

MOSAICING OF AERIAL IMAGES USING
FEATURE POINT EXTRACTION FOR USE IN

VARIATION DETECTION

Syndicate Members
Syed Akbar Mehdi

Waqar Ali
Chaudhry Nauman Zafar

Muhammad Sohail

A Thesis in Partial fulfillment of the requirements for the degree of
B.E. (Computer Software),

 National University of Sciences and Technology (NUST),
APRIL 2005

ABSTRACT

Our aim in this project is specifically to design a system that will automatically

mosaic aerial images. These images may be from a satellite or any other source such as

an Unmanned Aerial Vehicle (UAV). Any such vehicle when sent into air to photograph

a certain area takes several pictures as it flies above. For proper analysis these images

need to be mosaiced in order to create a single bigger picture of the whole area.

The images have areas which overlap or are present in more than one image.

Before all the images are combined these overlaps need to be automatically detected the

images be joined in such a way that the image contains no doubling. The number of

images may be quite large and the matching process may take quite some time. Efficient

algorithms need to be designed and implemented in order to piece together all the

pictures correctly in a short time without much error.

In order to resolve the above difficulties, the techniques of Feature Point

Extraction are used. This relies on accurate detection of image features such as detecting

corners. After the feature points have been extracted we can use the analyzed data to help

us mosaic the images.

The resulting mosaic can be used in a number of ways. Suppose that the same

area is photographed once again. The new pictures can again be analyzed in the same

way to form another mosaic. The two mosaics can then be compared using mathematical

techniques to detect any changes in the area and report to the user. Some examples of

these changes can be construction of a building or the digging of a bunker etc.

 ii

DEDICATION

In the name of Allah, the most gracious and the most merciful

We are highly indebted to Lt.Col.Naveed Sarfraz Khattak, our mentor, without whose
unwavering and continued guidance, we would have not been able to complete this

project.

To our parents, without whose unflinching support and unstinting cooperation, a work of

this magnitude would not have been possible.

 iii

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of
another award or qualification either at this institution or elsewhere

 iv

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………..…...…vii

1 INTRODUCTION

1.1 PROBLEM STATEMENT…………………………………………….1

1.2 PURPOSE ……………………………………………………………...1

1.3 OBJECTIVES …………………………………………………...….….2

1.3.1 Geometric Corrections ………………………..…………………………….…….2

1.3.2 Image Mosaicing …………………………………………………………………..2

1.3.3 Change Detection ………………………………………………………………….3

1.4 IMPLEMENTATION …………………………………………………3

1.5 OVERVIEW OF IMAGE MOSAICING …………………………….3

1.6 SYSTEM OVERVIEW ………………………………………………..5

2 LITERATURE REVIEW

2.1 FEATURE EXTRACTION …………………………………………...7

2.1.1 Requirements ………………………………………………………………………7

2.1.2 The Plessey Feature Point Detector ………………………………………………7

2.1.3 The SUSAN Detector ……………………………………………………………...8

2.1.4 The Curvature Scale Space (CSS) Corner Detector ………...……………….….9

2.1.5 IPAN 99 …………………………………………………………………………...10

2.2 IMAGE MATCHING ………………………………………………10

2.2.1 Image Matching History …………………………………………………………11

 v

2.2.2 Analysis of Image Matching Algorithms ……………………………………….15

2.2.2.1 Different Matching Primitives ………………………………………………...15

2.2.2.2 Models for the Mapping of Primitives ………………………………………..17

2.2.2.3 Similarity Measures and Optimization Procedures ………………………….22

2.2.3 The Matching Strategy …………………………………………………………..23

2.2.3.1 Hierarchy ……………………………………………………………………….23

2.2.3.2 Redundancy …………………………………………………………………….24

3 METHODOLOGY

3.1 GEOMETRIC CORRECTIONS ……………………………………26

3.2 FEATURE EXTRACTION ………………………………………….26

3.2.1 The SUSAN Principle ……………………………………………………………28

3.2.1.1 SUSAN Edge Detector …………………………………………………………29

3.2.1.2 Computation of Edge Direction ……………………………………………….30

3.2.1.3 SUSAN Corner Detector ………………………………………………………31

3.3 FEATURE MATCHING …………………………………………….33

3.3.1 Derivative Matching ……………………………………………………………..34

3.3.2 Errors and Thresholds …………………………………………………………..35

3.3.3 Corner Matching …………………………………………………………………35

3.4 CREATION OF THE MOSAIC …………………………………….36

3.5 VARIATION DETECTION …………………………………………37

 vi

4 IMPLEMENTATION DETAILS

4.1 ARCHITECTURAL DESIGN ………………………………………38

4.2 VISION SDK …………………………………………………………38

4.3 HEADER FILE DETAILS …………………………………………..39

4.4 CODE FILE DETAILS ……………………………………………...40

4.5 IMAGE PROCESSING FUNCTIONS ………………………..……..41

4.6 INTERFACE CONTROL FUNCTIONS …………………………...44

5 RESULTS AND ANALYSIS

5.1 RESULTS..………………………………..…………………………...42

5.2 ANALYSIS ……………………………………………………………52

6 CONCLUSION AND FUTURE WORK

6.1 CONCLUSION………………………………………………………..51

6.2 FUTURE WORK……………………………………………………..52

BIBLIOGRAPHY ………………………………………...……53

 vii

LIST OF FIGURES

Figure No. Caption Page

1.1 System overview 6

2.1 A corner is detected twice 9

2.2 Working of the IPAN 99 10

2.3 Principle of cross correlation 13

2.4 Cross correlation function 13

2.5 A 2D transformation can be expressed as a combination of

two 3D transformations
18

2..6 The epi-polar constraint: the epi-polar plane (P, P', P'')

and the epi-polar lines e' and e''
19

2.7 Sensor and object surface model for object space least

squares matching
21

2.8 Example of an image pyramid 24

3.1 Four circular masks at different places on a simple image 29

3.2 Four circular masks with similarity coloring 29

3.3 Corner detection 33

3.4 The feature correspondence algorithm 34

3.5 Finding tentative boundary 35

3.6 Correlations windows 36

4.1 The architecture of the software 38

5.1 Horizontal mosaicing of two images 46

5.2 Mosaicing of six images 47

 viii

5.3 Example of corner detection 48

5.4 Variation detection in images 49

5.5 Speed and consistency 50

 1

CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

To design a system for the automated feature point extraction and mosaicing of aerial

images and use the results for the purpose of change detection in various versions of the

same mosaic.

1.2 PURPOSE

Our aim in this project is specifically to design a system that will automatically

mosaic aerial images. These images may be from a satellite or any other source such as

an Unmanned Aerial Vehicle (UAV). Any such vehicle when sent in to photograph a

certain area takes several pictures as it flies above. For proper analysis these images need

to be mosaiced in order to create a single bigger picture of the whole area. The design of

such a system has inherent difficulties because of two reasons.

Firstly, the images have areas which overlap or are present in more than one image.

Before all the images are combined these overlaps need to be automatically detected the

images be joined in such a way that the image contains no doubling.

Secondly, the number of images may be quite large and the matching process may

take quite some time. Efficient algorithms need to be designed and implemented in order

to piece together all the pictures correctly in a short time without much error.

In order to resolve the above difficulties, the technique of Feature Point Extraction

was used. This relies on accurate detection of image features such as detecting corners.

After the feature points have been extracted so that one can use the analyzed data to help

us mosaic the images.

 2

The resulting mosaic can be used in a number of ways. Suppose that the same area is

photographed once again. The new pictures can again be analyzed in the same way to

form another mosaic. The two mosaics can then be compared using mathematical

techniques to detect any changes in the area and report to the user. Some examples of

these changes can be construction of a building or the digging of a bunker etc.

1.3 OBJECTIVES

Specifically the project has the following objectives:

1.3.1 GEOMETRIC CORRECTIONS

The first step is to correct geometric deformations using image data and/or camera

models. This is necessary because images taken from Unmanned Aerial Vehicles (UAVs)

are from various positions. Depending on the elevation and azimuth of the aircraft and

camera system, these images may exhibit a variety of perspective distortions, and the

orientation, scale and position of the images are not available. Hence, to register such

images, one has to determine the affine transformation between the images (scale,

position and rotation).

1.3.2 IMAGE MOSAICING

The second step is the mosaicing of the images. For this purpose the feature points

have to be extracted in order to correctly match and mosaic them. Hence this part has two

steps. The first step is the feature point extraction and the second is mosaicing based on

the feature points.

Our core objective will be the achievement of the second task i.e. image mosaicing.

The assumption will be that the first task has been completed. Also the third task is

included as a further advancement that can be completed once the second has been

successfully achieved.

 3

1.3.3 CHANGE DETECTION

The last step in our project, and of course, the one with a wide number of military and

civil applications is the change detection. By change detection, one means finding the

difference, if any, between two mosaiced images of the same area, photographed at

different points in time.

1.4 IMPLEMENTATION

The system has been implemented using digital image processing techniques. The

testing of the mathematical techniques was done on MATLAB while the final system was

designed in using Visual C++ using the Microsoft Vision SDK library as a base.

1.5 OVERVIEW OF IMAGE MOSAICING

Registration and mosaicing of images have been in practice since long before the age

of digital computers. The limited flying heights of the early airplanes and the need for

large photo-maps, forced imaging experts to construct mosaic images from overlapping

photographs. This was initially done by manually mosaicing images which were acquired

by calibrated equipment. The need for mosaicing continued to increase later in history as

satellites started sending pictures back to earth. Improvements in computer technology

became a natural motivation to develop computational techniques and to solve related

problems.

Image Mosaicing has important applications in both military and non-military

domains. The construction of mosaic images and the use of such images on several

computer vision/graphics applications have been active areas of research in recent years.

Image-based rendering has become a major focus of attention combining two

complementary fields: computer vision and computer graphics. In computer graphics

applications images of the real world have been traditionally used as environment maps.

These images are used as static background of synthetic scenes and mapped as shadows

onto synthetic objects for a realistic look with computations which are much more

efficient than ray tracing.

 4

Among other major applications of image mosaicing in computer vision are image

stabilization, resolution enhancement, video processing (e.g. video compression, video

indexing).

The images shown on the next page demonstrate the actual working of image

mosaicing. Here, both the pictures have some area in common which has been detected

by our program and a mosaic has thus been created devoid of any overlapping area.

If the area of interest is simply too large to be covered by a single photo, several

adjoining photos can be combined to form a "mosaic" image. A mosaic of this type is

defined in the dictionary as "a composite map made of aerial photographs". If the

imagery has been digitally processed and manipulated by computer software, it can be

made to look like a single photograph with no apparent seam lines where several photos

were "stitched" together.

The mosaiced image can also be "rectified" using one of several methods to remove

varying amounts of distortion and displacement caused by variables such as the tip and

tilt of the aircraft, changes in elevation on the ground, and imperfections in camera

lenses. Prior to the development of computer assisted image processing, mosaics were

made by carefully cutting or tearing paper photographs along their edges in an irregular

fashion, and gluing them down in such a way that the cut or tear lines were overlapped on

adjacent photos and blended- in to hide the lines as much as possible.

Image mosaicing is an active area of research in computer vision. The various

methods adopted for image mosaicing can be broadly classified into direct methods and

feature based methods. Direct methods are found to be useful for mosaicing large

overlapping regions, small translations and rotations. Feature based methods can usually

handle small overlapping regions and in general tend to be more accurate but

computationally intensive. Some of the basic problems in image mosaicing are

alignment, adjustment, automatic selection of images to be blended and exposure

compensation.

Even after good global alignment, some pixel might not align in the two

images. This might cause ghosting or blur in the blended image. Automatic

selection of images to blend from a given set of images is also another area to be

taken care of. After one of the images has been transformed using the homography

 5

calculated above a decision needs to be made about the color to be assigned to the

overlapping regions. Blending also becomes important when there exists a moving

object in the images taken.

Most cameras have an automatic exposure control. The images taken can

therefore be of variable brightness in the overlapping region which might cause

the mosaic to look unrealistic.

1.6 SYSTEM OVERVIEW

The system is fed with raw images. The images may be disoriented, unaligned or

may not be parallel. The first step, therefore, is to perform geometric corrections on the

images. Geometric corrections part of the project is being carried out by another research

group. It is, therefore, assumed that the images fed to our system are free from any

geometric disturbances.

Once the images have been fed, the next step is to extract features from the image set.

By features, it is believed that a sudden change in the intensity of pixel values occurs.

There are two types of features that may be detected in an image. These may be either

corners or edges. This is the first and foremost task accomplished by our software.

After the detection and identification of corners, the next aim is to perform feature

point matching on the image set. The feature points are matched in the two images by

calculating differentials at the pixel locations. If the difference is less than a specified

threshold, then it means that the features have been matched successfully. Another

confirmatory check is applied in the form of correlation and ten nearest neighbours in

both the images are checked to see if they are similar.

The most important phase of our project is the image mosaicing part. Once two

images have been identified to be containing similar feature points, and then the

overlapping area is calculated. A new image is created and the two images, minus the

overlapping area, are copied into that image. The same process is repeated for all the

images in the image set and each time, two images are mosaiced into one.

The last step is the variation detection. Two mosaics of the same area are checked to

determine variation, if any, from the previous images of the same area. For this purpose,

differentials of each pixel position in the images are calculated and the values are stored.

 6

Where the difference of the same pixel position differential is greater than a specified

threshold, a change is detected. The change is shown by the marking of red blocks on the

image area where there is some change.

Both, the mosaiced images and the variation detected images can be saved to

permanent storage, if desired by the user.

The flow diagram is as shown in figure 1.1.

Figure 1.1 System Overview

 Extract Features from the image set

Perform Feature point matching on the image
set

Perform Geometric corrections on the images

Creation of Mosaic using blending, warping
etc.

Final Mosaic

Raw Images

Variation Detection

 7

CHAPTER 2

LITERATURE REVIEW

2.1 FEATURE EXTRACTION

2.1.1 REQUIREMENTS

Corner detection should satisfy a number of important criteria. This may include

conditions such as the true corners should be detected, no false corners should be

detected, corner points should be well localized, corner detector should be robust with

respect to noise and that the corner detector should be efficient.

2.1.2 THE PLESSEY FEATURE POINT DETECTOR

Harris and Stephens described what has become known as the Plessey feature

point detector. The outline of how it works can be best understood if the following matrix

is considered

where I(x; y) is the grey level intensity. If at a certain point the two Eigen values of the

matrix M are large, then a small motion in any direction will cause an important change

of grey level. This indicates that the point is a corner. The corner response function is

given by:

 8

where k is a parameter set to 0.04 (a suggestion of Harris). Corners are defined as local

maxima of the corner-ness function. Sub-pixel precision is achieved through a quadratic

approximation of the neighborhood of the local maxima. To avoid corners due to image

noise, it can be interesting to smooth the images with a Gaussian filter. This should

however not be done on the input images, but on images containing the squared image

derivatives .In practice often far too much corners are extracted. In this case it is often

interesting to first restrict the numbers of corners before trying to match them. One

possibility consists of only selecting the corners with a value R above a certain threshold.

This threshold can be tuned to yield the desired number of features. Since for some

scenes most of the strongest corners are located in the same area, it can be interesting to

refine this scheme further to ensure that in every part of the image a sufficient number of

corners are found.

2.1.3 THE SUSAN DETECTOR

SUSAN (Smallest Univalued Segment Assimilating Nucleus) presents us with an

entirely different approach to low level image processing compared to all pre- existing

algorithms. It provides corner detection as well as edge detection and is more resistant to

image noise although no noise reduction (filtering) is needed. The concept of each image

point having associated with it a local area of similar brightness is the basis for the

SUSAN principle. If the brightness of each pixel within a mask is compared with the

brightness of that mask's nucleus then an area of the mask can be defined which has the

same (or similar) brightness as the nucleus. This area of the mask shall be known as the

USAN", an acronym standing for Univalued Segment Assimilating Nucleus".

Computing USAN for every pixel in the digital image provides us with a way to

determine the edges inside it. The value of USAN gets smaller on both sides of an edge

and becomes even smaller on each side of a corner. Hence one is looking for the Smallest

USAN (or SUSAN for short). The local minima of the USAN map represent corners in

the image. The reason that this method stays resistant to noise is the lack of computing

spatial derivatives of the image intensity.

 9

2.1.4 THE CURVATURE SCALE SPACE (CSS) CORNER
DETECTOR

The curvature scale space technique is suitable for recovering invariant geometric

features (curvature zero-crossing points and/or extrema) of a planar curve at multiple

scales. The CSS corner detector works in a sequence.

First of all, the rule is to extract the edge contours from the input image using any

good edge detector such as Canny is made. Then, small gaps in edge contours are filled.

When the gap forms a T-junction, it as marked as a T-corner. Curvature on the edge

contours at a high scale is computed. The corner points are defined as the maxima of

absolute curvature that are above a threshold value. The corners are tracked through

multiple lower scales to improve localization. T-corners are compared to the corners

found using the CSS procedure and remove very close corners.

Experimental results show this algorithm spends most of its time (80%) detecting the

edges in the image. Faster edge detectors may be used. The local maxima of absolute

curvature are the possible candidates for corner points. A local maximum is either a

corner, the top value of a rounded corner or a peak due to noise. The latter two should not

be detected as corners. The curvature of a real corner point has a higher value than that of

a rounded corner or noise. However, as shown in figure 2.1, sometimes, a corner is

detected twice.

The corner points are also compared to the two neighboring local minima. The

curvature of a corner should be twice that of one of the neighboring local minima. This is

because when the shape of the contour is very round, contour curvature can be above the

threshold.

Figure 2.1 A corner is detected twice

 10

2.1.5 IPAN 99

The acronym for this method stands for Image and Pattern Analysis group and was

developed in 1999 at The Hungary Academy of Science. It is fast and efficient algorithm

for detection of high curvature points. The curve has to be generated previously using an

edge detector. It is not required to be a closed curve. In the first pass the sequence of

points is scanned and candidate corner points are selected. In each curve point p the

detector tries to inscribe in the curve a variable triangle (p_ ,p ,p+). Because the points

are kept with their Cartesian coordinates, the angle be easily computed.

Triangles are selected starting from point p outward and stop on the conditions

mentioned above. In that way a number of admissible triangles are defined. At a

neighborhood of points, only one of these admissible triangles is selected – the one which

has the smallest value for the angle. A value of sharpness is assigned to p.

In the second pass the selection is refined and points that give the strongest response

are marked as corners in the curve. This is done by selecting only points which have

sharpness greater than that of their neighbors. Figure 2.2 shows the working of IPAN 99.

Figure 2.2 Working of the IPAN 99

2.2 IMAGE MATCHING
In photogrammetric and remote sensing, matching can be defined as the

establishment of the correspondence between various data sets. The matching problem is

also referred to as the correspondence problem. The data sets can represent images, but

 11

also maps, or object models and GIS data. Many steps of the photogrammetric processing

chain are linked to matching in one way or another. Examples include the reconstruction

of the interior orientation: the image of a fiducial is matched with a two-dimensional

model of the fiducial; relative orientation and point transfer in aerial triangulation: parts

of one image are matched with parts of other images in order to generate tie points;

absolute orientation: parts of the image are matched with a description of control features,

mostly ground control points; generation of digital terrain models (DTM): parts of an

image are matched with parts of another image in order to generate three-dimensional

object points; and finally the interpretation step: parts of the image are matched with

object models in order to identify and localize the depicted scene objects.

Looking at this large variety of tasks it comes as no surprise that matching has long

been and still is one of the most challenging tasks in photogrammetric research and

development. In this paper an overview is given of a more specific class of matching

algorithms usually called digital image matching. Digital image matching automatically

establishes the correspondence between primitives extracted from two or more digital

images depicting at least partly the same scene. The primitives can be gray level

windows or features extracted from the images. Thus, all input data sets are images or

parts thereof. Objects as such need not be modeled explicitly. It should be kept in mind,

however, that each algorithm uses at least an implicit model of the object surface, since it

is the object surface which is depicted in the images.

In photogrammetric and remote sensing, image matching is employed for relative

orientation, point transfer in aerial triangulation, scene registration and DTM generation.

Also, the reconstruction of the interior orientation falls within the category of image

matching, since the model of a fiducial is usually represented as a gray value image.

2.2.1 IMAGE MATCHING HISTORY
 First solutions for image matching have been suggested already in the late fifties

(Hobrough 1959, he still used analogue images and procedures). Since then a steady

increase in the interest for image matching has occurred, and the question may be asked,

why image matching has not been solved long ago. A first answer can be given by

considering the information content of the most elementary primitive in the input data set,

namely a pixel. An aerial image scanned with 15 um contains approximately 235.000.000

 12

pixels, and each gray value usually lies in the range of 0 to 255. Assuming an equal

distribution of the gray values the image contains roughly 920.000 pixels of each gray

value. This little computation demonstrates that matching on the basis of single pixels is

certainly impossible. It also exemplifies two fundamental problems of image matching.

First problem is that ambiguous solutions may occur, if image matching is tackled

using local information, and the second one is that computational costs are high and have

to be controlled.

A more realistic approach is that of cross correlation. In order to compute the cross

correlation function of two windows, a template window is shifted pixel by pixel across a

larger search window and in each position the cross correlation coefficient ñ between the

template window and the corresponding part of the search window is computed according

to equation 2.1. The maximum of the resulting cross correlation function defines the

position of the best match between the template and the search window.

Equation 2.1

g1(r,c) individual gray values of template matrix

u1 average gray value of template matrix

g2(r,c) individual gray values of corresponding part of search matrix

u2 average gray value of corresponding part of search matrix

R, C number of rows and columns of template matrix

The principle of cross-relation function is shown in figure 2.3 while cross-relation

functions are shown in figure 2.4.

 13

Figure 2.3: Principle of cross correlation

Figure 2.4: a (top left) left image; b (top right) right image; c (bottom) cross correlation
function

A typical result of cross correlation is shown in figure 2.4. Figure 2.4a shows a

typical small template window of the left image of an aerial stereo pair, figure 2.4b

 14

depicts the corresponding larger search window in the right image. In figure 2.4c a plot of

the cross correlation function of the two windows is shown. The cross correlation

coefficient is a simple but widely used measure for the similarity of different image

windows As can be seen in figure 2.4c, the spatial variation of the cross correlation

coefficient can be extensive making it a difficult task to find its maximum. During this

projection information is lost. This is most evident in the case of occlusions. Image

matching belongs to the class of so called inverse problems, which are known to be ill-

posed. A problem is ill-posed, if no guarantee can be given that a solution exists, is

unique, and is stable with respect to small variation in the input data. Image matching is

ill-posed, because for a given point in one image, a corresponding point may not exist

due to occlusion, there may be more than one possible match due to repetitive patterns or

a semi-transparent object surface, and the solution may be unstable with respect to noise

due to poor texture.

In order to find the solution of an ill-posed problem one usually has to deal with an

optimization function exhibiting many local extrema (as can be seen in figure 2.4c), and

thus a small pull- in range. Therefore, stringent requirements may exist for initial values

for unknown parameters to be determined. Moreover, usually there is a large search space

for these parameters, and numerical instabilities may arise during the computations.

Ill-posed problems can be converted to well-posed problems by introducing

additional knowledge about the problem. Fortunately, a whole range of assumptions

usually holds true when dealing with photogrammetric imagery.

The assumptions usually made are that the gray values of the various images have

been acquired using one and the same or at least similar spectral band(s), the illumination

together with possible atmospheric effects are constant throughout the time interval for

image acquisition, the scene depicted in the images is rigid, i.e. it is not deformable; this

implies that objects in the scene are rigid, too, and do not move, the object surface is

piecewise smooth , the object surface is opaque, the object surface exhibits a more or less

diffuse reflection function and that initial values such as the approximate overlap between

the images or an average object height are known

Depending on the actual problem at hand additional assumptions may be introduced,

and some points of the list may be violated. It is this mixture of necessary assumptions

 15

which makes the design of a good image matching algorithm difficult, and has lead to the

development of different algorithms in the past.

2.2.2 ANALYSIS OF IMAGE MATCHING ALGORITHMS

Most matching algorithms proposed in the literature implicitly or explicitly contain a

combination of assumptions about the depicted scene and the image acquisition. Rather

than trying to describe these algorithms as a whole it seems more appropriate to

decompose them into smaller modules and discuss those.

The factors that have to be answered are that to be answered are that which primitives

are selected for matching, which models are used for defining the geometric and

radiometric mapping between the primitives of the various images, how is the similarity

between primitives from different images measured, and how is the optimal match

computed and which strategy is employed in order to control the matching algorithm.

Based on these points, an analysis of different algorithms is presented.

2.2.2.1 DIFFERENT MATCHING PRIMITIVES

The distinction between different matching primitives is probably the most prominent

difference between the various matching algorithms. One of the reasons is that this

selection influences in part the answers to the other questions. The primitives fall into

two broad categories: either windows composed of gray values or features extracted in

each image a priori are used in the actual matching step. The resulting algorithms are

usually called area based matching (ABM), and feature based matching (FBM),

respectively. Note that when talking about ABM or FBM not only the selection of the

primitives, but the whole matching process is referred to.

In both cases there is a choice between local and global support for the primitives.

The terms local and global are not sharply defined. Local refers to an area seldom larger

than about 50 * 50 pixels in image space, global means a larger area and can comprise the

whole image.

2.2.2.1.1 Gray Value Windows as Primitives

Small windows composed of gray va lues serve as matching primitives. The window

centre, possibly weighted e.g. with respect to the gray value gradient can be used for the

definition of the location of a point to be matched. The gray values are regarded as

 16

quantized samples of the continuous brightness function in image space, and concepts of

signal processing can be employed for further computations.

The windows can be extracted very fast, and the actual matching methods are rather

straightforward. Also, ABM has a high accuracy potential in well- textured image regions,

and in some cases the resulting accuracy can be quantified in terms of metric units.

Disadvantages of ABM are the sensitivity of the gray values to changes in radiometry e.g.

due to illumination changes, the large search space for matching including various local

extrema, and the large data volume which must be handled. Blunders can occur in areas

of occlusions, and poor or repetitive texture.

ABM is usually based on local windows. One example is cross correlation, another

one is the original least squares matching approach. ABM can also be carried out globally

using connected windows. In this case poor and repetitive texture can be successfully

dealt with to a certain extend.

2.2.2.1.2 Features as Primitives

In FBM features are extracted in each image individually prior to matching them.

Local features are points, edge elements, short edges or lines, and small regions. Global

features comprise polygons and more complex descriptions of the image content called

structures. Features should be distinct with respect to their neighborhood, invariant with

respect to geometric and radiometric influences, stable with respect to noise, and seldom

with respect to other features.

Each feature is characterized by a set of attributes. The position in terms of its image

coordinates is always present. Further examples for attributes are the edge orientation and

strength (gradient across the edge) for edge elements, the length and curvature of edges

and lines, the size and the average brightness for regions.

Global features are usually composed of different local features. Besides the attributes

of the local features, relations between these local features are introduced to characterize

global features. These relations can be geometric such as the angle between two adjacent

polygon sides or the minimum distance between two edges, radiometric such as the

difference in gray value or gray value variance between two adjacent regions or

 17

topologic, such as the notion that one feature is contained in another. Matching with

global features is also referred to as relational matching.

The result of feature extraction is a list containing the features and their descriptions

for each image. Only these lists are processed further. It should be noted that the features

are discrete functions of position: after feature extraction a feature either exists at a given

position or it does not.

Features are more abstract descriptions of the image content. As compared to gray

value windows features are in general more invariant with respect to geometric and

radiometric influences. Feature extraction schemes are often computationally expensive

and require a number of free parameters and thresholds which must be chosen a priori. In

some cases a shift in the feature position is introduced during the extraction. If this shift

is corrected for local features have a high accuracy potential. It is, however, difficult to

quantify this accuracy in metric units. In areas of low texture the density of extracted

features is usually sparse. For local features, seldom ness is difficult to achieve, and a

large data volume must be handled. Global features are more seldom and thus provide a

better basis for a reliable matching. However, it is difficult to define and extract global

features, and they tend to be more application dependent then local features.

Local features have been used for matching e.g. by Barnard, Thompson (1980);

Förstner (1986) and Hannah (1989). In each case points were selected as features.

Vosselman (1992); Vosselman, Haala (1992); Cho (1995) and Wang (1995) dealt with

relational matching involving global features. Schenk et al. (1991) used a combination of

global and local features.

2.2.2.2 MODELS FOR THE MAPPING OF PRIMITIVES

The mapping between the primitives of the various images is defined via two models:

a sensor model, and a model for the object surface. Simple two-dimensional

transformations from one image to the next such as a two-dimensional translation or an

affine transformation implicitly contain a combination of these two models. They are

rough approximations of the situation during image acquisition and should only be used,

if the selected matching primitives have local support. If, on the other hand, primitives

with global support are used, the mapping between the images must be modeled more

 18

rigorously. Usually, the sensor and the object surface model are specified separately. As

shown in figure 2.5, any two-dimensional transformation can be constructed from a

sequence of two three-dimensional transformations: one from image space into object

space, and a second one into the image space of the other image.

There is an advantage if the mapping between the primitives - local or global - is

formulated in terms of object space parameters which are common for more than two

images: multiple images can be matched simultaneously. This results in a higher

redundancy for the matching problem and thus a greater reliability is achieved for the

results. Multi image matching using ABM has been shown to be superior to matching of

two images.

Figure 2.5: A 2D transformation can be expressed as a combination of two 3D

transformations

2.2.2.2.1 Sensor model and epipolar constraint

In many cases a central perspective projection can be assumed when dealing with

photogrammetric imagery. Central perspective projection provides for a very powerful

constraint, namely that of epipolar geometry, see figure 2.6. Given two images the so

called epipolar plane for a point in 3D space (model or object space) is defined as the

plane containing this point and the two projection centers of both images. This plane

intersects both image planes in straight lines, the so called epipolar lines. If the relative

 19

orientation of two images is known, for a given point in one image the epipolar line in the

other image can be computed, and the corresponding point must lie on this epipolar lines.

Thus the image matching problem is reduced from a two- to a one-dimensional task.

In order to facilitate matching along epipolar lines the two images can be transformed

into the normal case in a preprocessing step, eliminating the vertical or y-parallaxes in the

complete stereo model. Subsequently, matching only needs to be carried out along the

(horizontal) direction of the base line. Note, that this preprocessing step is not required as

such in order to take advantage of the epipolar constraint: for a given point in one image

the epipolar line in the other image can be computed using the parameters of relative

orientation, and matching can then be carried out along this epipolar line.

Figure 2.6: The epi-polar constraint: the epi-polar plane (P, P', P'') and the epi-polar lines

e' and e''

The epipolar constraint is vital in reducing ambiguity problems and computational

cost. Even if only approximate values for the parameters of relative orientation are

known, the epipolar constraint should be used in order to restrict the search space for

conjugate primitives in the direction perpendicular to the base line. Note that the epipolar

constraint can only be formulated for pairs of images.

2.2.2.2.2 Object surface models

Geometric models for the object surface used in image matching range from

horizontal and tilted planes to piecewise smooth surfaces, exhibiting discontinuities in the

surface slope or the surface itself. Also, models borrowed from DTM generation such as

finite element representations are used. As mentioned above the object surface is

 20

assumed to be rigid, i.e. it does not change during the time interval between image

acquisition.

Radiometric surface models describe the brightness of a pixel in object space, also

called groundel. Due to deviations from the Lambertian (diffuse) reflection function,

relief influences (shading), and other factors such as noise a groundel usually has a

different brightness when viewed from different directions. In image matching these

differences are usually modelled by means of a local linear radiometric transformation.

Thus, changes in overall brightness and contrast between different image patches are

taken into account.

Another assumption of the object surface model is that it is opaque. This assumption

guarantees that for a given primitive in one image there exists at most one corresponding

primitive in each other image. In the case of occlusions, no corresponding primitive may

exist.

2.2.2.2.3 Examples for sensor and object surface models in image matching

algorithms

For cross correlation the two images are assumed to be of identical scale and azimuth,

and to have parallel optical axes. In addition, the object surface is implicitly modeled as a

local plane parallel to the image planes. This set up is equivalent to the so called normal

case of photogrammetric image acquisition. In the simplest case the epipolar constraint is

not used, however, it can be easily introduced by shifting the template matrix across the

search matrix in a predefined direction only. The object surface is assumed to be opaque,

and linear differences between the gray values of the two windows are allowed.

In least squares matching the rather strict geometric assumptions for cross correlation

are relaxed: rather than only shifting the template matrix across the search matrix an

affine transformation is used for the geometric mapping between the windows. As a

result small deviations from the normal case can be tolerated, and the object surface is

modeled as a local tilted plane. Again, the epipolar constraint can be easily introduced.

The radiometric model is the same as for cross correlation. Figure 2.7 shows sensor and

object surface model for object space least squares matching.

 21

Figure 2.7: Sensor and object surface model for object space least squares matching

For ABM in object space the collinearity equations are explicitly set up. If local

primitives are used, the object surface model is implicitly given by a tilted plane (Grün

1985). For global primitives a separate object surface model, often represented as

connected bilinear surface patches, is introduced. This general model allows for the

introduction of all orientation parameters (thus, the epipolar constraint is implicitly

observed), and constraints for the geometric shape of the object surface such as

parameters minimizing the surface curvature can be directly introduced. Within this

model simultaneous multiple image matching can be carried out as discussed before.

Again, the radiometric model is the same as for cross correlation.

In FBM sensor and object surface models are usually represented implicitly in order

to reduce the search space. The epipolar constraint is used in most approaches. Due to the

higher radiometric invariance of features as compared to gray value windows,

radiometric models play a secondary role in FBM. They are, however, contained in the

radiometric feature attributes.

 22

2.2.2.3 SIMILARITY MEASURES AND OPTIMIZATION PROCEDURES

The definition of criteria for a good match obviously plays an important part in each

matching algorithm. For ABM the similarity between gray value windows is defined as a

function of the differences between the corresponding gray va lues. This function can be

the covariance or the cross correlation coefficient between the windows, the sum of the

absolute differences between corresponding pixels, or as is the case in least squares

matching - the sum of the squares of the differences. These measures have their

background in statistics and are theoretically well understood.

Defining a similarity measure for feature based matching is more complicated. The

definition must be based on the attributes of the features. In most FBM algorithms the

differences in the geometric and radiometric attribute values are combined using

heuristics and thresholds in order to compute the similarity measure, called a cost

function or benefit function. Whereas a cost function is to be minimized, a benefit

function must be maximized in order to achieve a good match.

The optimization procedure which can be applied depends on the choice of the

matching primitives. In local ABM an exhaustive search can be carried out as is the case

in cross correlation. Alternatively, gradient based iterative schemes such as ordinary or

robust least squares adjustment are available. The pull- in range for these approaches is

rather small and lies in the range a few pixels only. Therefore, good initial values for the

unknowns must be at hand. In order to subsequently achieve global consistency conjugate

points are usually transformed into object space, e.g. via forward intersection. In this step

the orientation parameters of the images may also be improved, leading to a bundle

adjustment. The resulting 3D points are subsequently filtered, and blunders are detected

and eliminated. In global ABM the optimization procedure, the generation of tree-

dimensional information and the estimation of parameters describing the object surface

are integrated into one model.

FBM starts with discrete features. Therefore, gradient based methods can not be

employed for optimization. In local FBM for each given feature in one image a small

search area is defined in the other image(s) using the selected mapping transformation.

Subsequently, an exhaustive search is usually carried out in this search area. At this stage

multiple matches may still be allowed. After all features of a certain region have been

 23

processed, blunders are detected through global consistency checks similar to local ABM.

Alternative schemes for global consistency shall only be mentioned here. They include

relaxation labeling, simulated annealing, and dynamic programming. For relational

matching tree search methods are employed.

2.2.3 THE MATCHING STRATEGY

An image matching algorithm consists of a number of steps. Each of the individual

modules which can be employed for each step has advantages and disadvantages. Thus,

potentially something is to be gained from suitably combining these modules. Moreover,

some parameters such as the approximate overlap or an average terrain height must often

be provided a priori in order to reduce the search space, and values for free parameters

and thresholds (window sizes, criteria for stopping the optimization etc.) must be

initialized. Finally, internal quality checks should be carried out in order to guarantee a

correct result.

In the matching strategy the individual steps carried out within the algorithm are

determined. This includes the input of prior information from a human operator, and the

presentation of the results for final visual verification. In a comprehensive comparison

between different images matching algorithms for photogrammetric applications Gülch

(1994) showed that while under good condition accurate matching results can be

achieved with a large variety of algorithms, a good matching strategy is decisive for a

successful solution in more complicated situations. Faugeras et al. (1992) obtained a

similar result for algorithms popular in computer vision. Some of the aspects of a good

strategy are discussed in the following.

2.2.3.1 Hierarchy

Hierarchical methods are used in many matching algorithms in order to reduce the

ambiguity problem and to extend the pull- in range. They are employed from coarse to

fine, and results achieved on one resolution are considered as approximations for the next

finer level. For this task images are represented in a variety of resolutions, leading to so

called image pyramids. A typical image pyramid, in which the resolution from one level

to the next is reduced by a factor of 2, is depicted in figure 2.8. A coarser resolution is

equivalent to a smaller image scale, and a larger pixel size. Thus, the ratio between the

 24

(fictitious) flying height and the terrain height increases as the resolution decreases, and

local disturbances such as occlusions become less of a problem. Besides image pyramids,

usually also a hierarchical representation of the object surface model is used.

Figure 2.8: Example of an image pyramid

When FBM is used, feature extraction should be carried out on each resolution level

separately, since features can vanish or be displaced from one level to the next due to the

low pass filtering which is inherently present when decreasing the resolution.

2.2.3.2 Redundancy

It is not known how the human operator measures points stereoscopically, but he or

she is certainly still more capable to set the measuring mark on the ground than any

developed matching algorithm. In other words, the blunder rate for individually matched

points can be rather high. Efficient blunder detection is only possible if there is a large

redundancy in the system.

Therefore, it is prudent to determine many more points when using an automatic

matching algorithm than a human operator would measure. It is also possible to do so,

because the number of points to be measured is a secondary issue in an automatic

procedure, as long as enough computational speed is available. A high point density can

for instance be used to implicitly represent break-lines in a DTM. Also, single obstacle on

top of a DTM such as houses or trees can be filtered out, if enough nearby points on the

ground are given.

 25

Another issue related to redundancy is that of multi image matching, and thus of

object space matching. In a conventional photogrammetric block with 60 % end overlap

and 20 % side overlap only 24 % of an image in the interior of the block is covered by

two images, and the same area is covered by six images. Thus, multi image matching can

be of advantage for DTM generation without having to acquire more images. Besides, it

is a prerequisite for applications in aerial triangulation.

 26

CHAPTER 3

METHODOLOGY

The major steps involved in methodology for completion of the objectives are

geometric corrections, feature extraction, feature matching, mosaic creation and last step

is the variation detection.

3.1. GEOMETRIC CORRECTIONS

The image sequences obtained from aerial images typically suffer from severe noise

and brightness variations between corresponding images. In order to ensure uniform

feature extraction from overlapping images for reliable matching the effect of these

distortions must be minimized as much as possible.

To ensure uniform average brightness throughout the image set, it was decided to

subtract the average brightness level of each image from its pixel data. This succeeds in

bringing the image sequence into a reasonably uniform intensity level.

To reduce the effect of additive noise, a Gaussian smoothing function is applied to

each image prior to feature extraction. The smoothing function eliminates any sharp

regions of noise by performing a process similar to blurring.

Combined, the above two corrections were experimentally found to be reasonably

effective in ensuring feature correspondence between overlapping images.

3.2. FEATURE EXTRACTION

Feature extraction is one of the most important first steps in Mosaicing. Its main

objective is to find as many useful features from a scene while keeping the output noise

level to a minimum. Edge, corner and vertex detection processes serve to simplify the

analysis of images by drastically reducing the amount of data to be processed.

In order to perform a matching comparison between a set of images, there must be

some reliable and reasonably stable criteria of correspondence. The most commonly

employed feature points in feature point matching are corners and edges. These features

are usually insensitive to noise and geometric distortions and have a very low probability

of false positive matching.

 27

There are a variety of algorithms for both corner and edge extraction. The most

notable of these are canny edge detector, Harris corner detector and the SUSAN principle

for extraction of both edges and corners.

The desired qualities of feature detectors are good detection (there should be a

minimum number of false negatives and false positives), good localization (the edge

location must be reported as close as possible to the correct position), response (there

should be only one response to a single edge) and speed (the algorithm should be fast

enough to be usable in the final Image Processing system).

For a real time system using time varying image sequences, speed is an important

criterion to be considered, without too much compromise over the quality of results

because spurious lines and edges can cause errors in motion analysis. Also there has to be

a compromise between maximizing signal extraction and minimizing output noise.

Initial efforts towards feature extraction used small convolution masks such as

Prewitt and Sobel operators to approximate the first derivative of the image brightness

function, thus enhancing the edges. These filters give very little control on smoothing and

edge localization.

The Canny edge detector was considered next, which has become one of the most

widely used edge finding algorithms. The first step is defining and quantitatively

developing criteria for edge detection (as given above) into a total error cost function.

Variational calculus is applied to this cost function to find an optimal linear operator for

convolution with the image. The optimal filter is shown to be a very close approximation

to the first derivative of a Gaussian. Non maximum suppression in a direction

perpendicular to the edge is applied to retain maxima in the image gradient. Finally the

weak edges are removed using thresholding. The thresholding is applied using hysterisis.

The Gaussian convolution can be performed quickly because it is separable and a

close approximation to it can be implemented recursively. However the hysterisis stage

slows the overall algorithm considerably. The Canny edge detection method is found to

be ten times slower than SUSAN approach. The results are stable FOR Canny but the

edge connectivity at junction is poor and corners are rounded.

 28

In the absence of multiple features, the SUSAN principle bypasses “the Uncertainty

Principle of edge detection” which applies to most feature detectors (and most obviously

the Gaussian based ones) with respect to Canny’s first and second criteria.

Other methods include second order derivatives. The fact that SUSAN edge and

corner enhancement uses no image derivative, explains why the performance in the

presence of noise is good. The integrating effect of the principal together with its non-

linear response gives strong noise rejection.

Keeping in view the anticipated operational requirements of the project, it was

therefore decided to implement the SUSAN feature detector for both its speed and its

ease of implementation.

3.2.1 THE SUSAN PRINCIPLE

The SUSAN principle is implemented using digital approximation of circular masks,

(sometimes known as windows or kernels). If the brightness of each pixel within a mask

is compared with the brightness of that mask’s nucleus, then an area of the mask can be

defined which has the same (or similar) brightness as the nucleus.

The concept of each image point having associated with it a local area of similar

brightness is the basis for the SUSAN principle. This area is known as USAN (Univalue

Segment Assimilating Nucleus) and contains much information about the structure of the

image. From the size, centroid and second moment of the USAN, two dimensional

features and edges can be detected. No image derivatives are used and no noise reduction

is needed.

As seen in the figures 3.1 and 3.2, the USAN area is at a maximum when the nucleus

lies in a flat region of the image surface. It falls to half of this maximum very near a

straight edge and falls even further when inside a corner. This property of USAN’s area is

used as the main determinant of the presence of the edges and two-dimensional features.

The working of the SUSAN principle is explained in the diagrams shown below.

 29

Figure 3.1. Four circular masks at different places on a simple image.

Figure 3.2. Four circular masks with similarity coloring; inverted USANs are shown as

grey parts of the masks.

Consideration of the above arguments and observation of examples lead directly to

the formulation of the SUSAN principle. An image processed to give as output inverted

USAN area has edges and two-dimensional features strongly enhanced with the two-

dimensional features more strongly enhanced than edges. This gives rise to the acronym

SUSAN (Smallest Univalue Segment Assimilating Nucleus). The strength of the

SUSAN principle is that the use of controlling parameters is much simpler and less

arbitrary and therefore easier to automate than other edge detection algorithms.

3.2.1.1 SUSAN Edge Detector

The following steps are performed at each image pixel. Place a circular mask around

the pixel in question. Calculate the number of pixels within the circular mask which have

similar brightness to the nucleus. These define the USAN. Subtract USAN size from

geometric threshold to produce edge strength image. Use moment calculations applied to

the USAN to find edge direction. Apply non-maximum suppression thinning and sub-

pixel estimation, if required.

 30

SUSAN edge finder has been implemented using digitally approximate circular

masks giving a mask of 37 pixels or a three by three mask. The masks are used either

with constant weighting within them or with Gaussian weighting.

The mask is placed at each point in the image and, for each point; the brightness of each

pixel within the mask is compared with that of the nucleus (the center point).

If the difference of the brightness values is less than a threshold “t”, then the output of

the comparison is 1 else its 0. The comparison is done for each pixel within the mask and

is summed up. This total “N” is just the number of pixels in the USAN, i.e., it gives the

USAN’s area. The parameter “t” determines the maximum contrast of features which will

be detected and also the minimum amount of noise which will be ignored.

Next, N is compared with a fixed threshold “g”, which is set at 3*Nmax/4. This value

is calculated from analysis of the expectation value of the response in the presence of

noise only. The use of ‘g’ should not result in incorrect dismissal of correct edges.

The algorithm described gives good results but a more stable and sensible equation is

used for ‘C’ in place of equation 1.

C = exp ((d/t)*6)

 This gives a smoother version of equation 1 as it allows pixel brightness to vary

slightly without having too large an effect on ‘C’, even if it is near the threshold position.

This form gives a balance between good stability about the threshold and the function

originally required.

3.2.1.2 Computation of Edge direction

Computation of edge direction is needed for a variety of reasons. If non-maximal

suppression is to be performed, the edge direction must be found. It is also necessary if

edges are to be localized to sub-pixel accuracy. Finally, applications using the final edges

often use the edge direction for each edge point as well as its position and strength. In

case of most edge detectors, edge direction is found as part of the edge enhancement. As

SUSAN principle does not require edge direction to be found for enhancement to take

place, a reliable method of finding it from USAN has been developed.

 31

The direction of an edge associated with an image is found by in two ways depending

on the type of edge points, namely inter-pixel edge case, and intra-pixel edge case. The

edge direction is calculated by finding the longest axis of symmetry of USAN.

This is found by calculating the following sums:

m(X – Xo)^2 * (Ro) = SUM[((X – Xo)^2 * C(R,Ro)] ---[1]

m(Y – Yo)^2 * (Ro) = SUM[((Y – Yo)^2 * C(R,Ro)] ---[2]

m(X – Xo)(Y – Yo)*(Ro) = SUM[(((X – Xo)(Y – Yo)*C(R,Ro))] ---[3]

 Where,

Ro: Nucleus

R (Ro): Center of gravity (of USAN of Ro)

C = e (d/t)*6

m: mean

SUM: Summation

Ratio of equations [1] and [2] gives the orientation of the edge. Equation [3] gives the

sign of the gradient.

We find the sum of second moments of USAN about the nucleus to find the

orientation of the edge. This can be found to varying accuracy depending on the mask

used.

The edge response obtained from above is suppressed so that non-maxima (in the

direction perpendicular to the edge) are prevented from being reported as edge points).

Following this, the “strength thinned” image can be binary thinned using standard

thinning processes.

3.2.1.3 SUSAN Corner Detector

This is very similar to the edge detector, particularly in the earlier stages. The steps

required for finding the corners are as follows.

 32

Place a circular mask around the pixel in question. Calculate the number of pixels

within the circular mask which have similar brightness to the nucleus. These define the

USAN. Subtract USAN size from geometric threshold (which is set lower for corners)

to produce a corner strength image. Test for false positives by finding the USAN’s

centroid and its contiguity. Use non-maximal suppression to find the corners.

All pixels within a circular mask are compared and the response is summed up in

exactly the same way as in edge detector. Again, here the sum is compared with a

geometric threshold “g”. Here, the corner detector is quite different from the edge

detector, where “g” was necessary only in the presence of noise. For a corner to be

present, the sum must be less than half the maximum possible sum. Therefore, “g” is set

to exactly half of maximum sum.

Sometimes, SUSAN will give false positives in certain circumstances. This can occur

with real data where blurring of boundaries between regions occurs and there is a thin

line half way between the two surrounding regions. It may cause corners to be wrongly

reported.

The problem has been eliminated by the following method. The center of gravity of

USAN and its distance of this from the nucleus is found. A proper corner will have center

of gravity that is not near the nucleus and thus false corners can be rejected.

A final addition to SUSAN principle is a simple rule, which enforces “Contiguity" in

USAN. This is necessary for images having lot of noise and fine complicated structure.

All pixels within a mask, lying in a straight line pointing outwards from the nucleus in

the direction of center of gravity of USAN must be a part of the USAN, for a corner to be

detected. This is effective in forcing the USAN to have a degree of uniformity, and

reduces false positives.

The corners detected by the implementation of the SUSAN algorithm are as shown in

the figure 3.3.

 33

Figure 3.3 Corner Detection

3.3 FEATURE MATCHING

Once an appropriate number of corners have been extracted in each of the component

images of the input set, the major part of the system can then be invoked.

Despite the availability of a large number of very complex algorithms for feature

correspondence, it was decided to design an original algorithm which would be

reasonably fast to fit into the overall performance requirements of the system.

It was decided to carry out the feature point matching in two steps. The first step is

responsible for finding out a tentative area of overlap between a pair of images. Once a

tentative area of overlap has been calculated, this overlap is then confirmed using corner

matching in the overlapping area. If both these steps indicate a match, then the image pair

is guaranteed to be neighbors.

The feature correspondence algorithm implemented in the system can be depicted as

in figure 3.4. Here, a number of images are processed and as an end product, one get a

single mosaic of many images and the mosaic is free from any overlapping.

 34

Figure 3.4 The feature Correspondence Algorithm

The matching algorithm is responsible for creating a mapping for each image in the

image sequence, determining its position in the final mosaic.

3.3.1 DERIVATIVE MATCHING

To calculate tentative overlaps, it was decided to use image derivative matching for

many reasons because image derivates are extremely fast to calculate, image derivates are

reasonably immune to global changes like shading etc., image derivates give a much

greater appreciation of sharp changes (features) in the image, there is very little

probability of non matching images to have same derivates at same locations

(suppression of false positives).

To calculate image derivates, the following equations were used: -

 f’(x,y) = f(x+1,y) – f(x,y) (for x-derivative)

 f’(x,y) = f(x,y+1) – f(x,y) (for y-derivate)

The implementation of the above equations when executed on the images highlight

areas of change (features) and are thus much more suitable for matching than the original

images.

………......2 N

VERTICAL MATCHING

HORIZONTAL MATCHING

CORNER MATCHING
CHECK

CREATE MOSAIC BASED ON DATA GAINED FROM MATCHING

1

CORNER MATCHING
CHECK

N
Smoothed

Images

 35

The derivative matching algorithm then proceeds as is explained below. The

procedure is that an image is picked at random and is checked for vertical overlap with all

other images in the image set by employing image derivate strips for comparison. This

step is also repeated fro horizontal overlap. If there is any match in horizontal or vertical,

this information is stored in the mapping data structure for later use in mosaicing. The

same steps are repeated for all remaining images.

At the completion of the algorithm’s execution, the program has enough information

to proceed with the confirmation of the tentative overlap using corner matching.

3.3.2 ERRORS AND THRESHOLDS

When comparing pixel derivatives, there are two types of errors. The first is the local

error in comparison between single pixel derivative values. And the other is the global

error which is the number of pixel derivatives that fail to match.

There are self adjusting thresholds for both types of errors. Thresholds adjust on the

basis of brightness and contrast in the local area. This adjusting of thresholds has a large

effect on the eventual matching of images. Figure 3.5 displays the step-wise procedure

for finding tentative boundary.

Figure 3.5 Finding Tentative Boundary

3.3.3 CORNER MATCHING

The aim of the corner matching phase is to confirm the existence of the overlap

calculated in the derivate matching phase. Although image derivatives provide sufficient

results for images with low complexity, they start to fail on images with considerable

 36

detail. For this, the results of derivative matching must be confirmed using a more

dependable technique. Corner matching was used because corners are usually faster to

extract than other features and also the matching of corners is relatively straightforward.

The corner matching algorithm proceeds as explained below. After establishment of

tentative boundaries, the program must correlate corners between two images. The

system uses Sum of Squared Differences method to correlate corners. A correlation

window in the overlap area is selected, as shown in figure 3.6. The strengths of corners in

the correlation window are compared. These differences are squared and added. The

correlation window is moved throughout the overlap area.

Figure 3.6 Correlations Windows

3.4 CREATION OF THE MOSAIC

The final step in the mosaicing sequence is the creation of the mosaic itself. At the

end of the corner extraction and feature matching phases, one has information about the

position of each image component in the final mosaic and its overlapping area with

immediate neighbors (top, bottom, left, and right). This information is then used in the

mosaic creation phase. This phase involves the following tasks.

First, allocation of image size based on calculations of component image sizes and

overlap regions is made. Secondly, copying of component images onto corresponding

locations on the mosaic is carried out. Lastly, removal of sharp joins using blending is

accomplished.

 37

The result is the creation of a single image that is seamlessly blended and no

overlapping of any type can be observed.

The image can be saved in the permanent memory as well for subsequent change in

variation detection.

3.5 VARIATION DETECTION

The last step is to compare two images, of the same area, for changes, if any. This is

accomplished by taking image derivatives at each point in the two images, and if a

difference greater than a particular threshold is found, that area is identified in the form of

red rectangles.

§ Input the two mosaics to be compared for differences

§ Create a rectangular mask sized according to input parameters.

 While (image limits not exceeded)

 Place the mask at the same location in both mosaics

 Take image derivates for all image pixels under the mask.

 For (all pixels under the mask)

 Take derivates of both images

 Compare the derivates.

 Update error count if they differ by more than thresh-hold.

 If (error count > masksize/2) mark the mask boundaries as change

boundaries.

 Advance mask by masksize/2.

 end while.

End.

 38

CHAPTER 4

IMPLEMENTATION DETAILS

4.1 ARCHITECTURAL DESIGN

The architecture of the software is as shown below: -

Fig. 4.1 The Architecture of the Software

The main GUI interacts with the CTestView class. Once the user request is received

by the CVieClass, it calls all other modules and uses underlying libraries to respond to

the user request.

The project was developed using Microsoft’s VISION SDK (Software Development

Kit) library as an implementation base.

4.2 VISION SDK

The project was developed using Microsoft’s VISION SDK (Software Development

Kit) library as an implementation base.

The Microsoft Vision SDK is a library for writing programs to perform image

manipulation and analysis on computers running Microsoft Windows operating systems.

CTestView

Image reading and

writing library

Feature Extraction

Module

Change detection

module

Vertical &
Horizontal
Matching

My Dlg

CProgress Dlg

Mosaicing and
display module

Images on hard

disk

Main GUI

 39

The Microsoft Vision SDK was developed by the Vision Technology Research Group

in Microsoft Research to support researchers and developers of advanced applications,

including real-time image-processing applications. It is a low-level library, intended to

provide a strong programming foundation for research and application development; it is

not a high- level platform for end-users to experiment with imaging operations. The

Microsoft Vision SDK includes classes and functions for working with images, but it

does not include image-processing functions. The Microsoft Vision SDK is a C++

library of object definitions, related software, and documentation for use with Microsoft

Visual C++.

Compared to other typical packages for image processing, it has four key virtues and

two flaws: The virtues are that it is suitable for fast, real- time image processing, it has a

nice interface to Windows, such as shared image memory across processes and GDI

interface, it has user-definable pixel types (very important for research) and that it has a

device- independent interface for image acquisition. It can be used to create binaries that

can be transported and run on a machine with any supported digitizer or camera. It can

be easily extended to support new types of digitizers or cameras.

The flaws are that the Vision SDK assumes that images are resident entirely in RAM.

There is no general support for very large image files that cannot be brought into RAM in

their entirety. The other flaw is that The Vision SDK does not include image-processing

operators. The Vision SDK is best thought of as a low-level substrate for developing

computer vision and/or image processing programs or systems, giving a nice interface to

the operating system but not providing high- level image-processing operators.

4.3 HEADER FILE DETAILS

The following header files are included in the project:

4.3.1 DataArray.h

This file includes the data structure for storing the information about the

neighborhood of each image. Pointers for up, down, left and right images are

included. In addition overlaps and matching errors for the images are also

stored. The up, down, left and right pointers are initialized to -1. As the

matching takes place they are set to the number of whatever image is present

at the respective locations.

 40

4.3.2 MainFrm.h

It includes the class description for the CMainFrame class derived from the

CFrameWnd class. It contains declarations for the class which represents the

frame window.

4.3.3 MyDlg.h

It contains declarations for the class which represents an input dialog box.

This dialog box inputs parameters for the corner detection phase.

4.3.4 ProgressDlg.h

It contains declarations for the class representing the dialog box which

contains a progress bar. This progress bar is used to show progress of the

corner detection phase and the image mosaicing phase.

4.3.5 StdAfx.h

Contains declaration for the windows code.

4.3.6 Test.h

Contains class declarations for the CTestApp class which represents the

windows application.

4.3.7 Testdoc.h

It contains class declarations for the CTestDoc document class.

4.3. 8 TestView.h

It contains the declarations for the CTestView class which is the main class of

the project and contains declarations for all the variables of the technical part

of the project.

4.4 CODE FILE DETAILS

The following code files are included in the project:

4.4.1 MainFrm.cpp

This file contains the implementation of the CMainFrame class which is

derived from the CFrameWnd class and represents the frame window.

4.4.2 MyDlg.cpp

This file contains the implementation of the MyDlg class which takes in the

input parameters for Corner Detection. It has four member variables

 41

m_masksize, m_threshold, m_usan, m_usanl which contain values of the

masksize , threshold , upper USAN area and lower USAN area respectively

once the dialog box is used.

4.4.3 ProgressDlg.cpp

This file contains the implementation of the CProgressDlg class which is

responsible for handling the dialog containing the progress bar.

4.4.4 StdAfx.cpp

It is the source file contains the standard includes for a windows program.

4.4.5 Test.cpp

This file contains the implementation details of the CTestApp class which

represents the main windows application.

4.4.6 Testdoc.cpp

It contains implementation of the CTestDoc class which represents the

document related to the View in this program.

4.4.7 TestView.cpp

It contains the definitions of all the major functions of the system and is the

main file of the program. All event handling and image processing tasks are

handled with this file.

A list of the major functions in the main file of the project is given below, followed

by a brief explanation of each of the major methods: -

4.5 IMAGE PROCESSING FUNCTIONS

The following are the main image processing functions developed are explained
below.

4.5.1 The SmoothImage () function

The SmoothImage () function is defined in the TestView.cpp file and it is the first

major image processing function to be called for each image.

The input to this function is a raw image from the image set in the form of a

CVisRGBAByteImage Object. The purpose of this function is to remove any random

 42

noise in the image as well as remove insignificant details to make the image more

suitable for the matching phase.

This function performs the bulk of the geometric correction portion of the project. It

accomplishes this by defining a kernel and then performing Gaussian smoothing of the

image by employing this kernel. This is achieved by changing the grey levels of the

image at each pixel by ratios determined by the kernel coefficients , such that each image

position better reflects the overall gray level in its neighborhood.The function is called

for each image in the image set to be mosaiced.

4.5.2 The Detect-Corners() function

The Detect_Corners function is defined in the TestView.cpp file. This function forms

the backbone of the feature extraction part of the system. The function takes as input a

single smoothed image in the form of a CVisRGBAByteImage object and performs

corner extraction on it. The detected corners, their locations and corner strengths are

stored in a data structure for use in the matching phase.

This function is an implementation of the SUSAN principle for corner detection. The

function detects features (corners in this case) based upon certain control parameters

input by the user at run time. These parameters control the amount of detail to be

explored in feature extraction, as well as the number of features extracted.

4.5.3 The VerticalMatch () function

The VerticalMatch function is defined in the TestView.cpp file. This function is

responsible for the matching of extracted features in pairs of images in conjunction with

the HorizontalMatch function.

The inputs to this function are two smoothed images in the form of

CVisImageRGBAByteImage objects. The function carries out vertical feature matching

on the pair of images. If there is a match, the function also calculates the amount of

overlap between the images. It then stores the neighbor and overlap information in a data

structure for use in the mosaic creation phase.

 43

For vertical overlap detection, the algorithm assigns one image in the pair as the

reference image and performs a vertical scan of the other image for an exact match of

extracted features.

The function first carries out a derivative matching of image strips to calculate a

tentative matching area in the pair of images. This tentative overlap is then confirmed

using corner matching. If both these criteria are satisfied, the images are assumed to have

matched and the information is stored. The process is repeated for all images in the set.

4.5.4 The HorizontalMatch() function

The HorizontalMatch function is defined in the TestView.cpp file . This function is

responsible for the matching of extracted features in pairs of images in conjunction with

the VerticalMatch function.

The inputs to this function are two smoothed images in the form of

CVisImageRGBAByteImage objects. The function carries out horizontal feature

matching on the pair of images. If there is a match, the function also calculates the

amount of overlap between the images. It then stores the neighbor and overlap

information in a data structure for use in the mosaic creation phase.

For overlap detection, the algorithm assigns one image in the pair as the reference

image and performs a vertical scan of the other image for an exact match of extracted

features.

The function first carries out a derivative matching of image strips to calculate a

tentative matching area in the pair of images. This tentative overlap is then confirmed

using corner matching. If both these criteria are satisfied, the images are assumed to have

matched and the information is stored. The process is repeated for all images in the set.

4.5.5 The Mosaic() function

This function is defined in the TestView.cpp file. The function is the last major

function to be called in the image mosaicing sequence. The function operates on the

entire set of images initially loaded into the program for the purpose of creating a single

mosaic.

Once the matching phase is complete and the program has enough information about

the position of each component in the final mosaic, this function is called to carry out the

 44

actual process of building the mosaic. Based on information obtained in the matching

phase the overlapping areas are removed with extreme accuracy. The function returns

with the final mosaic as the result.

The function operates by first of all sorting the data structure obtained as a result of

the feature matching phase. The purpose of sorting the data structure is two fold. Firstly,

the sorted data structure exactly depicts the position of each image component in the final

mosaic. All that remains then is to copy each component from the data structure into its

correct position. Secondly, sorting the data structure makes it possible to calculate the

final size of the mosaic of the mosaic that has to be allotted in a more efficient manner.

This involves removing the overlapping areas which can only be determined once the

image components have been sorted.

Once the sorting and image copying is complete, the final mosaic is then displayed in

the main window of the program.

4.6 INTERFACE CONTROL FUNCTIONS

The following functions have been used for Interface control.

4.6.1 The ReadImages() function

This function is defined in the TestView.cpp file and is responsible for reading in the

selected image set from the disk into RAM and converting them into objects of the

CVisRGBAByteImage class for all subsequent manipulations in the program.

4.6.2 afx_msg void OnDisplay() function

This is a message handler for the Display menu item in the program’s main menu bar.

The function is defined in the TestView.cpp file and is responsible for displaying the

selected image in a separate window.

4.6.3 afx_msg void OnUpdateClear() function

This is a message handler for the Clear menu item in the main menu bar of the

program . The function is defined in the TestVeiw.cpp file and is responsible for clearing

the RAM of all currently loaded images. This is achieved by destroying all

CVisRGBAByteImage objects . This relieves the RAM after each execution of the

program so more images can be loaded for a new execution.

 45

4.6.4 afx_msg void OnCorners()function

This is a message handler for the CornerDetection menu item in the main menu bar of

the program. The method is defined in the TestView.cpp class. This function performs

some cleaning up of the corner storage data structure and then calls the detect_corners

function for subsequent feature extraction.

The above discussion gives a list and detail of only the more important and relevant

functions in the project. Apart from these, a lot of small helper functions were created in

the major files which were concerned with the details of Visual C++ programming

structure.

 46

CHAPTER 5

RESULTS AND ANALYSIS

5.1 RESULTS

The horizontal mosaicing of images is shown in Figure 5-1. Two vertically

photographed aerial images of a scene are taken and then mosaiced into a single image at

the bottom. Notice the seamless blending at the edges and virtually no loss or duplication

of information.

Figure 5.1 Horizontal Mosaicing of two images

An example of the use of the program to mosaic more than two images is illustrated

in figure 5.2. Six images which match both vertically and horizontally are mosaiced into

a single panorama. The blending problem can be removed by including an appropriate

blending filter in the program.

 47

Figure 5.2 Mosaicing of six images

 48

A very good example of how the program is detecting corners can be seen in figure

5.3. The number of corners has been suppressed by a mask and filter. If required it can be

further suppressed or relaxed as required by the program.

Figure 5.3 Example of corner detection

Change detection as performed by the program is illustrated in Figure 5.4. The top

image is the changed image and the program has indicated the appropriate changes in the

original image at the bottom. The use of small boxes is used to approximate the shape of

the change object introduced. The car in the top image has been approximated with small

boxes in the bottom image.

 49

Figure 5.4 Variation Detection in Images

 50

5.2 ANALYSIS

When compared with other techniques, the following results were observed. Our

implementation of the not only outperformed other algorithms in speed but also in

consistency. The speed was mainly due to use of feature extraction instead of pixel by

pixel matching and consistency was due to extra checks incorporated to prevent any false

positives.

Figure 5.5 Speed and Consistency

HARRIS feature
Extractor

CANNY feature
Extractor

Speed

Project
Implementation

Project
Implementation

 HARRIS feature

CANNY feature

Consistency

 51

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In conclusion one must look at the objectives that were defined at the beginning of

the project and evaluate whether they have been achieved at the end. The primary

objective was to develop a system to achieve the seamless mosaicing of a number of

images into a composite whole. Considering the operation of our program on some test

images it can be safely said that objective has been achieved to a large extent. In all of the

test images that were run on this program, it provided the correct results more than 90%

of the time. Furthermore it was able to mosaic up to 16 images of an area which is a good

indicator of its robustness.

A secondary objective was to develop an efficient technique for the matching of

images. The technique of using feature extraction and correlation to match two images

and keep error counts has been more than successful in this regard. The program has been

able to create mosaics of 16 images of 800x600 resolution in around 4 minutes which is

many orders of magnitude better than conventional image matching techniques. Fourier

Transforms and Phase Correlation which are normally provide equal results but are not as

efficient.

The third objective of detecting changes between two images of the same area was

also completed amenably. Change Detection technique employed here compares images

on the basis of not only the change of region but also of the features extracted earlier.

This allows the program to approximate to a large extent the actual shape of the object

which has been introduced as a change into the new image. In addition the program has

displayed good ability to reject minor changes introduced because of noise and distortion.

Although introducing noise robustness in this program was not within the scope, this

was achieved as an added objective. The software can tolerate a fair degree of noise –

which may include oil blurring, Gaussian noise and simple distortion. It does not remove

the noise, instead it correctly determines if the noisy image joins with another image.

This capability is due to the efficient and robust image matching technique used.

 52

One of the shortcomings of the software it that it does not tolerate angle of view shifts

between two images to be mosaiced. If both have significant amount of shift between the

angles of view of the camera then results might not be that good. This problem can be

rectified by dovetailing this program with software that performs affine transformation

between different images. Once the transformations have been performed the software

can work on any type of images.

6.2 FUTURE WORK

A lot of capabilities can be added to the basic design of the software. In the case of

image mosaicing, a camera distortion correction module can be an effective addition.

Also, the program can be made capable to mosaic images which are not rectangular in

shape. This can be achieved with some loss in efficiency of the program but it will

enhance to a large extent the range of applications that this program will be able to

perform.

In addition, the very effective change detection algorithm enables the approximation

of the shape of the new object introduced in the picture. If a matching algorithm is

developed which can match a detected shape with templates of some common shapes

such as cars, buildings, trees, water reservoirs etc stored in a library then excellent

capabilities of object recognition can also be inculcated in the program without much

effort.

To conclude, solid groundwork has been laid in the designing of this software. Not

only all objectives defined at the beginning have been achieved satisfactorily, but also the

design provides excellent opportunities for anyone interested in enhancing the

capabilities of this software.

 53

BIBLIOGRAPHY

1. Ackermann F., 1995: Automatic Aerotriangulation, Proceedings, 2nd Course in

Digital Photogrammetry, Landesvermessungsamt Nordrhein-Westfalen und

Institut für Photogrammetrie, Universität Bonn.

2. Baltsavias E., 1991: Multiphoto geometrically constrained matching, Dissertation,

Institut für Geodäsie und Photogrammetrie, Mitteilungen der ETH Zürich (49).

3. Barnard S.T., 1987: Stereo matching by hierarchical microcanonical annealing,

SRI International, Technical note 414.

4. Barnard S.T., Thompson W.B., 1980: Disparity analysis of images, IEEE-PAMI

(2) 4, 333-340.

5. Cho W., 1995: Relational matching for automatic orientation, PhD thesis,

Department of Geodetic Science and Surveying, The Ohio State University,

Columbus, OH.

6. Ebner H., Hoffmann-Wellenhof B., Reiß P., Steidler F., 1980: HIFI - A

minicomputer program package for height interpolation by finite elements,

IntArchPhRS (23) B4, 202-215.

7. Ebner H., Fritsch D., Gillessen W., Heipke C., 1987: Integration von

Bildzuordnung und Objektrekonstruktion innerhalb der digitalen

Photogrammetrie, BuL (55) 5, 194-203.

8. Faugeras O., Fua P., Hotz B., Ma R., Robert L., Thonnat M., Zhang Z., 1992:

Quantitative and qualitative comparison of some area and feature-based stereo

algorithms, in: Förstner W., Ruhwiedel S. (Eds.), Robust Computer Vision,

Wichmann, Karlsruhe, 1-26.

9. Förstner W., 1982: On the geometric precision of digital correlation,

IntArchPhRS (24) 3, 176-189.

10. Förstner W., 1986: A feature based correspondence algorithm for image

matching, IntArchPhRS (26) 3/3, 150-166.

11. Gülch E., 1994: Erzeugung digitaler Geländemodelle durch automatische

Bildzuordnung, DGK-C 418.

 54

12. Grün A., 1985: Adaptive least squares correlation: a powerful image matching

technique, South African Journal of Photogrammetry, Remote Sensing and

Cartography (14) 3, 175-187.

13. Hannah M.J., 1989: A system for digital stereo image matching, PE&RS (55) 12,

1765-1770.

14. Heipke C., 1990: Integration von digitaler Bildzuordnung, Punktbestimmung,

Oberflächenrekonstruktion und Orthoprojektion in der digitalen Photogrammetrie,

DGK-C 366.

15. Heipke C. 1995: Digitale photogrammetrische Arbeitsstationen, DGK-C 1995.

16. Helava U.V., 1988: Object-space least-squares correlation, PE&RS (54) 6, 711-

714.

17. Hobrough G.L., 1959: Automatic stereo plotting, PE&RS (25) 5, 763-769.

18. Kölbl O., Bach U., Gaisor D., de Laporte K., 1992: Multi-template-matching for

the automation of photogrammetric measurements, IntArchPhRS (29) B3, 540-

548.

19. Kreiling W., 1976: Automatische Erstellung von Höhenmodellen und

Orthophotos durch digitale Korrelation, Dissertation, Institut für

Photogrammetrie, Universität Karlsruhe.

20. Mayr W., 1995: Aspects of automatic aerotriangulation, in: Fritsch D., Hobbie D.

(Eds.), Photogrammetric Week '95, Wichmann, Karlsruhe, 225-234.

