

VEHICLE DETECTION FROM AERIAL
IMAGES

 by

Capt Muzzamil Noor
 Capt Naveed Sadiq
 Capt Fawad Khan

Submitted to the faculty of Computer Science,
Military College of Signals,

 National University of Sciences and Technology,
Rawalpindi in partial fulfillment of B.E. degree in

Software Engineering.
May 2005

ABSTRACT

VEHICLE DETECTION FROM AERIAL
IMAGES

BY

Muzzamil Noor, Naveed Sadiq, Fawad Khan

The proposed project deals with the automatic detection of vehicles, particularly military

vehicles in high resolution aerial imagery. The extraction relies upon local features of

vehicles. To model a vehicle on local level, a model representation is used that describes

the prominent geometric features of vehicles. The model is adaptive because, during

extraction, the expected saliencies of various edge features are automatically adjusted

depending on viewing angle, vehicle color measured from the image, and current

illumination direction. The extraction is carried out by matching this model ”top-down” to

the image and evaluating the support found in the image Hence, training data samples of

vehicles are first clustered and statistical parameters corresponding to each cluster are

obtained. Vehicles are detected by searching the test image for patches of vehicles at all

points in the image and across different scales. Applying this technique to the military

vehicles particularly fighting vehicles presents peculiar problems of its own as they differ

in geometric and statistical representation from that of the soft vehicles. The project is

aimed at facilitating automatic aerial imagery analysis, which is a very tedious job if done

manually, simultaneously maximizing the accuracy and performance.

 ii

ACKNOWLEDGMENTS

 We would like to express our gratitude to all those who gave us the possibility to

complete this project. We want to thank computer science department for their support

and for encouraging us to complete our project. We would also like to express our special

thanks to our supervisor Lt Col Naveed Sarfraz Khattak for his advice and guidance

during this project. We would like to give our special thanks to our families whose patient

love enabled us to complete this project.

 iii

TABLE OF CONTENTS

Chapters Page No

List of Figures …………………………………………………...................... v

List of Tables ……………………………………………………………..…. vii

1. Introduction ………………………………………………………………..1

1.1 General …………………………………………………………………..1

1.2 Motivation ………………………………………………………………..1

1.3 Objectives of Project ..……………………………………………………3

2. Literature Review ………………………………………………………… 4

2.1 Introduction ……………………………………………………………....4

2.2 Aerial Photographs and Satellite Images ……………………………….. 5

2.3 Thresholding Techniques ……………………………………………….. 7

2.4 Miscellaneous Techniques ……………………………………………… 9

2.5 Conclusion ……………………………………………………………… 9

3. Data Sets ………………………………………………………………… 10

3.1 Introduction ...…………………………………………………………...10

 3.2 Data Set Description …………………………………………………….10

4. Graphical User Interface …………………………………………............ 19

4.1 Introduction ……………………………………………………………. 19

4.2 ImageJ Class Structure ………………………………………………… 20

4.3 The Plugin Concept of ImageJ ………………………………………… 20

4.4 Integrating Plugins into the ImageJ GUI ………………………………. 20

4.5 Image Representation in ImageJ ……………………………………….. 20

 4.6 GUI of the Project ……………………………………………………….21

4.6.1 User Interface ………………………………………………………… 21

4.6.2 Result Windows ……………………………………………………… 22

5. Methodologies ………………………………………………………….... 24

 iv

 5.1 Preprocessing for Brightness and Contrast …………………………….... 24

 5.2 Choosing a Smoothing Filter ……………………………………………. 26

 5.3 Derivative of Gaussian Filters ………………………………………….. 27

 5.4 Identifying Edge Points from Filter Outputs ……………………………. 29

 5.5 Steerable Filters ………………………………………………………… 32

 5.6 Design of Steerable Filters for Feature Detection ………………………. 34

 5.7 Optimality Criterion ……………………………………………………..35

 5.7.1 Signal to Noise Ratio ………………………………………………… 35

 5.7.2 Localization ………………………………………………………….. 35

 5.7.3 Elimination of False Oscillations ……………………………………... 36

 6. Results and Analysis ……………………………………………………... 38

 6.1 Introduction ……………………………………………………………... 38

 6.1.1 Test Image ATR ………………………………………………………. 38

 6.1.2 Test Image Img83 …………………………………………………….. 39

 6.1.3 Test Image v2 …………………………………………………………. 42

 6.1.4 Test Image v10 ………………………………………………………... 44

 6.1.5 Test Image v18 ………………………………………………………... 46

 6.1.6 Test Image v22 ………………………………………………………... 48

 6.1.7 Test Image v23 ………………………………………………………... 50

 6.1.8 Test Image v24 ………………………………………………………... 52

 6.1.9 Test Image v25 ………………………………………………………... 54

 6.1.10 Test Image v26 ……………………………………………………….. 56

 6.2 Efficiency Analysis through Data Set ………………………………….... 58

 7. Conclusion ………………………………………………………………… 61

 8. Future work ……………………………………………………………….. 62

 9. List of References …………………………………………………............. 63

 10. Appendix 1 ………………………………………………………………. 65

 11. Appendix 2 ………………………………………………………………. 70

 v

LIST OF FIGURES

Figure Page No

Figure 1.1: Variations causing image unreadable …………………................................ 2

Figure 1.2: Shadows obstructing image………………………………………………... 3

Figure 3.1: Test Image ATR….………………………………………………………... 13

Figure 3.2: Test Image img83………………………………………………………….. 13

Figure 3.3: Test Image v2 …………………………………………………………….. 14

Figure 3.4: Test Image v10 ……………………………………………………………. 14

Figure 3.5: Test Image v18 ……….…………………………………………………... 15

Figure 3.6: Test Image v22 ……………………………………………………………. 15

Figure 3.7: Test Image v23 ……………………………………………………………. 16

Figure 3.8: Test Images v24 ….………………………………………………………... 16

Figure 3.9: Test Images v25 ………………………………………………………….... 17

Figure 3.10: Test Images v26 ………………………………………………………….. 17

Figure 4.1: User interface ……………………………………………………………… 22

Figure 4.2: Result Window …………………………………………………………...... 23

Figure 5.1: Reconstruction of gradient magnitude .……………………………………... 29

Figure 5.2: Image Examples ….………………………………………………………… 31

Figure 5.3: Edge Detection with different Gradient magnitude...……………………..... 32

Figure 6.1: Edge image of ATR ………………………………………………………… 38

Figure 6.2: Final output of ATR ……………………………………………………....... 38

 vi

Figure 6.3: Edge image of Img 83 ……………………………………………………… 40

Figure 6.4: Final output of Img 83 with concentration .………………………………… 41

Figure 6.5: Final output of Img 83 without concentration ..…………………...……….. 42

Figure 6.6: Edge image of v2 …………………………………………………………... 43

Figure 6.7: Final output of v2 with concentration …………………..…………………. 43

Figure 6.8: Final output of v2 without concentration …………………………………... 44

Figure 6.9: Edge image of v10 ………………………………………………………..... 45

Figure 6.10: Final output of v10 with concentration ……………………………….…... 46

Figure 6.11: Final output of v10 without concentration…………………………. 46

Figure 6.12: Edge image of v18 ………………………………………………………... 47

Figure 6.13: Final output of v18 with concentration …………………………...………. 47

Figure 6.14: Final output of v18 without concentration ………………………….…….. 48

Figure 6.15: Edge image of v22……………………………………………………..…...49

Figure 6.16: Final output of v22 with concentration …..……………………………….. 49

Figure 6.17: Final output of v22 without concentration …………………………….….. 50

Figure 6.18: Edge image of v23 ………………………………………………………... 51

Figure 6.19: Final output of v23 with concentration ………………………………….... 51

Figure 6.20: Final output of v23 without concentration ………………………….…….. 52

Figure 6.21: Edge image of v24 ………………………………………………….…….. 53

Figure 6.22: Final output of v24 with concentration …..……………………………….. 53

Figure 6.23: Final output of v24 without concentration ………………………………... 54

Figure 6.24: Edge image of v25 ………………………………………………………... 54

Figure 6.25: Final output of v25 with concentration …..……………………………….. 55

Figure 6.26: Final output of v25 without concentration without concentration……….… 55

Figure 6.27: Edge image of v26 .…………………………………………………….…. 56

Figure 6.28: Final output of v26 with concentration ...…………………………………. 57

Figure 6.29: Final output of v26 without concentration …………………………..……. 57

Figure 6.30: Error Analysis …………………………………………………………….. 60

Figure 6.31: Performance Analysis ………………………………………………….…. 60

 vii

LIST OF TABLES
Table Page No

Table 3.1: Test case Descriptions ……………………………………………………. 11

Table 6.1: Results with Concentration Conditions …………………………………... 58

Table 6.2: Results without Concentration Conditions ………………………………. 58

 1

C h a p t e r 1

1. Introduction

1.1 General

 This project deals with automatic detection of vehicles in high

resolution aerial imagery. Detection from aerial image is easier than from

detection from an arbitrary viewpoint, in that the viewpoint is constrained.

However, it is still not as easy as it may seem to be. Example images are

shown in Figure1.1. Although the viewpoint is constrained, there are still

variations that make the cars have different appearance. The image resolution

is high even then not many details are visible. Some cars are heavily

obscured by the environment in the images, mostly tree branches (Figure1.1).

Cars can be of any intensity in the image, from very dark to very light. Also,

some cars’ intensity is very close to the road. The shadow cast on the ground

by sunlight is more salient in an aerial view than in a ground view, which

complicates the detection. The image quality varies. The brightness, contrast

and sharpness of the images change due to factors including illumination,

focusing and atmospheric turbulence (Figure 1.2). The expected features of a

car differ with its intensity and the existence of shadow. For a simple

example, whether or not the boundary of a gray car can be detected depends

heavily on its shadow. It is needed to account for all these difficulties to get a

reasonable good system.

1.2 Motivation

 Military operation planning is the foremost field which requires presence

of vehicles at particular places while analyzing the aerial images. Other

fields of application are found in the context of military reconnaissance and

extraction of geographical data for Geo-Information Systems (GIS), e.g., for

 2

site model generation and up-date. Traffic-related data play an important role

in urban and spatial planning, e.g., for road planning and for estimation /

simulation of air and noise pollution. In recent years, attempts have been

made to derive traffic data also from aerial images, because such images

belong to the fundamental data sources in many fields of urban planning.

Therefore, an algorithm that automatically detects and counts vehicles in

aerial images would effectively support traffic-related analyses in urban

planning. Furthermore, because of the growing amount of traffic, research on

vehicle detection is also motivated from the strong need to automate the

management of traffic flow by intelligent traffic control and traffic guidance

systems. The aerial images used are grayscale images taken mostly from a

vertical or slightly oblique viewpoint. The length of a typical car in the

datasets ranges from 13 to 26 pixels in image. This information has been

Figure 1.1 Variations in image.

used to make a geometric template. This template is matched at varying sizes

and at all locations in the image. The likely candidates are classified as such

and then further criterion on the basis of other features in the vicinity is

applied for the final classification of the candidate as a vehicle or otherwise.

 3

Figure 1.2. Shadows obstructing image

1.3 Objectives of project

 The objectives intended to be achieved during course of this project are:

To develop an automated system for detection of vehicles from aerial

images, provide post detection interactive analysis, system efficiency

analysis is to be done for assessing system efficiency. The concept of

steerable filters and rectangular feature extraction algorithm are used for

feature extraction. These features such as lines, corners are then processed

for extraction of relative attributes, for example distance, angle, and

orientation, for matching purposes. After that detection algorithm is applied

to detect the vehicles. The image is then processed for feature extraction and

representation and finally a processed image appears with vehicles

earmarked on them under a white rectangle along with an efficiency window

highlighting the time taken and number of vehicles detected.

 4

C h a p t e r 2

2. Literature Review

2.1 Introduction

 Vehicle detection from satellite imagery is a relatively new topic in the

civilian Community. The lack of sufficiently high-resolution satellite data

has been the primary cause. However, with the recent launch of several

commercial satellites with high resolution data, it should be seeing several

inroads in this area in the near future. Previous attempts have primarily

focused on using aerial photographs, although these have been limited. In

one of the early studies Taylor [1] used an analytical stereo plotter to extract

traffic parameters from aerial photographs. Agin [2] tried to use artificial

intelligence concepts for this purpose.

 Some of the recent attempts for vehicle detection in aerial photographs

are described in the next sections. Some of the methods for vehicle detection

and tracking being used by the surveillance community are also discussed.

Their attempts focus on tracking and threat assessment of vehicle and object

movements. It is important to note the significant differences in the problem

of vehicle detection from aerial imagery compared to that using other sensor

systems like video imagery and satellite photographs. Firstly, the resolution

of the satellite images being used for the purposes of this study is 1-m, which

is considerably coarser than the resolution on the order of 20-cm for the

video imagery and the aerial photographs that were used in other studies.

Availability of multiple snapshots of the same area is another advantage that

aerial photographs (several overlapping images) and video imagery (multiple

frames) enjoy over the satellite imagery for which only one snapshot is

available for an area at a given time. Thus, motion cues that can be extracted

 5

from video imagery are not available in the case of satellite imagery.

Overlapping images can be used to generate a pavement background image

that can be compared with a new image to detect regions of change or

motion on the pavement.

 2.2 Aerial Photographs and Satellite Images

 Several attempts have been made for detecting vehicles in aerial images.

Here described are some of the approaches taken by researchers for vehicle

detection in aerial images. Moon et al. [3] use a simple geometric edge

model in conjunction with contextual information for vehicle detection in

aerial imagery of parking lots. They construct a vehicle detection operator by

combining four elongated edge operators designed to collect edge responses

from the sides of the vehicles. The operator collects responses at the

centroids of the four operators that are combined to form a rectangle.

Suitable thresholds and rules are applied to filter out spurious responses. The

algorithm was tested on images with varying conditions of camera angle,

camera orientation and illumination. They also propose performance analysis

measures of vehicle detection algorithms.

 Rajgopalan et al. [4] describe a method that “approximately models the

unknown distribution of the images of the vehicles by learning higher order

statistics (HOS) information of the vehicle class from sample images.” The

basic idea is that the joint density function for the vehicle class is unlikely to

be a simple Gaussian distribution. Hence, training data samples of vehicles

are first clustered and statistical parameters corresponding to each cluster are

obtained. They go on to propose a clustering method based on a HOS-based

decision measure. Vehicles are detected by searching the test image for

patches of vehicles at all points in the image and across different scales. The

statistical information about the background is learned on the fly. The HOS

 6

measure is essentially a class-distance measure expressed as a function of

series expansion for a multivariate probability density function.

 Zhao and Nevatia [5] consider the vehicle detection problem as a 3D

object recognition problem. Based on their observations from psychological

tests they choose a set of features for recognition. The features include

boundary of car body, boundary of windshield, and the vehicle shadow. They

then construct a Bayesian network that is used to integrate all the features for

the recognition process. Their approach seems to be quite robust, even in

cases of partial occlusion by objects such as trees.

 Ruskoné et al. [6] use a structure-based approach to identify vehicles in

aerial images. They propose a structural hierarchical model that tries to

capture the understanding of structure at different levels of organization or

detail. The idea of different levels is as follows. At a pixel level the

radiometry would be a measure to place a pixel in the vehicle class. This

clustering process gives rise to the vehicle level. The vehicles are then

organized as lines, say two identically oriented lines, and meta-lines, say two

car-lines with relative orientation of 0º, 45º, or 180º. The car detection is

validated using the organization of vehicles into lines and meta-lines. They

use a neural network for the process. In an attempt to account for all or most

of the conditions, like occlusions and less than perfect geometry, they use an

exhaustive database to train the network. Sastry [7] reports Ruskoné’s

observation that finding suitable features to train the network was a difficult

part of the problem.

 Structural analysis was also the key factor in research by Nagao and

Matsuyama [8]. They sought a system that would automatically locate

different classes of objects in an aerial photograph by using common sense

knowledge about the world. They hypothesized the presence of cars by the

absence of a large homogeneous region, such as vegetation, water and

 7

shadow. However, they realized that contextual information, like the

presence of a road, was required to improve the accuracy of detection. They

used the above mentioned hypothesis expression, while also supplying the

contextual information for detection. They then use other characteristic

features, for example, rectangularity, to further refine the results.

 Sastry [7] proposed a wavelets and principal components based method

for identification of vehicles in aerial photographs and satellite imagery. He

creates a pyramid of texture and mean images. Principal component analysis

is performed on this set of bands. One of the resultant principal component

bands is then selected for threshold selection. The resulting blobs are then

analyzed for size and shape characteristics. Some bands consistently showed

desirable properties for applying the threshold selection algorithms.

 The NCRST-F group at The Ohio State University has developed a

simplified methodology derived from the method described by Sastry [7].

They have also proposed a method that uses a background estimate to

associate a probabilistic measure of a pixel being dynamic or stationary [9].

Starting with a prior estimate of the probability, a Bayesian scheme is used to

update the probabilities until convergence is achieved. They propose to build

the background using a Kalman filter-like approach, i.e., using an average of

several images taken at different times.

2.3 Thresholding Techniques

 Thresholding is one of the common and simple approaches to image

segmentation. It involves limiting the intensity values within an individual

image to a certain bounded range or ranges. The threshold value can be

selected manually by visually inspecting the histogram of the image or can

be selected by automatic software programs. Classical threshold selection

methods have relied on the one-dimensional histogram of the image to be

segmented. A one-dimensional histogram provides an estimate of the

 8

probability of occurrence for each gray level in the gray level range of the

image. Several schemes, like Kullback-Leibler [10] distance based threshold,

have been proposed to select thresholds from one-dimensional histograms.

However, the main drawback of one-dimensional histogram-based methods

is that they do not take the pixel dependencies or the spatial distribution into

account while defining the information measures. To overcome these

deficiencies, methods based on higher order entropies have been proposed.

Second-order entropies have found special attention in this regard. Pal and

Pal [11] defined the concepts of local and joint entropy. Chang et al. [12]

used the concept of relative (or cross) entropy for threshold selection. They

first calculate the gray level transition probability distribution of the co-

occurrence matrix for the image and for a thresholded binary image. The

threshold that minimizes the difference between the two transition

probabilities is chosen. Baghdadi et al. [13] use the same concept, but they

divide the image into blocks for threshold selection.

 Lee et al. [14] have attempted to integrate the concept of local entropy

into that of relative entropy to get a more efficient algorithm for threshold

selection. Their approach was used for the threshold selection procedure

implemented in this study. They also attempt to account for the locality of

objects and the different resolutions of thresholding by using the Hilbert

space filling sequence for calculating the co-occurrence matrix.

 Cheng et al. [15] present a thresholding approach that performs a fuzzy

partition on the two-dimensional histogram of the image based on fuzzy

relaxation and the maximum entropy principles. They claim to have found

better results than the usual two-dimensional hard threshold selection

algorithms. Yanowitz and Bruckstein [16] present a method for image

segmentation that attempts to address the issue of poor and non-uniform

illumination. An adaptive threshold surface is determined by interpolating

 9

the image gray levels at points where the gradient is high, indicating

probable object edges. This surface is then used to segment the image. The

adaptive nature of the surface tends to eliminate the illumination

characteristics at a point. The threshold surface may intersect the background

creating objects where none exists. However, this is easily rectified since

such points will have low gradient values.

 2.4 Miscellaneous Techniques

 Building extraction from aerial images is an area that can yield useful

strategies that might be relevant for our problem. Most building strategies

tend to use geometric representation. This involves extracting lines (or

edges), breaking them into segments based on curvature criterion, or by

identifying corners and junctions and then perceptually organizing them into

objects. Some of the significant works in this direction are Sarkar and Boyer

[17], Roux and McKeown [18], and Lin and Nevatia [14].

2.5 Conclusion

 This chapter presented a selection of approaches that have been

developed for detecting and tracking vehicles and objects in imagery derived

from several different classes of sensors. Various strategies, each trying to

exploit a different set of invariant characteristics in the sensor data, were

described.

 10

C h a p t e r 3

3. Data Set

3.1 Introduction

 The objective of this study is to test the performance of an image

processing system for vehicle detection, classification and counting from

high-resolution satellite data. For this purpose we have extracted a set of

images to be tested so that the software performance can be characterized

under conditions of varying pavement material and geometry, and

atmospheric conditions. Images used for this study are aerial photographs

scanned to produce 1-m resolution digital data. The general characteristics of

the two types of imagery are described in the next section. The salient

features of the dataset are described in the next section. Conditions of each

image area are listed to characterize performance.

3.2 Data Set Description

 After extensive search from internet and military resources we have

gathered a small but representative image data set which fulfills the

constraints and assumptions made for the project. These images are 256 level

gray scale (8-bit) images. As stated before, the test cases are extracts of

roadway from several scanned aerial photographs and satellite images. These

images present various conditions under which the performance of the image

processing algorithms will be characterized. Careful attention has been paid

to bring all the conditions likely to pose a challenge to the system in

detection of vehicles in the data set. Table 3.1 provides a summary of the

characteristics of these selected images. The images are shown in Figure 3.1

to Figure 3.10.

 11

Image
Label Characteristics

ATR

1. Cross country terrain back ground
2. Tank image
3. Size of image: 134 × 100
4. Memory size 13k.

Img83

1. Lot of built up area, with rectangular shape buildings.
2. Road passing through the centre of image.
3. Trees present along the roads and buildings
4. Mostly vehicles at the border of the road.
5. Straight roadway section.
6. Size of image: 505 × 477.
7. Memory size 235k.

v2

1 Curved road segment
2. Predominantly dark image.
3. Presence of large water body.
4. Bridge.
5. Built up area with trees shadowing some vehicles present.
6. Size of image: 693 × 540.
7. Memory size 365k.

v10

1. Haphazardly scattered vehicles.
2. Wide variety of vehicles greys scales.
3. Straight road segment but most of the vehicles are off the
 road.
4. Vehicles of varying sizes and orientations.
5. Size of image: 666 × 400.
6. Memory size 260k.

v18

1. Mountainous terrain.
2. Low resolution image.
3. Predominantly dark image.
4. Widely dispersed vehicles
5. Size of image: 720 × 540.
6. Memory size 379k.

 12

Table 3.1 Test case descriptions

Image
Label Characteristics

v22

1. All vehicles on the road.
2. Few buildings with rectangular profiles are present.
3. Some vehicles are merging with the road texture.
4. Vehicles of varying sizes.
5. Vehicles are fairly dispersed.
6. Size of image: 600 × 3297. Memory size 192k.

v23

1. Road crossing.
2. Good contrast between vehicles and pavement.
3. Presence of rectangular shadows.
4. Vehicles are fairly dispersed.
5. Size of image: 335 × 219
6. Memory size 71k.

v24

1. Poor contrast between vehicles and surroundings
2. Cross country terrain.
3. Tanks are parked in clusters.
4. Noisy image.
5. Size of image: 324 × 249.
6. Memory size 78k.

v25

1. Parking lot.
2. Absence of any feature other than vehicles.
3. Vehicles of large variety of shades.
4. Occluded vehicles.
5. Large no of vehicles, evenly dispersed.
6. Size of image: 368 × 64.
7. Memory size 94k.

v26

1. Multi tiered road structures.
2. Less vehicles widely dispersed.
3. Different shades of vehicles.
4. Back ground is dark and has good contrast with road texture.
5. Size of image: 500 × 300.
6. Memory size 146k.

 13

Figure 3.2 Test Image Img83

These conditions include: Vehicle contrast with respect to the pavement,

which is affected by atmospheric conditions, such as presence of cloud

cover, and by the pavement type and vehicle tone. Presence of vehicle-like

objects in the image, for example, pavement markings. Road geometry,

whether curved or straight, with respect to the image orientation. This

analysis does not restrict itself to highways and freeways only. The reason

being that at the level of arterials, several other factors would need to be

considered. Like the orientation and the relative positioning of other features

in the surroundings.

 14

Figure 3.3 Test Image v2

Figure 3.4 Test Image v10

 15

Figure 3.5 Test Image v18

Figure 3.6 Test Image v22

 16

Figure 3.7 Test Image v23

Figure 3.8 Test Image v24

 17

Figure 3.9 Test Image v25

Figure 3.10 Test Image v26

As can be seen from the images, primary interest is in a combination of three

features or conditions that may affect the vehicle detection algorithms. These

conditions include: Vehicle contrast with respect to the pavement, which is

affected by atmospheric conditions, such as presence of cloud cover, and by

the pavement type and vehicle tone. Presence of vehicle-like objects in the

 18

image, for example, pavement markings. Road geometry, whether curved or

straight, with respect to the image orientation. This analysis restricts itself to

highways and freeways only. The reason being that at the level of arterials,

several other factors would need to be considered. These factors include

vehicles are more likely to be obscured, the presence of objects having

signatures similar to vehicles, and the presence of shadows from surrounding

buildings that would be likely to occur when an arterial passes through an

area that has high-rise buildings.

 19

C h a p t e r 4

4. Graphical User Interface
4.1 Introduction

 ImageJ is a public domain Java image processing program inspired by

NIH Image for the Macintosh. It runs, either as an online applet or as a

downloadable application, on any computer with a Java 1.1 or later virtual

machine. It can display, edit, analyze, process, save and print 8-bit, 16-bit

and 32-bit images. It can read many image formats including TIFF, GIF,

JPEG, BMP, DICOM, FITS and “raw”. It supports “stacks”, a series of

images that share a single window. It is multithreaded, so time-consuming

operations such as image file reading can be performed in parallel with other

operations. It can calculate area and pixel value statistics of user-defined

selections. It can measure distances and angles. It can create density

histograms and line profile plots. It supports standard image processing

functions such as contrast manipulation, sharpening, smoothing, edge

detection and median filtering. It does geometric transformations such as

scaling, rotation and flips. Images can be zoomed up to 32:1 and down to

1:32. All analysis and processing functions are available at any magnification

factor. The program supports any number of windows (images)

simultaneously, limited only by available memory. Spatial calibration is

available to provide real world dimensional measurements in units such as

millimeters. Density or gray scale calibration is also available. ImageJ was

designed with an open architecture that provides extensibility via Java plug-

in. Custom acquisition, analysis and processing plugins can be developed

using ImageJ’s built in editor and Java compiler. User-written plug-in make

it possible to solve almost any image processing or analysis problem. The

program supports any number of windows (images) simultaneously.

 20

4.2 ImageJ Class Structure
 This is an overview of the class structure of ImageJ. It is by far not

complete, just the most important classes for plug-in programming are listed

and briefly described. ImageJ can be run as applet or as application. This is

the applet class of ImageJ. The advantage of running ImageJ as applet is that

it can be run (remotely) inside a browser; the biggest disadvantage is the

limited access to files on disk because of the Java applet security concept, if

the applet is not signed.

4.3 The Plugin Concept of Imagej

 The functions provided by ImageJ’s menu commands (most of them are

in fact plugins themselves) can be extended by user plugins. These plugins

are Java classes implementing the necessary interfaces that are placed in a

certain folder. Plugins can be written with ImageJ’s built-in plugin editor

(accessible via the menus “Plugins/New...” and “Plugins/Edit...”), with a text

editor of your choice or they can be generated using ImageJ’s plugin

recorder. In any case plugins can be compiled and run inside ImageJ. Plugins

found by ImageJ are placed in the Plugins menu or in submenus of it.

4.4 Integrating Plugins into the ImageJ GUI

 Like commands, plugins can be accessed via hot-keys. One can create a

new hot-key by selecting “Create Shortcut” from the menu “Plugins /

Shortcuts”. When the plugin interfaces were discussed it was talked about

arguments that can be passed to plugins. Installing a plugin using the menu

command “Plugins / Shortcuts / Install Plugin ...” places the plugin into a

selected menu, assigns a hot-key and passes an argument. “Plugins /

Shortcuts / Remove ...” removes a plugin from the menu.

4.5 Image Representation in ImageJ

 In ImageJ, images are represented by ImagePlus and ImageProcessor

objects in ImageJ. In this section a closer look at the way images are handled

 21

by ImageJ. Images are large arrays of pixel values. But it is important to

know how these pixel values should be interpreted. This is specified by the

type of the image. ImageJ knows five image types. 8 bit grayscale image can

display 256 grayscales and a pixel is represented by a byte variable. 8 bit

color image can display 256 colors that are specified in a lookup table (LUT)

and a pixel is represented by a byte variable. 16 bit grayscale image can

display 65, 536 grayscales, and a pixel is represented by a short variable.

RGB color image can display 256 values per channel and a pixel is

represented by an int variable. In 32 bit floating point grayscale image, a

pixel is represented by a float variable.

4.6 GUI of the project

4.6.1 User Interface

 User Interface of the project consists of a main window which gives the

user menus as shown in Figure 4.1. File menu, includes the options of new,

open, close, save, save as and quit. Edit menu includes the options of undo,

cut, copy, paste, clear, fill and draw. Image menu includes the options of

type, properties, and colors, duplicate, rename, scale, rotate and zoom.

Process menu contains the important functions of smooth, sharpen, contrast,

noise, shadows etc. Analyze menu includes measure, summarize, label, clear

results, set measurements etc. Plugins, In addition to compilation and run

plugins menu includes the most important function of detector which

implements all the functions automatically described above. Windows menu

includes the functions cascade, put behind etc. Image menu includes the

options of type, properties, and colors, duplicate, rename, scale, rotate and

zoom. Process menu contains the important functions of smooth, sharpen,

contrast, noise, shadows etc. Analyze menu includes measure, summarize,

label, clear results, set measurements etc. Edit menu includes the options of

undo, cut, copy, paste, clear, fill and draw.

 22

Figure 4.1 User interface

4.6.2 Result Windows

After the Run function is called, four windows (Figure 4.2) appear, three

containing the processed images and one portraying the efficiency in terms

of time consumed and number of vehicles detected. The processed windows

include edge detected image and Non Maximum suppression applied image.

The final result window is the replica of the original image with a white

rectangle placed over each detected vehicle. Windows menu includes the

functions cascade, put behind etc. Image menu includes the options of type,

properties, and colors, duplicate, rename, scale, rotate and zoom. Process

menu contains the important functions of smooth, sharpen, contrast, noise,

shadows etc. Analyze menu includes measure, summarize, label, clear

results, set measurements. The result window also shows the number of

vehicles detected in a test image.

 23

Figure 4.2 Result Window

The processed windows include edge detected image and Non Maximum

suppression applied image. The final result window is the replica of the

original image with a white rectangle placed over each detected vehicle.

Windows menu includes the functions cascade, put behind etc. Image

menu includes the options of type, properties, and colors, duplicate,

rename, scale, rotate and zoom.

 24

C h a p t e r 5

5. Methodologies

5.1 Preprocessing for Brightness and Contrast

 After aligning the features, there is one remaining major source of variation

(apart from intrinsic differences between features). This variation is caused by

lighting and camera characteristics, which can result in brightly or poorly lit

images, or images with poor contrast. These problems are first addressed by

using a simple image processing approach. This preprocessing technique first

attempts to equalize the intensity values in across the window. A function is

applied, which varies linearly across the window to the intensity values in an

oval region inside the window. Pixels outside the oval may represent the

background, so those intensity values are ignored in computing the lighting

variation across the face. If the intensity of a pixel x, y is I(x, y), then to fit this

linear model parameterized by a, b, c to the image:

() () ()1, LLLLLyxI
c
b
a

zyx =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
•

The choice of this particular model is somewhat arbitrary. It is useful to be

able to represent brightness differences across the image, so a non-constant

model is useful. The variation is limited to linear to keep the number of

parameters low and allow them to be fit quickly. Collecting together the

contributions for all the pixels in the oval window gives an over-constrained

matrix equation, which is solved by the pseudo-inverse method. This linear

function will approximate the overall brightness of each part of the window,

and can be subtracted from the window to compensate for a variety of lighting

conditions.

 25

 Next, histogram equalization is performed, which non-linearly maps the

intensity values to expand the range of intensities in the window. The

histogram is computed for pixels inside an oval region in the window. This

compensates for differences in camera input gains, as well as improving

contrast in some cases. The algorithm for this step is as follows. First compute

the intensity histogram of the window, where each intensity level is given its

own bin. This histogram is then converted to a cumulative histogram, in which

the value at each bin says how many pixels have intensities less than or equal

to the intensity of the bin. The goal is to produce a flat histogram, which is an

image in which each pixel intensity occurs an equal number of times. The

cumulative histogram of such an image will have that property that the number

of pixels with an intensity less than or equal to a given intensity is proportional

to that intensity.

 Given an arbitrary image, one can produce an image with a linear

cumulative histogram by adjusting the pixel intensities. Each intensity will be

mapped to the value of the cumulative histogram for that bin. This guarantees

that the number of pixels matches the intensity, which is the property required.

In practice, it is impossible to get a perfectly flat histogram (for example, the

input image might have a constant intensity), so the result is only an

approximately flat intensity histogram.

 In some parts of this project, only histogram equalization with subtracting

the linear model is used. This is done when it is not know which pixels in the

input window are likely to be foreground or background, and cannot apply the

linear correction to just the face. Instead, just apply the histogram equalization

to the whole window, hoping that it will reduce the variability somewhat,

without the background pixels having too much effect on the appearance of the

features in the foreground.

 26

5.2 Choosing a Smoothing Filter

 The smoothing filter can be chosen by taking a model of an edge and then

using some set of criteria to choose a filter that gives the best response to that

model. It is difficult to pose this problem as a two dimensional problem,

because edges in 2D can be curved. Conventionally, the smoothing filter is

chosen by formulating a one-dimensional problem, and then using a

rotationally symmetric version of the filter in 2D.

 The one-dimensional filter must be obtained from a model of an edge. The

usual model is a step function of unknown height, in the presence of stationary

additive Gaussian noise: where

() () () ()2LLLLxnxAUxedge +=

 ())3(
01
00

LLLLLL
⎩
⎨
⎧

>
<

=
x
x

xU

(The value of U(0) is irrelevant for this purpose). A is usually referred to as the

contrast of the edge. In the 1D problem, finding the gradient magnitude is

same as finding the square of the derivative response. For this reason, one

usually seeks a derivative estimation filter rather than a smoothing filter

(which can then be reconstructed by integrating the derivative estimation

filter). Canny established the practice of choosing a derivative estimation filter

by using the continuous model to optimize a combination of three criteria.

Signal to noise ratio: the filter should respond more strongly to the edge at x

= 0 than to noise. Localization: the filter response should reach a maximum

very close to x = 0. Low false positives: there should be only one maximum of

the response in a reasonable neighborhood of x = 0. It is difficult to pose this

problem as a two dimensional problem, because edges in 2D can be curved.

Once a continuous filter has been found, it is discredited. The criteria can be

combined in a variety of ways, yielding a variety of somewhat different filters.

 27

It is a remarkable fact that the optimal smoothing filters that are derived by

most combinations of these criteria tend to look a great deal like Gaussians —

this is intuitively reasonable, as the smoothing filter must place strong weight

on center pixels and less weight on distant pixels, rather like a Gaussian. In

practice, optimal smoothing filters are usually replaced by a Gaussian, with no

particularly important degradation in performance.

5.3 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it

with the derivative of a smoothing kernel. This fact is most easily seen by

thinking about continuous convolution. Firstly, differentiation is linear and

shift invariant. This means that there is some kernel — it dodges the question

of what it looks like — that differentiates. That is, given a function I(x,y)

()4LLLLI
x

K
x
I

∗
∂
∂

=
∂
∂

Now the derivative of a smoothed function is required. The convolution kernel

for the smoothing is written as S. Recalling that convolution is associative,

() ()5** LLLLI
x
SIS

x
KIS

x
K ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ ∗

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ ∗∗

∂
∂

This fact appears in its most commonly used form when the smoothing

function is a Gaussian;

() ()6**
LLLLLLLLLLI

x
G

x
IG

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂

∂ σσ

i.e. only convolve with the derivative of the Gaussian, rather than convolve

and then differentiate. A similar remark applies to the Laplacian. The

Laplacian of a function in 2D is defined as:

() () ()7, 2

2

2

2
2 LLLLLLLLLLL

y
f

x
fyxf

∂
∂

+
∂
∂

=•∇

 28

Again, because convolution is associative,

()() () () ()8***** 222 LLLLIGIGKIGK σσσ ∇=∇=∇

This practice results in much smaller noise responses from the derivative

estimates. Non-maximum suppression obtains points where the gradient

magnitude is at a maximum along the direction of the gradient. The Figure 5.1

shows how to reconstruct the gradient magnitude. The dots are the pixel grid.

At pixel q, attempting to determine whether the gradient is at a maximum; the

gradient direction through q does not pass through any convenient pixels in the

forward or backward direction, so interpolation is done to obtain the values of

the gradient magnitude at p and r; if the value at q is larger than both, q is an

edge point. Typically, the magnitude values are reconstructed with a linear

interpolate, which in this case would use the pixels to the left and right of p

and r respectively to interpolate values at those points. On the right, it sketches

how to find candidates for the next edge point, given that q is an edge point; an

appropriate search direction is perpendicular to the gradient, so that points s

and t should be considered for the next edge point. Notice that, in principle, it

is not needed to restrict to pixel points on the image grid, because it is known

where the predicted position lies between s and t, so that it can again

interpolate to obtain gradient values for points off the grid. Typically, the

magnitude values are reconstructed with a linear interpolate, which in this case

would use the pixels to the left and right of p and r respectively to interpolate

values at those points. This reconstruction is followed by tracing of the edges

found out by the algorithm. Thresholding of the image then brings out an

image in which edges are visible clearly. Notice that, in principle, it is not

needed to restrict to pixel points on the image grid, because it is known where

the predicted position lies between s and t, so that it can again interpolate to

obtain gradient values for points off the grid.

 29

Figure 5.1 Reconstruction of gradient magnitude

5.4 Identifying Edge Points from Filter Outputs

 Given estimates of gradient magnitude it is indented to obtain edge points.

Again, there is clearly no objective definition, and proceed by reasonable

intuition. The gradient magnitude can be thought of as a chain of low hills.

Marking local extrema would mark isolated points—the hilltops in the

analogy. A better criterion is to slice the gradient magnitude along the gradient

direction — which should be perpendicular to the edge — and mark the points

along the slice where the magnitude is maximal. This would get a chain of

points along the crown of the hills in the chain; the process is called non-

maximum suppression. Typically, it is expected that edge points to occur

along curve-like chains. The significant steps in non maximum suppression

are: Determining whether a given point is an edge point; and, if it is, finding

the next edge point. Once these steps are understood, it is easy to enumerate all

edge chains. First edge point is found, marked, expanded all chains through

 30

that point exhaustively, marking all points along those chains, and continue to

do this for all unmarked edge points.

Algorithm 5.1: Non-maximum suppression

The two main steps are simple. For the moment, assume that edges are to be

marked at pixel locations (rather than, say, at some finer subdivision of the

pixel grid). It can be determined whether the gradient magnitude is maximal at

any pixel by comparing it with values at points some way backwards and

forwards along the gradient direction. This is a function of distance along the

gradient; typically it steps forward to the next row (or column) of pixels and

backwards to the previous to determine whether the magnitude at the pixel is

larger. The gradient direction does not usually pass through the next pixel, so

we must interpolate to determine the value of the gradient magnitude at the

points we are interested in; a linear interpolate is usual. A better criterion is to

slice the gradient magnitude along the gradient direction which should be

perpendicular to the edge and mark the points along the slice where the

magnitude is maximal. This would get a chain of points along the crown of the

hills in the chain; the process is called non-maximum suppression.

 31

 (i) (ii) (iii)
Figure 5.2 Image Examples (i) Butterfly on a blurred background (ii) Strong contrast
between snow and objects (iii) Zebra with fine scale details

Here three images (Figure 5.2) are used to illustrate properties of a gradient

based edge detector. The butterfly is on a blurred background; there is strong

contrast between the figures on the snow and the background; and the zebra’s

nose has fine scale detail — its whiskers — as well as coarse scale detail. If

the pixel turns out to be an edge point, the next edge point in the curve can be

guessed by taking a step perpendicular to the gradient. This step will not, in

general, end on a pixel; a natural strategy is to look at the neighboring pixels

that lie close to that direction. This approach leads to a set of curves that can

be represented by rendering them in black on a white background, as in Figure

5.3. Edge points marked on the pixel grid for the three images shown in Figure

5.2. The top row shows edge points obtained using a Gaussian smoothing filter

at σ one pixel, and the center and bottom rows show points obtained using a

smoothing filter at σ four pixels. For the top two cases, Gradient magnitude

has been tested against a high threshold to determine whether a point is an

edge point or not; for the bottom row, gradient magnitude was tested against a

low threshold.

 32

Figure 5.3. Edge Detection with different Gradient magnitude for

smoothing (i)(ii)(iii) Gaussian smoothing filter at σ = 1 pixel,(iv)(v)(vi)

Gaussian smoothing filter at σ = 2 pixel,(vii)(viii)(ix) Gaussian

smoothing filter at σ = 2 pixel.

 At a fine scale, fine detail at high contrast generates edge points, which

disappear at the coarser scale — for example, the zebra’s whiskers disappear.

When the threshold is high, curves of edge points are often broken because the

gradient magnitude dips below the threshold; for the low threshold, a variety

of new edge points of dubious significance are introduced.

5.5 Steerable Filters
 To cut down on the computational load, we select our detector within the

class of steer able filters introduced by Freeman and Adelson. These filters

can be rotated very efficiently by taking a suitable linear combination of a

small number of filters. Specifically, we consider templates of the form

 33

() () ()9,,
1 0

, LLLLLLLLLLLLLLyxg
yx

yxh i

i

ik

ikM

k

k

i
ik ∂

∂
∂
∂

= −

−

= =
∑∑α

where is an arbitrary isotropic window function. It is called an Mth

order detector. Once the f ki
 (x,y) are available, f(x)* h(Rx) can be evaluated

very efficiently via a weighted sum with its coefficients that are

trigonometric polynomials of Since the number of partial differentials in (5)

for a general Mth order template is M(M+3)/2, h(x) is steer able in terms of

as many individual separable functions. Using some simplification, it can be

shown that such a general h(x) can also be rotated using 2M + 1 non

separable filters.

() () () ())10(
1 0

,, LLLLLLLLLLLLLxfxhxf
M

k

k

i
ikik∑∑

= =

=ℜ• θβθ

() () ()

()

)11(,,,

,

1 0
, LLLLLLLLL

4444 34444 21
yxg

M

k

k

i
i

i

ik

ik

ik yxg
yx

yxfyxf ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∗= ∑∑
= =

−

−

()
()

() () () ()12sincos1
),0

,, LLLLL
l

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑∑

∈=

θθαθβ
δ m

j
i

jk

jkm

k

i
ikik

A case of special interest corresponds to g(x) being the Gaussian; indeed,

the Gaussian is optimally localized in the sense of the uncertainty principle

and the corresponding filters in (6) are all separable. Interestingly, the

Gaussian family is equivalent to the class of moment filters (polynomials

multiplied by Gaussian window), but the filters are not identical.

 34

5.6 Design of Steer able Filters for Feature Detection

 As already observed by Freeman and Adelson, the widely used Canny

edge detection algorithm can be reinterpreted in terms of steer able filters.

This algorithm involves the computation of the gradient-magnitude of the

Gaussian smoothed image. The direction of the gradient gives the orientation

of the edge. Mathematically,

()
() ()13

*
*

arctan LLLLLLLLLLLLL⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∗

x

y

gf
gf

θ

()() ()() ()14** 22* LLLLLLLLLyx gfgfr +=

() ()() ()15maxarg)(LLLLLLLLLxRgxfx x θθ ∗=∗

() ()() ()16maxarg)(LLLLLLLLLxRgyfx y θθ ∗=∗

() ()()() ()17sincosmaxarg)(LLLLLθθθ xx ggfx +∗=∗

() ()()() ()18sincosmaxarg)(LLLLLθθθ xx ggfx −∗=∗

Here, the steer ability of gx from (5) is used. To compute the maximum of

the above expression, it sets the differential of (11) with respect to zero.

The widely-used contour extraction algorithm has three steps: feature

detection, non maximum suppression, and threshold. In this section, a

general strategy for the design of steer able filters for feature detection is

presented, while keeping in mind the subsequent steps. It proposes a criterion

similar to that of Canny and analytically derives the optimal filter—or,

equivalently, the optimal weights—within the particular class of steer able

functions specified by (4). The widely-used contour extraction algorithm has

three steps: feature detection, non maximum suppression, and threshold. In

this section, a general strategy for the design of steer able filters for feature

detection is presented, while keeping in mind the subsequent steps.

 35

5.7 Optimality Criterion
 A review of Canny’s criterion and modifying it slightly to make it

analytically optimized. To derive the optimal 2D operator, it is assumed that

the feature (edge/ridge) is oriented in some direction (say, along the x axis)

and derives an optimal operator for its detection. As the operator is Rotation-

steer able by construction, its optimality properties will be independent of the

feature orientation. The three different terms in Canny’s criterion are as

follows.

5.7.1 Signal-to-Noise Ratio

 The key term in the criterion is the signal-to-noise ratio. The response of a

filter to a particular signal (e.g., an idealized edge) centered at the origin is

given by

() () ()19,,
2

LLLLLLLLL∫
ℜ

−−= dxdyyxhyxfs ο

S is given by the height of the response at its maximum. If the input is

corrupted by additive white noise of unit variance, then the variance of the

noise at the output is given by the energy of the filter:

() ()20,
2

2

LLLLLLLLLLLLdxdyyxhNoise ∫
ℜ

=

It is desired to have a high value of S for a given value of Noise; S2

Noise is the amplification of the desired feature provided by the detector.

5.7.2 Localization

The detection stage is preceded by non maximum suppression. The estimated

feature position corresponds to the location of the local maximum of the

response in the direction orthogonal to the feature boundary (y axis in our

case). The presence of noise can cause an undesirable shift in the estimated

feature location. The direct extension of Canny’s expression for the shift-

variance (due to white noise of unit variance) to 2D gives

 36

()[] ()

() ()
()21

,,

,
2

2

2

2

2
LLLLLL

∫
∫

ℜ

ℜ

−−
=∆

dxdyyxhyxf

dxdyyxh
yE

yy

y

ο

Canny has proposed to maximize the reciprocal of this term. The numerator

of (19) is a normalization term which will be small automatically if the

impulse response of the filter is smooth along the y axis (low norm for the

derivative). Since the approach is imposing this type of smoothness

constraint elsewhere via an additional regularization term, it is not necessary

to optimize this term here, which also keeps the effects well separated.

Therefore, it is proposed to maximize the second derivative of the response,

orthogonal to the boundary, at the origin

() () () ()22,,
22

2

LLLLLLdxdyyxhyxfhf
dy
dLoc yy −−−=∗−= ∫ℜ οο

which is the square-root of the denominator in (20). The above expression is

ensured to be positive because the second derivative of the response is

negative at the maximum (assuming S > 0). Note that the new localization

term is a measure of the width of the peak. The drift in position of the

maximum due to noise will decrease as the response becomes sharper. This

work is neglecting the effect of neighboring features in deriving the

localization term.

5.7.3 Elimination of False Oscillations

 Canny observed that when the criterion is optimized only with the SNR and

the localization constraint, the optimal operator has a high bandwidth; the

response will be oscillatory and, hence, have many false maxima. In 2D, it is

desired that the response be relatively free of oscillations orthogonal to the

feature boundary. This can be achieved by penalizing the term:

() ()∫=
2

23
2

,
R

dxdyyxyyhxR LLLLLLLLLLLLLLL

 37

Note that this term is the numerator of the expression for the mean distance

between zero crossings proposed by Canny. It is a thin-plate spline-like

regularization which is a standard technique to constrain a solution to be

smooth (low bandwidth). The thresholding step is easier if the response is

flat along the boundary. The oscillation of the response along the boundary

(x axis) can be minimized by penalizing above equation. These terms will

force the filter to be smooth making the response is less oscillatory, thus

resulting in less false detection.

 38

C h a p t e r 6

6. Results and Analysis
6.1 Introduction

 After tuning the edge detection operator to optimally detect the vehicle

edges, testing was carried out on the image data set to verify the efficacy of the

technique. Testing was carried out on Pentium IV 1.6 GHz machine with 256

MB RAM, with Microsoft Windows XP (SP2). The dataset, as already

described was selected to test the system for the objectives already stated. The

results obtained are described image wise:

6.1.1 Test Image ATR

 This image contained a vertical photo of a tank with no other objects in the

surroundings. This was the simplest image. The edge response was good

(Figure 6.1), the rectangular profile of the tank was clearly visible. Hence,

results as shown in Figure 6.2, the system was able to correctly classify it.

 Figure 6.1 Edge image of ATR

Figure 6.2 Final Output of ATR

 39

The image contained only one vehicle and the rectangular profile was

successfully detected as the image was noise free and had no other features.
The concentration detection condition had no impact on the results because

only one vehicle was present in the image.

6.1.2 Test Image Img83

 This image depicted a densely populated area. Large number of

buildings, some of which were giving good rectangular profile. Moreover the

presence of trees was also a hindrance in the detection of vehicles. The

mentioned problems did pose a challenge in the edge detection phase, as can

be seen from the edge image (Figure 6.3). There were 20 vehicles present in

the image; the system classified 19 objects as vehicles (Figure 6.4), with 13

false positives and 14 false negatives. Here it is pertinent to mention that these

results are with the concentration condition applied. Without the concentration

condition (Figure 6.5) there were 6 correct classifications and 27 errors. The

errors are fairly high, but can be justified on the ground that the system is

designed to work without any image context information and is assumed to

work in cross country also. The non use of road and pavement alignment

information though cause this large number of errors, but at the same time

proves the efficiency of the system where it has successfully, classified

vehicles from other similar objects. The system objective as has been

mentioned before also is tom detect the vehicles in cross country terrain,

therefore in this image the results can be accepted. This image was included in

the test images to check its efficacy in urban area images and find out any

areas where further amendments can make the system more efficient. The

chimneys present on the roof tops specially give out the edge shape similar to

that of the vehicles as can be seen in Figure 6.3.

 40

 Figure 6.3 Edge image of Img83

The errors are fairly high, but can be justified on the ground that the system is

designed to work without any image context information and is assumed to

work in cross country also. The non use of road and pavement alignment

information though cause this large number of errors, but at the same time

proves the efficiency of the system where it has successfully, classified

vehicles from other similar objects. The system objective as has been

mentioned before also is tom detect the vehicles in cross country terrain,

therefore in this image the results can be accepted.

 41

Figure 6.4 Final Output of Img83 with concentration

The use of concentration condition makes the system prone to more errors in

an urban area as normally there are places in urban areas where vehicles are

mostly dispersed and the concentration of vehicles is not found usually. At

places the wind screens of the vehicles divide the edge image of the vehicle in

three different parts thus the vehicle is no longer visible as a rectangular entity

in the edge image. This phenomenon also gives rise to false negative

responses. It is difficult to predict the occurrence of this phenomenon in

advance and then incorporate it in the classification as a large number of

factors are involved.

 42

Figure 6.5 Final Output of Img83 without concentration

6.1.3 Test Image v2

 This image contains a curved road segment; predominantly it is a dark

image because of presence of a large water body. A bridge with five vehicles

on it is dividing the image in two halves. Built up area with trees shadowing

some vehicles is present. The edge response (Figure 6.6) of the image was

good, as despite the presence of the buildings and trees the number of correctly

classified vehicles with concentration condition (Figure 6.7) was 4 out of 9 and

no false positives. The errors were 5 in the form of false negatives only, which

were caused by the use of concentration condition as it prevents detection of

isolated vehicles. Without the concentration condition (Figure 6.8) the system

was able to detect all the 9 vehicles correctly. 4 false positives were reported

as the buildings were giving similar edge profile as the vehicles.

 43

Figure 6.6 Edge image of v2

Figure 6.7 Final Output of v2 with concentration

 44

Figure 6.8 Final Output of v2 without concentration

6.1.4 Test Image v10

 This image depicted the Gulf war retreat of the Iraqi forces. There were 64

vehicles present many of them burnt and even difficult to classify as vehicles

with the naked eye. A substantial portion of the image was dark to the extent

of giving no information for the classification. The edge response (Figure 6.9)

caused a lot of vehicles to lose their rectangular shape. The results were fair as

with concentration condition (Figure 6.10) 23 vehicles were correctly

classified. High number of false negatives was caused by partial occlusion of

certain vehicles by the shadows and the burnt ground. Furthermore, a large

number of vehicles were overturned and piled over each other thus causing the

loss of edge information leading to correct detection. This problem can be

addressed by the use of intelligent technique to offset the effects of occlusion.

 45

Better results were obtained without the concentration condition (Figure 6.11)

with 41 correct classifications.

Figure 6.9 Edge image of v10

Figure 6.10 Final Output of v10 with concentration

 46

Figure 6.11 Final Output of v10 without concentration

6.1.5 Test Image v18

 This image shows various vehicles dispersed in the desert with few

barracks. The interesting part is that even visually it is difficult to distinguish

between the two. The edge image (Figure 6.12) proves this vulnerability of the

system and hence diminishes further the differences. Of the 5 vehicles present

in the image 2 were classified correctly with the concentration condition

(Figure 6.13) as the dispersal distance between the vehicles was larger than the

concentration parameter. Without the concentration condition (Figure 6.14) the

results improved to give 4 correct classifications. An interesting observation

was again the classification of North marker present on the image as vehicle.

This brings forth a conclusion that if somehow the height of the image and

subsequently expected size of the vehicles in the image can be

provided/calculated by the system, this will result in a substantive

enhancement in the performance.

 47

Figure 6.12 Edge image of v18

Figure 6.13 Final Output of v18 with concentration

 48

Figure 6.14 Final Output of v18 without concentration

6.1.6 Test Image v22

 In this image all vehicles are on the road. Few buildings with rectangular

profiles are also present. Some vehicles are merging with the road texture.

Vehicles are of varying sizes and are fairly dispersed. There are 9 vehicles in

the image. The edge image (Figure 6.15) presents another challenge to the

system in the form of shadows of the vehicles, which distort the information

and thus cause a misclassification. With concentration condition (Figure 6.16)

three vehicles were detected successfully and without concentration condition

(Figure 6.17) this number improved to 5. At the same time the number of false

classifications remained constant thus the number of errors remained static.

The problem of shadows can be over come by applying an operator which can

offset the effect of shadows in the image. It is possible if the information about

the position of sun or the time of the image exposure is known. This again

 49

Figure 6.15 Edge image of v22

implies that the image data set should be specialized one and available on

demand. Alternatively a method to extract the above information from the

image be devised, which is out of scope of the project.

Figure 6.16 Final Output of v22 with concentration

 50

Figure 6.17 Final Output of v22 without concentration

6.1.7 Test Image v23

 This image shows a road crossing. It’s a typical city square, with buildings

and trees all around. Good contrast exists between vehicles and pavement, thus

helping in detection. Presence of rectangular shadows again poses a challenge

to differentiate between the false indicators and the correct classification. The

vehicles are fairly dispersed. The edge image (Figure 6.18) shows that the

edges are providing positive information for the detection and have filtered out

the unnecessary information. Out of 4 vehicles the system detected two

vehicles with concentration condition applied (Figure 6.19), here the cause of

the misdetection was the distance between the vehicles, as without the

concentration applied (Figure 6.20) the results improved to detection of all the

four vehicles, though again presence of a shadow having a darker shade and

rectangular shape caused a false positive to occur. As mentioned earlier this

can be rectified by the use of an intelligent technique like Bayesian or Neural

Networks.

 51

Figure 6.18 Edge image of v23

Figure 6.19 Final Output of v23 with concentration

Out of 4 vehicles the system detected two vehicles with concentration

condition applied, here the cause of the misdetection was the distance between

the vehicles, as without the concentration applied (Figure 6.20) the results

improved to detection of all the four vehicles, though again presence of a

shadow having a darker shade and rectangular shape caused a false positive to

occur. As mentioned earlier this can be rectified by the use of an intelligent

technique like Bayesian or Neural Networks.

 52

Figure 6.20 Final Output of v23 without concentration

6.1.8 Test Image v24

 This image is a low resolution image with lot of noise and low contrast.

There is a concentration of tanks, but the edge image (Figure 6.21) shows that

almost all the fighting vehicles are not giving a good rectangular edge

response and hence the misclassification is caused. Out of 21 vehicles only

two vehicles were correctly classified with concentration condition (Figure

6.22) and without the concentration condition (Figure 6.23) the result

improved to four vehicles. This image provided an insight into the problems to

be faced when classifying tanks as they present a different edge shape in

images with low resolution. This implies that a different geometric shape be

used to identify and detect the tanks. This makes the system adaptable to

detect other objects like bunkers, fortifications and buildings also after making

appropriate changes. The problem of lighting conditions is also highlighted by

this image, as the low contrast has made the detection more difficult. The

results improved with the concentration condition removed and 5 vehicles

were correctly classified. There were no false positives as no other object was

giving out edges close to that of the vehicles.

 53

Figure 6.21 Edge image of v24

Figure 6.22 Final Output of v24 with concentration

The errors are fairly high, but can be justified on the ground that the system is

designed to work without any image context information and is assumed to

work in cross country also.

 54

Figure 6.23 Final Output of v24 without concentration

6.1.9 Test Image v25

 A vertical aerial photo of a parking lot with 163 vehicles.. There are

vehicles of a large variety of shades. Certain vehicles have been occluded by

other vehicles or their shadows. Large no of vehicles, evenly dispersed are

present. The edge image (Figure 6.24) is an ideal image as it shows the edges

of most of the vehicles distinctly.

Figure 6.24 Edge image of v25

 55

It was edge image of v25 because of good resolution and contrast in the image.

The system detected 130 vehicles with (Figure 6.25) and without the

concentration condition (Figure 6.26) as the all the vehicles were closely

concentrated.

Figure 6.25 Final Output of v25 with concentration

Figure 6.26 Final Output of v25 without concentration

 56

6.1.10 Test Image v26

 Multi tiered road structures are shown in this image. The image is

characterized by the presence of fewer vehicles, widely dispersed. Different

shades of vehicles are visible. Back ground is dark and has good contrast with

road texture. The lane markings are creating a problem for the system as

visible in the edge image (Figure 6.27). There are 8 vehicles present in the

image. The system was able to classify 2 vehicles correctly with the

concentration condition (Figure 6.28) applied as the vehicles were a large

distance apart. The results improved with the concentration condition removed

(Figure 6.29) and 5 vehicles were correctly classified. There were no false

positives as no other object was giving out edges close to that of the vehicles.

Figure 6.27 Edge image of v26

Here another important conclusion comes to fore, that the system is capable of

discounting the presence of large rectangular structures as are visible in this

edge image. This is due to the limit imposed on the permissible size of a

vehicle. This can be a disadvantage also in cases where the image is taken

 57

Figure 6.28 Final Output of v26 with concentration

Figure 6.29 Final Output of v26 without concentration

from less height. In that case the vehicle will give out a larger rectangular profile and

hence will also be neglected by the system, as the large structures in this image.

 58

6.2 Efficiency Analysis Through Data Set

 For efficiency analysis of the algorithms, various parameters of the results

obtained from the implementation on the data set were recorded according to

output with and without concentration conditions respectively in the Table 6.1

and Table 6.2.

Image
Label

Total
vehicles Detected False

+ve
False
-ve

Correct
Detection Errors

Time
Taken
(ms)

ATR 1 1 0 0 1 0 469
Img83 20 19 13 14 6 27 3906

v2 9 4 0 5 4 5 5766
v10 64 14 0 50 14 50 4016
v22 9 8 3 4 5 7 3047
v23 4 2 0 2 2 2 1172
v25 163 130 0 33 130 33 1500
v26 8 2 0 6 2 6 2328

Table 6.1 Results with Concentration Conditions

Image
Label

Total
vehicles

Detected False
+ve

False
-ve

Correct
Detection

Errors Time
Taken
(ms)

ATR 1 1 0 0 1 0 469
Img83 20 19 13 14 6 27 3735

v2 9 13 4 0 9 4 5609
v10 64 23 0 41 23 41 3857
v22 9 9 4 4 5 8 3015
v23 4 5 1 0 4 1 1141
v25 163 130 0 33 130 33 1515
v26 8 5 0 3 5 3 2297

Table 6.2 Results without Concentration Conditions

The results show that there are instances when the system is giving false

positive responses. After analyzing the image characteristics of the images

 59

where there is a large number of false positive responses like Test image

Img83 Figure 6.3, it comes to notice that where there is a large built up area

with rectangular profile buildings the system gives a lot of false positive

responses. It can be justified on the basis of assumptions that state that the

system is designed for detection of vehicles in cross country terrain. When we

consider the false negative responses, mostly the shadows of surrounding

images and occlusion caused by other vehicles are responsible for this. In Test

image v10 (Figure 6.9), there are maximum false negative responses which are

caused by presence of deformed and overturned vehicles and burnt out ground

which has caused the most of false negative responses. Points which can be

derived from the analysis of results: There is a need to integrate some measure

of intelligent classification preferably through Bayesian network to eliminate

the false positive responses if the system is to work efficiently in built up area

too. Vehicle shadow can be used as a very important cue for detection; it will

help in eliminating the false negative responses. As the number of vehicles

increases the error rate tends to become constant Figure 6.30 shows this that

the error rate has become stagnant after a certain threshold. It proves that the

system is working efficiently on detection of clusters of vehicles. Further

specific military images are needed to verify the efficacy of the system on

military vehicles. The Error analysis (Figure 6.30) shows that the percentage

of errors drop considerably with the increase in the number of vehicles in the

image, this validates the efficiency of the system based on the underlying

assumption of concentration detection. Figure 6.31 shows the time vs. size

relationship between the image processing parameters. As the image size

increases the memory and the time required for its processing also increases.

The memory plays an important role in the processing of any image by the

system. As the size of the image increases more than a threshold then the

 60

available memory proves deficient to process it and hence the system returns

an out of memory exception thrown by the Java virtual machine.

Figure 6.30 Error Analysis

Figure 6.31 Performance Analysis

0.469

1.5
1.172

2.328

3.047

3.9064.016 3.906

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40

size (kb)

ti
m

e(
se

co
nd

s)

0
20
40
60
80

100
120
140
160

0 50 100 150 200
no of vehicles

%
er

ro
rs

 61

Conclusion
 This project was an attempt to indigenously develop a system for automatic

analysis of aerial images. It is by no means a complete system, but still it

provides a foundation stone for further research and development in the field.

It has a lot of room for improvement especially in the form of intelligent

classification of vehicles. A larger and more specific image data set is needed

to further test and refine the system. A more specific data set, keeping the

project assumptions in focus is necessary to further validate the system. The

findings have proved the efficacy of the approach i.e. use of geometric shape

with no context information about the background features to detect objects in

aerial images. Most important finding is the need for an intelligent post

analysis processing module. It will help in reducing the large number of false

positives which are increasing the error rate. Keeping the past research in view

and the requirements of the project, the most suitable intelligent solution

seems to be the Bayesian networks.

The analysis highlights another area: shadow information, which is presently

causing false detections/misdetections. If the lighting directions, orientation of

the sun is known then the same information can be used to augment the

information contained in the geometric model used for detection. The best

approach will be to estimate the shadow effect on the model, based on the sun

orientation information and the incorporate this information in the model to

help in the detection process. The detection of fighting vehicles like tanks is

another area where the system can be improved. The different geometric

model adapted to the requirement will make the detection of fighting vehicles

more efficient and effective. In the present approach back ground information

 62

available from the image is discounted completely, this information can be

helpful, if used in conjunction with the geometric model. The presence of one

vehicle in an area where there are no linear features (roads, highways) should

increase the probability of finding other vehicles in surrounding cross country

terrain. The distinction between soft vehicles and fighting vehicles will also

become possible if the intelligent technique is incorporated. The present state

of the project provides an optimized geometric information based detection

paradigm to be used by the intelligent plat form.

 Future work
 The project also identified two major directions for future research. Two

methods presented in this study require a background image. Research is

required for suitable methods for generating the background image. Research

will also be required for developing a standard set of post-processing

operations. These operations are performed on the segmented image to sieve

out spurious responses and cluster appropriate pixel groups into potential

vehicles. The standard set of operations will consist of a set of criteria that will

be applied in a pre-determined sequence to generate the final vehicle counts.

Similar approaches can also be useful for other object detection and

recognition tasks. Intelligent post processing in the form of Bayesian networks

or alternatively neural networks is highly desirable to improve the detection

rate. Another area to focus on is the migration from Java to C to have access to

more efficiency in terms of processing power and time. The incorporation of

shadow and back ground information in the post processing steps can be

helpful in enhancing the performance.

 63

LIST OF REFERENCES

[1] Taylor, J. I., Photogrammetric determination of traffic flow parameters,
Ph.D. Dissertation, The Ohio State University, Columbus, Ohio, 1965.
[2] Agin, G.J, Knowledge based detection and classification of vehicles and
other objects in aerial images, DARPA 79, pp. 66-71.
[3] Moon, H., R. Chellapa, and A. Rosenfeld, Performance Analysis of a
simple vehicle detection algorithm, Image and Vision Computing, vol. 20,
no. 1, pp. 1-13, 2002.
[4] Rajagopalan, A. N., Phillipe Burlina and Rama Chellapa, Higher Order
Statistical Learning for Vehicle Detection in Images, Proceedings of the
Seventh International Conference on Computer Vision, vol. 2, pp. 1204-
1209, 1999
[5] Zhao, T. and R. Nevatia, Car Detection in low-resolution aerial images,
IEEE Proc. of Int. Conf. on Computer Vision, 2001.
[6] Zhao, T. and R. Nevatia, Car Detection in low-resolution aerial images,
IEEE Proc. of Int. Conf. on Computer Vision, 2001.
[7] Sastry, C. V. S., Extraction of vehicle information from 1-m resolution
imagery, Masters’ Thesis, The Ohio State University, Columbus, Ohio,
2000.
[8] Nagao, M., and T. Matsuyama, A structural analysis of complex aerial
photographs, Plenum Press, New York.
[9] McCord, M. R., P. K. Goel and C. J. Merry, Traffic Monitoring Using
Satellite and Ground Data: Preparation for Feasibility Tests and an
Operational System, Final Report to The Ohio Department of Transportation,
The Ohio State University, Research Foundation, Columbus OH, 2000.
[10] Shapiro, L. G., and G. C. Stockman, Computer Vision, Prentice-Hall,
2001.
[11] Lee, S-S. , S-J. Horng, and H-R. Tsai, Entropy Thresholding and Its
Parallel Algorithm on the Reconfigurable Array of processors with Wider
Bus Networks, IEEE Transactions on Image Processing, Vol. 8, No. 9, 1999.
[12] Chang, C. I., K. Chen, J. Wang, and M. L. G. Althouse, “A Relative
entropy-based approach to image thresholding,” Pattern Recognition,
vol.120, pp. 215–227, 1993.
[13] Beghdadi, A., A.L. N´egrate, and P.V. Lesegno, “Entropic thresholding
using a block source model,” Comput. Models Image Processing, vol. 57, pp.
197–205, 1995.

 64

[14] Lin C. and R. Nevatia, Building Detection and Description from Single
Intensity Images, Computer Vision and Image Understanding, vol. 72, No. 2,
pp. 101-121, 1998.
[15] Cheng, H. D., Y. H. Chen, and X. H. Jiang, Thresholding Using Two-
Dimensional Histogram and Fuzzy Entropy Principle, IEEE Transactions on
Image Processing, vol. 9, no. 4, 2000.
[16] Yanowitz, S. D. and A. M. Bruckstein, A New Method for Image
Segmentation, Computer Vision, Graphics and Image Processing, no. 46, pp.
82-95, 1989.
 [17] Sarkar, S., and K. L. Boyer, Quantitative measures of change based on
feature organization: eigen-values and eigen-vectors, Computer Vision and
Image Understanding, Vol. 71, No. 1, pp. 110-136, 1998.
[18] Roux, M., and D. M. McKeown, Feature matching for building
extraction from multiple views, IEEE Computer Vision and Pattern
Recognition Conference, pp. 204- 206, 1994.

 65

Appendix 1

 1. User Manual
 1.1 About Image/J

 Image/J is a program which purpose is to enable picture processing. There

are several types of software aimed to manipulate images. Some programs are

made to change an image by adding different features to it. Those programs

are widely used by designers and other artists. Image/J on the other hand is a

program that can by described as a tool used in scientific areas, e.g. medicine.

Researchers want to measure the size of different parts and organs to make

various conclusions. Image/J allows them to analyze their images in such a

way. This is an example of Image/J’s range of uses but it can be used in many

other science fields e.g. physics. Image/J can display, edit, analyze, process,

save and print 8-bit, 16-bit and 32-bit images and can create Stacks - series of

images presented in one window. It can calculate pixels, distance and angles,

area and pixel value. Furthermore, it supports many standard image processing

functions, including contrast enhancement, density profiling, smoothing,

sharpening, edge detection, and other filtering functions.

Besides the obvious advantages with Image/J as an image processing software

there is one great concept behind its development worth mentioning. Image/J

is open source and many people participate in the development. Image/J was

designed with an open architecture that provides extensibility via Java plugins.

The plugins can be developed using Image/J's built in editor and a Java

compiler, which makes it possible to write code that solves almost any image

processing or analysis problem.

1.2. Installing ImageJ (Windows operating system)

 66

 Copy the ImageJ folder to disc and transfer it to the C drive of computer.

Open the ImageJ folder in the C drive and copy the shortcut (microscope with

arrow) to your desktop. Double click on this shortcut to run ImageJ. If you are

running ImageJ from some location other than the C drive, double click on the

'red apple' icon in the ImageJ folder to launch the program.

1.3. Basic Operations.

 An ImageJ window will appear on the desktop; do not enlarge this

window. Select File, Open from the menu to open a stored image file.

Selection Tools: The first four buttons on the toolbar are area selection tools;

they allow you to surround an area on the image with a rectangle, oval,

polygon or a freehand shape. After selection, these specific areas may be

altered, analyzed, copied, etc. using the menu commands. Notice that the

status bar, below the toolbar, gives the location of the selection (xxx, yyy) and

its dimensions in pixel .Line Tools: The next three buttons are line tools that

create straight, segmented or freehand lines. Again note that information is

displayed on the status bar as the line is drawn. Double-click on the line button

to alter the line width. Ctrl+D or Edit Draw makes the line permanent.

Crosshair Tool: The crosshair tool allows you to mark locations on the image;

with each click the coordinates of the pixel (xxx, yyy) and brightness (0-255)

are recorded in the data window. Color images will have three brightness

readings displayed on the status bar, one each for the red, green and blue

channels, however only one brightness value will be printed in the data

window. Wand Tool: This tool automatically finds the edge of an object and

traces its shape. It works best with high contrast images (see Thresholding,

next page). Place the wand to the left of an edge; click and the algorithm will

search to the right for an edge. It will then trace along the edge of the object

until it returns to the starting point. Text Tool: Double click on this button to

select a font and size. A large font size will probably be required for an image

 67

from a digital camera. Single click the button, click-drag a text box and type

the label. Move the box to the desired location and set the text in place with

Ctrl+D or with Edit Draw. Magnifying Glass: Left-click on the image to

magnify; right-click to reduce the image size. Scrolling Tool: This allows you

to move the image if the picture is larger than the window. Color Picker: This

tool sets the foreground drawing color or text color by "picking up" colors

from images with the eyedropper. Colors also may be picked up from the

Colors window by double-clicking the color picker button. Alt-click in the

Colors window to change the background color. The icon for this tool (eye

dropper) shows the current foreground color while the frame around it shows

the background color.

1.4 Image Processing

 The next is a very small sampling of processing techniques that are

possible with ImageJ. See the ImageJ and NIH Image websites for more

information. ImageJ is best used for image analysis; I use it in conjunction

with more powerful photo editors such as Adobe Photoshop. You may want to

open a spreadsheet so that data can be efficiently 'cut & pasted' during image

analysis. Also, it is a very good idea to make a backup copy of your image

before doing any processing. Undo. Edit Undo reverses the preceding action.

Only one back step is possible. Revert. File Revert should revert to the original

saved image. Cropping. Surround the area with the rectangular selection tool

followed by Image Crop. Clear Outside. Make a perimeter with a selection

tool followed by Edit Clear Outside. The technique is useful for clearing

extraneous objects near an item of interest. Edit Clear clears inside of the

perimeter. Enhancing Brightness and Contrast. Image.Adjust

Brightness/Contrast; click 'auto' or set manually Removing Noise. Process

Noise Despeckle or try Process Filters Median Rotating an Image. Image

Rotate and select type of rotation Converting to Grayscale. Image Type 8-bit

 68

converts the image to 256 shades (8-bit) of gray. In this scale 0 = pure black

and 255 = pure white…. a grayscale reading of 128 would be a medium gray.

Thresholding (Binary Contrast Enhancement). This is commonly used when

detecting edges, counting particles or measuring areas. A grayscale image is

converted to binary (a.k.a. halftone or black & white) by defining a grayscale

cutoff point. Grayscale values below the cutoff become black and those above

become white. The procedure: First convert the image to 8-bit grayscale (see

above). Process Binary Threshold creates a 'thresholded' binary image. A less

automated procedure involves: Image Adjust Threshold; use the slider to

adjust the threshold. The red areas will become the black portions in the binary

image. Click 'Apply' to complete the conversion. 'Brightness slicing' is a

similar procedure that uses both upper and lower thresholds. Measuring and

Counting Objects (also see accompanying handout with ImageJ examples)

Measuring Distance Between Points. Using the straight-line tool draw a line

between two points. The status line will show the angle (from horizontal) and

the length in pixels. Use the next step to set the scale: Setting Measurement

Scale. Draw a line between two points of known distance such as a ruler on the

photograph. Go to Analyze Set Scale. In the Set Scale window the length of

the line, in pixels, should be displayed. Type the known distance and units of

measure in the appropriate boxes and click OK. Measurements will now be

shown using these settings. If the pixel: length relationship is known from a

previous measurement you may directly type this information in the Set Scale

window. Check 'global' to apply this scale to other frames. Measuring Area.

Surround an area with a perimeter. This can be done with an area selection

tool, the wand (in high contrast images) or with Analyze Particles (see below).

Go to Analyze �Measure; the data window will show the area and pixel

brightness values for the object in the perimeter. Use Analyze Set

Measurements to select additional parameters (such as perimeter length) to be

 69

displayed. Counting Particles. As described above convert the image to 8-bit

grayscale and then 'threshold' the image. Go to Analyze Particles, type the

upper and lower limits for the particle size and toggle 'show outlines'. Click on

OK and each counted particle will be outlined and numbered in a new widow

(numbers may be very small). The data window contains measurements for

each particle. Saving Files. Images from digital cameras are usually saved as

JPEG files. JPEG is a type of memory compression that results in the loss of

some data. A JPEG image degrades each time it is opened, edited and resaved.

It is best to save a file in a 'lossless' format such as a TIFF during the editing

process. Pressing "S" on the keyboard brings up the Save as TIFF window. As

you save a file, confirm that the extension '.tif' has been added to the filename.

Printing. Should you encounter printing problems, save the processed image

and print with a photo editor. Saved images also may be inserted into MS

Word for printing.

 70

Appendix 2

Assumptions/Constraints

Following are a few assumptions or constraints of our project.

a. Required resolution of the aerial image should be 25 cm.

b. Only vertical/nearly vertical images are considered.

c. No context information about the image is available.

d. No image registration/GIS support.

e. No information about camera height.

f. Focus on detecting convoys/vehicle concentrations.

g. A single image is used

h. 8-bit grey scale images are used.

