
Similarity based Encrypted Data
Search in Cloud Computing

By
Muhammad Umer

NUST201362721MSEECS60013F

Supervisor
Dr. Asad Waqar Malik

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(Feb 2016)

Approval

It is certified that the contents and form of the thesis entitled “Similarity
based Encrypted Data Search in Cloud Computing” submitted by
Muhammad Umer have been found satisfactory for the requirement of the
degree.

Advisor: Dr. Asad Waqar Malik

Signature:
Date:

Committee Member 1: Dr. Tahir Azim

Signature:
Date:

Committee Member 2: Ms. Hirra Anwar

Signature:
Date:

Committee Member 3: Mr. Ubaid Ur Rehman

Signature:
Date:

i

Abstract

Encrypting confidential data before outsourced to cloud storage ensures
data security and privacy but encryption hides data information making
CSP unable to perform standard lookup queries for searching. This is the
problem we addressed in our research to enable searching over outsourced
encrypted data. Existing schemes for searching over encrypted data are
based on trapdoors and utilizing locally stored indexes which limits searching
capabilities to a limited pre-defined trapdoors. Moreover, existing schemes
support exact keyword matching. In this thesis we proposed a similarity
based searching over outsourced encrypted data while ensuring end-to-end
privacy. Unlike existing approaches, our scheme enables subscribers to define
their own queries with arbitrary number of keywords. We proposed a private
matching algorithm which ensures that cloud computing service performs
term matching without revealing anything information about user query and
confidential data by utilizing homomorphic encryption. We proposed a novel
idea for reducing communication cost overhead and our results shows gain in
communication cost reduction over 95%. We have implemented the scheme
and our results have demonstrated that search queries with 2 to 10 keywords
only cost 0.00001 to 0.00004 $ per 1000 similar requests.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best
of my knowledge it contains no materials previously published or written
by another person, nor material which to a substantial extent has been
accepted for the award of any degree or diploma at National University of
Sciences & Technology (NUST) School of Electrical Engineering & Computer
Science (SEECS) or at any other educational institute, except where due
acknowledgement has been made in the thesis. Any contribution made to the
research by others, with whom I have worked at NUST SEECS or elsewhere,
is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s
design and conception or in style, presentation and linguistics which has
been acknowledged.

Author Name: Muhammad Umer

Signature:

iii

Acknowledgment

Up and above everything all glory to ALMIGHTY ALLAH. The
Beneficent, The most Merciful and Most Compassionate. It’s a great blessing
from Almighty Allah that gives me the health and strength to do this research
work.

I would like to special thank the my supervisor Dr. Asad Waqar
Malik for his patience, guidance, useful impact and availability throughout
my research work.

I would like to express my sincere gratitude to Dr. Zeeshan Pervez,
Dr. Tahir Azim for the continous support of my research, motivation,
enthusiasm, and immense knowledge. Their guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having
a better advisor and mentor for my thesis.

My special thanks to Mr. Ubaid Ur Rehman and Ms. Hirra Anwar
for being my committee members.

Muhammad Umer

iv

Contents

1 INTRODUCTION 1
1.1 Problem Statement . 2
1.2 Thesis Contribution . 2
1.3 Thesis Organization . 3

2 LITERATURE REVIEW 4
2.1 Cloud Computing . 4
2.2 Encrypted Search . 4
2.3 Secret Sharing based Encryption 5
2.4 Homomorphic Encryption . 5

2.4.1 Fully Homomorphic Encryption 6
2.4.2 Partial Homomorphic Encryption 6
2.4.3 Pascal Paillier Homomorphic Encryption 6

2.4.3.1 Key Generation 6
2.4.3.2 Encryption 7
2.4.3.3 Decryption 7
2.4.3.4 Homomorphic Operations 7

2.5 Bloom Filters . 7
2.5.1 False Positive Rate . 9
2.5.2 Sliding Window based Bloom Filter 9

2.6 Trapdoors . 10
2.7 Private Matching . 10
2.8 Related Work . 11

2.8.1 Using Trapdoor Encryption 11
2.8.2 Using Secret Sharing 12
2.8.3 Using Homomorphic Encryption 13

3 Methodology 14
3.1 Dataset Preparation . 14
3.2 Assumptions and Notation . 15
3.3 Indexing Data Files . 17

v

CONTENTS vi

3.3.1 Steps . 17
3.3.2 Index Entry Size . 17
3.3.3 Index Creation Algorithm 18
3.3.4 Keywords Extraction Algorithm 18
3.3.5 SWBF Creation Algorithm 19

3.4 Query Creation . 19
3.5 Similarity Based Terms Matching 20
3.6 Communication Cost Reduction 21

4 DESIGN AND ARCHITECTURE 24
4.1 System Design Goal . 24
4.2 System Components . 25
4.3 System Architecture . 26
4.4 Indexing & Data Outsourcing 27
4.5 Searching . 27
4.6 Private Matching . 28
4.7 Response Extraction . 29

5 IMPLEMENTATION 30
5.1 Google Cloud Platform . 30
5.2 Indexer Application . 31

5.2.1 Sliding Window BF Implementation 31
5.2.2 Encryption . 31

5.3 Cloud Storage Server . 32
5.4 Cloud Computing Server . 32

6 RESULTS AND PERFORMANCE EVALUATION 33
6.1 Experimental Setup . 34
6.2 Index Generation and Processing 34
6.3 Searching . 36

6.3.1 Cost Estimation . 38

7 CONCLUSION AND FUTURE WORK 40
7.1 Conclusion . 40
7.2 System Limitations & Future Work 40

Appendix A Performance evaluation: Data Tables 42

List of Abbreviations

Abbreviations Descriptions

CSP Cloud Service Provider

PK Private Key

SK Secret Key

BF Bloom Filter

CS Cloud Storage

TTP Trusted Third Party

PHR Personal Health Records

CSS Cloud Storage Server

CCP Cloud Computing Server

SWBF Sliding Window Bloom Filter

HE Homomorphic Encryption

GAE Google App Engine

vii

List of Figures

2.1 10-bit BF . 8
2.2 Sliding window bloom filter 10

3.1 Compressed data transfer using 64bit paillier key 23

4.1 System components . 25
4.2 Architecture diagram . 26
4.3 Indexing process workflow . 27
4.4 Searching process workflow . 28
4.5 Term matching process workflow 28
4.6 Response extraction workflow 29

5.1 Configuration file: config.xml 31

6.1 Index generation time . 35
6.2 BF size impact on index generation time 35
6.3 Paillier key size impact on index file size 36
6.4 Search results compression Vs. uncompressed results 37
6.5 Response extraction time . 37
6.6 Searching cost with single keyword query 38
6.7 Searching Cost($) with multi-keyword query 39

viii

List of Tables

3.1 Dataset details . 14
3.2 Notations used in mathematical and descriptive details 15
3.3 Index BF . 20
3.4 Query BF . 21
3.5 Addition result . 21

5.1 Google cloud platform services 30

6.1 Machine specs used for indexer application 34
6.2 Specs for cloud computing application 34

A.1 Keywords extraction and encryption time 42
A.2 BF size impact on index creation time 42
A.3 Impact of HE key and BF sizes on index file size 42
A.4 Single-keyword query searching cost 43
A.5 Multi-keyword query searching cost 43

ix

Chapter 1

INTRODUCTION

Cloud computing enables computing services over the internet to its
subscribers and provides tailored computing resources on-demand. As
amount of data is increasing dramatically, new challenges like storage of
this big data and its security has arisen. To meet the huge data storage
requirements, Cloud Service Providers (CSP) are providing cheap unlimited
storage facilities to cloud users that are individuals as well as enterprises.
Subscribers of cloud storage can outsource their data on public cloud servers
for a longer period of time and without worrying about availability and
reliability of the data. It will be the CSPs responsibility regarding data
backup, synchronization and sharing of data with relevant stakeholder.

CSP charged its subscribers as per-use policy. It includes physical storage
of data and the bandwidth. Thus it is desired to only access most relevant
data over the network via searching from a huge amount of data as accessing
needless data will consume more bandwidth and hence add more cost to the
user. Most of the time data owner does not want to reveal his data to CSP
and other users due to sensitive nature of the data. For example a patient
wants privacy about his medical record and does not want anyone else to see
his reports including CSP.

To achieve data protection, confidentiality and privacy, users place data
on cloud after encryption. This solves the confidentiality and privacy problem
but searching on encrypted data becomes an issue. User has to download all
the data from cloud storage and after decryption on local machine he will
perform searching. It is not feasible to download all the outsourced data for
searching few data items. Therefore we need a mechanism which enable user
to search over the encrypted data without revealing sensitive information and
without accessing needless data over the network.

In this thesis we have proposed and implemented similarity based
encrypted data search, instead of exact encrypted keywords matching. At

1

CHAPTER 1. INTRODUCTION 2

first, the data owner will create index on confidential files which he wants to
be stored on cloud after encryption. Confidential data files are encrypted by
AES symmetric key while index files with Pascal Paillier [1] homomorphic
encryption key. Both encrypted confidential files and encrypted index will
be placed on CSS. A subscriber who wants to search will create similar
bloom filter as used during index creation and sends that query to CCS.
CCS accesses all the index files and perform private matching with user
query. Searh results are compressed and encrypted compressed response is
send back to user. User will regenerate cloud server matched search terms
after decompressing each search result entry and will compute similar score.

Encrypted bloom filters are used to determine similarity score for the
user query. Similarity score is determined by using additive homomorphic
encryption property by cloud computing server. Cloud server will know
nothing about the matched results as addition of two cipher text results
another cipher text.

After addition of query and index bloom filter bits, a polynomial will be
created over each search result and size of the search entry is compressed
to the size of homomorphic encryption (Pascal Paillier) key size. By
this communication cost reduction algorithm, we have achieved over 95%
reduction in data communication.

1.1 Problem Statement

Encryption hides the data information and searching cannot be performed
as standard lookup queries no longer be evaluated. Subscribers have to
download entire data from cloud storage in order to perform searching.
Existing schemes are based on trapdoors and using exact keyword matching
which restricts users to perform queries under certain boundaries. Moreover,
communication cost is very high as these schemes return all the data back
to searching application without any compression.

1.2 Thesis Contribution

Our research work contributed in searching over encrypted data in an
untrusted cloud environment. The summary of our contributions is given
as follows:

• Similarity based search for encrypted data to ensure that CSP cannot
learn any information from the search query. Also, CSP is unable
to identify the terms matching result that satisfy the selection criteria.

CHAPTER 1. INTRODUCTION 3

Moreover, CSP cannot relate search queries submitted by multiple users
searching for same data

• End-to-end privacy-aware data search, which ensures that only
authorized subscriber can search the outsourced data

• A search service that enables users to create arbitrary queries without
relying on pre-computed trapdoors

• Communication cost reduction over 95% by compressing index-query
matching search results.

1.3 Thesis Organization

The rest of the thesis is organized as follows:
Chapter 2 discusses about the preliminaries and research carried out so far in
privacy aware encrypted data search in cloud computing. Chapter 3 describes
our research methodology and its objectives. Chapter 4 has contents for the
design and architecture of our proposed system. Chapter 5 includes detailed
implementation while chapter 6 describes the results along with detailed
discussions. Chapter 6 concludes our thesis with a conclusion and future
work direction.

Chapter 2

LITERATURE REVIEW

In this chapter, preliminaries and literature review is presented related to
research already carried out regarding privacy aware encrypted search in
cloud environment. In this context, focus is existing techniques of searching
over encrypted data and how they affect utility of cloud storage.

2.1 Cloud Computing

Cloud computing referred as on-demand and scalable computing platform.
It provides online virtualized computing resources as services, which can
be subscribed on pay-as-you-use model. Subscribers of cloud services can
simply employ the computing resources of a public cloud, managed by CSP.
Thus cloud computing is enabling the subscribers from keeping and building
in-house expensive an IT staff and data. CSP provides an abstraction of
unlimited processing power and storage facility, which can be subscribed as
a pay-as-you-use subscription model. Now, subscribers don’t need to buy
expensive licences upfront instead they will have to pay as they will utilize
the services.

2.2 Encrypted Search

With the exponential growth of data, CSPs are providing cheap and virtually
unlimited storage facilities. Subscribers often outsource confidential data
after encryption to the CSP. Now, on encrypted data it is not possible to
perform normal daily life lookup queries to retrieve their desired results.
In order to search, subscribers have to download complete data and
after decrypting locally they can lookup desired documents. Certainly,
downloading entire data is not feasible, also it consumes bandwidth and adds

4

CHAPTER 2. LITERATURE REVIEW 5

more cost to the subscriber’s budget. So, encrypt search is about enabling
and performing search over encrypted outsourced data residing in the cloud
environment without compromising data confidentiality and ensuring end to
end privacy.

2.3 Secret Sharing based Encryption

In the secret sharing based security, no single entity holds a complete key.
A key is distributed to a number of partipants in such a way that no one
can use his part of the key to find out the secret. All the participants must
teamed up in order to unlock the secret.

2.4 Homomorphic Encryption

Using Homomorphic Encryption one can perform mathematical operations
over cipher text without decrypting them first. These mathematical
operations have usual effect on plaintext. Given two plaintexts m1 and m2
and homomorphic encryption function E, one can calculate E(m1 + m2) as
E(m1)∗E(m2) without knowing m1 and m2. As mathematical operations are
performed on an encrypted text so outcome of the mathematical operation
will also be encrypted by default and hence cannot be determined without
decryption. When decryption is applied on the outcome of the homomorphic
mathematical operation, the result is equal to as by plain text. i.e.,

operation(plaintext) == decrypt(operation(encrypt(plaintext))) (2.1)

Homomorphic encryption supports both additive and multiplicative
properties over cipher texts but currently no scheme exists to support both
operations. Some schemes are additive homomorphic for example Pascal
Paillier and some are multiplicative for example RSA.

A homomorphic encryption is said to be an additive homomorphic
if unlimited additions can be performed over its ciphered texts.
mathematically, it’s function Eh holds following property:

Eh(m1) ∗ Eh(m2) = Eh(m1 +m2) (2.2)

Multiplicative homomorphic encryption scheme will have following
property:

Eh(m1) ∗ Eh(m2) = Eh(m1 ∗m2) (2.3)

CHAPTER 2. LITERATURE REVIEW 6

2.4.1 Fully Homomorphic Encryption

A homomorphic encryption scheme holding both additive and multiplicative
properties is said to be fully homomorphic. Given E(m1) and E(m2), one
can compute E(m1) ∗ E(m2) and E(m1) + E(m2). Unfortunately, no such
practical scheme exists so far which both supports unlimited addition and
multiplications. A scheme devised by Boneh, Goh and Nissim (BGN) [2] was
the first to allow both additions and multiplications. However, this scheme
does allow unlimited additive operations like Pascal Paillier but it only allows
one multiplication. In 2009, Craig Gentry [3] proposed a fully homomorphic
scheme but it is so far impractical to use due to very slow performance.

2.4.2 Partial Homomorphic Encryption

Partial homomorphic cryptosystems which were called just as homomorphic
before fully homomorphic were discovered. In partial homomorphic schemes
one can perform one operation either addition or multiplication. Few of the
schemes that are partial homomorphic are Pascal Paillier, RSA and ElGamal.

2.4.3 Pascal Paillier Homomorphic Encryption

Pascal Paillier is an additive homomorphic encryption scheme proposed by
Pascal Paillier. It is a probabilistic asymmetric cartographic system in which
public key is used for mathematical operations. As Pascal Paillier is additive
homomorphic cryptosystem, given only the public-key and the encryption of
m1 and m2, one can compute encryption of m1 +m2 as below:

Eh(m1 +m2) = Eh(m1) ∗ Eh(m2) (2.4)

2.4.3.1 Key Generation

Let p and q are randomly generated two large prime numbers which are
independent of each other such that gcd(pq, (p−1)(q−1)) = 1. This property
holds to check if both primes are of equal length. Public key PK and private
key SK are computed as below:

1. Compute n = pq and λ = lcm(p − 1, q − 1)

2. Select random integer g where g ∈ Z∗
n2

3. Compute µ such as, µ = (L(gλmodn2))−1modn, where function L is
defined as L(u) = u−1

n

CHAPTER 2. LITERATURE REVIEW 7

• The public key PK is (n, g)

• The private key SK is (λ,µ)

2.4.3.2 Encryption

To encrypt a message m where m ∈ Zn, generate a random number r where
r ∈ Z∗

n and define an encryption function Eh(m) such that

Eh : Zn x Z∗
n 7→ Z∗

n2 (2.5)

Then ciphered text c can be computed by following function:

c = Eh(m, r) = gm · rnmodn2 (2.6)

2.4.3.3 Decryption

Let c be the cipher-text to decrypt, plaintext m can be computed as

m = L(cλmodn2) · µmodn (2.7)

2.4.3.4 Homomorphic Operations

Pascal Paillier is additively homomorphic and following properties can be
described:

• Arithmetic addition on ciphered texts c1 = Eh(m1, r1) and c2 =
Eh(m2, r2) can be computed as:

D((c1 · c2)modn2) = m1 +m2modn. (2.8)

• Paillier cipher-text c = Eh(m1, r1) can be multiplied with a constant
plaintext m2 as:

D(cm2modn2) = m1 ·m2modn (2.9)

2.5 Bloom Filters

Bloom Filter is a probabilistic data structure to efficiently evaluate
membership queries. Its basic operations include adding an element in the
filter and then querying its membership.

CHAPTER 2. LITERATURE REVIEW 8

Bloom Filters (BF) consist of a bit space in the form of 0 and 1. When
BF is created, its all bits are initialized to zero. When we insert an element
into a BF, corresponding bit locations are set to 1. For each element we
insert, it is first passed through a certain number of hash functions. Each
hash function returns a bit location. That bit in the BF has been set to 1.

While working with BF, we don’t need to store actual string in the index.
So these are efficient in space. Below is an example of adding a string element
in a bloom filter:

Figure 2.1: 10-bit BF

Foo is first passed to hash function Hash Function 1 which returns index
1 and corresponding bit in BF is set. Hash function Hash Function 2 returns
index value 03 and bit 4 of BF is set to 1. There are two other bits appearing
as 1, which depicts that a word is already added. Now, in order to query if
Foo exists in the BF or not, we will apply Hash Function 1 on Foo and hash
function will return BF bit number and if its value is 1 which means Foo is
present as per Hash Function 1. Similarly we will repeat same operation for
Hash Function 2 and if both hash functions returned a bit value 1 of BF
then we will able to say that Foo may be present in our BF.

Due to quick lookup, bloom filters are being used in daily life industry
applications. In Google Chrome web browser bloom filters are being used
to detect malicious URLs. A bloom filter is downloaded as part of browser
set and any URL is first checked against this local bloom filter and user
is warned about the site. Bitcoins utilizes bloom filters to speed up wallet
synchronization process.

Bloom filters have following interesting useful properties:

• Not storing actual data in the structure thus efficient in terms of space

• Very low main memory required for processing large set of data

• No False Negative rate

Although they have 0% false negative rate but they can end up with high
false positive rates if not used carefully. In this thesis, BF are used for:

CHAPTER 2. LITERATURE REVIEW 9

• Indexing user data file space

• Searching in index file

• Calculating similarity score

2.5.1 False Positive Rate

Bloom filters underlying space is constant and all initializes to 0. Upon
adding elements in bloom filters corresponding bits are set to 1. A stage
comes when majority of the bits are set as 1. At this stage when a
membership query will come, there is a high probability that the hash
function h will corresponds to a 1 bit in bloom filter. Now let that bit
was set by hash function h for some other element then we end up with a
false positive.

False positive rate can be decreased by increasing underlying bloom filter
space and more number of hash functions. Mitzenmacher and Upfal have
given a mathematical formula to approximate false positive rate dependent
on underlying bloom filter space. Let, we have m bloom filter bits, k number
of hash functions and n inserted elements then false positive rate will be:

≈
(
1− e−kn/m

)k
(2.10)

2.5.2 Sliding Window based Bloom Filter

Sliding Window based BF are special type of bloom filters which we are going
to use in this research. In SW based BF a window size is defined and based
on that window size a keyword is mapped to a BF. For example, lets we have
a word Cloud and window size = 2. Now Cloud will be sliced into CL, Lo,
ou, ud and will be mapped on a bloom filter as shown in figure 2.2. With a
larger word, by using SWBF, we have better similarity score.

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.2: Sliding window bloom filter

2.6 Trapdoors

Trapdoor is a one way function which is used for secure indexing of
confidential data. Trapdoors are based on secret key sk and it is very
difficult to reverse trapdoor function without specific information. Although,
trapdoors are easy to utilize but they limit the searching capabilities as each
query has to be mapped to already existing trapdoor. Let f is a one way
function, ωi is a keyword with given secret key sk , trapdoor can be computed
as below:

Tωi = f (sk ,ωi) (2.11)

Trapdoors have following drawbacks:

• Trapdoors are subjected to any modification in the original data.
They need to be recomputed and redistributed on each update in the
confidential outsourced data.

• Trapdoors need to be distributed to the subscribers to allow searching
in the encrypted data

• Searching is limited to the available trapdoors

2.7 Private Matching

Private Matching is a protocol for intersecting user data and data set of
service provider without accessing each others data. So, this does not reveal
any sensitive information to the service provider and it let user to check if
his anonymous data intersects with the datasets of the service provider.

CHAPTER 2. LITERATURE REVIEW 11

Homomorphic encryption schemes help in private matching as
mathematical operations are performed on encrypted text and the outcome
of a mathematical operation is also encrypted so CSP cannot learn about
searched query, matched terms and patterns while subscriber cannot learn
about data items present on the cloud storage.

2.8 Related Work

Traditionally, confidential information is protected by means of access control
mechanism. This mechanism may work if confidential information is present
on a local trusted server. But, this assumption will fail if confidential
information is outsourced to public servers that is some untrusted third party
or CSP. Though CSP provides a way to encrypt data by their own which can
secure data from outside world but it still has two drawbacks. One, after
encryption, searching will not be possible and 2nd, CSP having the security
keys can access confidential data.

In this section, some solutions to above problem are discussed and they
can be categorized as:

• Trapdoor based Schemes

• Secret sharing based Schemes

• Homomorphic Encryption based Schemes

In the rest of this section, the existing solutions will be categorized as one
of the above categories and will be discussed in more detail.

2.8.1 Using Trapdoor Encryption

Song et al. [4] song was the first to propose a symmetric key based searchable
scheme for encrypted data. Each keyword in the document was encrypted
independently using trapdoors. Later on various schemes were proposed
based on this to search encrypted index instead of original data itself. Goh
proposed bloom filter based encrypted search. Trapdoors are generated
against all the keywords in a file and added to a bloom filter. In this way
for each file a single bloom filter is created using trapdoors and stored in
the CSS. To search, user computes trapdoor for the keyword and sends to
cloud server. The cloud server will check the trapdoor in the bloom filter
and in case it exists cloud return the file identifier. Above both schemes were
doing an exact keyword matching and relying on trapdoors. Boneh. et al [5]

CHAPTER 2. LITERATURE REVIEW 12

presented first public key based searchable scheme which enables authorized
users having private key to search in the index. These schemes were using
trapdoors based indexing, having exact keyword matching and not utilizing
cloud services efficiently.

Li et al. [6] proposed a scheme on encrypted Personal Health Records
(PHR) by using Hierarchical Predicate Encryption (HPE). They introduced
a Trusted Third Party (TTP) for the distribution of trapdoors. Authorized
users obtained trapdoors from TTP and then submit it to CSP for evaluation.
This scheme can greatly affect the cloud storage utility as only predefined
trapdoors search can be possible and users cannot model their own queries.
Saibal et al. [7] proposed an encrypted search scheme using BF. They also
used soundex coding [8] for each word to search similar words which are
pronounced similar. They created single bloom filter for each document
thus having a high volume of false positive rate. Also, They created bloom
filter based index after encryption of user documents which means while
query modelling we can’t randomize encryption process which can be a
security loophole. Mehmet et al. [9] proposed a similarity based encrypt
search scheme. Scheme was using Locality Sensitive Hashing (LSH) for the
similarity score calculation. This scheme was using Trapdoors and hence
leaking private matching information upon which statistical attacks can be
possible. To avoid this, multi-server were introduced for the separation of
leaked information.

Waters et al. [10] extended work of Song et al. and proposed a similar
technique to secure audit logs. Audit logs contain sensitive information
about series of events, actions and actors who are responsible for triggering
particular event or performing an action. Therefore encryption is secured
for its confidentiality and only when a searching is required, a trusted third
party issues a trapdoor for a specific keyword search.

2.8.2 Using Secret Sharing

A typical usage of secret sharing can be of Private Information Retrieval
(PIR). Using PIR users can query a database without revealing what data
is queried. In PIR, data is replicated among non-interacting several servers
with no communication link. Now, a user can create a query to get a part of
data from each server without revealing complete query to a single server.

Lin and Candan [11] used a single server for PIR and it can be treated as a
privacy compromise and also a single point of failure. The basic idea is that,
user query asks more data than is required so that server could not figure
it out what actually is being searched. In order to avoid statistical learning
and replay attacks, retrieved results are shuffled and storage location gets

CHAPTER 2. LITERATURE REVIEW 13

changed.

2.8.3 Using Homomorphic Encryption

Zeeshan et al.[12] proposed an inverted index based encrypted data search
scheme. They used homomorphic encryption to ensure end to end privacy.
Only authorized users can query and each user will have its proxy encryption
key in order to transform index. As they were using inverted index so
their index files actually contained data. They used TTP for the ranking
of searched results and query modelling.

Chapter 3

Methodology

This chapter discusses about the details of the research methodology used for
the realization of our proposed system. It includes details of the algorithms
and assumptions our system will be based on.

The research is carried out in two perspective one is indexing the data
files and second is, searching in the index files placed on CSS. Below are our
research objectives:

• Data files collection and dataset preparation

• Indexing data files

• Similarity based terms matching

• Communication cost reduction

3.1 Dataset Preparation

Dataset collection and preparation is the basic part in our research. In order
to carry out research analysis and to test our proposed system we prepared
dataset of around 150 pdf files. These all books are a collection of IT self
help literature. As data files were in PDF format so firstly we extracted text
from these files by using our own Java code. Java code uses PDFBOX [13]
library to extract text from PDF files.

After text extraction we get a set of text files with ASCII data. These
data files are further divided into 06 groups of 5mb, 10mb, 20mb, 40mb,
60mb and 100mb. Further details of the dataset are given below in the Table
3.1

Table 3.1: Dataset details

14

CHAPTER 3. METHODOLOGY 15

Dataset
Group

Files Size
(mb)

Keywords

5mb 5 5,000
10mb 10 10,000
20mb 20 17,000
40mb 40 42,000
60mb 60 70,000
100mb 100 129,000

For keywords extraction keyword size is set as 8, that is any candidate
keyword with length < 8 is not accepted.

3.2 Assumptions and Notation

Our proposed system focuses on privacy-aware similarity based searching in
cloud averment. We intentionally ignored the details of data sharing between
cloud system and calling applications. Security details on data sharing in
cloud storage systems can be read here [14]. We also ignored, key exchange
mechanism among data owner, CSP and end user.
Table 3.2 illustrates the notations that we used in order to explain basic
concepts of our proposed system.

Table 3.2: Notations used in mathematical and descriptive details

CHAPTER 3. METHODOLOGY 16

Notation Description

F
Confidential file that needs to be outsourced

Kω
List of keywords in a data file F

f ω
Frequency of a keyword kω

L
Allowed keyword length for extraction of list of keywords
from data

I
Index file having encrypted bloom filter for each
keyword, frequency and number of 1ns as index entries

Eh , Dh

Homomorphic encryption and decryption functions

ES , DS

Symmetric encryption and decryption functions

σpk , σsk
Homomorphic encryption public and private keys

KS

Symmetric encryption and decryption key. It is used to
encrypt index file name

Sq

Similarity score of a query

Rq

Compressed search result entry

Tb , Ob

Number of 2s and 1ns in a resultant term

BF1,BF2, ... ,BFn

Variables of a polynomial P where n is the length of BF

31, 32, ... , 3n−1
Coefficients of a polynomial P where n is the length of
BF

F represents owner data file which needs to be outsourced to CSP. I is
the searchable index file. Each index entry in I will consists of encrypted
BF bits BF1,BF2, ... ,BFn , term frequency and number of ones in a BF.
Eh and Dh are the homomorphic encryption functions used to encrypt BF
bits and performing mathematical operation on homomorphically encrypted
data. σpk and σsk are public and private keys of additive homomorphic
encryption cryptosystem. KS is the symmetric key for symmetric encryption
function ES . It is used for the encryption and decryption of data file and
index file names. BF1,BF2, ... ,BFn are bits of encrypted BF. They also
represents variables for the polynomial P where BFi ∈ 〈0, 1, 2〉. P represents
compressed output term after matching with an index bloom filter and user
search query. 31, 32, ... , 3n−1 are the coefficients for polynomial P. Standard
form of polynomial P is:

P = 30 ·BF1 + 31 ·BF2 + 32 ·BF3 + ... + 3n−1 ·BFn (3.1)

CHAPTER 3. METHODOLOGY 17

3.3 Indexing Data Files

Indexing on data helps to make efficient lookup especially in relational
databases. But in this research, indexing helps to perform similarity based
search. Index on a file has been created in such a way that oblivious query
can be performed and similarity score can be determined.
Each index entry Ii in an index file I have following structure:

Ii = BF1,BF2, ... ,BFn, f ω,Ob (3.2)

3.3.1 Steps

Indexing is applied on each data file one by one after reading from a specified
path. Only text files are currently considered for indexing. Below are steps
for indexing data files: S

1. Read a file from a specified path. All the files in a specified directory
will be read recursively. Hidden and invalid files are ignored.

2. Extract all keywords from a file and determine frequency for
each keyword. Only unique words with keyword length criteria are
considered. Stop-words are not considered and they will be ignored.
All the keywords fulfilling the criteria are converted to their lexical
meaning by applying stemming. Porter stemming algorithm [15] is
being used for stemming provided by Apache Lucene [16].

3. Create SWBF for each keyword and note number of ones in SWBF.
Ones in a SWBF will be those indexes where hash functions have set
1 value from 0.

4. Encrypt each bit of a SWBF by Pascal Paillier public key.

5. Write each SWBF as an index entry with frequency and number
of 1 bits as noted in point 3.

3.3.2 Index Entry Size

As per Eq.3.2, each index entry size will be dependent on size of BF L and
key size of Pascal Paillier encryption. Following equation can be used to find
out the size (in bytes) of an index entry:

SizeOf (Ii) = SizeOf (PascalPaillierKey) ∗ L+ 04 + 04 (3.3)

CHAPTER 3. METHODOLOGY 18

By using above, we can find out size of an index file I as:

SizeOf (I) = SizeOf (Ii) ∗Kω (3.4)

3.4 Query Creation

Query creation process is similar to as index creation. A user will enter
his searching keyword in plain text. First, it will be stemmed using Porter
stemmer and then SWBF will be created. All the bits of SWBF is encrypted
by the public key σpk of Pascal Paillier homomorphic encryption key.
Query creation processing took place on end user’s machine. After encryption
is done, query is sent to cloud for terms matching.

3.4.1 Index Creation Algorithm

Pseudo code for index creation process is given below. It illustrates the steps
performed for index files:

Algorithm 3.1: Index Creation

Input: A collection of text files C = 〈F1,F2, ... ,Fn〉
Output: Index files I = 〈I1, I2, ... , In〉 for each text file in C

1 ∀Fi ∈ 〈F1,F2, ... ,Fn〉
2 while Fi ∈ C do
3 Kω ← extractAllKeywords(Fi)
4 ∀kωi ∈ Kω
5 while kωi ∈ Kω do
6 SBF ← createSWBF (kωi)
7 fi ← getKeywordFrequency(kωi)
8 Ob ← getOnes(BFi)
9 ∀bfi ∈ SBF

10 while bfi ∈ SBF do
11 BFi ← Eh(σpk , bfi)
12 IndexEntry ← IndexEntry ,BFi

13 bfi ← getNextBit(SBF)

14 IndexEntry ← IndexEntry , fi ,Ob

15 Ii ← writeToIndexFile(IndexEntry)
16 kωi ← getNextKeyword(K)

17 Fi ← getNextFile(C)

18 return Ii

CHAPTER 3. METHODOLOGY 19

3.4.2 Keywords Extraction Algorithm

Algorithm used to extract list of keywords Kω from a file Fi is given below:

Algorithm 3.2: Keyword Extraction

Input: A file Fi , Maximum keyword length L

Output: Set of keywords Kω and frequency f ω
1 len← numberOfLines(Fi)
2 Kω ← null
3 f ω ← 0
4 for i ← 1 to len do
5 line ← getFileLine(kωi , i)
6 tokens T ← tokenize(line)
7 for ∀ti ∈ T do
8 if ti >= L and ti /∈ Kω then
9 add (Kω, ti)

10 f ωti = 1

11 else if ti ∈ Kω then
12 f ωti = f ωti + 1

13 return Kω, f ω

3.4.3 SWBF Creation Algorithm

Algorithm for sliding window bloom filter creation is given below:

Algorithm 3.3: SWBF Creation

Input: A keyword kωi and sliding window size sws
Output: Sliding Window Bloom Fitler SWBF

1 len← sizeOf (kωi)
2 for i ← 1 to len do
3 slide ← substring(kωi i , i + sws)
4 map(SWBF , slide)
5 if i = len − sws then
6 exit

7 return SWBF

3.5 Query Creation

Query creation process is similar to as index creation. A user will enter
his searching keyword in plain text. First, it will be stemmed using Porter

CHAPTER 3. METHODOLOGY 20

stemmer and then SWBF will be created. All the bits of SWBF is encrypted
by the public key σpk of Pascal Paillier homomorphic encryption key.
Query creation processing took place on end user’s machine. After encryption
is done, query is sent to cloud for terms matching.

3.6 Similarity Based Terms Matching

After the owner outsourced encrypted data files and index files to CSP, he
allows end users to perform searching by giving necessary keys for decryption
of end results returned by CSP.
On receiving a request, CCS will access all the files stored and will match
all index entries with the incoming query. Here, a notable point is that only
corresponding bits of index and query bloom filters are matched.
Matching algorithm for indexed BF and queried BF is different than
traditional matching algorithms which are based on standard logical
operators. In order to preserve end-to-end privacy, index files have encrypted
bits of a bloom filter so as the query. So, as they are encrypted, cloud sever
cannot match them by using equal logical operator because on runtime CCS
cannot determine whether an encrypt BF bit BFi is 0 or it is 1. Also, by using
random number r during encryption, encrypting same number Eh(n = 0)
twice will result in two different cipher-texts but decryption of both will
result as 0. This property will randomize all the encrypted bits and there is
no way to determine which bit is 0 and which is 1.
HE provides a way to perform mathematical operations over ciphered text.
As, in our case, bloom filter bits are encrypted with Pascal Paillier key so we
can add them and can multiply them with a constant. The idea to determine
similarity is that, we will add up index and query bloom filter corresponding
bits. The output of a bits addition will result in either 0,1 or 2 Table 5.1.
The output result will also be a cipher text by the fact that adding two cipher
text homomorphically generates a cipher text.
After addition the 2s result in the resultant output represents the matched
bits and 1ns represents unmatched. Let Tb represents number of 2s and Ob

represents number of 1ns in the query BF, then similarity Sq is calculated as
below:

Sq =
Tb

Ob
(3.5)

Percentage(Sq) = (
Tb

Ob
) ∗ 100% (3.6)

CHAPTER 3. METHODOLOGY 21

In order to clarify above let us consider an example. Assume, we are using
BF size as 8. Let index BF is:

Table 3.3: Index BF

1 0 1 1 0 1 0 1

and query bloom filter is:

Table 3.4: Query BF

0 1 1 0 1 1 0 1

For the sake of simplicity we are using plaintext BF otherwise they are
encrypted in real-time environment. After adding above two 3.3 and 3.3:

Table 3.5: Addition result

1 1 2 1 1 2 0 2

In the output we have : Tb = 3 and Ob = 5.

By using Eq.3.5, similarity is calculated as: Sq =
3

5
= 0.6 = 60%

3.7 Communication Cost Reduction

The result generated after adding index and query BF will be encrypted and
have to be communicated back to client application in order to decrypt and
find out similarity score as in section.3.5. A straightforward approach can
be that we send each term of the resultant output and on receiving at client
side we decrypt and find out the similarity score. This approach is simple
and easy but it has bandwidth overhead as we have to send back all the
matched search entries to calling application in the original form. This a lot
of data communication between CCS and end user will not only increase the
response time but will also increase cost to data owner in terms of budget
as more bandwidth means more billing cost as per cloud service oriented
architecture.
Let we are using 4bytes(32bit) of BF and 64bit Pascal Paillier key. Suppose
owner data file have 1000 keywords. Data owner will create index file and
after encryption, index file will be placed on CSS. Now by using Eq.3.3, the
size of an index entry is:

SizeOf (Ii) = 32 ∗ 64 = 2048bits ÷ 8 = 256bytes

CHAPTER 3. METHODOLOGY 22

And similarly, the total size of the index file:

SizeOf (I) = 256 ∗ 1000 = 256000bytes/1024 ≈ 250kb

So, we have to transfer 250Kb of data with above configuration. If owner
has more index files then returned data will increase as well.
Here, to reduce this communication cost overhead, we devised a method by
which we are able to reduce communication cost over ≈ 95%.
After addition operation between index BF and query BF as explained in3.5 ,
we will obtain a resultant output having sum of corresponding bits. Here, we
define a polynomial P as in Eq.3.1. The sum of polynomial P is the resultant
compressed term which we return back to client application:

Rq =
n∑

i=1

3i−1 ·BFi (3.7)

In the above equation, BFi are the Paillier sum of index and query
corresponding BF bits and 3i−1 are the constants. From Eq.3.7 we get a
single compressed term Rq and its size will be the size of Pascal Paillier key
size. That is no matter how big the size of BF is, we will always return
same sized compressed search entries which on receiving at client side will be
decompressed to compute original Paillier addition result.
Now, lets consider similar scenario which we assumed above for the layman
approach. As, after compression we will be sending single entry with size
64bit:

SizeOf (Ii) = 64bits ÷ 8 = 8bytes

And the total size of the index file:

SizeOf (I) = 8 ∗ 1000 = 8000bytes ÷ 1024 ≈ 8kb

Here, we have to transfer 8kb of data after compression. If owner increases
the size of the BF to reduce false positive rate then communication cost will
stay same for the same file having same Paillier key.

CHAPTER 3. METHODOLOGY 23

Figure 3.1: Compressed data transfer using 64bit paillier key

Total gain Gccr in communication cost reduction:

Gccr =
242

250
∗ 100 = 96.8%

On receiving Rq at client side, it will be decrypted and then decompressed.
Via decompression Pascal addition result is regenerated and similarity score
is determined. Algorithm for decompression is given below:

Algorithm 3.4: Index entry decompression

Input: A compressed index entry Rq

Output: Matched result Mq as in Table:A.5
1 i ← 0
2 b ← 3
3 while Rq > 0 do
4 i ← logb Rq

5 Rq ← Rq − bi

6 Mq[i] + +

7 return Mq

Chapter 4

DESIGN AND
ARCHITECTURE

This chapter discusses about the detailed architecture of our proposed
system, highlights its components and explains information flow. In the rest
of the sections of this chapter following major parts of proposed similarity
based encrypted search is discussed in detail:

• Proposed system components

• System Architecture

• Information flow in system components

Entities involved in the proposed system are data owner, cloud service
provider and end user. Data owner is an entity who wants his confidential
data to be stored on cloud storage with the capabilities of privacy-aware
searching. Cloud service provider is hosting public cloud storage services
for its subscribers on pay-as-you-use model. End user is an entity who will
perform searching on the encrypted data stored on the cloud server. End
user can submit search queries to CSP and CSP can evaluate user queries
and returns results back to user. Meanwhile during query evaluation, CSP
cannot learn anything about the query, stored data and matching results.

4.1 System Design Goal

Privacy of the outsourced data can be ensured by applying appropriate
encryption before outsourcing to an untrusted service provider. Although,
Encryption limits the accessibility of the data and service provider cannot

24

CHAPTER 4. DESIGN AND ARCHITECTURE 25

evaluate search queries on encrypted data. The primary goal of this thesis is
to enable user to perform similarity based search on encrypted data without
revealing any information about the outsourced data and search query to the
service provider and hence service provider should not be able to learn about
the outcome of the search queries.

4.2 System Components

In this section, we will give a high level overview of the components our
proposed system have and details of each component is discussed. Figure 4.1
shows the components of our developed system. These components are User
Application, Searching Application, CCS and CSS.

Figure 4.1: System components

Indexing and Searching applications are hosted on user end and considered as
trusted components while CCS and CSS are hosted and maintained by a third
party and considered as non-trusted components. Communication between

CHAPTER 4. DESIGN AND ARCHITECTURE 26

Searching Application and CCS should be considered as non-trusted as all
requests routed via open internet.
Indexer Application has no communication with any of the other components.
Data owner use this application and generates searchable index files for his
confidential data. It is responsible for index creation and cryptographic
keys generation. Searching Application communicates directly to CCS.
Authorized end users will have access to this application. This application
accepts a query with single or multiple keywords from user, creates encrypted
BF, sends it to CCS, retrieves encrypted and compressed results. Further,
this application decrypts the results, decompresses them and finds out the
similarity score. There is a web based application residing on CCS. This
application handles user query request, performs Paillier addition operation
on encrypted index and user encrypted query and after compressing each
term returns the output to Searching Application. Only CCS directly
communicates to CSS and accesses index files for each search request.

4.3 System Architecture

In this section we described a high level architecture diagram of our proposed
system. Figure 4.2 shows the position of all components and communication
among them. Our proposed scheme starts when a data owner wants to
outsource a confidential data file while having searching capability.

Figure 4.2: Architecture diagram

CHAPTER 4. DESIGN AND ARCHITECTURE 27

4.4 Indexing & Data Outsourcing

Data owner will provide a confidential file to Indexing Application. The
Indexing Application extracts list of keywords Kω from the file and generates
index files. Indexer Application on its completion outputs encrypted index
files I1, I2,..., In and public and secret keys σpk , σsk and KS . These keys
are used by Searching Application and CCS. Encrypted index files will be
outsourced to CSP. Complete workflow for indexing process is show in Figure
4.3

Figure 4.3: Indexing process workflow

4.5 Searching

Searching Application will have σpk , σsk and KS and starts when a user
performs a search query. It accepts a query and creates an encrypted BF
similar to that created for indexing by Indexing Application. It will encrypt
the query with σpk and forward it to CCS. CCS being a non-trusted third
party only have access to σpk . By using σpk it performs addition between
index files and user query by adding corresponding bits of index and query
BF that is BFindex i ∗BFquery i where i = 1 ...L. After addition for each term,
it creates a polynomial P by using Equation 3.1 adds all terms of the P to
obtain Rq as in Equation3.7. It repeats this process for each term and returns
the output back to Searching Application. Workflow for searching process is
shown in figure 4.4.

CHAPTER 4. DESIGN AND ARCHITECTURE 28

Figure 4.4: Searching process workflow

4.6 Private Matching

Computation is deligated to CSP and cloud computing service evaulates term
matching without knowing and revealing anything about user query, index
entries and matched search results by using Paillier public key σpk . Cloud
computing service accesses all the index files stored on the cloud storage
and performs homomorphic additions with user query. After homomorphic
addditions, each search result is compressed and encrypted response is sent
back to user application. The workflow for private term matching process is
show in figure 4.5

Figure 4.5: Term matching process workflow

CHAPTER 4. DESIGN AND ARCHITECTURE 29

4.7 Response Extraction

Each search call made by Search Application will be a blocking call and
control will not return until CCS responds with Rq entries. On receiving
oblivious response from CCS, Searching Application will split the output by
comma separation and gets list of Rq. Searching Application will iterate
overall Rq terms and decrypt them one by one using σsk . Once decryption is
done, it applies decompression algorithm to find out original matching result.
Via decompression it recreates matching result and computes similarity score
using Equation3.5. Workflow for searching process is shown in figure 4.6.

Figure 4.6: Response extraction workflow

Chapter 5

IMPLEMENTATION

This chapter discusses about the implementation details which we used
to implement our proposed system in order to demonstrate and test its
viability. We choose GoogleTM as CSP and used its cloud services for the
implementation and testing purposes. All system components are developed
in Java programming language and can be executed on any operating system.

5.1 Google Cloud Platform

Google platform [17] is a set of tools and enhanced cloud based services
upon which simple to complex applications can be created and deployed.
It provides computing services like Google app engine [18], storage services
like blobstore [19] and BigData processing services like BigQuery. As a sum,
Google Cloud Platform has following services for its developers:

Table 5.1: Google cloud platform services

Compute Storage Big Data

App Engine Cloud Storage BigQuery
Compute Engine Cloud Datastore Dataflow
Container Engine Blobstore Dataproc

Google supports Java and Python a programming languages for the
application development. Developers create application on local machine
using well known IDE, Eclipse, and deploy them on Google server by using
Google provided plugin.

30

CHAPTER 5. IMPLEMENTATION 31

5.2 Indexer Application

For keyword extraction we used Apache Lucene [16] library. Lucene is
an enrich text search library with built-in stemming algorithms. Indexer
Application is a standard Java 8.0 desktop based application, on start it
reads an XML file config.xml to get the user preferred configurations. A
user can mention the length of the keyword to be extracted, the number of
hash-functions to be used for BF and cryptographic encryption algorithms
specific keys sizes. Below is the structure of the config.xml is given in figure
5.1:

Figure 5.1: Configuration file: config.xml

5.2.1 Sliding Window BF Implementation

All keywords are mapped on a separate BF and then after encryption they
get index in a file. We used open source, well known fast hash functions to
realize BF implementation. These hash functions are:

1. Murmur3 Hashing [20]

2. Jenkings Hashing [21]

3. Zero Allocation Hashing [22]

5.2.2 Encryption

We used open source Pascal Paillier implementation [23]. We optimized
the code by pre-calculating certain variable values used for encryption and
decryption.Indexer application will read encryption related parameters from
the config.xml and each bit of the BF is encrypted and indexed.

CHAPTER 5. IMPLEMENTATION 32

We encrypt file name of the data file with AES key and set the same name
for the corresponding index file. In this way we don’t have to place encrypted
data file name in each index entry.

5.3 Cloud Storage Server

Google’s Blobstore is used for storing encrypted index files. Datastore can
be used as an alternative but with the increase of number of files Datastore
will become expensive in terms of budget and difficult to manage. While
Blobstore is rather scalable and easy to manage.

5.4 Cloud Computing Server

We deployed our cloud computing application on Google App Engine by using
frontend F4 instance class. A servlet is made available for request handler.
Searching Application sends request to this servlet and includes encrypted
query as a HTTP Get request. CCS server when receives the request, gets
the encrypted query and access all the files stored in the Blobstore. All the
index entries in the index files are added with the query and compressed by
using polynomial P.

Chapter 6

RESULTS AND
PERFORMANCE
EVALUATION

In cloud environment when the confidential data is outsourced after
encryption then end user can no longer perform searching and gets desired
file from the set of encrypted files. This is mainly due to the fact that
standard lookup queries cannot be evaluated on cipher-text by using logical
comparison. Although, CSP provides built-in encryption for the outsourced
data but it does not ensure end to end privacy as CSP can learn what a user
is searching and also as security keys are managed by CSP so it can also
learn about the outsourced data.
Certain efforts have been made in order to provide searching capabilities over
the encrypted data. Most of the techniques rely on cryptographic trapdoors
to enable searching over encrypted data. However, these techniques are
not suitable for searching in cloud environment due to the drawbacks of
trapdoors.
This chapter aims at highlighting the results and performance of our proposed
system. Proposed system is evaluated on two levels. One is indexing and
second is searching. Indexing part is evaluated based on execution time of
index creation, size of the resultant index file and varialbes effecting overall
indexing mechanism like Pascal Paillier key size. Evaluation of searching part
inlcudes query evaluation time on cloud side by having certain number of
index files and response extraction. Moreover, results of our novel approach
for similarity score calculation and communication cost reduction are also
presented.
Let’s start evaluation by describing the details of our testing envirement.

33

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 34

6.1 Experimental Setup

Dataset aquizition is basic requirment for testing our system. We collected
and prepared dataset as describe in Table 3.1. For Indexer Application, we
used a standard laptop machine with following specs 6.1:

Table 6.1: Machine specs used for indexer application

Spec Name Spec Value

Machine Type
ThinkPad 430

OS
Windows 7 64-bit

CPU
Core(TM) i5-332M
2.6 GH

RAM
8-GB

Same machine is used for Searching Application. For Cloud Computing
Applicatin, we deploy it on GAE and used standard B4 frontend instance
class of GAE having following specs Table 6.2:

Table 6.2: Specs for cloud computing application

Spec Name Spec Value

Cloud Computing Server
GAE

Instance Class
B4

CPU
2.4 GH

RAM
512 MB

Cost
$.20/hour per
instance

6.2 Index Generation and Processing

Technical details of index creation process is discussed in section 3.3. Index
creation is a compute intensive task as it has to perform keywords extration
until phsycial index file creation on the disk. Figure 6.1 shows execution time
for the index creation. Figure fig: Index-Generation-Time is based on Table
3.1 with 64bit Pascal key and 3Kb BF size.

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 35

Figure 6.1: Index generation time

Paillier key size and BF size have a huge impact on index file size. As with
the increase of BF size, number of indexes will get increased and hence size
of an index entry will be increased which will result increase in overall index
file size. With the larger BF size, more index entry needs to be processed so
execution time will get increased as shown in figure 6.2

Figure 6.2: BF size impact on index generation time

Security can be strengthened with a larger Pascal key size. However, with the
increase of Pascal Key size index file size will also get increased. Following
figure 6.3 shows the result of increasing Pascal key size over same data:

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 36

Figure 6.3: Paillier key size impact on index file size

6.3 Searching

Searching process is evaluated in terms of data returned by a query, response
time, CPU cycles used to process a search request and the cost($) CSP
will charge for search queries. As query creation is a similar process as
index creation so we will have similar results as those for indexing process.
For private term matching and data returned, our implementation has
demonstrated that by using over compression algorithm data returned by
cloud computing serive is 96% less and remains constant despite increasing
size of BF as shown in figure 6.4.

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 37

Figure 6.4: Search results compression Vs. uncompressed results

We evaluated our application’s response extraction time and results show
that its time increases linearly as number of search term increases as
demonstrated in figure 6.5.

Figure 6.5: Response extraction time

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 38

6.3.1 Cost Estimation

We have evaluated cost($) that CSP will charge to data owner for search
queries. Our results as in figure 6.6 shown that single keyword searching
query with having 500-3500 index entries will cost only 0.000002 to .00002
$ per 1000 similar queries. We obtained this cost from Google App Engine
logs for each request. In each log entry ms, cpu ms and cpm usd depicts
response time, number of clock cycles used by CPU to process the request
and cost($) incured for 1000 similar requests.

Figure 6.6: Searching cost with single keyword query

We also evaluated perform cost($) analysis with multi-keyword query. And
we noticed that number of keywords in a query has huge impact on response
time. With the increase of search criteria cost($) increase exponentially as
shown in fgiure 6.7. With the increase of each keyword, more search results
are created and hence more CPU cycles are required to process them which
in turn increase response time and cost ($).

CHAPTER 6. RESULTS AND PERFORMANCE EVALUATION 39

Figure 6.7: Searching Cost($) with multi-keyword query

Chapter 7

CONCLUSION AND
FUTURE WORK

This chapter discusses conclusion of the thesis and describes the future work
that can be done to extend this research.

7.1 Conclusion

In this thesis, we proposed and implemented a privacy-aware similarity
based searching scheme over encrypted data residing in an untrusted cloud
domain. Our scheme ensures privacy of user query and by using HE for index
files, CSP cannot learn anything about index files, search query and cannot
create any pattern even similar queries are performed by different users.
Moreover, unlike other techniques, our proposed system performs similarity
based searching so that user can get most relevant files even if he does not
know the exact keyword. By using our technique data owner will just need
to create index files once and all authorized users can query from that index.
Our system is not using any trapdoor so end users are not limited to the
already defined trapdoors, thus end user can create any arbitrary query of
his own choice and can perform searching. We have reduced communicated
cost between CCS and searching application over 95% by compressing search
result entries.

7.2 System Limitations & Future Work

Current implementation of our proposed system does not support enriched
range queries. We have intensions to incorporate range queries with the
current implementation. We have demonstrated and tested our system with

40

CHAPTER 7. CONCLUSION AND FUTURE WORK 41

comparatively smaller set of data. Hence, with the larger amount of data like
petabytes, Indexer Application might take significant time from minutes to
hours to generate encrypted index. Thus, Hadoop framework can be utilized
for indexing purpose also Parallel Computing can be used to reduce indexing
process time.
In the current implementation, Searching Application have a lot of work
processing load. As this will be a client side and may not be on an
optimized machine, we can introduce a TTP which can share from Searching
Application.

Appendix A

Performance evaluation: Data
Tables

Graphs visualized in chapter 6 are based on following data tables.

Table A.1: Keywords extraction and encryption time

File Size Keywords
(x1000)

Indexing
Time

Encryption
Time

5 5 1 2
10 10 2 3
20 17 3.5 4.5
40 42 7 8
60 70 11 12
100 129 17 18

Table A.2: BF size impact on index creation time

File Size Keywords
(x1000)

Using 2KB BF
(sec)

Using 3KB BF
(sec)

5 5 2 3
10 10 4 6
20 17 7 11
40 42 16 24
60 70 26 40
100 129 49 74

Table A.3: Impact of HE key and BF sizes on index file size

42

APPENDIX A. PERFORMANCE EVALUATION: DATA TABLES 43

Paillier Key Size
(bits)

Using 2KB BF
(MB)

Using 3KB BF
(MB)

16 .15 .222
32 .214 .319
64 .406 .607
128 .727 1.087
256 1.427 2.1

Table A.4: Single-keyword query searching cost

Index Entries CPU Time (ms) Response Time
(ms)

Cost($) per 1000
requests

500 668 421 0.000003
1000 1257 670 0.000005
1500 1858 1000 0.000007
2000 2447 1400 0.000009
2500 3157 1800 0.000011
2500 3868 2250 0.000014

Table A.5: Multi-keyword query searching cost

Selection
Criteria

CPU Time (sec) Response Time
(ms)

Cost($) per 1000
requests

2 2.827 1.372 0.000003
4 6.076 3.484 0.000005
6 9.115 5.406 0.000007
8 13.291 7.119 0.000009
10 17.018 9.315 0.000011

Bibliography

[1] P. Paillier, “Public key cryptosystems based on composite degree
residuosity classes,” in 17th international conference on theory and
application of cryptographic techniques, p. 223238, Springer, 1999.

[2] K. N. Dan Boneh, Eu-Jin Goh, “Evaluating 2-dnf formulas on
ciphertexts,” in Theory of Cryptography, pp. 325–341, Springer, 1999.

[3] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices.”
https://www.cs.cmu.edu/ odonnell/hits09/gentry-homomorphic-
encryption.pdf, 2009.

[4] “Practical techniques for searches on encrypted data.” ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=848445, 2000.

[5] “Public Key Encryption with Keyword Search.” http://link.

springer.com/chapter/10.1007%2F978-3-540-24676-3_30, 2004.

[6] “Achieving secure, scalable, and Fine-grained data access control
in cloud computing.” ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5961719, 2011.

[7] “Efficient Search on Encrypted Data Using Bloom Filter.” ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=6828170, 2014.

[8] NARA and R. Daitch, “Soundex Coding System.”
http://www.jewishgen.org/InfoFiles/soundex.html, 2007.

[9] “Efficient Similarity Search over Encrypted Data.” ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=6228164, 2012.

[10] S. J. Golle P. and W. B., “Secure conjunctive keyword search
over encrypted data,” in Applied Cryptography and Network Security
Conference, Springer, 2004.

44

BIBLIOGRAPHY 45

[11] P. Lin and K. S. Candan, “Ensuring privacy of tree structured data and
queries from untrusted data stores,” in Information Systems Security
Journal, 2004.

[12] “Privacy-
aware searching with oblivious term matching for cloud storage.” http:

//link.springer.com/article/10.1007/s11227-012-0829-z, 2013.

[13] Apache, “Apache PDFBox.” https://pdfbox.apache.org/.

[14] R. K. L. Yu S, Wang C, “Achieving secure, scalable, and fine-
grained data access control in cloud computing,” in 29th conference
on information communications, INFOCOM 10, Piscataway, NJ, USA,
New York, p. 534542, IEEE, 2010.

[15] M. Porter, “The Porter Stemming Algorithm.” http://tartarus.org/

martin/PorterStemmer/.

[16] Apache, “Apache Lucene.” https://lucene.apache.org/core/.

[17] Google, “Google Cloud Platform.” https://cloud.google.com/.

[18] Google, “Google App Engine.” https://appengine.google.com/.

[19] Google, “Google blobstore.”
https://cloud.google.com/appengine/docs/java/blobstore/.

[20] Apache, “Murmur3 Hashing.” https://svn.apache.org/repos/asf/

mahout/trunk/math/src/main/java/org/apache/mahout/math/

MurmurHash.java.

[21] GitHub, “Jenkins Hashing.” https://github.com/vkandy/

jenkins-hash-java/blob/master/src/JenkinsHash.java.

[22] GitHub, “XXH Hashing.” https://github.com/Cyan4973/xxHash.

[23] K. Liu, “Pascal P Implementation.” http://www.csee.umbc.edu/

~kunliu1/research/Paillier.html.

