

SUBM

NATIO

 IN PART

END

MITTED T

ONAL UNI

TIAL FULF

 COM

 HOST M

A
S

W

TO THE F

IVERSITY

R

FILLMEN

MPUTER S

 iii

MONITO

By

Aziz Allaud
Savera Tan

Waleed Man

ACULTY

Y OF SCIE

RAWALPI

NT FOR TH

DEGREE

OFTWAR

ORING A

ddin
nwir
nsoor

OF COMP

ENCES AN

NDI

HE REQU

IN

RE ENGIN

AGENT

PUTER SC

ND TECHN

UIREMENT

NEERING

CIENCE

NOLOGY

TS OF A B

,

B.E

 iv

MAY 2004

No portion of the work presented in this dissertation has

been submitted in support of another award or

qualification either at this institution or elsewhere

 v

Abstract

Large scale distributed systems such as computational and data grids require pervasive

end-to-end resource monitoring for effective problem diagnoses, performance analysis,

performance tuning and job scheduling. Gathering monitoring information can be a

tedious task in itself. The complexity in retrieving such an information originates from the

fact that not only we require knowledge of end systems but also the intervening network

segments, over which we may not have any control or administrative privileges, like the

Internet. The End host monitoring Agent (EMA) is a java based, dynamically

configurable monitoring tool, which enables the user for easy data acquisition from end-

hosts. The information comprises of static and dynamic performance data such as the

system, memory, CPU, disk and network parameters. It has built-in mechanisms for

regularly scheduled measurements and reporting of results to any data repository. EMA

is a lightweight tool and has a scalable, multilayered architecture. In this report we have

discussed the need for such an application, its architecture, design and applications in

detail. In the end results and some future tasks are enlisted.

 vi

ACKNOWLEDGEMENTS

 The EMA development team is thankful to Almighty Allah for the successful completion

of the project.

We thank our parents for their excellent support not only during the course of this project,

but also throughout our lives for without them, all this would have been impossible.

We are also thankful to our project supervisors; Dr. Arshad Ali, Director NIIT, Dr. Iosif

Legrand, Senior Software Engineer at Caltech, and Ahmad R. Shahid, Instructor at

NUST, for their guidance, support and instructive supervision throughout the project.

Acknowledgements are also due to HoD CS Department at MCS, Lt. Col. Raja Iqbal, Lt.

Col Nadeem, MCS faculty members and administration, who in spite of their busy

schedule provided guidance and support, not only during this work but also throughout

the course of the degree.

 iv

PREFACE

The development of high performance networks, such as Internet2’s Abilene network,

has enabled researchers to achieve high performance but only under certain conditions for

some advanced network applications. The users find a gap between the potential of such

high performing network infrastructure and their own experience. It is difficult to locate a

problem since little or no information is externally available about an underlying

network. To overcome these issues, an end-to-end view of the Internet, which involves

the network path as well as the hosts, the protocols and the applications, is required. The

End host Monitoring Agent (EMA) was developed as an effort to address these issues.

This report aims to make the reader understand the need and importance of resource

monitoring. It gives an analysis of existing tools and techniques and provides a new

infrastructure for host and network performance monitoring in the distributed

environment.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. vi

PREFACE ... iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... ix

IINNTTRROODDUUCCTTIIOONN... 1

1.1 BACKGROUND .. 2
1.2 SCOPE .. 5
1.3 AIM .. 5

LLIITTEERRAATTUURREE RREEVVIIEEWW ... 6

2.1 WHAT IS GRID? .. 7
2.2 BENEFITS OF GRID ... 8
2.3 MONITORING THE GRID ... 8
2.4 INTERNET 2’S END-TO-END PERFORMANCE INITIATIVE ... 9
2.5 E2EPIPE SYSTEM ARCHITECTURE ... 11

2.5.1 Engineering Assumptions and Goals ... 11
2.6 PERFORMANCE ELEMENTS ... 12
2.7 NEED FOR EMA ... 14

IINNCCEEPPTTIIOONN ... 15

3.1 PROJECT VISION ... 16
3.2 THE NATURE OF THE SYSTEM .. 16
3.3 GENERAL REQUIREMENTS .. 17
3.4 FUNCTIONAL REQUIREMENTS .. 17
3.5 AN OVERVIEW OF MEASUREMENT INFRASTRUCTURE .. 18

3.5.1. Measurement Attributes .. 18
3.5.2. Measurement Method .. 19
3.5.3. Information Exchange Format .. 20
3.5.4. Data Repository .. 20

EELLAABBOORRAATTIIOONN .. 21

4.1 DESIGN AND DEVELOPMENT DECISIONS .. 22
4.1.1 Platform Independence .. 22
4.1.2 Dynamic Downloading .. 23
4.1.3 Integration with existing tools ... 23
4.1.4 Highly Modular .. 23

4.2 PROCESSES, TOOLS AND TECHNIQUES USED .. 24

 vi

4.3 CHOICE OF DATABASE SERVER .. 24

CCOONNSSTTRRUUCCTTIIOONN .. 25

5.1 DESIGN AND IMPLEMENTATION DIRECTIVES .. 26
5.2 ARCHITECTURE .. 26

5.2.1 EMA Client Architecture .. 27
5.2.2 EMA Server Architecture .. 46

5.3 OBJECT MODEL .. 49
5.3.1 Monitor Package .. 49

5.4 INTERFACE DESIGN .. 53
5.4.1. Client Side GUI ... 53
5.4.2 Report GUI ... 57
5.4.3 Server End GUI.. 57
5.4.4 Histograms or Bar graphs ... 59
5.4.5 Remote Network Monitoring GUI .. 59
5.4.6 Historical Reports .. 60

TTRRAANNSSIITTIIOONN .. 61

6.1 DEPLOYMENT ... 62
6.2 BETA TESTING ... 62

6.2.1 Testing Environment .. 62
6.2.2 Software Testing... 63
6.2.3 Stress Testing ... 64
6.2.4 Software Inspections .. 64

RREESSUULLTTSS .. 66

7.1 PERFORMANCE RESULTS .. 67
7.2 NETWORK TRAFFIC ANALYSIS ... 68
7.3 LOAD CALCULATION RESULTS .. 68

CCOONNCCLLUUSSIIOONN .. 73

8.1 CONCLUSION .. 74
8.2 POSSIBLE ENHANCEMENTS .. 74

8.2.1 Integration of more Tools .. 74
8.2.2 Performance Data Analysis ... 75
8.2.3 EMA Server Enhancements .. 75

AAPPPPEENNDDIICCEESS .. 77

APPENDIX A – ABING .. 78
APPENDIX B – IPERF .. 80
APPENDIX C – JAVA WEB START ... 82
APPENDIX D – LOAD AVERAGE ... 84
APPENDIX E – MONALISA .. 90

BIBLIOGRAPHY ... 93

 vii

LIST OF TABLES

Table 4.1 Tools and Techniques 24

Table 4.2 Additional Support Systems 24

Table 6.1 Testing Environment 63

 viii

LIST OF FIGURES

Figure 5.1– Architecture ... 27
Figure 5.2 - EMA Client Architecture .. 30
Figure 5.3 – Windows Performance Monitoring Architecture ... 32
Figure 5.4 - Linux Performance Monitoring Architecture .. 37
Figure 5.5 – Data Collection Manager .. 42
Figure 5.6 – Statistics Reporting ... 45
Figure 5.7 – EMA Server Architecture ... 46
Figure 5.8 - Monitor Package ... 50
Figure 5.9 – Static Data Panel ... 53
Figure 5.10 – Host Statistics Panel ... 54
Figure 5.11 – Customization Options ... 55
Figure 5.12 – Iperf GUI .. 56
Figure 5.13 – Report GUI ... 57
Figure 5.14 – Administrator GUI .. 58
Figure 5.15 – Histograms and Line Graphs .. 59
Figure 5.16– Remote Network Monitoring GUI .. 60
Figure 7.1 – CPU Time Consumption .. 67
Figure 7.2 – CPU Usage Behavior .. 68
Figure 7.3 – Load Average Trends ... 69
Figure 7.4 – CPU Usage on Linux .. 70
Figure 7.5 – Load on Linux .. 70
Figure 7.6 – CPU Usage on Windows .. 71
Figure 7.7– Load on Windows .. 72

 ix

LIST OF ABBREVIATIONS

CERN - European Organization for Nuclear Research

CVS – Concurrent Versioning System

DLL – Dynamic Link Library

GigaPoP – Giga bit Point of Presence

GUI – Graphical User Interface

EMA – End host Monitoring Agent

E2Epi- End-to-End Performance Initiative

E2EpiPE - End-to-End Performance Initiative Performance Environment

JNI – Java Native Interface

JNLP – Java Native Language Protocol

JWS – Java Web Start

LAN – Local Area Network

MonALISA – Monitoring Agents using a Large Integrated Service Architecture

NIC- Network Interface Card

OS – Operating System

PMP – Performance Monitoring Points

PDH – Performance Data Helper

QoS – Quality of Service

RTT – Round Trip Time

SNMP – Simple Network Management Protocol

UCAID - University Corporation for Advanced Internet Development

WMI - Windows Management Infrastructure

WAN – Wide Area Network

 1

IINNTTRROODDUUCCTTIIOONN

11

 2

1.1 Background

There has been tremendous advancements in the field of computer networks/data

communications, over the past few years. Data transfer rates have improved by a factor of

1 million in just 25 years [1]. Today we have long haul, high speed networks, capable of

transferring data at the rate of Giga bits per second. However, despite the advancements

in network technology, users still have to contend with less than optimal performance.

This stands true for the high speed bandwidth links used for scientific research as well as

ordinary TCP communication. Performance and quality of service is vital for active

research; especially where huge amounts of data are transferred over the networks.

When a user experiences a performance bottleneck with an application that employs

long-haul, high-speed Internet connections, it can become very difficult to locate the

cause of the problem. Even if the problem is located, finding the qualified person to fix

it, is even harder. This is primarily due to the decentralized nature of the Internet, where

each network operator can run his/her network with very little coordination with other

network operators. While this approach has created great flexibility and independence in

building the Internet, and is one of the main reasons the Internet has seen exponential

growth in so short span a time, it has also hampered the provision of any service/s that

needs cooperation across operating domains.

Currently, little or no operational information is externally available about a network

domain, which makes it particularly difficult to locate problems. This necessitates the

development of tools that could help in locating and troubleshooting such problems. A

 3

number of such tools have been developed that provide valuable information regarding

various different aspects of network performance; but a single tool normally focuses on

just one aspect of performance measurement and/or requires a relatively advanced

technical knowledge about networks and protocols in order to interpret the results. This

makes it infeasible for users from other domains to use such tools. This also leads to the

“Wizard Gap” [2].

To overcome the above mentioned hurdles, and to enable high network performance, the

need was felt to develop an infrastructure that fulfills the requirements:

1. A mechanism for gathering necessary information from the hosts and network

segments.

2. Availability of centralized information storage/analysis engine, capable of problem

detection.

3. Problem diagnoses/reporting mechanism.

4. Development of an easy to use user interface, which lets an end user, with little

knowledge of the network, understand the capabilities of his network path.

Such an infrastructure will provide the end users with a simplified but efficient way of

solving performance issues.

Internet2 End-to-End Performance Initiative Performance Environment System (E2E

piPEs), is one such framework, that is still under development, that will be able to

 4

indicate performance capabilities and locate performance problems along the path

between two computers connected through the UCAID Abilene network, participating

campuses, regional networks, and gigaPoPs. [3]. It aims to fulfill all the above mentioned

objectives. Such an infrastructure will significantly improve the likelihood of advanced

Internet applications operating at peak performance and thereby increasing the

productivity of researchers.

The key to developing such an infrastructure lies in the use of existing tools and

techniques in a way that integrates them to create more comprehensive and easy to use

tools. Moreover, accurate and effective diagnostics of network problems not only

requires information about the networks, but issues related to end-hosts involved in the

communication are also important. This is due to the fact that it is the host that provides

the user with an interface to the network and to maintain throughput levels, the host

system must be able to move data from the application buffers, through the kernel, and

onto the network interface buffers at a speed faster than that of the network interface. The

hosts represent the logical dividing point between the "network" and user.[3] Quite a few

performance problems are related to host configuration. This includes problems related to

TCP (the most widely used protocol), operating system, NIC, firmware, application etc.

Therefore, it is essential that information about hosts should be gathered and its

performance monitored over a period of time.

 5

1.2 Scope

The concept of de-centralized monitoring is a rarity in majority of the monitoring tools

currently available. Mostly, nodes are monitored via SNMP (Simple Network

Management Protocol). This puts heavy load on the servers and causes a lot of network

congestion. To remove these bottlenecks, a monitoring tool was designed keeping in view

the de-centralized monitoring architecture, where each node was responsible for reporting

the parameters to central server. However, such a tool should not be heavy on the

resources rather it should consume negligible resources of the end-host. Once developed,

it can be deployed across LANs, WANs, different types of Grids and also at the same

time serve as the primary monitoring client end of Internet2.

1.3 Aim

The aim of this report is to highlight the features offered by End host Monitoring Agent :

an application for gathering and representing host and network information and to bring

the efforts and course of development of EMA into limelight so that others might use it

and further advance it.

 6

LLIITTEERRAATTUURREE RREEVVIIEEWW

22

 7

2.1 What is Grid?

The term “Grid” was coined in the mid 1990s to denote a proposed distributed computing

infrastructure for advanced science and engineering research [4]. Considerable progress

has since been made on the construction of such an infrastructure. Increasingly,

computing is concerned with collaboration, data sharing, and other new modes of

interaction that involve distributed resources. The result is an increased focus on the

interconnection of systems both within and across enterprises, whether in the form of

intelligent networks, switching devices, caching services, appliance servers, storage

systems, or storage area network management systems. These enhancements in services

generate new requirements for distributed application development and deployment.

Today, applications and middleware are typically developed for a specific platform (e.g.,

Windows NT, a flavor of Unix, a mainframe, J2EE, Microsoft .NET) that provides a

hosting environment for running applications.

But in spite of this diversity, the continuing decentralization and distribution of software,

hardware, and human resources makes it essential that desired qualities of service (QoS)

are achieved on resources assembled dynamically from enterprise systems, service

provider systems, and customer systems. QoS can be measured in terms of common

security semantics, distributed workflow and resource management performance,

coordinated fail-over, problem determination services, or other metrics. New abstractions

and concepts are needed that allow applications to access and share resources and

services across distributed, wide area networks.

 8

Such problems have for quiet sometime posed concerns central importance to the

developers of distributed systems for large-scale scientific research. Work within this

community has led to the development of Grid technologies [4, 5], which address

precisely these problems and which are witnessing widespread and successful adoption

for scientific and engineering computing.

2.2 Benefits of Grid

Grid concepts and technologies were first developed to enable resource sharing within

far-flung scientific institutions [6, 7, 8]. Applications included collaborative visualization

of large scientific datasets (pooling of expertise), distributed computing for

computationally expensive data analyses (pooling of compute power and storage), and

coupling of scientific instruments with remote computers and archives (increasing

functionality as well as availability) [4]. Similar applications are expected to become

important in commercial settings, initially for scientific and technical computing

applications and then for commercial distributed computing applications, including

enterprise application integration and business to business (B2B) partner collaboration

over the Internet. Just as the World Wide Web began as a technology for scientific

collaboration and was adopted for e-business, for the future seems equally bright for Grid

technologies and computing.

2.3 Monitoring the Grid

An essential part of managing a global Data Grid is a monitoring system that is capable

of monitoring and tracking of the many site facilities, networks, and the many tasks in

progress, in real time. The monitoring information gathered is also essential for

 9

developing the required higher level services, and components of the Grid system that

provide decision support, and eventually some degree of automated decisions, to help

maintain and optimize workflow through the Grid.

Grid platforms depend on monitoring and provision of information services to support the

discovery and monitoring of the distributed resources for various tasks. For example, a

user may want to determine the best platform on which to run an application, a client

program may want to collect a stream of data to help steer an application, a system

administrator may want to be notified when changes in the system load occur or free disk

space is available or a user having problems with the network may want to know the

bottlenecks to fix them. For all the above mentioned problems, a performance monitoring

infrastructure was needed.

2.4 Internet 2’s End-to-End Performance Initiative

Internet2 is a consortium led by over 200 universities working in partnership with

industry and government to develop and deploy advanced network applications and

technologies, accelerating the creation of tomorrow's Internet. The aim of the Internet2

project [9] is to recreate the original partnership among academia, industry and

government towards the three-fold goal of creating a leading edge network capability for

the national research community, enabling revolutionary Internet applications and

ensuring the rapid transfer of new network services and applications to the broader

Internet community.

Internet2 allows for "grid" computing, which enables distributed global problem solving.

 10

Internet2 provides immediate access to resources and experiences otherwise unavailable

over the "commodity" Internet.

Recent experience within the Internet2 community has shown that even with high

bandwidth connections campus researchers do not often see concurrent performance.

Research into this apparent performance disparity reveals bottlenecks and problems at

various points along the end-to-end network path. A network engineer or an applications

specialist would find bottlenecks and problems at a variety of points along the end-to-end

network path between what the researcher sees on the screen and the resource at the other

end of the connection. The main objective of the Internet2 End-to-End Performance

Initiative [10] was to identify common problems, identify tools and techniques to detect

and solve these problems, and to define and implement an operational environment where

a researcher could expect to use the full capability of the network on a regular basis.

Advances in the operational deployment and use of active and passive measurements and

in the robustness of end-hosts and applications are expected as a result of this Initiative,

which includes participation from campuses, network operators, network researchers, and

vendors of network and computing equipment.

The goal of this project is to aggregate tools and integrate resulting data to allow existing

measurement techniques to be used over an end-to-end path to determine the performance

of various segments that make up that path. The project will also use the work of others

to create a repository of performance data that would be available for use by all people.

This data repository should help reduce the number of active tests (possibly redundant in

 11

nature) on the network by providing access to recent tests that meet the requirements of

the requestor. The project will also develop an easy to use tool interface that lets an end

user, with little knowledge of the network, understand the capabilities of the network

path. If the performance is less than expected, the system will assist the end user in

determining which link is creating the bottleneck and who to contact to get it fixed. The

system will also keep a record of the tests so that they may be passed on to the contact

experts, showing the reason that a particular segment of the path is suspected of mis-

behavior.

2.5 E2EpiPE System Architecture

2.5.1 Engineering Assumptions and Goals

The E2E piPE system was built on the following network engineering assumptions [11]:

1. The general problem of inadequate end-to-end performance has a wide variety of

causes and cannot be solved by a single tool and/or a single viewpoint on the

network..

2. End-to-end performance problems, almost by definition, cross boundaries

between multiple autonomous administrative domains.

3. End-to-end performance problems can occur at points in between two intended

end points. Thus the aim is to identify where in the intended path lies the problem

4. End-to-end performance problems are often experienced by end users who are not

highly trained network engineers and who may not be intimately familiar with the

implementation details of the advanced network application they are employing.

5. While many good tools useful in solving end-to-end performance problems exist,

understanding how to use them correctly, understanding how to interpret their

 12

results, and knowing who to contact to fix a particular problem is something

beyond the expertise of the most end users.

6. Solutions aimed at solving end-to-end performance problems should not

significantly degrade performance and/or increase security risks to the network.

The design goals for the project are:

1. Achieve modular, open source design, allowing other researchers to contribute to

the ongoing evolution of the product.

2. Achieve decentralized control with no single points of failure.

3. Enable voluntary participation of multiple administrative domains, as end-to-end

performance problems inherently span multiple administrative domains.

4. Create a hierarchical system of authentication and authorization that prevents

denial-of-service attacks from either undermining or being launched from the

system.

5. Make collected network data available to researchers for uses beyond those

envisioned by this project.

6. Make intelligent reuse of existing public domain software, as limited resources

preclude reinventing the wheel.

7. Collaborate closely with other ongoing projects by other groups, so there is no

unnecessary duplication of effort.

2.6 Performance Elements

A system-level view of the Internet encompasses host platforms, which include their

hardware, operating system (OS) and application software and other network path

 13

characteristics of the intervening segments connecting the host platforms.

End-to-end performance involves host system characteristics such as memory, I/O,

bandwidth, and CPU speed; the OS; and the application implementation. To maintain

throughput levels, the host system must be able to move data from the application

buffers, through the kernel, and onto the network interface buffers at a speed faster than

that of the network interface. Apart from that the network segments play a major role in

determining the performance. Also there can be configuration limitations and network

protocol issues.

Broadly we can identify three major problem areas: network configuration, network

protocols, and applications.

“Starting from the host is a logical first step which in this regard and it has the potential

to make the biggest impact”. [12] The hosts represent the logical dividing point between

the “network” and the “user” therefore we must enable “data acquisition” from the hosts

involved. Many problems are related to host configs, TCP/IP stacks, OS version, NICs,

firmware, application design, etc.

The system should be able to dynamically download a platform independent data

gathering application which can extract relevant host information that basically is divided

into three categories: stable, dynamic and network information.

Also the system is able to conduct network path testing between two nodes. The test

could be a defined set of measurements, Ping (reachability/RTT), One-way loss (each

 14

direction) and Iperf (bandwidth EACH way, measured simultaneously)

2.7 Need for EMA

In order to carry out the above mentioned tests, a system is presented that has the

capability of gathering system level information from the end-host, supporting the two

most widely used operating systems i.e. Windows and Linux. The series of tests can be

run by a Java application as java provides platform independence. The application can be

dynamically downloaded from the web servers. Implementation of the Java Network

Launching Protocol relieves the user from the drudgery of installation and configuration

of the application. In addition to that, the application provides the user with the facility to

carry out bandwidth measurement tests through an easy to use interface to already

existing tools. Dynamic host information is recorded at both ends. Provision for

reporting the monitored values to a remote server for possible analysis also exists. These

Logged events could be further analyzed by central servers with access to current

network details. Users could be referred to the most likely problem domain with current

contact information provided by the central server.

 15

IINNCCEEPPTTIIOONN

33

 16

3.1 Project Vision

Dr. Iosif C. Legrand is a Professor at California Institute of Technology (Caltech). As

Caltech is part of Internet 2 collaboration, Dr. Iosif is an important member of Internet 2

organization and is responsible for development of monitoring infrastructure for Internet

2. For this purpose, currently he is working at CERN on the LHC Grid project. There is

an ongoing collaboration between NUST and CERN. Dr. Arshad Ali is supervising

number of projects that are being developed for LHC Grid. Dr. Arshad and Dr. Iosif after

mutual round of discussions, proposed that a project be carried out to develop a

monitoring software for Internet 2 which follows E2Epi monitoring architecture to some

extent. After some format selection procedures, and some informal discussions, we were

selected as group members with Dr. Arshad and Dr. Iosif as supervisiors.

The central idea of the project was to develop a monitoring system, which gathered

performance data of various components of the network and present the user with a high

level as well as detailed view of the Network performance.

3.2 The Nature of the System

The major portion of the system consisted of a subsystem, which gathered real time

performance parameters of the local machine. This included a number of parameters like

CPU Usage, number of threads etc. The network performance was measured by carrying

out different type of tests between various nodes.

 17

3.3 General Requirements

A list of general requirements of the above mentioned system is given below:

1. The system should measure performance of the hosts as well as the network path

between the hosts.

2. The system should be platform-independent; it should work exactly the same way

on both Linux and Windows.

3. The system should be dynamically configurable; it should not require any

complex installation procedures and instructions.

4. The system should support remote monitoring.

5. The system should be scalable so that it can accommodate new tools and

techniques without affecting the existing modules.

6. The system should be highly integratable to allow its integration into large Grid

Monitoring Infrastructure.

7. The application should have a comprehensive and easy to use Graphical User

Interface.

3.4 Functional Requirements

The general requirements gave an overview of the functionalities that the system should

encompass. The next step was to divide the system into subsystems that would help

realize the use case model. Splitting the functionality at this early stage helped to further

unfold the problem to be solved. The modules identified are enumerated below:-

1. Host Performance monitoring modules

a. Windows Performance monitoring Modules

 18

b. Linux Performance Monitoring Modules

2. Network Performance Monitoring Modules

a. Module for Abing

b. Module for Iperf

3. Data management module

4. Information reporting module

5. Remote monitoring module

6. Server Module for information receipt

7. Performance Data Storage Module

8. Client Graphical User Interface

9. Administrator Graphical User Interface

3.5 An Overview of Measurement Infrastructure

The measurement infrastructure collects and provides all the basic measurement data

used to determine performance. The infrastructure consists of all the measurement

devices that collect the basic measurements and stores them for use in analysis.

3.5.1. Measurement Attributes

Measurement attributes are the data that is associated with a particular measurement. This

includes not only the particular measurement value but also information that indicates

how, where and when the measurement was taken.

3.5.1.1. Measurement Type

This attribute is the main aspect of measurement collected. There are two types of

 19

measurements Network Measurements and Host/Application Measurements.

The Network Measurements consist of Percentage Packet Loss, Bandwidth and Round

Trip Time. While the Host/OS/Application measurements consist of Memory Usage,

CPU Load, Number of processes and threads, Available and used memory, Disk Usage,

Pages in and out, Disk space and the Network interface traffic.

3.5.2. Measurement Method

There are different methods of obtaining measurements. This section will look at some of

those methods and discuss some pros and cons of each method.

3.5.2.1. Active Measurement

“Active Measurement” sends sampling data along a path to determine the network

performance. It may be desirable to develop reference traffic profiles for different types

of applications that can be used as benchmarks. However active measurement also

consumes the resources that it measures. To prevent all network bandwidth being

consumed by active measurements, they need to be limited in use.

3.5.2.2. Passive Measurement

“Passive measurements” are taken by observing the existing traffic. Passive

measurements can easily be used to determine gross performance characteristics, for

example measuring packets delivered through an interface. Passive measurements

become more difficult with increased detail. It is also more difficult to select the

appropriate data for passive measurement as the speed increases. However passive

 20

measurements have the advantage that they do not affect the network performance.

3.5.3. Information Exchange Format

The Information Exchange Format is the specification of how the Measurement

Attributes will be presented when transferred to a device requesting the information. The

Format could also influence the way the data is stored in Data Repositories. Although the

Measurement Attributes will use the format for representation, the format should be

designed to be flexible enough to accommodate all future Measurement Attributes.

3.5.4. Data Repository

A data repository is a collection of measurement data from an area of the measurement

infrastructure. It will contain information from all methods of measurement, active,

passive, etc. A data repository may also do some aggregation or analysis on the data and

store the results for later retrieval by the clients.

 21

EELLAABBOORRAATTIIOONN

 44

 22

4.1 Design and Development Decisions

 After carrying out research and thorough analysis of the problem domain, following

design and development decisions were taken.

4.1.1 Platform Independence

The Internet2 comprises of heterogeneous networks. Moreover the hosts forming the

networks are also diverse in nature. Different operating systems plus different

architecture/OS combinations are present. The monitoring system should be able to deal

with this heterogeneity. It should be platform independent and give a uniform view to the

user, no matter what the underlying platform may be.

Java was thus naturally selected as the language of development, as it is supported on

many platforms. However different OS’ have different mechanisms for extraction of

performance related information. Java does not have a uniform API for performance

monitoring. Therefore it was decided that different Performance Monitoring Modules

should be developed for different Operating Systems. Appropriate modules can be loaded

at runtime and will give the user same interface regardless of underlying OS.

Different OS’ make available different parameters and not all are available on every

platform (for instance Load is not available on Windows Platform). Thus it became one

of the parts of this project to implement such missing parameters.

Windows and Linux were chosen as the two Platforms for which development was

 23

undertaken. As these two platforms comprise more than 95 % of the systems in Internet2.

All versions of Windows which are NT based (like Win 2000 and Win XP) were

supported. All major flavors of Linux like RedHat , Slackware, Debian are also

supported.

4.1.2 Dynamic Downloading

One of the major requirements of the system was that it should be as much user friendly

as possible. Therefore the application was made dynamically downloadable. Java

Webstart Technology was selected for this purpose, which uses Java Network Launching

Protocol. (For further discussion of Java Webstart see appendix 3). This relieves the user

of the hassle of installation and upgrading. Moreover it makes it easy for the developers

to distribute the latest versions of the software by just placing it on the web servers.

 4.1.3 Integration with existing tools

For network performance measurement part, many tools are available which take one

measurement or the other. Examples of these tools are Web100, Iperf, Abing and Ping.

Rather than re-inventing the wheel, integration of tools became the main aim of the

project.

4.1.4 Highly Modular

Design of the application was kept highly modular so as to cope with changing

requirements. The design has been kept so much modular that if a new performance

monitoring module is added, only a single line of code needs to be added in one of the

 24

classes and the rest of the modules (like the Control Layer, the GUI, and the database

layer) adopt accordingly.

 4.2 Processes, Tools and Techniques used

Table 4-1: Processes, Tools and Techniques

Development process Rational Unified Process
Analysis & Design Object Oriented Analysis and Design

Programming Language Java and Visual C++
GUI Designing Java API

Web access Java Web Start
Network Communication UDP and TCP
Main Development IDE EditPlus, KWrite

Linux Desktop KDE

Table 4-2: Additional Support Systems

Versioning System CVS (Concurrent Versioning System)

Video Conferencing System
VRVS (Virtual Room Video Conferencing

System)
Database Server mySQL

Web Server Microsoft IIS, Apache
API Documentation Java doc 1.4.2, MSDN

FTP Linux wuftp System
Build tool Ant

 4.3 Choice of database Server

The monitoring system maintains a central repository of all the monitoring information

for a certain period of time. For this a database is needed. The three main requirements

the design specifies for the database are that it should be open source and free, it should

be really fast and lightweight and lastly it should be supported by JDBC. After comparing

and analyzing many open source databases, mySQL was selected. It fulfills all the above

requirements and its response time is faster than some other commercial databases like

the Oracle [13].

 25

CCOONNSSTTRRUUCCTTIIOONN

55

 26

The iterative development approach was chosen, as it has been identified to be the most

favorable methodology for a successful development cycle by RUP. Thus designing and

redesigning of the system was carried out, to improve working of the system and to

rectify flaws, if any.

5.1 Design and Implementation Directives

The system comprises of a Client application gathering host characteristics and reporting

them to the repository, a server to receive the values that are integrated with the data

repository and an Administrator Interface for remote monitoring and data analysis.

5.2 Architecture

EMA has client-server architecture. The EMA clients run on each host and report

performance statistics to a central Server. The server has its own data repository to store

the received parameters. Apart from examining the reported host characteristics, the

administrator of the central server can also remotely monitor the network path between

any two EMA nodes. The over all scenario is depicted in the figure 5.1. Both the clients

and the server have separate graphical user interfaces.

Keeping in view the future requirements for retrieving new parameters, and integrating

new tools, the overall application architecture has been kept sufficiently modular. This

modular approach is also according to the guidelines of E2E performance initiative.

Furthermore the architecture is layered to separate the parameter categorizing and

presentation logic from parameter extracting logic.

 27

Figure 5.1– Architecture

5.2.1 EMA Client Architecture

EMA Client monitors three types of information: static, dynamic and network. They are

further categorized into three classes i.e. stable, dynamic and network information.

The Stable Information is least likely to change during a single session. It includes the

parameters, IP Address, MAC Address, System, Architecture, Kernel, User, Java Vendor

and Java Version.

In contrast to that the Dynamic Information covers system parameters that are changed at

a rapid pace and reflect the most recent state of the system as a whole. Dynamic

information can be divided into sub-categories as CPU, System, Memory, Disk and

Network Interface.

EM A C lien t

E M A C lien ts

EM A C lien t

E M A S erver
D a tabase

A dm in is trato r G U I

E M A C lien t

EM A C lien ts

In itia te N etw ork Test

R eport H ost S ta tis tics

Test N etw ork P ath

 28

The CPU category covers different areas of CPU usage. The information displayed

comprises of the overall CPU being used, the percentage of CPU being used by system

and user processes and the percentage of processor(s) being spent in idle state.

The System category parameters display the current state of the system in terms of

number of processes and the number of threads. It also provides a description of average

load over the last 1, 5 and 15 minutes.

Memory describes the amount of memory usage, used memory, free memory, page in/sec

and page out/sec.

Parameters in the Disk category show the rate of disk I/O along with used and available

disk space statistics.

Network Interface comprises of information pertaining to traffic I/O for all network

interfaces present on the host.

Network Information includes the information of the network path between the host

systems. This information is collected on demand and consists of Bandwidth which is the

bandwidth to and from another host, RTT that gives the round trip time and Packet Loss

which represents the packet loss in the path between two hosts on the network.

Parameters like those discussed above can be used to diagnose problems concerning the

host system characteristics/configuration. Some of these parameters such as “CPU

Usage” can be directly obtained from the underlying operating system, while others like

“System Load” have to be derived from a number of other parameters. Furthermore, new

categories and parameters can be easily added. Moreover EMA also integrates some

 29

available tools for obtaining statistics about the network.

EMA client architecture is divided into three layers. This layered architecture is shown in

figure 5.2.The first/lowest layer comprises of modules that interact with host operating

system and collect raw parameters. Different operating systems provide different

mechanisms for retrieving system information. This requires some platform specific

functionality to be added. To cater for this requirement, different sets of these modules

have been developed for each operating system. Currently EMA supports Windows and

Linux platforms. The application identifies the underlying operating system at runtime,

and appropriate modules are activated.

Second layer gathers the dynamic system information from the first layer. It validates and

arranges them into categories. It also presents a simple interface to the third/GUI layer,

which displays the information for the user. GUI design has been kept highly adaptive, so

that if new parameter gathering module is added at the lower layer at some later stage, the

GUI needs not be redesigned, rather it adjusts itself accordingly. Also EMA client can

run without the GUI and can act as a base layer to higher level performance tools. Thus

overall design of the application is highly scalable and facilitates easy integration with

the new tools.

 30

Figure 5.2 - EMA Client Architecture

5.2.1.1 DATA COLLECTION ENGINE

The main purpose of the data collection engine is to gather static and dynamic host

information from the operating system kernel, and the network information from the tools

like Abing and Iperf. Abing is a tool using the packet pairs dispersion technique to

estimate the available Bandwidth/bitrate (unused capacity) for a path in the network and

Iperf is a tool to measure maximum TCP bandwidth, allowing the tuning of various

parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram loss.

 The data collection engine can be broadly divided into three categories: Windows, Linux

and Network monitoring modules. A description of each is given below.

5.2.1.1.1 Windows Modules

GUI

Data Collection Manager

Linux
Data

Collection
Modules

Windows

Data
Collection
Modules

Network

Information
Collection
Modules

Data Collection Engine

 31

Performance information is extracted from the Windows operating system using a 2-layer

abstraction. This is shown in figure 5.3. The upper layer is implemented in java; it obtains

performance data from the lower layer modules and passes it onto the data collection

manager. The lower layer is implemented in Visual C++ by using the Windows Native

API. Performance Data Helper (PDH) library has been used which is a native library for

manipulating performance information for a Windows based system. The Performance

Data Helper (PDH) is a companion library to the native performance-monitoring features

of the Windows NT operating system. It is built on top of the standard performance-

monitoring features of Windows NT and doesn't really add any new functionality to

native performance monitoring.

The performance data that the Windows NT operating system provides contains

information for a variable number of object types, instances per object, and counters per

object type. The counters are used to measure various aspects of performance. For

example, the Process object includes the Handle Count counter to measure the number of

handles open by the process. An instance is a unique copy of a particular object type,

though not all object types support multiple instances. For example, the System object

has no instances since there is only one System. On the other hand, the Process object

supports multiple instances because Windows NT supports multiple processes.

PDH functions obtain performance data provided by WMI through providers that use

performance extension DLLs or the high-performance data provider object. [14]

By default, the operating system obtains performance data for system resources using the

registry. When we use performance tools to access registry functions for performance

 32

data, the system collects the data from the appropriate system object managers, such as

the Memory Manager, the input/output (I/O) subsystem, and so forth. [15]

As an option, Windows 2000 supports collecting data using the Windows Management

Infrastructure (WMI) interface. In addition to several of the system performance counter

DLLs, the operating system installs managed object files (MOFs) for data collection

using WMI instead of the registry. These files reside in System32\Wbem\Mof. The

Windows Management service must be running on the monitoring and monitored

computer (if different) in order to obtain data using WMI.

Figure 5.3 – Windows Performance Monitoring Architecture

System
Performance
DLL

System
Performance
DLL

System
Performance
DLL

Performance
Extension
DLL

Performance
Extension
DLL

Performance
Extension
DLL

Hi-Perf Data
Provider
Object

Hi-Perf Data
Provider
Object

Hi-Perf Data
Provider
Object

ADVAPI32.DLL

WMIRegQueryValueEx

PerfLib
Hi-Perf Provider Interface

Registry DLL Provider

PDH DLL

VC++ executable
OR

VC++ DLL

Java Modules
for

Wndows

 33

Data Collection Mechanism

The mechanism used for data collection is the counter. A counter is a performance data

item whose name is stored in the registry [16]. Each counter is related to some specific

area of system functionality. For instance, the processor’s busy time, memory usage or

number of bytes received over a network connection. Each counter is uniquely identified

by its name and its path, or location. In the same way that a file path includes drives,

directories, subdirectories, and file names, a counter path consists of four elements: the

machine, the object, the object instance, and the counter name. The syntax of a counter

path is:

\\Machine\PerfObject(ParentInstance/ObjectInstance#InstanceIndex)\Counter

Here the \\Machine portion is optional; if included, it specifies the name of the machine.

If we do not include a machine name, the PDH Library uses the local machine. The

\PerfObject component is required; it specifies the object that contains the counter. If the

object supports variable instances, then we must also specify an instance string. The

format of the (ParentInstance/ObjectInstance#InstanceIndex) portion depends on the type

of object specified. If the object has simple instances, then the format is just the instance

name in parentheses. For example, an instance for the Process object would be the

process name such as (Explorer) or (MyApp). The \Counter portion is required; it

specifies the performance counter.

A query is a collection of counters [16]. In order to collect data associated with the

counters, queries are created and counters are added to them. Each of these queries can be

 34

individually updated to gather the raw data associated with each counter in the query.

Java Windows Modules

EMA is basically developed in java to achieve the goal of platform independence;

therefore some method was required to collect this data from the VC++ application.

Modules have been developed which start the executable at the back end and parse the

information displayed by the executable using a Buffered reader.

Java Native Interface vs. Executables

Two approaches can be used to collect information from the lower layer. A dynamic link

library can be developed and java native interface can be used to call functions and

extract performance data from Windows kernel. The second approach is to develop

executables giving the required information and then parse it.

Both approaches were adopted during the development of EMA. Experiments showed

that JNI had memory leaks. The memory usage constantly increases by a fixed amount

and to fix that a garbage collector is required on the cost of CPU usage. Thus we need to

have a compromise on memory or processor usage. The executables neither increased the

memory nor the CPU usage. Therefore this approached has been followed.

Each module that has been developed for this purpose extends the cmdExec class, which

determines that if the operating system is Windows and starts the executable that collects

the required data. The Buffered Reader reads one line at a time from the output of the exe

(which is continuously displaying performance data values) and stores it in a string. A

String tokenizer is then used to parse the values for different parameters. The Windows

 35

modules associate a category and unit with each parameter and return the results to the

control modules. There are two java modules developed for gathering the required data

i.e monProcSystem and monProcNetwork

The monProcSystem module collects all the performance parameters except those

related to the network. The categories that fall under this are CPU, System, Memory and

Disk. The category CPU covers CPU Usage, CPU System, CPU User, CPU Idle. System

includes Processes, Threads, and Load Average.

Load average values have to be calculated for Windows, as these are not provided

directly by the operating system. The concept of load is taken from the Linux Operating

System. In Linux, “The load average numbers give the number of jobs in the run

queue (state R) or waiting for disk I/O (state D) averaged over 1, 5, and 15 minutes

[17].” “It is a damped time-dependent average [18].” In order to calculate the load on the

Windows, the following equation [18] was used

load(t) = load(t-1) e-5/T + n (1 - e-5/T)

Where n is the number of processes in ready queue or waiting for disk I/O and T is the

time period over which the load average is taken.

Memory category includes Pages in, Pages out, Memory usage, used and free memory.

Disk consists of Disk IO, used and free disk space.

 36

The monProcNetwork module is responsible for extracting the Network data from the

NetworkIO executable. The first value returned by the executable is the number of

Network Interface Cards on the system and based on that value the module formulates the

total number of network values to report back to the control module. The parameters

retrieved using this module are eth_in which is the rate at which bytes are received at the

interface, eth_out which is the rate at which bytes are sent onto the interface, Lo_in

which is the rate at which bytes are received at the loopback interface and Lo_out which

is the rate at which bytes are sent onto the loopback interface.

5.2.1.1.2 Linux Modules

Linux provides a proc directory, which is a subdirectory of root (/). This is where the

information about various system resources is stored in the form of files. The user can

read these using any command or text editor. Similarly programmers also only need

standard file reading procedures for extracting the information.

The interesting thing in this regard is that these are virtual files and are not stored on any

hard disk etc. Rather these files are generated from the information stored by the kernel in

the memory when users try to access them. So using these files is a highly efficient

process.

End-host Monitoring Agent also uses the information stored in this directory. However a

shell command is also being used to get the information not available in the proc

directory. The only exception for now is disk space usage. Figure 5.4 shows the working

of Linux modules.

 37

Figure 5.4 - Linux Performance Monitoring Architecture

The information on Linux machine is gathered through six different modules that execute

as independent threads.

The monProcVarious module gathers parameters by parsing the contents of /proc/stat file.

Extracted parameters include CPU Usage, CPU User, CPU Sys, CPU Idle, Paging

Activity, Pages In per second, Pages Out per second, Disk Activity and Blocks (R/W) per

second.

The monProcMemUsage module parses /proc/meminfo file for raw data and performs

certain simple calculations to get the parameters Memory Usage in percentage, Used

Memory in MB and Free Memory in MB.

Linux Monitor

Proc Pseudo
file system

Shell
commands

Mod 1 Mod 2 Mod n

LINUX KERNEL

 38

monProcNetworkIO module parses the /proc/net/dev file and calculates information

regarding traffic for various interfaces like Ethernet cards and loop back in Mbps.

The monProcLoad module collects information about the system load from the

/proc/loadavg directory. Apart from it, this module also extracts the number of processes

information. So this module gathers Load average for 1 minute, Load average for 5

minutes, Load average for 15 minutes and Number of Processes.

monProcDiskStat module collects information about current disk space usage . It

executes the standard shell command ‘df’. It only gathers info about currently mounted

file systems. The parameters extracted by this module are Total Disk Space in GBs, Used

Disk Space in GBs and Free Disk Space in GBs.

5.2.1.1.3 Network Monitoring Modules

Monitoring of network paths is one of the fundamental requirements to identify the

bottlenecks in overall network performance. Currently large number of tools and

techniques are available, which cover this requirement in different domains with varying

degrees of success. The modular/layered architecture of EMA facilitated the integration

of such tools in this framework with very little effort. This will provide the user with a

single platform to carry out testing of various network aspects.

Presently, the network information for EMA is obtained by using Iperf and Abing.

Information is collected by parsing values obtained by these tools. This includes

bandwidth measurement between host running EMA and Iperf servers, and bandwidth to

 39

and from Abing reflectors. Server/reflector IP addresses are obtained by either setting

properties in the JNLP file or by providing the application with these IP addresses at

runtime.

Three modules are responsible for network monitoring. The monPing module interfaces

with the Ping utilty on Linux and Windows. It does this by running the ping command

and pings the specified host. The parameters extracted by this module are RTT for remote

host, %age of Packet Loss.

Iperf module interfaces with the Iperf tool. Iperf is a tool used for measuring the

bandwidth between two hosts. it can do bandwidth calculation for both sides. For a

remote host it gives the measures TO Bandwidth and FROM Bandwidth.

Abing module interfaces with the Abing tool. Abing is a tool used for measuring the

bandwidth between two hosts. It can also do bandwidth calculation for both sides. For a

remote host, it also gives the measures TO Bandwidth and FROM Bandwidth.

5.2.1.2 DATA COLLECTION MANAGER

There are six main responsibilities of the data collection manager:

1. Instantiation of monitoring modules.

2. Data collection from the monitoring modules.

3. Arranging data into a proper categorical hierarchy.

4. Exposing a simple yet elaborate interface to the GUI, so that the GUI can easily

fetch dynamic data for display.

 40

5. Controlling the reporting mechanism.

6. Cleaning on exit.

Instantiation of Monitoring Modules

As two sets of monitoring modules exist, a need for dynamic detection of operating

system is required, so that only the appropriate set of modules is loaded at a time.

Keeping in view this requirement, the instantiation of modules is implemented through

polymorphism. The steps that explain the mechanism are

1. The control engine detects the underlying operating system.

2. Once the operating system is detected, and it is one of the operating systems

supported by EMA, the appropriate monitor is instantiated.

3. The monitor is responsible for controlling modules. There are two monitors; one

for Linux and the other for Windows. Both implement the same interface and thus

are instantiated using polymorphism.

4. Once a monitor is instantiated, it instantiates the monitoring modules in turn.

5. Monitoring modules then start gathering data.

The above steps represent a three level hierarchy i.e., the control engine to the monitor,

and then from the monitor to the monitoring modules.

Data collection from the monitoring modules

Each monitor exposes a method that returns an array of monitoring modules. The control

mechanism simply fetches all the monitoring modules. Results from each module are

extracted and sent to the information repository for storage. This process is carried out in

a separate thread.

 41

Arranging data into a proper categorical hierarchy

The information repository is a hierarchy of storage structures that are arranged into

categories. Once result is collected form a module, it is sent to the repository in four parts

i.e., categories, parameter names, parameter values and their units. The repository on

receiving this information validates the data so that no garbage or illegal values enter the

repository and keeps each parameter into the corresponding category.

All this is done in a separate thread that is started by the control engine. This thread lives

as long as the application keeps running. As the repository is responsible for dealing with

data being refreshed after regular intervals of about 3 seconds, this part needs to be

efficient in utilizing the memory. To achieve this objective, only one copy of a parameter

is maintained in the memory at a time, and latest values are just updated rather than

appended. Therefore, at any instance in time, information in the repository basically

depicts the latest system state at that time.

The hierarchical structure of the repository can be understood by looking at its

architecture. Figure 5.5 shows the architecture:

 42

Figure 5.5 – Data Collection Manager

At the top most hierarchy, a list of Category objects is maintained. Each category object

consists of three lists each; one for parameter names, the other for parameter values, and

the last one for units. So each category object represents a complete category, with all the

available parameters and their information. Once a parameter is sent to the repository by

the control engine, it is first checked if it already exists. If the parameter already exits, its

previous copy is deleted, and the latest information is added after validation. If on the

other hand, this parameter is found to be new, it is simply validated and added to the

appropriate category object. This allows not only for efficient memory utilization, but

also for easy addition of new parameters and categories to the system.

EMA Data
Repository

Categories

Categories

Categories

name value unit

 43

The information repository had been tested thoroughly for memory leaks. All the tests

carried out have shown that it is extremely reliable, and no memory leaks have been

reported yet. Furthermore, as discussed in later, the repository may be accessed by two

threads at the same time. For this reason, the data retrieval interface has been provided

with synchronized methods. Only those methods have been synchronized where there is a

possibility of simultaneous access by two threads. This ensures that no overhead is

created for other normal methods; as well as keeping it safe for multiple threads.

Feeding Data to the GUI

To enhance the performance, a single thread has been made responsible for both

collecting data from the monitoring modules, and feeding it to the GUI. The sequence for

this operation is such that first data is submitted to the repository, and then the GUI

fetches the organized data from there. Interface to the GUI is simple enough to cater for

all the requirements by GUI. This enables dynamic addition of parameters and classes to

the GUI. Categories and parameters are not fixed; the GUI adjusts itself accordingly,

mainly because of the underlying flexible architecture.

Controlling the reporting mechanism

The reporting mechanism is also instantiated by the control mechanism. It is started in a

separate thread. Once this thread is started, it can report values to the remote server for as

long as the application keeps running.

Apart from instantiation, the control engine also interacts with the reporting mechanism

through the information repository. To report information to the remote server, the

reporting mechanism uses the information repository. The same interface as of the GUI is

 44

used to fetch the information.

5.2.1.3 GRAPHICAL USER INTERFACE

EMA has a graphical user interface, which aims at displaying monitored information to

the user in a simple, yet elaborate manner. This is done by providing the user with values

along with real time graph plotting which includes both bar graphs and pie charts. For

network parameters, bar charts are plotted for each update along with the previous

measurements.

Design of the GUI is made scalable in such a way that each attribute is added in a

separate panel and the addition of new modules can be adjusted without any extra effort.

5.2.1.4 STATISTICS REPORTING

EMA has a built-in reporting mechanism, to report the gathered performance statistics to

any performance data repository. The design includes a server which operates at the

receiver end and a client for collecting, organizing and sending the data to multiple

servers. The design is described in figure 5.6. The EMA data collection manager starts a

separate thread for reporting the information after the given time intervals. All the

necessary statistics are packed in a UDP packet and sent to the servers whose IP

addresses are specified. Each server receives the packets from multiple clients and uses a

thread-pool to process them for optimal performance. The processed values are then

supplied to the data repository in the specified format. Since overall design of EMA is

modular and very scalable, it can be integrated with various repositories requiring

different types of formats without affecting the other modules.

 45

Figure 5.6 – Statistics Reporting

The EMA Client reports values to the EMA Server after every 90 seconds by taking the

average of last thirty values. Since the updating of each value takes 3 seconds, the total

time spent in calculating the average of 30 values is 90 seconds. According to the Central

Theorem [19], if number of samples in a sample exceeds 30, the distribution that

generates the random variable (parameters to be determined) approaches Gaussian. Since

µs ± 1.96 σs correspond to 95% confidence intervals, we have 95% confidence that the

true values of the parameter to be estimated lies in the above interval. Here µs is the mean

σ s is the standard deviation

EMA client can report values to its own repository as well as any other distributed

repository, with which the EMA Server is integrated, like the MonALISA. Presently

EMA
Server

Database

EMA Client

EMA Client

EMA Client

EMA Client

EMA Clients

EMA Clients

EMA Clients

EMA Clients

EMA Clients
EMA Client

 46

EMA server is integrated successfully with MonALISA[20] and is available at

monalisa.niit.edu.pk.

5.2.2 EMA Server Architecture

EMA Server is a UDP Server that receives data packets on a specified port. UDP is a

faster protocol as compared to the TCP. UDP, which isn't connection-oriented, is more

appropriate for sending limited amounts of data per packet. In case of EMA it does not

matter much if a packet is lost, because packets are continuously transmitted after an

interval of 90 seconds. The Server Architecture is shown in the figure 5.7.

Figure 5.7 – EMA Server Architecture

EMA Client

EMA Client

EMA Database
UDP Client

DBHandler

Result of Test

ThreadPool

UDP
Receiver

Step 2
Step 1

Step 3, 4, 5, 6

Server

Client

Administrator GUI
Packets from various nodes

 47

5.2.2.1 THREAD POOL

The packets received by the EMA Server are processed in a thread pool. As soon as a

packet arrives it is passed over to a thread where all the information is extracted,

organized and added to the database. The thread pool is initialized to process ten threads

at a time, rest of the packets are added to the waiting queue.

Advantages of using a thread pool

Many server applications, such as Web servers, database servers, file servers, or mail

servers, are oriented around processing a large number of short tasks that arrive from

some remote source. A request arrives at the server in some manner, which might be

through a network protocol (such as HTTP, FTP, or POP), through a JMS queue, or

perhaps by polling a database. Regardless of how the request arrives, it is often the case

in server applications that the processing of each individual task is short-lived and the

number of requests is large.

One simplistic model for building a server application would be to create a new thread

each time a request arrives and service the request in the new thread. This approach

actually works fine for prototyping, but has significant disadvantages that become

apparent while deploying the server application. One of the disadvantages of the thread-

per-request approach is that the overhead of creating a new thread for each request is

significant; a server that created a new thread for each request would spend more time

and consume more system resources creating and destroying threads than it would do

processing actual user requests.

In addition to the overhead of creating and destroying threads, active threads consume

 48

system resources. Creating too many threads in one JVM can cause the system to run out

of memory or thrash due to excessive memory consumption. To prevent resource

thrashing, server applications need some means of limiting the number of requests being

processed at any given time.

A thread pool offers a solution to both the problem of thread life-cycle overhead and the

problem of resource thrashing. By reusing threads for multiple tasks, the thread-creation

overhead is spread over many tasks. As a bonus, because the thread already exists when a

request arrives, the delay introduced by thread creation is eliminated. Thus, the request

can be serviced immediately, rendering the application more responsive. Furthermore, by

properly tuning the number of threads in the thread pool, you can prevent resource

thrashing by forcing any requests in excess of a certain threshold to wait until a thread is

available to process it.

5.2.2.2 DBHANDLER

The DBHandler serves as an interface between the server and the database. It provides all

the methods to connect to the database, create queries and execute them. The information

that is to be added to the database is first passed to the DBHandler, which checks if the

target tables exist. If new tables have to be created, it generates the requisite queries and

requests the database for them.

The DBHandler is also the interface between the administrator GUI and the database. In

this case it is used to retrieve the required information from the database.

 49

5.2.2.3 DATABASE

The database keeps the record of the static and dynamic data reported from each host as

well as the network monitoring results obtained as a result of remote monitoring. There is

a table for static data for all the clients connected to the EMA server and it is updated

each time the client connects or re-connects to the server. A dynamic data table is created

for each client connected to the server and values are added after specified time intervals

whenever the client reports latest performance data.

5.2.2.4 REMOTE MONITORING

An administrator GUI is provided at the server side to monitor all the connected nodes as

well as to conduct network performance measurement tests between any two nodes.

These tests are conducted on demand and the parameters that are measured for the

network path are Bandwidth to, Bandwidth from, RTT and Packet loss.

These tests are conducted using the tools Iperf and Ping.

5.3 Object Model

The design of EMA is split into the three packages.

i) Monitor Package

ii) GUI Package

iii) Util Package

5.3.1 Monitor Package

This is the most significant package of EMA architecture. It is where most of the business

logic of the Application resides. It contains standalone classes as well as sub packages.

The Object Model is given in figure 5.8.

 50

Figure 5.8 - Monitor Package

MonitorI

LinuxMonior WinMonitor

 MonitoringModuleI

monProcSystem Iperf

 monProcVarious monPing

 InfoReporter EMAServerReporte

 RemoteServer

LMLRepositoryControlI LMLRepositoryGUII CategoryI

LMLRepository Category

 ParameterInfo Parameter

CategoryInfo

Windows Package

Linux Package

Report Package

Server Package

Control Package

Standalone Classes

 51

MonitorI is an interface. It is a base for developing monitoring control classes for

various platforms like Windows and Linux.

WinMonitor is a ‘controller’ class which controls all the underlying monitoring modules

for windows platform. It implements the MonitorI interface. It starts the monitoring

modules, gathers static parameters and performs other host specific functions. While the

LinuxMonitor is also a ‘controller’ class and has same functionality as WinMonitor. It

also implements the MonitorI interface. It is to be noted that either WinMonitor or

LinuxMonitor is loaded in JVM depending upon the underlying OS.

MonitoringModuleI is an interface. It defines the behaviour of a typical monitoring

module. All the monitoring modules, either for Linux or for Windows, must implement

this.

The Win Package is a subpackage of Monitor package and contains classes which act as

monitoring modules for Windows. It is these modules which extract the performance

parameter information by interacting with the OS.

The Linux Package is also a sub package of Monitor Package. It contains classes, which

act as the monitoring modules for the Linux platform. The monitoring mechanism for

Linux and Windows is significantly different. But these classes present the same interface

to the upper layers of the EMA architecture, thus hiding the underlying heterogeneity. It

makes the upper layers of the EMA platform independent.

 52

Control Package is a sub package of the monitor package, and forms the control layer of

EMA. It contains the controller classes that gather information from the underlying

monitoring modules and maintain a runtime repository of the performance data. It is this

repository with which the GUI interacts for presenting information to the user. The

reporting mechanism also interacts with this repository for reporting the values to the

central server.

The Report Package is a sub package of the Monitor package. It handles the reporting of

gathered data to the central server using the UDP sockets.

The Server Package is the package that handles communication with the central server. It

spawns a TCP server. Via a protocol, similar to HTTP, EMA server sends control

commands to it. These commands can be used for Remote Testing.

The Util Package contains the general purpose classes, which are needed through out the

code.

The GUI package for the handling of GUI on the client side of EMA. It has various

classes to handle different aspects of the GUI. It has methods to obtain data from the

LMLRepository and to update data for the user in the GUI. The GUI has two ways of

updating the data. The Data is passed on by the control classes to update the data or the

Data is requested on demand by the user and as a reaction, the GUI is updated.

 53

5.4 Interface Design

The GUI (Graphical User Interface) of this project has been carefully designed keeping in

view the needs of the end-user as well as the central managing server. There are two main

interfaces which make up the EMA Client side GUI and Server side GUI.

5.4.1. Client Side GUI

The Client side GUI is composed of two main JPanels. These are:

Static Data Panel which Panel displays the static data of the client. This is a static panel

and is not dynamically updated. It is shown in figure 5.9.

Figure 5.9 – Static Data Panel

Dynamic Data Panel consists of three main Panels. They are The Host Statistics Panel,

shown in figure 5.10, is continuously updated with the generation of values. It contains

CategoryPanel objects, which in turn have NameValuesPanel objects. This panel has

graphs and pie charts for different parameters and categories, which are updated every

three seconds.

 54

Figure 5.10 – Host Statistics Panel

 55

There is a customizable panel, shown in figure 5.11, using this visible parameters can be

increased or decreased, with the aid of the Add/Remove button. By default, all the

parameters are selected.

Figure 5.11 – Customization Options

Iperf Panel contains upper and lower Panel and these again contain sub-panels for

graphical display of on-demand bandwidth tests conducted by the user. It shows graphs

for one-way bandwidth and compares with the previously obtained value in graphical

notation, which makes it easy for the user to deduce network performance level. Figure

5.12 displays the Iperf Panel.

 56

Figure 5.12 – Iperf GUI

The ABing Panel consists of sub-panels, which display results obtained after the on-

demand tests, initiated by the user. It displays plots for two-way bandwidth, i.e.,

“Bandwidth To” and “Bandwidth From” a particular node, specified by the label URL.

 57

Again, it makes comparisons with previous measurements, thus giving an overview of the

overall network performance.

5.4.2 Report GUI

The report GUI shown in figure 5.13 is used to select the central servers to which the

EMA client is reporting. There can be one, two or many central servers to which the

EMA client reports. They can be added or subtracted and dynamically allocated.

Figure 5.13 – Report GUI

5.4.3 Server End GUI

The server end GUI shown in figure 5.14 comprises of an initial GUI, which consists of a

list of IPs that have entries in the database of the EMA Server. The historical values are

displayed at one end and their graphical plots are made. This gives the remote machine an

idea of the performance of the client machines.

 58

Figure 5.14 – Administrator GUI

The plots are drawn using the Java Analysis Studio (JAS). They are shown in two main

forms, one in the form of histograms and other in form of line graphs.

 59

5.4.4 Histograms or Bar graphs

Histograms and bar graphs can be viewed to analyze the history and trends of

performance parameters reported from different EMA Clients connected to the Server.

The values are plotted against time at which the measurement was taken. These are

shown in figure 5.15.

Figure 5.15 – Histograms and Line Graphs

5.4.5 Remote Network Monitoring GUI

The remote network monitoring GUI shown in figure 5.16 gives the user an option to

select any two remote IPs and perform a network test. The result is displayed after

comprehensive testing in form of a report. The instantaneous report can be viewed, which

gives the user an idea of the network state.

 60

Figure 5.16– Remote Network Monitoring GUI

5.4.6 Historical Reports

The user can also view previous reports from EMA’s network history bank. These reports

are kept as HTML files in the history folder. These reports can be extremely valuable for

the user as network administrators can compare the network statistics based on these

reports. The name of the generated HTML file denotes the two IPs amng which the test is

conducted and this is concatenated with the time of report, which makes it easy for the

administrator to sort out a particular report.

 61

TTRRAANNSSIITTIIOONN

66

 62

The transition phase includes all the activities, after construction, that led to the final

product and documentation to NUST and CERN. Following activities took place during

this phase:

6.1 Deployment

The client application is available in two versions:

1. A dynamically downloadable application that can be downloaded from

http://202.83.166.180/EMA/ema.jnlp and http://monalisa.cern.ch/ema.jnlp

2. Application that can run locally using scripts.

A server integrated with MySQL Database and administrator GUI. Scripts for installing

all these are provided.

6.2 Beta Testing

Testing and validation are one of the most important phases of any development activity.

Testing was carried out throughout during the development process. An iterative

methodology was adopted as a whole: each phase of development was visited numerous

times, testing implicitly being part of each phase.

6.2.1 Testing Environment

EMA was tested on various machines, and a comprehensive performance analysis was

carried out. The testing environment consisted of 100 Mbps LAN with the following

 63

types of machines connected to the network. We have used different platforms to ensure

platform independence.

Table 6.1 Testing Environment

6.2.2 Software Testing

This phase dealt with software testing, which essentially required the system to be

executed and hence tested in different ways for different scenarios.

6.2.2.1 Defect Testing

The aim of defect testing is to make the software behave incorrectly in different

situations. This helps in identifying various flaws as well as constraints related to user

interaction with the system.

In Functional/Black Box Testing the system is considered to be a black box and its

behavior is determined by studying its inputs and related outputs. Black box testing was

not only carried out just for the whole system but also for the individual components. For

this purpose different types of test data were identified and tested.

Structural or white box testing is used for testing small pieces of code. It was applied

successfully and we were benefited especially for the algorithm for load calculation on

Windows.

 Processor RAM OS
PC I 2.4 GHz 1.0 GB MS Windows XP
PC II 2.4 GHz 1.0 GB MS Windows 2K
PC III 2.0 GHz Xeon 900 MB Linux Redhat 7.3

 64

6.2.3 Stress Testing

Once all components were completely integrated, stress testing was carried out to

determine the robustness and reliability of the software, the CPU usage consumed by

both the client and the server, the load they exerted on the system, the amount of memory

consumed etc. The results showed EMA to be a light weight application and it had to be

since it was meant for performance monitoring. This established that the design is not

only reliable but also efficient.

6.2.4 Software Inspections

This phase dealt with the testing of the software, which does not require execution of the

system.

Testing of the design of the system was implicitly exercised by the following iterative

approach of RUP. Individual modules were first identified, designed, assessed and then

put together to get a bigger picture.

Regular dry runs of modules were carried out to ensure that the implementations were

fool-proof.

Control Flow Analysis was carried out for the verification and validation of control

blocks in the source code were carried out, for instance, the ‘for’ and ‘while’ loops and

the ‘if’ condition blocks.

 65

Data Use Analysis was done to find and remove improper initializations, unnecessary

assignments and the variables that were declared but never used.

Interface Analysis was used to ensure consistency of interface, class and procedure

declarations, definitions and their use. It was observed through tests that all the methods

declared in the interfaces were correctly implemented in the classes and that there were

no redundant methods.

 66

RREESSUULLTTSS

77

 67

7.1 Performance Results

The aim of performing these tests was to measure the performance of EMA. In this case,

the total CPU time consumed by the EMA Clients was recorded for an hour. The CPU

time consumed by EMA gives a measure of its lightweight nature. The following pie-

chart gives a comparison of average of the total CPU times consumed by EMA modules

on different machines.

Figure 7.1 – CPU Time Consumption

An overview of the instantaneous CPU usage by EMA is given in the following plot. The

spikes, which occur after every 3 seconds, shows that the CPU is only consumed when

the values are retrieved from the OS kernel and simultaneously updated in the GUI,

which updates the plots and pie-charts for different parameters. This behavior was only

observed on the Windows operating System. On the Linux there were no spikes.

EMA Modules
(0.61%)
Other Processes

 68

Figure 7.2 – CPU Usage Behavior

7.2 Network Traffic Analysis

Since each EMA client sends 684 bytes of data in a UDP packet to the server after 90

seconds, it does not congest the network. Even in the worst case scenario of 100 clients,

when they send packets at the same time, the total number of bytes generated is 68400

after 90 second intervals. This makes the EMA an extremely light weight application as

far as network traffic is concerned.

7.3 Load Calculation Results

There is no provision of Load on Windows so it was calculated using the load calculation

method in Linux described by Dr. Neil Gunther. (For details see Appendix D). According

to his results for a hot loop the 1-minute samples track the most quickly while the 15-

CPU Usage

0

5

10

15

20

25

30

0 20 40 60

Time (sec)

C
PU

 U
sa

ge
 (%

)

Window s 2000

Window s XP

m

In

on

re

T

sa

minute sampl

n order to va

n Windows

esults for Lin

The behavior

ame was don

les lag the fu

alidate our fi

and Linux. T

nux are show

r of Load on

ne for windo

urthest. The b

Figure 7.3

findings and

The trends o

wn in figures

n Linux for

ows. The beh

 69

behavior of

3 – Load Av

the load cal

observed wer

s 7.4 and 7.5

r a hot loop

havior on W

load average

verage Trend

lculation me

re very simil

5 and for Win

was noted

indows was

e is shown in

ds

ethod we also

lar to those i

ndows in fig

against the

similar.

n figure 7.3

o conducted

in figure 7.3

gures 7.6 and

CPU Usage

d tests

. The

d 7.7.

e and

 70

Figure 7.4 – CPU Usage on Linux

Figure 7.5 – Load on Linux

CPU Usage

0

20

40

60

80

100

120
Ti

m
e 90 18
0

27
0

36
0

45
0

54
0

63
0

72
0

81
0

90
0

99
0

10
80

11
70

12
60

CPU Usage

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ti
m

e 87 17
4

26
1

34
8

43
5

52
2

60
9

69
6

78
3

87
0

95
7

10
44

11
31

12
18

Load 1
Load 5
Load 15

 71

In case of Linux the Load Average for 1, 5 and 15 minutes does not normally rises

greater than 2 and the value of load greater than 2 indicates congestion but on Windows

the load Average went to 10 although the rise and fall trend was the same. The reason is

the difference in Operating System architecture. In case of Windows the maximum size

of processor queue length is 10 but for Linux it is 2. As in Windows a sustained processor

queue length of greater than four threads generally indicates that a single processor is

doing some real work, although such a value does not necessarily indicate a performance

bottleneck. Hence value of load average on Windows was larger than that on Linux.

Figure 7.6 – CPU Usage on Windows

CPU Usage

0

20

40

60

80

100

120

Ti
m

e
12

6
25

5
38

4
51

3
64

2
77

1
90

0
10

29
11

58
12

87
14

16

CPU Usage

 72

Figure 7.7– Load on Windows

0

2

4

6

8

10

12

Ti
m

e
11

4
23

1
34

8
46

5
58

2
69

9
81

6
93

3
10

50
11

67
12

84
14

01

Load 1
Loasd 5
Load 15

 73

CCOONNCCLLUUSSIIOONN

88

 74

8.1 Conclusion

EMA brings along the concept of a decentralized resource monitoring architecture. It

applies not only to situations where network diagnostics is required, but also to any other

scenario, where there is a need for resource monitoring. This is due to the fact that EMA

bears the capability of reporting the collected information to remote servers, where

analysis may be performed in order to make job scheduling decisions.

One of the major alternatives to this architecture is the use of SNMP as the information

retrieval mechanism. This is already in use by various resource monitoring

applications/infrastructures. Although SNMP provides remote monitoring, the capability

of empowering the user with control over certain aspects of the system lacks. The

decentralized architecture tends to involve the user in an interactive, yet simplified

mechanism of system/network monitoring. Therefore, this architecture is most suited to

situations where there is a requirement of user control over the monitoring processes.

8.2 Possible Enhancements

8.2.1 Integration of more Tools

Many more useful tools can be integrated into EMA due to its scalable architecture.

Web100 [1] provides an effective enhanced TCP statistics monitoring framework. EMA

clients may interact with web100 servers deployed at various locations to test their TCP

performance. This may prove to be very useful for high performance networks, where

fault detection requires detailed analysis of the TCP stack.

 75

8.2.2 Performance Data Analysis

Information gathered by EMA can be analyzed for fault detection. Currently, the

information is sent to the remote servers where it is persisted in the database. An analysis

engine may be developed that performs detailed analysis on the reported information to

detect faults in either the host configuration, the TCP parameters collected through the

web100 server, or network statistics gathered by the network modules. Based on this

analysis, reports may also be generated to facilitate the task of decision making. This may

evolve to be an effective network diagnostic infrastructure.

8.2.3 EMA Server Enhancements

EMA Server can serve as a platform for the development of application utilizing various

statistical techniques for the development of an inference engine. The data repository

provides data in a very useful and easy-to-implement form so that further tools can be

made, which can be used for a variety of purposes. Some are listed below:

8.2.3.1 The LAN Perspective

EMA can be a very useful tool for problem diagnosis on various LANs. EMA clients

deployed at different nodes server as monitoring clients and EMA server can utilize this

monitoring information for problem diagnosis across the LAN. Often faulty cables or

improper switch/router configuration causes a lot of disruptions in a network. By building

a small analysis engine, EMA can server as the diagnostic tool for common LAN

problems.

 76

8.2.3.2 The WAN Monitor

EMA can serve as a useful monitoring tool if deployed over different nodes on a WAN.

The network latency and throughput problems are a major concern for those who want to

utilize the full potential of high speed WANs. Often this happens due to the presence of

just one or two performance bottlenecks along the path. This can be detected by EMA.

The detected bottleneck can be upgraded with little overhead cost and provide far better

performance without any major changes to the existing systems.

8.2.3.3 EMA for Job Scheduling

EMA can be used by applications on the grid for performing job scheduling and

execution based on the information being provided. Since Grid nodes work on a variety

of platforms, EMA serves as a suitable candidate for deployment in such scenarios as

exactly the same parameters are provided on all EMA supported platforms. Moreover, the

network monitoring capability of EMA makes it a far better choice for top-level decision

support systems.

8.2.3.4 EMA for detection of Viruses/Worms/Trojan Horses

Certain viruses remain undetected and yet consume resources; Sometimes in form of the

end-host’s basic computational or storage resources and sometimes in form of network

attacks. The graphical trends provided by EMA can serve as a virus diagnostic tool.

8.2.3.5 Monitoring of Nodes in Enterprise Networks

Big enterprises are often interested in the usage of resources provided by them. EMA

deployed on clients can serve as a primary monitor of the enterprise’s resources.

 77

AAPPPPEENNDDIICCEESS

 78

Appendix A – Abing

Abing is a tool using the packet pairs dispersion technique to estimate the available

Bandwidth/bitrate (unused capacity) for a path in the network. The code is based on the

research results described in the paper J.Navratil, R.L. Cottrell "A Practical Approach to

Available Bandwidth Estimation" presented in PAM'03 (Passive & Active Measurement

Workshop), April 6-8 2003 at La Jolla, California and published in Proceedings issued by

San Diego Supercomputing Center UCLA San Diego. pp.1-11.

The method is based on estimating the cross-traffic (or load using a more common

terminology) as a basic parameter. The probing packets are sent to the Internet from the

abing host with a known separation. We then measure the time between delivery of the

adjacent packets in a pair. From this we calculate the utilization of the bottleneck link and

other parameters.

The tool was designed to measure available bandwidth in high capacity paths so it can

cover all paths with bandwidths between 1-1000 Mbits/s. However, for measurements on

high speed links, the appropriate hardware must be used (e.g. a Linux machine with a

clock > 1000MHz and a Gbits/s NIC card). The tool is designed to be minimally intrusive

and can be run over long durations. It sends only 40 probing packets per measurement.

There are 2 programs which are used during each measurement experiment:

 - reflector(server) that is running on remote site (path destination)

 - abing (client) which sends probe packet to a reflector,

 receive packets from the reflector and makes the analysis

In the interactive mode, the results are delivered to the terminal immediately after the

bunch of probes (20 packet pairs) has traversed the whole path there and back.

5 values are reported for each direction. These are

 - ABw estimated Available Bandwidth (instant value)

 79

 - Xtr estimated cross-traffic (instant value)

 - DBC Dominated Bottleneck Capacity (instant value)

 - ABW Average of Available BandWidth calculated via EWMA

 - RTT Round Trip Time

The results are presented in the following form:

timestamp, direction flag, ip-address and estimated data as shown in following lines:

>abing -d 132.15.144.226

1075925312 T: 131.15.144.226 ABw-Xtr-DBC: 531.4 277.0 808.3 ABW: 531.4 Mbps

RTT: 14.1 ms

1075925312 F: 131.15.144.226 ABw-Xtr-DBC: 371.7 495.9 867.6 ABW: 371.7 Mbps

RTT: 14.1 ms

 80

APPENDIX B – Iperf

Iperf is a tool to measure maximum TCP bandwidth, allowing the tuning of various

parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram loss.

It has two major goals. First, Iperf is a tool for analyzing bandwidth and throughput on a

network. Second, Iperf allows the user to tinker with different TCP and UDP parameters

to see how they affect network performance. Many users find optimal settings using Iperf

and then tune their connections with those values.

Features

• TCP

o Measure bandwidth

o Report MSS/MTU size and observed read sizes.

o Support for TCP window size via socket buffers.

o Multi-threaded if pthreads or Win32 threads are available. Client and

server can have multiple simultaneous connections.

• UDP

o Client can create UDP streams of specified bandwidth.

o Measure packet loss

o Measure delay jitter

o Multicast capable

o Multi-threaded if pthreads are available. Client and server can have

multiple simultaneous connections. (This doesn't work in Windows.)

• Can run for specified time, rather than a set amount of data to transfer.

• Picks the best units for the size of data being reported.

• Server handles multiple connections, rather than quitting after a single test.

• Print periodic, intermediate bandwidth, jitter, and loss reports at specified

intervals.

• Run the server as a daemon

• Run the server as a Windows NT Service

 81

• Use representative streams to test out how link layer compression affects your

achievable bandwidth.

Iperf allows the manipulation of most application-accessible network parameters.

Commonly manipulated parameters include window size (-w), bandwidth (-b), and time

to live (-T).

Iperf sends packets from the client to the server as fast as it can, of course being limited

by several factors. The information is sent by default from the client's memory to the

server's memory to attempt to eliminate some hardware speed limitations.

Note that high bandwidth networks often require multiple streams to max out the

bandwidth

Iperf servers can maintain multiple connections at one time. The statistics for each

connection will be displayed when it completes and the aggregate statistics will be

displayed when all of the connections have finished. In the current version, Iperf servers

can limit the number of connections to a user-specified amount.

 82

Appendix C – Java Web Start

Java Web Start software provides a flexible and robust deployment solution for Java

technology-based applications based on the Java Community Process program (JCP). The

technology is being developed through the JCP program as JSR-56: The Java Network

Launching Protocol & API (JNLP), which provides a browser-independent architecture

for deploying Java 2 technology-based applications to the client desktop.

Java Web Start technology works with any browser and any Web server. Each

application developed for use with the Java Web Start software specifies which version

of the Java 2 platform it requires, e.g., version 1.2 or 1.3, and each application runs on a

dedicated Java Virtual Machine (JVM).

A main feature of the Java Network Launching Protocol and API technology is the ability

to automatically download and install Java Runtime Environments onto the users

machine.

For example, an application might depend APIs in Sun's Java Runtime Environment 1.3.0

(or later). When a user first accesses this application, the Java Web Start software will

download all the needed files for the application, as well as download the Java Runtime

Environment (JRE) if the requested version is not available locally. The ability to

automatically download a JRE is one of the key features to ensure robust deployments. It

ensures that the JRE that your application is tested on will be available on the user's

machine, as well as make it possible to seamlessly upgrade to improved versions of the

Java 2 platform over time.

When to use Java Web Start Technology:

Given the nature of many productivity tools and traditional client-side applications,

providing an HTML-based front-end to the application or service is not adequate.

 83

For example, Web-based e-mail has been widely successful. It is a convenient tool when

the volume of e-mail is relative low. Because most corporate users of e-mail and many

individuals receive high volumes of e-mail, typically dozens a day, using an HTML-

based interface would prove cumbersome and ineffective.

With Java Web Start technology, which works with virtually all Web servers, the

application service providers (ASP), either internally to the company or externally on the

Web, can easily supply a full-featured application to users. Java Web Start technology is

an ideal companion to HTML-based clients. A service can provide a simple and easily

accessible interface using HTML, while also providing a rich experience for power users

using Java Web Start technology. The ease-of-use for users is virtually identical -- except

for the first-time activation cost -- and the management and server side requirements for

both solutions are the same.

Features of Java Web Start Technology:

Applications written on the Java 2 platform for deployment with Java Web Start are

always up-to-date and available. Every application runs in a dedicated Java Runtime

Environment (JRE), independent of a specific browser or computer platform technology.

Java Web Start supports:

 Multiple JREs

 Code-signing

 Sandboxing

 Versioning and incremental updates

 Desktop integration

 Offline operation

 Automatic installation of JREs and optional packages Application launcher

Java Web Start technology provides a rich set of features that give easy access to the

latest versions of applications for the end-user, easy management and deployment of

applications for the IT department, and easy development for the application vendors.

 84

Appendix D – Load Average

UNIX Load Average Part 1 How it works by Dr. Neil Gunther, Performance Dynamics Company
http://www.teamquest.com/resources/gunther/ldavg1.shtml

1 UNIXTM Commands

Actually, load average is not a UNIXTM command in the conventional sense. Rather it's

an embedded metric that appears in the output of other UNIXTM commands like uptime

and procinfo. These commands are commonly used by UNIXTM sys admin's to observe

system resource consumption. Let's look at some of them in more detail.

1.1 Classic Output

The generic ASCII textual format appears in a variety of UNIXTM shell commands. Here

are some common examples.

o uptime

o procinfo

o w

o top

2 So What Is It?

So, exactly what is this thing called load average that is reported by all these various

commands? Let's look at the official UNIXTM documentation.

2.1 The man Page

In the man page for uptime, for example, and see if we can learn more that way.

...
DESCRIPTION
 uptime gives a one line display of the following informa-
 tion. The current time, how long the system has been run-
 ning, how many users are currently logged on, and the sys-
 tem load averages for the past 1, 5, and 15 minutes.
...

So, that explains the three metrics. They are the ``... load averages for the past 1, 5, and

15 minutes.''

 85

3 Performance Experiments

The experiments described in this section involved running some workloads in

background on single-CPU Linux box. There were two phases in the test which has a

duration of 1 hour:

• CPU was pegged for 2100 seconds and then the processes were killed.

• CPU was quiescent for the remaining 1500 seconds.

A Perl script sampled the load average every 5 minutes using the uptime command. Here

are the details.

3.1 Test Load

Two hot-loops were fired up as background tasks on a single CPU Linux box. There were

two phases in the test:

1. The CPU is pegged by these tasks for 2,100 seconds.

2. The CPU is (relatively) quiescent for the remaining 1,500 seconds.

The 1-minute average reaches a value of 2 around 300 seconds into the test. The 5-minute

average reaches 2 around 1,200 seconds into the test and the 15-minute average would

reach 2 at around 3,600 seconds but the processes are killed after 35 minutes (i.e., 2,100

seconds).

3.2 Process Sampling

As the authors [BC01] explain about the Linux kernel, because both of our test processes

are CPU-bound they will be in a TASK_RUNNING state. This means they are either:

• running i.e., currently executing on the CPU

• runnable i.e., waiting in the run_queue for the CPU

The Linux kernel also checks to see if there are any tasks in a short-term sleep state

called TASK_UNINTERRUPTIBLE. If there are, they are also included in the load average

sa

d

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

S

up

3

A

se

m

ample. There

etails about

00 * Nr o
01 */
02 static
03 {
04
05
06
07
08
09
10
11
12
13
14
15 }

o, uptime is

pdating the l

.3 Test Re

Although the

econds, the l

minute sampl

e were none

how this is d

of active t

unsigned

 struct ta
 unsigned

 read_loc
 for_each_

 }
 read_unlo
 return n

s sampled ev

load average

esults

workload st

load average

les track the

F

in our test l

done.

tasks - co

long count

ask_struct
long nr =

k(&tasklis
_task(p) {
if ((p->st
 (p->s
 nr

ock(&taskl
r;

very 5 secon

e calculation

tarts up insta

e values have

most quickl

Figure 2: Lin

 86

oad. The fol

ounted in f

t_active_ta

t *p;
= 0;

st_lock);

tate == TAS
state & TAS
r += FIXED_

list_lock)

ds which is t

ns.

antaneously

e to catch up

ly while the

nux load ave

llowing sour

fixed-poin

asks(void)

SK_RUNNING
SK_UNINTER
_1;

;

the linux ker

and is abrup

p with the in

15-minute s

erage test res

rce fragment

nt numbers

G ||
RRUPTIBLE)

rnel's intrins

ptly stopped

stantaneous

amples lag t

sults.

t reveals mor

))

sic time base

later at 2100

state. The 1

the furthest.

re

e for

0

-

 87

For comparison, here's how it looks for a single hot-loop running on a single-CPU Solaris
system.

4 Kernel Magic

Now let's go inside the Linux kernel and see what it is doing to generate these load
average numbers.
unsigned long avenrun[3];
624
625 static inline void calc_load(unsigned long ticks)
626 {
627 unsigned long active_tasks; /* fixed-point */
628 static int count = LOAD_FREQ;
629
630 count -= ticks;
631 if (count < 0) {
632 count += LOAD_FREQ;
633 active_tasks = count_active_tasks();
634 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
635 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
636 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
637 }
638 }

4.1 Magic Numbers
The function CALC_LOAD is a macro defined in sched.h
58 extern unsigned long avenrun[]; /* Load averages */
59
60 #define FSHIFT 11 /* nr of bits of precision
*/
61 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
62 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
63 #define EXP_1 1884 /* 1/exp(5sec/1min) as
fixed-point */
64 #define EXP_5 2014 /* 1/exp(5sec/5min) */
65 #define EXP_15 2037 /* 1/exp(5sec/15min) */
66
67 #define CALC_LOAD(load,exp,n) \
68 load *= exp; \
69 load += n*(FIXED_1-exp); \
70 load >>= FSHIFT;

A notable curiosity is the appearance of those magic numbers: 1884, 2014, 2037. What
do they mean? If we look at the preamble to the code we learn,

/*
49 * These are the constant used to fake the fixed-point load-average
50 * counting. Some notes:
51 * - 11 bit fractions expand to 22 bits by the multiplies: this
gives
52 * a load-average precision of 10 bits integer + 11 bits

 88

fractional
53 * - if you want to count load-averages more often, you need more
54 * precision, or rounding will get you. With 2-second counting
freq,
55 * the EXP_n values would be 1981, 2034 and 2043 if still using
only
56 * 11 bit fractions.
57 */

These magic numbers are a result of using a fixed-point (rather than a floating-point)
representation.

Using the 1 minute sampling as an example, the conversion of exp(5/60) into base-2 with
11 bits of precision occurs like this:

e5 / 60 →
e5 / 60

211
(1)

But EXP_M represents the inverse function exp(-5/60). Therefore, we can calculate these
magic numbers directly from the formula,

EXP_M =
211

2 5 log
2

(e) / 60M
(2)

where M = 1 for 1 minute sampling. Table 1 summarizes some relevant results.

T EXP_T Rounded
5/60 1884.25 1884
5/300 2014.15 2014
5/900 2036.65 2037
2/60 1980.86 1981
2/300 2034.39 2034
2/900 2043.45 2043

Table 1: Load Average magic numbers.

These numbers are in complete agreement with those mentioned in the kernel comments

above. The fixed-point representation is used presumably for efficiency reasons since

these calculations are performed in kernel space rather than user space.

 89

One question still remains, however. Where do the ratios like exp(5/60) come from?

4.2 Magic Revealed
Taking the 1-minute average as the example, CALC_LOAD is identical to the mathematical

expression:

load(t) = load(t-1) e-5/60 + n (1 - e-5/60) (3)

If we consider the case n = 0, eqn.(3) becomes simply:

load(t) = load(t-1) e-5/60 (4)

If we iterate eqn.(4), between t = t0 and t = T we get:

load(tT) = load(t0) e-5t/60 (5)

which is pure exponential decay, just as we see in Fig. 2 for times between t0 = 2100 and

tT = 3600.

Conversely, when n = 2 as it was in our experiments, the load average is dominated by

the second term such that:

load(tT) = 2 load(t0) (1 - e-5t/60) (6)

`which is a monotonically increasing function just like that in Fig. 2 between t0 = 0 and tT

= 2100.

5 Summary

1. The ``load'' is not the utilization but the total queue length.

2. They are point samples of three different time series.

3. They are exponentially-damped moving averages.

4. They are in the wrong order to represent trend information.

 90

Appendix E – MonALISA
http://monalisa.cacr.caltech.edu/

The MonALISA framework provides a distributed monitoring service system using

JINI/JAVA and WSDL/SOAP technologies. Each MonALISA server acts as a dynamic

service system and provides the functionality to be discovered and used by any other

services or clients that require such information.

The goal is to provide the monitoring information from large and distributed systems to a

set of loosely coupled "higher level services" in a flexible, self describing way. This is

part of a loosely coupled service architectural model to perform effective resource

utilization in large, heterogeneous distributed centers.

The framework can integrate existing monitoring tools and procedures to collect

parameters describing computational nodes, applications and network performance.

The MonALISA architecture provides

• Mechanism to dynamically discover all the "Farm Units" used by a group or
community

• Remote event notification for changes in the any system
• SNMP support and interfaces with other tools: Ganglia, MRTG, LSF, PBS, user

defined scripts
• Flexible mechanism to add additional modules or interfaces to other tools
• Secure mechanism for dynamic configuration of farms / network elements and the

collected parameters
• Access to single farm values and all the details for each node
• Network parameters, connectivity values and traffic information
• Selected real time data for any subscribed listeners
• Selected historical data using a flexible persistent mechanism based on JDBC
• Active filters to process the data and provided dedicated / customized

information to other services
• Mobile agents to control different activities in the system
• Alarm triggers
• Dynamic proxies (or WSDL)so that clients can access the information in a

flexible way
• Configurable GUIs to present from real-time global views of multiple farms to the

evolution in time of any single parameter

 91

• Authentication and secure GUI connection to configure and administrate a
monitoring service

• Global monitoring repositories for a community
• Access to the monitoring information from mobile phones using WAP

Writing new Monitoring Modules

New Monitoring modules can be easily developed. These modules may use SNMP

requests or can simply run any script (locally or on a remote system) to collected the

requested values. The mechanism to run these modules under independent threads, to

perform the interaction with the operating system or to control a snmp session are

inherited from a basic monitoring class. The user basically should only provide the

mechanism to collect the values, to parse the output and to generate a result object. It is

also required to provide the names of the parameters that are collected by this module.

Creating a new module means writing a class that extends the

lia.Monitor.monitor.cmdExec class and implements
lia.Monitor.monitor.MonitoringModule

interface.

The doProcess is actuly the function that collects and returns the results. Usually the

return type is a Vector of lia.Monitor.monitor.Result objects. It can also be a simple

Result object.

The init function initializes the useful information for the module, like the cluster that

contains the monitoring nodes, the farm and the command line parameters for this

module. This function is the first called when the farm loads the module.

The isRepetitive function tells if the module has to collect results only once or repe-

titively. The return values is the isRepetitive module boolean variable. If true, then the

module is called from time to time. The repetitive time is specified in the <farm> .conf

file. If not there, then the default repetitive call time is 30s.

The rest of functions returns different module information.

 92

This interface has the following structure:
package lia.Monitor.monitor;

public interface MonitoringModule extends
lia.util.DynamicThreadPoll.SchJobInt {

 public MonModuleInfo init(MNode node, String
args) ;

 public String[] ResTypes() ;

 public String getOsName();

 public Object doProcess() throws Exception
;

 public MNode getNode();

 public String getClusterName();

 public String getFarmName();

 public boolean isRepetitive() ;

 public String getTaskName();

 public MonModuleInfo getInfo();

 }

 93

Bibliography

1. Olivier Martin, “Gigabits, the Grid and the Guinness Book of Records”,
http://www.cerncourier.com/main/article/44/2/14

2. Matt Mathis John Heffner Raghu Reddy, “Web100: Extended TCP
Instrumentation for research, education and diagnoses”, ACM SIGCOMM CCR,
July 2003

3. E2E pipes, http://e2epi.internet2.edu/E2EpiPEs/index.html
4. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance
Computing Applications, 200-222. 2001.

5. Catlett, C. In Search of Gigabit Applications. IEEE Communications Magazine
(April). 42-51. 1992.

6. Catlett, C. and Smarr, L. Metacomputing. Communications of the ACM, 44--52.
1992.

7. Foster, I. The Grid: A New Infrastructure for 21st Century Science. Physics
Today, 42-47. 2002.

8. Pen Computing, http://www.upenn.edu/computing/i2/
9. Internet2, http://www.internet2.edu/e2epi/e2epi/papers/End-to-End-Perf-Design-

Paper.pdf
10. Eric L. Boyd, George Brett, Russ Hobby, Jooyong Jun, Clyde Shih, Ramanuja

Vedantham, and Matt Zekauskas, E2E piPEline: End-to-End Performance
Initiative Performance Environment System Architecture ,Version: 1.1, July 26,
2002

11. Shawn McKee, Pipefitters Meeting,Internet2 Spring Meeting 8 April, 2003
12. Why use open source Technology,

http://www.celestialgraphics.com/articles_open_source_print.html
13. MSDN, http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/perfmon/base/performance_monitoring_architecture.asp
14. MSDN, Chapter 5 An overview of performance monitoring,

http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/e
n-us/serverop/part2/sopch05.mspx

15. MSDN, Performance Objects and Counters, http://msdn.microsoft.com/library/en-
us/perfmon/base/performance_objects_and_counters.asp

16. Linux Man Pages
17. Dr. Neil Gunther, UNIX Load Average Part 1 How it works, Performance

Dynamics Company, 2001
18. Tom M. Mitchell, Machine Learning, McGraw Hill, 1997
19. Monitoring Agents using a Large Integrated Services Architecture,

http://monalisa.cacr.caltech.edu,2003

