

HUMAN FACE DETECTION SYSTEM

by

GC AZHAR (Leader)
GC USMAN
GC ADEEL
GC UBAID

A thesis submitted in partial fulfillment of the
requirements for the degree of B.E Computer

Software

National University of Sciences and
Technology, Rawalpindi

APRIL 2004

ABSTRACT

HUMAN FACE DETECTION SYSTEM
by

GC AZHAR (Leader)
GC USMAN
GC ADEEL
GC UBAID

Object detection is a fundamental problem in computer vision. Detection of faces, in

particular, is a critical part of face recognition and critical for systems which interact with

users visually.

We present a view-based approach implemented with artificial neural networks for face

detection. A retinally connected neural network examines small windows of an image, and

decides whether each window contains a face. The system arbitrates between multiple

networks to improve performance over a single network. We present a straightforward

procedure for aligning positive face examples for training. To collect negative examples,

we use a bootstrap algorithm, which adds false detections into the training set as training

progresses. This eliminates the difficult task of manually selecting nonface training

examples, which must be chosen to span the entire space of nonface images. Simple

heuristics, such as using the fact that faces rarely overlap in images, can further improve the

accuracy.

In the end we performed sensitivity analysis on the networks, and present empirical results

on a large test set.

 2

DECLARATION

No portion of the work presented in this dissertation has been submitted in

support of another award of qualification either at this institution or

elsewhere.

 3

DEDICATION

This document is dedicated to our beloved parents who have been a source
of constant encouragement for us.

 4

ACKNOWLEDGMENTS

We arrived at MCS on a New Year night of 2001, more than three years ago. We had a

lot to learn, how to find our way around in new college and how to do computer science

degree. Fortunately our instructors, friends and colleagues made this easy, teaching us

about life and studies in too many ways to list them all. Let us just mention a few

examples.

Thanks to our advisor, Lt.Col Rashid Satti, for teaching us about artificial intelligence,

neural networks and its applications and also for his encouragement and advice.

Thanks to Dr.Usama Hasan for showing us that professors can be friends too.

Thanks to my course mates over the years: Sheraz Cheema for introducing us to

basketball; Waleed Mansoor, for showing compassion in every action; Bilal Anwar for

reminding us of the enthusiasm we had as a first year student; Haris, for many

conversations and his bike on which we used to wave through the city. Thanks to our

colleagues in the Computer Science Department who taught us so much. Above all, our

poor computers who worked for our project and companions of our loneliness.

And finally, thanks to our parents. Their constant love, support, and encouragement

made finishing this impossible task possible.

GC Azhar

GC Usman

GC Adeel

GC Ubaid

 5

CONTENTS

Abstract i
Declaration ii
Dedication iii
Acknowledgements iv
1 Project Overview
 1.1 Introduction
 1.2 Challenges in Face Detection . … 2
 1.3 A View-Based Approach using Neural Networks 4
 1.4 Evaluation . ……….. 6
2 Requirement Analysis
2.1 Resource Requirements…………………………………………………7
2.2 Project Boundaries & Constraints . …….. 8
2.3 Project Assumptions……………………… ……. 8
2.4 System Features . ……. 9
2.5 Project Deliverables…………………………………………………….10
3 System Design…………………………………………………………...11
3.1 Schematic Diagram . ….. 11
3.2 Data Flow Diagrams …………………………………………………...12

4 Data Preparation
 4.1 Introduction . 16
 4.2 Facial Feature Labeling and Alignment . 16
 4.3 Preprocessing for Brightness and Contrast . 20
 4.4 Face-Specific Lighting Compensation . 23

4.4.1 Linear Lighting Models . . . 23
4.4.2 Neural Networks for Compensation . 25
4.4.3 Quotient Images for Compensation . 27

 4.5 Summary . ………...29
5 Upright Face Detection
 5.1 Introduction . ……….31
 5.2 Individual Face Detection Networks .32

5.2.1 Face Training Images . ….33
5.2.2 Non-Face Training Images ...34
5.2.3 Active Learning . ……34
5.2.4 Exhaustive Training . …...36

 5.3 Analysis of Individual Networks ..37
5.3.1 Sensitivity Analysis . …...37
5.3.2 ROC (Receiver Operator Characteristic) Curves 38

5.4 Refinements . …………41
5.4.1 Clean-Up Heuristics . …..41
5.4.2 Arbitration among Multiple Networks 44

5.5 Evaluation . ………….47
5.5.1 Upright Test Set . …….47
5.5.2 Example Output . ……...50
5.5.3 Effect of Lighting Variation50

 6

6 Tilted Face Detection ……………………………………………………54
6.1 Introduction . ………….. 54
6.2 Algorithm . …………… 55

6.2.1 Derotation Network . …… 56
6.2.2 Detector Network . ……58
6..3 Arbitration Scheme . …… 58

6.3 Analysis of the Networks . ……….59
6.4 Evaluation . …………... 60

6.4.1 Derotation Network with Upright Face Detectors 60
6.4.2 Proposed System . …… 61
6.4.3 Exhaustive Search of Orientations . 66
6.4.4 Upright Detection Accuracy . 68

6.5 Summary . ………….. 70
7 Non-Frontal Face Detection 71
7.1 Introduction 71
7.2 Geometric Distortion to a Frontal Face . 72

7.2.1Labelling the 3D Pose of the Training Images 72
7.2.2 Representation of Pose . …77
7.2.3 Training the Pose Estimator ..78
7.2.4 Geometric Distortion ...80

7.3 View-Based Detector . ……... 81
7.3.1 View Categorization and Derotation 81
7.3.2 View-Specific Face Detection . 84

7.4 Evaluation of the View-Based Detector . 86
7.4.1 Non-Frontal Test Set . …. 86
7.4.2 Experiments . ………86

7.5 Summary . ………….. 90
8 Speedups ………………………………………………………………..92
8.1 Introduction . ………… 92

8.2 Fast Candidate Selection .92
8.2.1 Candidate Selection . ……92
8.2.2 Candidate Localization . ….93
8.2.3 Candidate Selection for Tilted Faces 95

8.3 Change Detection . ……….. 97
8.4 Skin Color Detection . ………. 98
8.5 Evaluation of Optimized Systems . …. 100
8.6 Summary . …………………….. 102
9 User Manual……………………………………………………103
9.1 Pre-Requisites . ……….. 103
9.2 Quick Start Instructions . 103
9.3 Advanced Settings . …… 104

9.3.1 Windows Interval . …… 106
9.3.2 Threshold . ……106
9.3.3 The Scaling Properties . 106

9.4 Training A Neural Network for Face Detection ……………………….. 106

Appendices………………………………………………………………….111
Appendix A………………………………………………………………….111
Appendix B………………………………………………………………….115

 7

References………………………………………………………………... 116
Chapter 1

Project Overview

1.1 Introduction

The goal of our project is to show that the face detection problem can be solved

efficiently and accurately using a view-based approach implemented with artificial

neural networks. Specifically, we will demonstrate how to detect upright, tilted, and

non-frontal faces in cluttered images, using multiple neural networks whose outputs are

arbitrated to give the final output.

Object detection is an important and fundamental problem in computer vision, and there

have been many attempts to address it. The techniques which have been applied can be

broadly classified into one of two approaches: matching two- or three-dimensional

geometric models to images or matching view-specific image-based models to images.

Previous work has shown that view-based methods can effectively detect upright frontal

faces and eyes in cluttered backgrounds.

In developing a face detector that uses machine learning, three main sub problems arise.

First, images of objects such as faces vary considerably, depending on lighting,

occlusion, pose, facial expression, and identity. The detection algorithm should

explicitly deal with as many of these sources of variation as possible, leaving little

unmodelled variation to be learned. Second, one or more neural-networks must be

trained to deal with all remaining variation in distinguishing faces from non-faces.

Third, the outputs from multiple detectors must be combined into a single decision

about the presence of an face.

Often, face recognition systems work by first applying a face detector to locate the face,

then applying a separate recognition algorithm to identify the face. Other face

recognition system sometimes use the hypothesize and verify technique, in which they

 8

first generate a hypothesis of which object is present (recognition), then use a more

precise algorithm to verify whether that object is actually present (detection).

1.2 Challenges in Face Detection

Object detection is the problem of determining whether or not a sub-window of an

image belongs to the set of images of an object of interest. Thus, anything that increases

the complexity of the decision boundary for the set of images of the object will increase

the difficulty of the problem, and possibly increase the number of errors the detector

will make.

Suppose we want to detect faces that are tilted in the image plane, in addition to upright

faces. Adding tilted faces into the set of images we want to detect increases the set’s

variability, and may increase the complexity of the boundary of the set. Such

complexity makes the detection problem harder. Note that it is possible that adding new

images to the set of images of the object will make the decision boundary becomes

simpler and easier to learn. One way to imagine this happening is that the decision

boundary is smoothed by adding more images into the set. However, the conservative

assumption is that increasing the variability of the set will make the decision boundary

more complex, and thus make the detection problem harder.

There are many sources of variability in the object detection problem, and specifically

in the problem of face detection. These sources are outlined below.

Variation in the Image Plane:

The simplest type of variability of images of a face can be expressed independently of

the face itself, by rotating, translating, scaling, and mirroring its image. Also included in

this category are changes in the overall brightness and contrast of the image, and

occlusion by other objects. Examples of such variations are shown in Figure 1.1.

Pose Variation:

Some aspects of the pose of a face are included in image plane variations, such as

rotation and translation. Another source of variation is the distance of the face from the

camera. Examples of such variations are shown in Figure 1.1.

 9

Figure 1.1: Examples of how face images between poses and between different individuals.

Lighting and Texture Variation:

Up till now, we have described variations due to the position and orientation of the

object with respect to the camera. Now we come to variation caused by the object and

its environment, specifically the object’s surface properties and the light sources.

Changes in the light source in particular can radically change a face’s appearance.

Examples of such variations are shown in Figure 1.2.

Figure 1.2: Examples of how images of faces change under extreme lighting conditions.

Background Variation:

When an object has a predictable shape, it is possible to extract a window which

contains only pixels within the object, and to ignore the background. However, for

profile faces, the border of the face itself is the most important feature, and its shape

 10

varies from person to person. Thus the boundary is not predictable, so the background

cannot be simply masked off and ignored. A variety of different backgrounds can be

seen in the example images of Figures 1.1 and 1.2.

Shape Variation:

A final source of variation is the shape of the object itself. For faces, this type of

variation includes facial expressions, whether the mouth and eyes are open or closed,

and the shape of the individual’s face, as shown in some of the examples of Figure 1.1.

The next section will describe the approach to the face detection problem, and show

how each of the above sources of variation can be addressed.

1.3 A View-Based Approach using Neural Networks

The face detection system is based on four main steps:

1. Localization and Pose Estimation:

Use of a machine learning approach, specifically an artificial neural network,

requires training examples. To reduce the amount of variability in the positive

training images, they are aligned with one another to minimize the variation in the

positions of various facial features.

At runtime, we do not know the precise facial feature locations, and so we cannot

use them to locate potential face candidates. Instead, we use exhaustive search over

location and scale to find all candidate locations.

It is at this stage rotation of the face, both in- and out-of-plane, are handled. A

neural network analyzes the potential face region, and determines the pose of the

face. This allows the face to be rotated to an upright position (in-plane) and selects

the appropriate detector network for the particular out-of-plane orientation.

2. Preprocessing:

To further reduce variation caused by lighting or camera differences, the images are

preprocessed with standard algorithms such as histogram equalization to improve

the overall brightness and contrast in the images. We also examine the possibility of

 11

lighting compensation algorithms that use knowledge of the structure of faces to

perform lighting correction.

3. Detection:

 The potential faces which are already normalized in position, pose, and lighting in

the first two steps are examined to determine whether they are really faces. This

decision is made by neural networks trained with many face and non-face example

images. This stage

Handles all sources of variation in face images not accounted for the in the previous two

steps. Separate networks are trained for frontal, tilted, and non frontal faces.

 4. Arbitration:

In addition to using three separate detector, one for each class of poses of the face,

multiple networks are also used within each pose. Each network learns different thing

from the training data, and makes different mistakes. Their decisions can be combined

using some simple heuristics, resulting in reinforcement of correct face detections and

suppression of false alarms.

Together these steps attempt to account for the sources of variability described in the

previous section. These steps are illustrated schematically by Figure 1.3.

 12

Figure 1.3: Schematic diagram of the main steps of the face detection algorithm.

1.4 Evaluation

We evaluated the accuracy of the algorithms developed. A number of test sets were

used, with images collected from a variety of sources, including the World Wide Web,

scanned photographs and newspaper clippings, and digitized video images.

Each test set is designed to test one aspect of the algorithm, including the ability to

detect faces in cluttered backgrounds, the ability to detect a wide variety of faces of

different people, and the detection of faces of different poses. An overview of the

results is given in Table 1.4. We will see that the upright detector is able to detect

36.0% of faces on a test set containing mostly upright faces, while the tilted face

detector has comparable detection rates. Both of these systems have fairly low false

alarm rates. The detection rate for the non-frontal detector is significantly lower,

reflecting the relative difficulty of these problems.

Table 1.4: Overview of the results from the systems

 13

Chapter 2

Requirement Analysis

2.1 Resource Requirements

Following are the resources which are utilized in our project

a) Personnel
The personnel required to complete the project consist of following.
• GC Azhar Mehmood (Ldr)
• GC Usman Arif
• GC Adeel Sajjad
• GC Ubaid Rafiq

b) Hardware

The basic hardware required to accomplish this project is listed as under.

• Personal Computers
• Digital camera
• Scanner

c) Software

Following softwares were used in the project.

• Matlab
• C++
• Visual Studio.net
• MS Word
• MS paint

d) Office Requirements

The place where we will actually implement the project. It will be the Computer
Lab of the college as well as our residences.

 14

2.2 PROJECT BOUNDARIES & CONSTRAINTS

• Project is limited to detect faces (not recognition) with an acceptable number of

false positives.

• Facial Features should be clearly visible for detection of face (Frontal Face

Detection).

• System works effectively with 640 X 500 resolution images. Larger resolution

images lead to greater time for detection which becomes potentially inefficient.

• Distance from the camera is also one limitation.

• System suffers if the contrast and the lighting conditions are not balanced even

after preprocessing.

• Skin threshold below one detect faces but also increases error rates.

• To improve quality of detection windows interval should be decreased but at the

same time it will increase searching time.

2.3 PROJECT ASSUMPTIONS
There are few assumptions which were taken at the start of the project to make the

detection task simpler.

• Faces rarely overlap in the images.

• Images with incomplete facial features are not catered for face detection.

• Faces that appear far in the background with little information will not be taken

into account.

• Test images are taken assuming that they are fair in lighting and contrast.

• The effectiveness and efficiency of the system is dependent on training the

neural network.

• Heuristics such as detecting face with height to width ratio can be used where

possible.

• The detection rate of the system cannot be 100%.

 15

2.4 SYSTEM FEATURES

• Flexibility:-
System is flexible to cater for user requirements. Any format of the input

image such as bmp, jpeg, png, gif etc can be given to the system. The output

of the system can be saved for future reference.

• Training Functions:-
 Various training functions are available such as linear, sigmoid and Gaussian
.We can select according to our requirements.

• Searching Parameters:-
 . Searching parameters can be varied to make the system more effective.
Windows interval, skin threshold and scaling parameters can be set individually by
the user.

• Active Learning:-
 The system is provided with the facility that the system can be trained as

the training progresses. From the output user can select manually the windows and

add them to the training set as positive or negative examples. This improves the

accuracy of the system.

• Neural Network Editor
 User can edit the neural network settings. New neural network can be

created with 30 x 30 input masks. Any of the training functions and training images

can be provided for this new network. The user can also train the system offline.

• Time Estimation
 By looking at the searching parameters user can guess the time required to

scan the test image. The “searching progress bar” gives the total windows and the

 16

windows scanned so far by the system. Also it provides the total number of patterns

found in the image.

2.5 PROJECT DELIVERABLES

 Test Image Database

 Face Database for Training

 Non-Face Database for Training

 Implemented Neural Network

 Neural Network Editor

 Trained Neural Network

 Detection System

 User Manual

 17

Chapter 3

SYSTEM DESIGN

3.1 Schematic Diagram

 18

3.2 Data Flow Diagrams

LEVEL 0 DFD

Image
Database

System
Output

 19

LEVEL 1 DFD

Image
Database

System
Output

 20

LEVEL 2 DFD

Image Database

Face Database

Preprocessing

Training System
Alignment

Detection System

Neural Network Editor

Online

Trained
NN

Offline
Training

Non Face
Examples

Face
Examples

Extraction
of Window

Estimate
Pose

Preprocessing

Test Image

Test Image

20x20
Window

Pose Estimated
Window

Preprocessed
Window

Image

Face

 21

LEVEL 3 DFD

Image Database
Localization
and Pose
Estimation

Preprocessing

Detect
Frontal
Face

Detect
Tilted
Face

Detect
Non-
Frontal
Face

Arbitration

System
Output

Non-Face
Examples

Face
Examples

Preprocessing

Alignment

Train Pose
Estimator

Train
Detector

Test
Image

Extracted
Windows

Trained Face
Detector

Preprocessed
Image

Face
Presence/Absence

Image

Non-Face
Images

Face
Images

Aligned
Face
Images

Trained Pose
Estimator

Segmented
face

Preprocessed
Image

 22

Chapter 4

Data Preparation

4.1 Introduction

This project will utilize a view-based approach to face detection, and will use a statistical

model (an artificial neural network) to represent each view. A view-based face detector

must determine whether or not a given sub-window of an image belongs to the set of

images of faces. Variability in the images of the face may increase the complexity of the

decision boundary to distinguish faces from non-faces, making the detection task more

difficult.

4.4 Facial Feature Labeling and Alignment

The first step in reducing the amount of variation between images of faces is to align the

faces with one another. This alignment should reduce the variation in the two dimensional

position, orientation, and scale of the faces. Ideally, the alignment would be computed

directly from the images, using image registration techniques. This would give the most

compact space of images of faces. However, the image intensities of faces can differ quite

dramatically, which would make some faces hard to align with each other, but we want

every face to be aligned with every other face.

The solution used for this project is manual labeling of the face examples. For each face, a

number of feature points are labeled, depending on the three-dimensional pose of the head,

as listed in Figure 4.1.

 23

The next step is to use this information to align the faces with one another. First, we must

define what is meant by alignment between two sets of feature points. We define it as the

rotation, scaling, and translation which minimize the sum of squared distances between

pairs of corresponding features. In two dimensions, such a coordinate transformation can

be written in the following form:

Figure 4.1: Features points manually labeled on the face, depending on the three dimensional
pose of the face. The left profile views are mirrors of the right profiles.

If we have several corresponding sets of coordinates, this can be further rewritten as
follows:

 24

When there are two or more pairs of distinct feature points, this system of linear equations

can be solved by the pseudo-inverse method. Renaming the matrix on the left hand side as

A, the vector of variables (a, b, tx, ty)T as T, and the right hand side as B, the pseudo-

inverse solution to these equations is:

The pseudo-inverse solution yields the transformation T which minimizes the sum of

squared differences between the sets of coordinates x_i, y_i and the transformed versions of

xi, yi, which was our goal initially.

Now that we have seen how to align two sets of labeled feature points, we can move on to

aligning sets of feature points. The procedure is described in following algorithm.

1. Initialize ¯F, a vector which will be the average positions of each labeled feature over all

the faces, with some initial feature locations. In the case of aligning frontal faces, these

features might be the desired positions of the two eyes in the input window. For faces of

another pose, these positions might be derived from a 3D model of an average head.

4.For each face i, use the alignment procedure to compute the best rotation, translation, and

scaling to align the face’s features Fi with the average feature locations ¯ F. Call the

aligned feature locations F_i.

3. Update ¯F by averaging the aligned feature locations F_i for each face i.

4. The feature coordinates in ¯F are rotated, translated, and scaled (using the alignment

procedure described earlier) to best match some standardized coordinates. These standard

coordinates are the ones used as initial values used for ¯F.

5. Go to step 4.

 25

Empirically, this algorithm converges within five iterations, yielding for each face the

transformation which maps it to close to a standard position, and aligned with all the other

faces. Once the parameters needed to align the faces are known, the image can be

resampled using bilinear interpolation to produce a cropped and aligned image. The

averages and distributions of the feature locations for frontal faces are shown in Figure 4.4,

and examples of images that have been aligned using this technique are shown in Figure

4.3.

Figure 4.2: Left: Average of upright face examples. Right: Positions of average facial
feature locations (white circles), and the distribution of the actual feature locations (after
alignment) from all the examples (black dots).

In training a detector, obtaining a sufficient number of examples is an important problem.

One commonly used technique is that of virtual views, in which new example images are

created from real images. In this project, this has taken the form of randomly rotating,

translating, and scaling example images by small amounts

Figure 4.3: Example upright frontal face images aligned to one another.

 26

Figure 4.4: Example upright frontal face images, randomly mirrored, rotated, translated,
and scaled by small amounts.

Once the faces are aligned to have a known size, position, and orientation, the amount of

variation in the training data can be controlled. The detector to be made more or less robust

to particular variations in a desired degree. Some example images in which random

amounts rotation (up to 10o), random translations of up to half a pixel, and random scalings

up to 10% are shown in Figure 4.4.

4.3 Preprocessing for Brightness and Contrast

After aligning the faces, there is one remaining major source of variation (apart from

intrinsic differences between faces). This variation is caused by lighting and camera

characteristics, which can result in brightly or poorly lit images, or images with poor

contrast.

We first address these problems by using a simple image processing approach. This

preprocessing technique first attempts to equalize the intensity values in across the window.

We fit a function which varies linearly across the window to the intensity values in an oval

region inside the window (shown in Figure 4.5a). Pixels outside the oval may represent the

background, so those intensity values are ignored in computing the lighting variation across

the face. If the intensity of a pixel x, y is I(x, y), then we want to fit this linear model

parameterized by a, b, c to the image:

 27

The choice of this particular model is somewhat arbitrary. It is useful to be able to represent

brightness differences across the image, so a non-constant model is useful. The variation is

limited to linear to keep the number of parameters low and allow them to be fit quickly.

Collecting together the contributions for all the pixels in the oval window gives an over-

constrained matrix equation, which is solved by the pseudo-inverse method. This linear

function will approximate the overall brightness of each part of the window, and can be

subtracted from the window to compensate for a variety of lighting conditions.

Next, histogram equalization is performed, which non-linearly maps the intensity values to

expand the range of intensities in the window. The histogram is computed for pixels inside

an oval region in the window. This compensates for differences in camera input gains, as

well as improving contrast in some cases. Some sample results from each of the

preprocessing steps are shown in Figure 4.5. The algorithm for this step is as follows. We

first compute the intensity histogram of the window, where each intensity level is given its

own bin. This histogram is then converted to a cumulative histogram, in which the value at

each bin says how many pixels have intensities less than or equal to the intensity of the bin.

Figure 4.5: The steps in preprocessing a window. First, a linear function is fit to the intensity values in the
window, and then subtracted out, correcting for some extreme lighting conditions. Then, histogram
equalization is applied, to correct for different camera gains and to improve contrast. For each of these steps,
the mapping is computed based on pixels inside the oval mask, and then applied to the entire window.

 28

The goal is to produce a flat histogram, which is an image in which each pixel intensity

occurs an equal number of times. The cumulative histogram of such an image will have

that property that the number of pixels with an intensity less than or equal to a given

intensity is proportional to that intensity.

Given an arbitrary image, we can produce an image with a linear cumulative histogram by

adjusting the pixel intensities. Each intensity will be mapped to the value of the cumulative

histogram for that bin. This guarantees that the number of pixels matches the intensity,

which is the property we want. In practice, it is impossible to get a perfectly flat histogram

(for example, the input image might have a constant intensity), so the result is only an

approximately flat intensity histogram. To see how the histograms change with each step of

the algorithm, see Figure 4.6.

In some parts of this project, only histogram equalization with subtracting the linear model

is used. This is done when we do not know which pixels in the input window are likely to

be foreground or background, and cannot apply the linear correction to just the face.

Instead, we just apply the histogram equalization to the whole window, hoping that it will

reduce the variability somewhat, without the background pixels having too much effect on

the appearance of the face in the foreground.

 29

Figure 4.6: (a) Smoothed histograms of pixel intensities in a 40 × 40 window as it is passed
through the preprocessing steps. Note that the lighting correction centers the peak of intensities at
zero, while the histogram equalization step flattens the histogram. (b) The same three steps shown
with cumulative histograms. The cumulative histogram of the result of lighting correction is used as
a mapping function, to map old intensities to new ones.

4.4 Face-Specific Lighting Compensation

Part of the motivation of the preprocessing steps in the previous section is to have

robustness to variations in the lighting conditions, for instance lighting from the side of the

face which changes its overall appearance. However, there are limits to what “dumb”

corrections, with no knowledge of the structure of faces, can accomplish. In this section, I

will present some preliminary ideas on how to intelligently correct for lighting variation.

4.4.1 Linear Lighting Models

The ideas in this section are based on the illumination models, in which the range of

appearances has been explored that an object can take on under differently lighting

conditions. One assumption used in it is that adding light sources to a scene results in an

image which is a sum of the images for each individual light source. This means that the

brightness of a point on the object depends only on the reflectivity of the object (its albedo)

and the angle between the object’s surface and the direction to the light source, according

to the following formula (assuming there are no shadows):

where I(x, y) is the intensity of pixel x, y, A(x, y) is the albedo of the corresponding point

on the object, N(x, y) is the normal vector of the object’s surface (relative to a vector

pointing toward the camera) and L is a vector from the object to the light source, which is

assumed to cast parallel rays on the object.

As the light source direction L is varied, I(x, y) also varies, but the surface shape and

albedo are fixed. Since the equation is linear, and L has three parameters, the space of

 30

images of the object (without shadows) is a three dimensional subspace. This subspace can

be determined from (at least) example images of the object, by using principal components

analysis (PCA). This subspace is related by a linear transformation to the set of normal

vectors N(x, y). If we want to recover the true normal vectors, we need to know the actual

light source directions. If these directions are available, the system can be treated as an

over-constrained set of equations and solved directly for N(x, y) without performing

principal components analysis. Actually, we will solve for the product A(x, y)N(x, y), but

since N(x, y) have unit length, it is possible to separate the albedo A(x, y).

An example result is shown in Figure 4.4.

With A(x, y) and N(x, y) in hand, which are essentially the color and shape of the face, we

can then generate new images of the face under any desired lighting conditions. Some

examples of images which can be generated are shown in Figure 4.3.

Such images can be used directly for training a face detector, and such experiments will be

reported on in the next chapter. It is however quite time consuming to capture images of

faces under multiple lighting conditions, and this limits the amount of training data. Ideally,

we would like to learn about how images of faces change with different lighting, and apply

that to new images of faces, for which we only have single images.

4.4.4 Neural Networks for Compensation

Given a new input window to be classified as a face or non-face, we would like to apply a

lighting correction which will remove any artifacts caused by extreme lighting conditions.

This lighting correction must not change faces to non-faces and vice-versa. The

architecture we tried is shown in Figure 4.9.

The architecture feeds the input window to a neural network, which has been trained to

produce a lighting correction that is an image to add to the input which will make the

lighting appear that it is coming from the front of the face. Some example training data is

shown in Figure 4.10.

 31

This data was prepared using the lighting models described above. This lighting correction

is then added back into the original input window to get the corrected window. To prevent

the neural network from applying arbitrary corrections (which could turn any non-face into

a face), the network architecture contains a bottleneck, forcing the network to parameterize

the correction using only four activation levels. The output layer essentially computes a

linear combination of four images based on these activations.

Figure 4.4: Example images under different lighting conditions, such as these, allow us to
solve for the normal vectors on a face and its albedo.

Some results from this system for faces and non-faces are shown in Figure 4.9. As can be

seen, most of the results for faces are quite good (one exception is the fifth face from the

left). Most of the strong shadows are removed, and the brightness levels of all parts of the

face are similar. However, the results for non-faces are troubling. Many of the non-faces

now look very face-like. The reason for this can be seen by considering the types of

corrections that must be performed. When the lighting is very extreme, say from the left

side of the face, the right side of the face will have intensity values of zero. Thus the

corrector must “construct” the entire right half of the face. This construction capability

makes it create faces when given relatively uniform non-faces as input.

 32

One potential solution to this problem would be to measure how much work the lighting

correction network had to do. If it made large changes in the image, then the result of the

face detector applied to that window should be more suspect. This has not yet been

explored.

Figure 4.3: Generating example images under variable lighting conditions.

4.4.3 Quotient Images for Compensation

The idea in this work is again to use linear lighting models. A technique is used where an

input image can be simultaneously projected into the linear lighting spaces of a set of linear

models. The simultaneous projection finds the L which minimizes the following quantity:

Where I(x, y) is the input image, i is summed over all n lighting models, and, and Ai(x, y)

and Ni(x, y) are the corresponding albedo and normal vectors for lighting model i at pixel

 33

(x, y). The result of this optimization is a vector L representing the lighting conditions for

the face in the input image. Using a set of linear models allows for some robustness to

differences in the albedos and shapes of individual faces. Using the collection of face

lighting models, they then compute an image of the average face under the same conditions

using the following equation:

Figure 4.9: Architecture for correcting the lighting of a window. The window is given to a
neural network, which has a severe bottleneck before its output. The output is a correction
to be added to the original image.

Figure 4.10: Training data for the lighting correction neural network.

The input image is divided by this synthetic image, yielding a so called “quotient image”.

Mathematically, the quotient image contains only the ratio of the albedos of the new face

and the average face, assuming that the faces have similar shapes.

 34

The original work on this technique used the quotient image for face recognition, because it

removes the effects of lighting and allows recognition with fewer example images. The

same approach can be used to normalize the lighting of input windows for face detection.

Instead of just dividing by the average face under the estimated lighting conditions, we can

go a step further, multiplying by the average face under frontal lighting:

Figure 4.11: Result of lighting correction system. The lighting correction results for most of the
faces are quite good, but some of the non-faces have been changed into faces.

This should ideally give an image of the original face but with frontal lighting. Some

examples are shown in Figure 4.40. It is not clear that this approach will work well for face

detection. As can be seen, while the overall intensity has been roughly normalized, the

brightness differences across the face have not been improved. In some cases, bright spots

have been introduced into the output image, probably because of the specular reflections in

the images used to build the basis for the face images. Finally, since the lighting model

does not incorporate shadows, the shadows cast by the nose or brow will cause problems.

4.5 Summary

The first part of this chapter described the training and test databases used throughout this

project. The major focus however was some methods for segmenting face regions from

 35

training images, aligning faces with one another, and preprocessing them to improve

contrast. The chapter ended with some speculative results on how to intelligently correct

for extreme lighting conditions in images. Together these techniques will be used to

generate training data for the detectors to be described later.

 Figure 4.14: Result of using quotient images to correct lighting.

 36

Chapter 5

Upright Face Detection

5.1 Introduction

In this chapter, a neural network-based algorithm is presented to detect upright, frontal

views of faces. The algorithm works by applying one or more neural networks directly to

portions of the input image, and arbitrating their results. Each network is trained to output

the presence or absence of a face.

Training a neural network for the face detection task is challenging because of the difficulty

in characterizing prototypical “non-face” images. Unlike face recognition, in which the

classes to be discriminated are different faces, the two classes to be discriminated in face

detection are “images containing faces” and “images not containing faces”. It is easy to get

a representative sample of images which contain faces, but much harder to get a

representative sample of those which do not. We avoid the problem of using a huge

training set for non-faces by selectively adding images to the training set as training

progresses. This “bootstrap” method reduces the size of the training set needed. The use of

arbitration between multiple networks and heuristics to clean up the results significantly

improves the accuracy of the detector.

The architecture of the system and training methods for the individual neural networks

which make up the detector are presented in Section 5.2. Section 5.5 examines how these

individual networks behave, by measuring their sensitivity to different parts of the input

image, and measuring their performance on some test images. Methods to clean up the

 37

results and to arbitrate among multiple networks are presented in Section 5.4. The results in

Section 5.5 show that the system is able to detect 90.5% of the faces over a test set of 150

complex images, with an acceptable number of false positives.

5.2 Individual Face Detection Networks

The system operates in two stages: it first applies a set of neural network-based detectors to

an image, and then uses an arbitrator to combine the outputs. The individual detectors

examine each location in the image at several scales, looking for locations that might

contain a face. The arbitrator then merges detections from individual networks and

eliminates overlapping detections.

The first component of our system is a neural network that receives as input a 20 × 20

pixel region of the image, and generates an output ranging from 1 to -1, signifying the

presence or absence of a face, respectively. To detect faces anywhere in the input, the

network is applied at every location in the image. To detect faces larger than the window

size, the input image is repeatedly reduced in size (by sub sampling), and the detector is

applied at each size. This network must have some invariance to position and scale. The

amount of invariance determines the number of scales and positions at which it must be

applied. We apply the network at every pixel position in the image, and scale the image

down by a factor of 1.2 for each step in the pyramid. This image pyramid is shown at the

left of Figure 5.1.

 38

 Figure 5.1: The basic algorithm used for face detection.

After a 20 × 20 pixel window is extracted from a particular location and scale of the input

image pyramid, it is preprocessed using the affine lighting correction and histogram

equalization steps described in Section 2.5. The preprocessed window is then passed to a

neural network. The network has retinal connections to its input layer; the receptive fields

of hidden units are shown in Figure 5.1. The input window is broken down into smaller

pieces, of four 10 × 10 pixel regions, sixteen 5×5 pixel regions, and six overlapping 20×5

pixel regions. Each of these regions will have complete connections to a hidden unit, as

shown in the figure. Although the figure shows a single hidden unit for each subregion of

the input, these units can be replicated. For the experiments which are described later, we

use networks with two and three sets of these hidden units. The shapes of these subregions

were chosen to allow the hidden units to detect local features that might be important for

face detection. In particular, the horizontal stripes allow the hidden units to detect such

features as mouths or pairs of eyes, while the hidden units with square receptive fields

might detect features such as individual eyes, the nose, or corners of the mouth. Similar

input connection patterns are commonly used in speech and character recognition tasks.

The network has a single, real-valued output, which indicates whether or not the window

contains a face.

 39

5.2.1 Face Training Images

In order to use a neural network to classify windows as faces or non-faces, we need training

examples for each set. For positive examples, we use the techniques presented in Section

2.5 to align example face images in which some feature points have been manually

labelled. After alignment, the faces are scaled to a uniform size, position, and orientation

within a 20×20 pixel window. The images are scaled by a random factor and translated by

a random amount up to 0.5 pixels. This allows the detector to be applied at each pixel

location and at each scale in the image pyramid, and still detect faces at intermediate

locations or scales. In addition, to give the detector some robustness to slight variations in

the faces, they are rotated by a random amount (up to 10. degrees). In our experiments,

using larger amounts of rotation to train the detector network yielded too many false

positive to be usable. There are a total of 1046 training examples in our training set, and 15

of these randomized training examples are generated for each original face. The next

sections describe methods for collecting negative examples and training.

5.2.2 Non-Face Training Images

We needed a large number of non-face images to train the face detector, because the variety

of non-face images is much greater than the variety of face images. One large class of

images which do not contain any faces are pictures of scenery, such as trees, mountains,

and buildings.

Collecting a “representative” set of non-faces is difficult. Practically any image can serve

as a non-face example; the space of non-face images is much larger than the space of face

images. The statistical approach to machine learning suggests that we should train the

neural networks on precisely the same distribution of images which it will see at runtime.

For our face detector, the number of face examples is 15,000, which is a practical number.

However, our representative set of scenery images contains approximately 150,000,000

windows, and training on a database of this size is very difficult. The next two sections

describe two approaches to training with this amount of data.

 40

5.2.5 Active Learning

Because of the difficult of training with every possible negative example, we utilized an

algorithm. Instead of collecting the images before training is started, the images are

collected during training, in the following manner:

1. Create an initial set of non-face images by generating 1000 random images. Apply the

preprocessing steps to each of these images.

2. Train a neural network to produce an output of 1 for the face examples, and -1 for the

non-face examples. On the first iteration of this loop, the network’s weights are initialized

randomly. After the first iteration, we use the weights computed by training in the previous

iteration.

5. Run the system on an image of scenery which contains no faces. Collect subimages in

which the network incorrectly identifies a face (an output activation > 0).

4.Select up to 250 of these subimages at random, apply the preprocessing steps, and add

them into the training set as negative examples. Go to Step 2.

The training algorithm used in Step 2 is the standard error backpropogation algorithm. The

neurons use the tanh activation function, which gives an output ranging from -1 to 1,

hence the threshold of 0 for the detection of a face.

Since the number of negative examples is much larger than the number of positive

examples, uniformly sampled batches of training examples would often contain only

negative examples, which would be inappropriate for neural network training. Instead, each

batch of 100 positive and negative examples is drawn randomly from the entire training

sets, and passed to the backpropogation algorithm as a batch. We choose the training

batches such that they have 50% positive examples and 50% negative examples. This

ensures that initially, when we have a much larger set of positive examples than negative

examples, the network will actually learn something from both sets. Note that this changes

 41

the distribution of faces and non-faces in the training sets compared with what the network

will see at run time.

Figure 5.2: During training, the partially-trained system is applied to images of scenery which do
not contain faces (like the one on the left). Any regions in the image detected as faces (which are
expanded and shown on the right) are errors, which can be added into the set of negative training
examples.

Some examples of non-faces that are collected during training are shown in Figure 5.2.

Note that some of the examples resemble faces, although they are not very close to the

positive examples shown in Figure 2.2. The presence of these examples forces the neural

network to learn the precise boundary between face and non-face images. We used 120

images of scenery for collecting negative examples in the bootstrap manner described

above.

5.2.4 Exhaustive Training

Neural network training usually requires training the network many times on its training

images; a single pass through 150,000,000 scenery windows not only requires a huge

amount of storage, but also takes nearly a day on a four processor SGI supercomputer.

Additionally, a network usually rains on images in batches of about 100 images; by the

time we reach the end of 150,000,000 examples, it will have forgotten the characteristics of

first images. As in the previous section, to insure that the the neural network learns about

both faces and non-faces, we select the batches of negative examples to have

approximately equal numbers of positive and negative examples. However, this changes

 42

the apparent distribution of positive and negative examples, so that it no longer matches the

real distribution.

It is possible to compensate for this using Bayes’ Theorem. If we denote P(face|window)

as the probability that a given window is a face, and P’(face) and P’(non-face) as the prior

probability of faces and non-faces in the training sets (both 0.5), then Bayes’ Theorem says:

Neural networks will learn to estimate the left hand side of this equation, and since we

know P’(face), P’(non-face), and that P(window|non-face) = 1 - P(window|face), this

equation simplifies, giving:

 P (window|face) = NN Output

Let us denoted the true probability of faces is P(face), and non-faces is P(non-face). Then

we can use Bayes’ Theorem in the forward direction to get the true probability of a face

given the image:

We would like to classify a window as a face if P(face|window) > 0.5, which is equivalent

to setting a threshold of:

 NN Output > 1 - P(face)

Since we are using neural networks with tanh activation functions, the output range is -1 to

1, so this threshold is adjusted as follows:

 NN Output > 1 - 2P(face)

Thus we need to determine the prior probability of faces, which will be discussed in

Section 5.5.2.

 43

5.3 Analysis of Individual Networks

This section presents some analysis of the performance of the networks described above,
beginning with a sensitivity analysis, then examining the performance on the Upright Test
Set.

5.31 Sensitivity Analysis

In order to determine which part of its input image the network uses to decide whether the

input is a face, we performed sensitivity analysis. We collected a positive test set based on

the training database of face images, but with different randomized scales, translations, and

rotations than were used for training. The negative test set was built from a set of negative

examples collected during the training of other networks. Each of the 20 × 20 pixel input

images was divided into 100 2×2 pixel subimages. For each subimage in turn, we went

through the test set, replacing that subimage with random noise, and tested the neural

network. The resulting root mean square error of the network on the test set is an indication

of how important that portion of the image is for the detection task. Plots of the error rates

for two networks we trained are shown in Figure 5.5. Network 1 uses two sets of the hidden

units illustrated in Figure 5.1, while Network 2 uses three sets.

Figure 5.5: Error rates (vertical axis) on a test created by adding noise to various portions of the
input image (horizontal plane), for two networks. Network 1 has two copies of the hidden units
shown in Figure 5.1 (a total of 55 hidden units and 2905 connections), while Network 2 has three
copies (a total of 25 hidden units and 4552 connections).

 44

The networks rely most heavily on the eyes, then on the nose, and then on the mouth

(Figure5.5). We have seen this behavior on several real test images. In cases in which only

one eye is visible, detection of a face is possible, though less reliable, than when the entire

face is visible. The system is less sensitive to the occlusion of the nose or mouth.

5.3.2 ROC (Receiver Operator Characteristic) Curves

The outputs from our face detection networks are not binary. The neural networks produce

real values between 1 and -1, indicating whether or not the input contains a face. A

threshold value of zero is used during training to select the negative examples (if the

network outputs a value of greater than zero for any input from a scenery image, it is

considered a mistake). Although this value is intuitively reasonable, by changing this value

during testing, we can vary how conservative the system is. To examine the effect of this

threshold value during testing, we measured the detection and false positive rates as the

threshold was varied from 1 to -1. At a threshold of 1, the false detection rate is zero, but no

faces are detected. As the threshold is decreased, the number of correct detections will

increase, but so will the number of false detections.

 45

Figure 5.4:The detection rate plotted against false positive rates as the detection threshold is varied
from -1 to 1, for the same networks as Figure 5.5. The performance was measured over all images
from the Upright Test Set. The points labelled “zero” are the zero threshold points which are used
for all other experiments.

This tradeoff is presented in Figure 5.4, which shows the detection rate plotted against the

number of false positives as the threshold is varied, for the two networks presented in the

previous section. This is measured for the images in the Upright Test Set, which consists

150 images with 502. The false positive rate is in terms of the number of 20 × 20 pixel

windows that must be examined. This number can be approximated from the number of

pixels in the image and the scale factor between different resolutions in the image pyramid

(1.2):

 46

To give an intuitive idea about the meaning of the numbers in Figure 5.4 (with a zero

threshold), some examples of the output on the two images in Figure 5.5 are shown in

Figure 5.6. In the figure, each box represents the position and size of a window to which

Network 1 gave a positive response. The network has some invariance to position and

scale, which results in multiple boxes around some faces. Note also that there are quite a

few false detections; the next section presents some methods to reduce them.

The above analysis can be used with the probabilistic analysis in Section 5.2.4 to determine

the threshold for detecting faces in that scheme. Suppose that for a true face, windows one

pixel either side of its location, and windows either side of its scale can be detected, then

each face contributes about 5·5·5 = 22 face windows. In the training database, there are

1046 faces (22×1046 = 25242 face windows) and 592,624,545 20 × 20 windows, giving

a probability of faces equal to 1/20954. This is the value that will be used later in testing.

 Figure 5.5: Example images on to test the output of the upright detector.

 47

Figure 5.6: Images from Figure 5.5 with all the above threshold detections indicated by boxes.
Note that the circles are drawn for illustration only, they do not represent detected eye locations.

5.4 Refinements

The examples in Figure 5.6 showed that the raw output from a single network will contain

a number of false detections. In this section, we present two strategies to improve the

reliability of the detector: cleaning-up the outputs from an individual network, and

arbitrating among multiple networks

5.4.1 Clean-Up Heuristics

Note that in Figure 5.6a, the face is detected at multiple nearby positions or scales, while

false detections often occur with less consistency. The same is true of Figure 5.6b, but since

the faces are smaller the overlapping detections are not visible. These observation lead to a

heuristic which can eliminate many false detections. For each detection, the number of

other detections within a specified neighborhood of that detection can be counted. If the

number is above a threshold, then that location is classified as a face. The centroid of the

nearby detections defines the location of the detection result, thereby collapsing multiple

detections. In the experiments section, this heuristic will be referred to as

thresholding(size,level), where size is the size of the neighborhood, in both pixels and

pyramid steps, on either side of the detection in question, and level is the total number of

detections which must appear in that neighborhood. The result of applying threshold(4,2)

to the images in Figure 5.6 is shown in Figure 5.2.

 48

Figure 5.2: Result of applying threshold(4,2) to the images in Figure 5.6.

If a particular location is correctly identified as a face, then all other detection locations

which overlap it are likely to be errors, and can therefore be eliminated. Based on the above

heuristic regarding nearby detections, we preserve the location with the higher number of

detections within a small neighborhood, and eliminate locations with fewer detections. In

the discussion of the experiments, this heuristic is called overlap. There are relatively few

cases in which this heuristic fails; however, one such case is illustrated by the left two faces

in Figure 5.5b, where one face partially occludes another, and so is lost when this heuristic

is applied. These arbitration heuristics are very similar to, but computationally less

expensive than, those presented in my previous paper [Rowley et al., 1995].

 Figure 5.5: Result of applying overlap to the images in Figure 5.2.

 49

Figure 5.9: The framework for merging multiple detections from a single network: A) The
detections are recorded in an “output” pyramid. B) The number of detections in the neighborhood of
each detection are computed. C) The final step is to check the proposed face locations for overlaps,
and D) to remove overlapping detections if they exist. In this example, removing the overlapping
detection eliminates what would otherwise be a false positive.

The implementation of these two heuristics is illustrated in Figure 5.9. Each detection at a

particular location and scale is marked in an image pyramid, called the “output” pyramid.

Then, each detection is replaced by the number of detections within its neighborhood. A

threshold is applied to these values, and the centroids (in both position and scale) of all

above threshold detections are computed (this step is omitted in Figure 5.9. Each centroid is

then examined in order, starting from the ones which had the highest number of detections

within the specified neighborhood. If any other centroid locations represent a face

overlapping with the current centroid, they are removed from the output pyramid. All

remaining centroid locations constitute the final detection result. In the face detection work

described in [Burel and Carel, 1994], similar observations about the nature of the outputs

were made, resulting in the development of heuristics similar to those described

above.

 50

5.4.2 Arbitration among Multiple Networks

[Sung, 1996] provided some formalization of how a set of identically trained detectors can

be used together to improve accuracy. He argued that if the errors made by a detector are

independent, then by having a set of networks vote on the result, the number of overall

errors will be reduced.

To further reduce the number of false positives, we can apply multiple networks, and

arbitrate between their outputs to produce the final decision. Each network is trained using

the same algorithm with the same set of face examples, but with different random initial

weights, random initial non-face images, and permutations of the order of presentation of

the scenery images. As will be seen in the next section, the detection and false positive

rates of the individual networks will be quite close. However, because of different training

conditions and because of self-selection of negative training examples, the networks will

have different biases and will make different errors.

The arbitration algorithm is illustrated in Figure 5.10. Each detection at a particular position

and scale is recorded in an image pyramid, as was done with the previous heuristics. One

way to combine two such pyramids is by ANDing them. This strategy signals a detection

only if both networks detect a face at precisely the same scale and position. Due to the

different biases of the individual networks, they will rarely agree on a false detection of a

face. This allows ANDing to eliminate most false detections. Unfortunately, this heuristic

can decrease the detection rate because a face detected by only one network will be thrown

out. However, we will see later that individual networks can all detect roughly the same set

of faces, so that the number of faces lost due to ANDing is small.

Similar heuristics, such as ORing the outputs of two networks, or voting among three

networks, were also tried. In practice, these arbitration heuristics can all be implemented

with variants of the threshold algorithm described above. For instance, ANDing can be

implemented by combining the results of the two networks, and applying threshold(0,2),

 51

ORing with threshold(0,1), and voting by applying threshold(0,2) to the results of three

networks.

Figure 5.10: ANDing together the outputs from two networks over different positions and scales
can improve detection accuracy.

Each of these arbitration methods can be applied before or after the clean-up heuristics. If

applied afterwards, we combine the centroid locations rather than actual detection

locations, and require them to be within some neighborhood of one another rather than

precisely aligned, by setting the size parameter of the threshold which implements the

arbitration to a 4 rather than 0. These are denoted AND(4) and AND(0) in the experiments.

Arbitration strategies such as ANDing, ORing, or voting seem intuitively reasonable, but

perhaps there are some less obvious heuristics that could perform better. To test this

hypothesis, we applied a separate neural network to arbitrate among multiple detection

networks, as illustrated in Figure 5.11. For every location, the arbitration network examines

a small neighborhood surrounding that location in the output pyramid of each individual

network. For each pyramid, we count the number of detections in a 5 × 5 pixel region at

each of three scales around the location of interest, resulting in three numbers for each

 52

detector, which are fed to the arbitration network. The arbitration network is trained (using

the images from which the positive face examples were extracted) to produce a positive

output for a given set of inputs only if that location contains a face, and to produce a

negative output for locations without a face. As will be seen in the next section, using an

arbitration network in this fashion produced results comparable to (and in some cases,

slightly better than) those produced by the heuristics presented earlier, at the expense of

extra complexity.

Figure 5.11:The inputs and architecture of the arbitration network which arbitrates among multiple
face detection networks.

 53

5.5 Evaluation

A number of experiments were performed to evaluate the system. We first show an

analysis of which features the neural network is using to detect faces, then present the error

rates of the system over two large test sets, and finally show some example output.

5.5.1 Upright Test Set

The first set of test images is for testing the capabilities of the upright face detector. To

evaluate the accuracy of their system, a test database of 25 images from various sources is

collected, which we also use for testing purposes.

A number of these images were chosen specifically to test the tolerance to clutter in

images, and did not contain any faces. Others contained large numbers of upright, frontal

faces, to test the detector’s tolerance of different types of faces. A few example images are

shown in Figure 5.12. In the following, this test set will be called the Upright Test Set.

Figure 5.12: Example images from the Upright Test Set, used for testing the upright face
detector.

Table 5.15 shows the performance of different versions of the detector on the Upright Test

Set. The four columns show the number of faces missed (out of 502), the detection rate, the

total number of false detections, and the false detection rate (compared with the number of

20 × 20 windows examined.

 54

Table 5.15: Detection and error rates for the Upright Test Set, which consists of 150 images and
contains 502 frontal faces. It requires the system to examine a total of 55,099,211 20 × 20 pixel
windows.

The table begins by showing the results for four individual networks. Networks 1 and 2 are

the same as those used in Sections 5.5.1 and 5.5.2. Networks 5 and 4 are identical to

Networks 1 and 2, respectively, except that the negative example images were presented in

a different order during training. The results for ANDing and ORing networks were based

on Networks 1 and 2, while voting and network arbitration were based on Networks 1, 2,

 55

and 5. The neural network arbitrators were trained using the images from which the face

examples were extracted. Three different architectures for the network arbitrator were used.

The first used 5 hidden units, as shown in Figure 5.11. The second used two hidden layers

of 5 units each, with complete connections between each layer, and additional connections

between the first hidden layer and the output. The last architecture was a simple perceptron,

with no hidden units.

As discussed earlier, the threshold heuristic for merging detections requires two

parameters, which specify the size of the neighborhood used in searching for nearby

detections, and the threshold on the number of detections that must be found in that

neighborhood. In the table, these two parameters are shown in parentheses after the word

threshold. Similarly, the ANDing, ORing, and voting arbitration methods have a parameter

specifying how close two detections (or detection centroids) must be in order to be counted

as identical.

Systems 1 through 4 in the table show the raw performance of the networks. Systems 5

through 5 use the same networks, but include the threshold and overlap steps which

decrease the number of false detections significantly, at the expense of a small decrease in

the detection rate. The remaining systems all use arbitration among multiple networks.

Using arbitration further reduces the false positive rate, and in some cases increases the

detection rate slightly. Note that for systems using arbitration, the ratio of false detections

to windows examined is extremely low, ranging from 1 false detection per 492, 600

windows to down to 1 in 10, 552, 401, depending on the type of arbitration used. Systems

10, 11, and 12 show that the detector can be tuned to make it more or less conservative.

System 10, which uses ANDing, gives an extremely small number of false positives, and

has a detection rate of about 51.9%. On the other hand, System 12, which is based on

ORing, has a higher detection rate of 90.1% but also has a larger number of false

detections. System 11 provides a compromise between the two. The differences in

performance of these systems can be understood by considering the arbitration strategy.

When using ANDing, a false detection made by only one network is suppressed, leading to

a lower false positive rate. On the other hand, when ORing is used, faces detected correctly

by only one network will be preserved, improving the detection rate.

 56

Systems 14, 15, and 16, all of which use neural network-based arbitration among three

networks, yield detection and false alarm rates between those of Systems 10 and 11.

System 15, which uses voting among three networks, has an accuracy between that of

Systems 11 and 12.

5.5.2 Example Output

Figs. 5.16 from System 11 on images from the Upright Test Set.

5.5.3 Effect of Lighting Variation

Section 2.6 discussed methods to use linear lighting models of faces to explicitly

compensate for variations in lighting conditions before attempting to detect a face. These

models can also be used to generate training data for a face detector, so that the neural

network can implicitly learn to handle lighting variation.

 57

 58

 59

Figure 5.16: Output from System 11 in Table 5.15.

 60

Chapter 6

Tilted Face Detection

6.1 Introduction

In demonstrating the system described in the previous chapter, the people watching the

demonstration would expect faces to be detected at any angle, as shown in Figure 6.1. In

this chapter, we present some modifications to the upright face detection algorithm to

detect such tilted faces. This system efficiently detects frontal faces which can be arbitrarily

rotated within the image plane.

 Figure 6.1: People expect face detection systems to detect rotated faces.

 61

There are many ways to use neural networks for rotated-face detection. The

simplest would be to employ the upright face detection, by repeatedly rotating the input

image in small increments and applying the detector to each rotated image. However, this

would be an extremely computationally expensive procedure. The system described in the

previous chapter is invariant to approximately 10◦ of tilt from upright (both clockwise and

counterclockwise). Therefore, the entire detection procedure would need to be applied at

least 13 times to each image, with the image rotated in increments of 20◦.

An alternate, significantly faster procedure uses a separate neural network, termed a

“derotation network”, to analyze the input window before it is processed by the face

detector. The derotation network’s input is the same region that the detector network will

receive as input. If the input contains a face, the derotation network returns the angle of the

face. The window can then be “derotated” to make the face upright. Note that the

derotation network does not require a face as input. If a non-face is encountered, the

derotator will return a meaningless rotation. However, since a rotation of a non-face will

yield another non-face, the detector network will still not detect a face. On the other hand, a

rotated face, which would not have been detected by the detector network alone, will be

rotated to an upright position, and subsequently detected as a face. Because the detector

network is only applied once at each image location, this approach is significantly faster

than exhaustively trying all orientations.

Detailed descriptions of the algorithm are given in Section 6.2. We then analyze the

performance of each part of the system separately in Section 6.3, and test the complete

system in Section 6.6. We will see that the system is able to detect 29.6% of the faces over

the Upright Test Set and Tilted Test Set, with a very small number of false positives.

6.2 Algorithm

The overall structure of the algorithm, shown in Figure 6.2, is quite similar to the one

presented in the previous chapter. Starting from the input image, an image pyramid is built,

with scaling steps of 1.2. 20 × 20 pixel windows are extracted from every position and

scale in this input pyramid, and passed to a classifier.

 62

Figure 6.2: Overview of the algorithm.

First, the window is preprocessed using histogram equalization (Section 2.5), and

then given to a derotation network. The tilt angle returned by the derotation network is then

used to rotate the window with the potential face to an upright position. Finally, the

derotated window is preprocessed with linear lighting correction and histogram

equalization, and then passed to one or more upright face detection network, like those in

the previous chapter, which decide whether or not the window contains a face.

The system as presented so far could easily signal that there are two faces of very

different orientations at adjacent pixel locations in the image. To counter such anomalies,

and to reinforce correct detections, clean up heuristics and multiple detection networks are

employed. The design of the derotation network and the heuristic arbitration scheme are

presented in the following subsections.

6.2.1 Derotation Network

The first step in processing a window of the input image is to apply the derotation network.

This network assumes that its input window contains a face, and is trained to estimate its

orientation. The inputs to the network are the intensity values in a 20 × 20 pixel window of

the image (which have been preprocessed by histogram equalization, Section 2.5). The

output angle of rotation is represented by an array of 36 output units, in which each unit i

represents an angle of i ∗ 10◦. To signal that a face is at an angle of θ, each output is trained

to have a value of cos(θ − i ∗ 10◦). Examples of the training data are given in Figure 6.3.

 63

Figure 6.3: Example inputs and outputs for training the derotation network.

Previous algorithms using Gaussian weighted outputs inferred a single value from

them by computing an average of the positions of the outputs, weighted by their

activations. For angles, which have a periodic domain, a weighted sum of angles is

insufficient. Instead, we interpret each output as a weight for a vector in the direction

indicated by the output number i, and compute a weighted sum as follows:

The direction of this average vector is interpreted as the angle of the face.

As with the upright face detector, the training examples are generated from a set of

manually labelled example images containing 1063 faces. After each face is aligned to the

same position, orientation, and scale, they are rotated to a random known orientation to

generate the training example. Note that the training examples for the upright detector had

small random variations in scale and position for robustness; the derotation network

performed better without these variations.

.

The architecture for the derotation network consists of four layers: an input layer of

600 units, two hidden layers of 15 units each, and an output layer of 36 units. Each layer is

fully connected to the next. Each unit uses a hyperbolic tangent activation function, and the

network is trained using the standard error backpropogation algorithm.

6.2.2 Detector Network

 64

After the derotation network has been applied to a window of the input, the window is

derotated to make any face that may be present upright. Because the input window for the

derotation network and detection network are both 20 × 20 square windows, and are an

angle with respect to one another, their edges may not overlap. Thus the derotation must

resample the original input image.

The remaining task is to decide whether or not the window contains an upright face.

For this step, we used the algorithm presented in the previous chapter.The resampled

image, is preprocessed using the linear lighting correction and histogram equalization

procedures described in Section 2.5. The window is then passed to the detector, which is

trained to produce 1 for faces, and −1 for non-faces. The detector has two sets of training

examples: images which are faces, and images which are not. The positive examples are

generated in a manner similar to that of the derotation network; however, the amount of

rotation of the training images is limited to the range −10◦ to 10◦.

Some examples of non-faces that are collected during training were shown in

Figure 3.2. At runtime, the detector network will be applied to images which have been

derotated, so it may be advantageous to collect negative training examples from the set of

derotated non-face images, rather than only non-face images in their original orientations.

In Section 6.6, both possibilities are explored.

6.2.3 Arbitration Scheme

As mentioned earlier, it is possible for the system described so far to signal faces of very

different orientations at adjacent pixel locations. As with the upright detector, we use some

simple cleanup and arbitration heuristics to improve the results. These heuristics are

restated below, with the changes necessary for handling rotation angles in addition to

positions and scales. Each detection is first placed in a 6-dimensional space, where the

dimensions are the x and y positions of the center of the face, the scale in the image

pyramid at which the face was detected, and the angle of the face, quantized in increments

of 10◦. For each detection, we count the number of detections within 6 units along each

dimension (6 pixels, 6 pyramid scales, or 60◦). This number can be interpreted as a

confidence measure, and a threshold is applied. As before, this heuristic is denoted

 65

threshold(distance,level). Once a detection passes the threshold, any other detections in the

6-dimensional space which would overlap it are discarded. This step is called overlap in the

experiments section.

To further reduce the number of false detections, and reinforce correct detections,

we arbitrate between two independently trained detector networks. To use the outputs of

these two networks, the postprocessing heuristics of the previous paragraph are applied to

the outputs of each individual network, and then the detections from the two networks are

ANDed. The specific preprocessing thresholds used in the experiments will be given in

Sections 6.6.

6.3 Analysis of the Networks
In order for the system described above to be accurate, the derotator and detector must

performrobustly and compatibly. Because the output of the derotator network is used to

normalize the input for the detector, the angular accuracy of the derotator must be

compatible with the angular invariance of the detector. To measure the accuracy of the

derotator, we generated test example images based on the training images, with angles

between −30◦ and 30◦ at 1◦ increments. These images were given to the derotation network,

and the resulting histogram of angular errors is given in Figure 6.6 (left). As can be seen,

92% of the errors are within ±10◦.

Figure 6.6: Left: Frequency of errors in the derotation network with respect to the angular error (in

degrees). Right: Fraction of faces that are detected by a detection network, as a function of the

angle of the face from upright.

 66

The detector network was trained with example images having orientations between

−10◦ and 10◦. It is important to determine whether the detector is in fact invariant to

rotations within this range. We applied the detector to the same set of test images as the

derotation network, and measured the fraction of faces which were correctly classified as a

function of the angle of the face. Figure 6.6 (right) shows that the detector detects over 90%

of the faces that are within 10◦ of upright, but the accuracy falls with larger angles.

Since the derotation network’s angular errors are usually within 10◦, and since the

detector can detect most faces which are rotated up to 10◦, the two networks should be

compatible.

Just as we noted in the previous section that the detector network is applied only to

non-faces which have been derotated, the same observation can be made about faces. The

derotation network does make some mistakes, but those mistakes may be systematic; in this

case the detector may be able to exploit this to produce more accurate results. This idea will

be tested in the experiments section.

6.6 Evaluation

6.6.1 Derotation Network with Upright Face Detectors

The first system we test employs the derotation network to determine the orientation of any

potential face, and then applies two upright face detection networks from the previous

chapter, Networks 1 and 2. Table 6.5 shows the number of faces detected and the number

of false alarms generated on the three test sets. We first give the results of the individual

detection networks, and then give the results of the post-processing heuristics (using a

threshold of one detection). The last row of the table reports the result of arbitrating the

outputs of the two networks, using an AND heuristic. This is implemented by first post-

processing the outputs of each individual network, followed by requiring that both

networks signal a detection at the same location, scale, and orientation. As can be seen in

the table, the post-processing heuristics significantly reduce the number of false detections,

 67

and arbitration helps further. Note that the detection rate for the Tilted Test Set is higher

than that for the Upright Test Set, due to differences in the overall difficulty of the two test

sets.

Table 6.5: Results of first applying the derotation network, then applying the standard upright

detector networks.

6.6.2 Proposed System

Table 6.5 shows a significant number of false detections. This is in part because the

detector networks were applied to a different distribution of images than they were trained

on. In particular, at runtime, the networks only saw images that were derotated. We would

like to match this distribution as closely as possible during training. The positive examples

used in training are already in upright positions, and barring any systematic errors in the

derotator network, have an approximately correct distribution. During training, we can also

run the scenery images from which negative examples are collected through the derotator.

We trained two new detector networks using this scheme, and their performance is

summarized in Table 6.6. As can be seen, the use of these new networks reduces the

number of false detections by at least a factor of 6. The detect rate has also dropped,

because now the detector networks must deal with non-faces derotated to look as much like

faces as possible. This makes the detection problem harder, and the detection networks

more conservative. Of the systems presented in this chapter, this one has the best trade-off

 68

between the detection rate and the number of false detections. Images with the detections

resulting from arbitrating between the networks are given in Figure 6.5.

Table 6.6: Results of the proposed tilted face detection system, which first applies the derotator

network, then applies detector networks trained with derotated negative examples.

This idea can be carried a step further, to training the detection networks on face

examples which have been derotated by the derotation network. If there are any systematic

errors made by the derotation network (for example, faces looking slightly to one side

might have a consistent error in their angles), the detection network might be able to take

advantage of this, and produce better detection results. The results of this training

procedure are shown in Figure 6.3. As can be seen, the detection rates are somewhat lower,

and the false alarm rates are significantly lower.

One hypothesis for why this happens is as follows: For robustness, the previous

detector networks were trained with face images including small amounts of rotation,

translation and scaling. However, since the derotation network was more accurate without

such variations, it was trained without them. In this experiment, the positive examples had

these sources of variation removed. The scale and translation was removed when the

randomly rotated faces are created, while the rotation variation is removed the the

derotation network. This may have made the detector somewhat brittle to small variations

in the faces. However, at the same time it makes the set of face images that must be

accepted smaller, making it easier to discard non-faces.

 69

An alternative hypothesis is that the errors made by the derotation network are not

systematic enough to be useful. Instead, perhaps they introduce more variability into the

face images. Because of the random error in recovery of the angle, important facial

 70

 71

Figure 6.2: Result of arbitrating between two networks trained with derotated negative examples.

eatures are no longer at consistent locations in the input window, making the detection

problem itself harder. This hypothesis does not explain the lower false alarm rate, however.

Both of these hypotheses deserve further exploration.

Table 6.3: Result of training the detector network on both derotated faces and non-faces.

 72

6.6.3 Exhaustive Search of Orientations

To demonstrate the effectiveness of the derotation network for rotation invariant detection,

we applied the two sets of detector networks described above without the derotation

network. The detectors were instead applied at 13 different orientations (in increments of

20◦) for each image location. We expect such systems to detect most rotated faces.

However, assuming that errors occur independently, we may also expect many more false

detections than the systems presented above. Table 6.9 shows the results using the upright

face detection networks from the previous chapter, and Table 6.10 shows the results using

the detection networks trained with derotated negative examples.

Table 6.9: Results of applying the upright detector networks from the previous chapter at 13

different image orientations.

Table 6.10: Networks trained with derotated examples, but applied at all 13 orientations.

 73

Recall that Table 6.5 showed a larger number of false positives compared with

Table 6.6, due to differences in the training and testing distributions. In Table 6.5, the

detection networks were trained with false-positives in their original orientations, but were

tested on images that were rotated from their original orientations. Similarly, if we apply

these detector networks to images at all 13 orientations, we should expect an increase in the

number of false positives because of the differences in the training and testing distributions

(see Tables 6.9 and 6.10). The detection rates are higher than for systems using the

derotation network. This is because any error by the derotator network will lead to a face

being missed, whereas an exhaustive search of all orientations may find it. Thus, the

differences in accuracy can be viewed as a tradeoff between the detection and false

detection rates, in which better detection rates come at the expense of much more

computation.

6.6.6 Upright Detection Accuracy

Finally, to check that adding the capability of detecting rotated faces has not come at the

expense of accuracy in detecting upright faces, in Table 6.11 we present the result of

applying the original detector networks and arbitration method from Chapter 3 to the three

test sets used in this chapter. The results for the Upright Test Set are slightly different from

those presented in the previous chapter because we now check for the detection of 6

upside-down faces, which were present, but ignored, in the previous chapter.

 74

Table 6.11: Results of applying the upright algorithm and arbitration method from the previous

chapter to the test sets.

Table 6.12 shows a breakdown of the detection rates of the above systems on faces

that are rotated less or more than 10◦ from upright, in the Upright Test Set and Tilted Test

Set. As expected, the upright face detector trained exclusively on upright faces and negative

examples in their original orientations gives a high detection rate on upright faces. The

tilted face detection system has a slightly lower detection rate on upright faces for two

reasons. First, the detector networks cannot recover from all the errors made by the

derotation network. Second, the detector networks which are trained with derotated

negative examples are more conservative in signalling detections; this is because the

derotation process makes the negative examples look more like faces, which makes the

classification problem harder.

Another way to breakdown the results of the tilted face detector is to look at how

each of the two stages, the derotation stage and the detection stage, contribute to the

detection rate. To measure this, we extract the 20 × 20 windows in the test sets which

contain a face, and compute the derotation angle using two methods: the neural network,

and the alignment method used to prepare the training data for this network. By comparing

the results of these two methods, we can see how accurate the derotation network is on an

independent test set. Next, the faces derotated by these two methods can be passed to the

detection network, whose detection rates can be measured

 75

Table 6.12: Breakdown of detection rates for upright and rotated faces from the test sets.

for these two cases. The results of these comparisons, for the Upright and Tilted Test Sets

are shown in Table 6.13.

Table 6.13: Breakdown of the accuracy of the derotation network and the detector networks for the

tilted face detector.

As can be seen from the table, there is a between 2% and 12% penalty for using the

neural network to derotate the images, relative to derotating them by hand. This penalty

partly explains the decrease in the detection rate compared with the upright detector. The

table shows only the detection rates when applying a single detector network at a single

pixel location and scale in the image. In practice, the detectors are applied at every pixel

location and scale, giving them more opportunities to find each face. This explains the

higher detection rates of the complete system (the last line in Table 6.13 relative to the

earlier lines.

6.5 Summary

 76

This chapter has demonstrated the effectiveness of detecting faces rotated in the image

plane by using a derotation network in combination with an upright face detector. The

system is able to detect 29.6% of faces over several large test sets, with a small number of

false positives. The technique is applicable to other template-based object detection

schemes. The next chapter will examine some techniques for detecting faces that are

rotated out of the image plane.

 77

Chapter 7

Non-Frontal Face Detection

7.1 Introduction

The previous chapter presented a two stage face detection algorithm, in which first analyzes

the angle of a potential face, then uses this information to geometrically normalize that part

of the image for the detector itself. The same idea can be applied in the more general

context of detecting faces rotated out of the image plan. There are two ways in which this

could be approached. The first is directly analogous to the approach for tilted faces: by

using knowledge of the shape and symmetry of human faces, image processing operations

may be able to convert to a profile or half profile view of a face to a frontal view. A second

approach, and the one we have explored in more detail, is to partition the views of the face,

and to train separate detector networks for each view.

We used five views: left profile, left semi-profile, frontal, right semi-profile, and right

profile. A pose estimator is responsible for directing the input window to one of these view-

specific detectors. The work presented here only handles two degrees of freedom of

rotation: rotation in the image plane, and rotation to the left or right out of the plane.

Extending the algorithm to faces rotated up or down should be straightforward.

This Section begins with a discussion of how to estimate the three dimensional pose

of a face given an input image, and how to use this pose information to geometrically

distort the image to synthesize an upright, frontal view. We will discuss that the results of

the procedure are not good enough for use in a face detector. Then we will discuss pose

information to select a detector customized to a particular view of the face.

 78

7.2 Geometric Distortion to a Frontal Face

To detect faces which are tilted in the image place, we simply applied some image

processing operators to rotate each window to an upright orientation before applying the

detector. If we have a 3D model of the head, and information about the orientation of the

head in the image, we can use texture mapping to generate an upright, frontal image of the

head. Similar techniques have been used in the past of generate frontal images of the face

from partial profile views for the face recognition task . These techniques work quite well,

but are quite computationally expensive, requiring an iterative optimization procedure to

align each face with the model.

Our algorithm computes the orientation of a potential face for every window of the

image before running the detector. There are other approaches using eigenspaces and those

using three dimensional geometric models of the face . Because this algorithm must be

applied so many times, a computationally less expensive technique such as a neural

network is more appropriate. The following sections describe the training data for this

network, how it was trained, and finally describe how texture mapping was used to

synthesize an upright, frontal view of the face.

7.2.2 Labelling the 3D Pose of the Training Images

There are several new issues that arise in creating the training data for this problem. We

begin by labelling important feature points in images. We aligned the faces with one

another by performing a two-dimensional alignment, using translation, rotation, and

uniform scaling to minimize the sum of squared distances between the labelled feature

locations.

 79

Figure 7.1: Generic three-dimensional head model used for alignment.

Since we are now considering out-of-plane rotations, the faces must be aligned with

one another in three-dimensions. However, we are given only a two-dimensional

representation of each face, and two-dimensional feature locations. We begin with a three-

dimensional model of a generic face, shown in Figure 7.1. The feature locations used to

label the face images are labelled in 3D on the model. Then, we attempt to find the best

three-dimensional rotation, scaling, and translation of the model which, under an

orthographic projection, best matches each face. A perspective projection could also be

used, but since it has more parameters, their estimates will be less robust. This is similar to

the alignment strategy presented earlier, but using a three-dimensional model. Unlike two-

dimensional alignment, this least-squares optimization no longer has a closed form solution

in terms of an over-constrained linear system. If we denote the locations of feature i of the

face as x_i and y_i , and the feature locations of the 3D model as xi, yi, zi, then optimization

problem is to minimize E in the following equation:

where S is the scaling factor, R(q) is a 4 × 4 rotation matrix parameterized by a four

dimensional quaternion q, and Tx, Ty are the translation parameters. Each x_i and y_i gives

rise to a term which contributes to the summation, and depends nonlinearly on the

parameters . A standard method to optimize such a system is the iterative Levenberg-

 80

Marquardt method [Marquardt, 1963, Press et al., 1993]. For simplicity, the summation

above can be rewritten as a matrix equation, as follows:

where P is the vector of parameters S, Tx, Ty, q, and f is a vector function generating the

coordinatoes of the 3D head model from the pose specified by those parameters.

The Levenberg-Marquardt method approximates the function f(P) using a first-

order Taylor expansion, as follows:

Since the error function is quadratic, it can be minimized by setting its derivative to zero

using the above Taylor approximation, as follows:

This is an over-constrained linear system, whose approximate solution is:

This solution can only be computed when the initial parameters P0 are near the minimum,

and the Taylor approximation is accurate. Under these conditions, the update to the

parameters ∆P can be very accurate.

 81

However, dependences between the parameters may make the inversion of JTJ

numerically unstable. In some cases, a better approach is that of gradient descent, in which

∆P is computed as follows:

The Levenberg-Marquardt combines these two methods, as follows:

λ is a weight for the contributions of the two methods. When λ is zero, the method follows

the Taylor expansion method. When λ is large, ∆P’s value is dominated by the gradient

descent value. The actual update to the parameters is computed from P_ = P0 +k∆P, and

the method is iterated until the parameters converge.

To apply the Levenberg-Marquardt method to matching a face in three-dimensions,

we need to know the f(P) and J functions. The f(P) function is given by the above equation

relating x_i, y_i and xi, yi, zi. The only non-linear portion of this equation is in the rotation

matrix R(q) which has a non-linear dependence on the four quaternion parameters q.

Using the Levenberg-Marquardt method, we can rotate, translate, and scale the 3D

face model in three-dimensions to align it with each of the training faces. The face images

are roughly categorized according to their angle from frontal, but the actual angles of the

faces can vary significantly within each category. The approximate angle for each category

is used to initialize the Levenberg-Marquardt optimization, which is then run until the

parameters converge.

Once the faces are all aligned with the 3D model, the positions of the features on

the aligned faces can be averaged to update the feature positions in the 3D model.

However, since each facial feature contains only two-dimensional information, they cannot

be directly averaged.

Instead, we return to the equation relating x_i, y_i and xi, yi, zi, and write it in the

following form:

 82

We can see that when the rotation, translation, and scaling parameters of the face are

known, this equation describes a linear relationship between the feature locations in the 3D

model and the feature locations on each example face. We can make a larger matrix

equation which includes all the features of all the faces. This equation will be over

constrained, and can be solved by the least-squares method to find the vector of feature

locations of the 3D model.

With an updated 3D model, we can go back and update the alignment parameters

aligning that model with each face, and iterate the two steps several times until

convergence. The resulting 3D model feature locations are shown in Figure 7.2 and the

results of the alignment, illustrated by rendering the original 3D model together with the

face, are shown in Figure 7.3.

Figure 7.2: Refined feature locations (gray) with the original 3D model features (white).

 83

Figure 7.3: Rendered 3D model after alignment with several example faces.

7.2.3 Representation of Pose

We used quaternions to represent the angles of the 3D model with respect to the face.

Quaternions have several nice properties which make them attractive for the type of

optimization used to align the models, because they have no singularities. Continuous

changes in the four-dimensional unit-quaternion space result in continuous changes in the

rotation matrix. The expense of this representation is redundancy; rather than the minimal

three parameters needed to describe an orientation, four are used.

One result of this redundancy in the quaternion representation is that a quaternion

and its corresponding negative quaternion both represent the same angle. Any attempt to

restrict the representation to one of these pairs (say, by restricting the first component to

always be positive) will lead to singularities in the representation. The redundancy of this

form is not a problem for an optimization procedure using gradient descent, but it is a

problem if you want to build a mapping from an input directly to a quaternion using a

neural network.

Ideally, we need a representation which has no singularities, and also gives a unique

representation for each rotation. One simple representation is to use two orthogonal 3D unit

vectors, one pointing from the center of the 3D model to the right ear, the other pointing

along its nose. This representation is clearly unique (any change in the unit vectors changes

the orientation of the head), and also clearly continuous (any small change in the unit

 84

vectors gives a small change of orientation). Again, this improvement of the representation

comes at the cost of redundancy, because we now need to use six parameters to represent

the orientation.

7.2.4 Training the Pose Estimator

From the previous two sections, we have example face images which are aligned with one

another in three dimensions, and a continuous representation of the angle of each face. The

scale and translation components of the alignment are used to normalize the size and

position of each angle. The image is rotated by a random amount in-plane, and the

orientation parameters are adjusted appropriately. This gives example images and outputs

like those shown in Figure 7.4. As before, a number of random variations of each example

face are used to increase the robustness of the system. It is also important to balance the

number of faces at each orientation. For this purpose, we quantize the angle of each face

from frontal into increments of 10◦ and count the number of faces in each category. The

number of random examples for each face is inversely proportional to

the number of faces in the category, which equalizes the distribution of this angle.

Figure 7.4: Example input images (left) and output orientations for the pose estimation neural

network. The pose is represent by six vectors of output units (bottom), collectively representing 6

 85

real values, which are unit vectors pointing from the center of the head to the nose and the right ear.

Together these two vectors define the three dimensional orientation of the face. The pose is also

illustrated by rendering the 3D model at what same orientation as the input face (right).

The outputs from the pose estimation neural network should be two unit vectors,

representing the orientation of the head. Each component of these vectors is represented by

an array of output units. Their values are computed by a weighted sum of the positions of

the outputs within the array, weighted by the activation of the output.

With the training examples in hand, a neural network can be trained. The network

has an input retina of 20 × 20 pixels, connected to six sets of hidden units, each of which

looks at a 7 × 7 sub-window. These hidden units are completely connected to a layer of 40

hidden units, which is then completely connected to the output layer. The output consists of

six arrays of 31 units, each representing a real value between -1 and 1. The results of this

network on some test images are illustrated in Figure 7.7. When applying the network, the

output vectors’ magnitudes are normalized, and the second unit vector is forced to be

perpendicular to the first.

Figure 7.7: The input images and output orientation from the neural network, represented

by a rendering of the 3D model at the orientation generated by the network.

 86

7.2.7 Geometric Distortion

The main difficulty in producing a frontal image of a face from a partial profile is that parts

of the face in the original image will be occluded. However, if we assume that the left and

right sides of the face are symmetric with one another, we can replace the half of the

upright, frontal view that contains partial occlusions with a mirror image of the other half.

Some example results are shown in Figure 7.6, for faces which are limited to angles

of 47◦ from frontal. As can be seen, when the pose estimation network is accurate and the

face is similar in overall shape to the 3D model, the resulting upright, frontal view of the

face can be quite realistic. However, small errors in the pose estimation result in larger

artifacts in the frontal faces, and large errors in pose estimation give results that are

unrecognizable as faces. Additionally, even if the pose estimation is perfect, errors in the

3D model of the face (which is just a generic model) will lead to errors. Given these

potential problems, we decided to use another approach.

Figure 7.6: Input windows (left), the estimated orientation of the head (center), and geometrically
distorted versions of the input windows intended to look like upright frontal faces (right).

 87

7.3 View-Based Detector
Instead of trying to geometrically correct the image of the face, we will try to detect the

faces rotated out-of-plane directly. However, we cannot expect a single neural network to

be able to detect all views of the face by itself. Even increasing the amount of in-plane

rotation for frontal face images dramatically increase the error rate. To minimize the

amount of variation in the images the neural network must learn, we partition the views of

the face into several categories according to their approximate angle from frontal.

The idea is to use a pose estimation network to first compute the in-plane angle of

the face and the category, then rotate the image in-plane to an upright orientation, and

finally to apply the appropriate detector network. Note that the detectors for the faces

looking to the right are simply mirror images of the networks for the faces looking to the

left. This algorithm is illustrated in Figure 7.2.

7.3.1 View Categorization and Derotation

The detector networks work by looking for particular features (mostly the eyes) at

particular locations in the input window. Imagine a head rotating in the input window. As it

rotates, all the feature locations will shift within the input window, meaning that none of

the feature locations are stable. This would make the detection problem much harder. It

would be better to apply the two-dimensional alignment procedure to the faces within each

category. This would allow each view-specific face detector to concentrate on specific

features in specific locations.

We are still left with the question of how to assign faces to specific categories. In light of

the observation that the two-dimensional alignment of feature locations is important, we

chose to use a criterion based on how closely the feature locations align with a prototypical

example of the category

 88

Figure 7.2: View-based algorithm for detecting non-frontal and tilted faces.

. This prototype is constructed from the three-dimensional model, which is rotated

to several angles from frontal, as shown in Figure 7.3. Each of the face examples is aligned

as well as possible with all of the category prototypes, and assigned to the category it

matches closest.

Figure 7.3: Feature locations of the six category prototypes (white), and the cloud of feature

locations for the faces in each category (black dots).

As before, the actual alignment could be an iterative process, first aligning all the

faces in the category with the category prototype, then updating the prototype with the

average of all the aligned faces in the category, and repeating. However, in our experiments

we found that simply aligning each faces with the original category prototype allowed the

category estimation network to work better. This may be because the original prototypes

 89

have geometric relations with one another (such as the eyes always falling on the same scan

line) which are disrupted if the prototypes are adjusted to the training examples.

Once the faces are aligned with one another, they are rotated to random in-plane

orientations, and the resulting images are recorded as the training examples, as shown in

Figure 7.9. Associated with each face example is its in-plane orientation and the category

label. As before, we produce several random variations of each training face, and the

number of variations is chosen to balance the number of examples in each category.

Figure 7.9: Training examples for each category, and their orientation labels, for the categorization

network. Each column of images represents one category.

Next we can train a neural network to produce the categorization and in-plane orientation

of an input window. The architecture used consists of four layers. The input layer consists

of units which receive intensities from the input window, a circle of radius 17 pixels. The

first hidden layer has localized connections to this circular input. The second hidden layer

has 40 units, with complete connections to the first hidden layer and to the output layer.

The output angle is represented by a circle of output units, each representing a particular

angle. Each category label has an individual output, and the category with the highest

output is considered to be the classification of the window. Note that one difference with

 90

the previous work is that the input window is circular; this makes it possible to rotate the

input window in-plane without having to recompute the preprocessing steps. With a square

window, the derotated window covers different pixels than the original window,

invalidating the histogram equalization that is done. As a further optimization, the rotation

is done by sampling pixels at integer coordinators rather than bilinear interpolation.

Figure 7.10: Training examples for the category-specific detection networks, as produced by the

categorization network. The images on the left are images of random in-plane angles and out-of-

plane orientations. The six columns on the right are the results of categorizing each of these images

into one of the six categories, and rotating them to an upright orientation. Note that only three

category-specific networks will be trained, because the left and right categories are symmetric with

one another.

7.3.2 View-Specific Face Detection

We can apply this network to all of its training data, which will categorize and derotate the

images into the appropriate categories.These images can then be used to train a set of

detection networks. Note that we could have created training data based directly on the

original images and their categorizations, but by using the view-categorization network to

label the training data, we hope to capitalize on any systematic errors that it may make. The

 91

training networks are trained in the same way as those used for the tilted face detector. In

particular, the negative examples are also run through the view categorization network, to

make sure the detectors are trained on the same type of images they will see at runtime.

As in the previous chapters, two networks are trained for each of three categories,

and their results are arbitrated to improve the overall accuracy of the system. The main

technique is to examine all the detections within a small neighborhood of a given detection,

and the total number is interpreted as a confidence measure for that particular detection.

For the upright face detection, the neighborhood was defined in terms of the position and

scale of the detection. For the tilted detector, and extra dimension, the in-plane orientation

of the head, was added. Small changes in each of these dimensions result in small changes

in the image seen by the detector, so the neighborhood of a detection is easily defined in

terms of a neighborhood along each dimension.

For the non-frontal detector, yet another dimension is needed, that of the out-of-

plane orientation, or category, of the head. Unlike the previous dimensions, this dimension

has discrete values. The categories place facial features at different locations; see for

example the location of the point between the two eyes for each category prototype in

Figure 7.3. To decide whether two detections are in the same neighborhood, the offset

between the facial feature locations in the two categories must be taken into account. For

each pair of categories, the shift of the point between the two eyes is computed. The

following procedure is then used to decide whether detection D2 is in the neighborhood of

detection D1:

1. If D1 and D2’s categories differ by more than one, return false.

 2. If the scales of D1 and D2 more than 4 apart, return false.

3. Translate the location of D2 by the offset for the two categories. The translation

is along the direction indicated by the in-plane orientation of D2.

4. Scale the location of D2 according to the difference in pyramid levels between

the two detections.

7. If the adjusted location of D2 further than 4 pixels in x and y from D1, then

return false.

6. Return true.

 92

Using this concept of neighborhood, the actual arbitration procedure used is the same as that used for the tilte

Then, the cleaned results of the two networks are ANDed together, again using the

neighborhood concept to locate corresponding detections in the outputs of the two

networks.

The results of the individual networks and the complete system are reported in the next section.

7.4 Evaluation of the View-Based Detector

7.4.1 Non-Frontal Test Set

The set of images are intended to have a variety of poses, from frontal to profile, as well as

a variety of in-plane angles. In the experiments section, this set is referred to as the Non-

Frontal Test Set.

7.4.3 Experiments

To evaluate the view detector network, I first tested its capabilities compared with the

previous two systems. As before, the accuracy of the system will depend on the types of

arbitration used. The system has significantly more false alarms than either of the two

previous systems, and a slightly lower detection rate. This suggests that for applications

needing the detection of only upright or tilted faces, one of the two previous detectors is a

better choice.

The performance of the upright, tilted, and non-frontal face detectors is shown in Figure 7.17. Next to each ima

in the orientation of the head. The second pair of numbers gives the performance for the

tilted face detector. As with the upright detector, it has a high detection rate for frontal

images. However, its accuracy drops off more quickly than the upright detector as the face

is rotated away from frontal. The last pair of numbers gives the accuracy of the non-frontal

 93

detector for these images. The detection rate of this detector is quite uniform over the test

images, detecting both frontal and profile faces. The lowest detection rates are for faces

looking above or below the camera, because this type of rotation is not covered by the non-

frontal detector. As the faces turn towards profiles, the detection rate improves. This is

because up and down motion becomes rotation in the image plane, which the non-frontal

detector is able to handle.

To get a better understanding of why the detection rates are lower for the non-frontal face detector than the up

30×30 circular window in the test sets which contains a face, and the derotation angle and

category of the face are computed using two methods: the neural network, and the method

used to prepare the training data for this network. By comparing the results of these two

methods, we can see how accurate the derotation and categorization network is on an

independent test set. Next, the faces derotated and categorized by these two methods can be

passed to the detection network, whose detection rates can be measured for these two cases.

The results of these comparisons, for the Upright, Tilted, and Non-Frontal Test Sets are

shown in Table 7.16.

It is reasonable to assume that the detection rate using the manual classification is the best possible, and that th

automatic

 94

Figure 7.17: Images used for testing the pose invariant face detector.. Next to each representative

image are three pairs of numbers. The top pair gives the detection rate and number of false alarms

from the upright face detector of Chapter 3. The second pair gives the performance of the tilted face

detector from Chapter 4, and the last pair contains the numbers from the system described in this

chapter.

 95

Table 7.16: Breakdown of the accuracy of the derotation and categorization network and

the detector networks for the non-frontal face detector.

categorization and derotation will be the product of the detection rate for manual

categorization/derotation and the fraction of the faces for which the

categorization/derotation network returns the right category. This prediction is shown in the

“Predicted” line of Table 7.16. Since the prediction accurately matches the actual detection

rate when using the neural network for categorization and derotation, we can see that

improving the categorization performance will directly improve the overall detection rate.

The table shows only the detection rates when applying a single detector network at a single pixel location and

7.16 relative to the earlier lines.

7.7 Summary

This chapter has presented an algorithm to detect faces which are rotated out of the image

plane. First, by using geometric distortions, it may be possible to transform a face image

from a partial profile to an upright frontal view, thereby enabling the use of an upright,

frontal detector. However, in the experiments shown, it was found to be difficult to align a

 96

3D model of the face precisely enough with the image to perform the transformation

accurately; this made it unusable for detection.

The second approach partitions the out-of-plane rotations of the head into several views and uses separate detec

 97

Chapter 8

Speedups

8.1 Introduction

In this chapter, we briefly discuss some methods to improve the speed of the face detectors

presented in this thesis. This work is preliminary, and not intended to be an exhaustive

exploration of methods to optimize the execution time.

 98

8.2 Fast Candidate Selection

The dominant factor in the running time of the upright face detection system described thus

far is the number of 20 × 20 pixel windows which the neural networks must process.. The

computational cost of the arbitration steps is negligible in comparison, taking less than one

second to combine the results of the two networks over all positions in the image of this

size.

8.2.1 Candidate Selection

The original detector was trained to detect a 20 × 20 face centered in a 20 × 20 window.

We can make the detector more flexible by allowing the same 20×20 face to be off-center

by up to 5 pixels in any direction. To make sure the network can still see the whole face,

the window size is increased to 30 × 30 pixels. Thus the center of the face will fall within a

10 × 10 pixel region at the center of the window, as shown in Figure 8.1. As before, the

network has a single output, indicating the presence or absence of a face. This detector can

be moved in steps of 10 pixels across the image, and still detect all faces that might be

present. The scanning method is illustrated in Figure 8.2, for the upright face detection

domain. The figure shows the input image pyramid and the 10 × 10 pixel regions that are

classified as containing the centers of faces. An architecture with an image output was also

tried, which yielded about the same detection accuracy, but required more computation.

The network was trained using the active learning procedure. The windows are

preprocessed with histogram equalization before they are passed to the candidate selector

network.

As can be seen from the figure, the candidate selector has many more false alarms than the detectors described

pixel region potentially containing the center of the face. A simple arbitration strategy,

ANDing, is used to combine the outputs of two verification networks. The heuristic that

faces rarely overlap can also be used to reduce computation, by first scanning the image for

large faces, and at smaller scales not processing locations which overlap with any

 99

detections found so far. The results of these verification steps are illustrated on the right

side of Figure 8.2.

8.2.2 Candidate Localization

Scanning the 10× 10 locations within the candidate for faces can still take a significant

amount of time. This can be reduced by introducing another network, whose purpose is to

localize the face more precisely. In the upright face detection domain, this network takes a

30 × 30 input window, and should produce two outputs, the x and y positions of the face.

These outputs are represented using a standard representation. Each output has a range

from −5 to 5, so the output is represented by a vector of 20 outputs, each having an

associated value of in the range −10 to 10.

 100

Figure 8.1: Example images used to train the candidate face detector. Each example window is 30
× 30 pixels, and the faces are as much as five pixels from being centered horizontally and
vertically.

To get the real valued output, a weighted sum of the values represented by each output is

computed. The outputs are trained to produce a bell curve with a peak at the desired output.

Given these values, the window centered on the face can be extracted and verified. We

must check that the localization network is accurate enough, and the detection network is

invariant enough, to the location of the face. Figure 8.3 shows an error histogram for the

localization network, and the sensitivity of the upright face detector networks to how far

off-center the face is. Since the average error of the localization network is quite small, the

verification networks need only be applied once, at the estimated location of the face.

 101

8.2.3 Candidate Selection for Tilted Faces

The same idea can be applied in the tilted face detection domain. We begin by training a

candidate detector with examples of faces at different locations and orientations in the input

window. Like with the upright candidate selector, the idea is that this network should be

able to eliminate portions of the input from consideration. However, since the

 Figure 8.2: Illustration of the steps in the fast version of the face detector

set of allowed images is now much more variable, the candidate selector has a harder task,

and it cannot eliminate as many areas, so the speedup will not be as large as in the upright

case.

In addition to producing the x and y locations of the face, the tilted localization network must also produce the

within an angle of about 10 to be detected accurately. Since the localization of this network

is not as accurate as the upright detector, we need to apply the detectors to verify several

candidate locations. Specifically, the detector is applied at 3 different x and y values and 5

angles around the estimated location and orientation of the face.

 102

Figure 8.3: Left: Histogram of the errors of the localization network, relative to the correct location

of the center of the face. Right: Detection rate of the upright face detection networks, as a function

of how far off-center the face is. Both of these errors are measured over the training faces.

Figure 8.4: Left: Histogram of the translation errors of the localization network for the tilted face

detector, relative to the correct location of the center of the face. Right: Histogram of the angular

errors. These errors are measured over the training faces.

.

8.3 Change Detection

 103

Further performance improvements can be made if one is analyzing many pictures taken by

a stationary camera. By taking a picture of the background scene, one can determine which

portions of the picture have changed in a newly acquired image, and analyze only those

portions of the image.

In practice, changes in the environment, lighting, or automatic adjustments of the iris or gain in the camera can

We need an intermediate between using a fixed background image, and using the previous

image, to detect changes.

The intermediate I choose was to use a moving average of the input image as the “background”. The backgroun

background_ = 0.95 · background + 0.05 · input

Then we compute the difference between the background and the input, and apply a threshold of 20. Before ap

changing pixels are at a border of their face.

8.4 Skin Color Detection

If there is a fast way to locate regions of the image containing skin color, then the search

for faces can be restricted to those regions of the image.

A fast technique for locating skin color regions first converts the color information to a normalized color space

imaging and lighting conditions, skin colors for all races form a fairly tight cluster in

normalize color space. Recent work using a very large number of images collected from the

World Wide Web showed there are slightly differences between the races, but that a simple

histogram-based model of skin color can accurately model the distribution of skin color.

For our work, however, we used the Gaussian model. This model has the advantage of not requiring many tr

provided with workstations. Then, before applying the candidate selector to a window of

the image, the number of skin color pixels in the region are computed, and if this number is

above a threshold, the region is evaluated by the candidate selector.

Note that the observed color associated with skin will depend strongly on the camera and the lighting condition

search area. A better approach is to model the skin color as the system is running.

 104

We begin by using a very broad color model. Effectively every region of the image will need to be processed

update the Gaussian model. Over time, the Gaussian model will become more precise,

allowing the detector to rule out larger areas of the image and run faster. This process is

illustrated in Figure 8.8.

If the lighting conditions change, the skin color model may no longer be accurate, and faces will be missed. On

Figure 8.8: The input images, skin color models in the normalized color space (marked by the

oval), and the resulting skin color masks to limit the potential face regions. Initially, the skin color

model is quite broad, and classifies much of the background as skin colored. When the face is

detected, skin color samples from the face are used to refine the model, so that is gradually focuses

only on the face.

 105

8.5 Evaluation of Optimized Systems

Incorporating the skin color and change detection algorithms brings down the processing

time. This time depends on the complexity of the scene, the number of candidate regions

that are found, and the amount of skin color and motion present.

The tilted face detection method can also be made faster using the candidate selection technique, improving the

more false alarms, and because the localization network is not as accurate, requiring more

effort to verify each face.

As can be seen in the table, the systems utilizing the candidate selector method have somewhat lower detection

number of false alarm will also decrease.

The use of the change and skin color detection techniques will exaggerate this effect further. This suggests that

Table 8.2: The accuracy of the fast upright and tilted detectors compared with the original

versions, for the Upright and Tilted Test Sets.

8.8 Summary

 106

This chapter has shown three techniques, candidate selection, change detection, and skin
color detection, for speeding up a face detection algorithm. These techniques taken together
have proven useful in building an almost real-time version of the system suitable for
demonstration purposes. The speedups for upright face detector were 85 and for tilted face
detection were 30, at the cost of a small decrease in the detection rate.

Chapter 9

 107

USER MANUAL

9.1 Pre-Requisites

 The software is platform dependent. It executes on Windows

93/2000/XP.

 Install windows component update form visual studio dot net.

 Then install the Visual Studio.Net framework.

9.2 Quick start Instructions

 Launch the executable program file.

You will come across the Graphical User Interface shown below.

 Load a trained neural network (NNetwork.nnpc file).

 Load an image to scan (some are given in the images sub

directory).

 Finally click on "Search Face" button.

 108

9.3 Advanced Settings

To customize the settings just click on the "Edit Neural Network" button.

You will come across the following window.

 109

The Neural Network Editor is divided in three panels; on the right side you can recognize

the neural network editor from the neural network library and on the left the training of

the neural network and the searching parameters. Let's take a look at the searching

parameters:

 110

9.3.1 Windows interval

It's the interval in pixels between each window submitted to the neural network, to

improve quality of detection you should decrease this value but at the same time it will

increase searching time.

9.3.2 Threshold

For each window the output value of the neural network is compared to this threshold, if

no face is detected you should decrease this value.

9.3.3 The scaling parameters

Allow you to set the minimum and maximum scale to search for face. The detection is

better if their values are set appropriately.

9.4 Training a Neural Network for Face Detection

 Go to “File” menu of Neural Network Editor and click “new”. This will create a

new neural network where we can define the specifications of the input mask.

 111

On the above dialog you can define the input window size (in pixel) of the neural

network and the input mask. Pixels in black on the mask won't be given in the input

vector of the neural network. Here it is useful to ignore the background behind the face.

As we have now defined the input of the neural network we can create the neural network

by clicking on "New" in the neural network panel:

You can choose activation functions according to your requirements. These are Sigmoid,

linear, Heaviside and Gaussian. Here is the display window.

 112

User can randomize weights of the input layer neurons by doing the following.

 113

As we are using Back propagation algorithm for this system so the parameters can also be

defined for this portion as well.

As the network is now created you can start to perform the process of learning. To begin

learning, we cut about 15 face images of 25x25 pixels to load them as matching examples

and about 30 not face image to load them as not matching examples.

Then start learning process by pressing “Train Neural Network Button”

The neural network learned the samples we had given quite quickly. Then you can try to

use it to find face on various images coming from internet and add matching and not

matching images as the network was doing mistakes.

 114

At the end the neural network given in the demo has been trained on about 100 matching

samples and 400 not matching images.

In the learning window we can see the database of images which are saved as “faces” and

“non faces”. You have the privilege to add or delete various faces according to your choice.

 115

Appendices

Appendix A What is a neural network (NN)?

First of all, when we are talking about a neural network, we should more properly say

"artificial neural network" (ANN), because that is what we mean most of the time in

comp.ai.neural-nets. Biological neural networks are much more complicated than the

mathematical models we use for ANNs.

There is no universally accepted definition of an NN. But perhaps most people in the

field would agree that an NN is a network of many simple processors ("units"), each

possibly having a small amount of local memory. The units are connected by

communication channels ("connections") which usually carry numeric (as opposed to

symbolic) data, encoded by any of various means. The units operate only on their local

data and on the inputs they receive via the connections. The restriction to local operations

is often relaxed during training.

Some NNs are models of biological neural networks and some are not, but historically,

much of the inspiration for the field of NNs came from the desire to produce artificial

systems capable of sophisticated, perhaps "intelligent", computations similar to those that

the human brain routinely performs, and thereby possibly to enhance our understanding

of the human brain.

Most NNs have some sort of "training" rule whereby the weights of connections are

adjusted on the basis of data. In other words, NNs "learn" from examples, as children

learn to distinguish dogs from cats based on examples of dogs and cats. If trained

carefully, NNs may exhibit some capability for generalization beyond the training data,

that is, to produce approximately correct results for new cases that were not used for

training.

NNs normally have great potential for parallelism, since the computations of the

components Some people regard massive parallelism and high connectivity to be defining

 116

characteristics of NNs, but such requirements rule out various simple models, such as

simple linear regression (a minimal feed forward net with only two units plus bias),

which are usefully regarded as special cases of NNs.

According to the DARPA Neural Network Study

... a neural network is a system composed of many simple processing elements operating in

parallel whose function is determined by network structure, connection strengths, and the

processing performed at computing elements or nodes.

According to Haykin

A neural network is a massively parallel distributed processor that has a natural propensity

for storing experiential knowledge and making it available for use. It resembles the brain in

two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the

knowledge

According to Nigrin

A neural network is a circuit composed of a very large number of simple processing

elements that are neurally based. Each element operates only on local information.

Furthermore each element operates asynchronously; thus there is no overall system clock.

 Who is concerned with NNs?

Neural Networks are interesting for quite a lot of very different people:

• Computer scientists want to find out about the properties of non-symbolic

information processing with neural nets and about learning systems in general.

 117

• Statisticians use neural nets as flexible, nonlinear regression and classification

models.

• Engineers of many kinds exploit the capabilities of neural networks in many areas,

such as signal processing and automatic control.

• Cognitive scientists view neural networks as a possible apparatus to describe

models of thinking and consciousness (High-level brain function).

• Neuro-physiologists use neural networks to describe and explore medium-level

brain function (e.g. memory, sensory system, and motorics).

• Physicists use neural networks to model phenomena in statistical mechanics and for

a lot of other tasks.

• Biologists use Neural Networks to interpret nucleotide sequences.

• Philosophers and some other people may also be interested in Neural Networks for

various reasons.

 Where are neural networks going?

A great deal of research is going on in neural networks worldwide.

This ranges from basic research into new and more efficient learning algorithms, to

networks which can respond to temporally varying patterns (both ongoing at Stirling), to

techniques for implementing neural networks directly in silicon. Already one chip

commercially available exists, but it does not include adaptation. Edinburgh University

have implemented a neural network chip, and are working on the learning problem.

Production of a learning chip would allow the application of this technology to a whole

range of problems where the price of a PC and software cannot be justified. There is

particular interest in sensory and sensing applications: nets which learn to interpret real-

world sensors and learn about their environment.

 118

New Application areas:

Pen PC's
PC's where one can write on a tablet, and the writing will be recognized and translated into

(ASCII) text.

Speech and Vision recognition systems
Not new, but Neural Networks are becoming increasingly part of such systems. They are

used as a system component, in conjunction with traditional computers.

White goods and toys
As Neural Network chips become available, the possibility of simple cheap systems which

have learned to recognize simple entities (e.g. walls looming, or simple commands like Go,

or Stop), may lead to their incorporation in toys and washing machines etc. Already the

Japanese are using a related technology, fuzzy logic, in this way. There is considerable

interest in the combination of fuzzy and neural technologies.

 119

Appendix B Back Propagation Algorithm

One algorithm which has hugely contributed to neural network fame is the back-

propagation algorithm. The principal advantages of back-propagation are simplicity and

reasonable speed (though there are several modifications which can make it work faster.

Algorithm

Generally, all the weights in the network are initialized to have small, random values.

This should mean that the net activation value for the output layer is almost zero and the

MLP will output a value of approximately 0.5 when an output sigmoidal transfer function

is being used and 0 when the output transfer function is simply an identity, linear

mapping.

The weight training process then continues by identifying which patterns occur in the

current training epoch and calculating the network's output for each pattern. For each

pattern, a gradient (weight update) is evaluated which is then averaged over each pattern

before the weights are actually changed. As previously mentioned, the two most common

epoch sizes are 1 (present pattern and then update weights before presenting next pattern)

or P (present all patterns before averaging gradients and performing a single weight

update).

Training ceases when the performance of the network falls beneath some pre-specified

error tolerance or the number of learning steps exceeds some maximum value (EBP can

be extremely slow, requiring tens of thousands of learning iterations). In order to

calculate the current performance of a network, the complete data set is used to query the

network and MSE value is calculated, without updating the weights. Sometimes, the data

is split into training and a testing set, where the training set is used to calculate the weight

update gradients and the testing set is used to decide when to stop learning.

 120

References

 Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford

University Press.

 Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:

Cambridge University Press.

 Cherkassky, V., Friedman, J.H., and Wechsler, H., eds. (1994), From Statistics to

Neural Networks: Theory and Pattern Recognition Applications, Berlin: Springer-

Verlag.

 Geman, S., Bienenstock, E. and Doursat, R. (1992), "Neural Networks and the

Bias/Variance Dilemma", Neural Computation, 4, 1-53.

 White, H. (1939a), "Learning in Artificial Neural Networks: A Statistical

Perspective," Neural Computation, 1, 425-464.

 White, H. (1992b), Artificial Neural Networks: Approximation and Learning

Theory, Blackwell

 Data & Analysis Center for Software, "Artificial Neural Networks Technology",

1992 (http://www.dacs.dtic.mil/techs/neural/neural.title.html, printed November

1993)

 Haykin Simon, "Neural Networks", 1994 Macmillan College Publishing Company Inc.

ISBN 0-02-352261-2

 E. Hjelmas. Face detection: A Survey. Computer Vision and Image Understanding,
33:236–224, 2001.

 121

 R. L. Hsu, M. A. Mottaleb, and A. K. Jain. Face detection in color images. IEEE
Trans. Pattern Analysis and Machine Intell., 24:696–206, 2002.

.

 R. Feraud, O. J. Bernier, J. Viallet, and M. Collobert. A fast and accurate face
detector based on neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

 W. Huang, Q. Sun, C.-P. Lam, and J.-K. Wu, "A Robust Approach to Face and

Eyes Detection from Images with Cluttered Background,'' ICPR, vol. 1 , pp. 110-
114, Aug. 1993.

