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ABSTRACT 

 

HUMAN FACE DETECTION SYSTEM 
by  

GC AZHAR (Leader) 
GC USMAN  
GC ADEEL  
GC UBAID  

Object detection is a fundamental problem in computer vision. Detection of faces, in 

particular, is a critical part of face recognition and critical for systems which interact with 

users visually. 

 

We present a view-based approach implemented with artificial neural networks for face 

detection. A retinally connected neural network examines small windows of an image, and 

decides whether each window contains a face. The system arbitrates between multiple 

networks to improve performance over a single network. We present a straightforward 

procedure for aligning positive face examples for training. To collect negative examples, 

we use a bootstrap algorithm, which adds false detections into the training set as training 

progresses. This eliminates the difficult task of manually selecting nonface training 

examples, which must be chosen to span the entire space of nonface images. Simple 

heuristics, such as using the fact that faces rarely overlap in images, can further improve the 

accuracy.  

 
In the end we performed sensitivity analysis on the networks, and present empirical results 

on a large test set. 
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Chapter 1 

Project Overview 
  
1.1 Introduction 

 
 
The goal of our project is to show that the face detection problem can be solved 

efficiently and accurately using a view-based approach implemented with artificial 

neural networks. Specifically, we will demonstrate how to detect upright, tilted, and 

non-frontal faces in cluttered images, using multiple neural networks whose outputs are 

arbitrated to give the final output. 

 

Object detection is an important and fundamental problem in computer vision, and there 

have been many attempts to address it. The techniques which have been applied can be 

broadly classified into one of two approaches: matching two- or three-dimensional 

geometric models to images or matching view-specific image-based models to images. 

Previous work has shown that view-based methods can effectively detect upright frontal 

faces and eyes in cluttered backgrounds. 

 

In developing a face detector that uses machine learning, three main sub problems arise. 

First, images of objects such as faces vary considerably, depending on lighting, 

occlusion, pose, facial expression, and identity. The detection algorithm should 

explicitly deal with as many of these sources of variation as possible, leaving little 

unmodelled variation to be learned. Second, one or more neural-networks must be 

trained to deal with all remaining variation in distinguishing faces from non-faces. 

Third, the outputs from multiple detectors must be combined into a single decision 

about the presence of an face. 

Often, face recognition systems work by first applying a face detector to locate the face, 

then applying a separate recognition algorithm to identify the face. Other face 

recognition system sometimes use the hypothesize and verify technique, in which they 
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first generate a hypothesis of which object is present (recognition), then use a more 

precise algorithm to verify whether that object is actually present (detection). 

 
1.2 Challenges in Face Detection 
 
Object detection is the problem of determining whether or not a sub-window of an 

image belongs to the set of images of an object of interest. Thus, anything that increases 

the complexity of the decision boundary for the set of images of the object will increase 

the difficulty of the problem, and possibly increase the number of errors the detector 

will make. 

 

Suppose we want to detect faces that are tilted in the image plane, in addition to upright 

faces. Adding tilted faces into the set of images we want to detect increases the set’s 

variability, and may increase the complexity of the boundary of the set. Such 

complexity makes the detection problem harder. Note that it is possible that adding new 

images to the set of images of the object will make the decision boundary becomes 

simpler and easier to learn. One way to imagine this happening is that the decision 

boundary is smoothed by adding more images into the set. However, the conservative 

assumption is that increasing the variability of the set will make the decision boundary 

more complex, and thus make the detection problem harder. 

 

There are many sources of variability in the object detection problem, and specifically 

in the problem of face detection. These sources are outlined below. 

 
Variation in the Image Plane: 
 
The simplest type of variability of images of a face can be expressed independently of 

the face itself, by rotating, translating, scaling, and mirroring its image. Also included in 

this category are changes in the overall brightness and contrast of the image, and 

occlusion by other objects. Examples of such variations are shown in Figure 1.1. 

 
Pose Variation:  
 
Some aspects of the pose of a face are included in image plane variations, such as 

rotation and translation. Another source of variation is the distance of the face from the 

camera. Examples of such variations are shown in Figure 1.1. 
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Figure 1.1: Examples of how face images between poses and between different individuals. 
 
 
Lighting and Texture Variation: 
 
Up till now, we have described variations due to the position and orientation of the 

object with respect to the camera. Now we come to variation caused by the object and 

its environment, specifically the object’s surface properties and the light sources. 

Changes in the light source in particular can radically change a face’s appearance. 

Examples of such variations are shown in Figure 1.2. 

 

 

 
Figure 1.2: Examples of how images of faces change under extreme lighting conditions. 
 
Background Variation:  
 

When an object has a predictable shape, it is possible to extract a window which 

contains only pixels within the object, and to ignore the background. However, for 

profile faces, the border of the face itself is the most important feature, and its shape 
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varies from person to person. Thus the boundary is not predictable, so the background 

cannot be simply masked off and ignored. A variety of different backgrounds can be 

seen in the example images of Figures 1.1 and 1.2. 

 
Shape Variation:  
 
A final source of variation is the shape of the object itself. For faces, this type of 

variation includes facial expressions, whether the mouth and eyes are open or closed, 

and the shape of the individual’s face, as shown in some of the examples of Figure 1.1. 

 

The next section will describe the approach to the face detection problem, and show 

how each of the above sources of variation can be addressed. 

 
 

1.3 A View-Based Approach using Neural Networks 
 
The face detection system is based on four main steps: 
 

1. Localization and Pose Estimation: 
 

Use of a machine learning approach, specifically an artificial neural network, 

requires training examples. To reduce the amount of variability in the positive 

training images, they are aligned with one another to minimize the variation in the 

positions of various facial features. 

At runtime, we do not know the precise facial feature locations, and so we cannot 

use them to locate potential face candidates. Instead, we use exhaustive search over 

location and scale to find all candidate locations.  

It is at this stage rotation of the face, both in- and out-of-plane, are handled. A 

neural network analyzes the potential face region, and determines the pose of the 

face. This allows the face to be rotated to an upright position (in-plane) and selects 

the appropriate detector network for the particular out-of-plane orientation. 

2. Preprocessing:  
 
To further reduce variation caused by lighting or camera differences, the images are 

preprocessed with standard algorithms such as histogram equalization to improve 

the overall brightness and contrast in the images. We also examine the possibility of 
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lighting compensation algorithms that use knowledge of the structure of faces to 

perform lighting correction. 

 

3. Detection: 

 

     The potential faces which are already normalized in position, pose, and lighting in 

the first two steps are examined to determine whether they are really faces. This 

decision is made by neural networks trained with many face and non-face example 

images. This stage 

Handles all sources of variation in face images not accounted for the in the previous two 

steps. Separate networks are trained for frontal, tilted, and non frontal faces. 

 
     4.   Arbitration:  

 
In addition to using three separate detector, one for each class of poses of the face, 

multiple networks are also used within each pose. Each network learns different thing 

from the training data, and makes different mistakes. Their decisions can be combined 

using some simple heuristics, resulting in reinforcement of correct face detections and 

suppression of false alarms.  
 

Together these steps attempt to account for the sources of variability described in the 

previous section. These steps are illustrated schematically by Figure 1.3. 
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Figure 1.3: Schematic diagram of the main steps of the face detection algorithm. 
 

1.4 Evaluation 
 
We evaluated the accuracy of the algorithms developed. A number of test sets were 

used, with images collected from a variety of sources, including the World Wide Web, 

scanned photographs and newspaper clippings, and digitized video images. 

Each test set is designed to test one aspect of the algorithm, including the ability to 

detect faces in cluttered backgrounds, the ability to detect a wide variety of faces of 

different people, and the detection of faces of different poses. An overview of the 

results is given in Table 1.4. We will see that the upright detector is able to detect 

36.0% of faces on a test set containing mostly upright faces, while the tilted face 

detector has comparable detection rates. Both of these systems have fairly low false 

alarm rates. The detection rate for the non-frontal detector is significantly lower, 

reflecting the relative difficulty of these problems.  

Table 1.4: Overview of the results from the systems 
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Chapter 2 

 
Requirement Analysis 
 
 
 
 
2.1 Resource Requirements 
 
Following are the resources which are utilized in our project 
 

a) Personnel 
The personnel required to complete the project consist of following. 
• GC Azhar Mehmood (Ldr) 
• GC Usman Arif 
• GC Adeel Sajjad 
• GC Ubaid Rafiq 

 
b) Hardware 

 
The basic hardware required to accomplish this project is listed as under. 

• Personal Computers 
• Digital camera  
• Scanner 

 
c) Software 
 

Following softwares were used in the project. 
 

• Matlab 
• C++ 
• Visual Studio.net 
• MS Word 
• MS paint 

 
d) Office  Requirements 

 
The place where we will actually implement the project. It will be the Computer 
Lab of the college as well as our residences. 
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2.2 PROJECT BOUNDARIES & CONSTRAINTS 
 

• Project is limited to detect faces (not recognition) with an acceptable number of 

false positives. 

• Facial Features should be clearly visible for detection of face (Frontal Face 

Detection). 

• System works effectively with 640 X 500 resolution images. Larger resolution 

images lead to greater time for detection which becomes potentially inefficient. 

• Distance from the camera is also one limitation.  

• System suffers if the contrast and the lighting conditions are not balanced even 

after preprocessing. 

• Skin threshold below one detect faces but also increases error rates. 

• To improve quality of detection windows interval should be decreased but at the 

same time it will increase searching time. 

 

2.3 PROJECT ASSUMPTIONS 
There are few assumptions which were taken at the start of the project to make the 

detection task simpler. 

 

• Faces rarely overlap in the images. 

• Images with incomplete facial features are not catered for face detection. 

• Faces that appear far in the background with little information will not be taken 

into account. 

• Test images are taken assuming that they are fair in lighting and contrast. 

• The effectiveness and efficiency of the system is dependent on training the 

neural network. 

• Heuristics such as detecting face with height to width ratio can be used where 

possible.   

• The detection rate of the system cannot be 100%. 
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2.4 SYSTEM FEATURES 

 

• Flexibility:- 
System is flexible to cater for user requirements. Any format of the input 

image such as bmp, jpeg, png, gif etc can be given to the system. The output 

of the system can be saved for future reference. 

 

• Training Functions:- 
   Various training functions are available such as linear, sigmoid and Gaussian 
.We can select according to our requirements. 
 
 

• Searching Parameters:- 
        . Searching parameters can be varied to make the system more effective. 
Windows interval, skin threshold and scaling parameters can be set individually by 
the user.      

 
 

• Active Learning:- 
           The system is provided with the facility that the system can be trained as 

the training progresses. From the output user can select manually the windows and 

add them to the training set as positive or negative examples. This improves the 

accuracy of the system. 

 
• Neural Network Editor 
               User can edit the neural network settings. New neural network can be 

created with 30 x 30 input masks. Any of the training functions and training images 

can be provided for this new network. The user can also train the system offline. 

 
• Time Estimation 
               By looking at the searching parameters user can guess the time required to 

scan the test image. The “searching progress bar” gives the total windows and the 



 16

windows scanned so far by the system. Also it provides the total number of patterns 

found in the image. 

 
 
 
 
 
 
 
2.5 PROJECT DELIVERABLES 
 
 

 Test Image Database 

 

 Face Database for Training 

 

 Non-Face Database for Training 

 

 Implemented Neural Network 

 

 Neural Network Editor 

 

 Trained Neural Network 

 

 Detection System 

 

 User Manual 
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Chapter 3 
 
 
SYSTEM DESIGN 
 
 
 
 
3.1 Schematic Diagram 
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3.2 Data Flow Diagrams 
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Chapter 4 
 
Data Preparation 
 
 
4.1 Introduction 
 
This project will utilize a view-based approach to face detection, and will use a statistical 

model (an artificial neural network) to represent each view. A view-based face detector 

must determine whether or not a given sub-window of an image belongs to the set of 

images of faces. Variability in the images of the face may increase the complexity of the 

decision boundary to distinguish faces from non-faces, making the detection task more 

difficult.  

 
 
4.4 Facial Feature Labeling and Alignment 
 
The first step in reducing the amount of variation between images of faces is to align the 

faces with one another. This alignment should reduce the variation in the two dimensional 

position, orientation, and scale of the faces. Ideally, the alignment would be computed 

directly from the images, using image registration techniques. This would give the most 

compact space of images of faces. However, the image intensities of faces can differ quite 

dramatically, which would make some faces hard to align with each other, but we want 

every face to be aligned with every other face. 

 

The solution used for this project is manual labeling of the face examples. For each face, a 

number of feature points are labeled, depending on the three-dimensional pose of the head, 

as listed in Figure 4.1. 
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The next step is to use this information to align the faces with one another. First, we must 

define what is meant by alignment between two sets of feature points. We define it as the 

rotation, scaling, and translation which minimize the sum of squared distances between 

pairs of corresponding features. In two dimensions, such a coordinate transformation can 

be written in the following form: 

 

 
 

 
 
Figure 4.1: Features points manually labeled on the face, depending on the three dimensional 
pose of the face. The left profile views are mirrors of the right profiles. 
 
 
If we have several corresponding sets of coordinates, this can be further rewritten as 
follows: 
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When there are two or more pairs of distinct feature points, this system of linear equations 

can be solved by the pseudo-inverse method. Renaming the matrix on the left hand side as 

A, the vector of variables (a, b, tx, ty)T as T, and the right hand side as B, the pseudo-

inverse solution to these equations is: 

                      

                                           
The pseudo-inverse solution yields the transformation T which minimizes the sum of 

squared differences between the sets of coordinates x_i, y_i and the transformed versions of 

xi, yi, which was our goal initially. 

 

Now that we have seen how to align two sets of labeled feature points, we can move on to 

aligning sets of feature points. The procedure is described in following algorithm. 

 

1. Initialize ¯F, a vector which will be the average positions of each labeled feature over all 

the faces, with some initial feature locations. In the case of aligning frontal faces, these 

features might be the desired positions of the two eyes in the input window. For faces of 

another pose, these positions might be derived from a 3D model of an average head. 

 

4.For each face i, use the alignment procedure to compute the best rotation, translation, and 

scaling to align the face’s features Fi with the average feature locations ¯ F. Call the 

aligned feature locations F_i. 

 

3. Update ¯F by averaging the aligned feature locations F_i for each face i. 

 

4. The feature coordinates in ¯F are rotated, translated, and scaled (using the alignment 

procedure described earlier) to best match some standardized coordinates. These standard 

coordinates are the ones used as initial values used for ¯F. 

 

5. Go to step 4. 
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Empirically, this algorithm converges within five iterations, yielding for each face the 

transformation which maps it to close to a standard position, and aligned with all the other 

faces. Once the parameters needed to align the faces are known, the image can be 

resampled using bilinear interpolation to produce a cropped and aligned image. The 

averages and distributions of the feature locations for frontal faces are shown in Figure 4.4, 

and examples of images that have been aligned using this technique are shown in Figure 

4.3. 

 
Figure 4.2: Left: Average of upright face examples. Right: Positions of average facial 
feature locations (white circles), and the distribution of the actual feature locations (after 
alignment) from all the examples (black dots). 
 
In training a detector, obtaining a sufficient number of examples is an important problem. 

One commonly used technique is that of virtual views, in which new example images are 

created from real images. In this project, this has taken the form of randomly rotating, 

translating, and scaling example images by small amounts  

 
 

 
Figure 4.3: Example upright frontal face images aligned to one another. 
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Figure 4.4: Example upright frontal face images, randomly mirrored, rotated, translated, 
and scaled by small amounts. 
 
Once the faces are aligned to have a known size, position, and orientation, the amount of 

variation in the training data can be controlled. The detector to be made more or less robust 

to particular variations in a desired degree. Some example images in which random 

amounts rotation (up to 10o), random translations of up to half a pixel, and random scalings 

up to 10% are shown in Figure 4.4. 

 
4.3 Preprocessing for Brightness and Contrast 
 
After aligning the faces, there is one remaining major source of variation (apart from 

intrinsic differences between faces). This variation is caused by lighting and camera 

characteristics, which can result in brightly or poorly lit images, or images with poor 

contrast. 

 

We first address these problems by using a simple image processing approach. This 

preprocessing technique first attempts to equalize the intensity values in across the window. 

We fit a function which varies linearly across the window to the intensity values in an oval 

region inside the window (shown in Figure 4.5a). Pixels outside the oval may represent the 

background, so those intensity values are ignored in computing the lighting variation across 

the face. If the intensity of a pixel x, y is I(x, y), then we want to fit this linear model 

parameterized by a, b, c to the image: 

 

                                          



 27

 
The choice of this particular model is somewhat arbitrary. It is useful to be able to represent 

brightness differences across the image, so a non-constant model is useful. The variation is 

limited to linear to keep the number of parameters low and allow them to be fit quickly. 

Collecting together the contributions for all the pixels in the oval window gives an over-

constrained matrix equation, which is solved by the pseudo-inverse method. This linear 

function will approximate the overall brightness of each part of the window, and can be 

subtracted from the window to compensate for a variety of lighting conditions. 

 

Next, histogram equalization is performed, which non-linearly maps the intensity values to 

expand the range of intensities in the window. The histogram is computed for pixels inside 

an oval region in the window. This compensates for differences in camera input gains, as 

well as improving contrast in some cases. Some sample results from each of the 

preprocessing steps are shown in Figure 4.5. The algorithm for this step is as follows. We 

first compute the intensity histogram of the window, where each intensity level is given its 

own bin. This histogram is then converted to a cumulative histogram, in which the value at 

each bin says how many pixels have intensities less than or equal to the intensity of the bin. 

 
                   

 
Figure 4.5: The steps in preprocessing a window. First, a linear function is fit to the intensity values in the 
window, and then subtracted out, correcting for some extreme lighting conditions. Then, histogram 
equalization is applied, to correct for different camera gains and to improve contrast. For each of these steps, 
the mapping is computed based on pixels inside the oval mask, and then applied to the entire window. 
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The goal is to produce a flat histogram, which is an image in which each pixel intensity 

occurs an equal number of times. The cumulative histogram of such an image will have 

that property that the number of pixels with an intensity less than or equal to a given 

intensity is proportional to that intensity. 

 

Given an arbitrary image, we can produce an image with a linear cumulative histogram by 

adjusting the pixel intensities. Each intensity will be mapped to the value of the cumulative 

histogram for that bin. This guarantees that the number of pixels matches the intensity, 

which is the property we want. In practice, it is impossible to get a perfectly flat histogram 

(for example, the input image might have a constant intensity), so the result is only an 

approximately flat intensity histogram. To see how the histograms change with each step of 

the algorithm, see Figure 4.6. 

 

In some parts of this project, only histogram equalization with subtracting the linear model 

is used. This is done when we do not know which pixels in the input window are likely to 

be foreground or background, and cannot apply the linear correction to just the face. 

Instead, we just apply the histogram equalization to the whole window, hoping that it will 

reduce the variability somewhat, without the background pixels having too much effect on 

the appearance of the face in the foreground. 
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Figure 4.6: (a) Smoothed histograms of pixel intensities in a 40 × 40 window as it is passed 
through the preprocessing steps. Note that the lighting correction centers the peak of intensities at 
zero, while the histogram equalization step flattens the histogram. (b) The same three steps shown 
with cumulative histograms. The cumulative histogram of the result of lighting correction is used as 
a mapping function, to map old intensities to new ones. 
 
 
4.4 Face-Specific Lighting Compensation 
 
Part of the motivation of the preprocessing steps in the previous section is to have 

robustness to variations in the lighting conditions, for instance lighting from the side of the 

face which changes its overall appearance. However, there are limits to what “dumb” 

corrections, with no knowledge of the structure of faces, can accomplish. In this section, I 

will present some preliminary ideas on how to intelligently correct for lighting variation. 

 

 
4.4.1 Linear Lighting Models 
 
The ideas in this section are based on the illumination models, in which the range of 

appearances has been explored that an object can take on under differently lighting 

conditions. One assumption used in it is that adding light sources to a scene results in an 

image which is a sum of the images for each individual light source. This means that the 

brightness of a point on the object depends only on the reflectivity of the object (its albedo) 

and the angle between the object’s surface and the direction to the light source, according 

to the following formula (assuming there are no shadows): 

 

                                       
 
where I(x, y) is the intensity of pixel x, y, A(x, y) is the albedo of the corresponding point 

on the object, N(x, y) is the normal vector of the object’s surface (relative to a vector 

pointing toward the camera) and L is a vector from the object to the light source, which is 

assumed to cast parallel rays on the object. 

 

As the light source direction L is varied, I(x, y) also varies, but the surface shape and 

albedo are fixed. Since the equation is linear, and L has three parameters, the space of 
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images of the object (without shadows) is a three dimensional subspace. This subspace can 

be determined from (at least) example images of the object, by using principal components 

analysis (PCA). This subspace is related by a linear transformation to the set of normal 

vectors N(x, y). If we want to recover the true normal vectors, we need to know the actual 

light source directions. If these directions are available, the system can be treated as an 

over-constrained set of equations and solved directly for N(x, y) without performing 

principal components analysis. Actually, we will solve for the product A(x, y)N(x, y), but 

since N(x, y) have unit length, it is possible to separate the albedo A(x, y). 

An example result is shown in Figure 4.4. 

 

With A(x, y) and N(x, y) in hand, which are essentially the color and shape of the face, we 

can then generate new images of the face under any desired lighting conditions. Some 

examples of images which can be generated are shown in Figure 4.3. 

 

Such images can be used directly for training a face detector, and such experiments will be 

reported on in the next chapter. It is however quite time consuming to capture images of 

faces under multiple lighting conditions, and this limits the amount of training data. Ideally, 

we would like to learn about how images of faces change with different lighting, and apply 

that to new images of faces, for which we only have single images.  

 
4.4.4 Neural Networks for Compensation 
 
Given a new input window to be classified as a face or non-face, we would like to apply a 

lighting correction which will remove any artifacts caused by extreme lighting conditions. 

This lighting correction must not change faces to non-faces and vice-versa. The 

architecture we tried is shown in Figure 4.9. 

 

The architecture feeds the input window to a neural network, which has been trained to 

produce a lighting correction that is an image to add to the input which will make the 

lighting appear that it is coming from the front of the face. Some example training data is 

shown in Figure 4.10. 
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This data was prepared using the lighting models described above. This lighting correction 

is then added back into the original input window to get the corrected window. To prevent 

the neural network from applying arbitrary corrections (which could turn any non-face into 

a face), the network architecture contains a bottleneck, forcing the network to parameterize 

the correction using only four activation levels. The output layer essentially computes a 

linear combination of four images based on these activations. 

 
 
Figure 4.4: Example images under different lighting conditions, such as these, allow us to 
solve for the normal vectors on a face and its albedo. 
 
Some results from this system for faces and non-faces are shown in Figure 4.9. As can be 

seen, most of the results for faces are quite good (one exception is the fifth face from the 

left). Most of the strong shadows are removed, and the brightness levels of all parts of the 

face are similar. However, the results for non-faces are troubling. Many of the non-faces 

now look very face-like. The reason for this can be seen by considering the types of 

corrections that must be performed. When the lighting is very extreme, say from the left 

side of the face, the right side of the face will have intensity values of zero. Thus the 

corrector must “construct” the entire right half of the face. This construction capability 

makes it create faces when given relatively uniform non-faces as input. 
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One potential solution to this problem would be to measure how much work the lighting 

correction network had to do. If it made large changes in the image, then the result of the 

face detector applied to that window should be more suspect. This has not yet been 

explored. 
 
 
 

 
 
 
Figure 4.3: Generating example images under variable lighting conditions. 
 
4.4.3 Quotient Images for Compensation 
 
The idea in this work is again to use linear lighting models. A technique is used where an 

input image can be simultaneously projected into the linear lighting spaces of a set of linear 

models. The simultaneous projection finds the L which minimizes the following quantity: 

 

                                  
Where I(x, y) is the input image, i is summed over all n lighting models, and, and Ai(x, y) 

and Ni(x, y) are the corresponding albedo and normal vectors for lighting model i at pixel 
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(x, y). The result of this optimization is a vector L representing the lighting conditions for 

the face in the input image. Using a set of linear models allows for some robustness to 

differences in the albedos and shapes of individual faces. Using the collection of face 

lighting models, they then compute an image of the average face under the same conditions 

using the following equation: 

                                                

 
 
Figure 4.9: Architecture for correcting the lighting of a window. The window is given to a 
neural network, which has a severe bottleneck before its output. The output is a correction 
to be added to the original image. 
 

 
 
Figure 4.10: Training data for the lighting correction neural network. 
 
The input image is divided by this synthetic image, yielding a so called “quotient image”. 

Mathematically, the quotient image contains only the ratio of the albedos of the new face 

and the average face, assuming that the faces have similar shapes. 
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The original work on this technique used the quotient image for face recognition, because it 

removes the effects of lighting and allows recognition with fewer example images. The 

same approach can be used to normalize the lighting of input windows for face detection. 

Instead of just dividing by the average face under the estimated lighting conditions, we can 

go a step further, multiplying by the average face under frontal lighting: 

 

                                   
 

 
Figure 4.11: Result of lighting correction system. The lighting correction results for most of the 
faces are quite good, but some of the non-faces have been changed into faces. 
 
This should ideally give an image of the original face but with frontal lighting. Some 

examples are shown in Figure 4.40. It is not clear that this approach will work well for face 

detection. As can be seen, while the overall intensity has been roughly normalized, the 

brightness differences across the face have not been improved. In some cases, bright spots 

have been introduced into the output image, probably because of the specular reflections in 

the images used to build the basis for the face images. Finally, since the lighting model 

does not incorporate shadows, the shadows cast by the nose or brow will cause problems. 

 
4.5 Summary 
 
The first part of this chapter described the training and test databases used throughout this 

project. The major focus however was some methods for segmenting face regions from 
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training images, aligning faces with one another, and preprocessing them to improve 

contrast. The chapter ended with some speculative results on how to intelligently correct 

for extreme lighting conditions in images. Together these techniques will be used to 

generate training data for the detectors to be described later. 

 

 
                            Figure 4.14: Result of using quotient images to correct lighting. 
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Chapter 5 
 
Upright Face Detection 
 
5.1 Introduction 
 
In this chapter, a neural network-based algorithm is presented to detect upright, frontal 

views of faces. The algorithm works by applying one or more neural networks directly to 

portions of the input image, and arbitrating their results. Each network is trained to output 

the presence or absence of a face. 
 

Training a neural network for the face detection task is challenging because of the difficulty 

in characterizing prototypical “non-face” images. Unlike face recognition, in which the 

classes to be discriminated are different faces, the two classes to be discriminated in face 

detection are “images containing faces” and “images not containing faces”. It is easy to get 

a representative sample of images which contain faces, but much harder to get a 

representative sample of those which do not. We avoid the problem of using a huge 

training set for non-faces by selectively adding images to the training set as training 

progresses. This “bootstrap” method reduces the size of the training set needed. The use of 

arbitration between multiple networks and heuristics to clean up the results significantly 

improves the accuracy of the detector. 

 

The architecture of the system and training methods for the individual neural networks 

which make up the detector are presented in Section 5.2. Section 5.5 examines how these 

individual networks behave, by measuring their sensitivity to different parts of the input 

image, and measuring their performance on some test images. Methods to clean up the 
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results and to arbitrate among multiple networks are presented in Section 5.4. The results in 

Section 5.5 show that the system is able to detect 90.5% of the faces over a test set of 150 

complex images, with an acceptable number of false positives. 

 

5.2 Individual Face Detection Networks 
 
The system operates in two stages: it first applies a set of neural network-based detectors to 

an image, and then uses an arbitrator to combine the outputs. The individual detectors 

examine each location in the image at several scales, looking for locations that might 

contain a face. The arbitrator then merges detections from individual networks and 

eliminates overlapping detections. 

 

The first component of our system is a neural network that receives as input a 20 × 20 

pixel region of the image, and generates an output ranging from 1 to -1, signifying the 

presence or absence of a face, respectively. To detect faces anywhere in the input, the 

network is applied at every location in the image. To detect faces larger than the window 

size, the input image is repeatedly reduced in size (by sub sampling), and the detector is 

applied at each size. This network must have some invariance to position and scale. The 

amount of invariance determines the number of scales and positions at which it must be 

applied. We apply the network at every pixel position in the image, and scale the image 

down by a factor of 1.2 for each step in the pyramid. This image pyramid is shown at the 

left of Figure 5.1. 

 



 38

 
 
                                Figure 5.1: The basic algorithm used for face detection. 
 
After a 20 × 20 pixel window is extracted from a particular location and scale of the input 

image pyramid, it is preprocessed using the affine lighting correction and histogram 

equalization steps described in Section 2.5. The preprocessed window is then passed to a 

neural network. The network has retinal connections to its input layer; the receptive fields 

of hidden units are shown in Figure 5.1. The input window is broken down into smaller 

pieces, of four 10 × 10 pixel regions, sixteen 5×5 pixel regions, and six overlapping 20×5 

pixel regions. Each of these regions will have complete connections to a hidden unit, as 

shown in the figure. Although the figure shows a single hidden unit for each subregion of 

the input, these units can be replicated. For the experiments which are described later, we 

use networks with two and three sets of these hidden units. The shapes of these subregions 

were chosen to allow the hidden units to detect local features that might be important for 

face detection. In particular, the horizontal stripes allow the hidden units to detect such 

features as mouths or pairs of eyes, while the hidden units with square receptive fields 

might detect features such as individual eyes, the nose, or corners of the mouth. Similar 

input connection patterns are commonly used in speech and character recognition tasks. 

The network has a single, real-valued output, which indicates whether or not the window 

contains a face. 
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5.2.1 Face Training Images 
 
In order to use a neural network to classify windows as faces or non-faces, we need training 

examples for each set. For positive examples, we use the techniques presented in Section 

2.5 to align example face images in which some feature points have been manually 

labelled. After alignment, the faces are scaled to a uniform size, position, and orientation 

within a 20×20 pixel window. The images are scaled by a random factor and translated by 

a random amount up to 0.5 pixels. This allows the detector to be applied at each pixel 

location and at each scale in the image pyramid, and still detect faces at intermediate 

locations or scales. In addition, to give the detector some robustness to slight variations in 

the faces, they are rotated by a random amount (up to 10. degrees). In our experiments, 

using larger amounts of rotation to train the detector network yielded too many false 

positive to be usable. There are a total of 1046 training examples in our training set, and 15 

of these randomized training examples are generated for each original face. The next 

sections describe methods for collecting negative examples and training. 

 

5.2.2 Non-Face Training Images 
 

We needed a large number of non-face images to train the face detector, because the variety 

of non-face images is much greater than the variety of face images. One large class of 

images which do not contain any faces are pictures of scenery, such as trees, mountains, 

and buildings. 

Collecting a “representative” set of non-faces is difficult. Practically any image can serve 

as a non-face example; the space of non-face images is much larger than the space of face 

images. The statistical approach to machine learning suggests that we should train the 

neural networks on precisely the same distribution of images which it will see at runtime. 

For our face detector, the number of face examples is 15,000, which is a practical number. 

However, our representative set of scenery images contains approximately 150,000,000 

windows, and training on a database of this size is very difficult. The next two sections 

describe two approaches to training with this amount of data. 
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5.2.5 Active Learning 
 

Because of the difficult of training with every possible negative example, we utilized an 

algorithm. Instead of collecting the images before training is started, the images are 

collected during training, in the following manner: 

 

1. Create an initial set of non-face images by generating 1000 random images. Apply the 

preprocessing steps to each of these images. 

 

2. Train a neural network to produce an output of 1 for the face examples, and -1 for the 

non-face examples. On the first iteration of this loop, the network’s weights are initialized 

randomly. After the first iteration, we use the weights computed by training in the previous 

iteration. 

 

5. Run the system on an image of scenery which contains no faces. Collect subimages in 

which the network incorrectly identifies a face (an output activation > 0). 

 

4.Select up to 250 of these subimages at random, apply the preprocessing steps, and add 

them into the training set as negative examples. Go to Step 2. 

 

The training algorithm used in Step 2 is the standard error backpropogation algorithm. The 

neurons use the tanh activation function, which gives an output ranging from -1 to 1, 

hence the threshold of 0 for the detection of a face.  

Since the number of negative examples is much larger than the number of positive 

examples, uniformly sampled batches of training examples would often contain only 

negative examples, which would be inappropriate for neural network training. Instead, each 

batch of 100 positive and negative examples is drawn randomly from the entire training 

sets, and passed to the backpropogation algorithm as a batch. We choose the training 

batches such that they have 50% positive examples and 50% negative examples. This 

ensures that initially, when we have a much larger set of positive examples than negative 

examples, the network will actually learn something from both sets. Note that this changes 
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the distribution of faces and non-faces in the training sets compared with what the network 

will see at run time.  

 

 
 
Figure 5.2: During training, the partially-trained system is applied to images of scenery which do 
not contain faces (like the one on the left). Any regions in the image detected as faces (which are 
expanded and shown on the right) are errors, which can be added into the set of negative training 
examples. 
 
Some examples of non-faces that are collected during training are shown in Figure 5.2. 

Note that some of the examples resemble faces, although they are not very close to the 

positive examples shown in Figure 2.2. The presence of these examples forces the neural 

network to learn the precise boundary between face and non-face images. We used 120 

images of scenery for collecting negative examples in the bootstrap manner described 

above.  

 
 
5.2.4 Exhaustive Training 
 
Neural network training usually requires training the network many times on its training 

images; a single pass through 150,000,000 scenery windows not only requires a huge 

amount of storage, but also takes nearly a day on a four processor SGI supercomputer. 

Additionally, a network usually rains on images in batches of about 100 images; by the 

time we reach the end of 150,000,000 examples, it will have forgotten the characteristics of 

first images. As in the previous section, to insure that the the neural network learns about 

both faces and non-faces, we select the batches of negative examples to have 

approximately equal numbers of positive and negative examples. However, this changes 
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the apparent distribution of positive and negative examples, so that it no longer matches the 

real distribution. 

 

It is possible to compensate for this using Bayes’ Theorem. If we denote P(face|window) 

as the probability that a given window is a face, and P’(face) and P’(non-face) as the prior 

probability of faces and non-faces in the training sets (both 0.5), then Bayes’ Theorem says: 

 

 
 
Neural networks will learn to estimate the left hand side of this equation, and since we 

know P’(face), P’(non-face), and that P(window|non-face) = 1 - P(window|face), this 

equation simplifies, giving: 

 

                                              P (window|face) = NN Output 

 

Let us denoted the true probability of faces is P(face), and non-faces is P(non-face). Then 

we can use Bayes’ Theorem in the forward direction to get the true probability of a face 

given the image: 
 

                  
We would like to classify a window as a face if P(face|window) > 0.5, which is equivalent 

to setting a threshold of: 

                                                 NN Output > 1 - P(face) 

 

Since we are using neural networks with tanh activation functions, the output range is -1 to 

1, so this threshold is adjusted as follows: 

                                                  NN Output > 1 - 2P(face) 

Thus we need to determine the prior probability of faces, which will be discussed in 

Section 5.5.2. 
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5.3 Analysis of Individual Networks 
 
This section presents some analysis of the performance of the networks described above, 
beginning with a sensitivity analysis, then examining the performance on the Upright Test 
Set. 
 
 
 
5.31 Sensitivity Analysis 
 
In order to determine which part of its input image the network uses to decide whether the 

input is a face, we performed sensitivity analysis. We collected a positive test set based on 

the training database of face images, but with different randomized scales, translations, and 

rotations than were used for training. The negative test set was built from a set of negative 

examples collected during the training of other networks. Each of the 20 × 20 pixel input 

images was divided into 100 2×2 pixel subimages. For each subimage in turn, we went 

through the test set, replacing that subimage with random noise, and tested the neural 

network. The resulting root mean square error of the network on the test set is an indication 

of how important that portion of the image is for the detection task. Plots of the error rates 

for two networks we trained are shown in Figure 5.5. Network 1 uses two sets of the hidden 

units illustrated in Figure 5.1, while Network 2 uses three sets. 

 

 
 
Figure 5.5: Error rates (vertical axis) on a test created by adding noise to various portions of the 
input image (horizontal plane), for two networks. Network 1 has two copies of the hidden units 
shown in Figure 5.1 (a total of 55 hidden units and 2905 connections), while Network 2 has three 
copies (a total of 25 hidden units and 4552 connections). 
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The networks rely most heavily on the eyes, then on the nose, and then on the mouth 

(Figure5.5). We have seen this behavior on several real test images. In cases in which only 

one eye is visible, detection of a face is possible, though less reliable, than when the entire 

face is visible. The system is less sensitive to the occlusion of the nose or mouth. 

 

5.3.2 ROC (Receiver Operator Characteristic) Curves 
 

The outputs from our face detection networks are not binary. The neural networks produce 

real values between 1 and -1, indicating whether or not the input contains a face. A 

threshold value of zero is used during training to select the negative examples (if the 

network outputs a value of greater than zero for any input from a scenery image, it is 

considered a mistake). Although this value is intuitively reasonable, by changing this value 

during testing, we can vary how conservative the system is. To examine the effect of this 

threshold value during testing, we measured the detection and false positive rates as the 

threshold was varied from 1 to -1. At a threshold of 1, the false detection rate is zero, but no 

faces are detected. As the threshold is decreased, the number of correct detections will 

increase, but so will the number of false detections. 
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Figure 5.4:The detection rate plotted against false positive rates as the detection threshold is varied 
from -1 to 1, for the same networks as Figure 5.5. The performance was measured over all images 
from the Upright Test Set. The points labelled “zero” are the zero threshold points which are used 
for all other experiments. 
 
 
This tradeoff is presented in Figure 5.4, which shows the detection rate plotted against the 

number of false positives as the threshold is varied, for the two networks presented in the 

previous section. This is measured for the images in the Upright Test Set, which consists 

150 images with 502. The false positive rate is in terms of the number of 20 × 20 pixel 

windows that must be examined. This number can be approximated from the number of 

pixels in the image and the scale factor between different resolutions in the image pyramid 

(1.2): 
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To give an intuitive idea about the meaning of the numbers in Figure 5.4 (with a zero 

threshold), some examples of the output on the two images in Figure 5.5 are shown in 

Figure 5.6. In the figure, each box represents the position and size of a window to which 

Network 1 gave a positive response. The network has some invariance to position and 

scale, which results in multiple boxes around some faces. Note also that there are quite a 

few false detections; the next section presents some methods to reduce them. 

 

The above analysis can be used with the probabilistic analysis in Section 5.2.4 to determine 

the threshold for detecting faces in that scheme. Suppose that for a true face, windows one 

pixel either side of its location, and windows either side of its scale can be detected, then 

each face contributes about 5·5·5 = 22 face windows. In the training database, there are 

1046 faces (22×1046 = 25242 face windows) and 592,624,545 20 × 20 windows, giving 

a probability of faces equal to 1/20954. This is the value that will be used later in testing. 

 
              

                                   
                   Figure 5.5: Example images on to test the output of the upright detector. 
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Figure 5.6: Images from Figure 5.5 with all the above threshold detections indicated by boxes. 
Note that the circles are drawn for illustration only, they do not represent detected eye locations. 
 
5.4 Refinements 
 
The examples in Figure 5.6 showed that the raw output from a single network will contain 

a number of false detections. In this section, we present two strategies to improve the 

reliability of the detector: cleaning-up the outputs from an individual network, and 

arbitrating among multiple networks 

 

5.4.1 Clean-Up Heuristics 

 
Note that in Figure 5.6a, the face is detected at multiple nearby positions or scales, while 

false detections often occur with less consistency. The same is true of Figure 5.6b, but since 

the faces are smaller the overlapping detections are not visible. These observation lead to a 

heuristic which can eliminate many false detections. For each detection, the number of 

other detections within a specified neighborhood of that detection can be counted. If the 

number is above a threshold, then that location is classified as a face. The centroid of the 

nearby detections defines the location of the detection result, thereby collapsing multiple 

detections. In the experiments section, this heuristic will be referred to as 

thresholding(size,level), where size is the size of the neighborhood, in both pixels and 

pyramid steps, on either side of the detection in question, and level is the total number of 

detections which must appear in that neighborhood. The result of applying threshold(4,2) 

to the images in Figure 5.6 is shown in Figure 5.2. 
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Figure 5.2: Result of applying threshold(4,2) to the images in Figure 5.6. 
 
If a particular location is correctly identified as a face, then all other detection locations 

which overlap it are likely to be errors, and can therefore be eliminated. Based on the above 

heuristic regarding nearby detections, we preserve the location with the higher number of 

detections within a small neighborhood, and eliminate locations with fewer detections. In 

the discussion of the experiments, this heuristic is called overlap. There are relatively few 

cases in which this heuristic fails; however, one such case is illustrated by the left two faces 

in Figure 5.5b, where one face partially occludes another, and so is lost when this heuristic 

is applied. These arbitration heuristics are very similar to, but computationally less 

expensive than, those presented in my previous paper [Rowley et al., 1995]. 

 

 
                        Figure 5.5: Result of applying overlap to the images in Figure 5.2. 
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Figure 5.9: The framework for merging multiple detections from a single network: A) The 
detections are recorded in an “output” pyramid. B) The number of detections in the neighborhood of 
each detection are computed. C) The final step is to check the proposed face locations for overlaps, 
and D) to remove overlapping detections if they exist. In this example, removing the overlapping 
detection eliminates what would otherwise be a false positive. 
 
The implementation of these two heuristics is illustrated in Figure 5.9. Each detection at a 

particular location and scale is marked in an image pyramid, called the “output” pyramid. 

Then, each detection is replaced by the number of detections within its neighborhood. A 

threshold is applied to these values, and the centroids (in both position and scale) of all 

above threshold detections are computed (this step is omitted in Figure 5.9. Each centroid is 

then examined in order, starting from the ones which had the highest number of detections 

within the specified neighborhood. If any other centroid locations represent a face 

overlapping with the current centroid, they are removed from the output pyramid. All 

remaining centroid locations constitute the final detection result. In the face detection work 

described in [Burel and Carel, 1994], similar observations about the nature of the outputs 

were made, resulting in the development of heuristics similar to those described 

above. 
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5.4.2 Arbitration among Multiple Networks 
 
[Sung, 1996] provided some formalization of how a set of identically trained detectors can 

be used together to improve accuracy. He argued that if the errors made by a detector are 

independent, then by having a set of networks vote on the result, the number of overall 

errors will be reduced.  

 

To further reduce the number of false positives, we can apply multiple networks, and 

arbitrate between their outputs to produce the final decision. Each network is trained using 

the same algorithm with the same set of face examples, but with different random initial 

weights, random initial non-face images, and permutations of the order of presentation of 

the scenery images. As will be seen in the next section, the detection and false positive 

rates of the individual networks will be quite close. However, because of different training 

conditions and because of self-selection of negative training examples, the networks will 

have different biases and will make different errors. 

 

The arbitration algorithm is illustrated in Figure 5.10. Each detection at a particular position 

and scale is recorded in an image pyramid, as was done with the previous heuristics. One 

way to combine two such pyramids is by ANDing them. This strategy signals a detection 

only if both networks detect a face at precisely the same scale and position. Due to the 

different biases of the individual networks, they will rarely agree on a false detection of a 

face. This allows ANDing to eliminate most false detections. Unfortunately, this heuristic 

can decrease the detection rate because a face detected by only one network will be thrown 

out. However, we will see later that individual networks can all detect roughly the same set 

of faces, so that the number of faces lost due to ANDing is small. 

 

Similar heuristics, such as ORing the outputs of two networks, or voting among three 

networks, were also tried. In practice, these arbitration heuristics can all be implemented 

with variants of the threshold algorithm described above. For instance, ANDing can be 

implemented by combining the results of the two networks, and applying threshold(0,2), 
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ORing with threshold(0,1), and voting by applying threshold(0,2) to the results of three 

networks. 

 

 
Figure 5.10: ANDing together the outputs from two networks over different positions and scales 
can improve detection accuracy. 
 
Each of these arbitration methods can be applied before or after the clean-up heuristics. If 

applied afterwards, we combine the centroid locations rather than actual detection 

locations, and require them to be within some neighborhood of one another rather than 

precisely aligned, by setting the size parameter of the threshold which implements the 

arbitration to a 4 rather than 0. These are denoted AND(4) and AND(0) in the experiments. 

 

Arbitration strategies such as ANDing, ORing, or voting seem intuitively reasonable, but 

perhaps there are some less obvious heuristics that could perform better. To test this 

hypothesis, we applied a separate neural network to arbitrate among multiple detection 

networks, as illustrated in Figure 5.11. For every location, the arbitration network examines 

a small neighborhood surrounding that location in the output pyramid of each individual 

network. For each pyramid, we count the number of detections in a 5 × 5 pixel region at 

each of three scales around the location of interest, resulting in three numbers for each 
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detector, which are fed to the arbitration network. The arbitration network is trained (using 

the images from which the positive face examples were extracted) to produce a positive 

output for a given set of inputs only if that location contains a face, and to produce a 

negative output for locations without a face. As will be seen in the next section, using an 

arbitration network in this fashion produced results comparable to (and in some cases, 

slightly better than) those produced by the heuristics presented earlier, at the expense of 

extra complexity. 

 

 
 
 
Figure 5.11:The inputs and architecture of the arbitration network which arbitrates among multiple 
face detection networks. 
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5.5 Evaluation 
 
A number of experiments were performed to evaluate the system. We first show an 

analysis of which features the neural network is using to detect faces, then present the error 

rates of the system over two large test sets, and finally show some example output. 

 

5.5.1 Upright Test Set 
 

The first set of test images is for testing the capabilities of the upright face detector. To 

evaluate the accuracy of their system, a test database of 25 images from various sources is 

collected, which we also use for testing purposes. 

 

A number of these images were chosen specifically to test the tolerance to clutter in 

images, and did not contain any faces. Others contained large numbers of upright, frontal 

faces, to test the detector’s tolerance of different types of faces. A few example images are 

shown in Figure 5.12. In the following, this test set will be called the Upright Test Set. 

 
 
Figure 5.12: Example images from the Upright Test Set, used for testing the upright face 
detector. 
 
Table 5.15 shows the performance of different versions of the detector on the Upright Test 

Set. The four columns show the number of faces missed (out of 502), the detection rate, the 

total number of false detections, and the false detection rate (compared with the number of 

20 × 20 windows examined. 



 54

 
 

 
 
Table 5.15: Detection and error rates for the Upright Test Set, which consists of 150 images and 
contains 502 frontal faces. It requires the system to examine a total of 55,099,211 20 × 20 pixel 
windows. 
 
The table begins by showing the results for four individual networks. Networks 1 and 2 are 

the same as those used in Sections 5.5.1 and 5.5.2. Networks 5 and 4 are identical to 

Networks 1 and 2, respectively, except that the negative example images were presented in 

a different order during training. The results for ANDing and ORing networks were based 

on Networks 1 and 2, while voting and network arbitration were based on Networks 1, 2, 



 55

and 5. The neural network arbitrators were trained using the images from which the face 

examples were extracted. Three different architectures for the network arbitrator were used. 

The first used 5 hidden units, as shown in Figure 5.11. The second used two hidden layers 

of 5 units each, with complete connections between each layer, and additional connections 

between the first hidden layer and the output. The last architecture was a simple perceptron, 

with no hidden units. 

As discussed earlier, the threshold heuristic for merging detections requires two 

parameters, which specify the size of the neighborhood used in searching for nearby 

detections, and the threshold on the number of detections that must be found in that 

neighborhood. In the table, these two parameters are shown in parentheses after the word 

threshold. Similarly, the ANDing, ORing, and voting arbitration methods have a parameter 

specifying how close two detections (or detection centroids) must be in order to be counted 

as identical. 

Systems 1 through 4 in the table show the raw performance of the networks. Systems 5 

through 5 use the same networks, but include the threshold and overlap steps which 

decrease the number of false detections significantly, at the expense of a small decrease in 

the detection rate. The remaining systems all use arbitration among multiple networks. 

Using arbitration further reduces the false positive rate, and in some cases increases the 

detection rate slightly. Note that for systems using arbitration, the ratio of false detections 

to windows examined is extremely low, ranging from 1 false detection per 492, 600 

windows to down to 1 in 10, 552, 401, depending on the type of arbitration used. Systems 

10, 11, and 12 show that the detector can be tuned to make it more or less conservative. 

System 10, which uses ANDing, gives an extremely small number of false positives, and 

has a detection rate of about 51.9%. On the other hand, System 12, which is based on 

ORing, has a higher detection rate of 90.1% but also has a larger number of false 

detections. System 11 provides a compromise between the two. The differences in 

performance of these systems can be understood by considering the arbitration strategy. 

When using ANDing, a false detection made by only one network is suppressed, leading to 

a lower false positive rate. On the other hand, when ORing is used, faces detected correctly 

by only one network will be preserved, improving the detection rate. 
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Systems 14, 15, and 16, all of which use neural network-based arbitration among three 

networks, yield detection and false alarm rates between those of Systems 10 and 11. 

System 15, which uses voting among three networks, has an accuracy between that of 

Systems 11 and 12. 

 
5.5.2 Example Output 
 
Figs. 5.16  from System 11 on images from the Upright Test Set. 
 
5.5.3 Effect of Lighting Variation 
 
Section 2.6 discussed methods to use linear lighting models of faces to explicitly 

compensate for variations in lighting conditions before attempting to detect a face. These 

models can also be used to generate training data for a face detector, so that the neural 

network can implicitly learn to handle lighting variation. 
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Figure 5.16:  Output from System 11 in Table 5.15. 
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Chapter 6 

 

Tilted Face Detection 

 
6.1 Introduction 

 
In demonstrating the system described in the previous chapter, the people watching the 

demonstration would expect faces to be detected at any angle, as shown in Figure 6.1. In 

this chapter, we present some modifications to the upright face detection algorithm to 

detect such tilted faces. This system efficiently detects frontal faces which can be arbitrarily 

rotated within the image plane. 

 

 
          Figure 6.1: People expect face detection systems to detect rotated faces. 
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There are many ways to use neural networks for rotated-face detection. The 

simplest would be to employ the upright face detection, by repeatedly rotating the input 

image in small increments and applying the detector to each rotated image. However, this 

would be an extremely computationally expensive procedure. The system described in the 

previous chapter is invariant to approximately 10◦ of tilt from upright (both clockwise and 

counterclockwise). Therefore, the entire detection procedure would need to be applied at 

least 13 times to each image, with the image rotated in increments of 20◦. 

An alternate, significantly faster procedure uses a separate neural network, termed a 

“derotation network”, to analyze the input window before it is processed by the face 

detector. The derotation network’s input is the same region that the detector network will 

receive as input. If the input contains a face, the derotation network returns the angle of the 

face. The window can then be “derotated” to make the face upright. Note that the 

derotation network does not require a face as input. If a non-face is encountered, the 

derotator will return a meaningless rotation. However, since a rotation of a non-face will 

yield another non-face, the detector network will still not detect a face. On the other hand, a 

rotated face, which would not have been detected by the detector network alone, will be 

rotated to an upright position, and subsequently detected as a face. Because the detector 

network is only applied once at each image location, this approach is significantly faster 

than exhaustively trying all orientations. 

Detailed descriptions of the algorithm are given in Section 6.2. We then analyze the 

performance of each part of the system separately in Section 6.3, and test the complete 

system in Section 6.6. We will see that the system is able to detect 29.6% of the faces over 

the Upright Test Set and Tilted Test Set, with a very small number of false positives. 

 

6.2 Algorithm 

 
The overall structure of the algorithm, shown in Figure 6.2, is quite similar to the one 

presented in the previous chapter. Starting from the input image, an image pyramid is built, 

with scaling steps of 1.2. 20 × 20 pixel windows are extracted from every position and 

scale in this input pyramid, and passed to a classifier. 
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Figure 6.2: Overview of the algorithm. 

 

First, the window is preprocessed using histogram equalization (Section 2.5), and 

then given to a derotation network. The tilt angle returned by the derotation network is then 

used to rotate the window with the potential face to an upright position. Finally, the 

derotated window is preprocessed with linear lighting correction and histogram 

equalization, and then passed to one or more upright face detection network, like those in 

the previous chapter, which decide whether or not the window contains a face. 

The system as presented so far could easily signal that there are two faces of very 

different orientations at adjacent pixel locations in the image. To counter such anomalies, 

and to reinforce correct detections, clean up heuristics and multiple detection networks are 

employed. The design of the derotation network and the heuristic arbitration scheme are 

presented in the following subsections. 

 

6.2.1 Derotation Network 

 
The first step in processing a window of the input image is to apply the derotation network. 

This network assumes that its input window contains a face, and is trained to estimate its 

orientation. The inputs to the network are the intensity values in a 20 × 20 pixel window of 

the image (which have been preprocessed by histogram equalization, Section 2.5). The 

output angle of rotation is represented by an array of 36 output units, in which each unit i 

represents an angle of i ∗ 10◦. To signal that a face is at an angle of θ, each output is trained 

to have a value of cos(θ − i ∗ 10◦). Examples of the training data are given in Figure 6.3. 
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Figure 6.3: Example inputs and outputs for training the derotation network. 

 

Previous algorithms using Gaussian weighted outputs inferred a single value from 

them by computing an average of the positions of the outputs, weighted by their 

activations. For angles, which have a periodic domain, a weighted sum of angles is 

insufficient. Instead, we interpret each output as a weight for a vector in the direction 

indicated by the output number i, and compute a weighted sum as follows: 

 
The direction of this average vector is interpreted as the angle of the face. 

As with the upright face detector, the training examples are generated from a set of 

manually labelled example images containing 1063 faces. After each face is aligned to the 

same position, orientation, and scale, they are rotated to a random known orientation to 

generate the training example. Note that the training examples for the upright detector had 

small random variations in scale and position for robustness; the derotation network 

performed better without these variations. 

. 

The architecture for the derotation network consists of four layers: an input layer of 

600 units, two hidden layers of 15 units each, and an output layer of 36 units. Each layer is 

fully connected to the next. Each unit uses a hyperbolic tangent activation function, and the 

network is trained using the standard error backpropogation algorithm. 

 

 

6.2.2 Detector Network 
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After the derotation network has been applied to a window of the input, the window is 

derotated to make any face that may be present upright. Because the input window for the 

derotation network and detection network are both 20 × 20 square windows, and are an 

angle with respect to one another, their edges may not overlap. Thus the derotation must 

resample the original input image. 

The remaining task is to decide whether or not the window contains an upright face. 

For this step, we used the algorithm presented in the previous chapter.The resampled 

image, is preprocessed using the linear lighting correction and histogram equalization 

procedures described in Section 2.5. The window is then passed to the detector, which is 

trained to produce 1 for faces, and −1 for non-faces. The detector has two sets of training 

examples: images which are faces, and images which are not. The positive examples are 

generated in a manner similar to that of the derotation network; however, the amount of 

rotation of the training images is limited to the range −10◦ to 10◦. 

Some examples of non-faces that are collected during training were shown in 

Figure 3.2. At runtime, the detector network will be applied to images which have been 

derotated, so it may be advantageous to collect negative training examples from the set of 

derotated non-face images, rather than only non-face images in their original orientations. 

In Section 6.6, both possibilities are explored. 

 

6.2.3 Arbitration Scheme 

 
As mentioned earlier, it is possible for the system described so far to signal faces of very 

different orientations at adjacent pixel locations. As with the upright detector, we use some 

simple cleanup and arbitration heuristics to improve the results. These heuristics are 

restated below, with the changes necessary for handling rotation angles in addition to 

positions and scales. Each detection is first placed in a 6-dimensional space, where the 

dimensions are the x and y positions of the center of the face, the scale in the image 

pyramid at which the face was detected, and the angle of the face, quantized in increments 

of 10◦. For each detection, we count the number of detections within 6 units along each 

dimension (6 pixels, 6 pyramid scales, or 60◦). This number can be interpreted as a 

confidence measure, and a threshold is applied. As before, this heuristic is denoted 
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threshold(distance,level). Once a detection passes the threshold, any other detections in the 

6-dimensional space which would overlap it are discarded. This step is called overlap in the 

experiments section. 

To further reduce the number of false detections, and reinforce correct detections, 

we arbitrate between two independently trained detector networks. To use the outputs of 

these two networks, the postprocessing heuristics of the previous paragraph are applied to 

the outputs of each individual network, and then the detections from the two networks are 

ANDed. The specific preprocessing thresholds used in the experiments will be given in 

Sections 6.6. 

 

6.3 Analysis of the Networks 
In order for the system described above to be accurate, the derotator and detector must 

performrobustly and compatibly. Because the output of the derotator network is used to 

normalize the input for the detector, the angular accuracy of the derotator must be 

compatible with the angular invariance of the detector. To measure the accuracy of the 

derotator, we generated test example images based on the training images, with angles 

between −30◦ and 30◦ at 1◦ increments. These images were given to the derotation network, 

and the resulting histogram of angular errors is given in Figure 6.6 (left). As can be seen, 

92% of the errors are within ±10◦. 
 

 
Figure 6.6: Left: Frequency of errors in the derotation network with respect to the angular error (in 

degrees). Right: Fraction of  faces that are detected by a detection network, as a function of the 

angle of the face from upright. 
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The detector network was trained with example images having orientations between 

−10◦ and 10◦. It is important to determine whether the detector is in fact invariant to 

rotations within this range. We applied the detector to the same set of test images as the 

derotation network, and measured the fraction of faces which were correctly classified as a 

function of the angle of the face. Figure 6.6 (right) shows that the detector detects over 90% 

of the faces that are within 10◦ of upright, but the accuracy falls with larger angles. 

Since the derotation network’s angular errors are usually within 10◦, and since the 

detector can detect most faces which are rotated up to 10◦, the two networks should be 

compatible. 

Just as we noted in the previous section that the detector network is applied only to 

non-faces which have been derotated, the same observation can be made about faces. The 

derotation network does make some mistakes, but those mistakes may be systematic; in this 

case the detector may be able to exploit this to produce more accurate results. This idea will 

be tested in the experiments section. 

 

 

6.6 Evaluation 

 
6.6.1 Derotation Network with Upright Face Detectors 

 
The first system we test employs the derotation network to determine the orientation of any 

potential face, and then applies two upright face detection networks from the previous 

chapter, Networks 1 and 2. Table 6.5 shows the number of faces detected and the number 

of false alarms generated on the three test sets. We first give the results of the individual 

detection networks, and then give the results of the post-processing heuristics (using a 

threshold of one detection). The last row of the table reports the result of arbitrating the 

outputs of the two networks, using an AND heuristic. This is implemented by first post-

processing the outputs of each individual network, followed by requiring that both 

networks signal a detection at the same location, scale, and orientation. As can be seen in 

the table, the post-processing heuristics significantly reduce the number of false detections, 
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and arbitration helps further. Note that the detection rate for the Tilted Test Set is higher 

than that for the Upright Test Set, due to differences in the overall difficulty of the two test 

sets. 

 

Table 6.5: Results of first applying the derotation network, then applying the standard upright 

detector networks. 

 

 
 

 

6.6.2 Proposed System 

 
Table 6.5 shows a significant number of false detections. This is in part because the 

detector networks were applied to a different distribution of images than they were trained 

on. In particular, at runtime, the networks only saw images that were derotated. We would 

like to match this distribution as closely as possible during training. The positive examples 

used in training are already in upright positions, and barring any systematic errors in the 

derotator network, have an approximately correct distribution. During training, we can also 

run the scenery images from which negative examples are collected through the derotator. 

We trained two new detector networks using this scheme, and their performance is 

summarized in Table 6.6. As can be seen, the use of these new networks reduces the 

number of false detections by at least a factor of 6. The detect rate has also dropped, 

because now the detector networks must deal with non-faces derotated to look as much like 

faces as possible. This makes the detection problem harder, and the detection networks 

more conservative. Of the systems presented in this chapter, this one has the best trade-off 
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between the detection rate and the number of false detections. Images with the detections 

resulting from arbitrating between the networks are given in Figure 6.5. 

 

Table 6.6: Results of the proposed tilted face detection system, which first applies the derotator 

network, then applies detector networks trained with derotated negative examples. 

 
 

 
 

This idea can be carried a step further, to training the detection networks on face 

examples which have been derotated by the derotation network. If there are any systematic 

errors made by the derotation network (for example, faces looking slightly to one side 

might have a consistent error in their angles), the detection network might be able to take 

advantage of this, and produce better detection results. The results of this training 

procedure are shown in Figure 6.3. As can be seen, the detection rates are somewhat lower, 

and the false alarm rates are significantly lower. 

One hypothesis for why this happens is as follows: For robustness, the previous 

detector networks were trained with face images including small amounts of rotation, 

translation and scaling. However, since the derotation network was more accurate without 

such variations, it was trained without them. In this experiment, the positive examples had 

these sources of variation removed. The scale and translation was removed when the 

randomly rotated faces are created, while the rotation variation is removed the the 

derotation network. This may have made the detector somewhat brittle to small variations 

in the faces. However, at the same time it makes the set of face images that must be 

accepted smaller, making it easier to discard non-faces. 
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An alternative hypothesis is that the errors made by the derotation network are not 

systematic enough to be useful. Instead, perhaps they introduce more variability into the 

face images. Because of the random error in recovery of the angle, important facial  
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Figure 6.2: Result of arbitrating between two networks trained with derotated negative examples.  
 

 

 

eatures are no longer at consistent locations in the input window, making the detection 

problem itself harder. This hypothesis does not explain the lower false alarm rate, however. 

Both of these hypotheses deserve further exploration. 

 

Table 6.3: Result of training the detector network on both derotated faces and non-faces. 
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6.6.3 Exhaustive Search of Orientations 

 
To demonstrate the effectiveness of the derotation network for rotation invariant detection, 

we applied the two sets of detector networks described above without the derotation 

network. The detectors were instead applied at 13 different orientations (in increments of 

20◦) for each image location. We expect such systems to detect most rotated faces. 

However, assuming that errors occur independently, we may also expect many more false 

detections than the systems presented above. Table 6.9 shows the results using the upright 

face detection networks from the previous chapter, and Table 6.10 shows the results using 

the detection networks trained with derotated negative examples. 

 

Table 6.9: Results of applying the upright detector networks from the previous chapter at 13 

different image orientations. 

 

 

 
 

 

Table 6.10: Networks trained with derotated examples, but applied at all 13 orientations. 
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Recall that Table 6.5 showed a larger number of false positives compared with 

Table 6.6, due to differences in the training and testing distributions. In Table 6.5, the 

detection networks were trained with false-positives in their original orientations, but were 

tested on images that were rotated from their original orientations. Similarly, if we apply 

these detector networks to images at all 13 orientations, we should expect an increase in the 

number of false positives because of the differences in the training and testing distributions 

(see Tables 6.9 and 6.10). The detection rates are higher than for systems using the 

derotation network. This is because any error by the derotator network will lead to a face 

being missed, whereas an exhaustive search of all orientations may find it. Thus, the 

differences in accuracy can be viewed as a tradeoff between the detection and false 

detection rates, in which better detection rates come at the expense of much more 

computation. 

 

6.6.6 Upright Detection Accuracy 

 
Finally, to check that adding the capability of detecting rotated faces has not come at the 

expense of accuracy in detecting upright faces, in Table 6.11 we present the result of 

applying the original detector networks and arbitration method from Chapter 3 to the three 

test sets used in this chapter. The results for the Upright Test Set are slightly different from 

those presented in the previous chapter because we now check for the detection of 6 

upside-down faces, which were present, but ignored, in the previous chapter.  
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Table 6.11: Results of applying the upright algorithm and arbitration method from the previous 

chapter to the test sets. 

 

 
 
 

Table 6.12 shows a breakdown of the detection rates of the above systems on faces 

that are rotated less or more than 10◦ from upright, in the Upright Test Set and Tilted Test 

Set. As expected, the upright face detector trained exclusively on upright faces and negative 

examples in their original orientations gives a high detection rate on upright faces. The 

tilted face detection system has a slightly lower detection rate on upright faces for two 

reasons. First, the detector networks cannot recover from all the errors made by the 

derotation network. Second, the detector networks which are trained with derotated 

negative examples are more conservative in signalling detections; this is because the 

derotation process makes the negative examples look more like faces, which makes the 

classification problem harder. 

Another way to breakdown the results of the tilted face detector is to look at how 

each of the two stages, the derotation stage and the detection stage, contribute to the 

detection rate. To measure this, we extract the 20 × 20 windows in the test sets which 

contain a face, and compute the derotation angle using two methods: the neural network, 

and the alignment method used to prepare the training data for this network. By comparing 

the results of these two methods, we can see how accurate the derotation network is on an 

independent test set. Next, the faces derotated by these two methods can be passed to the 

detection network, whose detection rates can be measured 
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Table 6.12: Breakdown of detection rates for upright and rotated faces from the test sets. 

 
 

 
for these two cases. The results of these comparisons, for the Upright and Tilted Test Sets 

are shown in Table 6.13. 

 

Table 6.13: Breakdown of the accuracy of the derotation network and the detector networks for the 

tilted face detector. 
 

 
 

As can be seen from the table, there is a between 2% and 12% penalty for using the 

neural network to derotate the images, relative to derotating them by hand. This penalty 

partly explains the decrease in the detection rate compared with the upright detector. The 

table shows only the detection rates when applying a single detector network at a single 

pixel location and scale in the image. In practice, the detectors are applied at every pixel 

location and scale, giving them more opportunities to find each face. This explains the 

higher detection rates of the complete system (the last line in Table 6.13 relative to the 

earlier lines. 

 

6.5 Summary 



 76

 
This chapter has demonstrated the effectiveness of detecting faces rotated in the image 

plane by using a derotation network in combination with an upright face detector. The 

system is able to detect 29.6% of faces over several large test sets, with a small number of 

false positives. The technique is applicable to other template-based object detection 

schemes. The next chapter will examine some techniques for detecting faces that are 

rotated out of the image plane. 
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Chapter 7 

 

Non-Frontal Face Detection 

 
7.1 Introduction 

 
The previous chapter presented a two stage face detection algorithm, in which first analyzes 

the angle of a potential face, then uses this information to geometrically normalize that part 

of the image for the detector itself. The same idea can be applied in the more general 

context of detecting faces rotated out of the image plan. There are two ways in which this 

could be approached. The first is directly analogous to the approach for tilted faces: by 

using knowledge of the shape and symmetry of human faces, image processing operations 

may be able to convert to a profile or half profile view of a face to a frontal view. A second 

approach, and the one we have explored in more detail, is to partition the views of the face, 

and to train separate detector networks for each view. 

We used five views: left profile, left semi-profile, frontal, right semi-profile, and right 

profile. A pose estimator is responsible for directing the input window to one of these view-

specific detectors. The work presented here only handles two degrees of freedom of 

rotation: rotation in the image plane, and rotation to the left or right out of the plane. 

Extending the algorithm to faces rotated up or down should be straightforward. 

This Section begins with a discussion of how to estimate the three dimensional pose 

of a face given an input image, and how to use this pose information to geometrically 

distort the image to synthesize an upright, frontal view. We will discuss that the results of 

the procedure are not good enough for use in a face detector. Then we will discuss pose 

information to select a detector customized to a particular view of the face. 
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7.2 Geometric Distortion to a Frontal Face 

 
To detect faces which are tilted in the image place, we simply applied some image 

processing operators to rotate each window to an upright orientation before applying the 

detector. If we have a 3D model of the head, and information about the orientation of the 

head in the image, we can use texture mapping to generate an upright, frontal image of the 

head. Similar techniques have been used in the past of generate frontal images of the face 

from partial profile views for the face recognition task . These techniques work quite well, 

but are quite computationally expensive, requiring an iterative optimization procedure to 

align each face with the model. 

Our algorithm computes the orientation of a potential face for every window of the 

image before running the detector. There are other approaches using eigenspaces and those 

using three dimensional geometric models of the face . Because this algorithm must be 

applied so many times, a computationally less expensive technique such as a neural 

network is more appropriate. The following sections describe the training data for this 

network, how it was trained, and finally describe how texture mapping was used to 

synthesize an upright, frontal view of the face. 

 

 

7.2.2 Labelling the 3D Pose of the Training Images 

 
There are several new issues that arise in creating the training data for this problem. We 

begin by labelling important feature points in images. We aligned the faces with one 

another by performing a two-dimensional alignment, using translation, rotation, and 

uniform scaling to minimize the sum of squared distances between the labelled feature 

locations. 
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Figure 7.1: Generic three-dimensional head model used for alignment. 

 

Since we are now considering out-of-plane rotations, the faces must be aligned with 

one another in three-dimensions. However, we are given only a two-dimensional 

representation of each face, and two-dimensional feature locations. We begin with a three-

dimensional model of a generic face, shown in Figure 7.1. The feature locations used to 

label the face images are labelled in 3D on the model. Then, we attempt to find the best 

three-dimensional rotation, scaling, and translation of the model which, under an 

orthographic projection, best matches each face. A perspective projection could also be 

used, but since it has more parameters, their estimates will be less robust. This is similar to 

the alignment strategy presented earlier, but using a three-dimensional model. Unlike two-

dimensional alignment, this least-squares optimization no longer has a closed form solution 

in terms of an over-constrained linear system. If we denote the locations of feature i of the 

face as x_i and y_i , and the feature locations of the 3D model as xi, yi, zi, then optimization 

problem is to minimize E in the following equation: 

 
 

where S is the scaling factor, R(q) is a 4 × 4 rotation matrix parameterized by a four 

dimensional quaternion q, and Tx, Ty are the translation parameters. Each x_i and y_i gives 

rise to a term which contributes to the summation, and depends nonlinearly on the 

parameters . A standard method to optimize such a system is the iterative Levenberg-



 80

Marquardt method [Marquardt, 1963, Press et al., 1993]. For simplicity, the summation 

above can be rewritten as a matrix equation, as follows: 

 

 
where P is the vector of parameters S, Tx, Ty, q, and f is a vector function generating the 

coordinatoes of the 3D head model from the pose specified by those parameters. 

The Levenberg-Marquardt method approximates the function f(P) using a first-

order Taylor expansion, as follows: 

 
Since the error function is quadratic, it can be minimized by setting its derivative to zero 

using the above Taylor approximation, as follows: 

 
This is an over-constrained linear system, whose approximate solution is: 

 
This solution can only be computed when the initial parameters P0 are near the minimum, 

and the Taylor approximation is accurate. Under these conditions, the update to the 

parameters ∆P can be very accurate. 
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However, dependences between the parameters may make the inversion of JTJ 

numerically unstable. In some cases, a better approach is that of gradient descent, in which 

∆P is computed as follows: 

 
The Levenberg-Marquardt combines these two methods, as follows: 

 
λ is a weight for the contributions of the two methods. When λ is zero, the method follows 

the Taylor expansion method. When λ is large, ∆P’s value is dominated by the gradient 

descent value. The actual update to the parameters is computed from P_ = P0 +k∆P, and 

the method is iterated until the parameters converge.  

To apply the Levenberg-Marquardt method to matching a face in three-dimensions, 

we need to know the f(P) and J functions. The f(P) function is given by the above equation 

relating x_i, y_i and xi, yi, zi. The only non-linear portion of this equation is in the rotation 

matrix R(q) which has a non-linear dependence on the four quaternion parameters q.  

Using the Levenberg-Marquardt method, we can rotate, translate, and scale the 3D 

face model in three-dimensions to align it with each of the training faces. The face images 

are roughly categorized according to their angle from frontal, but the actual angles of the 

faces can vary significantly within each category. The approximate angle for each category 

is used to initialize the Levenberg-Marquardt optimization, which is then run until the 

parameters converge. 

Once the faces are all aligned with the 3D model, the positions of the features on 

the aligned faces can be averaged to update the feature positions in the 3D model. 

However, since each facial feature contains only two-dimensional information, they cannot 

be directly averaged. 

Instead, we return to the equation relating x_i, y_i and xi, yi, zi, and write it in the 

following form: 
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We can see that when the rotation, translation, and scaling parameters of the face are 

known, this equation describes a linear relationship between the feature locations in the 3D 

model and the feature locations on each example face. We can make a larger matrix 

equation which includes all the features of all the faces. This equation will be over 

constrained, and can be solved by the least-squares method to find the vector of feature 

locations of the 3D model.  

 

With an updated 3D model, we can go back and update the alignment parameters 

aligning that model with each face, and iterate the two steps several times until 

convergence. The resulting 3D model feature locations are shown in Figure 7.2 and the 

results of the alignment, illustrated by rendering the original 3D model together with the 

face, are shown in Figure 7.3. 

 

 

 
Figure 7.2: Refined feature locations (gray) with the original 3D model features (white). 
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Figure 7.3: Rendered 3D model after alignment with several example faces. 

 
 

7.2.3 Representation of Pose 

 
We used quaternions to represent the angles of the 3D model with respect to the face. 

Quaternions have several nice properties which make them attractive for the type of 

optimization used to align the models, because they have no singularities. Continuous 

changes in the four-dimensional unit-quaternion space result in continuous changes in the 

rotation matrix. The expense of this representation is redundancy; rather than the minimal 

three parameters needed to describe an orientation, four are used. 

One result of this redundancy in the quaternion representation is that a quaternion 

and its corresponding negative quaternion both represent the same angle. Any attempt to 

restrict the representation to one of these pairs (say, by restricting the first component to 

always be positive) will lead to singularities in the representation. The redundancy of this 

form is not a problem for an optimization procedure using gradient descent, but it is a 

problem if you want to build a mapping from an input directly to a quaternion using a 

neural network. 

Ideally, we need a representation which has no singularities, and also gives a unique 

representation for each rotation. One simple representation is to use two orthogonal 3D unit 

vectors, one pointing from the center of the 3D model to the right ear, the other pointing 

along its nose. This representation is clearly unique (any change in the unit vectors changes 

the orientation of the head), and also clearly continuous (any small change in the unit 
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vectors gives a small change of orientation). Again, this improvement of the representation 

comes at the cost of redundancy, because we now need to use six parameters to represent 

the orientation. 

 

7.2.4 Training the Pose Estimator 

 
From the previous two sections, we have example face images which are aligned with one 

another in three dimensions, and a continuous representation of the angle of each face. The 

scale and translation components of the alignment are used to normalize the size and 

position of each angle. The image is rotated by a random amount in-plane, and the 

orientation parameters are adjusted appropriately. This gives example images and outputs 

like those shown in Figure 7.4. As before, a number of random variations of each example 

face are used to increase the robustness of the system. It is also important to balance the 

number of faces at each orientation. For this purpose, we quantize the angle of each face 

from frontal into increments of 10◦ and count the number of faces in each category. The 

number of random examples for each face is inversely proportional to 

the number of faces in the category, which equalizes the distribution of this angle. 

 
 

 
Figure 7.4: Example input images (left) and output orientations for the pose estimation neural 

network. The pose is represent by six vectors of output units (bottom), collectively representing 6 
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real values, which are unit vectors pointing from the center of the head to the nose and the right ear. 

Together these two vectors define the three dimensional orientation of the face. The pose is also 

illustrated by rendering the 3D model at what same orientation as the input face (right). 

 

The outputs from the pose estimation neural network should be two unit vectors, 

representing the orientation of the head. Each component of these vectors is represented by 

an array of output units. Their values are computed by a weighted sum of the positions of 

the outputs within the array, weighted by the activation of the output. 

With the training examples in hand, a neural network can be trained. The network 

has an input retina of 20 × 20 pixels, connected to six sets of hidden units, each of which 

looks at a 7 × 7 sub-window. These hidden units are completely connected to a layer of 40 

hidden units, which is then completely connected to the output layer. The output consists of 

six arrays of 31 units, each representing a real value between -1 and 1. The results of this 

network on some test images are illustrated in Figure 7.7. When applying the network, the 

output vectors’ magnitudes are normalized, and the second unit vector is forced to be 

perpendicular to the first. 

 

 
 

Figure 7.7: The input images and output orientation from the neural network, represented 

by a rendering of the 3D model at the orientation generated by the network. 
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7.2.7 Geometric Distortion 

 
The main difficulty in producing a frontal image of a face from a partial profile is that parts 

of the face in the original image will be occluded. However, if we assume that the left and 

right sides of the face are symmetric with one another, we can replace the half of the 

upright, frontal view that contains partial occlusions with a mirror image of the other half. 

Some example results are shown in Figure 7.6, for faces which are limited to angles 

of 47◦ from frontal. As can be seen, when the pose estimation network is accurate and the 

face is similar in overall shape to the 3D model, the resulting upright, frontal view of the 

face can be quite realistic. However, small errors in the pose estimation result in larger 

artifacts in the frontal faces, and large errors in pose estimation give results that are 

unrecognizable as faces. Additionally, even if the pose estimation is perfect, errors in the 

3D model of the face (which is just a generic model) will lead to errors. Given these 

potential problems, we decided to use another approach. 

 

 
 

Figure 7.6: Input windows (left), the estimated orientation of the head (center), and geometrically 
distorted versions of the input windows intended to look like upright frontal faces (right). 
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7.3 View-Based Detector 
Instead of trying to geometrically correct the image of the face, we will try to detect the 

faces rotated out-of-plane directly. However, we cannot expect a single neural network to 

be able to detect all views of the face by itself. Even increasing the amount of in-plane 

rotation for frontal face images dramatically increase the error rate. To minimize the 

amount of variation in the images the neural network must learn, we partition the views of 

the face into several categories according to their approximate angle from frontal. 

The idea is to use a pose estimation network to first compute the in-plane angle of 

the face and the category, then rotate the image in-plane to an upright orientation, and 

finally to apply the appropriate detector network. Note that the detectors for the faces 

looking to the right are simply mirror images of the networks for the faces looking to the 

left. This algorithm is illustrated in Figure 7.2. 

 

7.3.1 View Categorization and Derotation 

 
The detector networks work by looking for particular features (mostly the eyes) at 

particular locations in the input window. Imagine a head rotating in the input window. As it 

rotates, all the feature locations will shift within the input window, meaning that none of 

the feature locations are stable. This would make the detection problem much harder. It 

would be better to apply the two-dimensional alignment procedure to the faces within each 

category. This would allow each view-specific face detector to concentrate on specific 

features in specific locations. 

 

We are still left with the question of how to assign faces to specific categories. In light of 

the observation that the two-dimensional alignment of feature locations is important, we 

chose to use a criterion based on how closely the feature locations align with a prototypical 

example of the category 
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Figure 7.2: View-based algorithm for detecting non-frontal and tilted faces. 

 

. This prototype is constructed from the three-dimensional model, which is rotated 

to several angles from frontal, as shown in Figure 7.3. Each of the face examples is aligned 

as well as possible with all of the category prototypes, and assigned to the category it 

matches closest. 
 

 
Figure 7.3: Feature locations of the six category prototypes (white), and the cloud of feature 

locations for the faces in each category (black dots). 

 

As before, the actual alignment could be an iterative process, first aligning all the 

faces in the category with the category prototype, then updating the prototype with the 

average of all the aligned faces in the category, and repeating. However, in our experiments 

we found that simply aligning each faces with the original category prototype allowed the 

category estimation network to work better. This may be because the original prototypes 
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have geometric relations with one another (such as the eyes always falling on the same scan 

line) which are disrupted if the prototypes are adjusted to the training examples. 

Once the faces are aligned with one another, they are rotated to random in-plane 

orientations, and the resulting images are recorded as the training examples, as shown in 

Figure 7.9. Associated with each face example is its in-plane orientation and the category 

label. As before, we produce several random variations of each training face, and the 

number of variations is chosen to balance the number of examples in each category. 

 

 
Figure 7.9: Training examples for each category, and their orientation labels, for the categorization 

network. Each column of images represents one category. 

 

Next we can train a neural network to produce the categorization and in-plane orientation 

of an input window. The architecture used consists of four layers. The input layer consists 

of units which receive intensities from the input window, a circle of radius 17 pixels. The 

first hidden layer has localized connections to this circular input. The second hidden layer 

has 40 units, with complete connections to the first hidden layer and to the output layer.  

The output angle is represented by a circle of output units, each representing a particular 

angle. Each category label has an individual output, and the category with the highest 

output is considered to be the classification of the window. Note that one difference with 
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the previous work is that the input window is circular; this makes it possible to rotate the 

input window in-plane without having to recompute the preprocessing steps. With a square 

window, the derotated window covers different pixels than the original window, 

invalidating the histogram equalization that is done. As a further optimization, the rotation 

is done by sampling pixels at integer coordinators rather than bilinear interpolation.  

 

 
Figure 7.10: Training examples for the category-specific detection networks, as produced by the 

categorization network. The images on the left are images of random in-plane angles and out-of-

plane orientations. The six columns on the right are the results of categorizing each of these images 

into one of the six categories, and rotating them to an upright orientation. Note that only three 

category-specific networks will be trained, because the left and right categories are symmetric with 

one another. 

 

7.3.2 View-Specific Face Detection 

 
We can apply this network to all of its training data, which will categorize and derotate the 

images into the appropriate categories.These images can then be used to train a set of 

detection networks. Note that we could have created training data based directly on the 

original images and their categorizations, but by using the view-categorization network to 

label the training data, we hope to capitalize on any systematic errors that it may make. The 
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training networks are trained in the same way as those used for the tilted face detector. In 

particular, the negative examples are also run through the view categorization network, to 

make sure the detectors are trained on the same type of images they will see at runtime. 

As in the previous chapters, two networks are trained for each of three categories, 

and their results are arbitrated to improve the overall accuracy of the system. The main 

technique is to examine all the detections within a small neighborhood of a given detection, 

and the total number is interpreted as a confidence measure for that particular detection. 

For the upright face detection, the neighborhood was defined in terms of the position and 

scale of the detection. For the tilted detector, and extra dimension, the in-plane orientation 

of the head, was added. Small changes in each of these dimensions result in small changes 

in the image seen by the detector, so the neighborhood of a detection is easily defined in 

terms of a neighborhood along each dimension. 

For the non-frontal detector, yet another dimension is needed, that of the out-of-

plane orientation, or category, of the head. Unlike the previous dimensions, this dimension 

has discrete values. The categories place facial features at different locations; see for 

example the location of the point between the two eyes for each category prototype in 

Figure 7.3. To decide whether two detections are in the same neighborhood, the offset 

between the facial feature locations in the two categories must be taken into account. For 

each pair of categories, the shift of the point between the two eyes is computed. The 

following procedure is then used to decide whether detection D2 is in the neighborhood of 

detection D1: 

 

1.  If D1 and D2’s categories differ by more than one, return false. 

 2.  If the scales of D1 and D2 more than 4 apart, return false. 

3.  Translate the location of D2 by the offset for the two categories. The translation        

is along the direction indicated by the in-plane orientation of D2. 

4.  Scale the location of D2 according to the difference in pyramid levels between 

the two detections. 

7.  If the adjusted location of D2 further than 4 pixels in x and y from D1, then       

return false. 

6.  Return true. 
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Using this concept of neighborhood, the actual arbitration procedure used  is the same as that used for the tilte

Then, the cleaned results of the two networks are ANDed together, again using the 

neighborhood concept to locate corresponding detections in the outputs of the two 

networks. 

The results of the individual networks and the complete system are reported in the next section. 

 

7.4 Evaluation of the View-Based Detector 

 
7.4.1 Non-Frontal Test Set 

 
The  set of images are intended to have a variety of poses, from frontal to profile, as well as 

a variety of in-plane angles. In the experiments section, this set is referred to as the Non-

Frontal Test Set. 

 

 

7.4.3 Experiments 

 
To evaluate the view detector network, I first tested its capabilities compared with the 

previous two systems. As before, the accuracy of the system will depend on the types of 

arbitration used. The system has significantly more false alarms than either of the two 

previous systems, and a slightly lower detection rate. This suggests that for applications 

needing the detection of only upright or tilted faces, one of the two previous detectors is a 

better choice. 

 

The performance of the upright, tilted, and non-frontal face detectors is shown in Figure 7.17. Next to each ima

in the orientation of the head. The second pair of numbers gives the performance for the 

tilted face detector. As with the upright detector, it has a high detection rate for frontal 

images. However, its accuracy drops off more quickly than the upright detector as the face 

is rotated away from frontal. The last pair of numbers gives the accuracy of the non-frontal 
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detector for these images. The detection rate of this detector is quite uniform over the test 

images, detecting both frontal and profile faces. The lowest detection rates are for faces 

looking above or below the camera, because this type of rotation is not covered by the non-

frontal detector. As the faces turn towards profiles, the detection rate improves. This is 

because up and down motion becomes rotation in the image plane, which the non-frontal 

detector is able to handle. 

 
 

To get a better understanding of why the detection rates are lower for the non-frontal face detector than the up

30×30 circular window in the test sets which contains a face, and the derotation angle and 

category of the face are computed using two methods: the neural network, and the method 

used to prepare the training data for this network. By comparing the results of these two 

methods, we can see how accurate the derotation and categorization network is on an 

independent test set. Next, the faces derotated and categorized by these two methods can be 

passed to the detection network, whose detection rates can be measured for these two cases. 

The results of these comparisons, for the Upright, Tilted, and Non-Frontal Test Sets are 

shown in Table 7.16. 

It is reasonable to assume that the detection rate using the manual classification is the best possible, and that th

automatic  
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Figure 7.17: Images used for testing the pose invariant face detector.. Next to each representative 

image are three pairs of numbers. The top pair gives the detection rate and number of false alarms 

from the upright face detector of Chapter 3. The second pair gives the performance of the tilted face 

detector from Chapter 4, and the last pair contains the numbers from the system described in this 

chapter. 
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Table 7.16: Breakdown of the accuracy of the derotation and categorization network and 

the detector networks for the non-frontal face detector. 

 

 

 
 

categorization and derotation will be the product of the detection rate for manual 

categorization/derotation and the fraction of the faces for which the 

categorization/derotation network returns the right category. This prediction is shown in the 

“Predicted” line of Table 7.16. Since the prediction accurately matches the actual detection 

rate when using the neural network for categorization and derotation, we can see that 

improving the categorization performance will directly improve the overall detection rate.  

The table shows only the detection rates when applying a single detector network at a single pixel location and

7.16 relative to the earlier lines.  

  

7.7 Summary 

 
This chapter has presented an algorithm to detect faces which are rotated out of the image 

plane. First, by using geometric distortions, it may be possible to transform a face image 

from a partial profile to an upright frontal view, thereby enabling the use of an upright, 

frontal detector. However, in the experiments shown, it was found to be difficult to align a 
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3D model of the face precisely enough with the image to perform the transformation 

accurately; this made it unusable for detection.  

The second approach partitions the out-of-plane rotations of the head into several views and uses separate detec
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Chapter 8 

 

Speedups 

 
8.1 Introduction 

 
In this chapter, we briefly discuss some methods to improve the speed of the face detectors 

presented in this thesis. This work is preliminary, and not intended to be an exhaustive 

exploration of methods to optimize the execution time. 
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8.2 Fast Candidate Selection 

 
The dominant factor in the running time of the upright face detection system described thus 

far is the number of 20 × 20 pixel windows which the neural networks must process.. The 

computational cost of the arbitration steps is negligible in comparison, taking less than one 

second to combine the results of the two networks over all positions in the image of this 

size. 

 

8.2.1 Candidate Selection 

 
The original detector was trained to detect a 20 × 20 face centered in a 20 × 20 window. 

We can make the detector more flexible by allowing the same 20×20 face to be off-center 

by up to 5 pixels in any direction. To make sure the network can still see the whole face, 

the window size is increased to 30 × 30 pixels. Thus the center of the face will fall within a 

10 × 10 pixel region at the center of the window, as shown in Figure 8.1. As before, the 

network has a single output, indicating the presence or absence of a face. This detector can 

be moved in steps of 10 pixels across the image, and still detect all faces that might be 

present. The scanning method is illustrated in Figure 8.2, for the upright face detection 

domain. The figure shows the input image pyramid and the 10 × 10 pixel regions that are 

classified as containing the centers of faces. An architecture with an image output was also 

tried, which yielded about the same detection accuracy, but required more computation. 

The network was trained using the active learning procedure. The windows are 

preprocessed with histogram equalization before they are passed to the candidate selector 

network. 

As can be seen from the figure, the candidate selector has many more false alarms than the detectors described

pixel region potentially containing the center of the face. A simple arbitration strategy, 

ANDing, is used to combine the outputs of two verification networks. The heuristic that 

faces rarely overlap can also be used to reduce computation, by first scanning the image for 

large faces, and at smaller scales not processing locations which overlap with any 



 99

detections found so far. The results of these verification steps are illustrated on the right 

side of Figure 8.2. 

 

8.2.2 Candidate Localization 

 
Scanning the 10× 10 locations within the candidate for faces can still take a significant 

amount of time. This can be reduced by introducing another network, whose purpose is to 

localize the face more precisely. In the upright face detection domain, this network takes a 

30 × 30 input window, and should produce two outputs, the x and y positions of the face. 

These outputs are represented using a standard representation. Each output has a range 

from −5 to 5, so the output is represented by a vector of 20 outputs, each having an 

associated value of in the range −10 to 10. 
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Figure 8.1: Example images used to train the candidate face detector. Each example window is 30 
× 30 pixels, and the faces are as much as five pixels from being centered horizontally and 
vertically. 
 
To get the real valued output, a weighted sum of the values represented by each output is 

computed. The outputs are trained to produce a bell curve with a peak at the desired output. 

Given these values, the window centered on the face can be extracted and verified. We 

must check that the localization network is accurate enough, and the detection network is 

invariant enough, to the location of the face. Figure 8.3 shows an error histogram for the 

localization network, and the sensitivity of the upright face detector networks to how far 

off-center the face is. Since the average error of the localization network is quite small, the 

verification networks need only be applied once, at the estimated location of the face. 
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8.2.3 Candidate Selection for Tilted Faces 

 
The same idea can be applied in the tilted face detection domain. We begin by training a 

candidate detector with examples of faces at different locations and orientations in the input 

window. Like with the upright candidate selector, the idea is that this network should be 

able to eliminate portions of the input from consideration. However, since the 

 

 
          Figure 8.2: Illustration of the steps in the fast version of the face detector 

 

set of allowed images is now much more variable, the candidate selector has a harder task, 

and it cannot eliminate as many areas, so the speedup will not be as large as in the upright 

case. 

In addition to producing the x and y locations of the face, the tilted localization network must also produce the 

within an angle of about 10 to be detected accurately. Since the localization of this network 

is not as accurate as the upright detector, we need to apply the detectors to verify several 

candidate locations. Specifically, the detector is applied at 3 different x and y values and 5 

angles around the estimated location and orientation of the face. 
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Figure 8.3: Left: Histogram of the errors of the localization network, relative to the correct location 

of the center of the face. Right: Detection rate of the upright face detection networks, as a function 

of how far off-center the face is. Both of these errors are measured over the training faces. 

 

 

 
Figure 8.4: Left: Histogram of the translation errors of the localization network for the tilted face 

detector, relative to the correct location of the center of the face. Right: Histogram of the angular 

errors. These errors are measured over the training faces. 

 

 

. 

8.3 Change Detection  
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Further performance improvements can be made if one is analyzing many pictures taken by 

a stationary camera. By taking a picture of the background scene, one can determine which 

portions of the picture have changed in a newly acquired image, and analyze only those 

portions of the image. 

In practice, changes in the environment, lighting, or automatic adjustments of the iris or gain in the camera can

We need an intermediate between using a fixed background image, and using the previous 

image, to detect changes. 

The intermediate I choose was to use a moving average of the input image as the “background”. The backgroun

 

background_ = 0.95 · background + 0.05 · input 

 

Then we compute the difference between the background and the input, and apply a threshold of 20. Before ap

changing pixels are at a border of their face.  

 

8.4 Skin Color Detection 

 
If there is a fast way to locate regions of the image containing skin color, then the search 

for faces can be restricted to those regions of the image. 

A fast technique for locating skin color regions first converts the color information to a normalized color space

imaging and lighting conditions, skin colors for all races form a fairly tight cluster in 

normalize color space. Recent work using a very large number of images collected from the 

World Wide Web showed there are slightly differences between the races, but that a simple 

histogram-based model of skin color can accurately model the distribution of skin color. 

For our work, however, we used the Gaussian model. This model has the advantage of not requiring many tr

provided with workstations. Then, before applying the candidate selector to a window of 

the image, the number of skin color pixels in the region are computed, and if this number is 

above a threshold, the region is evaluated by the candidate selector.  

Note that the observed color associated with skin will depend strongly on the camera and the lighting condition

search area. A better approach is to model the skin color as the system is running. 
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We begin by using a very broad color model. Effectively every region of the image will need to be processed

update the Gaussian model. Over time, the Gaussian model will become more precise, 

allowing the detector to rule out larger areas of the image and run faster. This process is 

illustrated in Figure 8.8. 

If the lighting conditions change, the skin color model may no longer be accurate, and faces will be missed. On

  
 

 
 

Figure 8.8: The input images, skin color models in the normalized color space (marked by the 

oval), and the resulting skin color masks to limit the potential face regions. Initially, the skin color 

model is quite broad, and classifies much of the background as skin colored. When the face is 

detected, skin color samples from the face are used to refine the model, so that is gradually focuses 

only on the face. 
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8.5 Evaluation of Optimized Systems 

 
Incorporating the skin color and change detection algorithms brings down the processing 

time. This time depends on the complexity of the scene, the number of candidate regions 

that are found, and the amount of skin color and motion present. 

The tilted face detection method can also be made faster using the candidate selection technique, improving the

more false alarms, and because the localization network is not as accurate, requiring more 

effort to verify each face. 

   

As can be seen in the table, the systems utilizing the candidate selector method have somewhat lower detection

number of false alarm will also decrease.  

The use of the change and skin color detection techniques will exaggerate this effect further. This suggests that 

 
 

Table 8.2: The accuracy of the fast upright and tilted detectors compared with the original 

versions, for the Upright and Tilted Test Sets. 

 

 
 

8.8 Summary 
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This chapter has shown three techniques, candidate selection, change detection, and skin 
color detection, for speeding up a face detection algorithm. These techniques taken together 
have proven useful in building an almost real-time version of the system suitable for 
demonstration purposes. The speedups for upright face detector were 85 and for tilted face 
detection were 30, at the cost of a small decrease in the detection rate. 
 

 

                                                                   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 9 
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USER MANUAL  
 
9.1 Pre-Requisites 
 

 The software is platform dependent. It executes on Windows 

93/2000/XP. 

 

 Install windows component update form visual studio dot net. 

 

 Then install the Visual Studio.Net framework. 

 

9.2 Quick start Instructions 

 Launch the executable program file. 

You will come across the Graphical User Interface shown below. 

 Load a trained neural network (NNetwork.nnpc file). 

 Load an image to scan (some are given in the images sub 

directory). 

 Finally click on "Search Face" button. 

 



 108

 

 

 

 
9.3 Advanced Settings 
 
 
To customize the settings just click on the "Edit Neural Network" button. 

You will come across the following window. 
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The Neural Network Editor is divided in three panels; on the right side you can recognize 

the neural network editor from the neural network library and on the left the training of 

the neural network and the searching parameters. Let's take a look at the searching 

parameters: 
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9.3.1 Windows interval 

It's the interval in pixels between each window submitted to the neural network, to 

improve quality of detection you should decrease this value but at the same time it will 

increase searching time. 

 

9.3.2 Threshold 

For each window the output value of the neural network is compared to this threshold, if 

no face is detected you should decrease this value. 

 

9.3.3 The scaling parameters 

Allow you to set the minimum and maximum scale to search for face. The detection is 

better if their values are set appropriately. 

 

9.4 Training a Neural Network for Face Detection 

 Go to “File” menu of Neural Network Editor and click “new”. This will create a 

new neural network where we can define the specifications of the input mask. 
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On the above dialog you can define the input window size (in pixel) of the neural 

network and the input mask. Pixels in black on the mask won't be given in the input 

vector of the neural network. Here it is useful to ignore the background behind the face. 

As we have now defined the input of the neural network we can create the neural network 

by clicking on "New" in the neural network panel: 

 

 

 
 
You can choose activation functions according to your requirements. These are Sigmoid, 

linear, Heaviside and Gaussian. Here is the display window. 
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User can randomize weights of the input layer neurons by doing the following.  

 

 



 113

 
 
 
As we are using Back propagation algorithm for this system so the parameters can also be 

defined for this portion as well. 

 

 

As the network is now created you can start to perform the process of learning. To begin 

learning, we cut about 15 face images of 25x25 pixels to load them as matching examples 

and about 30 not face image to load them as not matching examples. 

Then start learning process by pressing “Train Neural Network Button” 

 

The neural network learned the samples we had given quite quickly. Then you can try to 

use it to find face on various images coming from internet and add matching and not 

matching images as the network was doing mistakes. 
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At the end the neural network given in the demo has been trained on about 100 matching 

samples and 400 not matching images. 

 

In the learning window we can see the database of images which are saved as “faces” and 

“non faces”. You have the privilege to add or delete various faces according to your choice. 
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Appendices 
 

Appendix A  What is a neural network (NN)? 
 
First of all, when we are talking about a neural network, we should more properly say 

"artificial neural network" (ANN), because that is what we mean most of the time in 

comp.ai.neural-nets. Biological neural networks are much more complicated than the 

mathematical models we use for ANNs. 

There is no universally accepted definition of an NN. But perhaps most people in the 

field would agree that an NN is a network of many simple processors ("units"), each 

possibly having a small amount of local memory. The units are connected by 

communication channels ("connections") which usually carry numeric (as opposed to 

symbolic) data, encoded by any of various means. The units operate only on their local 

data and on the inputs they receive via the connections. The restriction to local operations 

is often relaxed during training.  

Some NNs are models of biological neural networks and some are not, but historically, 

much of the inspiration for the field of NNs came from the desire to produce artificial 

systems capable of sophisticated, perhaps "intelligent", computations similar to those that 

the human brain routinely performs, and thereby possibly to enhance our understanding 

of the human brain.  

Most NNs have some sort of "training" rule whereby the weights of connections are 

adjusted on the basis of data. In other words, NNs "learn" from examples, as children 

learn to distinguish dogs from cats based on examples of dogs and cats. If trained 

carefully, NNs may exhibit some capability for generalization beyond the training data, 

that is, to produce approximately correct results for new cases that were not used for 

training.  

NNs normally have great potential for parallelism, since the computations of the 

components Some people regard massive parallelism and high connectivity to be defining 
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characteristics of NNs, but such requirements rule out various simple models, such as 

simple linear regression (a minimal feed forward net with only two units plus bias), 

which are usefully regarded as special cases of NNs. 

According to the DARPA Neural Network Study 

... a neural network is a system composed of many simple processing elements operating in 

parallel whose function is determined by network structure, connection strengths, and the 

processing performed at computing elements or nodes.  

According to Haykin 

A neural network is a massively parallel distributed processor that has a natural propensity 

for storing experiential knowledge and making it available for use. It resembles the brain in 

two respects:  

1. Knowledge is acquired by the network through a learning process.  

2. Interneuron connection strengths known as synaptic weights are used to store the 

knowledge 

According to Nigrin 

A neural network is a circuit composed of a very large number of simple processing 

elements that are neurally based. Each element operates only on local information. 

Furthermore each element operates asynchronously; thus there is no overall system clock. 

                                         Who is concerned with NNs? 

Neural Networks are interesting for quite a lot of very different people:  

• Computer scientists want to find out about the properties of non-symbolic 

information processing with neural nets and about learning systems in general.  
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• Statisticians use neural nets as flexible, nonlinear regression and classification 

models.  

• Engineers of many kinds exploit the capabilities of neural networks in many areas, 

such as signal processing and automatic control.  

• Cognitive scientists view neural networks as a possible apparatus to describe 

models of thinking and consciousness (High-level brain function).  

• Neuro-physiologists use neural networks to describe and explore medium-level 

brain function (e.g. memory, sensory system, and motorics).  

• Physicists use neural networks to model phenomena in statistical mechanics and for 

a lot of other tasks.  

• Biologists use Neural Networks to interpret nucleotide sequences.  

• Philosophers and some other people may also be interested in Neural Networks for 

various reasons.  

 

                Where are neural networks going? 

A great deal of research is going on in neural networks worldwide.  

This ranges from basic research into new and more efficient learning algorithms, to 

networks which can respond to temporally varying patterns (both ongoing at Stirling), to 

techniques for implementing neural networks directly in silicon. Already one chip 

commercially available exists, but it does not include adaptation. Edinburgh University 

have implemented a neural network chip, and are working on the learning problem.  

Production of a learning chip would allow the application of this technology to a whole 

range of problems where the price of a PC and software cannot be justified. There is 

particular interest in sensory and sensing applications: nets which learn to interpret real-

world sensors and learn about their environment.  
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New Application areas: 

Pen PC's  
PC's where one can write on a tablet, and the writing will be recognized and translated into 

(ASCII) text.  

Speech and Vision recognition systems  
Not new, but Neural Networks are becoming increasingly part of such systems. They are 

used as a system component, in conjunction with traditional computers.  

White goods and toys  
As Neural Network chips become available, the possibility of simple cheap systems which 

have learned to recognize simple entities (e.g. walls looming, or simple commands like Go, 

or Stop), may lead to their incorporation in toys and washing machines etc. Already the 

Japanese are using a related technology, fuzzy logic, in this way. There is considerable 

interest in the combination of fuzzy and neural technologies.  
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Appendix B   Back Propagation Algorithm 
 
One algorithm which has hugely contributed to neural network fame is the back-

propagation algorithm. The principal advantages of back-propagation are simplicity and 

reasonable speed (though there are several modifications which can make it work faster. 

Algorithm 

Generally, all the weights in the network are initialized to have small, random values. 

This should mean that the net activation value for the output layer is almost zero and the 

MLP will output a value of approximately 0.5 when an output sigmoidal transfer function 

is being used and 0 when the output transfer function is simply an identity, linear 

mapping. 

The weight training process then continues by identifying which patterns occur in the 

current training epoch and calculating the network's output for each pattern. For each 

pattern, a gradient (weight update) is evaluated which is then averaged over each pattern 

before the weights are actually changed. As previously mentioned, the two most common 

epoch sizes are 1 (present pattern and then update weights before presenting next pattern) 

or P (present all patterns before averaging gradients and performing a single weight 

update). 

Training ceases when the performance of the network falls beneath some pre-specified 

error tolerance or the number of learning steps exceeds some maximum value (EBP can 

be extremely slow, requiring tens of thousands of learning iterations). In order to 

calculate the current performance of a network, the complete data set is used to query the 

network and MSE value is calculated, without updating the weights. Sometimes, the data 

is split into training and a testing set, where the training set is used to calculate the weight 

update gradients and the testing set is used to decide when to stop learning. 
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