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ABSTRACT 
 

Our aim in this project is specifically to design a system that will automatically 

mosaic aerial images. These images may be from a satellite or any other source such as 

an Unmanned Aerial Vehicle (UAV). Any such vehicle when sent into air to photograph 

a certain area takes several pictures as it flies above. For proper analysis these images 

need to be mosaiced in order to create a single bigger picture of the whole area. 

The images have areas which overlap or are present in more than one image. 

Before all the images are combined these overlaps need to be automatically detected the 

images be joined in such a way that the image contains no doubling. The number of 

images may be quite large and the matching process may take quite some time. Efficient 

algorithms need to be designed and implemented in order to piece together all the 

pictures correctly in a short time without much error. 

In order to resolve the above difficulties, the techniques of Feature Point 

Extraction are used. This relies on accurate detection of image features such as detecting 

corners. After the feature points have been extracted we can use the analyzed data to help 

us mosaic the images.  

The resulting mosaic can be used in a number of ways. Suppose that the same 

area is photographed once again. The new pictures can again be analyzed in the same 

way to form another mosaic. The two mosaics can then be compared using mathematical 

techniques to detect any changes in the area and report to the user. Some examples of 

these changes can be construction of a building or the digging of a bunker etc.
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 PROBLEM STATEMENT 
 

To design a system for the automated feature point extraction and mosaicing of aerial 

images and use the results for the purpose of change detection in various versions of the 

same mosaic.  

1.2 PURPOSE 

Our aim in this project is specifically to design a system that will automatically 

mosaic aerial images. These images may be from a satellite or any other source such as 

an Unmanned Aerial Vehicle (UAV). Any such vehicle when sent in to photograph a 

certain area takes several pictures as it flies above. For proper analysis these images need 

to be mosaiced in order to create a single bigger picture of the whole area. The design of 

such a system has inherent difficulties because of two reasons. 

Firstly, the images have areas which overlap or are present in more than one image. 

Before all the images are combined these overlaps need to be automatically detected the 

images be joined in such a way that the image contains no doubling. 

Secondly, the number of images may be quite large and the matching process may 

take quite some time. Efficient algorithms need to be designed and implemented in order 

to piece together all the pictures correctly in a short time without much error. 

In order to resolve the above difficulties, the technique of Feature Point Extraction 

was used. This relies on accurate detection of image features such as detecting corners. 

After the feature points have been extracted so that one can use the analyzed data to help 

us mosaic the images.  
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The resulting mosaic can be used in a number of ways. Suppose that the same area is 

photographed once again. The new pictures can again be analyzed in the same way to 

form another mosaic. The two mosaics can then be compared using mathematical 

techniques to detect any changes in the area and report to the user. Some examples of 

these changes can be construction of a building or the digging of a bunker etc. 

1.3 OBJECTIVES 

Specifically the project has the following objectives: 

1.3.1 GEOMETRIC CORRECTIONS 

The first step is to correct geometric deformations using image data and/or camera 

models. This is necessary because images taken from Unmanned Aerial Vehicles (UAVs) 

are from various positions. Depending on the elevation and azimuth of the aircraft and 

camera system, these images may exhibit a variety of perspective distortions, and the 

orientation, scale and position of the images are not available. Hence, to register such 

images, one has to determine the affine transformation between the images (scale, 

position and rotation).  

1.3.2 IMAGE MOSAICING  

The second step is the mosaicing of the images. For this purpose the feature points 

have to be extracted in order to correctly match and mosaic them. Hence this part has two 

steps. The first step is the feature point extraction and the second is mosaicing based on 

the feature points. 

Our core objective will be the achievement of the second task i.e. image mosaicing. 

The assumption will be that the first task has been completed. Also the third task is 

included as a further advancement that can be completed once the second has been 

successfully achieved. 
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1.3.3 CHANGE DETECTION 

The last step in our project, and of course, the one with a wide number of military and 

civil applications is the change detection. By change detection, one means finding the 

difference, if any, between two mosaiced images of the same area, photographed at 

different points in time.  

1.4 IMPLEMENTATION 
 

The system has been implemented using digital image processing techniques. The 

testing of the mathematical techniques was done on MATLAB while the final system was 

designed in using Visual C++ using the Microsoft Vision SDK library as a base. 

1.5 OVERVIEW OF IMAGE MOSAICING 
 

Registration and mosaicing of images have been in practice since long before the age 

of digital computers. The limited flying heights of the early airplanes and the need for 

large photo-maps, forced imaging experts to construct mosaic images from overlapping 

photographs. This was initially done by manually mosaicing images which were acquired 

by calibrated equipment. The need for mosaicing continued to increase later in history as 

satellites started sending pictures back to earth. Improvements in computer technology 

became a natural motivation to develop computational techniques and to solve related 

problems. 

Image Mosaicing has important applications in both military and non-military 

domains. The construction of mosaic images and the use of such images on several 

computer vision/graphics applications have been active areas of research in recent years. 

Image-based rendering has become a major focus of attention combining two 

complementary fields: computer vision and computer graphics. In computer graphics 

applications images of the real world have been traditionally used as environment maps. 

These images are used as static background of synthetic scenes and mapped as shadows 

onto synthetic objects for a realistic look with computations which are much more 

efficient than ray tracing. 
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Among other major applications of image mosaicing in computer vision are image 

stabilization, resolution enhancement, video processing (e.g. video compression, video 

indexing). 

The images shown on the next page demonstrate the actual working of image 

mosaicing. Here, both the pictures have some area in common which has been detected 

by our program and a mosaic has thus been created devoid of any overlapping area.  

If the area of interest is simply too large to be covered by a single photo, several 

adjoining photos can be combined to form a "mosaic" image. A mosaic of this type is 

defined in the dictionary as "a composite map made of aerial photographs". If the 

imagery has been digitally processed and manipulated by computer software, it can be 

made to look like a single photograph with no apparent seam lines where several photos 

were "stitched" together.  

The mosaiced image can also be "rectified" using one of several methods to remove 

varying amounts of distortion and displacement caused by variables such as the tip and 

tilt of the aircraft, changes in elevation on the ground, and imperfections in camera 

lenses. Prior to the development of computer assisted image processing, mosaics were 

made by carefully cutting or tearing paper photographs along their edges in an irregular 

fashion, and gluing them down in such a way that the cut or tear lines were overlapped on 

adjacent photos and blended- in to hide the lines as much as possible.  

Image mosaicing is an active area of research in computer vision. The various 

methods adopted for image mosaicing can be broadly classified into direct methods and 

feature based methods. Direct methods are found to be useful for mosaicing large 

overlapping regions, small translations and rotations. Feature based methods can usually 

handle small overlapping regions and in general tend to be more accurate but 

computationally intensive. Some of the basic problems in image mosaicing are 

alignment, adjustment, automatic selection of images to be blended and exposure 

compensation. 

Even after good global alignment, some pixel might not align in the two 

images. This might cause ghosting or blur in the blended image. Automatic 

selection of images to blend from a given set of images is also another area to be 

taken care of. After one of the images has been transformed using the homography 
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calculated above a decision needs to be made about the color to be assigned to the 

overlapping regions. Blending also becomes important when there exists a moving 

object in the images taken. 

Most cameras have an automatic exposure control. The images taken can 

therefore be of variable brightness in the overlapping region which might cause 

the mosaic to look unrealistic. 

 
1.6 SYSTEM OVERVIEW 
 

The system is fed with raw images.  The images may be disoriented, unaligned or 

may not be parallel. The first step, therefore, is to perform geometric corrections on the 

images. Geometric corrections part of the project is being carried out by another research 

group. It is, therefore, assumed that the images fed to our system are free from any 

geometric disturbances. 

Once the images have been fed, the next step is to extract features from the image set. 

By features, it is believed that a sudden change in the intensity of pixel values occurs. 

There are two types of features that may be detected in an image. These may be either 

corners or edges. This is the first and foremost task accomplished by our software.  

After the detection and identification of corners, the next aim is to perform feature 

point matching on the image set. The feature points are matched in the two images by 

calculating differentials at the pixel locations. If the difference is less than a specified 

threshold, then it means that the features have been matched successfully. Another 

confirmatory check is applied in the form of correlation and ten nearest neighbours in 

both the images are checked to see if they are similar. 

The most important phase of our project is the image mosaicing part. Once two 

images have been identified to be containing similar feature points, and then the 

overlapping area is calculated. A new image is created and the two images, minus the 

overlapping area, are copied into that image. The same process is repeated for all the 

images in the image set and each time, two images are mosaiced into one. 

The last step is the variation detection. Two mosaics of the same area are checked to 

determine variation, if any, from the previous images of the same area. For this purpose, 

differentials of each pixel position in the images are calculated and the values are stored. 
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Where the difference of the same pixel position differential is greater than a specified 

threshold, a change is detected. The change is shown by the marking of red blocks on the 

image area where there is some change. 

Both, the mosaiced images and the variation detected images can be saved to 

permanent storage, if desired by the user. 

The flow diagram is as shown in figure 1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 System Overview 

       Extract Features from the image set  

Perform Feature point matching on the image     
set 

Perform Geometric corrections on the images 

Creation of Mosaic using blending, warping 
etc. 

Final Mosaic 

Raw Images 

Variation Detection 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
2.1 FEATURE EXTRACTION 
 
2.1.1 REQUIREMENTS 
 

Corner detection should satisfy a number of important criteria. This may include 

conditions such as the true corners should be detected,  no false corners should be 

detected, corner points should be well localized, corner detector should be robust with 

respect to noise and that the corner detector should be efficient. 

 
2.1.2 THE PLESSEY FEATURE POINT DETECTOR 
 

Harris and Stephens described what has become known as the Plessey feature 

point detector. The outline of how it works can be best understood if the following matrix 

is considered 

 
 
where I(x; y) is the grey level intensity. If at a certain point the two Eigen values of the 

matrix M are large, then a small motion in any direction will cause an important change 

of grey level. This indicates that the point is a corner. The corner response function is 

given by: 
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where k is a parameter set to 0.04 (a suggestion of Harris). Corners are defined as local 

maxima of the corner-ness function. Sub-pixel precision is achieved through a quadratic 

approximation of the neighborhood of the local maxima. To avoid corners due to image 

noise, it can be interesting to smooth the images with a Gaussian filter. This should 

however not be done on the input images, but on images containing the squared image 

derivatives .In practice often far too much corners are extracted. In this case it is often 

interesting to first restrict the numbers of corners before trying to match them. One 

possibility consists of only selecting the corners with a value R above a certain threshold. 

This threshold can be tuned to yield the desired number of features. Since for some 

scenes most of the strongest corners are located in the same area, it can be interesting to 

refine this scheme further to ensure that in every part of the image a sufficient number of 

corners are found.  

 
2.1.3 THE SUSAN DETECTOR 
 

SUSAN (Smallest Univalued Segment Assimilating Nucleus ) presents us with an 

entirely different approach to low level image processing compared to all pre- existing 

algorithms. It provides corner detection as well as edge detection and is more resistant to 

image noise although no noise reduction (filtering) is needed. The concept of each image 

point having associated with it a local area of similar brightness is the basis for the 

SUSAN principle. If the brightness of each pixel within a mask is compared with the 

brightness of that mask's nucleus then an area of the mask can be defined which has the 

same (or similar) brightness as the nucleus. This area of the mask shall be known as the  

USAN", an acronym standing for Univalued Segment Assimilating Nucleus". 

Computing USAN for every pixel in the digital image provides us with a way to 

determine the edges inside it. The value of USAN gets smaller on both sides of an edge 

and becomes even smaller on each side of a corner. Hence one is  looking for the Smallest 

USAN (or SUSAN for short). The local minima of the USAN map represent corners in 

the image. The reason that this method stays resistant to noise is the lack of computing 

spatial derivatives of the image intensity. 
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2.1.4 THE CURVATURE SCALE SPACE (CSS) CORNER 
DETECTOR 

 
The curvature scale space technique is suitable for recovering invariant geometric  

features (curvature zero-crossing points and/or extrema) of a planar curve at multiple 

scales. The CSS corner detector works in a sequence.  

First of all, the rule is to extract the edge contours from the input image using any 

good edge detector such as Canny is made. Then, small gaps in edge contours are filled. 

When the gap forms a T-junction, it as marked as a  T-corner. Curvature on the edge 

contours at a high scale  is computed. The corner points are defined as the maxima of 

absolute curvature that are above a threshold value. The corners are tracked through 

multiple lower scales to improve localization. T-corners are compared to the corners 

found using the CSS procedure and remove very close corners. 

Experimental results show this algorithm spends most of its time (80%) detecting the 

edges in the image. Faster edge detectors may be used. The local maxima of absolute 

curvature are the possible candidates for corner points. A local maximum is either a 

corner, the top value of a rounded corner or a peak due to noise. The latter two should not 

be detected as corners. The curvature of a real corner point has a higher value than that of 

a rounded corner or noise. However, as shown in figure 2.1, sometimes, a corner is 

detected twice. 

The corner points are also compared to the two neighboring local minima. The  

curvature of a corner should be twice that of one of the neighboring local minima. This is  

because when the shape of the contour is very round, contour curvature can be above the 

threshold. 

 
 
 
 
 
 
 
 
 
 

Figure 2.1 A corner is detected twice 
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2.1.5 IPAN 99 
 

The acronym for this method stands for Image and Pattern Analysis group and was 

developed in 1999 at The Hungary Academy of Science. It is fast and efficient algorithm 

for detection of high curvature points. The curve has to be generated previously using an 

edge detector. It is not required to be a closed curve. In the first pass the sequence of 

points is scanned and candidate corner points are selected. In each curve point p the 

detector tries to inscribe in the curve a variable triangle (p_ ,p ,p+ ). Because the points 

are kept with their Cartesian coordinates, the angle be easily computed. 

Triangles are selected starting from point p outward and stop on the conditions  

mentioned above. In that way a number of admissible triangles are defined. At a 

neighborhood of points, only one of these admissible triangles is selected – the one which 

has the smallest value for the angle. A value of sharpness is assigned to p.  

In the second pass the selection is refined and points that give the strongest response 

are marked as corners in the curve. This is done by selecting only points which have 

sharpness greater than that of their neighbors. Figure 2.2 shows the working of IPAN 99. 

 
 

 
 
 
 
 
 
 
 
 

Figure 2.2 Working of the IPAN 99 

 

2.2 IMAGE MATCHING 
In photogrammetric and remote sensing, matching can be defined as the 

establishment of the correspondence between various data sets. The matching problem is 

also referred to as the correspondence problem. The data sets can represent images, but 
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also maps, or object models and GIS data. Many steps of the photogrammetric processing 

chain are linked to matching in one way or another. Examples include the reconstruction 

of the interior orientation: the image of a fiducial is matched with a two-dimensional 

model of the fiducial; relative orientation and point transfer in aerial triangulation: parts 

of one image are matched with parts of other images in order to generate tie points; 

absolute orientation: parts of the image are matched with a description of control features, 

mostly ground control points; generation of digital terrain models (DTM): parts of an 

image are matched with parts of another image in order to generate three-dimensional 

object points; and finally the interpretation step: parts of the image are matched with 

object models in order to identify and localize the depicted scene objects. 

Looking at this large variety of tasks it comes as no surprise that matching has long 

been and still is one of the most challenging tasks in photogrammetric research and 

development. In this paper an overview is given of a more specific class of matching 

algorithms usually called digital image matching. Digital image matching automatically 

establishes the correspondence between primitives extracted from two or more digital 

images depicting at least partly the same scene. The primitives can be gray level 

windows or features extracted from the images. Thus, all input data sets are images or 

parts thereof. Objects as such need not be modeled explicitly. It should be kept in mind, 

however, that each algorithm uses at least an implicit model of the object surface, since it 

is the object surface which is depicted in the images.  

In photogrammetric and remote sensing, image matching is employed for relative 

orientation, point transfer in aerial triangulation, scene registration and DTM generation. 

Also, the reconstruction of the interior orientation falls within the category of image 

matching, since the model of a fiducial is usually represented as a gray value image.  

2.2.1 IMAGE MATCHING HISTORY 
 First solutions for image matching have been suggested already in the late fifties 

(Hobrough 1959, he still used analogue images and procedures). Since then a steady 

increase in the interest for image matching has occurred, and the question may be asked, 

why image matching has not been solved long ago. A first answer can be given by 

considering the information content of the most elementary primitive in the input data set, 

namely a pixel. An aerial image scanned with 15 um contains approximately 235.000.000 
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pixels, and each gray value usually lies in the range of 0 to 255. Assuming an equal 

distribution of the gray values the image contains roughly 920.000 pixels of each gray 

value. This little computation demonstrates that matching on the basis of single pixels is 

certainly impossible. It also exemplifies two fundamental problems of image matching. 

First problem is that ambiguous solutions may occur, if image matching is tackled 

using local information, and the second one is that computational costs are high and have 

to be controlled. 

A more realistic approach is that of cross correlation. In order to compute the cross 

correlation function of two windows, a template window is shifted pixel by pixel across a 

larger search window and in each position the cross correlation coefficient ñ between the 

template window and the corresponding part of the search window is computed according 

to equation 2.1. The maximum of the resulting cross correlation function defines the 

position of the best match between the template and the search window.  

 

      

  

 
 
 
   

Equation 2.1 

g1(r,c)  individual gray values of template matrix  
 

u1  average gray value of template matrix  
 

g2(r,c)  individual gray values of corresponding part of search matrix  
 

u2  average gray value of corresponding part of search matrix  
 

R, C  number of rows and columns of template matrix  
 

The principle of cross-relation function is shown in figure 2.3 while cross-relation 

functions are shown in figure 2.4.
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Figure 2.3: Principle of cross correlation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: a (top left) left image; b (top right) right image; c (bottom) cross correlation 
function  

A typical result of cross correlation is shown in figure 2.4. Figure 2.4a shows a 

typical small template window of the left image of an aerial stereo pair, figure 2.4b 
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depicts the corresponding larger search window in the right image. In figure 2.4c a plot of 

the cross correlation function of the two windows is shown. The cross correlation 

coefficient is a simple but widely used measure for the similarity of different image 

windows  As can be seen in figure 2.4c, the spatial variation of the cross correlation 

coefficient can be extensive making it a difficult task to find its maximum. During this 

projection information is lost. This is most evident in the case of occlusions. Image 

matching belongs to the class of so called inverse problems, which are known to be ill-

posed. A problem is ill-posed, if no guarantee can be given that a solution exists, is 

unique, and is stable with respect to small variation in the input data. Image matching is 

ill-posed, because for a given point in one image, a corresponding point may not exist 

due to occlusion, there may be more than one possible match due to repetitive patterns or 

a semi-transparent object surface, and the solution may be unstable with respect to noise 

due to poor texture. 

In order to find the solution of an ill-posed problem one usually has to deal with an 

optimization function exhibiting many local extrema (as can be seen in figure 2.4c), and 

thus a small pull- in range. Therefore, stringent requirements may exist for initial values 

for unknown parameters to be determined. Moreover, usually there is a large search space 

for these parameters, and numerical instabilities may arise during the computations. 

Ill-posed problems can be converted to well-posed problems by introducing 

additional knowledge about the problem. Fortunately, a whole range of assumptions 

usually holds true when dealing with photogrammetric imagery. 

The assumptions usually made are that the gray values of the various images have 

been acquired using one and the same or at least similar spectral band(s), the illumination 

together with possible atmospheric effects are constant throughout the time interval for 

image acquisition, the scene depicted in the images is rigid, i.e. it is not deformable; this 

implies that objects in the scene are rigid, too, and do not move, the object surface is 

piecewise smooth , the object surface is opaque, the object surface exhibits a more or less 

diffuse reflection function and that initial values such as the approximate overlap between 

the images or an average object height are known  

Depending on the actual problem at hand additional assumptions may be introduced, 

and some points of the list may be violated. It is this mixture of necessary assumptions 
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which makes the design of a good image matching algorithm difficult, and has lead to the 

development of different algorithms in the past.  

2.2.2 ANALYSIS OF IMAGE MATCHING ALGORITHMS 

Most matching algorithms proposed in the literature implicitly or explicitly contain a 

combination of assumptions about the depicted scene and the image acquisition. Rather 

than trying to describe these algorithms as a whole it seems more appropriate to 

decompose them into smaller modules and discuss those. 

The factors that have to be answered are that to be answered are that which primitives 

are selected for matching, which models are used for defining the geometric and 

radiometric mapping between the primitives of the various images, how is the similarity 

between primitives from different images measured, and how is the optimal match 

computed and which strategy is employed in order to control the matching algorithm. 

Based on these points, an analysis of different algorithms is presented.  

2.2.2.1 DIFFERENT MATCHING PRIMITIVES 

The distinction between different matching primitives is probably the most prominent 

difference between the various matching algorithms. One of the reasons is that this 

selection influences in part the answers to the other questions. The primitives fall into 

two broad categories: either windows composed of gray values or features extracted in 

each image a priori are used in the actual matching step. The resulting algorithms are 

usually called area based matching (ABM), and feature based matching (FBM), 

respectively. Note that when talking about ABM or FBM not only the selection of the 

primitives, but the whole matching process is referred to. 

In both cases there is a choice between local and global support for the primitives. 

The terms local and global are not sharply defined. Local refers to an area seldom larger 

than about 50 * 50 pixels in image space, global means a larger area and can comprise the 

whole image.  

2.2.2.1.1 Gray Value Windows as Primitives 

Small windows composed of gray va lues serve as matching primitives. The window 

centre, possibly weighted e.g. with respect to the gray value gradient can be used for the 

definition of the location of a point to be matched. The gray values are regarded as 
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quantized samples of the continuous brightness function in image space, and concepts of 

signal processing can be employed for further computations. 

The windows can be extracted very fast, and the actual matching methods are rather 

straightforward. Also, ABM has a high accuracy potential in well- textured image regions, 

and in some cases the resulting accuracy can be quantified in terms of metric units. 

Disadvantages of ABM are the sensitivity of the gray values to changes in radiometry e.g. 

due to illumination changes, the large search space for matching including various local 

extrema, and the large data volume which must be handled. Blunders can occur in areas 

of occlusions, and poor or repetitive texture. 

ABM is usually based on local windows. One example is cross correlation, another 

one is the original least squares matching approach. ABM can also be carried out globally 

using connected windows. In this case poor and repetitive texture can be successfully 

dealt with to a certain extend.  

2.2.2.1.2 Features as Primitives 

In FBM features are extracted in each image individually prior to matching them. 

Local features are points, edge elements, short edges or lines, and small regions. Global 

features comprise polygons and more complex descriptions of the image content called 

structures. Features should be distinct with respect to their neighborhood, invariant with 

respect to geometric and radiometric influences, stable with respect to noise, and seldom 

with respect to other features. 

Each feature is characterized by a set of attributes. The position in terms of its image 

coordinates is always present. Further examples for attributes are the edge orientation and 

strength (gradient across the edge) for edge elements, the length and curvature of edges 

and lines, the size and the average brightness for regions. 

Global features are usually composed of different local features. Besides the attributes 

of the local features, relations between these local features are introduced to characterize 

global features. These relations can be geometric such as the angle between two adjacent 

polygon sides or the minimum distance between two edges, radiometric such as the 

difference in gray value or gray value variance between two adjacent regions or 
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topologic, such as the notion that one feature is contained in another. Matching with 

global features is also referred to as relational matching. 

The result of feature extraction is a list containing the features and their descriptions 

for each image. Only these lists are processed further. It should be noted that the features 

are discrete functions of position: after feature extraction a feature either exists at a given 

position or it does not.  

Features are more abstract descriptions of the image content. As compared to gray 

value windows features are in general more invariant with respect to geometric and 

radiometric influences. Feature extraction schemes are often computationally expensive 

and require a number of free parameters and thresholds which must be chosen a priori. In 

some cases a shift in the feature position is introduced during the extraction. If this shift 

is corrected for local features have a high accuracy potential. It is, however, difficult to 

quantify this accuracy in metric units. In areas of low texture the density of extracted 

features is usually sparse. For local features, seldom ness is difficult to achieve, and a 

large data volume must be handled. Global features are more seldom and thus provide a 

better basis for a reliable matching. However, it is difficult to define and extract global 

features, and they tend to be more application dependent then local features. 

Local features have been used for matching e.g. by Barnard, Thompson (1980); 

Förstner (1986) and Hannah (1989). In each case points were selected as features. 

Vosselman (1992); Vosselman, Haala (1992); Cho (1995) and Wang (1995) dealt with 

relational matching involving global features. Schenk et al. (1991) used a combination of 

global and local features.  

2.2.2.2 MODELS FOR THE MAPPING OF PRIMITIVES 

The mapping between the primitives of the various images is defined via two models: 

a sensor model, and a model for the object surface. Simple two-dimensional 

transformations from one image to the next such as a two-dimensional translation or an 

affine transformation implicitly contain a combination of these two models. They are 

rough approximations of the situation during image acquisition and should only be used, 

if the selected matching primitives have local support. If, on the other hand, primitives 

with global support are used, the mapping between the images must be modeled more 
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rigorously. Usually, the sensor and the object surface model are specified separately. As 

shown in figure 2.5, any two-dimensional transformation can be constructed from a 

sequence of two three-dimensional transformations: one from image space into object 

space, and a second one into the image space of the other image. 

There is an advantage if the mapping between the primitives - local or global - is 

formulated in terms of object space parameters which are common for more than two 

images: multiple images can be matched simultaneously. This results in a higher 

redundancy for the matching problem and thus a greater reliability is achieved for the 

results. Multi image matching using ABM has been shown to be superior to matching of 

two images.  

  

 

 

 

 

 

 

 

Figure 2.5: A 2D transformation can be expressed as a combination of two 3D 

transformations  

2.2.2.2.1 Sensor model and epipolar constraint 

In many cases a central perspective projection can be assumed when dealing with 

photogrammetric imagery. Central perspective projection provides for a very powerful 

constraint, namely that of epipolar geometry, see figure 2.6. Given two images the so 

called epipolar plane for a point in 3D space (model or object space) is defined as the 

plane containing this point and the two projection centers of both images. This plane 

intersects both image planes in straight lines, the so called epipolar lines. If the relative 
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orientation of two images is known, for a given point in one image the epipolar line in the 

other image can be computed, and the corresponding point must lie on this epipolar lines. 

Thus the image matching problem is reduced from a two- to a one-dimensional task. 

In order to facilitate matching along epipolar lines the two images can be transformed 

into the normal case in a preprocessing step, eliminating the vertical or y-parallaxes in the 

complete stereo model. Subsequently, matching only needs to be carried out along the 

(horizontal) direction of the base line. Note, that this preprocessing step is not required as 

such in order to take advantage of the epipolar constraint: for a given point in one image 

the epipolar line in the other image can be computed using the parameters of relative 

orientation, and matching can then be carried out along this epipolar line.  

  

 

 

 

 

 

Figure 2.6: The epi-polar constraint: the epi-polar plane (P, P', P'') and the epi-polar lines 

e' and e'' 

The epipolar constraint is vital in reducing ambiguity problems and computational 

cost. Even if only approximate values for the parameters of relative orientation are 

known, the epipolar constraint should be used in order to restrict the search space for 

conjugate primitives in the direction perpendicular to the base line. Note that the epipolar 

constraint can only be formulated for pairs of images.  

2.2.2.2.2 Object surface models 

Geometric models for the object surface used in image matching range from 

horizontal and tilted planes to piecewise smooth surfaces, exhibiting discontinuities in the 

surface slope or the surface itself. Also, models borrowed from DTM generation such as 

finite element representations are used. As mentioned above the object surface is 



 20 

assumed to be rigid, i.e. it does not change during the time interval between image 

acquisition. 

Radiometric surface models describe the brightness of a pixel in object space, also 

called groundel. Due to deviations from the Lambertian (diffuse) reflection function, 

relief influences (shading), and other factors such as noise a groundel usually has a 

different brightness when viewed from different directions. In image matching these 

differences are usually modelled by means of a local linear radiometric transformation. 

Thus, changes in overall brightness and contrast between different image patches are 

taken into account. 

Another assumption of the object surface model is that it is opaque. This assumption 

guarantees that for a given primitive in one image there exists at most one corresponding 

primitive in each other image. In the case of occlusions, no corresponding primitive may 

exist.  

2.2.2.2.3 Examples for sensor and object surface models in image matching 

algorithms 

For cross correlation the two images are assumed to be of identical scale and azimuth, 

and to have parallel optical axes. In addition, the object surface is implicitly modeled as a 

local plane parallel to the image planes. This set up is equivalent to the so called normal 

case of photogrammetric image acquisition. In the simplest case the epipolar constraint is 

not used, however, it can be easily introduced by shifting the template matrix across the 

search matrix in a predefined direction only. The object surface is assumed to be opaque, 

and linear differences between the gray values of the two windows are allowed. 

In least squares matching the rather strict geometric assumptions for cross correlation 

are relaxed: rather than only shifting the template matrix across the search matrix an 

affine transformation is used for the geometric mapping between the windows. As a 

result small deviations from the normal case can be tolerated, and the object surface is 

modeled as a local tilted plane. Again, the epipolar constraint can be easily introduced. 

The radiometric model is the same as for cross correlation. Figure 2.7 shows sensor and 

object surface model for object space least squares matching. 
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Figure 2.7: Sensor and object surface model for object space least squares matching 

For ABM in object space the collinearity equations are explicitly set up. If local 

primitives are used, the object surface model is implicitly given by a tilted plane (Grün 

1985). For global primitives a separate object surface model, often represented as 

connected bilinear surface patches, is introduced. This general model allows for the 

introduction of all orientation parameters (thus, the epipolar constraint is implicitly 

observed), and constraints for the geometric shape of the object surface such as 

parameters minimizing the surface curvature can be directly introduced. Within this 

model simultaneous multiple image matching can be carried out as discussed before. 

Again, the radiometric model is the same as for cross correlation. 

In FBM sensor and object surface models are usually represented implicitly in order 

to reduce the search space. The epipolar constraint is used in most approaches. Due to the 

higher radiometric invariance of features as compared to gray value windows, 

radiometric models play a secondary role in FBM. They are, however, contained in the 

radiometric feature attributes.  
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2.2.2.3 SIMILARITY MEASURES AND OPTIMIZATION PROCEDURES 

The definition of criteria for a good match obviously plays an important part in each 

matching algorithm. For ABM the similarity between gray value windows is defined as a 

function of the differences between the corresponding gray va lues. This function can be 

the covariance or the cross correlation coefficient between the windows, the sum of the 

absolute differences between corresponding pixels, or as is the case in least squares 

matching - the sum of the squares of the differences. These measures have their 

background in statistics and are theoretically well understood. 

Defining a similarity measure for feature based matching is more complicated. The 

definition must be based on the attributes of the features. In most FBM algorithms the 

differences in the geometric and radiometric attribute values are combined using 

heuristics and thresholds in order to compute the similarity measure, called a cost 

function or benefit function. Whereas a cost function is to be minimized, a benefit 

function must be maximized in order to achieve a good match. 

The optimization procedure which can be applied depends on the choice of the 

matching primitives. In local ABM an exhaustive search can be carried out as is the case 

in cross correlation. Alternatively, gradient based iterative schemes such as ordinary or 

robust least squares adjustment are available. The pull- in range for these approaches is 

rather small and lies in the range a few pixels only. Therefore, good initial values for the 

unknowns must be at hand. In order to subsequently achieve global consistency conjugate 

points are usually transformed into object space, e.g. via forward intersection. In this step 

the orientation parameters of the images may also be improved, leading to a bundle 

adjustment. The resulting 3D points are subsequently filtered, and blunders are detected 

and eliminated. In global ABM the optimization procedure, the generation of tree-

dimensional information and the estimation of parameters describing the object surface 

are integrated into one model. 

FBM starts with discrete features. Therefore, gradient based methods can not be 

employed for optimization. In local FBM for each given feature in one image a small 

search area is defined in the other image(s) using the selected mapping transformation. 

Subsequently, an exhaustive search is usually carried out in this search area. At this stage 

multiple matches may still be allowed. After all features of a certain region have been 
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processed, blunders are detected through global consistency checks similar to local ABM. 

Alternative schemes for global consistency shall only be mentioned here. They include 

relaxation labeling, simulated annealing, and dynamic programming. For relational 

matching tree search methods are employed.  
 

2.2.3 THE MATCHING STRATEGY 
  

An image matching algorithm consists of a number of steps. Each of the individual 

modules which can be employed for each step has advantages and disadvantages. Thus, 

potentially something is to be gained from suitably combining these modules. Moreover, 

some parameters such as the approximate overlap or an average terrain height must often 

be provided a priori in order to reduce the search space, and values for free parameters 

and thresholds (window sizes, criteria for stopping the optimization etc.) must be 

initialized. Finally, internal quality checks should be carried out in order to guarantee a 

correct result. 

In the matching strategy the individual steps carried out within the algorithm are 

determined. This includes the input of prior information from a human operator, and the 

presentation of the results for final visual verification. In a comprehensive comparison 

between different images matching algorithms for photogrammetric applications Gülch 

(1994) showed that while under good condition accurate matching results can be 

achieved with a large variety of algorithms, a good matching strategy is decisive for a 

successful solution in more complicated situations. Faugeras et al. (1992) obtained a 

similar result for algorithms popular in computer vision. Some of the aspects of a good 

strategy are discussed in the following.  

 
2.2.3.1 Hierarchy 

Hierarchical methods are used in many matching algorithms in order to reduce the 

ambiguity problem and to extend the pull- in range. They are employed from coarse to 

fine, and results achieved on one resolution are considered as approximations for the next 

finer level. For this task images are represented in a variety of resolutions, leading to so 

called image pyramids. A typical image pyramid, in which the resolution from one level 

to the next is reduced by a factor of 2, is depicted in figure 2.8. A coarser resolution is 

equivalent to a smaller image scale, and a larger pixel size. Thus, the ratio between the 
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(fictitious) flying height and the terrain height increases as the resolution decreases, and 

local disturbances such as occlusions become less of a problem. Besides image pyramids, 

usually also a hierarchical representation of the object surface model is used.  

  

 

 

 

 

 

Figure 2.8: Example of an image pyramid 

When FBM is used, feature extraction should be carried out on each resolution level 

separately, since features can vanish or be displaced from one level to the next due to the 

low pass filtering which is inherently present when decreasing the resolution.  

2.2.3.2 Redundancy 

It is not known how the human operator measures points stereoscopically, but he or 

she is certainly still more capable to set the measuring mark on the ground than any 

developed matching algorithm. In other words, the blunder rate for individually matched 

points can be rather high. Efficient blunder detection is only possible if there is a large 

redundancy in the system. 

Therefore, it is prudent to determine many more points when using an automatic 

matching algorithm than a human operator would measure. It is also possible to do so, 

because the number of points to be measured is a secondary issue in an automatic 

procedure, as long as enough computational speed is available. A high point density can 

for instance be used to implicitly represent break-lines in a DTM. Also, single obstacle on 

top of a DTM such as houses or trees can be filtered out, if enough nearby points on the 

ground are given.  
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Another issue related to redundancy is that of multi image matching, and thus of 

object space matching. In a conventional photogrammetric block with 60 % end overlap 

and 20 % side overlap only 24 % of an image in the interior of the block is covered by 

two images, and the same area is covered by six images. Thus, multi image matching can 

be of advantage for DTM generation without having to acquire more images. Besides, it 

is a prerequisite for applications in aerial triangulation.  
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CHAPTER 3 
 

METHODOLOGY 
 

The major steps involved in methodology for completion of the objectives are 

geometric corrections, feature extraction, feature matching, mosaic creation and last step 

is the variation detection. 
 

3.1. GEOMETRIC CORRECTIONS 
 

The image sequences obtained from aerial images typically suffer from severe noise 

and brightness variations between corresponding images.  In order to ensure uniform 

feature extraction from overlapping images for reliable matching the effect of these 

distortions must be minimized as much as possible. 

To ensure uniform average brightness throughout the image set, it was decided to 

subtract the average brightness level of each image from its pixel data. This succeeds in 

bringing the image sequence into a reasonably uniform intensity level. 

To reduce the effect of additive noise, a Gaussian smoothing function is applied to 

each image prior to feature extraction. The smoothing function eliminates any sharp 

regions of noise by performing a process similar to blurring. 

Combined, the above two corrections were experimentally found to be reasonably 

effective in ensuring feature correspondence between overlapping images.       
 

3.2. FEATURE EXTRACTION 
 

Feature extraction is one of the most important first steps in Mosaicing. Its main 

objective is to find as many useful features from a scene while keeping the output noise 

level to a minimum. Edge, corner and vertex detection processes serve to simplify the 

analysis of images by drastically reducing the amount of data to be processed. 

In order to perform a matching comparison between a set of images, there must be 

some reliable and reasonably stable criteria of correspondence. The most commonly 

employed feature points in feature point matching are corners and edges. These features 

are usually insensitive to noise and geometric distortions and have a very low probability 

of false positive matching. 
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There are a variety of algorithms for both corner and edge extraction. The most 

notable of these are canny edge detector, Harris corner detector and the SUSAN principle 

for extraction of both edges and corners. 

The desired qualities of feature detectors are good detection (there should be a 

minimum number of false negatives and false positives), good localization (the edge 

location must be reported as close as possible to the correct position), response (there 

should be only one response to a single edge) and speed (the algorithm should be fast 

enough to be usable in the final Image Processing system). 

For a real time system using time varying image sequences, speed is an important 

criterion to be considered, without too much compromise over the quality of results 

because spurious lines and edges can cause errors in motion analysis. Also there has to be 

a compromise between maximizing signal extraction and minimizing output noise. 

Initial efforts towards feature extraction used small convolution masks such as 

Prewitt and Sobel operators to approximate the first derivative of the image brightness 

function, thus enhancing the edges. These filters give very little control on smoothing and 

edge localization. 

The Canny edge detector was considered next, which has become one of the most 

widely used edge finding algorithms. The first step is defining and quantitatively 

developing criteria for edge detection (as given above) into a total error cost function. 

Variational calculus is applied to this cost function to find an optimal linear operator for 

convolution with the image. The optimal filter is shown to be a very close approximation 

to the first derivative of a Gaussian. Non maximum suppression in a direction 

perpendicular to the edge is applied to retain maxima in the image gradient. Finally the 

weak edges are removed using thresholding. The thresholding is applied using hysterisis. 

The Gaussian convolution can be performed quickly because it is separable and a 

close approximation to it can be implemented recursively. However the hysterisis stage 

slows the  overall algorithm considerably. The Canny edge detection method is found to 

be ten times slower than SUSAN approach. The results are stable FOR Canny but the 

edge connectivity at junction is poor and corners are rounded. 
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In the absence of multiple features, the SUSAN principle bypasses “the Uncertainty 

Principle of edge detection” which applies to most feature detectors (and most obviously 

the Gaussian based ones) with respect to Canny’s first and second criteria. 

Other methods include second order derivatives. The fact that SUSAN edge and 

corner enhancement uses no image derivative, explains why the performance in the 

presence of noise is good. The integrating effect of the principal together with its non-

linear response gives strong noise rejection. 

Keeping in view the anticipated operational requirements of the project, it was 

therefore decided to implement the SUSAN feature detector for both its speed and its 

ease of implementation.    
 

3.2.1 THE SUSAN PRINCIPLE 
   

The SUSAN principle is implemented using digital approximation of circular masks, 

(sometimes known as windows or kernels). If the brightness of each pixel within a mask 

is compared with the brightness of that mask’s nucleus, then an area of the mask can be 

defined which has the same (or similar) brightness as the nucleus.  

The concept of each image point having associated with it a local area of similar 

brightness is the basis for the SUSAN principle. This area is known as USAN (Univalue 

Segment Assimilating Nucleus) and contains much information about the structure of the 

image. From the size, centroid and second moment of the USAN, two dimensional 

features and edges can be detected. No image derivatives are used and no noise reduction 

is needed. 

As seen in the figures 3.1 and 3.2, the USAN area is at a maximum when the nucleus 

lies in a flat region of the image surface. It falls to half of this maximum very near a 

straight edge and falls even further when inside a corner. This property of USAN’s area is 

used as the main determinant of the presence of the edges and two-dimensional features. 

The working of the SUSAN principle is explained in the diagrams shown below. 
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Figure 3.1. Four circular masks at different places on a simple image.  
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. Four circular masks with similarity coloring; inverted USANs are shown as 

grey parts of the masks. 

     

Consideration of the above arguments and observation of examples lead directly to 

the formulation of the SUSAN principle. An image processed to give as output inverted 

USAN area has edges and two-dimensional features strongly enhanced with the two-

dimensional features more strongly enhanced than edges. This gives rise to the acronym 

SUSAN (Smallest Univalue Segment Assimilating Nucleus). The strength of the 

SUSAN principle is that the use of controlling parameters is much simpler and less 

arbitrary and therefore easier to automate than other edge detection algorithms. 

3.2.1.1 SUSAN Edge Detector  

The following steps are performed at each image pixel. Place a circular mask around 

the pixel in question.  Calculate the number of pixels within the circular mask which have 

similar brightness to the nucleus. These define the USAN. Subtract USAN size from 

geometric threshold to produce edge strength image. Use moment calculations applied to 

the USAN to find edge direction. Apply non-maximum suppression thinning and sub-

pixel estimation, if required. 
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SUSAN edge finder has been implemented using digitally approximate circular 

masks giving a mask of 37 pixels or a three by three mask. The masks are used either 

with constant weighting within them or with Gaussian weighting.  

The mask is placed at each point in the image and, for each point; the brightness of each 

pixel within the mask is compared with that of the nucleus (the center point). 

If the difference of the brightness values is less than a threshold “t”, then the output of 

the comparison is 1 else its 0.  The comparison is done for each pixel within the mask and 

is summed up. This total  “N” is just the number of pixels in the USAN, i.e., it gives the 

USAN’s area. The parameter “t” determines the maximum contrast of features which will 

be detected and also the minimum amount of noise which will be ignored. 

Next, N is compared with a fixed threshold “g”, which is set at 3*Nmax/4. This value 

is calculated from analysis of the expectation value of the response in the presence of 

noise only. The use of ‘g’ should not result in incorrect dismissal of correct edges. 

The algorithm described gives good results but a more stable and sensible equation is 

used for ‘C’ in place of equation 1.  

  
C = exp ((d/t)*6) 

   

    This gives a smoother version of equation 1 as it allows pixel brightness to vary 

slightly without having too large an effect on ‘C’, even if it is near the threshold position. 

This form gives a balance between good stability about the threshold and the function 

originally required. 

     
3.2.1.2 Computation of Edge direction  
 

Computation of edge direction is needed for a variety of reasons. If non-maximal 

suppression is to be performed, the edge direction must be found. It is also necessary if 

edges are to be localized to sub-pixel accuracy. Finally, applications using the final edges 

often use the edge direction for each edge point as well as its position and strength. In 

case of most edge detectors, edge direction is found as part of the edge enhancement. As 

SUSAN principle does not require edge direction to be found for enhancement to take 

place, a reliable method of finding it from USAN has been developed. 
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The direction of an edge associated with an image is found by in two ways depending 

on the type of edge points, namely inter-pixel edge case, and intra-pixel edge case. The 

edge direction is calculated by finding the longest axis of symmetry of USAN. 

This is found by calculating the following sums:  

   

m(X – Xo)^2 * (Ro) = SUM[( (X – Xo)^2 * C(R,Ro)]                      ---[1]  

m(Y – Yo)^2 * (Ro) = SUM[( (Y – Yo)^2 * C(R,Ro)]                      ---[2]  

m(X – Xo)(Y – Yo)*(Ro) = SUM[( ((X – Xo)(Y – Yo)*C(R,Ro))]    ---[3]  

  

            Where,  

 

Ro: Nucleus  

R (Ro): Center of gravity (of USAN of Ro)  

C = e (d/t)*6  

m: mean  

SUM: Summation 

 
Ratio of equations [1] and [2] gives the orientation of the edge. Equation [3] gives the 

sign of the gradient. 

We find the sum of second moments of USAN about the nucleus to find the 

orientation of the edge. This can be found to varying accuracy depending on the mask 

used. 

The edge response obtained from above is suppressed so that non-maxima (in the 

direction perpendicular to the edge) are prevented from being reported as edge points). 

Following this, the “strength thinned” image can be binary thinned using standard 

thinning processes.  

   

3.2.1.3 SUSAN Corner Detector 
    

This is very similar to the edge detector, particularly in the earlier stages. The steps 

required for finding the corners are as follows. 
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Place a circular mask around the pixel in question. Calculate the number of pixels 

within the circular mask which have similar brightness to the nucleus. These define the 

USAN. Subtract USAN size from geometric threshold (which is set lower for corners) 

to produce a corner strength image. Test for false positives by finding the USAN’s 

centroid and its contiguity. Use non-maximal suppression to find the corners. 

All pixels within a circular mask are compared and the response is summed up in 

exactly the same way as in edge detector. Again, here the sum is compared with a 

geometric threshold “g”. Here, the corner detector is quite different from the edge 

detector, where “g” was necessary only in the presence of noise. For a corner to be 

present, the sum must be less than half the maximum possible sum. Therefore, “g” is set 

to exactly half of maximum sum. 

Sometimes, SUSAN will give false positives in certain circumstances.  This can occur 

with real data where blurring of boundaries between regions occurs and there is a thin 

line half way between the two surrounding regions. It may cause corners to be wrongly 

reported. 

The problem has been eliminated by the following method. The center of gravity of 

USAN and its distance of this from the nucleus is found. A proper corner will have center 

of gravity that is not near the nucleus and thus false corners can be rejected. 

A final addition to SUSAN principle is a simple rule, which enforces “Contiguity" in 

USAN. This is necessary for images having lot of noise and fine complicated structure. 

All pixels within a mask, lying in a straight line pointing outwards from the nucleus in 

the direction of center of gravity of USAN must be a part of the USAN, for a corner to be 

detected. This is effective in forcing the USAN to have a degree of uniformity, and 

reduces false positives. 

The corners detected by the implementation of the SUSAN algorithm are as shown in 

the figure 3.3. 
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Figure 3.3 Corner Detection 
 
 

3.3 FEATURE MATCHING 

Once an appropriate number of corners have been extracted in each of the component 

images of the input set, the major part of the system can then be invoked. 

Despite the availability of a large number of very complex algorithms for feature 

correspondence, it was decided to design an original algorithm which would be 

reasonably fast to fit into the overall performance requirements of the system. 

It was decided to carry out the feature point matching in two steps.  The first step is 

responsible for finding out a tentative area of overlap between a pair of images. Once a 

tentative area of overlap has been calculated, this overlap is then confirmed using corner 

matching in the overlapping area. If both these steps indicate a match, then the image pair 

is guaranteed to be neighbors.  

The feature correspondence algorithm implemented in the system can be depicted as 

in figure 3.4.  Here, a number of images are processed and as an end product, one get a 

single mosaic of many images and the mosaic is free from any overlapping. 
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Figure 3.4 The feature Correspondence Algorithm 
 

The matching algorithm is responsible for creating a mapping for each image in the 

image sequence, determining its position in the final mosaic.  

 
3.3.1 DERIVATIVE MATCHING 

 
To calculate tentative overlaps, it was decided to use image derivative matching for 

many reasons because image derivates are extremely fast to calculate, image derivates are 

reasonably immune to global changes like shading etc., image derivates give a much 

greater appreciation of sharp changes (features) in the image, there is very little 

probability of non matching images to have same derivates at same locations 

(suppression of false positives). 

To calculate image derivates, the following equations were used: - 

   f’(x,y) = f(x+1,y) – f(x,y)               (for x-derivative) 

   f’(x,y) = f(x,y+1) – f(x,y)                (for y-derivate) 
 

The implementation of the above equations when executed on the images highlight 

areas of change (features) and are thus much more suitable for matching than the original 

images. 
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The derivative matching algorithm then proceeds as is explained below. The 

procedure is that an image is picked at random and is checked for vertical overlap with all 

other images in the image set by employing image derivate strips for comparison. This 

step is also repeated fro horizontal overlap. If there is any match in horizontal or vertical, 

this information is stored in the mapping data structure for later use in mosaicing. The 

same steps are repeated for all remaining images. 

At the completion of the algorithm’s execution, the program has enough information 

to proceed with the confirmation of the tentative overlap using corner matching. 
 

3.3.2 ERRORS AND THRESHOLDS 
 

When comparing pixel derivatives, there are two types of errors. The first is the local 

error in comparison between single pixel derivative values. And the other is the global 

error which is the number of pixel derivatives that fail to match. 

There are self adjusting thresholds for both types of errors. Thresholds adjust on the 

basis of brightness and contrast in the local area. This adjusting of thresholds has a large 

effect on the eventual matching of images. Figure 3.5 displays the step-wise procedure 

for finding tentative boundary. 

 

 
 

Figure 3.5 Finding Tentative Boundary 
 
3.3.3 CORNER MATCHING 
 

The aim of the corner matching phase is to confirm the existence of the overlap 

calculated in the derivate matching phase. Although image derivatives provide sufficient 

results for images with low complexity, they start to fail on images with considerable 
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detail. For this, the results of derivative matching must be confirmed using a more 

dependable technique. Corner matching was used because corners are usually faster to 

extract than other features and also the matching of corners is relatively straightforward. 

The corner matching algorithm proceeds as explained below. After establishment of 

tentative boundaries, the program must correlate corners between two images. The 

system uses Sum of Squared Differences method to correlate corners. A correlation 

window in the overlap area is selected, as shown in figure 3.6. The strengths of corners in 

the correlation window are compared. These differences are squared and added. The 

correlation window is moved throughout the overlap area. 

        

 
 

Figure 3.6 Correlations Windows 
 
3.4 CREATION OF THE MOSAIC  

 

The final step in the mosaicing sequence is the creation of the mosaic itself. At the 

end of the corner extraction and feature matching phases, one has information about the 

position of each image component in the final mosaic and its overlapping area with 

immediate neighbors (top, bottom, left, and right). This information is then used in the 

mosaic creation phase. This phase involves the following tasks. 

First, allocation of image size based on calculations of component image sizes and 

overlap regions is made. Secondly, copying of component images onto corresponding 

locations on the mosaic is carried out. Lastly, removal of sharp joins using blending is 

accomplished. 
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The result is the creation of a single image that is seamlessly blended and no 

overlapping of any type can be observed.  

The image can be saved in the permanent memory as well for subsequent change in 

variation detection. 
 

3.5 VARIATION DETECTION 
 

The last step is to compare two images, of the same area, for changes, if any. This is 

accomplished by taking image derivatives at each point in the two images, and if a 

difference greater than a particular threshold is found, that area is identified in the form of 

red rectangles. 

 
§ Input the two mosaics to be compared for differences 

§ Create a rectangular mask sized according to input parameters.  

  While ( image limits not exceeded ) 

  Place the mask at the same location in both mosaics 

  Take image derivates for all image pixels under the mask. 

  For (all pixels under the mask ) 

   Take derivates of both images 

   Compare the derivates. 

   Update error count if they differ by more than thresh-hold.         

 If (error count > masksize/2) mark the mask boundaries as change 

boundaries. 

 Advance mask by masksize/2. 

 end while. 

End. 
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CHAPTER 4 
 

IMPLEMENTATION DETAILS 
 
4.1 ARCHITECTURAL DESIGN 
 

The architecture of the software is as shown below: - 
 
 

 
Fig. 4.1 The Architecture of the Software 

 
The main GUI interacts with the CTestView class. Once the user request is received 

by the CVieClass, it calls all other modules and uses underlying libraries to respond to 

the user request.  

The project was developed using Microsoft’s VISION SDK (Software Development 

Kit) library as an implementation base.  

4.2 VISION SDK 

The project was developed using Microsoft’s VISION SDK (Software Development 

Kit) library as an implementation base. 

The Microsoft Vision SDK is a library for writing programs to perform image 

manipulation and analysis on computers running Microsoft Windows operating systems. 
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The Microsoft Vision SDK was developed by the Vision Technology Research Group 

in Microsoft Research to support researchers and developers of advanced applications, 

including real-time image-processing applications.  It is a low-level library, intended to 

provide a strong programming foundation for research and application development; it is 

not a high- level platform for end-users to experiment with imaging operations.  The 

Microsoft Vision SDK includes classes and functions for working with images, but it 

does not include image-processing functions.  The Microsoft Vision SDK is a C++ 

library of object definitions, related software, and documentation for use with Microsoft 

Visual C++. 

Compared to other typical packages for image processing, it has four key virtues and 

two flaws: The virtues are that it is suitable for fast, real- time image processing, it has a 

nice interface to Windows, such as shared image memory across processes and GDI 

interface, it has user-definable pixel types (very important for research) and that it has a 

device- independent interface for image acquisition.  It can be used to create binaries that 

can be transported and run on a machine with any supported digitizer or camera.  It can 

be easily extended to support new types of digitizers or cameras. 

The flaws are that the Vision SDK assumes that images are resident entirely in RAM.  

There is no general support for very large image files that cannot be brought into RAM in 

their entirety. The other flaw is that The Vision SDK does not include image-processing 

operators.  The Vision SDK is best thought of as a low-level substrate for developing 

computer vision and/or image processing programs or systems, giving a nice interface to 

the operating system but not providing high- level image-processing operators.  

4.3 HEADER FILE DETAILS 

The following header files are included in the project: 

4.3.1 DataArray.h  

This file includes the data structure for storing the information about the 

neighborhood of each image. Pointers for up, down, left and right images are 

included. In addition overlaps and matching errors for the images are also 

stored. The up, down, left and right pointers are initialized to -1. As the 

matching takes place they are set to the number of whatever image is present 

at the respective locations. 
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4.3.2 MainFrm.h 

It includes the class description for the CMainFrame class derived from the 

CFrameWnd class. It contains declarations for the class which represents the 

frame window. 

4.3.3 MyDlg.h 

It contains declarations for the class which represents an input dialog box.  

This dialog box inputs parameters for the corner detection phase. 

4.3.4 ProgressDlg.h 

It contains declarations for the class representing the dialog box which 

contains a progress bar. This progress bar is used to show progress of the 

corner detection phase and the image mosaicing phase. 

4.3.5 StdAfx.h 

Contains declaration for the windows code. 

4.3.6 Test.h 

Contains class declarations for the CTestApp class which represents the 

windows application. 

4.3.7 Testdoc.h 

It contains class declarations for the CTestDoc document class. 

4.3. 8 TestView.h 

It contains the declarations for the CTestView class which is the main class of 

the project and contains declarations for all the variables of the technical part 

of the project. 

 
4.4 CODE FILE DETAILS 
 
The following code files are included in the project: 

4.4.1 MainFrm.cpp 

This file contains the implementation of the CMainFrame class which is 

derived from the CFrameWnd class and represents the frame window.  

4.4.2 MyDlg.cpp 

This file contains the implementation of the MyDlg class which takes in the 

input parameters for Corner Detection. It has four member variables 
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m_masksize, m_threshold, m_usan, m_usanl which contain values of the 

masksize , threshold , upper USAN area  and lower USAN area respectively 

once the dialog box is used. 

4.4.3 ProgressDlg.cpp 

This file contains the implementation of the CProgressDlg class which is 

responsible for handling the dialog containing the progress bar.  

4.4.4 StdAfx.cpp 

It is the source file contains the standard includes for a windows program. 

4.4.5 Test.cpp 

This file contains the implementation details of the CTestApp class which 

represents the main windows application. 

4.4.6 Testdoc.cpp 

It contains implementation of the CTestDoc class which represents the 

document related to the View in this program.  

4.4.7 TestView.cpp 

It contains the definitions of all the major functions of the system and is the 

main file of the program. All event handling and image processing tasks are 

handled with this file.  

 

A list of the major functions in the main file of the project is given below, followed 

by a brief explanation of each of the major methods: - 

 
4.5 IMAGE PROCESSING FUNCTIONS 
 

The following are the main image processing functions developed are explained 
below. 
 
4.5.1 The SmoothImage ( ) function 

The SmoothImage ( ) function is defined in the TestView.cpp file and it is the first 

major image processing function to be called for each image. 

The input to this function is a raw image from the image set in the form of a 

CVisRGBAByteImage Object. The purpose of this function is to remove any random 
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noise in the image as well as remove insignificant details to make the image more 

suitable for the matching phase. 

This function performs the bulk of the geometric correction portion of the project. It 

accomplishes this by defining a kernel and then performing Gaussian smoothing of the 

image by employing this kernel. This is achieved by changing the grey levels of the 

image at each pixel by ratios determined by the kernel coefficients , such that each image 

position better reflects the overall gray level in its neighborhood.The function is called 

for each image in the image set to be mosaiced. 

 
4.5.2 The Detect-Corners( ) function 
 

The Detect_Corners function is defined in the TestView.cpp file. This function forms 

the backbone of the feature extraction part of the system. The function takes as input a 

single smoothed image in the form of a CVisRGBAByteImage object and performs 

corner extraction on it. The detected corners, their locations and corner strengths are 

stored in a data structure for use in the matching phase. 

This function is an implementation of the SUSAN principle for corner detection. The 

function detects features (corners in this case) based upon certain control parameters 

input by the user at run time. These parameters control the amount of detail to be 

explored in feature extraction, as well as the number of features extracted. 

 
4.5.3 The VerticalMatch ( ) function  
 

The VerticalMatch function is defined in the TestView.cpp file. This function is 

responsible for the matching of extracted features in pairs of images in conjunction with 

the HorizontalMatch function. 

The inputs to this function are two smoothed images in the form of 

CVisImageRGBAByteImage objects. The function carries out vertical feature matching 

on the pair of images. If there is a match, the function also calculates the amount of 

overlap between the images. It then stores the neighbor and overlap information in a data 

structure for use in the mosaic creation phase. 
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For vertical overlap detection, the algorithm assigns one image in the pair as the 

reference image and performs a vertical scan of the other image for an exact match of 

extracted features. 

The function first carries out a derivative matching of image strips to calculate a 

tentative matching area in the pair of images. This tentative overlap is then confirmed 

using corner matching. If both these criteria are satisfied, the images are assumed to have 

matched and the information is stored.   The process is repeated for all images in the set.    
         

4.5.4 The HorizontalMatch( ) function 
 

The HorizontalMatch function is defined in the TestView.cpp file . This function is 

responsible for the matching of extracted features in pairs of images in conjunction with 

the VerticalMatch function. 

The inputs to this function are two smoothed images in the form of 

CVisImageRGBAByteImage objects. The function carries out horizontal feature 

matching on the pair of images. If there is a match, the function also calculates the 

amount of overlap between the images. It then stores the neighbor and overlap 

information in a data structure for use in the mosaic creation phase. 

For overlap detection, the algorithm assigns one image in the pair as the reference 

image and performs a vertical scan of the other image for an exact match of extracted 

features. 

The function first carries out a derivative matching of image strips to calculate a 

tentative matching area in the pair of images. This tentative overlap is then confirmed 

using corner matching. If both these criteria are satisfied, the images are assumed to have 

matched and the information is stored.   The process is repeated for all images in the set.    
 

4.5.5 The Mosaic( ) function 
 

This function is defined in the TestView.cpp file. The function is the last major 

function to be called in the image mosaicing sequence. The function operates on the 

entire set of images initially loaded into the program for the purpose of creating a single 

mosaic. 

Once the matching phase is complete and the program has enough information about 

the position of each component in the final mosaic, this function is called to carry out the 
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actual process of building the mosaic. Based on information obtained in the matching 

phase the overlapping areas are removed with extreme accuracy. The function returns 

with the final mosaic as the result. 

The function operates by first of all sorting the data structure obtained as a result of 

the feature matching phase. The purpose of sorting the data structure is two fold. Firstly,  

the sorted data structure exactly depicts the position of each image component in the final 

mosaic. All that remains then is to copy each component from the data structure into its 

correct position. Secondly, sorting the data structure makes it possible to calculate the 

final size of the mosaic of the mosaic that has to be allotted in a more efficient manner. 

This involves removing the overlapping areas which can only be determined once the 

image components have been sorted. 

Once the sorting and image copying is complete, the final mosaic is then displayed in 

the main window of the program.    

 
4.6 INTERFACE CONTROL FUNCTIONS 
 

The following functions have been used for Interface control. 
 

4.6.1 The ReadImages( ) function 
 

This function is defined in the TestView.cpp file and is responsible for reading in the 

selected image set from the disk into RAM and converting them into objects of the 

CVisRGBAByteImage class for all subsequent manipulations in the program. 
   
4.6.2 afx_msg void OnDisplay( ) function 
 

This is a message handler for the Display menu item in the program’s main menu bar. 

The function is defined in the TestView.cpp file and is responsible for displaying the 

selected image in a separate window.   
 

4.6.3 afx_msg void OnUpdateClear( ) function 
 

This is a message handler for the Clear menu item in the main menu bar of the 

program . The function is defined in the TestVeiw.cpp file and is responsible for clearing 

the RAM of all currently loaded images. This is achieved by destroying all 

CVisRGBAByteImage objects . This relieves the RAM after each execution of the 

program so more images can be loaded for a new execution.   
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4.6.4 afx_msg void OnCorners( )function 
 

This is a message handler for the CornerDetection menu item in the main menu bar of 

the program. The method is defined in the TestView.cpp class. This function performs 

some cleaning up of the corner storage data structure and then calls the detect_corners 

function for subsequent feature extraction. 

The above discussion gives a list and detail of only the more important and relevant 

functions in the project. Apart from these, a lot of small helper functions were created in 

the major files which were concerned with the details of Visual C++ programming 

structure. 
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CHAPTER 5 
 

RESULTS AND ANALYSIS 
 
5.1 RESULTS 

The horizontal mosaicing of images is shown in Figure 5-1. Two vertically 

photographed aerial images of a scene are taken and then mosaiced into a single image at 

the bottom. Notice the seamless blending at the edges and virtually no loss or duplication 

of information. 

             
 
 
 

 
 

Figure 5.1 Horizontal Mosaicing of two images 
 

An example of the use of the program to mosaic more than two images is illustrated 

in figure 5.2. Six images which match both vertically and horizontally are mosaiced into 

a single panorama. The blending problem can be removed by including an appropriate 

blending filter in the program. 
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Figure 5.2 Mosaicing of six images 
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A very good example of how the program is detecting corners can be seen in figure 

5.3. The number of corners has been suppressed by a mask and filter. If required it can be 

further suppressed or relaxed as required by the program. 

 

 
Figure 5.3 Example of corner detection 

 
 

Change detection as performed by the program is illustrated in Figure 5.4. The top 

image is the changed image and the program has indicated the appropriate changes in the 

original image at the bottom. The use of small boxes is used to approximate the shape of 

the change object introduced. The car in the top image has been approximated with small 

boxes in the bottom image. 
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Figure 5.4 Variation Detection in Images 
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5.2 ANALYSIS 

When compared with other techniques, the following results were observed. Our 

implementation of the not only outperformed other algorithms in speed but also in 

consistency. The speed was mainly due to use of feature extraction instead of pixel by 

pixel matching and consistency was due to extra checks incorporated to prevent any false 

positives. 

 
 
 
 

 
 

 
Figure 5.5 Speed and Consistency 
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CHAPTER 6 
 

CONCLUSION AND FUTURE WORK 
 
6.1 CONCLUSION 
 

In conclusion one must look at the objectives that were defined at the beginning of 

the project and evaluate whether they have been achieved at the end. The primary 

objective was to develop a system to achieve the seamless mosaicing of a number of 

images into a composite whole. Considering the operation of our program on some test 

images it can be safely said that objective has been achieved to a large extent. In all of the 

test images that were run on this program, it provided the correct results more than 90% 

of the time. Furthermore it was able to mosaic up to 16 images of an area which is a good 

indicator of its robustness. 

A secondary objective was to develop an efficient technique for the matching of 

images. The technique of using feature extraction and correlation to match two images 

and keep error counts has been more than successful in this regard. The program has been 

able to create mosaics of 16 images of 800x600 resolution in around 4 minutes which is 

many orders of magnitude better than conventional image matching techniques. Fourier 

Transforms and Phase Correlation which are normally provide equal results but are not as 

efficient. 

The third objective of detecting changes between two images of the same area was 

also completed amenably. Change Detection technique employed here compares images 

on the basis of not only the change of region but also of the features extracted earlier. 

This allows the program to approximate to a large extent the actual shape of the object 

which has been introduced as a change into the new image. In addition the program has 

displayed good ability to reject minor changes introduced because of noise and distortion. 

Although introducing noise robustness in this program was not within the scope, this 

was achieved as an added objective. The software can tolerate a fair degree of noise – 

which may include oil blurring, Gaussian noise and simple distortion. It does not remove 

the noise, instead it correctly determines if the noisy image joins with another image. 

This capability is due to the efficient and robust image matching technique used.  
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One of the shortcomings of the software it that it does not tolerate angle of view shifts 

between two images to be mosaiced. If both have significant amount of shift between the 

angles of view of the camera then results might not be that good. This problem can be 

rectified by dovetailing this program with software that performs affine transformation 

between different images. Once the transformations have been performed the software 

can work on any type of images. 

 

6.2 FUTURE WORK 

A lot of capabilities can be added to the basic design of the software. In the case of 

image mosaicing, a camera distortion correction module can be an effective addition. 

Also, the program can be made capable to mosaic images which are not rectangular in 

shape. This can be achieved with some loss in efficiency of the program but it will 

enhance to a large extent the range of applications that this program will be able to 

perform. 

In addition, the very effective change detection algorithm enables the approximation 

of the shape of the new object introduced in the picture. If a matching algorithm is 

developed which can match a detected shape with templates of some common shapes 

such as cars, buildings, trees, water reservoirs etc stored in a library then excellent 

capabilities of object recognition can also be inculcated in the program without much 

effort.  

To conclude, solid groundwork has been laid in the designing of this software. Not 

only all objectives defined at the beginning have been achieved satisfactorily, but also the 

design provides excellent opportunities for anyone interested in enhancing the 

capabilities of this software. 
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