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ABSTRACT 

VEHICLE DETECTION FROM AERIAL 
IMAGES 

BY  

Muzzamil Noor, Naveed Sadiq, Fawad Khan 

 

The proposed project deals with the automatic detection of vehicles, particularly military 

vehicles in high resolution aerial imagery. The extraction relies upon local features of 

vehicles. To model a vehicle on local level, a model representation is used that describes 

the prominent geometric features of vehicles. The model is adaptive because, during 

extraction, the expected saliencies of various edge features are automatically adjusted 

depending on viewing angle, vehicle color measured from the image, and current 

illumination direction. The extraction is carried out by matching this model ”top-down” to 

the image and evaluating the support found in the image  Hence, training data samples of 

vehicles are first clustered and statistical parameters corresponding to each cluster are 

obtained. Vehicles are detected by searching the test image for patches of vehicles at all 

points in the image and across different scales. Applying this technique to the military 

vehicles particularly fighting vehicles presents peculiar problems of its own as they differ 

in geometric and statistical representation from that of the soft vehicles. The project is 

aimed at facilitating automatic aerial imagery analysis, which is a very tedious job if done 

manually, simultaneously maximizing the accuracy and performance. 
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C h a p t e r  1  

1. Introduction  

1.1 General 

        This project deals with automatic detection of vehicles in high 

resolution aerial imagery. Detection from aerial image is easier than from 

detection from an arbitrary viewpoint, in that the viewpoint is constrained. 

However, it is still not as easy as it may seem to be. Example images are 

shown in Figure1.1. Although the viewpoint is constrained, there are still 

variations that make the cars have different appearance. The image resolution 

is high even then not many details are visible. Some cars are heavily 

obscured by the environment in the images, mostly tree branches (Figure1.1). 

Cars can be of any intensity in the image, from very dark to very light. Also, 

some cars’ intensity is very close to the road. The shadow cast on the ground 

by sunlight is more salient in an aerial view than in a ground view, which 

complicates the detection. The image quality varies. The brightness, contrast 

and sharpness of the images change due to factors including illumination, 

focusing and atmospheric turbulence (Figure 1.2). The expected features of a 

car differ with its intensity and the existence of shadow. For a simple 

example, whether or not the boundary of a gray car can be detected depends 

heavily on its shadow. It is needed to account for all these difficulties to get a 

reasonable good system. 

1.2 Motivation 

      Military operation planning is the foremost field which requires presence 

of vehicles at particular places while analyzing the aerial images. Other 

fields of application are found in the context of military reconnaissance and 

extraction of geographical data for Geo-Information Systems (GIS), e.g., for 
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site model generation and up-date. Traffic-related data play an important role 

in urban and spatial planning, e.g., for road planning and for estimation / 

simulation of air and noise pollution. In recent years, attempts have been 

made to derive traffic data also from aerial images, because such images 

belong to the fundamental data sources in many fields of urban planning. 

Therefore, an algorithm that automatically detects and counts vehicles in 

aerial images would effectively support traffic-related analyses in urban 

planning. Furthermore, because of the growing amount of traffic, research on 

vehicle detection is also motivated from the strong need to automate the 

management of traffic flow by intelligent traffic control and traffic guidance 

systems. The aerial images used are grayscale images taken mostly from a 

vertical or slightly oblique viewpoint. The length of a typical car in the 

datasets ranges from 13 to 26 pixels in image. This information has been  

 

 
Figure 1.1 Variations in image.   

used to make a geometric template. This template is matched at varying sizes 

and at all locations in the image. The likely candidates are classified as such 

and then further criterion on the basis of other features in the vicinity is 

applied for the final classification of the candidate as a vehicle or otherwise.  
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Figure 1.2. Shadows obstructing image 

 

1.3 Objectives of project 

    The objectives intended to be achieved during course of this project are: 

To develop an automated system for detection of vehicles from aerial 

images, provide post detection interactive analysis, system efficiency 

analysis is to be done for assessing system efficiency. The concept of 

steerable filters and rectangular feature extraction algorithm are used for 

feature extraction. These features such as lines, corners are then processed 

for extraction of relative attributes, for example distance, angle, and 

orientation, for matching purposes. After that detection algorithm is applied 

to detect the vehicles. The image is then processed for feature extraction and 

representation and finally a processed image appears with vehicles 

earmarked on them under a white rectangle along with an efficiency window 

highlighting the time taken and number of vehicles detected. 
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C h a p t e r  2  

2. Literature Review 

2.1 Introduction 

       Vehicle detection from satellite imagery is a relatively new topic in the 

civilian Community. The lack of sufficiently high-resolution satellite data 

has been the primary cause. However, with the recent launch of several 

commercial satellites with high resolution data, it should be seeing several 

inroads in this area in the near future. Previous attempts have primarily 

focused on using aerial photographs, although these have been limited. In 

one of the early studies Taylor [1] used an analytical stereo plotter to extract 

traffic parameters from aerial photographs. Agin [2] tried to use artificial 

intelligence concepts for this purpose. 

        Some of the recent attempts for vehicle detection in aerial photographs 

are described in the next sections. Some of the methods for vehicle detection 

and tracking being used by the surveillance community are also discussed. 

Their attempts focus on tracking and threat assessment of vehicle and object 

movements. It is important to note the significant differences in the problem 

of vehicle detection from aerial imagery compared to that using other sensor 

systems like video imagery and satellite photographs. Firstly, the resolution 

of the satellite images being used for the purposes of this study is 1-m, which 

is considerably coarser than the resolution on the order of 20-cm for the 

video imagery and the aerial photographs that were used in other studies. 

Availability of multiple snapshots of the same area is another advantage that 

aerial photographs (several overlapping images) and video imagery (multiple 

frames) enjoy over the satellite imagery for which only one snapshot is 

available for an area at a given time. Thus, motion cues that can be extracted 
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from video imagery are not available in the case of satellite imagery. 

Overlapping images can be used to generate a pavement background image 

that can be compared with a new image to detect regions of change or 

motion on the pavement. 

 2.2 Aerial Photographs and Satellite Images 

      Several attempts have been made for detecting vehicles in aerial images. 

Here described are some of the approaches taken by researchers for vehicle 

detection in aerial images. Moon et al. [3] use a simple geometric edge 

model in conjunction with contextual information for vehicle detection in 

aerial imagery of parking lots. They construct a vehicle detection operator by 

combining four elongated edge operators designed to collect edge responses 

from the sides of the vehicles. The operator collects responses at the 

centroids of the four operators that are combined to form a rectangle. 

Suitable thresholds and rules are applied to filter out spurious responses. The 

algorithm was tested on images with varying conditions of camera angle, 

camera orientation and illumination. They also propose performance analysis 

measures of vehicle detection algorithms. 

    Rajgopalan et al. [4] describe a method that “approximately models the 

unknown distribution of the images of the vehicles by learning higher order 

statistics (HOS) information of the vehicle class from sample images.” The 

basic idea is that the joint density function for the vehicle class is unlikely to 

be a simple Gaussian distribution. Hence, training data samples of vehicles 

are first clustered and statistical parameters corresponding to each cluster are 

obtained. They go on to propose a clustering method based on a HOS-based 

decision measure. Vehicles are detected by searching the test image for 

patches of vehicles at all points in the image and across different scales. The 

statistical information about the background is learned on the fly. The HOS 
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measure is essentially a class-distance measure expressed as a function of 

series expansion for a multivariate probability density function. 

    Zhao and Nevatia [5] consider the vehicle detection problem as a 3D 

object recognition problem. Based on their observations from psychological 

tests they choose a set of features for recognition. The features include 

boundary of car body, boundary of windshield, and the vehicle shadow. They 

then construct a Bayesian network that is used to integrate all the features for 

the recognition process. Their approach seems to be quite robust, even in 

cases of partial occlusion by objects such as trees. 

      Ruskoné et al. [6] use a structure-based approach to identify vehicles in 

aerial images. They propose a structural hierarchical model that tries to 

capture the understanding of structure at different levels of organization or 

detail. The idea of different levels is as follows. At a pixel level the 

radiometry would be a measure to place a pixel in the vehicle class. This 

clustering process gives rise to the vehicle level. The vehicles are then 

organized as lines, say two identically oriented lines, and meta-lines, say two 

car-lines with relative orientation of 0º, 45º, or 180º. The car detection is 

validated using the organization of vehicles into lines and meta-lines. They 

use a neural network for the process. In an attempt to account for all or most 

of the conditions, like occlusions and less than perfect geometry, they use an 

exhaustive database to train the network. Sastry [7] reports Ruskoné’s 

observation that finding suitable features to train the network was a difficult 

part of the problem. 

     Structural analysis was also the key factor in research by Nagao and 

Matsuyama [8]. They sought a system that would automatically locate 

different classes of objects in an aerial photograph by using common sense 

knowledge about the world. They hypothesized the presence of cars by the 

absence of a large homogeneous region, such as vegetation, water and 
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shadow. However, they realized that contextual information, like the 

presence of a road, was required to improve the accuracy of detection. They 

used the above mentioned hypothesis expression, while also supplying the 

contextual information for detection. They then use other characteristic 

features, for example, rectangularity, to further refine the results. 

     Sastry [7] proposed a wavelets and principal components based method 

for identification of vehicles in aerial photographs and satellite imagery. He 

creates a pyramid of texture and mean images. Principal component analysis 

is performed on this set of bands. One of the resultant principal component 

bands is then selected for threshold selection. The resulting blobs are then 

analyzed for size and shape characteristics. Some bands consistently showed 

desirable properties for applying the threshold selection algorithms. 

      The NCRST-F group at The Ohio State University has developed a 

simplified methodology derived from the method described by Sastry [7]. 

They have also proposed a method that uses a background estimate to 

associate a probabilistic measure of a pixel being dynamic or stationary [9]. 

Starting with a prior estimate of the probability, a Bayesian scheme is used to 

update the probabilities until convergence is achieved. They propose to build 

the background using a Kalman filter-like approach, i.e., using an average of 

several images taken at different times. 

2.3 Thresholding Techniques 

       Thresholding is one of the common and simple approaches to image 

segmentation. It involves limiting the intensity values within an individual 

image to a certain bounded range or ranges. The threshold value can be 

selected manually by visually inspecting the histogram of the image or can 

be selected by automatic software programs. Classical threshold selection 

methods have relied on the one-dimensional histogram of the image to be 

segmented. A one-dimensional histogram provides an estimate of the 
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probability of occurrence for each gray level in the gray level range of the 

image. Several schemes, like Kullback-Leibler [10] distance based threshold, 

have been proposed to select thresholds from one-dimensional histograms. 

However, the main drawback of one-dimensional histogram-based methods 

is that they do not take the pixel dependencies or the spatial distribution into 

account while defining the information measures. To overcome these 

deficiencies, methods based on higher order entropies have been proposed. 

Second-order entropies have found special attention in this regard. Pal and 

Pal [11] defined the concepts of local and joint entropy. Chang et al. [12] 

used the concept of relative (or cross) entropy for threshold selection. They 

first calculate the gray level transition probability distribution of the co-

occurrence matrix for the image and for a thresholded binary image. The 

threshold that minimizes the difference between the two transition 

probabilities is chosen. Baghdadi et al. [13] use the same concept, but they 

divide the image into blocks for threshold selection. 

         Lee et al. [14] have attempted to integrate the concept of local entropy 

into that of relative entropy to get a more efficient algorithm for threshold 

selection. Their approach was used for the threshold selection procedure 

implemented in this study. They also attempt to account for the locality of 

objects and the different resolutions of thresholding by using the Hilbert 

space filling sequence for calculating the co-occurrence matrix. 

      Cheng et al. [15] present a thresholding approach that performs a fuzzy 

partition on the two-dimensional histogram of the image based on fuzzy 

relaxation and the maximum entropy principles. They claim to have found 

better results than the usual two-dimensional hard threshold selection 

algorithms. Yanowitz and Bruckstein [16] present a method for image 

segmentation that attempts to address the issue of poor and non-uniform 

illumination. An adaptive threshold surface is determined by interpolating 
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the image gray levels at points where the gradient is high, indicating 

probable object edges. This surface is then used to segment the image. The 

adaptive nature of the surface tends to eliminate the illumination 

characteristics at a point. The threshold surface may intersect the background 

creating objects where none exists. However, this is easily rectified since 

such points will have low gradient values. 

 2.4 Miscellaneous Techniques 

        Building extraction from aerial images is an area that can yield useful 

strategies that might be relevant for our problem. Most building strategies 

tend to use geometric representation. This involves extracting lines (or 

edges), breaking them into segments based on curvature criterion, or by 

identifying corners and junctions and then perceptually organizing them into 

objects. Some of the significant works in this direction are Sarkar and Boyer 

[17], Roux and McKeown [18], and Lin and Nevatia [14]. 

2.5 Conclusion 

      This chapter presented a selection of approaches that have been 

developed for detecting and tracking vehicles and objects in imagery derived 

from several different classes of sensors. Various strategies, each trying to 

exploit a different set of invariant characteristics in the sensor data, were 

described. 
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C h a p t e r 3 

 
3. Data Set  
 
3.1 Introduction 
 

       The objective of this study is to test the performance of an image 

processing system for vehicle detection, classification and counting from 

high-resolution satellite data. For this purpose we have extracted a set of 

images to be tested so that the software performance can be characterized 

under conditions of varying pavement material and geometry, and 

atmospheric conditions. Images used for this study are aerial photographs 

scanned to produce 1-m resolution digital data. The general characteristics of 

the two types of imagery are described in the next section. The salient 

features of the dataset are described in the next section. Conditions of each 

image area are listed to characterize performance. 

3.2 Data Set Description 

      After extensive search from internet and military resources we have 

gathered a small but representative image data set which fulfills the 

constraints and assumptions made for the project. These images are 256 level 

gray scale (8-bit) images. As stated before, the test cases are extracts of 

roadway from several scanned aerial photographs and satellite images. These 

images present various conditions under which the performance of the image 

processing algorithms will be characterized. Careful attention has been paid 

to bring all the conditions likely to pose a challenge to the system in 

detection of vehicles in the data set. Table 3.1 provides a summary of the 

characteristics of these selected images. The images are shown in Figure 3.1 

to Figure 3.10. 
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Image 
Label Characteristics 

ATR 

1. Cross country terrain back ground 
2. Tank image 
3. Size of image: 134 × 100  
4. Memory size 13k. 

Img83 

1. Lot of built up area, with rectangular shape buildings. 
2. Road passing through the centre of image. 
3. Trees present along the roads and buildings 
4.  Mostly vehicles at the border of the road. 
5. Straight roadway section. 
6. Size of image: 505 × 477. 
7.  Memory size 235k. 
 

v2 

1  Curved road segment 
2. Predominantly dark image. 
3. Presence of large water body. 
4. Bridge. 
5. Built up area with trees shadowing some vehicles present. 
6. Size of image: 693 × 540. 
7.  Memory size 365k. 
 

v10 

1. Haphazardly scattered vehicles. 
2. Wide variety of vehicles greys scales. 
3. Straight road segment  but most of the vehicles are off the 
     road. 
4. Vehicles of varying sizes and orientations.      
5. Size of image: 666 × 400. 
6.  Memory size 260k. 
 

v18 

1. Mountainous terrain. 
2. Low resolution image. 
3.  Predominantly dark image. 
4. Widely dispersed vehicles 
5. Size of image: 720 × 540. 
6.  Memory size 379k. 
 



 

 12

 

Table 3.1 Test case descriptions 
 

 

Image 
Label Characteristics 

v22 

1. All vehicles on the road. 
2. Few buildings with rectangular profiles are present.  
3. Some vehicles are merging with the road texture. 
4. Vehicles of varying sizes. 
5. Vehicles are fairly dispersed. 
6.  Size of image: 600 × 3297.  Memory size 192k. 
 

v23 

1. Road crossing. 
2. Good contrast between vehicles and pavement. 
3. Presence of rectangular shadows. 
4. Vehicles are fairly dispersed. 
5. Size of image: 335 × 219 
6.  Memory size 71k. 

v24 

1. Poor contrast between vehicles and surroundings 
2. Cross country terrain. 
3. Tanks are parked in clusters. 
4. Noisy image. 
5. Size of image: 324 × 249. 
6. Memory size 78k. 

v25 

1. Parking lot. 
2. Absence of any feature other than vehicles. 
3. Vehicles of large variety of shades. 
4. Occluded vehicles. 
5. Large no of vehicles, evenly dispersed. 
6. Size of image: 368 × 64. 
7. Memory size 94k. 

v26 

1. Multi tiered road structures. 
2. Less vehicles widely dispersed. 
3. Different shades of vehicles. 
4. Back ground is dark and has good contrast with road texture. 
5. Size of image: 500 × 300. 
6. Memory size 146k. 
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Figure 3.2   Test Image Img83 

These conditions include: Vehicle contrast with respect to the pavement, 

which is affected by atmospheric conditions, such as presence of cloud 

cover, and by the pavement type and vehicle tone. Presence of vehicle-like 

objects in the image, for example, pavement markings. Road geometry, 

whether curved or straight, with respect to the image orientation. This 

analysis does not restrict itself to highways and freeways only. The reason 

being that at the level of arterials, several other factors would need to be 

considered. Like the orientation and the relative positioning of other features 

in the surroundings.  
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Figure 3.3 Test Image v2 

 

 
Figure 3.4 Test Image v10 
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Figure 3.5 Test Image v18 

 

 
Figure 3.6   Test Image v22 
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Figure 3.7  Test Image v23 

 

 
Figure 3.8    Test Image v24 
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Figure 3.9   Test Image v25 

 
Figure 3.10 Test Image v26 

As can be seen from the images, primary interest is in a combination of three 

features or conditions that may affect the vehicle detection algorithms. These 

conditions include: Vehicle contrast with respect to the pavement, which is 

affected by atmospheric conditions, such as presence of cloud cover, and by 

the pavement type and vehicle tone. Presence of vehicle-like objects in the 
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image, for example, pavement markings. Road geometry, whether curved or 

straight, with respect to the image orientation. This analysis restricts itself to 

highways and freeways only. The reason being that at the level of arterials, 

several other factors would need to be considered. These factors include 

vehicles are more likely to be obscured, the presence of objects having 

signatures similar to vehicles, and the presence of shadows from surrounding 

buildings that would be likely to occur when an arterial passes through an 

area that has high-rise buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 19

C h a p t e r 4 

4. Graphical User Interface 
4.1 Introduction 

      ImageJ is a public domain Java image processing program inspired by 

NIH Image for the Macintosh. It runs, either as an online applet or as a 

downloadable application, on any computer with a Java 1.1 or later virtual 

machine. It can display, edit, analyze, process, save and print 8-bit, 16-bit 

and 32-bit images. It can read many image formats including TIFF, GIF, 

JPEG, BMP, DICOM, FITS and “raw”. It supports “stacks”, a series of 

images that share a single window. It is multithreaded, so time-consuming 

operations such as image file reading can be performed in parallel with other 

operations. It can calculate area and pixel value statistics of user-defined 

selections. It can measure distances and angles. It can create density 

histograms and line profile plots. It supports standard image processing 

functions such as contrast manipulation, sharpening, smoothing, edge 

detection and median filtering. It does geometric transformations such as 

scaling, rotation and flips. Images can be zoomed up to 32:1 and down to 

1:32. All analysis and processing functions are available at any magnification 

factor. The program supports any number of windows (images) 

simultaneously, limited only by available memory. Spatial calibration is 

available to provide real world dimensional measurements in units such as 

millimeters. Density or gray scale calibration is also available. ImageJ was 

designed with an open architecture that provides extensibility via Java plug-

in. Custom acquisition, analysis and processing plugins can be developed 

using ImageJ’s built in editor and Java compiler. User-written plug-in make 

it possible to solve almost any image processing or analysis problem. The 

program supports any number of windows (images) simultaneously.  
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4.2 ImageJ Class Structure 
       This is an overview of the class structure of ImageJ. It is by far not 

complete, just the most important classes for plug-in programming are listed 

and briefly described. ImageJ can be run as applet or as application. This is 

the applet class of ImageJ. The advantage of running ImageJ as applet is that 

it can be run (remotely) inside a browser; the biggest disadvantage is the 

limited access to files on disk because of the Java applet security concept, if 

the applet is not signed. 

4.3 The Plugin Concept of Imagej 

      The functions provided by ImageJ’s menu commands (most of them are 

in fact plugins themselves) can be extended by user plugins. These plugins 

are Java classes implementing the necessary interfaces that are placed in a 

certain folder. Plugins can be written with ImageJ’s built-in plugin editor 

(accessible via the menus “Plugins/New...” and “Plugins/Edit...”), with a text 

editor of your choice or they can be generated using ImageJ’s plugin 

recorder. In any case plugins can be compiled and run inside ImageJ. Plugins 

found by ImageJ are placed in the Plugins menu or in submenus of it. 

4.4 Integrating Plugins into the ImageJ GUI 

     Like commands, plugins can be accessed via hot-keys. One can create a 

new hot-key by selecting “Create Shortcut” from the menu “Plugins / 

Shortcuts”. When the plugin interfaces were discussed it was talked about 

arguments that can be passed to plugins. Installing a plugin using the menu 

command “Plugins / Shortcuts / Install Plugin ...” places the plugin into a 

selected menu, assigns a hot-key and passes an argument. “Plugins / 

Shortcuts / Remove ...” removes a plugin from the menu. 

4.5 Image Representation in ImageJ 

     In ImageJ, images are represented by ImagePlus and ImageProcessor 

objects in ImageJ. In this section a closer look at the way images are handled 
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by ImageJ.  Images are large arrays of pixel values. But it is important to 

know how these pixel values should be interpreted. This is specified by the 

type of the image. ImageJ knows five image types. 8 bit grayscale image  can 

display 256 grayscales and a pixel is represented by a byte variable. 8 bit 

color image can display 256 colors that are specified in a lookup table (LUT) 

and a pixel is represented by a byte variable. 16 bit grayscale image can 

display 65, 536 grayscales, and a pixel is represented by a short variable. 

RGB color image can display 256 values per channel and a pixel is 

represented by an int variable. In 32 bit floating point grayscale image, a 

pixel is represented by a float variable. 

4.6 GUI of the project 

4.6.1 User Interface   

       User Interface of the project consists of a main window which gives the 

user menus as shown in Figure 4.1.  File menu, includes the options of new, 

open, close, save, save as and quit. Edit menu includes the options of undo, 

cut, copy, paste, clear, fill and draw. Image menu includes the options of 

type, properties, and colors, duplicate, rename, scale, rotate and zoom. 

Process menu contains the important functions of smooth, sharpen, contrast, 

noise, shadows etc. Analyze menu includes measure, summarize, label, clear 

results, set measurements etc. Plugins, In addition to compilation and run 

plugins menu includes the most important function of detector which 

implements all the functions automatically described above. Windows menu 

includes the functions cascade, put behind etc. Image menu includes the 

options of type, properties, and colors, duplicate, rename, scale, rotate and 

zoom. Process menu contains the important functions of smooth, sharpen, 

contrast, noise, shadows etc. Analyze menu includes measure, summarize, 

label, clear results, set measurements etc. Edit menu includes the options of 

undo, cut, copy, paste, clear, fill and draw. 
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Figure 4.1   User interface 

4.6.2 Result Windows 

After the Run function is called, four windows (Figure 4.2) appear, three 

containing the processed images and one portraying the efficiency in terms 

of time consumed and number of vehicles detected. The processed windows 

include edge detected image and Non Maximum suppression applied image. 

The final result window is the replica of the original image with a white 

rectangle placed over each detected vehicle. Windows menu includes the 

functions cascade, put behind etc. Image menu includes the options of type, 

properties, and colors, duplicate, rename, scale, rotate and zoom. Process 

menu contains the important functions of smooth, sharpen, contrast, noise, 

shadows etc. Analyze menu includes measure, summarize, label, clear 

results, set measurements. The result window also shows the number of 

vehicles detected in a test image.  
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Figure 4.2 Result Window 

The processed windows include edge detected image and Non Maximum 

suppression applied image. The final result window is the replica of the 

original image with a white rectangle placed over each detected vehicle. 

Windows menu includes the functions cascade, put behind etc. Image 

menu includes the options of type, properties, and colors, duplicate, 

rename, scale, rotate and zoom. 
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C h a p t e r 5 

 
5. Methodologies  
 
5.1 Preprocessing for Brightness and Contrast  
 
     After aligning the features, there is one remaining major source of variation 

(apart from intrinsic differences between features). This variation is caused by 

lighting and camera characteristics, which can result in brightly or poorly lit 

images, or images with poor contrast. These problems are first addressed by 

using a simple image processing approach. This preprocessing technique first 

attempts to equalize the intensity values in across the window. A function is 

applied, which varies linearly across the window to the intensity values in an 

oval region inside the window. Pixels outside the oval may represent the 

background, so those intensity values are ignored in computing the lighting 

variation across the face. If the intensity of a pixel x, y is I(x, y), then to fit this 

linear model parameterized by a, b, c to the image: 

( ) ( ) ( )1, LLLLLyxI
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zyx =
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The choice of this particular model is somewhat arbitrary. It is useful to be 

able to represent brightness differences across the image, so a non-constant 

model is useful. The variation is limited to linear to keep the number of 

parameters low and allow them to be fit quickly. Collecting together the 

contributions for all the pixels in the oval window gives an over-constrained 

matrix equation, which is solved by the pseudo-inverse method. This linear 

function will approximate the overall brightness of each part of the window, 

and can be subtracted from the window to compensate for a variety of lighting 

conditions. 
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       Next, histogram equalization is performed, which non-linearly maps the 

intensity values to expand the range of intensities in the window. The 

histogram is computed for pixels inside an oval region in the window. This 

compensates for differences in camera input gains, as well as improving 

contrast in some cases. The algorithm for this step is as follows. First compute 

the intensity histogram of the window, where each intensity level is given its 

own bin. This histogram is then converted to a cumulative histogram, in which 

the value at each bin says how many pixels have intensities less than or equal 

to the intensity of the bin. The goal is to produce a flat histogram, which is an 

image in which each pixel intensity occurs an equal number of times. The 

cumulative histogram of such an image will have that property that the number 

of pixels with an intensity less than or equal to a given intensity is proportional 

to that intensity. 

        Given an arbitrary image, one can produce an image with a linear 

cumulative histogram by adjusting the pixel intensities. Each intensity will be 

mapped to the value of the cumulative histogram for that bin. This guarantees 

that the number of pixels matches the intensity, which is the property required. 

In practice, it is impossible to get a perfectly flat histogram (for example, the 

input image might have a constant intensity), so the result is only an 

approximately flat intensity histogram.  

        In some parts of this project, only histogram equalization with subtracting 

the linear model is used. This is done when it is not know which pixels in the 

input window are likely to be foreground or background, and cannot apply the 

linear correction to just the face. Instead, just apply the histogram equalization 

to the whole window, hoping that it will reduce the variability somewhat, 

without the background pixels having too much effect on the appearance of the 

features in the foreground. 
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5.2 Choosing a Smoothing Filter 
 
      The smoothing filter can be chosen by taking a model of an edge and then 

using some set of criteria to choose a filter that gives the best response to that 

model. It is difficult to pose this problem as a two dimensional problem, 

because edges in 2D can be curved. Conventionally, the smoothing filter is 

chosen by formulating a one-dimensional problem, and then using a 

rotationally symmetric version of the filter in 2D. 

      The one-dimensional filter must be obtained from a model of an edge. The 

usual model is a step function of unknown height, in the presence of stationary 

additive Gaussian noise: where 
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(The value of U(0) is irrelevant for this purpose). A is usually referred to as the 

contrast of the edge. In the 1D problem, finding the gradient magnitude is 

same as finding the square of the derivative response. For this reason, one 

usually seeks a derivative estimation filter rather than a smoothing filter 

(which can then be reconstructed by integrating the derivative estimation 

filter). Canny established the practice of choosing a derivative estimation filter 

by using the continuous model to optimize a combination of three criteria. 

Signal to noise ratio:  the filter should respond more strongly to the   edge at x 

= 0 than to noise. Localization: the filter response should reach a maximum 

very close to x = 0. Low false positives: there should be only one maximum of 

the response in a reasonable neighborhood of x = 0. It is difficult to pose this 

problem as a two dimensional problem, because edges in 2D can be curved. 

Once a continuous filter has been found, it is discredited. The criteria can be 

combined in a variety of ways, yielding a variety of somewhat different filters. 
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It is a remarkable fact that the optimal smoothing filters that are derived by 

most combinations of these criteria tend to look a great deal like Gaussians — 

this is intuitively reasonable, as the smoothing filter must place strong weight 

on center pixels and less weight on distant pixels, rather like a Gaussian. In 

practice, optimal smoothing filters are usually replaced by a Gaussian, with no 

particularly important degradation in performance. 

5.3 Derivative of Gaussian Filters 
 
Smoothing an image and then differentiating it is the same as convolving it 

with the derivative of a smoothing kernel. This fact is most easily seen by 

thinking about continuous convolution. Firstly, differentiation is linear and 

shift invariant. This means that there is some kernel — it dodges the question 

of what it looks like — that differentiates. That is, given a function I(x,y) 
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Now the derivative of a smoothed function is required. The convolution kernel 

for the smoothing is written as S. Recalling that convolution is associative,  
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This fact appears in its most commonly used form when the smoothing 

function is a Gaussian;  
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i.e. only convolve with the derivative of the Gaussian, rather than convolve 

and then differentiate. A similar remark applies to the Laplacian. The 

Laplacian of a function in 2D is defined as: 
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Again, because convolution is associative,  

( )( ) ( ) ( ) ( )8***** 222 LLLLIGIGKIGK σσσ ∇=∇=∇  

This practice results in much smaller noise responses from the derivative 

estimates. Non-maximum suppression obtains points where the gradient 

magnitude is at a maximum along the direction of the gradient. The Figure 5.1 

shows how to reconstruct the gradient magnitude. The dots are the pixel grid. 

At pixel q, attempting to determine whether the gradient is at a maximum; the 

gradient direction through q does not pass through any convenient pixels in the 

forward or backward direction, so interpolation is done to obtain the values of 

the gradient magnitude at p and r; if the value at q is larger than both, q is an 

edge point. Typically, the magnitude values are reconstructed with a linear 

interpolate, which in this case would use the pixels to the left and right of p 

and r respectively to interpolate values at those points. On the right, it sketches 

how to find candidates for the next edge point, given that q is an edge point; an 

appropriate search direction is perpendicular to the gradient, so that points s 

and t should be considered for the next edge point. Notice that, in principle, it 

is not needed to restrict to pixel points on the image grid, because it is known 

where the predicted position lies between s and t, so that it can again 

interpolate to obtain gradient values for points off the grid. Typically, the 

magnitude values are reconstructed with a linear interpolate, which in this case 

would use the pixels to the left and right of p and r respectively to interpolate 

values at those points. This reconstruction is followed by tracing of the edges 

found out by the algorithm. Thresholding of the image then brings out an 

image in which edges are visible clearly. Notice that, in principle, it is not 

needed to restrict to pixel points on the image grid, because it is known where 

the predicted position lies between s and t, so that it can again interpolate to 

obtain gradient values for points off the grid. 
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Figure 5.1 Reconstruction of gradient magnitude 

 

5.4 Identifying Edge Points from Filter Outputs 

       Given estimates of gradient magnitude it is indented to obtain edge points. 

Again, there is clearly no objective definition, and proceed by reasonable 

intuition. The gradient magnitude can be thought of as a chain of low hills. 

Marking local extrema would mark isolated points—the hilltops in the 

analogy. A better criterion is to slice the gradient magnitude along the gradient 

direction — which should be perpendicular to the edge — and mark the points 

along the slice where the magnitude is maximal. This would get a chain of 

points along the crown of the hills in the chain; the process is called non-

maximum suppression. Typically, it is expected that edge points to occur 

along curve-like chains. The significant steps in non maximum suppression 

are: Determining whether a given point is an edge point; and, if it is, finding 

the next edge point. Once these steps are understood, it is easy to enumerate all 

edge chains. First edge point is found, marked, expanded all chains through 
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that point exhaustively, marking all points along those chains, and continue to 

do this for all unmarked edge points. 

 
 

Algorithm 5.1: Non-maximum suppression 

The two main steps are simple. For the moment, assume that edges are to be 

marked at pixel locations (rather than, say, at some finer subdivision of the 

pixel grid). It can be determined whether the gradient magnitude is maximal at 

any pixel by comparing it with values at points some way backwards and 

forwards along the gradient direction. This is a function of distance along the 

gradient; typically it steps forward to the next row (or column) of pixels and 

backwards to the previous to determine whether the magnitude at the pixel is 

larger. The gradient direction does not usually pass through the next pixel, so 

we must interpolate to determine the value of the gradient magnitude at the 

points we are interested in; a linear interpolate is usual. A better criterion is to 

slice the gradient magnitude along the gradient direction which should be 

perpendicular to the edge and mark the points along the slice where the 

magnitude is maximal. This would get a chain of points along the crown of the 

hills in the chain; the process is called non-maximum suppression. 
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                  (i)                                       (ii)                                  ( iii) 
Figure 5.2 Image Examples (i) Butterfly on a blurred background (ii) Strong contrast 
between snow and objects (iii) Zebra with fine scale details 
 

Here three images (Figure 5.2) are used to illustrate properties of a gradient 

based edge detector. The butterfly is on a blurred background; there is strong 

contrast between the figures on the snow and the background; and the zebra’s 

nose has fine scale detail — its whiskers — as well as coarse scale detail. If 

the pixel turns out to be an edge point, the next edge point in the curve can be 

guessed by taking a step perpendicular to the gradient. This step will not, in 

general, end on a pixel; a natural strategy is to look at the neighboring pixels 

that lie close to that direction. This approach leads to a set of curves that can 

be represented by rendering them in black on a white background, as in Figure 

5.3. Edge points marked on the pixel grid for the three images shown in Figure 

5.2. The top row shows edge points obtained using a Gaussian smoothing filter 

at σ one pixel, and the center and bottom rows show points obtained using a 

smoothing filter at σ four pixels. For the top two cases, Gradient magnitude 

has been tested against a high threshold to determine whether a point is an 

edge point or not; for the bottom row, gradient magnitude was tested against a 

low threshold. 
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Figure 5.3. Edge Detection with different Gradient magnitude for   

smoothing (i)(ii)(iii) Gaussian smoothing filter at σ = 1 pixel,(iv)(v)(vi) 

Gaussian            smoothing filter at σ = 2 pixel,(vii)(viii)(ix) Gaussian 

smoothing filter at σ = 2 pixel. 

 At a fine scale, fine detail at high contrast generates edge points, which 

disappear at the coarser scale — for example, the zebra’s whiskers disappear. 

When the threshold is high, curves of edge points are often broken because the 

gradient magnitude dips below the threshold; for the low threshold, a variety 

of new edge points of dubious significance are introduced. 

5.5  Steerable Filters 
    To cut down on the computational load, we select our detector within the 

class of steer able filters introduced by Freeman and Adelson. These filters 

can be rotated very efficiently by taking a suitable linear combination of a 

small number of filters. Specifically, we consider templates of the form 
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where  is an arbitrary isotropic window function. It is called an Mth 

order detector. Once the f ki
 (x,y) are available, f(x)* h(Rx) can be evaluated 

very efficiently via a weighted sum with its coefficients that are 

trigonometric polynomials of Since the number of partial differentials in (5) 

for a general Mth order template is M(M+3)/2, h(x) is steer able in terms of 

as many individual separable functions. Using some simplification, it can be 

shown that such a general h(x) can also be rotated using 2M + 1 non 

separable filters. 
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A case of special interest corresponds to g(x) being the Gaussian; indeed, 

the Gaussian is optimally localized in the sense of the uncertainty principle 

and the corresponding filters in (6) are all separable. Interestingly, the 

Gaussian family is equivalent to the class of moment filters (polynomials 

multiplied by Gaussian window), but the filters are not identical. 
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5.6  Design of Steer able Filters for Feature Detection 

     As already observed by Freeman and Adelson, the widely used Canny 

edge detection algorithm can be reinterpreted in terms of steer able filters. 

This algorithm involves the computation of the gradient-magnitude of the 

Gaussian smoothed image. The direction of the gradient gives the orientation 

of the edge. Mathematically, 
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Here, the steer ability of gx from (5) is used. To compute the maximum of 

the above expression, it sets the differential of (11) with respect to zero. 

The widely-used contour extraction algorithm has three steps:  feature 

detection, non maximum suppression, and threshold. In this section, a 

general strategy for the design of steer able filters for feature detection is 

presented, while keeping in mind the subsequent steps. It proposes a criterion 

similar to that of Canny and analytically derives the optimal filter—or, 

equivalently, the optimal weights—within the particular class of steer able 

functions specified by (4). The widely-used contour extraction algorithm has 

three steps:  feature detection, non maximum suppression, and threshold. In 

this section, a general strategy for the design of steer able filters for feature 

detection is presented, while keeping in mind the subsequent steps. 
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5.7 Optimality Criterion 
   A review of Canny’s criterion and modifying it slightly to make it 

analytically optimized. To derive the optimal 2D operator, it is assumed that 

the feature (edge/ridge) is oriented in some direction (say, along the x axis) 

and derives an optimal operator for its detection. As the operator is Rotation-

steer able by construction, its optimality properties will be independent of the 

feature orientation. The three different terms in Canny’s criterion are as 

follows. 

5.7.1 Signal-to-Noise Ratio 

    The key term in the criterion is the signal-to-noise ratio. The response of a 

filter to a particular signal (e.g., an idealized edge) centered at the origin is 

given by 
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S is given by the height of the response at its maximum. If the input is 

corrupted by additive white noise of unit variance, then the variance of the 

noise at the output is given by the energy of the filter: 
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It is desired to have a high value of S for a given value of Noise; S2 

Noise is the amplification of the desired feature provided by the detector. 

5.7.2 Localization 
 
The detection stage is preceded by non maximum suppression. The estimated 

feature position corresponds to the location of the local maximum of the 

response in the direction orthogonal to the feature boundary (y axis in our 

case). The presence of noise can cause an undesirable shift in the estimated 

feature location. The direct extension of Canny’s expression for the shift-

variance (due to white noise of unit variance) to 2D gives 
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Canny has proposed to maximize the reciprocal of this term. The numerator 

of (19) is a normalization term which will be small automatically if the 

impulse response of the filter is smooth along the y axis (low norm for the 

derivative). Since the approach is imposing this type of smoothness 

constraint elsewhere via an additional regularization term, it is not necessary 

to optimize this term here, which also keeps the effects well separated. 

Therefore, it is proposed to maximize the second derivative of the response, 

orthogonal to the boundary, at the origin 
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which is the square-root of the denominator in (20). The above expression is 

ensured to be positive because the second derivative of the response is 

negative at the maximum (assuming S > 0). Note that the new localization 

term is a measure of the width of the peak. The drift in position of the 

maximum due to noise will decrease as the response becomes sharper. This 

work is neglecting the effect of neighboring features in deriving the 

localization term. 

5.7.3 Elimination of False Oscillations 

 Canny observed that when the criterion is optimized only with the SNR and 

the localization constraint, the optimal operator has a high bandwidth; the 

response will be oscillatory and, hence, have many false maxima. In 2D, it is 

desired that the response be relatively free of oscillations orthogonal to the 

feature boundary. This can be achieved by penalizing the term: 

( ) ( )∫=
2

23
2

,
R

dxdyyxyyhxR LLLLLLLLLLLLLLL  



 

 37

Note that this term is the numerator of the expression for the mean distance 

between zero crossings proposed by Canny. It is a thin-plate spline-like 

regularization which is a standard technique to constrain a solution to be 

smooth (low bandwidth). The thresholding step is easier if the response is 

flat along the boundary. The oscillation of the response along the boundary 

(x axis) can be minimized by penalizing above equation. These terms will 

force the filter to be smooth making the response is less oscillatory, thus 

resulting in less false detection. 
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C h a p t e r 6 

6. Results and Analysis 
6.1 Introduction 

      After tuning the edge detection operator to optimally detect the vehicle 

edges, testing was carried out on the image data set to verify the efficacy of the 

technique. Testing was carried out on Pentium IV 1.6 GHz machine with 256 

MB RAM, with Microsoft Windows XP (SP2). The dataset, as already 

described was selected to test the system for the objectives already stated. The 

results obtained are described image wise: 

6.1.1 Test Image ATR 

      This image contained a vertical photo of a tank with no other objects in the 

surroundings. This was the simplest image. The edge response was good 

(Figure 6.1), the rectangular profile of the tank was clearly visible. Hence, 

results as shown in Figure 6.2, the system was able to correctly classify it.  

 

 
                            Figure 6.1   Edge image of ATR 
 

 
Figure 6.2   Final Output of ATR 
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The image contained only one vehicle and the rectangular profile was 

successfully detected as the image was noise free and had no other features. 
The concentration detection condition had no impact on the results because 

only one vehicle was present in the image. 

 

6.1.2 Test Image Img83 

         This image depicted a densely populated area. Large number of 

buildings, some of which were giving good rectangular profile. Moreover the 

presence of trees was also a hindrance in the detection of vehicles. The 

mentioned problems did pose a challenge in the edge detection phase, as can 

be seen from the edge image (Figure 6.3). There were 20 vehicles present in 

the image; the system classified 19 objects as vehicles (Figure 6.4), with 13 

false positives and 14 false negatives. Here it is pertinent to mention that these 

results are with the concentration condition applied. Without the concentration 

condition (Figure 6.5) there were 6 correct classifications and 27 errors. The 

errors are fairly high, but can be justified on the ground that the system is 

designed to work without any image context information and is assumed to 

work in cross country also. The non use of road and pavement alignment 

information though cause this large number of errors, but at the same time 

proves the efficiency of the system where it has successfully, classified 

vehicles from other similar objects. The system objective as has been 

mentioned before also is tom detect the vehicles in cross country terrain, 

therefore in this image the results can be accepted. This image was included in 

the test images to check its efficacy in urban area images and find out any 

areas where further amendments can make the system more efficient. The 

chimneys present on the roof tops specially give out the edge shape similar to 

that of the vehicles as can be seen in Figure 6.3. 
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                                 Figure 6.3 Edge image of Img83 

The errors are fairly high, but can be justified on the ground that the system is 

designed to work without any image context information and is assumed to 

work in cross country also. The non use of road and pavement alignment 

information though cause this large number of errors, but at the same time 

proves the efficiency of the system where it has successfully, classified 

vehicles from other similar objects. The system objective as has been 

mentioned before also is tom detect the vehicles in cross country terrain, 

therefore in this image the results can be accepted.  
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Figure 6.4 Final Output of Img83 with concentration  

The use of concentration condition makes the system prone to more errors in 

an urban area as normally there are places in urban areas where vehicles are 

mostly dispersed and the concentration of vehicles is not found usually. At 

places the wind screens of the vehicles divide the edge image of the vehicle in 

three different parts thus the vehicle is no longer visible as a rectangular entity 

in the edge image. This phenomenon also gives rise to false negative 

responses. It is difficult to predict the occurrence of this phenomenon in 

advance and then incorporate it in the classification as a large number of 

factors are involved. 
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Figure 6.5 Final Output of Img83 without concentration  

6.1.3 Test Image v2 

       This image contains a curved road segment; predominantly it is a dark 

image because of presence of a large water body. A bridge with five vehicles 

on it is dividing the image in two halves. Built up area with trees shadowing 

some vehicles is present. The edge response (Figure 6.6) of the image was 

good, as despite the presence of the buildings and trees the number of correctly 

classified vehicles with concentration condition (Figure 6.7) was 4 out of 9 and 

no false positives. The errors were 5 in the form of false negatives only, which 

were caused by the use of concentration condition as it prevents detection of 

isolated vehicles. Without the concentration condition (Figure 6.8) the system 

was able to detect all the 9 vehicles correctly. 4 false positives were reported 

as the buildings were giving similar edge profile as the vehicles. 
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Figure 6.6   Edge image of v2   

 

 
Figure 6.7 Final Output of v2 with concentration  
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Figure 6.8 Final Output of v2 without concentration  

6.1.4 Test Image  v10 

       This image depicted the Gulf war retreat of the Iraqi forces. There were 64 

vehicles present many of them burnt and even difficult to classify as vehicles 

with the naked eye. A substantial portion of the image was dark to the extent 

of giving no information for the classification. The edge response (Figure 6.9) 

caused a lot of vehicles to lose their rectangular shape. The results were fair as 

with concentration condition (Figure 6.10) 23 vehicles were correctly 

classified. High number of false negatives was caused by partial occlusion of 

certain vehicles by the shadows and the burnt ground. Furthermore, a large 

number of vehicles were overturned and piled over each other thus causing the 

loss of edge information leading to correct detection. This problem can be 

addressed by the use of intelligent technique to offset the effects of occlusion. 
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Better results were obtained without the concentration condition (Figure 6.11) 

with 41 correct classifications. 

 
Figure 6.9   Edge image of v10 

 
Figure 6.10 Final Output of v10 with concentration  
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Figure 6.11 Final Output of v10 without concentration  

 

6.1.5 Test Image  v18 

        This image shows various vehicles dispersed in the desert with few 

barracks. The interesting part is that even visually it is difficult to distinguish 

between the two. The edge image (Figure 6.12) proves this vulnerability of the 

system and hence diminishes further the differences. Of the 5 vehicles present 

in the image 2 were classified correctly with the concentration condition 

(Figure 6.13) as the dispersal distance between the vehicles was larger than the 

concentration parameter. Without the concentration condition (Figure 6.14) the 

results improved to give 4 correct classifications. An interesting observation 

was again the classification of North marker present on the image as vehicle. 

This brings forth a conclusion that if somehow the height of the image and 

subsequently expected size of the vehicles in the image can be 

provided/calculated by the system, this will result in a substantive 

enhancement in the performance. 
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Figure 6.12   Edge image of v18 

 
Figure 6.13 Final Output of v18 with concentration  
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Figure 6.14 Final Output of v18 without concentration  

 

6.1.6 Test Image  v22 

       In this image all vehicles are on the road. Few buildings with rectangular 

profiles are also present. Some vehicles are merging with the road texture. 

Vehicles are of varying sizes and are fairly dispersed. There are 9 vehicles in 

the image. The edge image (Figure 6.15) presents another challenge to the 

system in the form of shadows of the vehicles, which distort the information 

and thus cause a misclassification. With concentration condition (Figure 6.16) 

three vehicles were detected successfully and without concentration condition 

(Figure 6.17) this number improved to 5. At the same time the number of false 

classifications remained constant thus the number of errors remained static. 

The problem of shadows can be over come by applying an operator which can 

offset the effect of shadows in the image. It is possible if the information about 

the position of sun or the time of the image exposure is known. This again 
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Figure 6.15   Edge image of v22 

implies that the image data set should be specialized one and available on 

demand. Alternatively a method to extract the above information from the 

image be devised, which is out of scope of the project. 

 

 
Figure 6.16 Final Output of v22 with concentration  
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Figure 6.17 Final Output of v22 without concentration  

6.1.7 Test Image  v23 

       This image shows a road crossing. It’s a typical city square, with buildings 

and trees all around. Good contrast exists between vehicles and pavement, thus 

helping in detection. Presence of rectangular shadows again poses a challenge 

to differentiate between the false indicators and the correct classification. The 

vehicles are fairly dispersed. The edge image (Figure 6.18) shows that the 

edges are providing positive information for the detection and have filtered out 

the unnecessary information. Out of 4 vehicles the system detected two 

vehicles with concentration condition applied (Figure 6.19), here the cause of 

the misdetection was the distance between the vehicles, as without the 

concentration applied (Figure 6.20) the results improved to detection of all the 

four vehicles, though again presence of a shadow having a darker shade and 

rectangular shape caused a false positive to occur. As mentioned earlier this 

can be rectified by the use of an intelligent technique like Bayesian or Neural 

Networks.   
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Figure 6.18   Edge image of v23 

 

 
Figure 6.19 Final Output of v23 with concentration  

 

Out of 4 vehicles the system detected two vehicles with concentration 

condition applied, here the cause of the misdetection was the distance between 

the vehicles, as without the concentration applied (Figure 6.20) the results 

improved to detection of all the four vehicles, though again presence of a 

shadow having a darker shade and rectangular shape caused a false positive to 

occur. As mentioned earlier this can be rectified by the use of an intelligent 

technique like Bayesian or Neural Networks.   
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Figure 6.20 Final Output of v23 without concentration  

6.1.8 Test Image  v24 

       This image is a low resolution image with lot of noise and low contrast. 

There is a concentration of tanks, but the edge image (Figure 6.21) shows that 

almost all the fighting vehicles are not giving a good rectangular edge 

response and hence the misclassification is caused. Out of 21 vehicles only 

two vehicles were correctly classified with concentration condition (Figure 

6.22) and without the concentration condition (Figure 6.23) the result 

improved to four vehicles. This image provided an insight into the problems to 

be faced when classifying tanks as they present a different edge shape in 

images with low resolution. This implies that a different geometric shape be 

used to identify and detect the tanks. This makes the system adaptable to 

detect other objects like bunkers, fortifications and buildings also after making 

appropriate changes. The problem of lighting conditions is also highlighted by 

this image, as the low contrast has made the detection more difficult. The 

results improved with the concentration condition removed and 5 vehicles 

were correctly classified. There were no false positives as no other object was 

giving out edges close to that of the vehicles. 
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Figure 6.21   Edge image of v24 

 

 

 
Figure 6.22 Final Output of v24 with concentration  

 

The errors are fairly high, but can be justified on the ground that the system is 

designed to work without any image context information and is assumed to 

work in cross country also.  
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Figure 6.23 Final Output of v24 without concentration  

6.1.9 Test Image v25 

         A vertical aerial photo of a parking lot with 163 vehicles.. There are 

vehicles of a large variety of shades. Certain vehicles have been occluded by 

other vehicles or their shadows. Large no of vehicles, evenly dispersed are 

present. The edge image (Figure 6.24) is an ideal image as it shows the edges 

of most of the vehicles distinctly.  

  
Figure 6.24 Edge image of v25 
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It was edge image of v25 because of good resolution and contrast in the image. 

The system detected 130 vehicles with (Figure 6.25) and without the 

concentration condition (Figure 6.26) as the all the vehicles were closely 

concentrated. 

 

 
Figure 6.25 Final Output of v25 with concentration  

 
Figure 6.26 Final Output of v25 without concentration  
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6.1.10 Test Image  v26 

       Multi tiered road structures are shown in this image. The image is 

characterized by the presence of fewer vehicles, widely dispersed. Different 

shades of vehicles are visible. Back ground is dark and has good contrast with 

road texture. The lane markings are creating a problem for the system as 

visible in the edge image (Figure 6.27). There are 8 vehicles present in the 

image. The system was able to classify 2 vehicles correctly with the 

concentration condition (Figure 6.28) applied as the vehicles were a large 

distance apart. The results improved with the concentration condition removed 

(Figure 6.29) and 5 vehicles were correctly classified. There were no false 

positives as no other object was giving out edges close to that of the vehicles. 

 

 
Figure 6.27   Edge image of v26 

Here another important conclusion comes to fore, that the system is capable of 

discounting the presence of large rectangular structures as are visible in this 

edge image. This is due to the limit imposed on the permissible size of a 

vehicle. This can be a disadvantage also in cases where the image is taken     
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Figure 6.28 Final Output of v26 with concentration  

 

 
Figure 6.29 Final Output of v26 without concentration  

from less height. In that case the vehicle will give out a larger rectangular profile and 

hence will also be neglected by the system, as the large structures in this image.  
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6.2 Efficiency Analysis Through Data Set 

       For efficiency analysis of the algorithms, various parameters of the results 

obtained from the implementation on the data set were recorded according to 

output with and without concentration conditions respectively in the Table 6.1 

and Table 6.2.  

 

Image 
Label 

Total 
vehicles Detected False 

+ve 
False 
-ve 

Correct 
Detection Errors 

Time 
Taken 
(ms) 

ATR 1 1 0 0 1 0 469 
Img83 20 19 13 14 6 27 3906 

v2 9 4 0 5 4 5 5766 
v10 64 14 0 50 14 50 4016 
v22 9 8 3 4 5 7 3047 
v23 4 2 0 2 2 2 1172 
v25 163 130 0 33 130 33 1500 
v26 8 2 0 6 2 6 2328 

Table 6.1 Results with Concentration Conditions 

 

Image 
Label 

Total 
vehicles 

Detected False 
+ve 

False 
-ve 

Correct 
Detection

Errors Time 
Taken 
(ms) 

ATR 1 1 0 0 1 0 469 
Img83 20 19 13 14 6 27 3735 

v2 9 13 4 0 9 4 5609 
v10 64 23 0 41 23 41 3857 
v22 9 9 4 4 5 8 3015 
v23 4 5 1 0 4 1 1141 
v25 163 130 0 33 130 33 1515 
v26 8 5 0 3 5 3 2297 

Table 6.2 Results without Concentration Conditions 

 

The results show that there are instances when the system is giving false 

positive responses. After analyzing the image characteristics of the images 
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where there is a large number of false positive responses like Test image 

Img83 Figure 6.3, it comes to notice that where there is a large built up area 

with rectangular profile buildings the system gives a lot of false positive 

responses. It can be justified on the basis of assumptions that state that the 

system is designed for detection of vehicles in cross country terrain. When we 

consider the false negative responses, mostly the shadows of surrounding 

images and occlusion caused by other vehicles are responsible for this. In Test 

image v10 (Figure 6.9), there are maximum false negative responses which are 

caused by presence of deformed and overturned vehicles and burnt out ground 

which has caused the most of false negative responses. Points which can be 

derived from the analysis of results: There is a need to integrate some measure 

of intelligent classification preferably through Bayesian network to eliminate 

the false positive responses if the system is to work efficiently in built up area 

too. Vehicle shadow can be used as a very important cue for detection; it will 

help in eliminating the false negative responses. As the number of vehicles 

increases the error rate tends to become constant Figure 6.30 shows this that 

the error rate has become stagnant after a certain threshold. It proves that the 

system is working efficiently on detection of clusters of vehicles. Further 

specific military images are needed to verify the efficacy of the system on 

military vehicles. The Error analysis (Figure 6.30) shows that the percentage 

of errors drop considerably with the increase in the number of vehicles in the 

image, this validates the efficiency of the system based on the underlying 

assumption of concentration detection. Figure 6.31 shows the time vs. size 

relationship between the image processing parameters. As the image size 

increases the memory and the time required for its processing also increases. 

The memory plays an important role in the processing of any image by the 

system. As the size of the image increases more than a threshold then the 
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available memory proves deficient to process it and hence the system returns 

an out of memory exception thrown by the Java virtual machine. 

 

 

 

 

 

 

 

  
Figure 6.30 Error Analysis 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.31 Performance Analysis 
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Conclusion 
     This project was an attempt to indigenously develop a system for automatic 

analysis of aerial images. It is by no means a complete system, but still it 

provides a foundation stone for further research and development in the field. 

It has a lot of room for improvement especially in the form of intelligent 

classification of vehicles. A larger and more specific image data set is needed 

to further test and refine the system. A more specific data set, keeping the 

project assumptions in focus is necessary to further validate the system. The 

findings have proved the efficacy of the approach i.e. use of geometric shape 

with no context information about the background features to detect objects in 

aerial images. Most important finding is the need for an intelligent post 

analysis processing module. It will help in reducing the large number of false 

positives which are increasing the error rate. Keeping the past research in view 

and the requirements of the project, the most suitable intelligent solution 

seems to be the Bayesian networks.  

The analysis highlights another area: shadow information, which is presently 

causing false detections/misdetections. If the lighting directions, orientation of 

the sun is known then the same information can be used to augment the 

information contained in the geometric model used for detection. The best 

approach will be to estimate the shadow effect on the model, based on the sun 

orientation information and the incorporate this information in the model to 

help in the detection process. The detection of fighting vehicles like tanks is 

another area where the system can be improved. The different geometric 

model adapted to the requirement will make the detection of fighting vehicles 

more efficient and effective. In the present approach back ground information 
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available from the image is discounted completely, this information can be 

helpful, if used in conjunction with the geometric model. The presence of one 

vehicle in an area where there are no linear features (roads, highways) should 

increase the probability of finding other vehicles in surrounding cross country 

terrain. The distinction between soft vehicles and fighting vehicles will also 

become possible if the intelligent technique is incorporated. The present state 

of the project provides an optimized geometric information based detection 

paradigm to be used by the intelligent plat form.  

 

 Future work 
      The project also identified two major directions for future research. Two 

methods presented in this study require a background image. Research is 

required for suitable methods for generating the background image. Research 

will also be required for developing a standard set of post-processing 

operations. These operations are performed on the segmented image to sieve 

out spurious responses and cluster appropriate pixel groups into potential 

vehicles. The standard set of operations will consist of a set of criteria that will 

be applied in a pre-determined sequence to generate the final vehicle counts. 

Similar approaches can also be useful for other object detection and 

recognition tasks. Intelligent post processing in the form of Bayesian networks 

or alternatively neural networks is highly desirable to improve the detection 

rate. Another area to focus on is the migration from Java to C to have access to 

more efficiency in terms of processing power and time. The incorporation of 

shadow and back ground information in the post processing steps can be 

helpful in enhancing the performance. 
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Appendix 1 

 1. User Manual 
 1.1 About Image/J 

       Image/J is a program which purpose is to enable picture processing. There 

are several types of software aimed to manipulate images. Some programs are 

made to change an image by adding different features to it. Those programs 

are widely used by designers and other artists. Image/J on the other hand is a 

program that can by described as a tool used in scientific areas, e.g. medicine. 

Researchers want to measure the size of different parts and organs to make 

various conclusions. Image/J allows them to analyze their images in such a 

way. This is an example of Image/J’s range of uses but it can be used in many 

other science fields e.g. physics. Image/J can display, edit, analyze, process, 

save and print 8-bit, 16-bit and 32-bit images and can create Stacks - series of 

images presented in one window. It can calculate pixels, distance and angles, 

area and pixel value. Furthermore, it supports many standard image processing 

functions, including contrast enhancement, density profiling, smoothing, 

sharpening, edge detection, and other filtering functions.  

Besides the obvious advantages with Image/J as an image processing software 

there is one great concept behind its development worth mentioning. Image/J 

is open source and many people participate in the development. Image/J was 

designed with an open architecture that provides extensibility via Java plugins. 

The plugins can be developed using Image/J's built in editor and a Java 

compiler, which makes it possible to write code that solves almost any image 

processing or analysis problem. 

1.2.   Installing ImageJ (Windows operating system) 
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        Copy the ImageJ folder to disc and transfer it to the C drive of computer. 

Open the ImageJ folder in the C drive and copy the shortcut (microscope with 

arrow) to your desktop. Double click on this shortcut to run ImageJ. If you are 

running ImageJ from some location other than the C drive, double click on the 

'red apple' icon in the ImageJ folder to launch the program. 

1.3.   Basic Operations. 

        An ImageJ window will appear on the desktop; do not enlarge this 

window. Select File, Open from the menu to open a stored image file. 

Selection Tools: The first four buttons on the toolbar are area selection tools; 

they allow you to surround an area on the image with a rectangle, oval, 

polygon or a freehand shape. After selection, these specific areas may be 

altered, analyzed, copied, etc. using the menu commands. Notice that the 

status bar, below the toolbar, gives the location of the selection (xxx, yyy) and 

its dimensions in pixel  .Line Tools: The next three buttons are line tools that 

create straight, segmented or freehand lines. Again note that information is 

displayed on the status bar as the line is drawn. Double-click on the line button 

to alter the line width. Ctrl+D or Edit Draw makes the line permanent. 

Crosshair Tool: The crosshair tool allows you to mark locations on the image; 

with each click the coordinates of the pixel (xxx, yyy) and brightness (0-255) 

are recorded in the data window. Color images will have three brightness 

readings displayed on the status bar, one each for the red, green and blue 

channels, however only one brightness value will be printed in the data 

window. Wand Tool: This tool automatically finds the edge of an object and 

traces its shape. It works best with high contrast images (see Thresholding, 

next page). Place the wand to the left of an edge; click and the algorithm will 

search to the right for an edge. It will then trace along the edge of the object 

until it returns to the starting point. Text Tool: Double click on this button to 

select a font and size. A large font size will probably be required for an image 
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from a digital camera. Single click the button, click-drag a text box and type 

the label. Move the box to the desired location and set the text in place with 

Ctrl+D or with Edit Draw. Magnifying Glass: Left-click on the image to 

magnify; right-click to reduce the image size. Scrolling Tool: This allows you 

to move the image if the picture is larger than the window. Color Picker: This 

tool sets the foreground drawing color or text color by "picking up" colors 

from images with the eyedropper. Colors also may be picked up from the 

Colors window by double-clicking the color picker button. Alt-click in the 

Colors window to change the background color. The icon for this tool (eye 

dropper) shows the current foreground color while the frame around it shows 

the background color. 

1.4 Image Processing 

      The next is a very small sampling of processing techniques that are 

possible with ImageJ. See the ImageJ and NIH Image websites for more 

information. ImageJ is best used for image analysis; I use it in conjunction 

with more powerful photo editors such as Adobe Photoshop. You may want to 

open a spreadsheet so that data can be efficiently 'cut & pasted' during image 

analysis. Also, it is a very good idea to make a backup copy of your image 

before doing any processing. Undo. Edit Undo reverses the preceding action. 

Only one back step is possible. Revert. File Revert should revert to the original 

saved image. Cropping. Surround the area with the rectangular selection tool 

followed by Image Crop. Clear Outside. Make a perimeter with a selection 

tool followed by Edit Clear Outside. The technique is useful for clearing 

extraneous objects near an item of interest. Edit Clear clears inside of the 

perimeter. Enhancing Brightness and Contrast. Image.Adjust 

Brightness/Contrast; click 'auto' or set manually Removing Noise. Process 

Noise Despeckle or try Process Filters  Median Rotating an Image. Image 

Rotate and select type of rotation Converting to Grayscale. Image Type 8-bit 
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converts the image to 256 shades (8-bit) of gray. In this scale 0 = pure black 

and 255 = pure white…. a grayscale reading of 128 would be a medium gray. 

Thresholding (Binary Contrast Enhancement). This is commonly used when 

detecting edges, counting particles or measuring areas. A grayscale image is 

converted to binary (a.k.a. halftone or black & white) by defining a grayscale 

cutoff point. Grayscale values below the cutoff become black and those above 

become white. The procedure: First convert the image to 8-bit grayscale (see 

above). Process Binary Threshold creates a 'thresholded' binary image. A less 

automated procedure involves: Image Adjust Threshold; use the slider to 

adjust the threshold. The red areas will become the black portions in the binary 

image. Click 'Apply' to complete the conversion. 'Brightness slicing' is a 

similar procedure that uses both upper and lower thresholds. Measuring and 

Counting Objects (also see accompanying handout with ImageJ examples) 

Measuring Distance Between Points. Using the straight-line tool draw a line 

between two points. The status line will show the angle (from horizontal) and 

the length in pixels. Use the next step to set the scale: Setting Measurement 

Scale. Draw a line between two points of known distance such as a ruler on the 

photograph. Go to Analyze Set Scale. In the Set Scale window the length of 

the line, in pixels, should be displayed. Type the known distance and units of 

measure in the appropriate boxes and click OK. Measurements will now be 

shown using these settings. If the pixel: length relationship is known from a 

previous measurement you may directly type this information in the Set Scale 

window. Check 'global' to apply this scale to other frames. Measuring Area. 

Surround an area with a perimeter. This can be done with an area selection 

tool, the wand (in high contrast images) or with Analyze Particles (see below). 

Go to Analyze �Measure; the data window will show the area and pixel 

brightness values for the object in the perimeter. Use Analyze Set 

Measurements to select additional parameters (such as perimeter length) to be 
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displayed. Counting Particles. As described above convert the image to 8-bit 

grayscale and then 'threshold' the image. Go to Analyze Particles, type the 

upper and lower limits for the particle size and toggle 'show outlines'. Click on 

OK and each counted particle will be outlined and numbered in a new widow 

(numbers may be very small). The data window contains measurements for 

each particle. Saving Files. Images from digital cameras are usually saved as 

JPEG files. JPEG is a type of memory compression that results in the loss of 

some data. A JPEG image degrades each time it is opened, edited and resaved. 

It is best to save a file in a 'lossless' format such as a TIFF during the editing 

process. Pressing "S" on the keyboard brings up the Save as TIFF window. As 

you save a file, confirm that the extension '.tif' has been added to the filename. 

Printing. Should you encounter printing problems, save the processed image 

and print with a photo editor. Saved images also may be inserted into MS 

Word for printing. 
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Appendix 2 

 

Assumptions/Constraints 

Following are a few assumptions or constraints of our project. 

a. Required resolution of the aerial image should be 25 cm. 

b. Only vertical/nearly vertical images are considered. 

c. No context information about the image is available. 

d. No image registration/GIS support. 

e. No information about camera height. 

f. Focus on detecting convoys/vehicle concentrations. 

g. A single image is used 

h. 8-bit grey scale images are used. 

 


