

TUPACHI-3D ENGINE

1st Person Multi Level Action –Adventure RPG (Role
Playing Game) with RTS (Real-time Strategy) elements

By

Mohsin Ali Afzal

Najam Ul Hassan

Fawad Asghar

Haseeb Shakoor Paracha

SUBMITTED TO THE FACULTY OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

RAWALPINDI IN PARTIAL FULFILLMENT FOR THE

 REQUIREMENTS OF A B.E. DEGREE IN COMPUTER

SOFTWARE ENGINEERING

APRIL 2004

ABSTRACT

TUPACHI-3D ENGINE

By

MOHSIN
NAJAM
FAWAD
HASEEB

This report focuses on development of a complete 3D engine “TUPACHI”

using the Microsoft DirectX API. It details the various phases of development

of the engine. The initial parts of the report focus on the DirectX API. DirectX,

along with OpenGL, is the standard API for 3D development. The engine has

been developed keeping in mind the latest trends of the gaming industry and

is completely extensible and supports many features such as character

loading and animation, map loading, an AI module, a physics module and a

complete sound module. The engine also supports peer-to-peer multiplayer

gaming using DirectPlay. The engine design is fully modular and can be easily

extended to support more features. Currently three maps have been provided

with the engine but it can load any number of maps provided to it in the .X

format. The engine uses the .wav format to load sounds. The content for the

demo presentation has been created using MAYA 3D though it can be used

 with any popular 3D program like 3D Studio Max, Milkshape 3d, etc. This

document will be useful for anyone wanting to develop a fully functional 3d

game engine or to people who want to use TUPACHI for game development.

DECLARATION

No portion of the work presented in this dissertation has been submitted in

support of another award or qualification either at this institute or elsewhere.

DEDICATION

This document is dedicated to our beloved parents who have been a source of

constant encouragement for us.

iv

ACKNOWLEDGEMENTS

All acclamation to Almighty Allah Who has empowered and enabled us to

accomplish this task successfully

We are extremely thankful to our project supervisor Dr. Saeed Murtaza, for his

guidance and instructive supervision even with his highly busy schedule.

Acknowledgements are due to the HOD of CS Deptt Col. Raja Iqbal, Lt. Col

Nadeem, MCS faculty members and administration who in spite of their busy

schedule provided guidance and support not only during this work but also

throughout the course of the degree.

Love and gratitude to our families for providing the help and moral support that we

required throughout.

v

PERSPECTIVE

Game development is currently enjoying the largest share out of computer industry

(more than 60%). It is the biggest industry in Silicon Valley but largely ignored in

Pakistan. So our main objective will be to learn advance game programming

techniques and to familiarize ourselves with animation, character building, graphic

designing, music composition and coding using DirectX, OpenGL. We hope to

enhance our knowledge of AI (Artificial Intelligence) and Computer Graphics while

learning about the industry standards and research ways to improve the various AI

and rendering algorithms used in computer games. Game development is an ever

changing and evolving field as the need to capture the biggest market share drives

companies to develop better games with better graphics, artificial intelligence and

real world kinematics. During the project we will try to develop a game that would be

competitive in the international market.

vi

TABLE OF CONTENTS

LIST OF TABLES ... IX
LIST OF FIGURES .. X
ACRONYMS ... XI
CHAPTER 1 ... 1
INTRODUCTION ... 1

1.1 AIM ... 1
1.2 LANGUAGE AND PLATFORM ... 1
1.3 SOFTWARE MODEL ... 2
1.4 REAL-TIME-3D GAME-ENGINE TAXONOMY [1] ... 2

1.4.1 Overall Environment .. 2
1.4.1.1 Generation Zero .. 3
1.4.1.2 First Generation .. 4
1.4.1.3 Second Generation ... 4
1.4.1.4 Third Generation ... 5

CHAPTER 2 ... 6
THE COMPONENTS OF A GAME ... 6

2.1 GAME LOOP ARCHITECTURE .. 6
Section 1: Initialization .. 7
Section 2: Enter Game Loop .. 7
Section 3: Retrieve Player Input ... 8
Section 4: Perform AI and Game Logic .. 8
Section 5: Render Next Frame ... 8
Section 6: Synchronize Display .. 8
Section 7: Loop ... 8
Section 8: Shutdown ... 9

2.2 STATE TRANSITION DIAGRAM .. 9
CHAPTER 3 ... 10
RENDERING 3D PRIMITIVES .. 10

3.1 SETTING RENDER STATES .. 10
3.1.1 Alpha Blending States ... 10
3.1.2 Alpha Testing State ... 10
3.1.3 Ambient Lighting State .. 10
3.1.4 Antialiasing State ... 11
3.1.5 Clipping State .. 11
3.1.6 Color Keying State ... 11
3.1.7 Culling State .. 11
3.1.8 Depth-Buffering State .. 11
3.1.9 Fill State ... 12

vii

3.1.10 Fog State ... 12

3.1.11 Lighting State ... 12
3.1.12 Outline State .. 12
3.1.13 Per-Vertex Color States .. 12
3.1.14 Shading State .. 13
3.1.15 Stencil Buffering States ... 13
3.1.16 Texture Perspective State ... 13
3.1.17 Texture Wrapping State .. 13
3.1.18 Vertex Color Lighting State ... 14

CHAPTER 4 ... 15
ADDITIONAL DRAWINGS & CAMERA ... 15

4.1 ADDITIONAL DRAWINGS .. 15
4.1.1 Volumetric Fog Generator ... 15
4.1.2 Fog Intensity Specifier ... 16
4.1.3 Dust Generator .. 16
4.1.4 Sunlight Generator .. 16

4.2 CAMERA .. 16
4.2.1 Renderer .. 19

CHAPTER 5 ... 20
DESIGN OVERVIEW ... 20

5.1 OVERVIEW .. 20
5.2 LEVEL 1 DIAGRAM OF THE ENGINE ... 21
5.3 ENGINE MODULE ... 22

5.3.1 Class Diagram ... 22
5.3.2 Brief Description .. 22

5.4 ARTIFICIAL INTELLIGENCE MODULE ... 23
5.4.1 Introduction .. 23
5.4.2 Interface ... 23
5.4.3 Sequence Diagram .. 23

5.5 RENDER MODULE ... 24
5.5.1 Introduction .. 24
5.5.2 Class Diagram ... 25
5.5.3 Sequence Diagram .. 26

5.6 THE WORLDGEN MODULE ... 27
5.6.1 Brief Description .. 27
5.6.2 Sequence Diagram of World Generation Module 28

5.7 THE SOUND MODULE ... 30
5.7.1 Brief Description .. 30

5.8 THE WORLD MODULE ... 30
5.8.1 Brief Description .. 30
5.8.2 Class Diagram of World Module .. 31

CHAPTER 6 ... 33
ADDED TECHNICAL DEVELOPMENT .. 33

6.1 PERFORMANCE AND ITS IMPORTANCE .. 33
6.2 CPU TIME .. 34

viii

6.3 MEMORY USAGE AND RUNTIME GARBAGE COLLECTION 34
CHAPTER 7 ... 36
SCREEN SHOTS ... 36

7.1 SCREEN SHOT LEVEL 1.. 36
7.2 SCREEN SHOT LEVEL 2.. 37
7.3 SCREEN SHOT LEVEL 3.. 38

CHAPTER 8 ... 39
RESULTS & CONCLUSION ... 39

8.1 RESULTS ... 39
8.2 ANALYSIS ... 40
8.3 PROBLEMS FACED ... 40

8.3.1 Non Availability of Equipment .. 40
8.3.2 Shortage of Time ... 41
8.3.3 Availability of Help Regarding 3D Engine ... 41
8.3.4 Model Loading ... 41

8.4 FUTURE WORK .. 41
8.5 CONCLUSION ... 43

APPENDIX A- WORK BREAKDOWN STRUCTURE .. 45
APPENDIX B- FOG ... 49
APPENDIX C- MATH AND TRIGONOMETRY REVIEW ... 53
APPENDIX D ... 58
BIBLIOGRAPHY ... 63

ix

LIST OF TABLES

TABLE 9-1 RESULTS ... 39

TABLE C.1 -RADIANS VS. DEGREES ... 54

TABLE C.2- USEFUL TRIGONOMETRIC IDENTITIES ... 57

x

LIST OF FIGURES

FIGURE 2-1 GENERAL GAME LOOP ARCHITECTURE ... 7
FIGURE 2-2: STATE TRANSITION DIAGRAM OF THE GAME LOOP 9
FIGURE 4-1 GENERATION OF VOLUMETRIC FOG ... 15
FIGURE 4-2 BASICS OF THE CAMERA ... 17
FIGURE 4-3 – CALCULATIONS FOR ROTATION IN X-AXIS ... 18
FIGURE 4-4 - CAMERA VECTORS ... 19
FIGURE 5-1 DESIGN OVERVIEW .. 20
FIGURE 5-2 LEVEL 1 DIAGRAM .. 21
FIGURE 5-3 CLASS DIAGRAM OF THE ENGINE MODULE .. 22
FIGURE 5-4 SEQUENCE DIAGRAM OF THE AI MODULE .. 24
FIGURE 5-5 CLASS DIAGRAM OF THE RENDER MODULE ... 25
FIGURE 5-6 SEQUENCE DIAGRAM OF THE RENDER MODULE ... 27
FIGURE 5-7 SEQUENCE DIAGRAM OF THE WORLD GENERATION MODULE 29
FIGURE 5-8 CLASS DIAGRAM OF THE WORLD MODULE ... 32
FIGURE 7-1: SCREEN SHOT LEVEL 1 ... 36
FIGURE 7-2: SCREEN SHOT LEVEL 2 ... 37
FIGURE 7-3: SCREEN SHOT LEVEL 3 ... 38
FIGURE B-1 COMPARISON OF FOG FORMULAS .. 52
FIGURE C.1- THE RIGHT TRIANGLE ... 53
FIGURE C.2- GRAPHS OF BASIC TRIGONOMETRIC FUNCTIONS 56
FIGURE D-1: A MASTER FSM WITH FINITE SUBSTATES .. 59
FIGURE D-2: BUILDING A BETTER BRAIN ... 61

xi

ACRONYMS

2D – Two dimensional.

3D – Three dimensional

4D – four dimensional. Usually refers to the three spatial dimensions plus time. Also

infers animated or moving 3D images.

AGP – Accelerated Graphics Port. A bus used to connect image generators in

personal computers.

BSP – Binary Space Partitioning.

CG/CGI – Computer Graphics/Computer Graphics Image.

COM - Computer Operation Manual.

CPM - Computer Programming Manual.

CPU – Central Processing Unit.

DIS - Distributed Interactive Simulation. Communication protocol for military

simulations.

DSP - Digital Signal Processor. Used to process sound and other signal data.

FFB - Force Feedback.

FLOPS - Floating Point Operations Per Second. A measure of computing power.

FOV – Field of View. A characteristic of display systems.

FPS – First Person Shooter.

FPS - Frames Per Second. A measure of computing and display performance.

GL – Graphics Language. A standard for specifying 3D objects for computer display.

GUI – Graphical User Interface.

xii

MIPS - Millions of Instructions Per Second. A measure of computing power.

MPEG – Motion Pictures Expert Group, A standards setting organization. Deals with

the coding of multimedia information.

MTP - Master Test Plan.

NPC- Non Player Characters.

Pixel - Picture Element. The basic building block of a graphic display, and the unit in

which display resolution is usually expressed.

 PVS – Potentially Visible Sets.

 R&D – Research and development.

 SPE - Software Product Evaluation.

SPM - Software Project Manager.

SRS -Software Requirements Specification.

STD -Software Test Description.

T&L – Transform and Lightning.

TFB – Tactile Feedback.

USB – Universal Serial Bus.

VGA – Video Graphics Array.

WBS - Work Breakdown Structure

1

CHAPTER 1

INTRODUCTION

Tupachi Engine is a complete game development framework for next-generation

consoles and DirectX9-equipped PC's, providing the vast array of core technologies,

content creation tools, and support infrastructure required by top game developers.

Every aspect of the Tupachi Engine has been designed with ease of content creation

and programming in mind, with the goal of putting as much power as possible in the

hands of artists to develop assets in a visual environment with minimal programmer

assistance; and to give programmers a highly modular and extensible framework for

building, testing, and shipping games in a wide range of genres.

1.1 AIM

The aim of this project is to develop a scalable and fully functional 3d game engine

that can be used to develop games, simulators or other 3d applications using the

Microsoft DirectX 9.0 API.

1.2 LANGUAGE AND PLATFORM

The development of this 3d engine has been done using Microsoft Visual C++ 6.0

and the Microsoft DirectX API ver 9.0. The engine has been developed for Microsoft

Windows 9.x, Windows 2000, Windows NT and Windows XP. The reason for using

DirectX and Windows was the popularity of the platform as most gamers use the

Windows operating system.

2

1.3 SOFTWARE MODEL

The complexity of the project and the unfamiliarity with the technology required that

we adopt the incremental model so as to iteratively develop on the functioning of the

engine.

1.4 REAL-TIME-3D GAME-ENGINE TAXONOMY [1]

Many computer games create virtual worlds, and the more recent ones can create

and display remarkably detailed ones. Most interestingly, many of them can display

virtual worlds in real time, that is, that display these worlds with essentially instant

response to inputs and with automatic updating. This distinguishes them from typical

3D-modeling software, which generally only does preview modes in real time.

In particular, we will be focusing on game engines that do real-time 3D rendering;

this is rendering that uses three-dimensional geometrical information.

1.4.1 Overall Environment

The highest-level classification is overall environment; this is the overall type of

geometry, and it determines much of the rest of the world geometry.

• Indoor Engines

• Outdoor Engines

• Outer-Space Engines

These names describe what sort of scenes the engines are best adapted to. Indoor

engines have floors and walls and ceilings, outdoor engines have essentially one big

floor, and outer-space engines have no boundary surfaces. However, these are not

absolutely fixed distinctions, since one type of engine can have features of another.

3

In particular, indoor and outdoor engines can have entities that fly or swim (or both!),

making their physics much like that of entities in outer-space games. Also, indoor

engines can do outdoor scenes by making some of their surfaces look like distant

landscapes, while outdoor engines can do indoor scenes with appropriately-placed

cliffs. And some recent games appear to have hybrid indoor/outdoor engines with

indoor-engine segments added to outdoor-engine ones.

We will be discussing little about outer-space engines here, since they have very

little by way of world geometry, and because the rendering of their inhabitants

parallels that of other kinds of game engines.

Outdoor engines, with the exception of flight simulators and the like, generally

feature a top-down or a slanted view; these engines are essentially 2D, with only

recent ones having some 3D features. Bungie's Myth series was the first to have

such real 3D features such as terrain elevations and 3D projectile physics.

Indoor engines are the ones with the most advanced 3D rendering, and it is these

that I will discuss in the most detail. Since this is a fairly big field, I will subdivide it

into generations, each with characteristic rendering features.

1.4.1.1 Generation Zero

We are including this generation for completeness; it is the side scroller, a kind of 2D

engine where the view direction is horizontal. All the inhabitants are sprites (2D

pictures), and landscapes may be scrolled at some fractional speed to create the

appearance of perspective. Their outdoor-engine counterparts are 2D engines with

top-down or slanted views.

4

1.4.1.2 First Generation

These were the first of the indoor-engine real-time-3D games to appear; they include

such notable examples as id's Wolfenstein 3D and Bungie's Pathways into Darkness

in the early 1990's. They share the features like single-floor map, orthogonal walls,

constant-height floors and ceilings, textures being aligned horizontally or vertically,

all inhabitants being sprites, 2D game physics and view the direction always being

horizontal.

1.4.1.3 Second Generation

This generation started to appear in the mid-1990's; it includes id's Doom series,

Bungie's Marathon series, LucasArts's Dark Forces, 3D Realms's Duke Nukem, etc.

They generally share the features like stacked floors either being impossible or

possible only by creating portals, walls having arbitrary horizontal orientation,

variable-height floors and ceilings, textures being aligned horizontally or vertically,

though shift able, all inhabitants being sprites, game physics with varying amounts of

3D and view direction having a limited vertical range.

The first one happens because several of the examples (Doom, Dark Forces, Duke

Nukem) have their horizontal geometry specified by Binary Space Partitions (BSP's),

which do not allow stacked floors. However, stacked floors can be produced by

dividing the level into sub maps, some of whose surfaces act as portals to other sub

maps. Marathon is an exceptional case, because it does not use BSP's, thus

allowing stacked floors to be created in a very natural manner. However, each

Marathon map sector/polygon could be interpreted as a sub map with portals

comparable to those in the other engines mentioned.

5

1.4.1.4 Third Generation

This generation started to appear in 1996, with the release of id's Quake. It has since

been followed by Tomb Raider, Quake 2, Unreal, and several others; it is now the

dominant sort of indoor game engine. They generally share the features such as

stacked floors being easy, arbitrary orientation of surfaces, no engine distinction

between floors, walls, and ceilings, textures being arbitrarily aligned, most

inhabitants being 3D models instead of sprites, fully 3D game physics and view

direction capable of being nearly vertical

As noted, sprites are generally not used for very much; mostly explosion effects,

flames, and lens flare. This is partly because 3D models automatically have the

correct appearance in all directions; with sprites, one has to create sets of them

representing some entity viewed from different directions, and not surprisingly, some

of the more recent sprite makers have been known to use 3D-modeling software for

that task.

3D-model character animation is more complicated than doing animation of sprites,

which is to make a simple series of them. The most common way of doing that is the

Quake approach, which features using a sequence of vertex set in a single

continuous model. An alternative is to use the Tomb Raider approach, which is to

break the models up into segments, and animate by moving those segments relative

to each other; this is a form of skeletal animation.

6

CHAPTER 2

THE COMPONENTS OF A GAME

A video game is a new way of programming that’s more conducive to real-time

applications and simulation, rather than the single-line, event-driven, or sequential

logic programs that you may be used to. A video game is basically a continuous loop

that performs logic and draws an image on the screen, usually at a rate of 30 frames

per second (fps) or more. This is similar to how a movie is displayed, except that

they are creating the movie as they go. [2]

2.1 GAME LOOP ARCHITECTURE

Figure 2-1 shows the general game loop architecture. The basic architecture is

divided into various sections the detail of which is explained below.

7

FIGURE 2-1 General Game Loop Architecture

The description of each section: is given below:

Section 1: Initialization
In this section, you perform the standard operations you would for any program, such

as memory allocation, resource acquisition, loading data from disk, and so forth.

Section 2: Enter Game Loop

In this section, the code execution enters into the main game loop. This is where the

action begins and continues until the user exits out of the main loop.

8

Section 3: Retrieve Player Input

In this section, the player’s input is processed and/or buffered for later use in the AI

and logic section.

 Section 4: Perform AI and Game Logic

This section contains the majority of the game code. The artificial intelligence,

physics systems, and general game logic are executed, and the results are used to

draw the next frame on the screen.

 Section 5: Render Next Frame

In this section, the results of the player’s input and the execution of game AI and

logic are used to generate the next frame of animation for the game. This image is

usually drawn on an off-screen buffer area, so you can’t see it being rendered. Then

it is copied very quickly to the visible display.

 Section 6: Synchronize Display

Many computers will speed up or slow down due to the game’s level of complexity.

For example, if there are 1,000 objects running on the screen, the CPU is going to

have a higher load than if there were only 10 objects. The frame rate of the game will

vary, which isn’t acceptable. Hence, you must synchronize the game to some

maximum frame rate and try to hold it there using timing and/or wait functions.

Usually, 30fps is considered to be optimal.

Section 7: Loop

This section is fairly simple—just go back to the beginning of the game loop and do it

all again.

9

Section 8: Shutdown

This is the end of the game, meaning that the user has exited the main body or

game loop and wants to return to the operating system. However, before the user

does this, you must release all resources and clean up the system, just as you would

for any other piece of software.

2.2 STATE TRANSITION DIAGRAM

Figure 2-2 is the state transition diagram of the game loop. First the game is

initialized n then the lop goes into the game menu. From the game menu one can

either start the game or exit the game. From the starting loop one goes to the

running loop of the game where the game is being played. One remains in the same

loop unless and until one opts for the restart of the game. From the restart state one

goes to the main menu of the game.[3]

FIGURE 2-2: State Transition Diagram of the Game Loop

10

CHAPTER 3

RENDERING 3D PRIMITIVES

3.1 SETTING RENDER STATES

A Direct3D device has dozens of settings that you can change to affect how

primitives are rendered. These settings are called render states. [3]

The section below describes the render states that you'll most likely want to use.

3.1.1 Alpha Blending States

Alpha blending (which allows the rendering of semitransparent objects) can be

activated through the setting of a few render states.

3.1.2 Alpha Testing State

Alpha testing controls whether pixels are written to the render-target surface that

is, it verifies whether the pixels are accepted or rejected.

3.1.3 Ambient Lighting State

Ambient light is the light that surrounds the object and emanates from all

directions. This lighting is used as the background lighting for the RoadRage

application.

11

3.1.4 Antialiasing State

Antialiasing makes lines and edges look as smooth as possible on the screen.

3.1.5 Clipping State

Primitives being rendered partially outside the viewport can be clipped.

3.1.6 Color Keying State

You can set a color key to treat the key color as transparent. Once set, whenever

a texture is applied to one of the primitives, all the texels that match the key color

won't be rendered on the primitive

3.1.7 Culling State

When you set up a triangle that you want to see both sides of, you usually should

make sure that you create two triangles instead of one—one that represents the

front of the triangle and one that represents the back. You need to do this

because Direct3D culls any primitives that are facing away from the camera

during rendering. By rendering both the front and back triangles, the triangle is

visible from both sides because you've rendered two triangles instead of just one.

3.1.8 Depth-Buffering State

Depth buffering removes hidden lines and surfaces. By default, Direct3D doesn't

perform depth buffering.

12

3.1.9 Fill State

By default, Direct3D fills in the contents of the triangles that you specify. But it

can also be configured to draw just the "wireframe" outline of the triangle or

render just a single pixel at each vertex of the triangle.

3.1.10 Fog State

You can use fog effects to simulate fog or to decrease the clarity of a scene with

distance. The latter technique causes objects to become hazy as they become

more distant from the viewer, as happens in real life.

3.1.11 Lighting State

You can enable or disable lighting calculations. (They are enabled by default.)

Vertices containing a vertex normal are the only ones that will be properly lit. Any

others will use a dot product of 0 in all lighting computations, so they will end up

receiving no lighting.

3.1.12 Outline State

Direct3D devices default to using a solid outline for primitives. You can easily

change the outline pattern by using the D3DLINEPATTERN structure.

3.1.13 Per-Vertex Color States

The flexible vertex format allows vertices to contain both vertex color and vertex

normal information (though the D3DVERTEX, D3DLVERTEX, and

13

D3DTLVERTEX vertex types can't contain both color and normal information).

The color and normal are used for lighting computation.

3.1.14 Shading State

Although Direct3D defaults to Gouraud shading, you can use flat shading.

3.1.15 Stencil Buffering States

You can use the stencil buffer to decide whether a pixel is written to the rendering

target surface.

3.1.16 Texture Perspective State

You can apply perspective correction to textures to make them fit properly onto

primitives that diminish in size as they get farther away from the viewer. You must

enable perspective correction to use w-based fog and w-buffers.

3.1.17 Texture Wrapping State

The D3DRENDERSTATE_WRAP0 through D3DRENDERSTATE_WRAP7

render states are used to enable and disable u-wrapping and v-wrapping for

various textures in the device's multitexture cascade.

14

3.1.18 Vertex Color Lighting State

The flexible vertex format allows vertices to contain both vertex color and vertex

normal information. Direct3D defaults to using this information when it calculates

lighting.

15

CHAPTER 4

ADDITIONAL DRAWINGS & CAMERA

4.1 ADDITIONAL DRAWINGS

4.1.1 Volumetric Fog Generator

Fog generator is specifically designed to attain the additional environmental

effects of fog in the custom made environment. Another purpose of the fog

generator is to introduce the noise in environment so that the tracker’s efficiency

can be tested in noisy environments as well.

Fog generator employees a different approach than the conventional fog

calculations in DirectX. This deviation is the per vertex calculation of fog

component for each vertex. The volumetric fog is generated according to the

height of each vertex (Y component of each vertex) using the intensity specified.

 Y

Vertex Height

 X

 Z

FIGURE 4-1 Generation of Volumetric Fog

Height
Threshold

Difference of Fog Intensity
and Height of vertex greater
than threshold results in the

Fog Density
=
Fog Intensity
- Vertex

Vertex V (x, y,
z)

16

{For additional study on fog generation please refer Appendix B}

4.1.2 Fog Intensity Specifier

The user specified needs are considered in each and every part of this

application. So the fog intensity specifier is also designed to assign the fog

intensity as per user requirements.

 4.1.3 Dust Generator

Dust generator follows the same phenomenon as the Volumetric Fog Generator

and its purpose is the same: to introduce noise in the environment generated.

Dust is generated according to the height of each vertex using the intensity

specified.

4.1.4 Sunlight Generator

The Sunlight Generator gives the additional illuminating effect of sunlight along

with the environment lighting. The sunlight effects are important because the

additional illumination will affect the Target Object’s color and shading models. It

will also introduce noise by deviating the clear view of the target object.

4.2 CAMERA

The camera is the foremost important part in any graphics application.

The camera employed in our application allows the free floating view of the

environment in all aspects.

The basics of the camera are given as the three vectors associated with it Fig 4-

2.

17

FIGURE 4-2 Basics of the Camera

The necessary movements allowed by the free-floating architecture of the

camera are listed below:

1- Forward:

The forward movement adds the forward intercept along View Direction

in the camera position.

2- Backward:

The backward movement adds the forward intercept along the negative

View Direction in the position.

3- Strafe Right:

The Strafe right movement adds the right intercept along the Right

Vector in the position of the camera.

4- Strafe Left:

The Strafe left movement adds the right intercept along the negative

Right Vector in the position of the camera.

Up Vector (Unit Vector)
(x, y, z)

Right Vector (Unit
Vector) (x, y, z)

View Direction (x, y, z)

Position (x, y, z)

18

5- Rotate X:

The rotation in X-axis (Right Vector) follows the set of calculations

given below in the figure 4-3.

FIGURE 4-3 – Calculations for Rotation in X-axis

So the next orientation of View Direction:

Equation 1: View Direction (Next) = Sin (Angle) x Up Vector + Cos (Angle) x View Direction.

6- Rotate Y:

The rotation in Y-axis (Up Vector) follows the same set of calculations

but the difference is that instead of Up Vector and View Direction, Right

Vector and View Direction are used.

7- Rotate Z:

The rotation in Z-axis (View Direction) follows the same set of

calculations but the difference is that Up Vector and Right Vector are

used.

Rotational
Angle in X-axis

Sin (Angle) x Up Vector

Cos (Angle) x View
Direction

Previous Orientation of
Up Vector

Next orientation of
View Direction

Next
orientation of
Up Vector Previous Orientation of

View Direction

19

The Camera module consists of a

4.2.1 Renderer
The Renderer calculates the orientation of the camera making use of the user

inputs at runtime. The Up Vector, View Direction and position are the essential

primitives in the camera orientation, location and viewing direction.

FIGURE 4-4 - Camera vectors

The figure clearly specifies that Up Vector orients the camera in X, Y and Z

coordinates. Position specifies the location X, Y and Z coordinates, and the View

Point is point where the camera should be looking at.

Position (x, y, z)

View Point (x, y, z)

Up Vector (x, y, z)

20

CHAPTER 5

DESIGN OVERVIEW

5.1 OVERVIEW

Figure 5-1 shows the basic overview of our engine. Our engine is basically consists

of eight modules as shown in the figure. The engine module basically runs the main

exe of the program. The dll libraries of each module are listed in the figure along with

its respective module along with the abbreviation of each module.

FIGURE 5-1 Design Overview

21

5.2 LEVEL 1 DIAGRAM OF THE ENGINE

Level 1 diagram of the Tupachi engine is shown in the figure 5-2. The figure below

clearly shows that each and every module is dependent upon the world module

which is the main module of the engine. This is the world module which calls the

other modules on its requirements and initializes the other module as soon as it

receives the input. This is the world module which is controlling the other module of

the engine.

FIGURE 5-2 Level 1 Diagram

World
Module

Baselib Module Networking ModuleSound Module

Object ModuleWorld Generation Module

Renderer ModuleAI
Module

22

5.3 ENGINE MODULE

5.3.1 Class Diagram

Class diagram of engine module is shown in the figure 5-3. the main loops calls the

class ENWinStart class which in turns calls the ENEngine class which is linked with

the engine module the engine module then interacts with the AI module if it is

required and at the same time calls the three classes named ENObjectsManager,

ENObjectsLoader and ENWorldLoader for objects coordinates, object loading and

world loading respectively.

FIGURE 5-3 Class Diagram of the Engine Module

5.3.2 Brief Description

As shown in the class diagram, the engine module owns most other modules.

It serves three main purposes of providing a windows framework for the application,

holding the main loop that instructs other modules to contribute their part on each

frame and calling the product specific AI Module on designated occasions

Basically, the Engine Module just cares on ownerships and data flow, it is the top

level layer and main executable.

23

5.4 ARTIFICIAL INTELLIGENCE MODULE

5.4.1 Introduction

The AI module is different from all other modules in that it is not part of the engine.

This module contains product specific implementations.

5.4.2 Interface

The module gets calls from the engine, one at startup to initialize, three during main

loop. These callbacks can be used to perform product specific tasks (object controls,

HUD, etc). On its initialization call, the AI module receives all other module

instances from the engine so that it can use their APIs directly (Sound, Rendering

etc.)

5.4.3 Sequence Diagram

Figure 5-4 is the sequence diagram and shows the dll functions called by the engine.

IAI class is called by the engine to get he dll instance. IAI class is also called once to

allow the initializations of the game engine. At the beginning of the mail loop, the

main loop calls the IAI class to begin the main loop. The function CB_PreRender is

called after the rendering pipelines have been filled and animation is been done and

before the rendering takes place. The function CB_PostRendering is called after the

redering is done.

24

FIGURE 5-4 Sequence Diagram of the AI Module

5.5 RENDER MODULE

5.5.1 Introduction

Rendering of dynamic shadow (the shadow of moving objects) can be quite time

consuming, and it is important to balance the necessary time penalty against the

visual benefit.

The kind of shadow matching developers need should have the features like

providing clearly visible shadow matching the object shape to help users get a sense

for the object height above ground (e.g. for helicopter landing) for directional light,

avoiding double shadows and aliasing artifacts and shadow casting object should

also cast shadow on other objects and ground

25

Finally, the shadow improves a scene visibly, but should not take up more than some

percent of rendering time.

5.5.2 Class Diagram

Figure 5-5 shows the class diagram of the rendering module. In this module the

IRenderFactory calls for the particle and the shadow rendering where it is being

done. The 2D and the texture rendering is also done in the same class. Rendering of

the 3D objects, rendering of the material, the pixel and the vertex shading is being

performed by the RERenderManager where the objects being rendered calls their

respective buffers for loading the objects and for their further information about the

next frame which is to be rendered.

FIGURE 5-5 Class Diagram of the Render Module

26

5.5.3 Sequence Diagram

Figure 5-6 shows the sequence diagram of the render module. The sequence

diagram of the render module has five entities including user, IRenderFactory,

IRender3D, IRender2D and IRenderSpecial. At the initialization phase class

IRenderFactory is called for the user interface. IRender3D is called to check the

vertex,texture and controller requirements for a material. In the main loop IRender 3d

is called to check which surfaces came insight and went out of sight since the last

frame. IRenderSpecial is called by the initialization loop by the function

BackBufferToMapTexture to check the back buffer for the coordinates of the next

frame. The class IRenderFactory is called from the main loop for rendering all the 2D

and 3D surfaces in the correct order.

27

FIGURE 5-6 Sequence Diagram of the Render Module

5.6 THE WORLDGEN MODULE

5.6.1 Brief Description

The module takes the model files and the images as input, together with positional

data. It then builds static geometry out of the given input and registers the created

surfaces with the world module.

28

5.6.1.1 Model File Input

The specified model is shown in the materials it comprises at a specified location

(scale and translation only). Reuse of models is properly detected and adequately

processed (reuse of vertex buffers etc). Shadowing through directional light etc is

done as the used materials are properly rendered. Supported model formats include

.3ds and .x, further formats are added on demand.

5.6.1.2 Image Input

2D Images are converted into a height map where height relates to pixel brightness.

A texture can be applied, together with a blending weight that blends each vertex

between texture and the original image color at that vertex position. The height map

can then be shaded and low pass filtered (one or many 3x3 passes). To alter

heightmap heights, a second texture can optionally be provided where each pixel

bright is multiplied with the heightmap to allow for "forced" valleys or equally

heightened boundaries.

5.6.2 Sequence Diagram of World Generation Module

Figure 5-7 shows the sequence diagram of the world generation module. The

sequence diagram has the three main classes named user class,the IWorldFactory

and the IWorld. At the initialization phase user calls the interface function for

accessing the IWorldFactory class. The user class calls the IWorld to load the

number of world’s available for loading. This is done by taking the coordinates from

the files which are saved at a location. UpLoadAllSurfaces function is used to upload

all the worlds in the engine. At the main loop IWorld is called for checking the object

29

position for the object module and also checks whether the object remains inside the

world.

FIGURE 5-7 Sequence Diagram of the World Generation Module

30

5.7 THE SOUND MODULE

5.7.1 Brief Description

The Sound Module provides the interface for playing either stereo or 3D sound. It

builds directly on the capabilities of the DirectX Sound interface.

Hence, all sound formats (e.g. Dolby Digital) are supported.

5.7.1.1 2D and 3D Sounds

Sounds can be played 2D or 3D. 2D sounds need manual control of volume,

frequency, panning. 3D sounds need to specify their position. They are played with

correct balancing and physical altering depending on the camera position and speed.

5.8 THE WORLD MODULE

5.8.1 Brief Description

At initialization phase, the world module loads 0..n worlds, and may receive

additional surfaces from e.g. a level editor. World surfaces are surfaces whose

transformation matrix is NULL, they cannot be transformed during rendering time

(except transformation into world space). A house and a street are built out of world

surfaces as well as a rigid streetlight, but a street light that bends on a crash does

not belong to the world, it is an object.

The world can be saved at any time; visibility information and optimizations have

then been applied.

The World Module fulfills two tasks during rendering. The first is given the camera

position, find all surfaces in view and pass them to the Rendering Module. The

31

second one is object-world collision detection: answer requests if a bounding object

shape collides with world.

5.8.2 Class Diagram of World Module

Figure 5-8 shows the class diagram of the world module. The IWorld class calls the

SWRender class for checking he camera position and the orientation of the camera.

IWorldCollDetect is called for checking the collision and detection. The SWRender

gets the vertex data of the surfaces from the IRender. IWorld passes all the

registered surfaces to the SWConstruct and SWMaterialControler where

SWConstruct renders all the visible surfaces.

32

FIGURE 5-8 Class Diagram of the World Module

33

CHAPTER 6

ADDED TECHNICAL DEVELOPMENT

(SYSTEM EFFICIENCY)

6.1 PERFORMANCE AND ITS IMPORTANCE

Performance is an aspect of software design that is often overlooked until it becomes

a serious problem. If the developer waits until the end of your development cycle to

do performance tuning, it may be too late to achieve any significant improvements.

Performance is something to include early in the design phase and continue

improving all throughout the development cycle.

Efficiency is the cost to complete an operation, measured by the usage of system

resources. It is the measurement aspect of efficiency that makes it useful for

software design. Improving the performance of a piece of software requires

measuring the efficiency of the software and then improving the software based on

those measurements. [4] For example, the developer might measure some of the

aspects anyone’s software like how much memory does the software use? How

many instructions does it take to perform a given task? How many files does the

software open on launch? How much code must be in memory at any given time to

perform a task?

These are all aspects of performance that can be measured. Improving on these

measurements increases the efficiency of the software. For example, one might use

34

a different algorithm to perform a task and reduce the number of instructions needed

to perform that task, thereby improving the efficiency of his code. One might allocate

less memory or open fewer files, which improves the efficiency of his software by

reducing its consumption of resources. Or one might reorganize his code to minimize

his application footprint during specific operations, once again reducing his memory

consumption.

Therefore, to improve the efficiency of ones application, one should first understand

the basic metrics of system efficiency like memory usage—how much memory does

your application consume, cpu time—for a given span of time, how much of that time

is spent running your application’s code, as opposed to being idle or running other

processes and file-system usage—how often does your application access the disk?

6.2 CPU TIME

CPU time is the time a computer spends executing your application’s code. An

efficient application uses as little CPU time as possible to perform the tasks it needs

to perform. When your application is idle, it should consume no CPU time at all. [5]

6.3 MEMORY USAGE AND RUNTIME GARBAGE
COLLECTION

Memory on modern computing hardware is typically composed of progressively

slower (but larger) types of memory. The fastest memory available to the CPU is the

CPU’s own registers. The next fastest is the L1 cache, followed by the L2 and L3

caches when they are available. The next fastest memory is the main memory. The

slowest memory of all consists of virtual memory pages that reside on disk and must

be paged in before they can be used.

35

Unfortunately, most of an application’s code and data resides either in main memory

or paged out to disk. Therefore, it is important that the application’s code and data is

organized in a way that minimizes the time spent in these slower mediums.

Reducing the memory footprint of your application can significantly improve its

performance.[6] A small memory footprint usually has two advantages. First, the

smaller your application, the fewer memory pages it occupies. Fewer memory pages,

typically means less paging. Second, code is usually smaller as a result of being

more heavily optimized and better organized. Thus, fewer instructions are needed to

perform a given task and all of the code for that task is gathered on the same set of

memory pages.

For this purpose people implement the guidelines such as all variables are preferred

to have a local scope and are destroyed when the function exits. All memory

allocations are freed and their handles destroyed so that there are no memory leaks.

Global arrays if any are reused so that the same contiguous memory locations can

be used to store different data. The global arrays are freed as soon as their utility is

over. After writing the environment “binaries” in 3D ENGENT the memory used up by

the object models is freed. Linked lists are preferred to arrays wherever there is a

large memory requirement as they don’t take up contiguous blocks of memory and

hence are more efficient to allocate and de-allocate. Function arguments are passed

by reference in order to avoid duplication except where necessary.

36

CHAPTER 7

SCREEN SHOTS

7.1 SCREEN SHOT LEVEL 1

Figure 7-1 is the first person view of the player of level 1. In the top left corner in the

white is the frame rate of the game. Player score shows the number of times the

player has killed the opponent. The opponent score is the number of times the

opponent has killed the player. The number 54 is showing the number of bullets the

player is lift with and the 55 on the screen along with the golden bar shows the

player health. When the player health becomes zero, the player dies.

FIGURE 7-1: Screen Shot Level 1

37

7.2 SCREEN SHOT LEVEL 2

Figure 7-2 is the first person view of the player of level 1. In the top left corner in the

white is the frame rate of the game. Player score shows the number of times the

player has killed the opponent. The opponent score is the number of times the

opponent has killed the player. The number 9981 is showing the number of bullets

the player is lift with and the 98 on the screen along with the green bar shows the

player health. When the player health becomes zero, the player dies.

FIGURE 7-2: Screen Shot Level 2

38

7.3 SCREEN SHOT LEVEL 3

Figure 7-3 is the first person view of the player of level 1. In the top left corner in the

white is the frame rate of the game. Player score shows the number of times the

player has killed the opponent. The opponent score is the number of times the

opponent has killed the player. The number 9971 is showing the number of bullets

the player is lift with and the 71 on the screen along with the green bar shows the

player health. When the player health becomes zero, the player dies.

FIGURE 7-3: Screen Shot Level 3

39

CHAPTER 8

RESULTS & CONCLUSION

8.1 RESULTS

Basically our game is platform dependent to only windows operating system. It

doesn’t work on the linux or any other operating system. The code was executed on

different windows version the summary of which is shown in the table 9.1. From the

table it is clear that the game runs fasters and more smoother with the graphics card

of higher quality. The frame rate is the indication of the speed at which the game

runs on the computer. When the frame rate is lesser, the game stucks while

somebody is playing the game. It is easily shown from the results that the frame rate

vary in accordance with the graphics card and the memory available. The games

developed by specialists are also designed in such a away that the games running

on higher resolution and higher Rams runs smoother, so this is not a big issue.

Windows Version Graphics Card RAM Frame Rate

Windows 98 128 MB 9200 Radeon

128 MB 9800 Radeon

512 MB RD

1 GB SD

45

78

Windows 2000 128 MB 9200 Radeon

128 MB 9800 Radeon

512 MB RD

1 GB SD

42

67

Windows XP 128 MB 9200 Radeon

128 MB 9800 Radeon

512 MB RD

1 GB SD

41

61

TABLE 9-1 Results

40

8.2 ANALYSIS

 We have developed a 3D engine with the features including capable of dynamic

rendering. It has a support for vertex shaders and a full support for pixel shaders

(from high end graphics cards). It has the feature of lightning and shadows using

per-pixel lightning and multi-level texturing. The engine has the geo-mod technology

along with the real world collision and other physics. The engine includes the

features of particle effects and explosions. It has a support for 3D sound FX and is

capable of interfacing with a variety of input devices. We have used the md2 models

of the characters already available and have used md2 animation for the characters.

We have also demonstrated the capabilities of the 3D engine by using it to develop

an Action Adventure RPG (Role Playing Game) with RTS (Real-time Strategy)

elements. All technical aspects of the engine are highlighted in the game. Game

displays a fully rendered and changeable 3D world. State of the art AI is also

implemented in the game. Game is produced using production values of the highest

quality.

8.3 PROBLEMS FACED

As can be expected, any project is never free from impediments to progress. We had

our share of obstacles laid out to test our patience as well. A few are described

below:

8.3.1 Non Availability of Equipment

The availability of equipment was a major headache. The equipment required for the

rendering of the scene was a major headache. Infact rendering requires a high

quality graphics card along with the Rams of 512MB. This was done so that the

process of redering can be made fast

41

8.3.2 Shortage of Time

The time available was too short for us to develop a 3D Engine to the extent that we

wanted. Had more time been available, we could have worked on the networking

module if we were given a month more for the project.

8.3.3 Availability of Help Regarding 3D Engine

There is hardly any open source available for the 3D Engine in the DirectX. Help is

scarcely available to undergraduates in this important field of engineering. Not many

people work in this field and are willing to guide new students especially in Pakistan.

8.3.4 Model Loading

Model loading was difficult as the format of the 3D program used (Maya) wasn’t

compatible with the API’s being used. Therefore we had to write our own converter

routine so that the models made in Maya could be opened in our own application.

8.4 FUTURE WORK

The features such as 64-bit color High Dynamic Range rendering pipeline can be

added to the engine. The gamma-correct, linear color space renderer provides for

immaculate color precision while supporting a wide range of post processing effects

such as light blooms, lenticular halos, and depth-of-field. Support for all modern per-

pixel lighting and rendering techniques including normal mapped, parameterized

Phong lighting; virtual displacement mapping; light attenuation functions; pre-

computed shadow masks; and pre-computed bump-granularity self-shadowing using

spherical harmonic maps. Advanced Dynamic Shadowing. Tupachi Engine provides

full support for three shadow techniques. The first one is dynamic stencil buffered

shadow volumes supporting fully dynamic, moving light sources casting accurate

42

shadows on all objects in the scene. The second one is dynamic characters casting

dynamic soft, fuzzy shadows on the scene using 16X-oversampled shadow buffers.

The third one is ultra high quality and high performance pre-computed shadow

masks allow offline processing of static light interactions, while retaining fully

dynamic specular lighting and reflections.

All of the supported shadow techniques are visually compatible and may be mixed

freely at the artist's discretion, and may be combined with colored attenuation

functions enabling properly shadowed directional, spotlight, and projector lighting

effects. Powerful material system, enabling artists to create arbitrarily complex real

time shaders on-the-fly in a visual interface that is comparable in power to the non-

real time functionality provided by Maya. The material framework is modular, so

programmers can add not just new shader programs, but shader components which

artists can connect with other components on-the-fly, resulting in dynamic

composition and compilation of shader code. Full support for seamlessly

interconnected indoor and outdoor environments with dynamic per-pixel lighting and

shadowing supported everywhere. Artists can build terrain using a dynamically-

deformable base height map extended by multiple layers of smoothly-blended

materials including displacement maps, normal maps and arbitrarily complex

materials, dynamic LOD-based tessellation, and vegetation layers with procedurally-

placed meshes. Further, the terrain system supports artist-controlled layers of

procedural weathering, for example, grass and vegetation on the flat areas of terrain,

rock on high slopes, and snow at the peaks. Volumetric environmental effects

including height fog and physically accurate distance fog can also be added.

43

8.5 CONCLUSION

Game development is currently enjoying the largest share out of computer industry

(more than 60%). It is the biggest industry in Silicon Valley but largely ignored in

Pakistan. So the group’s main objective was to learn advance game programming

techniques and to familiarize us with animation, character building, graphic

designing, music composition and coding using DirectX, OpenGL. We tried to

enhance our knowledge of AI (Artificial Intelligence) and Computer Graphics while

learning about the industry standards and research ways to improve the various AI

and rendering algorithms used in computer games. Game development is an ever

changing and evolving field as the need to capture the biggest market share drives

companies to develop better games with better graphics, artificial intelligence and

real world kinematics. During the project we tried to develop a game that would be

competitive in the international market.

Tupachi is a complete 3d engine that supports all the essential features required for

game development for various genres. Its modular framework ensures extensibility

and scalability so that tupachi’s feature set can be enhanced to meet next-generation

game demands. Since it is developed in DirectX it is windows dependent.

The engine has been developed keeping in mind the latest trends of the gaming

industry and is completely extensible and supports many features such as character

loading and animation, map loading, an AI module, a physics module and a

complete sound module. The engine design is fully modular and can be easily

extended to support more features. For example due to the lack of time, the group

members weren’t able to add multiplayer aspect in the game. But the engine has

been designed so that multiplayer aspect can easily be added in the engine.

Currently three maps have been provided with the engine but it can load any number

44

of maps provided to it in the .X format. The engine uses the .wav format to load

sounds. The content for the demo presentation has been created using MAYA 3D

though it can be used with any popular 3D program like 3D Studio Max, Milkshape

3d, etc. This document will be useful for anyone wanting to develop a fully functional

3d game engine or to people who want to use TUPACHI for game development.

45

APPENDIX A- WORK BREAKDOWN STRUCTURE

Table A-1 on the next page shows the work breakdown structure, which means that

how, the work was done and how the different tasks were broken down into smaller

ones. The chart is made in the Microsoft project. The chart also shows the details

and the number of days taken to complete each task. The chart also shows the

dependencies of different tasks on one another.

49

APPENDIX B- FOG

You can use fog to achieve a number of effects in Microsoft Direct3D Immediate

Mode applications. By adding fog to a scene, you can simulate the real world in a

powerful way. Combined with the right sounds and music, fog can help you create

worlds that convey a range of atmospheres, from mysterious or creepy to fantastic or

other-worldly to pastoral or humorous. Even more important for real-time

applications, in which you need to eke out the last possible bit of performance, you

can use fog to hide the bizarre and distracting effects of objects popping into

existence as they cross into the viewing frustum. [6] To prevent popping, you just set

up fog so that users can't see beyond the far clipping plane.

Direct3D implements fog by blending the color of each object in a scene with the fog

color you select. The amount of blending that occurs is based on the object's

distance from the viewpoint. Direct3D blends the colors of distant objects so that the

object's final color approximates the color of the fog. The colors of objects that are

near the viewpoint change slightly or not at all. For example, if you use a color such

as blue or white as your fog color, your objects will become increasingly obscured

the farther away from the viewpoint they are, producing the illusion of fog. If you use

black as your fog color, objects will appear to fade into the darkness in a night scene.

If the scene has a solid background color (that is, if rendered objects don't cover

every screen pixel), you should set the fog color to that background color. If objects

are rendered over every screen pixel, however, you can pick any fog color you like.

Then, as polygons recede from the camera, they will smoothly fade into the

background. In this case, white will give you a realistically fogged scene.

50

Direct3D supplies two different forms of fog you can use in a scene: vertex fog and

pixel fog.

Fog Formulas

Fog is a measure of visibility; the lower the value produced by the fog equations, the

less visible the object is. You control fog by using the D3DFOGMODE enumerated

type, whose members identify the three available fog formulas:

typedef enum _D3DFOGMODE {

D3DFOG_NONE = 0,

D3DFOG_EXP = 1,

D3DFOG_EXP2 = 2,

D3DFOG_LINEAR = 3

D3DFOG_FORCE_DWORD = 0x7fffffff,

} D3DFOGMODE;

These members are defined as follows:

• D3DFOG_NONE No fog is used.

• D3DFOG_LINEAR The fog increases linearly between the start and end

points, using the following formula:

• D3DFOG_EXP The fog increases exponentially, using the following formula:

51

• D3DFOG_EXP2 The fog increases exponentially with the square of the

distance, using the following formula:

• D3DFOG_FORCE_DWORD This member forces this enumerated type to be

32 bits.

Each of the three formulas in the preceding list calculates a fog factor as a function

of distance by using the parameters you pass it. How Direct3D computes distance

varies depending on the projection matrix you use and on whether you've enabled

range-based fog.

You use the first formula for computing linear fog. For linear fog, the start value

defines the distance at which fog effects begin, end defines the distance at which fog

effects no longer increase, and d specifies the distance from the scene's viewpoint.

For all these values, 0.0 corresponds to the near plane and 1.0 corresponds to the

far plane. Both pixel fog and vertex fog support linear fog.

The other two formulas Direct3D provides are D3DFOG_EXP and D3DFOG_EXP2.

Only pixel fog supports these exponential fog formulas. In these formulas, e is the

base of natural logarithms (~2.71828); density is an arbitrary fog density, which can

range from 0.0 through 1.0; and d is the distance from the scene's viewpoint.

52

Figure B-1 shows a graph of the three fog formulas. Densities of 0.33 and 0.66 are

the formula parameters for both exponential formulas.

Figure B-1 Comparison of fog formulas
The fog factors for each of the three fog effects, which are computed using the

equations shown in Figure B-1, are used in the Direct3D blending formula, which is

computed as follows:

This formula (used for all DirectX devices) scales the color of the current polygon, Ci,

by the fog factor, f, and then adds the product to the fog color, Cf, scaled by the

inverse of the fog factor. The color value that is computed is a blend of the fog color

and the original color, with more of the fog color and less of the original color being

blended as the distance increases.

53

APPENDIX C- MATH AND TRIGONOMETRY
REVIEW

Trigonometry

Trigonometry is the study of angles, shapes, and their relationships. [7] Most

trigonometries are based on the analysis of a right triangle, as shown in Figure C.1.

FIGURE C.1- The Right Triangle

Table C.1 lists the radian/degree values.

54

360 degrees = 2*PI radians is approx. 6.28 radians

180 degrees = PI radians is approx. 3.14159 radians

360 degrees

2*PI radians

2*PI radians

360 degrees

= 1 radian is approx. 57.296 degrees

= 1 degree is approx. 0.0175 radians

TABLE C.1 -Radians vs. Degrees

Here are some trigonometric facts:

Fact 1: There are 360 degrees in a complete circle, or 2*PI radians. Hence, there

are PI radians in 180 degrees. The computer functions sin() and cos() work in

radians, not degrees—remember that! Table C.1 lists the values.

Fact 2: The sum of the interior angles theta1 + theta2 + theta3 = 180 degrees or PI

radians.

Fact 3: Referring to the right triangle in Figure C.1, the side opposite theta1 is called

the opposite side, the side below it is called the adjacent side, and the long side is

called the hypotenuse.

Fact 4: The sum of the squares of the sides of a right triangle equals the square of

the hypotenuse. This is called the Pythagorean theorem. Mathematically, it’s written

like this:

55

hypotenuse2 = adjacent2 + opposite2

or sometimes using a, b, and c for dummy variables:

c2 = a2 + b2

Therefore, if you know two sides of a triangle, you can find the third.

Fact 5: There are three main trigonometric ratios that mathematicians like to use:

sine, cosine, and tangent. They are defined as

Figure C.2 shows graphs of all the functions. Notice that they’re all periodic

(repeating) and that sin(theta) and cos(theta) have periodicity of 2*PI, while tangent

56

has periodicity of PI. Also, notice that tan(theta) goes to +-infinity whenever theta

mod PI is PI/2.

FIGURE C.2- Graphs of Basic Trigonometric Functions

Now, there are about a gazillion trigonometric identities and tricks, and it would take

a math book to prove them all. I’m just going to show you the ones that a game

programmer should know. Table C.2 lists some trigonometric ratios as well as some

neat identities.

Cosecant: csc(theta) = 1/sin(theta)

Secant: sec(theta) = 1/cos(theta)

Cotangent: cot(theta) = 1/tan(theta)

Pythagorean Theorem in terms of trig functions:

sin(theta)2 + cos(theta)2 = 1

Conversion identity:

57

sin(theta1) = cos(theta1 – PI/2)

Reflection identities:

sin(-theta) = -sin(theta)

cos(-theta) = cos(theta)

Addition identities:

sin(theta1 + theta2) = sin(theta1)*cos(theta2) + cos(theta1)*sin(theta2)

cos(theta1 + theta2) = cos(theta1)*cos(theta2) - sin(theta1)*sin(theta2)

sin(theta1 - theta2) = sin(theta1)*cos(theta2) - cos(theta1)*sin(theta2)

cos(theta1 - theta2) = cos(theta1)*cos(theta2) + sin(theta1)*sin(theta2)

TABLE C.2- Useful Trigonometric Identities

Of course, you could derive identities until you turned many shades of green. In

general, identities help you simplify complex trigonometric formulas into simpler ones

so you don’t have to do the math. Hence, when you come up with an algorithm

based on sin, cos, tan, and so on, always take a look in a trigonometry book to see if

you can simplify your math so that fewer computations are needed to get to the

result.

58

APPENDIX D

Modeling Behavioral State Systems

To create a truly robust FSM (Finite State Machines), you need two properties:

First one is reasonable number of states, each of which represents a different goal or

motive. Second one is lots of input to the FSM, such as the state of the environment

and the other objects within the environment. [8]

 The premise of “a reasonable number of states” is easy enough to understand and

appreciate. We humans have hundreds, if not thousands, of emotional states, and

within each of these we may have further substates. The point is that a game

character should be able to move around in a free manner, at the very least. For

example, you may set up the following states:

State 1: Move forward.

State 2: Move backward.

State 3: Turn.

State 4: Stop.

State 5: Fire weapon.

State 6: Chase player.

State 7: Evade player.

States 1 to 4 are straightforward, but states 5, 6, and 7 might need substates to be

properly modeled. This means that there may be more than one phase to states 5, 6,

and 7. For example, chasing the player might involve turning and then moving

forward.

59

Take a look at Figure D-1 to see the concept of substates illustrated. However, don’t

assume that substates must be based on states that actually exist—they may be

totally artificial for the state in question.

FIGURE D-1: A Master FSM with Finite Substates

The point of this discussion of states is that the game object needs to have enough

variety to do “intelligent” things. If the only two states are stop and forward, there isn’t

going to be much action! Remember those stupid remote-control cars that went

forward and then reversed in a left turn? What fun was that?

Moving on to the second property of robust FSM AIs, you need to have feedback or

input from the other objects in the game world and from the player and environment.

If you simply enter a state and run it until completion, that’s pretty dumb. The state

60

may have been selected intelligently, but that was 100 milliseconds ago. Now things

have changed, and the player just did something that the AI needs to respond to.

The FSM needs to track the game state and, if needed, be preempted from its

current state into another one.

Elementary State Machines

At this point, you should be seeing a lot of overlap in the various AI techniques. For

example, the pattern techniques are based on finite state machines at the lowest

level which perform the actual motions or effects. What I want to do now is take finite

state machines to another level and talk about high-level states that can be

implemented with simple conditional logic, randomness, and patterns. In essence, I

want to create a virtual brain that directs and dictates to the creature.

To better understand what I’m talking about, let’s take a few behaviors and model

them with the aforementioned techniques. On top of these behaviors, we’ll place a

master FSM to run the show and set the general direction of events and goals.

Most games are based on conflict. Whether conflict is the main idea of the game or

it’s just an underlying theme, the bottom line is that most the time the player is

running around destroying the enemies and/or blowing things up. As a result, we can

arrive at a few behaviors that a game creature might need to survive given the

constant onslaught of the human opponent. Take a look at Figure D-2, which

illustrates the relationships between the following states:

Master State 1: Attack.

Master State 2: Retreat.

Master State 3: Move randomly.

Master State 4: Stop or pause for a moment.

61

Master State 5: Look for something—food, energy, light, dark, other computer-

controlled creatures.

Master State 6: Select a pattern and follow it.

FIGURE D-2: Building a Better Brain

You should be able to see the difference between these states and the previous

examples. These states function at a much higher level, and they definitely contain

possible substates or further logic to generate. For example, states 1 and 2 can be

accomplished using a deterministic algorithm, while states 3 and 4 are nothing more

than a couple of lines of code. On the other hand, state 6 is very complex because it

dictates that the creature must be able to perform complex patterns controlled by the

Master FSM. [9]

As you can see, your AI is getting fairly sophisticated. State 5 could be yet another

deterministic algorithm or even a mix of deterministic algorithms and preprogrammed

62

search patterns. The point is that you want to model a creature from the top down;

that is, first think of how complex you want the AI of the creature to be, and then

implement each state and algorithm.

63

BIBLIOGRAPHY

[1] Kelly Dempski, Real time rendering tricks and techniques in DirectX,
Premier Press, 2002.

[2] Kris Gray, The Microsoft DirectX 9 Programmable Graphics Pipeline,
Microsoft Press, 30 July, 2003.

[3] Mason McCuskey, Andre LaMothe, Special Effects Game Programming
with DirectX , Premier Press, 01 December, 2001.

[4] Robert Dunlop, DALE Shepard, Mark Martin, Teach Yourself DirectX 7 in
24 Hours, SAMS, December, 1999.

[5] Andre Lamothe, Tricks of the Windows Game Programming Gurus
fundamentals of 2D and 3D Game Programming, SAMS, October 1999.

[6] Peter Walsh, The Zen of Direct3D Game Programming, Premier Press,
01 June, 2002.

