
 

 

 

 

 

 

Reasoning about Requirements at  

    Run-time Using AI Planning  

                    Techniques 

 
 
 
 
 
 
 
 
 
 
 
By  

Zara Hassan  

2011-NUST-MS-PhD IT-052  

 

Supervisor  

                                                  Dr. Nauman Ahmed Qureshi  

Department of Computing  
 
 

A thesis submitted in partial fulfillment of the requirements for the degree  

 of Masters of Science in Information Technology (MS IT)  

 

In  

School of Electrical Engineering and Computer Science,  

        National University of Sciences and Technology (NUST),  

Islamabad, Pakistan.  

 

(September 2014)  



 

 

 

 

 

 

 

Approval  
 
 
It is certified that the contents and form of the thesis entitled “Reasoning about 

Requirements at Run-time Using AI Planning Techniques” submitted by Zara 

Hassan have been found satisfactory for the requirement of the degree.  

 

 

 

Advisor: Dr. Nauman Ahmed Qureshi 

  

Signature: _______________________________________ 

Date: ______________________ 

 

 

 

 

     Committee Member 1: Dr.  Hamid Mukhtar  

Signature:  

 Date:  

 

Committee Member 2: Dr.  Kashif Sharif  

Signature:  

 Date:  

 

      Committee Member 3: Dr.  Awais Shibli  

Signature:  

 Date:  

 

 

i  



 

 

 

  

 Abstract  
 
 
The emerging domain of Self-Adaptive Systems (SAS) has gained significant 

importance in software engineering community over the recent years. Self-adaptive 

application by definition should modify itself at run-time as a response to the 

changes in system environment or changes in system\user requirements [14]. 

Nowadays mobile software applications are being widely used. Such applications must 

ensure high customizability and at the same time effective reasoning to meet their 

objectives so that their end-user goals are met. Explicitly, they should be able to: (i) 

reason about their own requirements and refine and validate them at run-time by 

involving end-users [16] (ii) provide solutions for the refined or changed requirements 

at run-time, for instance by using available services [10]. In short, requirements 

engineering for adaptive mobile applications requires efficient techniques which is a 

major challenge. In this context, my thesis will focus on extending the reasoning 

capabilities in Continuous Adaptive RE framework i.e. [10, 16] using AI techniques. In 

order to understand the aim of this area of research, initially we focused on requirements 

problem i.e. requirement specification that entails the satisfaction of end user goals at 

run-time, which is considered as a planning problem. Therefore, methods that can 

support run-time reasoning of requirements are desirable.  We focused on recently 

proposed techniques for automated reasoning with requirements goals and preference 

models to support run-time adaptations. These techniques are integrated into CARE 

(Continuous Adaptive RE), [10] which is a framework for requirements based 

engineering of self-adaptive system and continuous reappraisal of adaptive 

requirements at run-time.  

CARE framework has different components. In this thesis work, we are working on 

reasoning component of CARE framework, which provides effective decision making 

based on end-user preferences and goal models, supported by AI planning techniques 

subsequently providing reasoning about new solutions to the requirements problem. 

We envision that the utmost advantages of our approach are that the decision making 

process of self-adaptive system align directly with human accessible requirements 

models, facilitating thereby systematic engineering and accessibility both at design time 

and at run-time [10].  

 

 

 

 

ii  



 

 

 

 

 

Certificate of Originality  
 
 
I hereby declare that this submission is my own work and to the best of my  

knowledge it contains no materials previously published or written by another  

person, nor material which to a substantial extent has been accepted for the  

award of any degree or diploma at NUST SEECS or at any other educational  

institute, except where due acknowledgement has been made in the thesis. Any 

contribution made to the research by others, with whom I have worked  

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.  

I also declare that the intellectual content of this thesis is the product of my own 

work, except for the assistance from others in the project’s design and conception or in 

style, presentation and linguistics which has been acknowledged.  

Author Name: Zara Hassan    

Signature: ____________________ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iii  



 

 

 

 

 

 

 

Acknowledgment  
 
 
First of all, I am grateful to Allah almighty, who helped me in challenges that were 

faced while accomplishing this task. He is the One, gave me courage and sustainability 

whenever I was in need.  

I also thank my Family, specially my husband for his support and care at all times.  

My deepest gratitude goes to my research advisor Dr. Nauman Ahmed Qureshi for his 

support and guidance. I simply could not think of a more deep-sighted, knowledgeable 

and practical supervisor, who also understands the psychology of his pupils and 

introduces to them the finer points of the subject in the easiest possible manner.  

I am full of appreciation to the respected committee members Dr.Hamid Mukhtar, 

Dr. Kashif Sharif and Dr. Awais Shibli for their cooperation and efforts during my 

thesis. 

My SEECS fellows and colleagues duly deserve admiration for backing me up and 

assisting me in many little ways yet making a huge difference in overall progress.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iv  



 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my parents, husband and my little son who have been  

so close to me that I found them with me when I needed. It is their  

unconditional love that motivates me to set higher targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v



 

 

 

 

 

Table of Contents  
 
 
 
1 Introduction 1 

1.1 Problem Statement  .  .  . 1 

1.2 Objective .  .  . 2 

1.3 Relevance to National Needs 2 

1.4 Advantages 2 

1.5 Areas of Application 3 

1.6 Structure 3 

2 Literature Survey 4 

2.1 Overview .  .  . 4 

2.2 Self-Adaptive systems .  .  . 4 

2.2.1 Modeling dimensions of self-adaptive systems 5 

2.3 Self-Management 7 

2.3.1 Architectural Model for Self-Managed systems  .  .  . 8 

2.4 Requirement engineering of self-adaptive systems 9 

2.4.1 Goal Oriented Approach .  .  . 10 

2.4.2 Requirements Monitoring Approaches .  .  . 11 

2.5 Continuous Adaptive Requirements Engineering Framework 11 

2.5.1 RE at Design-Time vs RE at Run-Time 12 

2.6 Summary 14 

3 Proposed Architecture 15 

3.1 Proposed Process 15 

3.2 CARE Reasoning Methodology 16 

3.3 Goal modeling and HTNs 17 

3.4 Parsers and AI Planners 18 

3.4.1 Planning4J and PDDL4J .  .  . 18 

3.4.2 ANTLR V.3  .  .  . 19 

3.4.3 AI planners 19 

3.5 Summary 21 

 

 

vi  



 
 
 
 
 
 
 

TABLE OF CONTENTS vii 

 

4 CARE Reasoning Application 22 

4.1 Application Scenario 22 

4.2 Implementation of CARE Reasoning Framework  .  .  . 23 

4.2.1 Techniques of Goal Modeling 23 

4.3 Mapping Goal Model to PDDL using HTN Semantics 28 

4.3.1 Planning Domain  .  .  . 28 

4.3.2 Planning Problem .  .  . 28 

4.4 Development Environment of CARE Reasoning Framework .  . 31 

5 Evaluation 38 

5.1 Evaluation of Reasoning Framework .  .  . 38 

5.1.1 Task vs Time 39 

5.1.2 Evaluation Scenarios 40 

6 Conclusion & Future Work 44 

6.1 Conclusion .  .  . 44 

6.2 Future work  .  .  . 45



 

 

 

 

 

 

 

List of Figures  
 
 
 
3.1 Modified CARE Reasoning Framework 16 

4.1 Modelling Tools  .  .  . 24 

4.2 Working Day Module  .  .  . 25 

4.3 Holiday Module  .  .  . 26 

4.4 Pesudo Code for Planning Domain (Transportation Scenario) . 29 

4.5 Pesudo Code for Planning Domain (Packing Bag Scenario)  . 29 

4.6 Pesudo Code for Planning Domain (Daily Job Tasks) 30 

4.7 Pesudocode for User Planning Problem 1  .  .  . 30 

4.8 Pesudocode for User Planning Problem 2  .  .  . 31 

4.9 Pesudocode for User Planning Problem 3  .  .  . 31 

4.10 Algorithm for Getting Ready Module  .  .  . 32 

4.11 Algorithm for Transportation Module  .  .  . 32 

4.12 Algorithm for Holiday Module  .  .  . 33 

4.13 Algorithm for Holiday Actions Module 34 

4.14 User Profile 35 

4.15 Transportation Module 1  .  .  . 35 

4.16 Transportation Module 2  .  .  . 36 

4.17 Holiday Actions Module 36 

4.18 Holiday Actions Module 37 

5.1 Tasks vs Time Trend  .  .  . 39 

5.2 Plan1 40 

5.3 Plan2 41 

5.4 Plan3 42 

5.5 Comparison of scenarios 43 

 

 

 

 

 

 

 

viii  



 

 

 

 

 

 

 

Chapter 1  

Introduction  
 
 
Change is inevitable for any developed software. End-user preferences vary with respect 

to time. Moreover, software that is built for end-users encounters dynamic change 

requests for which software needs to cater for such change during its course of execution. 

With this premise, we focus on requirements which are expressed as goals. This gives 

rationale to change or reconfigure the software to deal with such dynamic changes at 

run-time. So there is a dire need to introduce systems that respond according to the changed 

requirements of user and continue working optimally. So capturing and satisfying the 

user requirements at run-time has posed itself as a new challenge for the software  

industry. Recent proposals in the area of software engineering of (SAS) self- adaptive 

systems have argued on methods and techniques needed to ensure such change 

management. We take the perspective of requirements engineering, since to the best of our 

knowledge less work has been done on providing reasoning capabilities to the software 

based on requirements. In this context, a novel framework CARE has been proposed in 

[2] which is a framework for requirements based engineering of self-adaptive systems and 

continuous reappraisal of adaptive requirements at run-time. The architecture for  

CARE has been proposed already but a lot of work is yet to be undertaken at its 

implementation level. So in our work we are extending/implementing reasoning 

component of CARE framework.  

 

1.1 Problem Statement 

Extending a reasoning component of CARE framework, which provides effective 

decision making based on end-user preferences and goal models, supported by AI 

planning techniques subsequently providing reasoning about new solutions to the 

requirements problem.  

 

1  



 
  
 
 
 
 
 

CHAPTER 1.  INTRODUCTION 2 

1.2 Objective 

1. To focus on reasoning component of CARE framework for automated reasoning 

of requirements at run-time.  

2. To design a system/architecture empowered enough to interactively take input 

from user and sense the operating environment; and consequently able to assess and 

reason about both at runtime to generate an intelligent and efficient solution/line of 

action. 

3. To use CARE framework for large problems to estimate its scalability in terms of 

model complexity, efficiency and meaningfulness of the reasoning process.  

 

1.3 Relevance to National Needs  

Most of the software failures in our software industry are due to the lack of  

understanding about requirements engineering for the intended software to be. A lot of 

work has been done in various fields of software engineering but nowadays requirements 

engineering has opened new venues for progress. To improve our work regarding 

different software applications we need to focus on system level requirements and the 

systems which are automated and self-adaptive.  

 

Software systems such as hospital management system, air traffic control system, 

service based application etc., requires precision, differently than end-user applications 

where needs change over time. Our focus is to provide effective methods and techniques 

to build software which are not only in accordance with respect to requirements but 

also reason the requirements at run-time such that they are able to meet the goals by 

adapting themselves.  

 

1.4 Advantages 

1. Allows self-adaptation of software applications.  

2. Allows reasoning of requirements at Run-time using AI techniques.  

3. Allows software applications to behave according to user needs.  

4. Enhances  productivity  by  smartly  removing  the  bottle  necks  by customized  

software behavior for each user.  



 
 
 
 
 
 
 

CHAPTER 1.  INTRODUCTION 3 

1.5 Areas of Application 

This research can be applied to almost all areas of software applications in which user 

goals can be fulfilled by different set of tasks or user requirement can be changed at 

run-time.  The areas of application may include Hospital Management Systems, 

Inventory Management Systems, game applications, Databases and Smart Searching 

Applications for Security Agencies at various levels and many others.  

 

1.6 Structure 

The thesis work is divided in chapters, a brief preamble of each is:  

 

Chapter  2  gives a detailed account of conducted literature survey for the research to 

materialize,  Chapter  3  Describes our proposed architecture of reasoning component, 

Chapter  4  Covers a case study to demonstrate the proposed architecture using goal 

model and HTN/PDDL (planning domain definition language) representation,  

Chapter  5  is about Evaluation of the implemented model, Chapter 6 contains of 

Concluding remarks and recommendations for possible Future Work.  



 

 

 

 

 

 

 

Chapter 2  

Literature Survey  
 
 
2.1 Overview 

The hot area of self-adaptive systems (SAS) has gained significant importance over the 

past few years owing to their adaptability to diverse scenarios. Many new issues in this 

field of SAS are identified and have been acknowledged .Currently the main focus of 

research is to provide run-time adaption to the software applications by using design 

time solutions. Although lot of work is done in this area and many issues are addressed 

but still requirement engineering of self-adaptive systems has not gained much attention 

which ultimately result in a gap between design-time and run-time adaptation 

activities. According to the main concept of self-adaptive systems, they should not only 

aware of their own requirements but also be able to monitor their end-users goals and 

preferences, operating context, domain conditions and etc.  

This chapter gives overview of self-adaptive systems, modeling dimension of 

Self-adaptive systems, requirement engineering of self-adaptive systems and CARE 

Framework.  

 

2.2 Self-Adaptive systems  

With the disclosure of long lived mobile and distributed systems it become very 

difficult to manually manage such large and complex systems.  This transform leads 

to the vision of self-managed systems which have a capability of self-adaptation, 

self-configuration, self-monitoring, self-healing, and self-tuning [2]. Basic aim of 

self-healing and self-adaptation is that the system should adapt or re-configure 

according to the new requirement specification or changes in its environment or report an 

exception [39].  

 

4  



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 5 

 

 

Self-adaptive systems are the one which are able to alter their response at run-time 

according to changes in the system operating environment or changes in system\user 

requirements.  There is a deprivation of consent among researchers and practitioners 

on the points of discrepancy among such software systems. These points of discrepancy 

are called modeling dimensions in [1] which focus on illustrative model of modeling 

dimensions for self-adaptive systems and classify them in four major groups i.e.  Goals 

(targets which software system should achieve), changes (which are the causes of 

adaptation e.g.  Change in environment, changes in requirements etc.), mechanisms 

(response of system towards change), effects (which are effects of adaptation).  

 

2.2.1 Modeling Dimensions of Self-Adaptive Systems  

The identified modeling dimensions of SAS are placed in four major categories  

in [1] as stated above. First category includes dimensions related to system goals. 

Category second includes dimensions related to the causes of self-adaptation. 

Category three includes the dimensions related to the mechanisms used to achieve 

self-adaptation. Finally fourth category includes dimensions associated with the final 

effects of adaptation on system.  

 

2.2.1.1 Goals 

The objectives that system should achieve are called goals [13] which are linked with 

life of system or with scenarios associated with the system. Goals may also be related to 

self-adaptive mechanism of software application or also to some infrastructure or 

Middleware framework which provide support to the application. Higher category of 

goal include following dimensions. 

 Evolution: This modeling dimension represents the alteration of goals within the 

system and it range from static to dynamic. In static evolution changes do not 

occur at run-time whereas in dynamic evolution changes occur at run-time.  

 Flexibility: This modeling dimension represents the flexibility of goals and is 

directly related to the level of precariousness related with the goal specification. It 

may span over three values: rigid, constrained and unconstrained.  

 Duration:  This modeling dimension is directly related with the validity of a  

goal during the systems complete life time. Duration of goal range from  

temporary to persistent.  Temporary goal is viable for short medium or long  



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 6 

 

      period of time while persistent goal should be valid throughout lifetime of system.  

 Multiplicity: This modeling dimension is concerned with the goal count related to 

the self-adaptive mechanism of system. Software system may have single or multiple 

goals.  

 Dependency: This modeling dimension is concerned with dependency or 

independency of goals on each other in case of multiple goals.  

 

2.2.1.2 Change 

Changes are source of adaptation e.g.  change in user or system requirements, changes 

in environment in which system is deployed, results in self-adaptation of system.  

Changes are classified in following four terms based on their place [1].  

 Source:  This modeling dimension is related to the origin of change.  A change can 

either be external for example changes in system environment or systems internal 

change.  

 Type: This modeling dimension is concerned with the identity of change which can    

either be technological, functional or non-functional. 

 Frequency: This modeling dimension identifies how often a specific change occurs.  

 

2.2.1.3 Mechanisms 

This group of dimensions is directly related to adaptation process as it analyzes the 

system reaction towards any change. This group of dimensions is related to the system 

reaction towards change. This means that they are actually related to the adaptation 

mechanism. All dimensions related with mechanisms group point towards the 

expected type of self-adaptation, degree of autonomy of self-adaptation of the system, 

How the self-adaptation of system can be controlled, and how it reacts to change. 

Following dimensions are related to this group:  

 Type: This dimension ranges from parametric to structural. 

 Autonomy: Is concerned with the level of external interference of human or system 

during adaptation.  

 Organization: Is either centralized or decentralized. 

 Scope: It range from local to global  

 Duration: Can be short, medium or long term. 



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 7 

 

 

2.2.1.4 Effects 

This group of dimension is related to the impact of adaptation on the system. This 

group include following dimensions.  

 Criticality:  This dimension is concerned with effect on system in case of failure of 

self-adaptation.  

 Predictability:  It means whether the effects of adaptation are predictable or not. 

 Overhead: This dimension is associated with the effects of adaptation on the QoS 

(quality of services) of system.  

 

2.3 Self-Management 

In software engineering there are series of conferences and workshops which started in 

distributed systems community with WOSS (Workshop on Self-Healing and 

Self-Managed Systems) [3, 4] and SEAMS (Software Engineering for Adaptive and 

Self-Managing Systems) [5]. Although the work discussed in them has large 

contribution towards self-management but it has not solved the some very important 

issues to move towards comprehensive and integrated approach.  So architecture based 

Approach is used in [2] because it has some benefits like Generality, Level of 

abstraction, Potential for scalability and Potential for an integrated approach. Many 

other researchers are also interested in component based architectural approach and 

have done lot of work.  For instance, Schmerl and Garlan [7] give the description of 

the usage of architecture models to support self-healing, Oreizy provide the abstract  

of architectural approach in [6] which include evolution management and adaptation. 

Van der Hoek , Taylor and Dashofy introduced the concept of using architecture 

evolution manager to provide supportive infrastructure for self-healing and run-time 

adaptation [40]. Rosenblum, Medvidovic and Taylor presented language and its related 

development environment in [41] for architecture based development. Hussein and 

Gomaa illustrated the usage of reconfiguration of software dynamically and the patterns 

of reconfiguration for software products in [42].  

 



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 8 

 

 

2.3.1 Architectural Model for Self-Managed systems  

Architectural Model for Self-Management is proposed in [2] based on robotics 

architecture because the first architecture proposed for self-management is  

very close to SPA architecture used in robotics.  This close relationship exists because a 

self-managed system is actually autonomous system like robot.  Both try to achieve 

their goal by their own without any human interaction. Robotics is based on three 

layer architecture of GAT [8].So in [2] researchers tried to translate the three level 

robotic architectural model for self-managed systems. The three layers are Control:  

which is feedback control, Sequencing: which is plan execution and Deliberation: is 

related to planning. In case of robotics the lowest layer i.e. control layer consist of control 

loops, sensors and actuators whereas in the case of self-managed systems it consist of 

interconnected components and self-tuning algorithms responsible for application 

functionality and also for reporting the present status of component to upper layers. It 

also supports component creation, interconnection and its deletion. The important 

feature of this layer is that it automatically detects failure and report to upper layer when 

some situation occurs and the current configuration of components is not designed to 

deal with such situation. The middle layer i.e. sequencing layer react to changes reported 

from lower layers. When a new situation is given this layer perform the sequence of 

actions to tackle a changed situation. It can create new components, change 

interconnections of components. Upper layer i.e. Deliberation layer is responsible for 

producing change management plans as a response to the request from lower layer and 

due to the new goals introduction.  

 

Architecture proposed in [2] is not implementation architecture but conceptual 

architecture. This reference architecture is used to shape the presentation of research 

problems suggested by the challenge of implementing self-managed systems. In this 

context at control layer researchers are mainly concerned with management at 

architecture level where system consists of interconnected components distributed over a 

network. A component consists of two types of services both provided and required and 

an externally visible state called mode [48]. Mode represents that whether a component 

is in active state or standby state.  



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 9 

 

To deal with complex components self-management will entail the online dynamic 

realization of operations. At change management level the main issue is to deal with 

distribution and de-centralization.  In complex applications distribution raise issues of 

latency, concurrency and partial failures .To cope with distribution and failures there is 

a need of autonomy locally while maintaining global consistency. At goal management 

layer, goals should be precisely specified, so that they are readable by machines.  High 

level goals are broken down into low level task that are processed by machine. This is 

actually an idea of goal oriented requirement engineering.  

 

2.4 Requirement Engineering of Self-Adaptive Systems 

In software development life cycle requirement engineering is the ground activity upon 

which the working of whole system to-be depends. Requirement engineering is itself a 

process which includes a sequence of activities i.e.  Requirement elicitation, analysis, 

specification and validation.  Requirements are not static entity but they change during 

whole software development life cycle and even during system working. At run-time 

requirements changes due to change in user needs, resources and change in environment. 

But it is difficult to find, reason and handle requirements at run-time for self-adaptive 

systems. Feather and Fickas work on requirement monitoring is a key contribution 

towards run-time requirements [17]. Continuous requirement monitoring is necessary 

because of the deviation of system behavior at run-time from requirement model which 

ultimately triggers the demand for system moderation. Such deviations need to be agree 

with the changing condition of environment so that the reasons can be identified and 

suitable adaptation is achieved.  This is called monitoring and switching by Salifu in 

[18] where the system adapts automatically in order to satisfy its goals. 

 

Previously Requirements engineering was entirely static, off-line activity, but it is 

run-time activity also. This idea is first proposed by Berry in [19].Berry also 

identify following four-level model for engineering requirements posed by system at 

run-time. (Level 1) include traditional RE activities done by analyst. (Level2) include 

run-time adaptive requirements. (Level 3) include requirement engineering done by 

analyst to determine adaptation mechanism which actually enables the system to adapt. 

(Level 4) include adaptation requirements that are associated to specific adaptation 

solutions.  



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 10 

 

 

2.4.1 Goal Oriented Approach  

Goal Oriented perspective is extensively used in variability modeling and also during 

early RE (requirement engineering) for eliciting, specifying, analyzing, and 

documenting the requirements.  The concept of goal oriented modeling and analysis 

revolve around the term goal which represent stakeholder requirement from the system 

i.e.  Functional and non-functional requirements.The high level user goal is decomposed 

into sub-goals using AND/OR decomposition method. The sub-goals are further 

decomposed into variety of tasks, the satisfaction of which results in the satisfaction of 

sub goals and ultimately users high level goal. The AND/OR decompositions provides 

a basis to reason about alternatives according to different user requirements.  

 

TROPOS methodology for goal modeling is used by Penserini in [20] to model run-time 

changes in user needs and preferences. It involves BDI (Belief-Desire-Intention) agents, 

which may switch from one behavior to another depending upon environmental 

conditions and change in user needs.  Goal alternatives in user requirement model simply 

map to software agent goal model in design and code artifacts which help in answering 

different questions related to run-time adaptation. Software requirements for self-adaptive 

systems represented as goal models may be plotted to BDI (Belief-Desire-Intention) 

architecture which result into agent-based design framework to capture adaptive 

requirements, which may be a progressive step towards agent oriented self-adaptive 

software systems.  

 

Liaskos in [21] used requirements driven approach to address the problem of changing 

requirements by configuring software using goal-oriented approach. He modeled user’s 

high level preferences as goal alternatives and then matched them with the system’s 

configurations. So in this way he supports reasoning about goal models to achieve 

automatic system configurations.  This approach i.e. goal based seems very useful to 

depict the behavior of autonomic elements.  

 

Zhu in [22] used goal models to derive patterns of autonomic elements. To express 

different autonomic patterns goal oriented RE approach and attribute based architectural 

style is used.  In the field of goal oriented requirement engineering Jureta [23] redefined 

the concepts of core requirement ontology. The core ontology is mainly based on goal 

oriented concepts and also on mentalistic notions which are called modalities. 

  

 



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 11 

 

The main use of this core ontology is that it help in understanding the given 

requirement problem in more precise way. But the concepts of this ontology are not 

sufficient to build complete self-adaptive software because they are not sufficient to deal 

with changing requirements aspect and also adaptive nature of requirements.  

 

2.4.2 Requirements Monitoring Approaches  

Although different goal oriented requirement approaches provide base for refinement of 

run-time requirements and architecture. KAOS goal modeling is used by Feather in 

[24] to monitor changing requirements and to reason run-time behavior of system, so 

that it can adapt dynamically at run-time using pre-defined adaptation methods.  

Robinson in [25] used KAOS approach to propose requirement monitoring  

framework which was previously named REQMon and now it is called EEAT i.e.  Event 

Engineering and Analysis Toolkit. This proposed framework actually monitor 

requirements related to web services.  Robinson approach is mainly based on a strategy 

to identify requirement obstacles to monitor them and to do so requirement analyst should 

define a monitor that help in retrieving the needed data .In this context a version of 

object constraint language is used to specify monitors.  

According  to  Salifu  requirement  monitoring  is  necessary  for  requirement variation 

and it help in composing the switching behaviors  [26]. But Salifu’s requirement 

monitoring approach is different from the approach used by Feather in [27]. As his 

approach also monitor problem variations besides the core requirements and also help in 

deep understanding of contextual variability.  But in self-adaptive systems aspects his 

approach is limited to only scenarios.  

 

2.5 Continuous Adaptive Requirements Engineering 

Framework 

The existing RE approaches anticipate run-time changes at design-time, so they are 

unable to accommodate new or changed requirements posed by the end-users at run-time. 

In this context a novel framework is proposed called Continuous Adaptive Requirement 

Engineering framework. CARE is user and goal oriented RE framework that captures 

and analyzes user requirements at run-time [7]. 

The main idea behind CARE is that the system itself plays the role of analyst i.e.it 

perform RE activities at run-time to fulfill end user preferences and adapt itself to 

meet modifications in user goals and preferences. 

 



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 12 

 

To achieve this adaptation system automatically updates its knowledge about its 

operational environment and end user needs. The requirements captured by system at 

run-time are called service requests [5] in CARE which can be expressed in XML 

format.  These Service requests consist of either new requirements or refined set of 

requirements expressed as goals, quality constraints, preferences, priorities etc.  These 

service requests are provided as an input to reasoning component.  The Reasoner 

performs three operations on incoming data (RRA). First it Evaluates the incoming 

RRA to determine which type of adaption (1 to 4) is required [6] before activating a 

planner. After evaluating the Plan activity activates the planner to generate task 

sequence and the selected plan is executed by Reasoner Adapt activity [7].  

 

2.5.1 RE at Design-Time vs RE at Run-Time  

CARE framework support two types of RE processes i.e. design-time and run-time RE 

processes which are dependent on each other. During RE at design time system analyst 

utilizes user needs and performs analysis on them to formulate requirement problem 

which in return help in formulating requirement specification. During RE at run-time the 

requirement activities are performed by SAS by involving end user in order meet 

requirement changes that are posed by user during system use.  

 

2.5.1.1 RE at Design-Time  

RE activities at design-time are performed by analyst. Analyst gathers requirements 

from stakeholders. Requirements gathered from stakeholder are expressed as goals and 

quality constraints. Goals may be mandatory goals or optional goals.  The whole 

requirement problem is represented as goal model which consist of nodes i.e. goals and 

edges i.e. relations between goals. Solution of requirement consists of collection of tasks 

which are performed in any suitable sequence to achieve its high level goal.  

 

RE at design time include a sequence of activities i.e. requirement elicitation, analysis, 

elaboration and specification. During elicitation phase requirements are gathered by 

analyst from stakeholders. These requirements are then formalized into goals, quality 

constraints and user preferences. Following the elicitation phase is analysis phase 

during which requirements for SAS are analyzed. Goals i.e. mandatory and optional 

goals are decomposed into sub goals and further into tasks. Soft goals are added in this 

phase to analyze the requirements that can influence other requirements or they can be 

influenced by each other. 

  

 



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 13 

 

The resulting requirement model is further extended in elaboration phase in which 

requirement problems are elaborated to describe system properties. Adaptive actions are 

specified as tasks to make sure that system behavior will meet them when operating in 

dynamic environment. In last phase i.e. specification analyst finds the set of tasks which 

satisfy mandatory goals. Specification is actually solution of requirement problem 

which is used by SAS at run-time to reason for adaptation.  

 

2.5.1.2  RE at Run-time 

In this phase the system plays the role of analyst. The user changing requirements, 

preferences and environmental changes are captured by system its self at run-time. 

Run-time requirements are called service requests which include user functional goals, 

preferences, context information (user or operational) etc. This concept of service 

request is introduced to manage requirements at run-time and is expressed in XML 

format to make them machine readable which are called run-time requirement artifacts 

(RRA) at this stage.  

As stated above RE activities at run-time are performed by SAS itself.  Following are 

CAREs main RE activities.  

 

Service Request Acquisition: This activity is carried out to gather service 

requests from end user. After acquiring RRA from user they are compared 

with existing requirement specification to find which operation to be 

performed. These operations allow Self adaptive system to reason for 

refining its requirements. For example add new goal or task, substitute 

existing goal or task.  

 

Service  Lookup:  Service  lookup  is  performed  to look suitable services 

according to users requirement, in a pool of services  of  the  SAS  or  using  a  

web  service  search,  e.g. Woogle or  Seekda. Services are find by comparing users 

keywords with service descriptions and a list of suitable services is displayed 

to user according to his preferences.  

 

Service Selection:  During service selection user is involved for the selection 

of service.  List of available services is displayed to the user for its 

selection. After user selection and confirmation RRA is again refined and 

details are added about the selected services.  

 

Update Specification: This activity is initiated to update the specification 

P0 after the RRA is filled with all user inputs and information from 

monitors. Update is done through the addition of new requirements or 

refinement of existing ones.  



 
 
 
 
 
 
 

CHAPTER 2.  LITERATURE SURVEY 14 

 

 

2.6 Summary 

Existing RE approaches work well where the requirements of the system  

remain static. Although these approaches handle run-time requirements at design time 

but they are unable to handle changes in requirements problem posed by the user 

during system working. To cater this problem of run-time adaptivity a novel 

framework was proposed named as CARE framework which tackle user requirements 

both at design-time and run-time. The conceptual architecture of CARE was already 

proposed which consist of various components interacting with each other to perform 

run-time adaptation.  

 

In this thesis work we are working on reasoning aspects of CARE framework  

by exploring goal modeling and AI Planning techniques. These techniques  

are integrated in care framework to perform run-time reasoning of requirements. The 

subsequent chapter explains our proposed architecture of CARE reasoning framework 

and brief description of goal modeling and AI planning techniques which we have used 

in our work to perform run-time reasoning.  



 

 

 

 

 

 

 

Chapter 3  

Proposed Architecture  
 
 
3.1 Proposed Process 

Fig 3.1 shows the modified architecture of CARE reasoning framework integrating 

goal modeling and automated planning techniques [31] [12].The requirements are 

represented as goal model [9] which not only represents the functional requirements but 

also the users preferences and non- functional requirements. In CARE these goal trees 

are considered as a pool of adaptive requirements which are directly translated into 

planning action theory [10] by using HTN semantics. This action theory represents that 

how user goals can be achieved in most suitable way under given conditions. The 

architecture of CARE reasoning component is self-adaptive where different 

components automatically interact with each other to support run-time reasoning of 

requirements. It consists of following set of agents:  

 User agent  

 Planning agent  

 Lookup agent  

 Update agent  

 

The  requirements  are  captured  from  the  user  through  the  user agent which 

are called run-time requirements artifacts (RRA).These RRA consist of 

various requirement elements e.g. User Hard and Soft 

Goals(G,SG),Preferences(P),Quality Criteria (Q) and also contain data 

coming from Monitors that senses the changes in Environmental 

Conditions(E). 

 

 

 

 

15  



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 16 
 
 

 
 
 
 
 
 
 
 
 

 

 

Figure 3.1: Modified CARE Reasoning Framework  

 

These users RRA are convertible into complete problem descriptions in 

which initial conditions contain the value of monitored variables, goal 

specification describe user goals and preference specification describe 

quantitative prioritization of preference goals [10]. These problem descriptions 

are passed to the planning agent who calls the AI Planner.  As soon as the 

planner gets activated the Lookup agent starts searching (using A* Algorithm) 

for the best possible plan (sequence of task) in domain description that satisfy 

user goals defined in given problem description. The resulting plan is 

displayed to the user again through the user agent. Re-planning is required if 

the prescribed plan is not executed properly and new plan needs to be 

generated with different initial conditions. The updater agent is responsible 

for updating the problem description according to the new requirements 

posed by user through user agent.  

 

3.2  CARE Reasoning Methodology  

Our CARE reasoning methodology consists of four main practices:  

1.  Requirements Engineering  

Input: Textual requirements from user/stakeholder  

Output: Requirement goal model  

2.  Reasoning Model  

Input: Requirement goal model  

Output: Reasoning model, i.e. problem and domain specification  



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 17 

 

3.  Runtime Architecture Modelling 

      Input: Reasoning model  

  Output: Architectural model, i.e. The run-time model used to represent and adapt    

the system at run-time.  

4.  Deployment  

Input: Reasoning model and architectural model  

Output: Running CARE Reasoning system  

 

3.3 Goal Modeling and HTNs  

In requirement engineering (RE) domain, goal modeling techniques have 

acquired major attention as it bridges the gap between users goals and the  

means to achieve these goals i.e. actions, tasks, plans. But goal based modeling 

frameworks [11-12] which are in use handle goals as Mandatory 

Requirements that must be satisfied by any suggested solution. Such 

modeling frameworks are unable accommodates the preference requirements 

that might be presented by the user. So a framework [9] is introduced for both 

specifying Preference Requirements and Priorities among them, and also for 

using them to select specifications that fulfill the Mandatory Requirements 

while best satisfying the Preference Requirements and Priorities.  

 

This idea started with goal model which express alternative sets of low-level 

tasks and operations that can fulfill high-level stakeholder requirements, 

known as goals. These low-level tasks/operations which fulfill high-level 

goals are known as tasks. Two types of user goals are known i.e. Mandatory 

goals and Preference goals. Former should be satisfied in any case while later 

change according to the priorities of user. Quantitative prioritization of 

Preference goals is used for evaluating alternative ways to achieve 

Mandatory goals. In order to generate plans\solutions a preference based 

planner is used to find alternatives that satisfy a given set of Mandatory and 

Preferred requirements [9].  

 

HTNs (Hierarchical Task Network) equip us to handle mandatory goals. 

The benefit of HTN to reason about goal model enhances the performance of   



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 18 

 

the planner  significantly, especially  when  its compared with the earlier 

attempts to use non-hierarchical planning. Tasks are organized in a 

hierarchical order in HTN and are reduced recursively into other subtasks. 

HTN domain consist of Operators and Methods which narrate possible 

means to achieve goals whereas HTN problem specification consists of a list 

of Predicates and High level Tasks that should be fulfilled. HTN based 

planner first reads domain and problem specification and then recursively 

performs HTN Tasks to achieve high level Goal.  

 

3.4 Parsers and AI Planners 

3.4.1 Planning4J and PDDL4J 

Planning4j is java based API used in AI planning [32].It provides 

convenience of using PDDL files in different planning applications. As we 

know that PDDL is language which is hard to handle and cannot be used 

directly in application. It require some intermediate parser or API to 

which can translate problem and domain file of PDDL into some other 

language used in corresponding application  and  also  call  a  planner  to  run  

PDDL  files  to  generate task sequence. In this context planning4j is very 

useful java based API which not only convert problem and domain files in 

specific way but also help in calling planner to run that files and translate 

PDDL files according to different planner.  

 

Planning4J consist of 3 basic components which are problem providers, domain 

providers and planners, which run problem and domain files. In PDDL, 

problem and domains can be specified in variety of possible ways but different 

planner implementations need different ways.  So for ease of use planning4j 

introduce providers for both domain and problem. Provider is actually an 

object which present problem and domain files in particular way. In 

planning4j (version1.1) there are 4 types of provider and their respective 

classes are called XXXX Problem provider and XXX Domain 

provider.These providers are: PDDL Object, PDDL string, PDDL File and  

IPDDL Writer.  



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 19 

 

Like  Planning4J  ,PDDL4J  is  another  open  source  library  which support 

java implementation of PDDL based planners[33].PDDL4J library contain 

parser of PDDL which also parse PDDL problem and domain files into 

java but this parser is configured to accept only specific requirements of 

PDDL like strips, typing,disjunctive and negative preconditions, conditional 

effects etc.  

 

3.4.2 ANTLR V.3 

In our work we are using ANTLR which is another tool for language 

recognition. It is powerful parser generator software that can be used to 

read process and translate text and binary files[34].It is both  used  for  

research  and  also  in  industry  to  build  all  kind  of languages, tools and 

frameworks. ANTLR generate a parser for any language from  a  grammar  of 

that  language.  The  generated parser  automatically  builds  parse  trees  which  

are  actually  data structures  of  that  language  representing  how  grammar  

matches the input. ANTLR also generate tree walkers that can be used to 

visit the nodes of trees to generate application specific code.  

 

As sated above PDDL is a language which cannot be used directly in planning 

applications. Its problem and domain files should be translated into some 

other known language i.e.xml, java or.NET etc.to use in planning 

applications. So we are using ANTLR parser to parse problem and domain file 

of PDDL to java file which are then fed to JSHOP2 planner to generate task 

sequence [35]. The JSHOP2 compatible PDDL grammar is fed to ANTLR 

which compile domain description and problem description written in 

JSHOP2 grammar to java code. The resulting java code can be used in any 

self-adaptive application to handle run-time requirements.  

 

3.4.3 AI planners 

As we know that planning problems are represented in PDDL, STRIPS or HTNs 

which are processed by AI planners to generate solution i.e.  task sequence. The 

existing AI planners can be divided into following three main categories:  



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 20 

 

3.4.3.1 Domain Specific Planners: 

These planners work only in single problem domain and are built from scratch for each 

specific problem.  So that efficiency of planning process can be increased. Following are 

commonly used domain specific planners:  

a. Remote Agent (Muscettola et al.  1998)  

b. Bridge Baron (Smith, Nau, Throop 1998)  

c. ICAPS (Nau, Regli, Gupta 1995)  

 

d. Mars Rover (Dias, Lemai, Muscettola 2003)  

 

3.4.3.2 Fully Automated Domain-Independent Planners:  

These planners include all classical planning systems.  These general purpose planners 

can be reused with many domains without much effort just by abstracting the basic 

planning mechanism.  

 

3.4.3.3 Hand-Tailorable Domain-Independent Planners:  

These are usually general purpose planners also called domain configurable planners but 

as compared to automated planners they provide rich domain description language in 

which input to planner also includes advice to the planner for how to search for a plan 

to achieve a goal/task.  Whereas in automated planners domain description only 

contain planning operators. In other words hand tailor able planners are such kind of 

domain independent planners which give option to their users to Specify 

domain-specific advice in domain description.  Some common domain independent 

planners based on HTNs are:  

a. SHOP  

 

b. SHOP2  

c.  JSHOP and JSHOP2  

 

d.  HTN PLAN-P planner  



 
 
 
 
 
 
 

CHAPTER 3.  PROPOSED ARCHITECTURE 21 

 

Why JSHOP2? In our self-adaptive application we are using JSHOP2  

planner [35] which is java implementation of SHOP2 [36].We are using JSHOP2 because it 

is an efficient planner and its basic functionality is based on planning formalism called 

hierarchical task network planning [16] [35].In most of the automated planning system 

planners have to try different possibilities before finding a workable plan because they 

do a trial-and error search of a large space of possible solutions.  But HTN planners 

perform this same search by applying HTN methods which describe how to decompose 

tasks into subtasks to create a network of planning problem [37]. This hierarchical  

network of tasks divided into subtask can be efficiently searched/ solved by  

planner to generate task sequence.  

 

3.5 Summary 

In  this  chapter  we  presented  our  modified  architecture  for  implementing CARE 

Reasoning framework. Our main focus is to design a system/architecture empowered 

enough to interactively take input from user and sense the operating environment; and 

consequently able to assess and reason about both at run-time to generate an intelligent and 

efficient solution/line of action. This feature of end user involvement at run-time to reason 

about requirements and providing plans for changed requirements at run-time by using 

available services distinguish CARE Reasoning framework from the state of the art 

approaches.  



 

 

 

 

 

 

 

Chapter 4  

CARE Reasoning Application  
 
 
4.1 Application Scenario  

Consider a human actor who is using INSTA PLANNER application which is  

installed on his Smartphone. The application act as a virtual secretary to the user which 

helps him in achieving his daily goals in most suitable and convenient way. The 

application covers basic daily tasks of various professionals i.e.  Lecturer, Surgeon and 

Businessman with the flexibility/adaptability of incorporating his preferred selections 

and forced constraints met during plan execution.  For instance, according to his 

preference of reaching his work place cheaply with no sense of urgency the application 

suggests him to move via train after evaluating the weighted preference against cost of 

executing the intermediate tasks in all possible cases as per defined Goal Model (see 

Figure 4.2,4.3).Application also remind him to pack different things before leaving and 

also remind him that he has to go to different places to complete his routine activities 

i.e.  go to gym, read news, write novel etc.  Moreover INSTA PLANNER also gives 

him suggestions for various activities on holiday based on different day time i.e. 

morning, evening and afternoon.  

Identification of set of Goals, set of AND/OR decomposed tasks along with  

their pre-requisite conditions to meet the goals, predefined methods encapsulating in 

order various tasks for meeting minor goals, system ground state conditions and in 

addition a pool of adaptive requirements rendering Planning problem to become a 

Problem Set. The goals/tasks are also differentiated as human and machine tasks for 

example Pack Bag, Carry Wallet, Pack Laptop are the tasks performed by user but they 

are suggested as a reminder by application.  System notifies Faulty ATM Machine and 

suggests user to Use Cheque to Draw Cash.Preference goals are also added for example  

 

 

22  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 23 

 

Reaching Urgent, Enjoying Route, Cost Effective, etc by assigning weighted 

metrics to each preference and evaluating the core heuristic function with the  

actions accumulated costs. 

 

4.2 Implementation of CARE Reasoning Framework 

The prototype application based on the above mentioned scenario in order to extend the 

desired features of adaptability and handling of run-time requirements entailed a Goal 

Model so designed that encompassed a few possible eventualities and recursive 

corrective actions. The graphically represented goal model is then mapped to its 

equivalent PDDL specification which is then fed to the planner to generate plans.  

The following sections explain the implementation of CARE reasoning application 

starting from goal model to its PDDL specification.  

 

4.2.1 Techniques of Goal Modeling  

There are different techniques of goal modeling which can be used to represent the above 

mentioned application scenario. These techniques include:  

1.  i*  

2.  KAOS  

These modeling techniques can be used at different stages of requirement engineering i.e. 

requirement elicitation, requirement specification etc. i* is used during early stages of RE 

when requirements are not clear enough and goals are not well defined.  It focuses on 

understanding enterprise goals and how they effect on the behaviors of actors .Whereas 

KAOS approach focus on relating the functional and non-functional requirements to the 

enterprise goals because it assume the sufficient knowledge about the current 

organizational state.  

 

4.2.1.1 i* and TROPOS 

i* modeling framework is modeling language used during early phases of RE  

for modeling and reasoning about heterogeneous actors with different goals  

 and task  in different problem domain.  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 24 

 

There are several modeling techniques which are based on i* framework and support 

modeling in i* i.e. TROPOS. TROPOS is both agent and goal oriented software 

engineering methodology that cover the complete software development process from 

requirement analysis to implementation. According to TROPOS methodology the 

notion of agent and other notion like actors, goals and tasks are used in all phases of 

development process.  TROPOS also support modeling of self-adaptive systems to design 

and execute requirement driven self-adaptive systems. Tools: There are number of 

prototype tools which are used for TROPOS methodology shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Modelling Tools 

 

4.2.1.2 KAOS 

KAOS is GOAL driven requirement engineering methodology. It enables analysts and 

requirement engineers in building requirement models which are also called KAOS 

models. It help in Formal Modeling of both functional and non-functional requirements 

in terms of goals, events, actions etc.[38]. In KAOS goal model the term requirement 

and expectations are used separately.  Requirements are tasks which should be achieved 

by software agent directly whereas expectations are tasks which have to be attained by 

the agent which is actually a part of system environment. 



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 25 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.2: Working Day Module



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4.3: Holiday Module  

 



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 27 

 

4.2.1.3 Goal Models 

(Figure 4.1 and 4.2) show the goal model of above mentioned INSTA PLANNER 

application scenario. The goal model of application is divided into two main 

modules i.e. working day module and holiday module.  It is actually a decomposition 

model i.e. AND/OR decomposition.  This model shows the alternative ways by which 

application suggest a user to achieve his weekly/daily tasks including doing job work, 

suggesting suitable transport, pack bag and do extra activities on holiday like 

washing clothes, cleaning home, go to gym, visit relatives etc. Application also 

suggests the most convenient route to the destination according to the requirement of 

user. Information about the route is a domain property.  This goal model consists of 

goals and tasks.  Ovals in the diagrams represent the goals which user wants to achieve 

and the hexagonal shapes represent the tasks which actor performs to fulfill goals.  Thus 

bag packed is an example of goal and pack gym cloths, pack laptop etc are examples of 

tasks performed by the user to achieve goal. 

An arrow with keyword Pre is drawn from one goal/task (origin) towards another 

goal/task (target) is precedence link which means that target cannot be started until the 

origin is fulfilled. For example user cannot drive the car if gas is not filled.  This is 

positive precedence .In negative precedence the target cannot begin if origin is satisfied. 

Precedence links are used to represent the constraints which are not directly the desire of 

any user but they are the desire of domain for example cash is required for buying ticket. 

Goal model in (Figure 4.2, 4.3) is a subset of i* Strategic Rationale Diagram but 

PRECEDENCE LINKS are additional to the main concept of i*.This concept of 

precedence links taken from Goal model in [9].  

 

All the above mentioned goals that are discussed up till now are mandatory goals 

that need to be fulfilled for the root goal satisfaction. Another type is preference goals 

which are the goals whose fulfillment is desired but not compulsory because there non 

fulfillment dose not result in the dissatisfaction of root goal. Preference goals may be 

Hard or Soft goals. The goals shown as cloud like ovals are soft goals and there is no 

specific criterion to decide that whether these goals are satisfied or not. For example 

Enjoy Route is soft goal and it is difficult to decide that how much user enjoyed the 

suggested route. 

 

A plan [9] is devised for root goal satisfaction. Plans are suggested by planner based on 

the preferences of user .For example following sequence is a plan when user wants to 

reach urgent and also does not have cash in wallet and gas in car : t1251 ,t1252 ,t1253, t1241 

,t1242 ,t1243 , t1233 ,t1234 .  

 



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 28 

 

 

4.3 Mapping Goal Model to PDDL using HTN  

This section explains how the above mentioned User Goals, Sub Goals, Preferences and 

Tasks are translated to HTN and JSHOP2 compatible PDDL specifications to solve the 

planning problem and how action parameters and domain predicates help in the richer 

representation of domain and its states:  

 

4.3.1 Planning Domain  

Domain description is the knowledge base we prepare for the planner in order to enable it 

to solve the problems presented to it with regards to this specific domain. The domain 

description if done to the minutest details, catering for all the possible actions that might 

be involved in solving the possible problems enhances the planner’s response in giving 

valid solutions or task lists. Domain is composed of various predicates, operators, 

axioms and methods. JSHOP2 does not operate on standard PDDL, but a variant of it 

defined in LISP and dictated separately in its own grammar. Therefore JSHOP2 

compatible translation of prior mentioned scenario through its equivalent logical 

model has been accomplished keeping in view the possible requirements that might be 

brought forth at run-time.  

For the Transport Module of the application the modes of transport were defined in a 

single category i.e. (Via  ?Mode). Similarly all the locations as (Present-At ?Loc) and 

so on. Reaching the work place via each selected mode has been represented by means 

of methods, which are further subdivided into a set of ordered primitive tasks for each.  

Since the selection of mode of transportation had to be made upon evaluation of user 

based preferences, axiom of (:- Mode-Sel ?Mode) is used to reason/evaluate and chose 

the preferred method of reaching the destination work place. The pseudo codes of domain 

descriptions for different scenarios of reasoning application are shown in Figure 4.4, 

4.5, 4.6:  

4.3.2 Planning Problem  

Planning problem is the precise description of planning problem at hand, which is 

expressed after declaring the Ground State of the domain with the help of domain 

predicates. Problem domain also includes the identification of various object types i.e. 

actors in our planning problem along with Problem specific knowledge. For example 

transport module of the application has identified three different modes for reaching 

work place, each attributed with certain preference depending upon the user 

specification. The corresponding problem for above mentioned transportation domain 

includes the declaration of Objects i.e. Transport (walk, car, train), Locations  (Home, 

Gas-Station, Bank, WorkPlace, Subway-Station-A, Subway-Station-B) and their user 

defined metric preferences for each.   



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 29 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 4.4: Pesudo Code for Planning Domain (Transportation Scenario)  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 4.5: Pesudo Code for Planning Domain (Packing Bag Scenario)  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 30 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

Figure 4.6: Pesudo Code for Planning Domain (Daily Job Tasks)  

 

 

 

 

 

 

 

 

 

Figure 4.7: Pesudocode for User Planning Problem 1 

 

 

Fig 4.7, 4.8, 4.9 show pseudocodes of problem description for transportation scenario and 

some other problem scenarios posed by the user.  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 31 

 

 

 

 

 

 

 

 

 

Figure 4.8: Pesudocode for User Planning Problem 2  

 

 

 

 

 

 

 

 

 

Figure 4.9: Pesudocode for User Planning Problem 3 

 

4.4 Development Environment of CARE Reasoning 

      Framework 

Prototype application named i*INSTA PLANNER has been developed to validate 

proposed architecture of CARE reasoning framework. Application has been developed 

using java Net Beans IDE, MySql and JSHOP2 AI-Planner which is java version of 

SHOP2.i*INSTA PLANNER is AI-Planner based self-adaptive application that 

incorporate online Web Services, offline MySql database, Virtual Sensors and generates 

plans to achieve daily goals of user based on data coming from virtual context sensors, 

web Services and user preferences.  

In the following, implementation of different modules of application is explained 

with the help of algorithms. (See Fig 4.10, 4.11, 4.12, 4.13)  

 

Application  gets  input  from  the  user  through  UI  and  generates plans 

suggesting  user  the  future  course  of  action  to  be  adopted based on his 

selected preferences. Following Screen shots show the implementation of 

application w.r.t to above goal models. (See Figure 4.14, 4.15, 4.16, 4.17, 4.18)  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 32 

 

 

 

 

 

 

 

 

 

Figure 4.10: Algorithm for Getting Ready Module  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Algorithm for Transportation Module  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Algorithm for Holiday Module  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Algorithm for Holiday Actions Module  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: User Profile  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Transportation Module 1  



 
 
 
 
 
 
 

CHAPTER 4.  CARE REASONING APPLICATION 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Transportation Module 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Holiday Actions Module  



 
 

 

 

 

 

 

CHAPTER 4.  CARE REASONING APPLICATION 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Holiday Actions Module  



 

 

 

 

Chapter 5  

Evaluation  
 
 
In 1998 , Drew McDermott organized first international planning competition  

(IPC)[49,50,51,52] to evaluate AI planners in which only five planners have competed 

but many more planners competed in succeeding events of IPC which stimulated 

increase in planners performance. This results in improvements of planning system not 

only in terms of time to generate task sequence (plans) but also in terms of domain 

models . Fourth IPC results in the enrichment of domain models with derived predicates. 

Fifth IPC results in addition of soft goals in the model of planning problem.  

In accordance with the results of International Planning Competition it was observed 

there are mainly three dimensions that are vital in the evaluation of any planning 

system/application:  

 

1.  Time taken by the planner to generate plans.  

2.  The number of problems presented to the planner.  

3.  Quality of plans generated by the planner.  

 

5.1 Evaluation of Reasoning Framework  

Proposed CARE Reasoning framework is evaluated on basis of two parameters:  

1.  Time taken by the planner to generate plans.  

2.  The number of adaptation scenarios supported by application.  

 

 

 

38  



 
 

 

 

 

 

 

CHAPTER 5.  EVALUATION 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Tasks vs Time Trend  

 

5.1.1 Tasks vs Time 

The adopted technique incorporates Java front end UI, integration of Context Sensors 

in order to impart ability to re-plan and adapt at run-time, seamless transition of 

Domain and Problem descriptions in PDDL to Java and their parsing to Java Based 

JSHOP2 for extraction of requisite plan using Java back end. The complete cycle as 

depicted in Fig 3.1 when traversed should take considerably more time than existing 

non-adapting frameworks, but keeping in mind the performance aspect of approach the 

Goal Model is disintegrated into Sub-Goal Models; which are implemented with each 

having a considerably smaller domain, thus reducing the search space for each  

sub-problem and substantially enhancing its performance.  

 

Re-planning required the multiple iterations of search space for reaching the most suited 

plan, this paradigm has been addressed by considering maximum possible scenarios 

(discussed below) that may pose user with unpredictable situations and incorporating 

them in Goal Model and generating Search Tree bifurcations at the First Step Depth. Fig 

5.1 depicts the time consumption for tasks to fulfill the final goal state.  



 
 
 
 
 
 
 

CHAPTER 5.  EVALUATION 40 

5.1.2 Evaluation Scenarios 

Our CARE Reasoning application i.e.  i*INSTA PLANNER is divided into two main 

modules. The first module covers the working day tasks (plan) of any professional e.g. 

surgeon, lecturer or business man etc. Second module is concerned with the 

weekend/holiday activities of individual.  Following scenarios are built to verify the 

above mentioned architecture.  

 

5.1.2.1 Scenario 1 

This scenario is taken from the working day module of application which does not 

involve CARE technology.  

a. In this simple case planner application just remind user to carry different  

things (based on some initial conditions) before leaving for job and also suggest him some 

tasks that he has to perform before leaving home.  

b. This scenario does not involve input from the user and CARE context sensing   

mechanism. 

c. The generated plan is only dependent on the location of different thing  

that he has to pack before leaving home.  

d. Fig 5.2 show the plan suggested by daily planner of application as reminder of 

packing different things before leaving based on initial conditions and final goal state 

(without using CARE technology).  

 

 
 

 

 

 

 

 

 

 

 

 

   Figure 5.2: Plan 

 

 



 

 

 

 

 

 

CHAPTER 5.  EVALUATION 41 

 

5.1.2.2 Scenario 2 

This scenario is also taken from working day module but it involves CARE  

technology. In this case transport is suggested to the user and by using  

CARE methodology system itself analyzes the user preferences (based on  

some initial conditions), environmental conditions and user/system context.  

 

Case1:  

a. John asks for application suggestion for his suitable mode of transportation to reach 

job place.  

b. The context sensing mechanism of application starts checking the weather forecast in 

his town.  

c. If weather is sensed pleasant and no forecast of rain is found then train is  

suggested as the suitable mode of transport for John.  

d. After suggesting train application checks if John has cash.  If no cash is  

found then planner is again invoked for some new sequence of tasks (re-planning).  

e. Planner suggests John to walk to bank and draw cash, meanwhile application also 

check that whether the nearby ATM is working or faulty.  

f. Fig 5.3 shows the plan generated for John for his course of actions. 

  

 

 

 

 

 

 

 

 

 

Figure 5.3: Plan  

 

 



 
 
 

 
 

 

CHAPTER 5.  EVALUATION 42 

 

                                   Case2: 

a. Any changes in weather conditions again activate the context sensing mechanism 

of application and it starts checking the weather conditions.  

b. If weather is sensed cloudy and forecast of rain is found then planner is again 

invoked and car is suggested as the suitable mode of transport for John.  

c. After suggesting car, application automatically checks if John has gas/petrol in car by 

fuel sensor. If no/less fuel is found, planner is again invoked which start re-planning 

according to the changed situation.  

d. Fig 5.4 shows the plan generated for John for his course of actions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Plan  

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 

CHAPTER 5.  EVALUATION 43 
 

5.1.2.3 Scenario 3 

This scenario is taken from holiday module of i*INSTA PLANNER application in 

which system not only plan and re-plan for user but also perform some actions to 

facilitate him in achieving his goals(as suggested by planner).  

a.  John wake up early morning and start i*INSTA PLANNER that play a role of his 

smart secretary.  

b.  i*INSTA PLANNER automatically checks the time of day. Early morning it suggest 

John different actions that he has to perform in morning like Prepare Breakfast, Clean 

snow, Clean house etc.  

c.  In afternoon planner is invoked automatically and suggest john that he  

has to perform some important tasks in afternoon like Do Laundry, Prepare Lunch 

etc. It also gives him some options for lunch based on his preference that whether he 

wants some Healthy Food or Instant Food. Moreover planner also suggests sequence of 

task to prepare selected lunch item.  

d.  As soon as evening time is sensed i*INSTA PLANNER start generating  

different excursion plans for John like Visit Relatives, Go for Movie or Go for Dinner.  

e.  System also perform some actions to help John to achieve final goal state  

 for example if he selected Go for Dinner, application start searching for the nearby 

restaurants available in his city based on his preference of Chinese, Continental or Fast 

Food.  

f.  If he selected Watch Movie as his goal then application give him options  

of nearest cinema in his town and current movies in that cinemas with their show 

timings. Application also gives him option for online reservation of seats to achieve 

hundred percent goal state.  

 

 

 

 

Figure 5.5: Comparison of scenarios 

 

 

 

 

 

 



 
 

 

 
 
 
 
 
 
 
 
 
 

Chapter 6  

Conclusion & Future Work  
 
 
6.1 Conclusion 

In  this  thesis  work  we  have  proposed  architecture  to  implement  reasoning 

component of already proposed CARE framework which we named as Care Reasoning 

Framework (Figure 3.1). The proposed reasoning framework is based on control loop 

having three main components.  It includes, Monitor/Evaluate component: which 

ensures that the information is received from the monitoring operations.  The Planner 

component: responsible for activating the planner to generate sequence of tasks to 

determine adaptation. The Adaptation component: is mainly associated with the 

execution of the  plan selected by the user.  

This framework helps in dynamic problem formulating of the requirements of 

Self-adaptive systems. Dynamicity is due to the changes in user needs for example 

changes in user goals and preferences, contextual changes or changes in available 

resources.  

So far we have implemented a prototype application to validate our architecture by 

integrating AI planner (JSHOP2) with our application which addresses user 

preferences at run-time and generate plans according to these preferences. Moreover 

application also continuously senses changes in its operational environment and re-plan 

according to these changes.  System also performs some actions to facilitate user to 

achieve his goals which is actually the execution of generated plan.  

 

 

 

 

44



 
 

 

 

 

 

 

CHAPTER 6.  CONCLUSION & FUTURE WORK 45 

6.2 Future work 

          We identified following future research direction during our work.  

1. Enabling AI application to sense the changes in user intentions so that it can adapt and 

re-plan according to the changed mood and intentions of the user.  

2. Deployment of large AI Planner based applications on Smart Phones. 

3. Integration of planning application with service based applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



 

 

 

 

 

 

                                              BIBLIOGRAPHY 

 

[1] Modeling Dimensions of Self-Adaptive Software Systems Jesper Andersson1, Rogerio de 

Lemos2, Sam Malek3, Danny Weyns4.  

[2] Self-Managed Systems:  an Architectural Challenge Jeff Kramer and Jeff Magee. 

[3] Proceedings of the 1st ACM SIGSOFT workshop on Self-managed system  in D.Garlan, J. 

Kramer and A. Wolf, eds., ACM Press, Newport Beach,  

 California, 2004, pp. 119.  

[4] Proceedings of the first workshop on Self-healing systems, in D. Garlan, J. Kramer and A. 

Wolf, eds., ACM Press, Charleston, South Carolina, 2002, pp. 120. 

[5] International Conference on Self-Organization and Autonomous Systems in Computing and 

Communications (SOAS2006), Erfurt, Germany, September2006 

[6] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N.Medvidovic, A 

Quilici, D. S. Rosenblum and A. L. Wolf, An architecture-based approach to self-adaptive 

software, Intelligent Systems and Their Applications, IEEE [see also IEEE Intelligent 

Systems], 14 (1999), pp. 54-62. 

[7] D.  Garlan  and  B.  Schmerl,  Model-based  adaptation  for  self-healing systems, Proceedings 

of the first workshop on Self-healing systems, ACM Press,  

 Charleston, South Carolina, 2002.  

[8] E. Gat, Three-layer Architectures, Artificial Intelligence and Mobile Robots,MIT/AAAI 

Press, 1997. 

[9] Sotirios Liaskos, Sheila A. McIlraith, Shirin Sohrabi, and John Mylopoulos.  

 Representing and reasoning about preferences in requirement engineering.  

 Requirements Engineering, 16:227249, 2011. 10.1007/s00766-011-0129-9.  

[10] Qureshi, Nauman A., Liaskos, Sotirios, and Perini, Anna. Reasoning About Adaptive 

Requirements for Self- Adaptive Systems at Runtime. In Proc. of the 2nd International 

Workshop on Requirements@Run.Time, pages 1622. IEEE, 2011b.  

[11] Dardenne A, van Lamsweerde A, Fickas S  (1993) Goal-directed requirements acquisition. 

Sci Comput Program 20(12):350  

[12] Yu ESK (1997) Towards modeling and reasoning support for early-phase  

 requirements engineering. In:  Proceedings of the  3rd IEEE international  

 symposium on requirements engineering (RE97). Washington, DC  

[13] N. A. Qureshi, I. Jureta, and A. Perini, Requirements engineering for self-adaptive systems: 

Core ontology and Problem statement, in 23rd Intl. Conf. on Advanced Information Systems 

Engineering (CAiSE11), ser. LNCS, vol. 6741. Springer, 2011, pp. 3347.  

[14] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Software  

 Engineering for Self-Adaptive Systems:  A Research Roadmap, ser. LNCS.  

 Springer, 2009, vol. 5525, pp. 126.  

[15] N. A. Qureshi and A. Perini, Engineering adaptive requirements, in ICSE  

 Wks.  on  Software  Engineering  for  Adaptive  and  Self-Managing Systems  

 (SEAMS09), May 2009, pp. 126131.  

 

 

 

 

 



 

 

 

 

 

[16] Qureshi, N.A., Perini, A., Requirements Engineering for Adaptive Service Based 

Applications, 2010 18th IEEE International Requirements Engineering Conference. 

[17]  Fickas, S. and Feather, M. Requirements monitoring in dynamic environments, Proc.  2nd 

IEEE International Symposium on Requirements Engineering (RE’95), 1995. 

[18] Salifu, M., Yu, Y., Nuseibeh, B. Specifying Monitoring and Switching Prob- 

 lems in Context, Proc. 15th IEEE International Conference of Requirements  

 Engineering (RE07), pp. 211-220, 2007.  

[19]  Berry, D., Cheng, B., and Zhang, J. The four levels of requirements en- 

 gineering for and in dynamic adaptive systems,  Proc.  11th International  

 Workshop on Requirements Engineering Foundation for Software Quality  

 (REFSQ05), 2005. 

[20] Loris  Penserini,  Anna  Perini,  Angelo  Susi,  and  John  Mylopoulos.  High  

 variability design for software agents: Extending Tropos. TAAS, 2(4), 2007.  

[21] Sotirios Liaskos, Alexei Lapouchnian, Yiqiao Wang, Yijun Yu, and Steve M. Easterbrook. 

Configuring common personal software:  a requirementsdriven approach. In 13th IEEE 

International Conference on Requirements Engineering, (RE05), Paris, France, pages 918, 

2005.  

[22] Qin Zhu, Lin Lei, Holger M. Kienle, and Hausi A. Muller. Characterizing maintainability 

concerns in autonomic element design. IEEE International Conference on Software 

Maintenance (ICSM 2008), pages 197206, 28-2008-Oct. 4 2008.  

[23] I. J. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and    problem in 

requirements engineering. In 16th IEEE Int. Requirements Eng. Conf., pages 7180, 2008.  

[24]  M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Reconciling system 

requirements and runtime behavior. In IWSSD 98:  Proceedings of the 9th international 

workshop on Software specification and design, page 50, Washington, DC, USA, 1998. IEEE 

Computer Society.  

[25] William Robinson. A Roadmap for Comprehensive Requirements Monitoring. Computer, 

43(5):6472, 2009.  

[26] M. Salifu, Yijun Yu, and B. Nuseibeh. Specifying monitoring and switching  

 problems  in  context.  15th  IEEE  International  Requirements  Engineering  

 Conference (RE 07), pages 211 220, Oct. 2007.  

[27] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Reconciling system 

requirements and runtime behavior. In IWSSD 98:  Proceedings of the 9th international 

workshop on Software specification and design, page 50, Washington, DC, USA, 1998. IEEE 

Computer Society.  

[28] Betty H. C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee, and Rogerio de Lemos. 

Software engineering for self-adaptive systems:  A research roadmap. In Software 

Engineering for Self-Adaptive Systems, volume 08031 of Dagstuhl Seminar Proceedings. 

Schloss Dagstuhl, Germany, 2008.  

[29] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty Cheng, and Jean-Michel  

 Bruel. Relax:  a language to address uncertainty in self-adaptive systems  

 requirement. Requirements Engineering, 15:177196, 2010. 

 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

[30] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed  requirements 

acquisition. Sci. Comput. Program., 20(1-2):350, 1993. 

[31] Van  Lamsweerde  A  (2001)  Goal-oriented  requirements  engineering:   a  

 guided tour. In:  Proceedings of the fifth IEEE international symposium  

 on requirements engineering, RE 01. IEEE Computer Society, Washington,  

 DC.  

[32] https://code.google.com/p/planning4j/ 

[33] https://github.com/gerryai/PDDL4j 

[34]  http://www.antlr.org/  

[35] Ilghami, O. (2005). Documentation for JSHOP2. Technical report CS-TR-4694, Department 

of Computer Science, University of Maryland.  

[36] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W.Murdock, D. Wu, and F. Ya- 

 man 2003 SHOP2: An HTN Planning System. To appear, Journal Artificial  

 Intelligence Research.  

[37] Erol, K., Nau, D.,Hendler, J. (1994). HTN planning:  Complexity and ex- 

 pressivity. In AAAI-94.  

[38] http://www.info.ucl.ac.be/research/projects/AVL/ReqEng.html. 

[39] B. H. C. Cheng and J. Atlee, M., Research Directions in Requirements En- 

 gineering, in L. Briand and A. L. Wolf, eds., Future of Software Engineering  

 2007, IEEE-CS Press, 2007.  

[40] E. M. Dashofy, A. van der Hoek and R. N. Taylor, Towards architecture- 

 based self-healing systems,Proceedings of the first workshop on Self-healing  

 systems, ACM Press, Charleston, South Carolina, 2002.  

[41] N. Medvidovic, D. S. Rosenblum and R. N. Taylor, A language and en- 

 vironment for architecture-based software development and evolution,Pro- 

 ceedings of the 21st international conference on Software engineering,IEEE  

 Computer Society Press, Los Angeles, California, United States, 1999.  

[42] H. Gomaa and M. Hussein, Dynamic Software Reconfiguration in  Software Product 

Families, 5th International Workshop on Software Product-Family Engineering, LNCS 

3014, Springer 2004, 435-444., Siena, Italy, 2003.  

[43] S. Malek, et al. A Framework for Ensuring and Improving Dependability  

 in Highly Distributed Systems. Architecting Dependable Systems III.Eds. R. de Lemos, C. 

Gacek, A. Romanovsky. LNCS 3549. Springer. Berlin, Germany. 2005. 

[44] S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic. Reconceptu- 

 alizing a Family of Heterogeneous Embedded Systems via Explicit Archi- 

 tectural Support. International Conference on Software Engineering(ICSE  

 2007). Minneapolis, Minnesota, May 2007.  

[45] R. Haesevoets, et al. Managing Agent Interactions With Context-driven  

 Dynamic  Organizations.  Engineering  Environment-Mediated  Multi-Agent  

 Systems. Lecture Notes in Computer Science, vol. 5049, 2007.  

[46]  J. Andersson, et al. An Adaptive High-Performance Service Architecture.  

 ETAPS Workshop on Software Composition Electronic Notes Theoretical  

 Computer Science 114. 2005. 

 

 

 

 

https://code.google.com/p/planning4j/
https://github.com/gerryai/PDDL4j
http://www.info.ucl.ac.be/research/projects/AVL/ReqEng.html


 

 

 

 

 

 

 

[47] J.Kramer and J. Magee,The evolving philosophers problem:  dynamic  

 change  management,  Software  Engineering,  IEEE  Transactions  on, 16 (1990), pp. 

1293-1306.  

[48] D. Hirsch, J. Kramer, J. Magee and S. Uchitel, Modes for Software Ar- 

 chitectures, Third European Workshop on Software Architecture  (EWSA  

 2006), Springer, Nantes, France, Sept 2006. 

[49] McDermott, D.: The 1998 AI planning systems competition. AI Magazine 21

 (2000) 

[50] Bacchus,F.:The 2nd International Planning Competition home page.  

 http://www.cs.toronto.edu/aips2000/ (2000)  

[51] Long, D., Fox, M.:  An overview and analysis of the results of the  3rd International 

Planning Compe- tition. Journal of AI Research 20 (2003)  

[52] Gerevini, A.: The 5th international planning competion. ICAPS’06 Report (2006) 


