireless medium. Using Distributed
Internet Traffic Generator (D-ITG)(39) we generated both real-time (VOIP
and Video) and best-effort traffic in the scenario given in Fig. 3.1

VOIP and Video traffic requirements are given in Table. 3.1. We use
G.711 codec for VOIP and H.264 for Video traffic. Bandwidth requirement
for Video Application is given in Table. 3.2

11

CHAPTER 3. IMPLEMENTATION 12

Figure 3.1: Test bed Architecture

Table 3.1: Bandwidth requirements for Audio Applications

3.3 Priority Queue Configuration

To ensure flows out of starvation priority queues are created on switch. Three
queues are created on switch for real-time traffic and best-effort traffic shown
in the Fig. 3.2 Queue-1 is for Video traffic, Queue-2 is for VOIP traffic and

CHAPTER 3. IMPLEMENTATION 13

Table 3.2: Bandwidth requirements for Video Resolution

Figure 3.2: Queuing Configuration

Queue-3 is used for Best-effort traffic.Queues are created using dpctl com-
mand.

3.4 IMPLEMENTATION

To tackle bandwidth wastage problem, high packet loss rate, flow starvation
problem and lack of adaptive behavior we design a Control System for QoS

CHAPTER 3. IMPLEMENTATION 14

Figure 3.3: Flow Chart of the System

and introduce OpenFlow for QoS in wireless network. The design goals of
Adaptive QoS architecture are as follow:

Automated Control: The designed controller is able to perform traf-
fic analysis and then apply best configurations automatically without any
manual intervention.

Dynamic workloads: Traditional approach follows class-based static
priorities (33) (34) whereas Adaptive QoS controller works on adaptive basis
where QoS configuration set to utilize maximum bandwidth.

Efficient resource usage: Traditional approach follows distributed con-
trol, whereas OpenFlow approach uses centralized control. Due to this cen-
tralized control, network is provided with a global view. Flow Chart of
Control system for proposed model is shown in Fig. 3.3 .

3.4.1 QoS API

To work with QoS in wireless network, we integrate QoS API with OpenFlow.
OpenFlow (35) is an open specification; it provides large number of APIs to
control the flow of packets in a network. On packet arrival at OpenFlow

CHAPTER 3. IMPLEMENTATION 15

switch, the switch doesn’t forward the packet instead sends the packet to
the controller. Controller performs deep packet inspection and then defines
certain rule for packets of particular flow. The rule is than send to switch
and switch maintain flow table. After that when a packet of that flow reaches
the switch, instead of sending packet to controller the switch forwards the
packet on the network.

.

3.4.2 Flow database

After deep packet inspection controller saves all the information contained in
that packet, within flow database module. These information are maintained
on a controller for some specific time. This module helps in identifying
number of flows, type of flows i.e. whether the flow belongs to real-time
traffic or best-effort traffic.

.

3.4.3 Dynamic Flow Allocator

This is most important module of the system. Administrator must define
number of queues manually. This module dynamically assigns priority queues
to flow depending on type of flows and available bandwidth of priority queues.
If desired priority queue for certain type of traffic (flow) is full and does not
have the capability to pass another flow then the flow is switched on another
priority queue.

The Flowchart for our proposed solution is given in Fig. 3.4
The flowchart shows overall mechanism of our research which is shown in

the algorithm

1: Start
2: Data: Threshold , qi , i ,Fi ,ViF ,VoF ,BEF ,VideoFi ,VoiceFi ,TotalViFi ,TotalVoFi
3: Variable Declaration
4: Threshold: Total number of flows a queue can accommodate
5: qi : Queues {Limit i: 1 to 3 //q1 for Video, q2 for VOIP, q3 for BE

Traffic.}
6: Fi : Number of flow
7: ViF : Video Flag
8: VoF : VOIP Flag
9: BEF : Best Effort Flag
10: VideoFi : Number of video Flow
11: VoiceFi : Number of Voice Flow
12: TotalViFi : Total Number of Video Flows

CHAPTER 3. IMPLEMENTATION 16

Figure 3.4: Flow Chart

13: TotalVoFi : Total Number of VOIP Flows
14: Variable Initialization
15: ViF not set
16: VOF not set
17: BEF not set
18: Threshold equals queue bandwidth/packet size
19: Fi equals 0
20: VideoFi equals 0
21: VoiceFi equals 0
22: TotalViFi equals 0
23: TotalVoFi equals 0 {Repeat the steps for each packet received by Con-

troller}
24: Deep packet Inspection

CHAPTER 3. IMPLEMENTATION 17

25: if flow ← Video then
26: if Threshold ≥ TotalViFi then
27: Enqueue Fi in q1
28: else if Threshold ≤ TotalViFi then
29: Set ViF
30: else if Threshold < TotalViFi then
31: if Threshold ≥ TotalVoFi then
32: Enqueue Fi in q2
33: else if If One Video/Audio Flow not passing q3 then
34: Enqueue Fi in q3
35: else if VOF and BEF is set then
36: Drop BE (if any) if not than drop VoiceFi (if any)
37: Enqueue Fi in q1
38: else
39: Wait
40: end if
41: end if
42: end if
43: if flow ← VOIP then
44: if Threshold ≥ TotalVOFi then
45: Enqueue Fi in q2
46: else if Threshold < TotalVOFi then
47: Set VOF
48: else if Threshold < TotalVOFi then
49: if Threshold ≥ TotalViFi then
50: Enqueue Fi in q1
51: else if One Video/Audio Flow not passing q3 then
52: Enqueue Fi in q3
53: else if ViF and BEF is set then
54: Drop BE (if any) if not than drop VoiceFi (if any)
55: Enqueue Fi in q2
56: else
57: Wait
58: end if
59: end if
60: end if
61: if flow ← BE then
62: if Flows can accommodate then
63: Enqueue Fi in q3
64: else
65: Set BEF

CHAPTER 3. IMPLEMENTATION 18

66: end if
67: if Threshold < TotalVOFi then
68: Enqueue Fi in q2
69: else if Threshold ≥ TotalViFi then
70: Enqueue Fi in q1
71: else
72: Wait
73: end if
74: end if

Chapter 4

RESULTS AND DISCUSSION

This chapter shows performance of the system in terms of bandwidth, Packet
loss, Delay and Jitter. Although the main theme of the research is to im-
plement QoS in WLAN using OpenFlow but to evaluate performance of the
system we first implemented standard QoS model in WLAN using OpenFlow.

We implement different scenarios by limiting bandwidth using TC. For
better analysis we allocate bandwidth to queue-1 and queue-2 in a way so
that same number of VOIP and Video flows can pass through queues. We
call maximum number of flows that a queue can accommodate as threshold.
We consider bandwidth and packet loss parameters of our proposed model
to minimize flow starvation.

We find packet loss rate using following formula
Packet Loss = Total packets sent in a second – Total packets received in

a second.

4.1 Test-1

We take best case scenario with parameters shown in Table. 4.1
Threshold 20 means 20 Video flows can pass via queue-1 and 20 VOIP

flows can pass via queue-2 in ideal condition and 1 Video or VOIP flow can
pass via queue-3 which is for best effort traffic. Using proposed model and
standard QoS model we get bandwidth results shown in Fig. 4.1. Aver-
age Bandwidth experienced for proposed model is 3684.596986 Kbit/s and
for standard QoS the Average bandwidth value is 3324.9453 Kbit/s. While
analyzing the results we notice that 20 VOIP flows and 21 Videos flows are
successful and three flows drop. Similarly we experience the packet loss rate
shown in Fig. 4.2 The average packets loss rate for proposed model is 23516
packets (7.07 %) and packet loss rate using standard QoS model is 36724

19

CHAPTER 4. RESULTS AND DISCUSSION 20

Table 4.1: Scenario 1 Parameters

Duration 200 Seconds

Threshold 20 Flows

No. of Flows 45

No. of Video Flows 23

No. of VOIP Flows 22

Figure 4.1: Bandwidth Scenario 1

Figure 4.2: Packet Loss Rate Scenario 1

packets (11.65 %). The initial loss at about 8 seconds is because of adding
flows to OpenFlow switch. The above graphs show improvements in Band-
width and Packet loss rate of proposed model compared to Standard QoS
model but in case of Delay and Jitter standard QoS model performs better
than our proposed model because standard QoS model works only on param-

CHAPTER 4. RESULTS AND DISCUSSION 21

Figure 4.3: Delay Scenario 1

Figure 4.4: Jitter Scenario 1

eter comparisons whereas proposed model works on parameter comparison
and queuing status. Proposed model has high delay and jitter as compared to
standard but that delay and jitter is tolerable. Delay for Scenario-1 is given
Fig. 4.3 The delay graph in Fig. 4.3 shows that Average Delay for proposed
model is 0.019997 second whereas Average Delay for standard QoS model is
0.015889 second. The difference between proposed model and Standard QoS
model delay is 0.004108 seconds. Jitter for proposed model and Standard
QoS model is shown in Fig. 4.4 The Fig. 4.4 shows that average jitter for
proposed model is equal to 0.006827 seconds whereas jitter for standard QoS
model is equal to 0.026674 seconds. The difference between proposed model
and Standard QoS model is 0.019847 seconds.

CHAPTER 4. RESULTS AND DISCUSSION 22

Table 4.2: Scenario 2 Parameters

Duration 200 Seconds

Threshold 15 Flows

No. of Flows 31

No. of Video Flows 30

No. of VOIP Flows 1

Figure 4.5: Bandwidth Scenario 2

4.2 Test-2

Similarly for better evaluation we implement worst case scenario with param-
eters shown in Table 4.2. . The results are better in case of our proposed
model instead of standard QoS model even in worst case when there are
flows of only one type of traffic. From scenario-2 we get the bandwidth
results shown in Fig.From the scenario defined in Table. 4.2we get the band-
width Result shown in Fig. 4.5 The bandwidth graph in Fig. 4.6 shows that
average bandwidth for Adaptive QoS algorithm is 3478.830125 Kbit/s while
average bandwidth for Standard QoS model is 1658.806 Kbit/s. Similarly
Fig. 4.6 shows Packet loss rate graph. The packet loss rate graph in Fig. 4.6
shows that Adaptive QoS algorithm has 4648 (2.57%) packet loss rate while
standard QoS has 10460 (10.75%) packet loss rate. This is a handsome dif-
ference.

The graph in Fig. 4.7 shows that average delay for proposed model is
0.019997 seconds and average delay for standard QoS model is 0.015889 sec-

CHAPTER 4. RESULTS AND DISCUSSION 23

Figure 4.6: Packet Loss Rate Scenario 2

Figure 4.7: Delay Scenario 2

Figure 4.8: Jitter Scenario 2

onds. Hence difference between QoS and standard QoS model is 0.004108
seconds. The graph in Fig. 4.8 shows jitter. The graph trend shows that
average jitter of proposed model is equal to 0.006488 seconds and average

CHAPTER 4. RESULTS AND DISCUSSION 24

Table 4.3: Scenario 3 Parameters

Duration 200 Seconds

Threshold 10 Flows

No. of Flows 21

No. of Video Flows 9

No. of VOIP Flows 12

Figure 4.9: Bandwidth Scenario 3

standard QoS model jitter is equal to 0.010336 seconds. Difference between
QoS and standard QoS model is equal to 0.003848 seconds.

4.3 Test-3

For further verification we implement another scenario with parameters shown
in Table. 4.3 . By running the scenario for 200 seconds we get 1841.585771
Kbps average bandwidth for proposed model and whereas standard pro-
posed model shows 1602.1054 Kbps average bandwidth the trend is shown
in Fig. 4.9. Hence proposed model shows 239.48Kbps improvement instead
of standard QoS model.

The graph in Fig. 4.10shows Packet loss rate for both QoS and standard
QoS model. The graph shows total number of packets dropped is 5436 packets
which is 3.15 % in case of proposed model whereas standard QoS model
shows 31219 packets loss which is 18.90 %. The results show quite handsome
improvement in case of proposed model. Similarly delay for scenario-3 is
shown in Fig. 4.11. The delay graph shows that average delay for proposed

CHAPTER 4. RESULTS AND DISCUSSION 25

Figure 4.10: Packet Loss Rate Scenario 3

Figure 4.11: Delay Scenario 3

model is equal to 0.089023 seconds whereas average delay for standard QoS
model is equal to 0.077058 seconds. The difference between standard and
proposed model is equal to 0.011965 seconds.

Similarly Fig. 4.12 shows that average jitter of proposed model is equal
to 0.005286 seconds whereas average jitter of standard QoS model is equal
to 0.004124 seconds. The difference between QoS and standard QoS model
is equal to 0.001162 seconds.

4.4 Test-4

To analyze the trend we get another scenario i.e. Test-4 with 16 Video
flows and 7 VOIP flows running in random time with threshold 10 given
below. Dark gray lines show VOIP flows whereas light gray lines show Video
Flows running in random time. The flows start and end timing is shown in

CHAPTER 4. RESULTS AND DISCUSSION 26

Figure 4.12: Jitter Scenario 3

Figure 4.13: Overlapping flows in random time Scenario-4

Fig. 4.13. After running this scenario we got Bandwidth shown in Fig. 4.14.
The bandwidth graph shows 961.2659 Kbps bandwidth for Adaptive QoS
algorithm. Fig. 4.15 shows bandwidth graph for standard QoS Model and the
average bandwidth identified is 842.3772Kbps. By analyzing above graphs
Figure-9 and Figure 10 shows that both algorithms work same till 75 seconds.

CHAPTER 4. RESULTS AND DISCUSSION 27

Figure 4.14: Bandwidth for Adaptive QoS algorithm Scenario-4

Figure 4.15: Bandwidth for Standard QoS algorithm Scenario-4

Till 75 seconds there are 3 VOIP and 3 Video flows but at 76 seconds 3 VOIP
and 8 Video flows arrived so the number of Total VOIP flows reach 6 and
Video flows reach 11. As the threshold is 10 so Queue-1 i.e. Video queue is
overflow hence 1 flow will be dropped in standard QoS model and Adaptive
QoS algorithm will switch 1 Video flow to queue-2. At time 115 seconds
3 more Video flows arrived. So, total number of VOIP flows running is 6
and total number of Video flows becomes 14. Standard QoS model is not
capable to accommodate further Video flow as threshold is already met but
there is still room in Queue-2 and 3 for flows in Adaptive QoS algorithm.
Currently number of active flows in queue-2 i.e. VOIP queue are 7. VOIP
queue can accommodate 3 more flows so newly arrived three Video flows
will be switched and will pass via queue-2 that is why the graph shows high
bandwidth after 115 seconds in Adaptive QoS algorithm. The packet loss
rate graph in Fig. 4.16 shows 167(0.24%) packets dropped in Adaptive QoS

CHAPTER 4. RESULTS AND DISCUSSION 28

Figure 4.16: Packet Loss Rate Scenario-4

algorithm where as in standard QoS algorithm 6087(8.74%) packet loss is
observed which is handsome difference.

Chapter 5

CONCLUSION AND
FUTURE WORK

In this chapter, the conclusion with a summary of the research findings along
with future directions is presented.

5.1 Conclusion and Future Work

QoS is a crucial requirement in Wireless Networks due to limited bandwidth,
losses and delays. Current QoS mechanisms are either static or require man-
ual configuration. Lots of algorithms and protocols are developed but we need
some dynamic mechanisms which work according to traffic requirements. We
implement our algorithm on physical testbed using TP-Link access point, in-
stall OpenWRT firmware and enable OpenFlow on OpenWRT. Hence we
design Adaptive QoS algorithm in WLANs using OpenFlow, which allocate
queues to flows dynamically depending on queues available bandwidth and
hence minimize flow starvation and packet loss due to congestion in a net-
work. The bandwidth wastage was minimized in Adaptive QoS algorithm
because does not work like class-based static priority algorithm. In class-
based algorithm, traffic belonging to same class will be forwarded to the
defined queue. If desired queue is full that flows will be dropped. So, in
case of adaptive QoS algorithm i.e. current scheme queues are defined using
Linux TC. If queue is defined for certain type of traffic than traffic of that
type will be forwarded via that queue if that queue is full than other queues
will be checked and on availability of bandwidth in another queue remaining
flows of that type will be forwarded through another queue. Priorities are
also assigned to type of traffic. Video traffic is given high priority, VOIP
traffic is given medium priority and best-effort traffic is given low priority in

29

CHAPTER 5. CONCLUSION AND FUTURE WORK 30

other queue.
In future we will work to reduce latency. We are experiencing latency

due to two reasons. First is Packet loss rate and other is during decisions
taking by controller. So we will modify controller so that latency during
taking decisions can reduced. The latency which we are experiencing is not
that much greater but to get much better results latency can be reduced by
changing decision making criteria on controller.

Bibliography

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 38, no. 2, pp. 69–74, 2008.

[2] M. Ali, H. Qureshi, and M. S. Akhtar (2013), Analysis of growth in
Students Intake and Degree Awarding Contribution: A Comparison of
Stanford and MIT, MLDM 2013: International Conference on Machine
Learning and Data Mining, in press.

[3] Cisco, “Wireless lan. www.cisco.com.”

[4] L. S. Committee et al., “Ansi/ieee std 802.11: Wireless lan medium ac-
cess control (mac) and physical layer (phy) specifications,” IEEE Com-
puter Society, 1999.

[5] “Ieee standard 802.11e-2005 medium access control (mac) quality of ser-
vice enhancements (amendment to ieee standard 802.11 1999 edition
(reaff 2003) // standard, ieee: 2005.” IEEE, 2003.

[6] S. Choi, J. Del Prado, N. Sai Shankar, and S. Mangold, “Ieee 802.11
e contention-based channel access (edcf) performance evaluation,” in
Communications, 2003. ICC’03. IEEE International Conference on,
vol. 2. IEEE, 2003, pp. 1151–1156.

[7] D. He and C. Q. Shen, “Simulation study of ieee 802.11 e edcf,” in
Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th
IEEE Semiannual, vol. 1. IEEE, 2003, pp. 685–689.

[8] J. Yu and S. Choi, “Comparison of modified dual queue and edca for voip
over ieee 802.11 wlan,” European transactions on telecommunications,
vol. 17, no. 3, pp. 371–382, 2006.

31

BIBLIOGRAPHY 32

[9] X. Ling, Y. Cheng, X. Shen, and J. W. Mark, “Voice capacity analysis
of wlans with channel access prioritizing mechanisms,” IEEE Commu-
nications Magazine, vol. 46, no. 1, p. 82, 2008.

[10] J. Jackson Juliet Roy, V. Vaidehi, and S. Srikanth, “A qos weight based
multimedia uplink scheduler for ieee 802.11 e wlan,” in Signal Process-
ing, Communications and Networking, 2007. ICSCN’07. International
Conference on. IEEE, 2007, pp. 446–451.

[11] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The softrouter architecture,” in Proc. ACM SIGCOMM Workshop on
Hot Topics in Networking, vol. 2004, 2004.

[12] A. Doria, R. Gopal, H. Khosravi, L. Dong, J. Salim, and W. Wang, “For-
warding and control element separation (forces) protocol specification,”
2010.

[13] S. Hares, “Analysis of comparisons between openflow and forces,” Anal-
ysis, 2012.

[14] OpenFLow Specification, “Version 1.0. 0 (wire protocol 0x01),” 2009.

[15] B. Pfaff et al., “Openflow switch specification version 1.1. 0 implemented
(wire protocol 0x02),” 2011.

[16] OpenFlow Specification, “Version 1.2 (wire protocol 0x03).”

[17] OpenFlow Specification, “, version 1.3.0 (wire protocol 0x04).”

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[19] “Pox controller. http://www.github.com/noxrepo/pox.”

[20] D. Erickson, “Beacon,” URL: https://openflow. stanford.
edu/display/Beacon/Home. Online, 2013.

[21] Z. Cai, A. L. Cox, and T. E. N. Maestro, “A system for scalable openflow
control,” Technical Report TR10-08, Rice University, Tech. Rep., 2010.

[22] “Floodlight. [online]. available: http://floodlight.openflowhub.org.”

BIBLIOGRAPHY 33

[23] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, no. 9. ACM, 2011, pp. 279–291.

[24] “Trema, full-stack openflow framework in ruby and c. [online]. available:
http://trema.github.com/trema/.”

[25] “Node.flow. [online]. available: https://github.com/dreamerslab/
node.flow.”

[26] “Node.js. [online]. available: http://nodejs.org/.”

[27] L. Liu, H. Y. Choi, R. Casellas, T. Tsuritani, I. Morita, R. Mart́ınez, and
R. Muñoz, “Demonstration of a dynamic transparent optical network
employing flexible transmitters/receivers controlled by an openflow–
stateless pce integrated control plane [invited],” Journal of Optical Com-
munications and Networking, vol. 5, no. 10, pp. A66–A75, 2013.

[28] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “Openflow and
pce architectures in wavelength switched optical networks,” in Optical
Network Design and Modeling (ONDM), 2012 16th International Con-
ference on. IEEE, 2012, pp. 1–6.

[29] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on. IEEE, 2010, pp. 408–415.

[30] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
openflow/nox architecture,” in Network Protocols (ICNP), 2011 19th
IEEE International Conference on. IEEE, 2011, pp. 7–12.

[31] F. Zeng, “Design and implementation qos system based on openflow,”
in Anti-Counterfeiting, Security and Identification (ASID), 2013 IEEE
International Conference on. IEEE, 2013, pp. 1–5.

[32] M. Koerner and O. Kao, “Multiple service load-balancing with open-
flow,” in High Performance Switching and Routing (HPSR), 2012 IEEE
13th International Conference on. IEEE, 2012, pp. 210–214.

[33] S. Wang, D. Xuan, R. Bettati, and W. Zhao, “Providing absolute differ-
entiated services for real-time applications in static-priority scheduling
networks,” Networking, IEEE/ACM Transactions on, vol. 12, no. 2, pp.
326–339, 2004.

BIBLIOGRAPHY 34

[34] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” 1998.

[35] “The openflow switch consortium. openflowswitch.org.”

[36] “Tp-link: The reliable choice. www.tp-link.com.”

[37] “Openwrt: Wireless freedom. https://openwrt.org.”

[38] “Building openwrt. [online]. available:
”http://archive.openflow.org/wk/index.php/pantou : openflow 1.0 for
openwrt”.”

[39] A. Botta, W. de Donato, A. Dainotti, S. Avallone, and A. Pescapé,
“D-itg 2.8. 1 manual,” 2013.

