
Collective Asynchronous Remote
Invocation (CARI) Schedules

A High-Level and Efficient Communication API for
Irregular Applications

By
Muhammad Wakeel Ahmad
2007-NUST-MS-PhD IT-12

Supervisor
Dr. Aamir Shafi
NUST-SEECS

External Collaborator
Dr. Bryan Carpenter

University of Portsmouth - UK

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(November 2010)

Approval

It is certified that the contents and form of the thesis entitled “Collective
Asynchronous Remote Invocation (CARI) Schedules” submitted by
Muhammad Wakeel Ahmad have been found satisfactory for the require-
ment of the degree.

Advisor: Dr. Aamir Shafi

Signature:
Date:

Committee Member 1: Dr. Raihan-ur-Rasool

Signature:
Date:

Committee Member 2: Ms. Samin Khaliq

Signature:
Date:

Committee Member 3: Mr. Ali Sajjad

Signature:
Date:

i

Abstract

Gadget-2 is a production parallel code for cosmological N-body and hydro-
dynamic simulations. Versions of this code featured in the Millennium Sim-
ulation, which is the largest simulated model of the universe. Gadget-2 has
been parallelized for distributed memory platforms using the MPI standard.
In this thesis — we analyzed Gadget-2 with a view to understanding what
high-level SPMD communication abstractions might be developed to replace
the intricate use of MPI in such irregular applications and do so without
compromising the efficiency. Our analysis revealed that the use of low-level
MPI primitives bundled with the computation code makes Gadget-2 difficult
to understand and probably hard to maintain. In addition, we found out
that the original Gadget-2 code contains a small handful of complex and
recurring-patterns of message passing. We also noted that these complex
patterns can be reorganized into a higher level communication library with
some modifications to the Gadget-2 code. This thesis presents the imple-
mentation and evaluation of one such message passing pattern (or schedule)
that we term Collective Asynchronous Remote Invocation (CARI). As the
name suggests, CARI is a collective variant of Remote Method Invocation
(RMI), which is an attractive, high-level, and established paradigm in dis-
tributed systems programming. The CARI API might be implemented in
several ways — we implement and evaluate two versions of this API on a
compute cluster. The performance evaluation reveals that CARI versions of
the Gadget-2 code perform as good as the original Gadget-2 code but the
level of abstraction is raised considerably. In fact one of the implementations
has geared towards scalability on larger number of cores which performs the
best when the problem size reaches its scalability limits.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Muhammad Wakeel Ahmad

Signature:

iii

Acknowledgments

First and foremost, I am immensely thankful to Almighty Allah the Most
Gracious and the Most Merciful, for letting me pursue and fulfil my dreams.
Nothing could have been possible without His blessings.

It is with pleasure that I express my affectionate and deeply felt gratitude
for my esteemed thesis supervisor Dr. Aamir Shafi, for his supervision, guid-
ance, and advice from the very early stage of this research. Much of what
lies in the following pages can be credited to his kind supervision. His truly
scientist hunch and passions in research exceptionally inspire and enrich my
growth as a student and a researcher. Above all and the most needed, he
provided me persistent encouragement and support in numerous ways. I am
indebted to him more than he knows.

I gratefully acknowledge Dr. Bryan Carpenter for his supervision, valuable
contributions, and whole-hearted cooperation which made this thesis pos-
sible. His involvement with his innovation has initiated and stimulated my
intellectual maturity that I will benefit from, for a long time to come. Bryan,
I am thankful in every possible way and hope to keep up our collaboration
in the future.

I am also extremely thankful to my committee members Dr. Raihan ur
Rasool, Ms. Samin Khaliq and Mr. Ali Sajjad for their support, valuable
suggestions, and positive criticism. It would be quite unjust if I do not men-
tion the helping hand offered by Mr. Hammad Siddique and Mr. Umar Butt
during my stay at HPC Lab.

My parents deserve special mention for all their love, encouragement, in-
separable support and prayers. They had more faith in me than could ever
be justified by logical argument. My dear sisters and brothers have always
supported me in all my pursuits. Thanks for being supportive and caring.

iv

v

Finally, I would like to record my thanks for my friends, and colleagues
specially at HPC, and WiSnet Labs for their enormous encouragement and
sympathetic help, which made my life more pleasant and easier during re-
search work. Let me grab this opportunity to thank everybody who was
important to the successful realization of thesis, as well as expressing my
apology that I could not mention personally one by one.

Muhammad Wakeel Ahmad

Table of Contents

1 Introduction 1
1.1 Evolution of High Performance Computing (HPC) 1
1.2 Problem Definition . 2
1.3 Research Hypothesis . 3
1.4 Research Motivations . 3
1.5 Contributions of the Project 4
1.6 Dissertation Overview . 4

2 Background and Literature Review 5
2.1 High Performance Computing Hardware 5
2.2 Parallel Computing Hardware Models 6

2.2.1 Massively Parallel Processors (MPPs) 6
2.2.2 Symmetric Multi-Processors (SMPs) 6
2.2.3 Hybrid Distributed Shared Memory 7

2.3 Parallel Computing Software Models 8
2.3.1 Shared Memory Model 8
2.3.2 Message Passing . 10

2.4 High Productivity Programming Models 12
2.4.1 CHARM++ . 12
2.4.2 Active Messages (AM) 15
2.4.3 Global Arrays (GAs) Toolkit 16

3 Gadget-2 18
3.1 Overview . 18
3.2 Computing Gravitational Forces 18
3.3 Communications Analysis . 20
3.4 Particle Export . 22
3.5 Code Options . 24

vi

TABLE OF CONTENTS vii

4 CARI Schedules 26
4.1 Collective Asynchronous Remote Invocation (CARI) Schedules 26
4.2 CARI Schedules are Asynchronous 27
4.3 CARI Schedules are Collective 28
4.4 Implementation of the CARI API 28

4.4.1 Synchronous CARI (SCARI) 28
4.4.2 Asynchronous CARI (ACARI) 32

5 Evaluation 37
5.1 Testing environment . 37
5.2 CARI Test Suite . 37
5.3 Accuracy Evaluation . 37

5.3.1 Runtime environment for Gadget-2 code 38
5.3.2 Auto Testing . 38
5.3.3 Intricacies of Floating Point Arithmetic 39
5.3.4 Cosmological Simulations used for Testing 40

5.4 Performance Evaluation . 45
5.5 Productivity - Line of Code (LOC) 47
5.6 Memory Usage - Scalability 48

6 Conclusion and Future Work 49
6.1 Conclusion . 49
6.2 Future Work . 50

List of Figures

2.1 Massively Parallel Processors (MPP) Model. 7
2.2 Uniform Memory Access (UMA) Model 7
2.3 Non Uniform Memory Access (NUMA) Model. 8
2.4 Hybrid Distributed Shared Memory Model. 8
2.5 OpenMP Thread Mechanism. 10

3.1 Barnes-Hut Tree Construction in 2D Space. 19
3.2 Simplified Sketch of compute potential. 22
3.3 Gadget-2 Communication Buffer. 23
3.4 Execution Patterns for Gadget-2 Code. 23
3.5 More Realistic Structure of compute potential. 24

4.1 Refactored Code of compute potential. 27
4.2 Architecture of CARI API. 29
4.3 Realistic C++ API for CARI. 30
4.4 Communication Buffer used by SCARI 31
4.5 CSP model for CARP API . 34
4.6 A Sketch of CARP class . 35
4.7 Communication Buffer used by CARP API 35
4.8 A Sketch of ACARI class . 36

5.1 Auto Testing Procedure . 39
5.2 Initial State of LCDM Gas Simulation 41
5.3 Initial State of Galaxy Formation Simulation 42
5.4 Mid State of Galaxy Formation Simulation 42
5.5 Final State of Galaxy Formation Simulation 42
5.6 Initial State of Cluster Formation Simulation 43
5.7 Mid State of Cluster Formation Simulation 43
5.8 Final State of Cluster Formation Simulation 44
5.9 Combined Draw for Cluster Formation Simulation 44
5.10 Execution-Time for Cluster Formation Simulation 46

viii

LIST OF FIGURES ix

5.11 Speed-up Measure for Cluster Formation Simulation 46
5.12 Line of Code Comparison . 48

List of Tables

3.1 A List Of Selected Compile-Time Flags For Gadget-2 Code . . 25
3.2 A List Of Selected Run-Time Parameters For Gadget-2 Code . 25

5.1 Compile-Time Flags For LCDM Gas Simulation 41
5.2 Productivity In Terms Of LOC Using CARI API 47

x

Chapter 1

Introduction

1.1 Evolution of High Performance Comput-

ing (HPC)

The computer software industry has witnessed a sea change where single
power hungry cores are making way for multiple power efficient processing
cores [1]. The main reason is that increasing the clock speed exponentially
increases power consumption and heat dissipation of the processor. As a
consequence major microprocessor vendors like Intel, AMD, Sun, and IBM
have shifted their business model to increasing cores instead of increasing
clock speed [2].

In the context of High Performance Computing (HPC), the commod-
ity clusters have emerged as an economical alternative to Symmetric Multi-
Processors (SMPs) and Massively Parallel Processors (MPPs). A cluster
typically consists of multiple PCs (usually called nodes) connected to each
other via a high-speed network. In the past, each of the nodes in a cluster con-
tained a single core processor. The cluster computers follow the distributed
memory model where each single core processor inside a node communicates
with its peers by message passing. Today’s compute cluster is built with ho-
mogeneous multicore processors and follow a hybrid model where inter-node
communication still occurs through message passing but intra-node commu-
nication is done by writing and reading (to and from) the main memory.
However the future compute clusters will be based on heterogeneous combi-
nations of high and low power cores, graphical processors, cache blocks and
on-chip interconnect [3]. These changes in the Parallel Computing landscape
promise exponential increase in the processing power in the next few years.

With the sea change in the computing hardware architecture, going from
serial computers to parallel multicore processing systems, the software com-

1

CHAPTER 1. INTRODUCTION 2

munity has also faced a massive swing in its thinking. The heterogeneous
many-core processor architectures (could) pose significant programming chal-
lenges as developing applications that exploit the full power of many-core
systems is difficult and developers have to keep track of various problems
ranging from writing safe multithreaded code to verification/testing of the
complete software package that has to execute on a variety of processing el-
ements. Some traditional computing applications related to computational
physics and engineering, that have dominated Parallel Computing are rela-
tively easier to parallelize as they have plentiful coarse-grained parallelism
thus, making them easily developed with some of the current software pack-
ages. But unstructured and adaptive grids and complication of multi-physics
simulations have taxed existing parallel machines and programming models
and demand new ways of exploiting parallelism for contemporary unstruc-
tured applications.

1.2 Problem Definition

Message Passing Interface (MPI) [4] standard which continues to dominates
the landscape of parallel computing as the de facto standard for writing par-
allel applications. But the critics of the MPI standard argue it is a low-level
Application Programming Interface (API). We argue hthat if parallel com-
puting is to become a mainstream tool to address the multicore challenge, the
level of abstraction provided by parallel computing libraries and languages
must be “raised”.

The current generations of multicore processors are typically shared mem-
ory devices. Naturally the programming models touted to program these
processors are also shared memory models. But achieving a speedup in line
with Moore’s law by concurrency alone would require a doubling of cores
every 18 months. The number of cores in a chip would rapidly exceed widely
assumed scalability limits for shared memory multiprocessors. There are al-
ready some working examples of multicore processors built using distributed
NoC systems, an example is the TeraScale chip with 80 cores [5]. In the light
of this, the Single Programming Multiple Data (SPMD) model seems to be
an obvious candidate for programming parallel applications on the future
multi/many-core processors. Also, it is relatively straight forward to port
SPMD applications on shared memory multicore processors.

SPMD programming is perceived as being harder than other shared mem-
ory programming approaches. In this thesis, we address this issue of program-
ming productivity by proposing a high-level, easy-to-use, and efficient pro-
gramming API for multi/many-core processors. For this purpose, we analyze

CHAPTER 1. INTRODUCTION 3

Gadget-2 [6] with a view to understanding what high level SPMD communi-
cation abstractions might be developed to replace the intricate use of MPI in
such an irregular application-and do so without compromising the efficiency.
The Gadget-2 code-a real-world application chosen to drive our research-is
based on a novel N-body simulation algorithm, which is also identified as a
key dwarf in an influential Berkeley report [7]. Gadget-2 is a production par-
allel code for cosmological Nbody and hydrodynamic computations. Versions
of Gadget-2 have been used in various astrophysics research papers, and in
the Millennium Simulation, which simulated the evolution of the structure of
the universe using 512 nodes of an IBM p690. It uses a distributed Barnes-
Hut (BH) tree to compute gravitational and computational forces, with an
approach to load balancing based on the Peano-Hilbert curve.

Our initial analysis of Gadget-2 revealed that the use of low level MPI
primitives bundled with the computation code makes the source code diffi-
cult to understand and probably hard to maintain. In addition, the original
Gadget-2 code contains a small handful of complex and recurring, a pattern
of message passing, which essentially means that too much of the code is
boilerplate message passing than physics. But the most interesting observa-
tion is that by transforming some loops in a meaning-preserving way, and
defining some “callback” functions containing user-defined “physics” code,
and absorbing the boilerplate message passing code into a library class, this
complex pattern of explicit message passing can be reorganized into a high-
level communication library with some modifications to the Gadget-2 code.
The actual pattern of data movement and message passing is not changed
by this reorganization, it will remains at least as efficient as the original code
but the level of abstraction is raised considerably.

1.3 Research Hypothesis

High productivity communication libraries built on top of MPI can signifi-
cantly reduce the programming complexities without incurring any significant
loss in performance but the level of abstraction can be raised considerably.

1.4 Research Motivations

A panel with the title “What the parallel-processing community has (failed)
to offer the multi/many-core generation” at the International Parallel and
Distributed Symposium (IPDPS) 2008 [8] noted that the software community
is still not ready to take on the multicore challenge. To tackle this, the panel

CHAPTER 1. INTRODUCTION 4

agreed to stress the importance of a) applications as a driving factor in
research and teaching, b) parallel algorithms, and c) focus on programming
productivity (by providing higher abstractions [9] and not performance alone)
in education, research, and software development. To repeat our research is
guided by principles-focuses on applications and programming productivity-
set out by the IPDPS panel.

1.5 Contributions of the Project

Main contributions of this thesis include:

1. A thorough analysis of the Gadget-2 code to find recurring message
passing patterns.

2. Development of an efficient, high-level, and easy-to-use programming
API called CARI.

3. Two implementations of the CARI API. One of the implementations
outperform the MPI code demonstrating that performance can also be
improved by providing higher-level abstractions.

1.6 Dissertation Overview

Rest of the thesis document is organized as follows. Chapter 2 presents a
background and relevant literature. We review the current HPC hardware
and software models, and then we try to cover the high productivity pro-
gramming libraries and languages related to our work. This is followed by
an introduction of the Gadget-2 code which is chosen as a sample application
of our research work in the Chapter 3. In this chapter we briefly analyzed the
parallelization strategy, and irregular communication patterns of Gadget-2
code. Chapter 4 presents the design and implementation of CARI Schedules
where we have discussed the low level programming issue and possible im-
plementations of CARI API. We evaluate and compare performance of the
original Gadget-2 code with CARI versions in Chapter 5. We conclude and
present future work in Chapter 6.

Chapter 2

Background and Literature
Review

This chapter reviews the modern HPC hardware and software. The chapter
begins by reviewing HPC hardware, emphasizing the emergence of multicore
processor clusters, and parallel computing hardware models. The chapter
also presents some of the popular programming models including shared
memory and distributed memory models. In addition, we make an effort
to cover the emerging parallel programming languages and APIs which have
similarities to our work.

2.1 High Performance Computing Hardware

According to Top500 list the fastest computers today have reached the per-
formance of teraflops and petaflops. The world’s fastest supercomputer to-
day, Cray XT5 known as Jaguar, an AMD Opteron based supercomputer
at the Oak Ridge National Laboratory, operates at a processing rate of 1.75
PFLOPS per second with 224162 processing cores. The Nebulae system build
from Dawning TC3600 Blade system with Intel X5650 processors and NVidia
Tesla C2050 GPU is declared as No. 2 with performance of 1.271 PFLOPS
per second. The Nebulae system from National Supercomputing Centre in
Shenzhen (NSCS)China contains 120640 number of core. The IBM Blade-
Center QS22/LS21 known as Roadrunner declared as world’s third fastest
supercomputer, at Los Alamos National Laboratory operates at a processing
rate of 1.042 PFLOPS per second employing 122400 processing cores. The
IBM Blue Gene named Kraken XT5, a PowerPC based supercomputer at
Julich Research Center, operates at a processing power of 825 TFLOPS per
second employing 98928 processing cores and is currently ranked as number

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

four in the TOP 500 list as of June 2010 [10].

2.2 Parallel Computing Hardware Models

The Landscape of parallel computers has stabilized and evolved into differ-
ent types which can classified based upon their memory architecture. The
different types of parallel hardware range from machines with thousands of
processors sharing nothing, to machines employing thousands of processors
sharing memory. The understanding of the underlying hardware architecture
is essential for writing efficient parallel software.

2.2.1 Massively Parallel Processors (MPPs)

Massively parallel processing system also known as Distributed Memory Sys-
tem is large computing facility employing thousands of processors each having
its own memory leaving aside the concept of global address space.

The processors are connected to each other through a communication
network which can be as simple as Ethernet and as fast as Gigabit Ether-
net, Infiniband or Myrinet. The concept of memory/cache coherence doesn’t
apply in MPPs as each processor has independent memory. The task of
achieving the desired optimized communication of data between the proces-
sors is left to the capability of the programmer in this kind of computing
system.

Distributed memory computer systems can also be built from scratch
using from off-the-shelf processor components. These kinds of systems are
called Clusters instead of MPPs. Cluster computing has proved to be a cost
effective option for many small-middle size organizations as their needs are
easily fulfilled without having to purchase a large scale MPP.

2.2.2 Symmetric Multi-Processors (SMPs)

SMP systems contain thousands of processor components sharing the main
memory and the memory bus [11]. Each processor may have its own cache on
a dedicated bus but all the processors are connected to a common memory
bus and memory bank sharing the same memory resources. Changes in a
memory location effected by one processor are visible to all other processors.
Shared memory machines can be divided into two main classes based upon
the memory access times: UMA and NUMA.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

Uniform Memory Access (UMA)

The machines employing Uniform Memory Access typically have identical
processors having equal access and access times to the memory. Sometimes,
it is often called Cache Coherent UMA which means that if one processor
updates a location in shared memory, all the other processors know about
the update [11].

Non Uniform Memory Access (NUMA)

The machines employing Non Uniform Memory Access are often lined physi-
cally by two or more SMPs having UMA where one SMP can directly access
memory of another SMP. Unlike UMA, not all processors have equal access
time to all memories. A machine with NUMA is explained in Figure 2.3.

2.2.3 Hybrid Distributed Shared Memory

Most of the parallel computers today employ both shared and distributed
memory architectures. The shared memory component is usually a cache
coherent SMP machine and the distributed memory component is the net-

Figure 2.1: Massively Parallel Processors (MPP) Model.

Figure 2.2: Uniform Memory Access (UMA) Model

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

Figure 2.3: Non Uniform Memory Access (NUMA) Model.

Figure 2.4: Hybrid Distributed Shared Memory Model.

working of multiple SMPs. Current trends seem to indicate that this type of
memory architecture will continue to prevail and increase at the high end of
computing for foreseeable future.

2.3 Parallel Computing Software Models

There are various software models available for programming the different
types of parallel computers. Some of them are, shared memory model, mes-
sage passing model, data parallel model, threaded model etc. The point
worth noting is that these models are not specific to any particular type of
hardware architecture i.e. it is possible to use a shared memory program-
ming model on a MPP system. In the following sections, we discuss shared
memory programming model and message passing model in detail.

2.3.1 Shared Memory Model

In Shared Memory programming model, a common address space in the
memory is shared by all the processes where they can read and write asyn-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

chronously. In order to implement control access strategy among different
processes performing different tasks, various mechanisms such as locks and
semaphores are used.

The simplicity of Shared Memory model brings some advantages and some
disadvantages. An important plus, while using Shared Memory model, is the
facility of not specifying the communication of data between the processes as
every process will read its share of data from the shared memory. This makes
developer’s life much easier. A critical minus is that, when multiple proces-
sors are using the same data, updating the data among all the processors
conserves memory accesses which may result in performance issues.

OpenMP

OpenMP, short for Open specifications for Multi-Processing, is an open stan-
dard jointly defined by a group of major computer hardware and software
vendors for providing parallelization mechanisms on shared-memory proces-
sors in 1997. The specification supports C/C++, FORTRAN and recently
Java. The specification is composed of three main components:

- Compiler Directives

- Runtime Library Routines

- Environment Variables

OpenMP is based upon a thread paradigm. It creates multiple threads to
counter the parallel regions of the code which are synchronized and termi-
nated when the individual threads executing the parallel code terminate. The
model, known as, Fork-Join Model, ensures parallel execution of the program
[12].

The thread paradigm is the logical choice for Shared Memory multiproces-
sor. When the master thread encounters a directive to fork off new threads,
it creates new threads to execute parallel regions of the program. When
the team threads complete the statements, they synchronize and terminate
leaving only the master thread.

OpenMP, being the standard for Shared Memory parallelism, is not ap-
plicable on distributed memory parallel systems i.e. MPPs. The runtime
routines do not guarantee the most efficient use of shared memory; it is up
to the ability of the programmer. The runtime also doesn’t check for data
dependencies, data conflicts, race conditions and deadlocks.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

Figure 2.5: OpenMP Thread Mechanism.

2.3.2 Message Passing

Message Passing model is mostly used for programming distributed memory
systems. Message Passing model consists of processes or tasks that use their
local memory during computation. Since the data is not shared through
the memory, the processes exchange the data through communications by
sending and receiving messages. Data transfer usually requires cooperative
operations to be performed by each process. For example, a send operation
must have a matching receive.

Message Passing implementations comprise a library of subroutines that
are imbedded in source code. The programmer is responsible for parallelizing
the code by calling the appropriate routines.

Parallel Virtual Machine (PVM)

The PVM is a message passing system that views distributed memory ma-
chines as a single virtual machine. It is designed to allow a network of hetero-
geneous UNIX and/or Windows machines to be used as a single distributed
parallel processer. Large computational problems can be solved more cost
effectively since it permits the heterogeneous collection of the platforms.

The “virtual machine” is the central component of PVM i.e. a set of
heterogeneous hosts connected by a network that appears logically to the
user as a single large parallel computer. Portability was considered much
more important than performance for two reasons: communication across
the internet was slow; and, the research was focused on the problems with
scaling, fault tolerance, and heterogeneity of the virtual machine [13].

PVM consists of a runtime environment and library for message passing,
task and resource management, and fault notification. PVM provides a pow-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

erful set of functions for manually parallelizing either an existing program
or a new parallel program. Before the advent of MPI, PVM was the de
facto standard for message passing on distributed systems and is still used
in programs that demand heterogeneity of the platforms.

Message Passing Interface (MPI)

MPI is a message passing library standard specified by a commission of high
performance computing experts (from research and industry) in a series of
meetings in 1993-1994. The motivation for developing MPI was that each
MPP vendor was creating its own branded message-passing API. In this
situation, it was becoming impossible to write a portable parallel application.
MPI is envisioned to be a standard message-passing specification that each
MPP vendor would implement on their system. The MPP vendors need to
be able to provide high performance and this became the focus of MPI. Given
this design focus, MPI is likely to always be faster than PVM on MPP hosts.
MPI-1 contains the following main features:

- Set of point-to-point communication routines

- The ability to specify communication topologies

- The ability to create derived data types that describe messages of non-
contiguous data

- Set of collective communication routines for communication among
group of processes

- Communication context that provides support for the design of safe
parallel software libraries

MPI-1 users soon discovered that their applications were not portable
across a network of workstations because there was no standard method
to start MPI tasks on separate hosts. In 1995, the MPI committee began
meeting to design MPI-2 specification to correct this problem and to add
several additional functions to MPI. The message passing model is applicable
to virtually any distributed memory parallel programming model. MPI is also
used to implement shared memory models such as Data Parallel model on
distributed memory architectures [4].

As discussed earlier the two most popular parallel computing platforms
include the shared memory and distributed memory hardware. For the shared
memory hardware, the preferred approach may be direct programming with
threads and locks, which is relatively hard. To overcome this difficulty,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

higher-level task parallel approaches have been widely advocated. In the
task parallel approach, work is divided into independent or loosely coupled
tasks. Systems that fall into essentially this camp include OpenMP [14], In-
tel Cilk++ Software Development Kit (SDK) [15] and Threading Building
Blocks [16]. For the distributed memory hardware, the preferred approach
may be the SPMD programming model. An enduringly popular approach is
to simply write node programmes in standard C or Fortran, using a message
passing library-today typically MPI-for communication. More recently, the
SPMD programming model is also emerging as a viable option for the future
multi/many-core processors.

In HPspmd [17] programming model (for distributed memory machines) a
base language is extended with syntax for defining distributed (partitioned)
data, but the extended language is agnostic about communication that is
subsumed into high-level collective library calls. For a wide class of regular
problems the HPspmd model and the original Adlib [18] library provide ele-
gant programming solutions. Of course many computational problems have
more irregular structure, and it was always clear that the original Adlib li-
brary would not provide convenient or efficient solutions for all of those. In
this effort we try to fill this gap by providing communication schedules for
irregular applications that could naturally be integrated into the HPspmd
programming model. In addition, the current schedule is available in the
form of an independent library that relies only on a C++ compiler and an
MPI library.

2.4 High Productivity Programming Models

In this section we have discussed modern approaches used for providing
higher-level abstractions including the Global Arrays Toolkit [19] and CHARM++
[20]. Our work has similarities to both of these system. There is a superficial
analogy of CARI with Active Messages (AM) as well.

2.4.1 CHARM++

A language that attempts to increase programming productivity without
compromising performance. CHARM++ system is a set of extensions to the
C++ language without changing its syntax and semantics, except the global
and static data of the class. It is a comprehensive system for parallel Object
Oriented Programming (OOP). CHARM++ extends its mother language
characteristics like multiple inheritance, dynamic binding, overloading, and
strong typing for its parallel objects.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

The central component of the CHARM++ language is the Chare object,
which is globally defined and can be asynchronously invoked using the so-
called entry methods. Asynchronous method invocation means that the caller
(method) does not wait for the method to be actually executed, and for the
method’s return value. Therefore, CHARM++ entry methods do not have a
return value. In CHARM++ an object can resides at remote processor thats
why CHARM++ use “proxy” to refer it, instead of C++ style via pointer.
The “proxy” class methods act like “forwarders” which corresponds to the
remote methods of the actual class.

CHARM++ Execution Model

Instead of the traditional blocking-receive-based communication model, CHARM++
execution model is based on message driven strategy. By message driven
means computations are triggered on the arrival of an associated message.
On the arrival of a message at a processor, it is put into a queue where the
system schedules the target object to process it depending upon its prior-
ity. Message driven strategy helps CHARM++ to tolerate communication
latency.

In a CHARM++ program, a Chare can be created at run time, where
the number of Chare objects varies during the execution time of the pro-
gram. CHARM++ system maintains a work-pool, to manage messages of
existing Chare(s) and the seeds for new Chare. The CHARM++ kernel
non-deterministically picks item from this work-pool and execute them.

All the entry methods are non-preemptive; it means that CHARM++ will
never interrupt an executing method to start any other work. CHARM++
provides seed based load balancing, it means while creating the remote Chare,
destination processor (where newly created Chare will resides) number is not
required to be specified. Afterwards CHARM++ kernel assigns the newly
created Chare object to least loaded processor. CHARM++ language endow
with dynamic load balancing in such a way that a Chare can migrate from
one processor to another. However only never-run Chare can migrate, once
a task is running it cannot be migrated.

Entities in a CHARM++ programs

Given below are the few important entities in a typical CHARM++ program.

- Sequential Objects are just like an ordinary sequential C++ code
and objects. Such entities are only accessible locally; it means that
CHARM++ runtime system is not aware of these entities.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

- Message objects are used to supply data arguments while asynchronous
remote method invocation.

- Chares which are normally consider the most important entities in
CHARM++ program. Infect it is the basic unit of parallel computation
in CHARM++ programs, like a process in MPI programs. Chares are
the instance of CHARM++ class just like class objects in sequential
C++ programming but the difference is that they can be created and
invoked asynchronously on remote processors, using public methods.
The public methods are called entry methods, which do not have any
return type.

- Chare Arrays are collections of Chares.

- Chare Groups are special type of coexisting objects. Each Chare-
group is a set of Chares, with one group member on each processor.
An entire Chare-group could be addressed using globally unique name,
and an individual member of a Chare-group can be accessed using the
global handle, and a processor number.

- Chare Node Groups have similar concept to Chare-groups with the
exception of having one group member on each processor. Instead
node-group has one member on each shared memory multiprocessor
node.

Some other rich characteristics of CHARM++ include parameters mar-
shalling, dynamic load balancing, callbacks, quiescence detection, reductions,
and many more. Because of these features it stands as an appropriate pro-
gramming language for a broad range of applications based on either regular
or irregular computations. However the implementation of CHARM++ is
somehow (if not at all) similar to MPI, hence we have to deal with the same
complications as we did in MPI. In other words CHARM++ programming
effort is nearly same as with old programming models. The difference is that
now instead of MPI sends and receives, we have to use entry methods to
request for data or send data to remote processors. The major difference
as compare to MPI is that now we can have a better virtualization which
enhances the overlap of communication and computation.

CHARM++ have some features in common with the CARI API, no-
tably the asynchronous communication calls and the message driven execu-
tion model. But the CARI API is distinguishable due to many aspects. For
example in CARI, an incoming message (which is known as request and ab-
breviated as REQ) is not put into the local waiting-queue like CHARM++.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

In CARI API when a REQ arrived at a remote processor it would be served
immediately and the computed results are sent back via message (we called
it acknowledgement abbreviated as ACK). Instead of runtime system CARI
owned a server thread running all the time to respond the client’s request
which switch its states to REQ and ACK mode alternatively. The other
notable difference is that the CHARM++ system does not support the con-
cept of collective completions (briefly explained in Chapter 4), which is an
important requirement in our pipelined system of invocations. Moreover,
CHARM++ is a much more complicated system that includes advanced fea-
tures (like object marshalling), which are not part of our simpler and less
ambitious API. Programmers usually prefer a light weight API instead of a
complicated gigantic system.

2.4.2 Active Messages (AM)

The AM encompasses the vital functionality of message driven models with
simpler hardware mechanisms. It provides an efficient mechanism to reduce
the software overhead in message passing by overlapping communication to
computations to exploit the full capacity of the hardware.

Execution Model

Using AM, messages are transferred in a pipeline that operates at a rate
which can be determined by the communication overhead, network depth,
and with the latency related to the message length. The sender node kicks
off the message into the network and carries on computing. On the other
hand receiver is interrupted on message arrival and runs the handler. The
header of each message contains the address of a user level handler which will
be executed on message arrival with the message body as an argument. In
AM, message-packets are not buffered (apart from when required for network
transport) to keep the communication overhead to a minimum limit.

There is a superficial analogy of CARI API to Active Messages (though
Active Messages is not normally considered a high level API, since it pro-
vides low-level messaging primitives). The distinctive characteristic of the
CARI schedule is the way it combines asynchronous result processing through
callbacks with collective completions, and the specific MPI implementations
with bounded communication buffers.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

2.4.3 Global Arrays (GAs) Toolkit

Global Arrays toolkit blends the best features of Shared Memory program-
ming style with Message Passing programming model, notably simplified &
efficient coding with high portability respectively. In other words we can
say that it provides a portable shared memory programming interface for
distributed memory architecture machines.

In GA programming environment each process in a MIMD parallel pro-
gram can asynchronously access logical blocks of physically dispersed data
(stored in multidimensional distributed arrays also known as Global-Arrays)
without explicit assistance from other remote processes. GA objects are used
to encapsulate data distribution and addressing details, such that whenever
data locality information is required it can be taken easily and efficiently.
Shared data structure is logically divided into two portions “local” and “re-
mote”, where the local portion of data stored in shared memory which is
supposed to be faster assessable as compare to the remote portion. But this
difference do not cause any impede in ease of use since GA library provides
uniform access for shared data regardless where it is located local or remote
portion.

GA also supports few one sided shared memory operations like get, put,
gather, read-and-increment, reduction, and lock. These operations can only
be performed on the Global-Arrays data structure rather than random mem-
ory locations. These one sided operations can complete regardless of action
taken by remote process (that own the referenced data). Also, while access-
ing remote data in GA, one does not required to specify the target process
(where does the actual data reside) unlike other similar system. The reason
is that GA provides global-view of the data structure through its index-
based-transfer interface, such that wherever required, GA library internally
performs the global array index-to-address translation and transfer the data
accordingly. The architecture design of GA is more appropriate to those ap-
plications which requires block-wise physical distribution of data, dynamic
load balancing, or have a fairly large ratio of computation to data movement.

Our approach is distinguished by the clear factorization of the system
into a common framework for representing distributed arrays on the one
hand, and an extensible family of high level communication libraries on the
other. One library might specialize in regular data remapping; another may
provide some flavor of collective get/put functionality; yet others provide
computational functions over distributed data sets.

Some other library-based approaches are based explicitly on the BSP
model [21] of Valiant. These usually provide less structured primitives for
message exchange and remote memory access, integrated with barrier syn-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

chronization. Other authors have elected to extend the programming lan-
guage to include threads, and affinity of data to those threads. The PGAS
family of languages that includes Co-Array Fortran [22] and Unified Par-
allel C (UPC) [23] is representative. These languages typically add syntax
for defining arrays that are partitioned over threads, together with some
primitives for accessing elements owned by other threads. A criticism of
this approach is that it typically “hard wires” both the available partition-
ing strategies and the communication primitives, into the definition of the
programming language. These selected communication primitives often have
semantics similar to ordinary assignment statements. A runtime system then
implements something like a distributed shared memory model.

Chapter 3

Gadget-2: A Code for
Cosmological Simulations of
Structure Formation

3.1 Overview

Gadget-2 is a free production code for cosmological N-body and hydrody-
namic simulations. The code is written in the C language and parallelized
using MPI. It simulates the evolution of very large (for example cosmological-
scale) systems under the influence of gravitational and hydrodynamic forces.
The system is modeled by a sufficiently large number of test particles, which
may represent ordinary matter or dark matter. The main simulation loop
increments time steps and drifts particles to the next time step.

To understand the scale of interesting problems, consider the “Millennium
Simulation” [24]. This simulation tracks the expansion of 1010 dark matter
particles from the early universe to the current day. It was executed on
512 processors with 1 Terabyte of distributed memory. The simulation used
350,000 CPU hours over 28 days of elapsed time. It used an upgraded version
of Gadget-2.

We are particularly interested in the parallelization strategy of Gadget-2,
which is based on irregular and dynamically adjusted domain decomposition,
with copious communication between processors.

3.2 Computing Gravitational Forces

One of the main tasks of a structure formation code is to calculate gravita-
tional forces exerted on a particle. Since gravity is a long-range force, every

18

CHAPTER 3. GADGET-2 19

particle in the system exerts gravitational force on every other particle. A
naive summation approach costs O(N2), which is not feasible for the scale
of problems that Gadget-2 aims to solve. To deal with this, Gadget-2 can
use either of two efficient algorithms. The first is the well-known Barnes-
Hut (BH) oct-tree-based algorithm [25]; the second is a hybrid of BH and a
Particle Mesh (PM) method called TreePM.

Figure 3.1: Barnes-Hut Tree Construction in 2D Space.

The Barnes-Hut algorithm is a smart scheme for grouping together bod-
ies (nodes) that are sufficiently close. In the BH tree algorithm, the cubical
region of 3D space under consideration is divided into eight sub-regions by
halving each dimension. Every sub-region that contains any particles is re-
cursively divided until each region has at most one particle. The tree is
traversed from root to compute the force on each particle i. The daughter
nodes of node n are visited recursively if n is too close to i to be treated as
a single mass. For a node n that is sufficiently distant from particle i, a con-
tribution to the force on i is added from the centre of mass of n. Using this
approach, it is possible to estimate the gravitational force for each particle
in O(log(N)) steps. Figure 3.1 illustrates construction of quad Barnes-Hut
tree in a 2D space.

Here each node represents a region of the two dimensional space. The
topmost node represents the whole space, where its four children represent
the four quadrants of the space. The space is recursively divided into quad-
rants until each subdivision contains maximum one body or empty at all.
Hence each external node represents a single body where each internal node
represents the group of bodies below it, and stores the center-of-mass and
the total mass of all its children.

In the TreePM algorithm the gravitational potential is artificially split
into a short range and a long range part:

CHAPTER 3. GADGET-2 20

Gm

r
= φshort(r) + φlong(r) (3.1)

where:

φshort(r) =
Gm

r
erfc

(
r

2rs

)
(3.2)

φlong(r) =
Gm

r

[
1− erfc

(
r

2rs

)]
(3.3)

where erfc is the complementary error function and rs is some threshold

radius. φshort is calculated using the BH tree as above, but now φlong is
calculated by projecting particle mass distribution onto a mesh, then working
in Fourier space to calculate the potential rapidly.

As a massively parallel code, Gadget-2 needs to divide space or the parti-
cle set into “domains”, where each domain is assigned to a single processor.
Generally speaking, dividing space evenly would result in poor load balanc-
ing, because some regions have more particles than others. Conversely, it is
not desirable to divide particles evenly in a fixed way, because one wishes
to keep physically close particles on the same processor, and the proximity
relation changes as the system evolves.

Gadget-2 uses a decomposition based on the space-filling Peano-Hilbert
curve. Particles are sorted according to their position on Peano-Hilbert curve,
then divided evenly into P domains.

3.3 Communications Analysis

The Gadget-2 code is parallelized using MPI, and it makes extensive use of
MPI point-to-point and collective communication functions. Some parts of
the code are parallelized straightforwardly using essentially regular patterns
of communication that can easily be captured in MPI collectives. In such code
sections we consider there is a clean factorization between the application
code and the (MPI) library code that abstracts the non-trivial aspects of
inter-process communication.

But we have identified several code patterns in Gadget-2 that we consider
“non-trivial” where communication is not “cleanly abstracted”. In these
sections there is a relatively adhoc interleaving of application-specific code
and MPI point-to-point and collective calls. The patterns we identified were

1. A partial distributed sort of particles according to Peano-Hilbert key:
this implements domain decomposition.

CHAPTER 3. GADGET-2 21

2. Projection of particle density to regular grid for calculation of φlong;
scatter results back to irregularly distributed particles.

3. Export of particles to other nodes, for calculation of remote contribu-
tion to force, density, etc, and retrieval of results.

We might have added a fourth pattern: a distributed Fast Fourier Trans-
form, used in the TreePM algorithm. Gadget-2 uses the FFTW library [26]
to implement this transform. The parallel FFT routines in FFTW assume
input and output data arrays are distributed block-wise in one array dimen-
sion. There is scope for more systematic representation of these arguments as
distributed arrays (see for example [27]). But actually this “fourth pattern”
is already quite effectively abstracted by the use of FFTW. The question is
really whether the other three patterns are amenable to a similar “factoriza-
tion”.

The first of the patterns enumerated above is essentially a distributed
sort based on the Peano-Hilbert key. Throughout most of the Gadget-2 code,
particles are distributed “irregularly” in a Barnes-Hut tree according to the
Peano-Hilbert key (the exact distribution typically changes from time-step to
time-step). In practise Gadget-2 does not perform an exact sort to establish
the distribution. Instead it performs an approximate sort that exploits fea-
tures of the application. But it seems likely that if an appropriate distributed
sort had been readily available as a library function, the authors of Gadget-2
could have used this instead (on a similar footing to the use of the parallel
FFT). This should lead to a clean factorization between communication code
(mostly abstracted in the distributed sort)and application code. Based on
this assumption, we defer further consideration of this pattern.

The second of the patterns enumerated above is part of the TreePM algo-

rithm. The computation of φlong is performed on a regular mesh by Fourier
analysis. This mesh is distributed blockwise over processors. The communi-
cation pattern of interest here emerges when particle density is transferred
from the irregularly distributed tree to the regular mesh, and when results

for φlong are transferred back. In Gadget-2 the MPI code that does this
is interleaved in a complex way with application specific code. But again
there is reason to believe that the communication operations required here
could be “factored out” of the application code quite effectively. The opera-
tions required correspond closely to the nga acc and nga get functions of the
Global Arrays Toolkit [27], for example. One may legitimately ask whether
an approach based on one-sided communication approach would achieve the
same efficiency as the “collective” implementation in the existing Gadget-2
code. Again we defer discussion to later.

CHAPTER 3. GADGET-2 22

This leaves the third pattern “particle export”. This pattern occurs re-
peatedly in Gadget-2. Specifically, in the freely available source code, it re-
curs in the functions compute potential, gravity tree, gravity forcetest,
density, and hydro force. Some of these functions are responsible for cal-
culation of gravitational forces and potentials, and others are responsible
for computation of hydrodynamic forces. The next subsection explores this
pattern in more detail.

Figure 3.2: Simplified Sketch of compute potential.

3.4 Particle Export

Figure 3.2 is a simplified schematic of the compute potential function, one
of several functions in Gadget-2 that follow the “particle export” pattern.
The three lines (in bold non-italicized font) highlighted in red in Figure 3.2
contain all code that is specific to the physics problem being solved. As
the local particles are processed in the first for loop, those whose potentials
require a contribution from particles held remotely are flagged. All peer
processors that contribute to the local particle’s potential are recorded. If
the local particle needs remote contributions, it is added to a send buffer.
In fact it is added once for each contributing peer processor. Figure 3.3
describes the usage of communication buffer by Gadget-2 code at various
stages of the code.

The send buffer is then sorted according to peer processor id. Sections
of the send buffer are sent to each peer in the list. This is done in using
MPI Sendrecv operations, which concurrently receive particles exported to
this processor by peers into a receive buffer. The local contribution to the
received particles is computed. The results are sent back to the peer needing
them, again the same MPI Sendrecv operations that receive back results for

CHAPTER 3. GADGET-2 23

particles we exported. The returning results are accumulated into the main
particle array (the P array) held locally. Figure 3.4 depicts the execution
patterns for Gadget-2 code at different interval of time when four processes
are communicating with each other.

The actual code of compute potential is complicated by the fact that
Gadget-2 allocates fixed size buffers for communication. Figure 3.5 is more
representative of the real structure. The more complex looping structure
here is shaped largely by the need to manage communication buffers. The
first for loop now terminates when all local particles have been processed
or the send buffer is full, and a new outer loop is needed in case the send

Figure 3.3: Gadget-2 Communication Buffer.

Figure 3.4: Execution Patterns for Gadget-2 Code.

CHAPTER 3. GADGET-2 24

buffer was exhausted. Additional complications are needed to manage receive
buffers. It is necessary to ensure that the export operations converging on
any particular processor do not exhaust the receive buffer on that processor.

Figure 3.5: More Realistic Structure of compute potential.

The Gadget-2 code broadcasts a matrix containing size of all sends from
all processors before entering the communication loops. So every process
can determine how much data converges on every processor, and collectively
group sends and receives so that no receive buffer is ever exhausted.

The real implementation of compute potential is about 300 lines of C,
with most of the application specific code relegated to separate functions.
Figures 3.2 and 3.5 only reproduce its general structure. The point to observe
is that application specific code is scattered through the main “skeleton” of
communications-related code. The question that concerns us how the code
can be re-factored in such a way that it does not compromise the efficiency
of the existing production code, but such that there is clean separation on of
application specific code and communication code.

3.5 Code Options

A list of compile time switches are provided in the Makefile, while the other
custom configuration parameters are provided in the parameter-file available
with the code. Parameter file has to be specified at command line while
running the code. Particularly the parameter file is used to specify the initial
condition files, the start and finish time of the simulation, and the output
directory. Some interesting compile time switches from Makefile are shown
in Table 3.1.

CHAPTER 3. GADGET-2 25

A small change in the Makefile options, Gadget-2 code requires a full re-
compilation. Table 3.2 list a few options from parameter-file. Some other in-
teresting parameters include Omega0, OmegaLambda, NumFilesWrittenInParallel,

TreeAllocFactor, PartAllocFactor, TimeLimitCPU, etc.

1 PMGRID This switch enables the TreePM method, i.e. the long-
range force is computed with a PM-algorithm, where
the short range-force with the tree. The parameter
has to be set to the size of the mesh that should be
used, e.g. 64, 96, 128, etc.

2 DOUBLEPRECISION Enabling this makes the code compute internal parti-
cle data in doubleprecision.

3 DOUBLEPRECISION FFTW If this parameter is enabled, the code will use
the double-precision version of FTTW provided that
FTTW is configures with double precision.

4 OUTPUTPOTENTIAL If this is enabled, it will force the code to compute
and store gravitational potentials for all particles each
time a snapshot file is generated.

5 OUTPUTACCELERATION Physical acceleration of each particle will be stored in
the snapshot files if this flag is enabled.

6 FORCETEST This flag can be set to check the force accuracy of
the code, as debugging option. Code will generate
“forcetest.txt” file for inspection.

7 PEANOHILBERT If this flag is set, it will bring the code in Peano-Hilbert
order after domain decomposition.

8 PERIODIC Used to turn on the periodic boundary conditions.

Table 3.1: A List Of Selected Compile-Time Flags For Gadget-2 Code

1 OutputDir Pathname of the directory that will hold all the output
generated by the simulation eg snapshot files, restart
files, diagnostic files, etc.

2 SnapFormat This flag specifies the file-format to be used for writing
the snapshot files.

3 InitCondFile This sets the filename of the initial conditions to be
read in at start-up.

4 NumFilesPerSnapshot Each snapshot file can be distributed onto several files.
This parameter used to indicate the number files per
snapshot.

5 TimeMax This marks the end of the simulation.

6 BoxSize The BoxSize can be specified in the parameter file to
specify the simulation box, when the periodic bound-
ary conditions are turned on.

7 BufferSize This flag specifies the size of communication buffer
used by the code in various parts of the code.

Table 3.2: A List Of Selected Run-Time Parameters For Gadget-2 Code

Chapter 4

CARI Schedules: Design and
Implementation

4.1 Collective Asynchronous Remote Invoca-

tion (CARI) Schedules

We use the term schedule for the object implementing message passing pat-
tern, the term was popularized by CHAOS/PARTI libraries. As the name
CARI suggests, this schedule is a collective variant of Remote Method Invo-
cation (RMI), which is an attractive, high-level, and established paradigm in
distributed systems programming. The surprise is to find a collective variant
of RMI hiding in a production, massively parallel, message passing code.

A reorganization of the code that achieves our objective is given in Figure
4.1. Here CARI is a library class that abstracts all communication. The
word sched is short for “schedule”; we regard the instantiated object as a
kind of communication schedule. The main loop essentially follows the same
structure as the first loop in Figure 3.2, but instead of manually adding
exports to the send buffer, the invoke method is called on the sched object.
This loop contains the first section of application specific code from Figures
3.2 and 3.5. The other two sections of application code are in the callbacks
requestHandler and responseHandler.

If the implementation of CARI corresponded to Figure 3.2, the invoke

method would simply add the particle (of struct type S) to the send buffer.
The complete method would execute the code in Figure 3.2 following the
“main loop”, calling the user-defined callbacks at appropriate points. If
the implementation of CARI corresponds to Figure 3.5, the invoke method
adds the particle to the send buffer and checks if the buffer is full. If it is,
invoke sorts the buffer and runs the “peer processing” loop, wherein MPI

26

CHAPTER 4. CARI SCHEDULES 27

communications and user callbacks are called.

Figure 4.1: Refactored Code of compute potential.

In this implementation, complete will likewise sort the send buffer, then
run the “peer processing” loop as many times as necessary until all exports
by all processors have been dealt with, globally (detecting termination in-
volves a reduction operation). Because of the stylized way in which we have
presented the original Gadget-2 implementation, the advantage of Figure 4.1
over Figure 3.5 may not be immediately apparent. But in reality the com-
munication code in Figure 3.5 that is abstracted away in the CARI class is
one to two hundred lines of rather dense MPI; in Figure 4.1 this is replaced
by a few method calls and definitions. But it is important to re-state the
fact that we can go from Figure 3.5 to Figure 4.1 with essentially no changes
in the underlying communication pattern, or efficiency of the programme.

The pattern in Figure 4.1 may be recognized as a basic kind of remote
method invocation. The user-defined callback requestHandler is the im-
plementation code for the remote invocation (on the peer that is acting as
“server”). The invoked method takes exactly one struct-type parameter of
type S, and produces exactly one struct-type result of type T.

4.2 CARI Schedules are Asynchronous

The invocation of methods are asynchronous in the sense that the invoke

method does not in general wait for the invocation to complete and results
to come back before returning. Instead it may return immediately, and a
user-defined callback function responseHandler processes the result locally
when it does eventually return to the “client”.

CHAPTER 4. CARI SCHEDULES 28

4.3 CARI Schedules are Collective

The pattern is “collective” in a couple of senses.

1. All peers potentially act symmetrically as clients and as servers.

2. Creation of the CARI schedule is also a collective operation.

3. The logical synchronization that marks completion of all invocations
occurs in the strictly collective complete method.

4. The invoke methods themselves may make use of collective methods
for their implementation, as in the Gadget-2 inspired implementation
implied above. But this is strictly an implementation issue. From a
logical point of view the invoke method is not collective. Different
peers make different numbers of invoke calls. Some may make none.
We refer to this pattern as Collective Asynchronous Remote Invocation
(CARI).

4.4 Implementation of the CARI API

As part of our research presented in this thesis, we have developed two im-
plementations of the CARI API.

- Synchronous CARI (SCARI)

- Asynchronous CARI (ACARI)

The two versions of the CARI API are developed with the aim to increase
programming productivity and develop potentially high-performance and ef-
ficient implementations. These two implementations require a C++ compiler
and an MPI communications library. It is illustrated in a self-explanatory
Figure 4.2.

4.4.1 Synchronous CARI (SCARI)

The first implementation is known as Synchronous CARI (SCARI), which is
developed with the aim to exactly preserve the performance of the original
Gadget-2 code. Mostly this implementation reorganizes the source code,
and attempts not to incur any performance overhead. SCARI implements
a variant of the MPI Alltoall method with a bounded send and receive
communication buffer.

CHAPTER 4. CARI SCHEDULES 29

Figure 4.2: Architecture of CARI API.

Design and Architecture of SCARI

Figure 4.1 is somewhat stylized. Without comment, we have assumed an
object-oriented C++ style of programming. The original Gadget-2 which is
our motivating example and it is written in ANSI C. With few exceptions,
C is a subset of C++, and it only needs a few minor adjustments to the
Gadget-2 code to allow it to be compiled with a C++ compiler. Modern
C++ compilers will compile programmes written in the C subset with no
noticeable overhead. So there is no immediate downside to treating Gadget-
2 as a C++ programme. We then only need to ensure that any new class
libraries introduced into the programme do not negatively impact the overall
performance of the system. In an object-oriented language it is most nat-
ural for the “handler” functions to be methods on objects. The classes of
these objects can extend library-defined interfaces that specify the methods’
signatures. Moreover the user-defined subclasses that implement them can
conveniently be instantiated to hold references to relevant application state,
like the P array.

A more realistic API for CARI is given in Figure 4.3. The constructor for
CARISchedule is passed an MPI communicator, and an application-specific
object whose class extends CARIHandler. The constructor also passed a
workspace in the form of buffer space allocated in the application code. In-
ternally, CARISchedule class will carve this workspace according to its re-
quirements, for example, the implementation follows that of Figure 3.5, this

CHAPTER 4. CARI SCHEDULES 30

workspace will be carved into a send buffer and a receive buffer, and perhaps
extra workspace used in sorting the send buffer.

Figure 4.3: Realistic C++ API for CARI.

The invoke method takes a pointer to an instance of type S. This type S
will typically be a primitive type, an array type of constant size, or a simple
“struct-like” class containing only fields of like types. In C++ parlance, S
must be a Plain Old Data (POD) type. No provision is made for arguments
that are more general data structures. If the type S includes pointers, CARI
will simply copy the address values of these pointers, and in general the copied
values cannot be de-referenced in the context of a remote processor. This
applies equally to char* pointers, where the strings that are to be processed
remotely must be passed as char arrays of constant size.

The second argument of invoke method is a tag that is simply passed to
the local handleResponse method when the result of the invocation returns.
This tag can be used in any manner that is convenient to the application.
Note this tag is deliberately not passed to the handleResponse method that
handles the remote invocation on the “server” side. This is so that the
API admits implementations that do not pass the tag in request or response

CHAPTER 4. CARI SCHEDULES 31

messages. The result of the remote invocation is of type T , which again
should be a POD type, and the same comments apply as for the argument
type.

To simplify the task of the programmer, we developed the CARI API
with certain guarantees of atomicity. Execution is serial in the sense that a
handleRequest or handleResponse method is never called concurrently with
execution of other user code on the local processor (and no two handlers are
called concurrently on the local processor). Specifically, handlers are called
sequentially (though in general in undefined order) during execution of CARI
library code, either during an invoke() or complete() call. So, while the
application writer needs to be aware that in general there is no uniquely
defined order in which handlers are invoked, there is no need to synchronize
access to variables used, for example, as accumulators. If, say, a handler
performs an accumulation like:

x+ = a

On a programme variable x, this is also modified in the main body of the
client code or in another handler, so there is no need for explicit mutual
exclusion protecting this operation.

Figure 4.4: Communication Buffer used by SCARI

Figure 4.4 represents the usage of communication buffer by SCARI im-
plementation. Given figure shows the communication buffer in two shades;
the red shade buffer portrays how it is used by the gravity, potential,

CHAPTER 4. CARI SCHEDULES 32

and force computation code. The blue shade buffer depicts how it is carved
and used by the density and hydra computation code.

4.4.2 Asynchronous CARI (ACARI)

The second implementation, called Asynchronous CARI (ACARI), is a proof-
of-concept implementation to demonstrate that-beyond simply refactoring
the code to simplify it and improve its the maintainability, our higher-level
libraries can potentially enhance performance, by admitting alternate imple-
mentations. In ACARI this is achieved by reducing wait time using non-
blocking MPI primitives.

The motivation for ACARI comes from considering overheads of the the
original Gadget-2 code, parts of which are refactored to give the SCARI
implementation of CARI. This original implementation maintains a global
list of numbers of particles exchanged at each communication stage during a
single time-step. The size of this list is O(P 2) where P is the total number of
processors involved in the parallel computation. The data structures holding
the particles of physical interest on each processor are of size O(N/P) where
N represents the total number of particles in the system.

As P increases, the overheads become comparable to the particle data
when:

P 2 ∝ N/P (4.1)

or:
P 3 ∝ N (4.2)

or:
P ∝ 3

√
N (4.3)

Similar considerations will apply to the associated computation and commu-
nication overheads, since they are broadly linear, or log linear, in the data
sizes.

The intuition behind ACARI was that if we can eliminate the O(P 2) data
structures on each processor that record how much data all processors are
exchanging, we may improve scalability. For example if overheads where only
O(P), P might be scaled up to O(

√
N) rather than O(3

√
N).

Collective Asynchronous Request Protocol (CARP)

CARP is a simple protocol in which each process can asynchronously send a
request to any of its peers. The only collective aspect of the protocol is that
a CARP “superstep” is terminated by a barrier synchronization. To get the

CHAPTER 4. CARI SCHEDULES 33

implementation of CARP correct, we found it convenient to give an abstract
representation in a CSP-like notation [28]. In terms of equations given in 4.2
, the abstract implementation of CARP on an individual process i is:

CLIENT(R(i), 0) ‖ SERVER (4.4)

Here R(i) is the sequence of requests issued by process i in the “superstep”.
At the level of abstraction here we don’t consider the data content of the
message-only the sequencing of events. So R(i) is just a sequence of desti-
nation process ids (i.e. a sequence of numbers between 0 and P − 1). There
are four kinds of message exchanged by the protocol:

- req(i, j) is a request message from process i to process j

- ack(i, j) is a response message from process j back to process i

- bar(i, j) is a fan-in message from process i to process j in the first phase
of a barrier synchronization

- rab(i, j) is a fan-out message from process j back to process i in the
second phase of a barrier synchronization.

Superscripting the message names with O or I yields the CSP events corre-
sponding to output or input of these message. The barrier synchronization
is presumed performed on a spanning tree where the parent of process i is
process p, and the sequence c contains process ids of the children of process
i. Note � is the CSP choice operator.

Equation 4.4 essentially says that each process has two logical threads,
the client thread that is sending out requests and get responses while the
server thread is receiving requests and sending out responses. In the CSP
model note that the only point of synchronization between these two threads
is on the event rab(i, p)I , which is the only event in the alphabet of both
processes. For the server the receipt of the fan-out messages causes shut
down.

We should add that this model does not actually describe the commu-
nication between processes, only the local behavior of the processes. With
a lot more work it might be possible to model the interaction (and perhaps
even formally prove correctness of the protocol). This wasn’t our goal, we
simply wanted a clean way to describe the local behavior of the processes
engaged in the CARP protocol, which was intuitively correct. We believe it
is reasonably clear from inspection that there is no scope for (say) deadlock
in the model as given.

CHAPTER 4. CARI SCHEDULES 34

Figure 4.5: CSP model for CARP API

The next stage was to transcribe the abstract multithreaded model to an
MPI implementation, single threaded on every processor. To achieve this we
used MPI non-blocking communications with a simple finite state machine
to implement the “background” server thread.

The final API for the CARP class is given in 4.6. The constructor is
passed the maximum size of request and response messages, a working buffer,
and a callback that defines how the server “thread” handles incoming request
to transform them into response messages, and how the client “thread” deals
with response messages. The Figure 4.7 represents different segments of the
working buffer used by the CARP based CARI API. The only other two

CHAPTER 4. CARI SCHEDULES 35

Figure 4.6: A Sketch of CARP class

Figure 4.7: Communication Buffer used by CARP API

methods are request and complete. The former naturally sends a message
and the latter is called when the current “superstep” is over. Basically CARP
itself is a newer lower level API that can be used independently from CARI
API. We have very clear intentions to use CARP in our future proposed
work. The ACARI version has been provided the same invoke and complete

CHAPTER 4. CARI SCHEDULES 36

public functions (as for SCARI implementation). Figure 4.8 shows a sketch
of ACARI implementation.

Figure 4.8: A Sketch of ACARI class

Chapter 5

Evaluation: Accuracy and
Performance

5.1 Testing environment

The CARI API has been evaluated using a 32 processing core Linux cluster at
SEECS-NUST. The cluster had eight compute nodes. Each node contained a
quad-core Intel Xeon processor. The nodes were connected via Myrinet and
Gigabit Ethernet. The compute nodes ran the SuSE Linux Enterprise Server
(SLES) 10 operating system and GNU C Compiler (GCC) version 4.1.0. Each
compute node had 2 Gigabytes of main memory. We used MPICH2 version
1.2.1p1 as the MPI library used by the original and the CARI Gadget-2.

5.2 CARI Test Suite

CARI’s evaluation process comprised of two phases

1. Accuracy Evaluation

2. Performance Evaluation

5.3 Accuracy Evaluation

The public version of Gadget-2 code comes with initial condition files for dif-
ferent simulations including Lambda Cold Dark Matter (LCDM) gas, Cosmo-
logical formation of a cluster of galaxies, and Galaxy collision. Snapshots files
are the primary output produced by GADGET-2 during simulation, which
are simply dumps of state of the system at certain time intervals. We have

37

CHAPTER 5. EVALUATION 38

successfully incorporated CARI API in Gadget-2 code at five different stages
(compute potential, gravity tree, gravity forcetest, density, and

hydro force) of the code as discussed earlier in Chapter 4. A comprehen-
sive accuracy evaluation was done by running various simulations (described
above) using CARI version Gadget-2 code and the results were compared
against the original code’s results.

One way to quantify accuracy of CARI version Gadget-2 code was by
comparing visual results. IDL software was used to create and analyze vi-
sualizations from multifaceted numerical data. The Gadget-2 distribution
include IDL scripts to plot the system from snapshot files. These visual out-
puts were indistinguishable for the two versions. This provide us a high
degree of confidence for correctness of the newly developed API code. We
did not rely only on the visual comparison; thus we produced more transpar-
ent results by generating human readable output from binary snapshot files
for both said versions. Finally, these output files were compared using auto
testing modules which we developed specially for the testing purpose.

5.3.1 Runtime environment for Gadget-2 code

Gadget-2 Makefile lists a number of compile-time flags to configure a simula-
tion that can be run with a GADGET-2 executable. For example PERIODIC

flag should be enabled for Lambda Cold Dark Matter (LCDM) gas simula-
tion. Similarly there are other flags which enable/disable execution of some
specific part of the code. For example if OUTPUTPOTENTIAL flag is enabled, it
will force the code to compute and store gravitational potential for all parti-
cles each time a snapshot file is generated. Other important flags are listed
in Table 3.1 in Chapter 3.

5.3.2 Auto Testing

We prefer auto-testing rather than manual because of transparency of results
along with efficiency of testing process. Testing is a cyclic process, that’s why
every time developer changes the source code, we executed the auto-testing
modules to verify the correctness of the change.

1. ReadSnapshot module was used for producing human readable output
from Gadget-2 binary snapshot files.

2. Testing module was used to compare these human readable output
and to produce a comparison report.

CHAPTER 5. EVALUATION 39

Both of these auto-testing modules require a text file as command line argu-
ment, which was named as testparameters containing the following infor-
mation:

- Total number of particles (for how many particles the test should be
conducted, 800 particles in our case).

- Threshold value called epsilon (used to ignore insignificant rounding
error).

- Randomly selected particle’s ID’s.

Figure 5.1: Auto Testing Procedure

The importance of insignificant rounding errors, epsilon value, and the
details how we have tackled them during the development and evaluation
process of CARI API are discussed in the next section.

5.3.3 Intricacies of Floating Point Arithmetic

On a computer, real numbers are always approximated by floating point num-
bers. Mathematical operations on big real numbers having large fractional
part regularly lead out of the space of the represent-able numbers which
frequently results in round-off errors. That why, for these mathematical op-
erations the law of associativity for simple additions/subtraction doesn’t hold
on a computer.

(A + B) + C 6= A + (B + C)

This is what we have observed during the development process of CARI
API. We have also observed that even a small change in the order of floating

CHAPTER 5. EVALUATION 40

point operations (may) change the expected results; again this is because
of the limited precision of computing machines. So comparing the results
against some expected value it is highly unlikely that one will get expected
results. The solution to minimize the effects of this problem was to use
Relative Error rather than Absolute Error.

Absolute Error

The absolute error can be calculated by taking the magnitude of the difference
between the exact value and the approximation.

Relative Error

The relative error is the absolute error divided by the magnitude of the exact
value.

CARI-testing process is also based on relative error instead of absolute error.
As an example if the exact value is 100 and the approximation is 99.9, then
the absolute error is 0.1 and the relative error is 0.1/100 = 0.001. Simi-
larly while developing the auto-testing modules we avoid the use of equality
test (if (A == B) then) when expectations are based on floating point
numbers. These tests are replaced like this:

If(abs(A− B) < epsilon) then do− this endif

Here epsilon was sufficiently so small. One can set its values according to the
accuracy desired or an application required. For example if an application
desired 99% accuracy it means 0.01 is the the tolerance rate. So we need
to set epsilon value to 0.01. It means the relative error less than epsilon are
insignificant and it can be ignored. CARI API has been tested using various
epsilon values by hit and trial method (ranging from 0.000001 maximum up
to 0.000020).

5.3.4 Cosmological Simulations used for Testing

This section highlights the various scientific simulations used for CARI API’s
evaluation process. All the figures given in this section are obtained using
CARI version Gadget-2 code. To save space and avoid redundancy, figures
obtained using original Gadget-2 code are not pasted here.

CHAPTER 5. EVALUATION 41

Lambda Cold Dark Matter (LCDM) Gas

LCDM Gas simulation often referred to as the typical model of big bang
cosmology. It helps to understand the existence and structure of the cosmic
microwave background, the large scale structure of galaxy clusters and the
distribution of different gases (hydrogen, helium, lithium, oxygen). Initial
condition file available with Gadget-2 code contains 65365 number of par-
ticles. Table 5.1 list the necessary runtime flags that were enabled while
running this simulation along with other default enabled flags.

OUTPUTPOTENTIAL This will force the code to compute gravitational potentials for all
particles each time a snapshot file is generated.

OUTPUTACCELERATION Physical acceleration of each particle will be stored in the snapshot
files if this flag is enabled.

FORCETEST=0.01 This can be set to check the force accuracy of the code, and is only
included as a debugging option. The normal tree-forces and the exact
direct summation forces are then collected in a file forcetest.txt for
later inspection. Note that the simulation itself is unaffected by this
option.

Table 5.1: Compile-Time Flags For LCDM Gas Simulation

Figure 5.2: Initial State of LCDM Gas Simulation

CHAPTER 5. EVALUATION 42

Colliding Galaxies Simulation

This simulation runs two disk galaxies into each other, leading to a merger
between the galaxies. In this example each galaxy consists of 60, 000 particles.
After colliding each galaxy is distributed into a stellar disc and an extended
dark matter halo. Figure 5.3 shows the initial state of the Colliding Galaxies
simulation. Figure 5.4 and Figure 5.5 show evolved states. Each figure shows
the Colliding Galaxies from three different angles.

Figure 5.3: Initial State of Galaxy Formation Simulation

Figure 5.4: Mid State of Galaxy Formation Simulation

Figure 5.5: Final State of Galaxy Formation Simulation

CHAPTER 5. EVALUATION 43

Cosmological formation of a Cluster of Galaxies

This simulation evolves randomly distributed dark matter 276498 particles
to form a cluster of galaxies using collisionless dynamics in an expanding
universe.

Figure 5.6: Initial State of Cluster Formation Simulation

Figure 5.7: Mid State of Cluster Formation Simulation

Cluster simulation’s visual results show that the CARI version Gadget-2

CHAPTER 5. EVALUATION 44

code performs as accurate as original version. Figure 5.6 shows the initial
state of the Cluster Formation simulation followed by Figure 5.7 which shows
an evolved state. Figure 5.8 shows the final state of the Cluster Formation
simulation. Figure 5.9 is special in the sense that it is drawn using combined
snapshot files (initial, evolved and final state)

Figure 5.8: Final State of Cluster Formation Simulation

Figure 5.9: Combined Draw for Cluster Formation Simulation

CHAPTER 5. EVALUATION 45

5.4 Performance Evaluation

To test the performance of CARI variants of the Gadget-2 code, we used
the Cluster Formation Simulation that comes with the source bundle. This
simulation contains a total of 276498 particles and can thus be considered a
moderate size simulation.

A relevant issue is the mapping of MPI processes to cluster compute
nodes. When the total number of MPI processes is less than or equal to 8
(total number of compute nodes), we run each MPI process on a distinct
compute node. As the total number of processes increases the total count of
compute nodes, additional MPI processes are distributed evenly on compute
nodes in a round-robin fashion. For example in the case of 16 MPI processes,
each node runs 2 processes and in the case of 32 processes, each node runs 4
processes.

As part of the performance evaluation effort, we present the execution
time and the speedup graph in Figure 5.10 and Figure 5.11 respectively for
three variants of the Gadget-2 code. These include the original Gadget-2,
Gadget-2 using SCARI, and Gadget-2 using CARP. The Gadget-2 code in
the second and third case is exactly the same; the only difference is the im-
plementation of the CARI library. The original Gadget-2 code implements a
profiling scheme at the application layer to measure the time spent at various
stages including overall execution time, tree construction, tree walk, com-
munication, domain decomposition, I/O, and synchronization. For brevity
purposes, we only present the overall execution time, which also is the most
relevant here.

Our performance evaluation reveals that both CARI versions of the Gadget-
2 code perform, at least, as well as the original Gadget-2 code. This meets one
of our main objectives that the performance of CARI-based application must
be comparable to the original application code that uses MPI. The perfor-
mance of the SCARI implementation is exactly similar to the original code as
we expected. But the CARP implementation of the CARI API slightly out-
performs the SCARI-based and the original application code for all processor
counts. In fact the performance of CARP gets even better as the numbers
of cores are added to the parallel computation. Although the gain observed
by CARP is modest, but it proves an important point that higher-level com-
munication libraries can also provide better performance than MPI alone.
The main reason for the better performance of CARP is the asynchronous
nature of the communication algorithm. Also the CARP implementation
does not rely on the global knowledge of elements transferred at each time
step. This global information is maintained using an expensive MPI collec-
tive call for several communication stages within a single time step. Due to

CHAPTER 5. EVALUATION 46

Figure 5.10: Execution-Time for Cluster Formation Simulation

Figure 5.11: Speed-up Measure for Cluster Formation Simulation

CHAPTER 5. EVALUATION 47

its asynchronous implementation using non-blocking MPI calls, CARP re-
moves this bottleneck from the code. In addition, CARP heavily relies on
the quality of the implementation of non-blocking communication functions
and the associated asynchronous progress engine. To recap, the performance
numbers presented in this section clearly demonstrate that SCARI-based im-
plementation of Gadget-2 performs as well as the original code. Our second
implementation CARP, which is a proof-of-concept implementation, mod-
estly outperforms the original code.

5.5 Productivity - Line of Code (LOC)

By absorbing the message passing code, we have simplified the application
(Gadget-2) code. Table 5.2 verifies this by presenting Source Lines of Code
(SLOC) comparison between Gadget-2 version using MPI and CARI. There
is a notable reduction in SLOC in the case of the gravity calculation physics
code. Figure 5.12 describes the usefulness of CARI API at different parts of
the Gadget-2 code. For example gravity computation code is almost 22.5%
of the overall application when it was using MPI, which involves complex and
recurring message passing code along with physics code. But using CARI
library this number reduce to 14.5% of the overall, which indeed 8% less than
the original. It really means that an application developer will now put 8%
less efforts while writing application the code, similarly in the other parts of
the code.

gravetree potential density hydra gravetree forcetest

CARI-Gadget-2 14.40 8.92 18.32 16.85 8.79

Original Gadget-2 22.54 14.31 25.28 23.39 14.48

Table 5.2: Productivity In Terms Of LOC Using CARI API

It must be noted that our proposed API (CARI) is applicable to less than
15% of the total code and thus the SLOC reduction is less visible at the ap-
plication level. But for the relevant computation/communication sections of
the code (like gravity/density calculations), the CARI API significantly
reduces SLOC (mostly dense and complicated MPI code) and improves main-
tainability of the code.

CHAPTER 5. EVALUATION 48

Figure 5.12: Line of Code Comparison

5.6 Memory Usage - Scalability

As mentioned in subsection 3.4 the Gadget-2 code maintains a global list of all
particles exchanged at each communication stage during a single time step.
The size of this list is P 2 where P is the total number of processors involved in
the parallel computation. One of the CARI implementation (ACARI) avoids
keeping and maintaining this global list, which dominates the total memory
consumed by the Gadget-2 code as the value of P (number of processors)
increases.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The emergence of multicore hardware has put the burden of performance
on the software development community. The only option to increase per-
formance of existing sequential applications is to utilize some form of paral-
lelism. This obviously implies that the software developers must learn par-
allel programming models and tools to write optimized code for multicore
processors.

Gadget-2 is a massively parallel astrophysics code for cosmological N-
body and hydrodynamics simulations. Versions of this code featured in the
Millennium Simulation, which is the largest simulated model of the Universe.
Gadget-2 has been parallelized for distributed memory platforms using the
MPI standard, which is considered a low-level and complex API. In this thesis
we analyzed Gadget-2 with a view to understanding what high-level SPMD
communication abstractions might be developed to replace the intricate use
of MPI in Gadget-2. These communication abstractions must enhance pro-
gramming productivity without compromising performance. Our analysis of
the code identified several complex and recurring patterns of message passing
cluttered inside the application specific physics code.

We reorganized Gadget-2 to absorb one such message passing schedule
into a high level communication library called CARI - a collective variant of
RMI. By absorbing the message passing code, we have simplified the appli-
cation code. We had verifies this by presenting Source Lines of Code (SLOC)
comparison between Gadget-2 version using MPI and CARI. There is a no-
table reduction in SLOC in different phases of the physics code. Right now
our newly developed API (CARI) is applicable to less than 15% of the total
application (Gadget-2) code and thus the SLOC reduction is less visible at

49

CHAPTER 6. CONCLUSION AND FUTURE WORK 50

the application level. But for the relevant computation/communication sec-
tions of the code, the CARI API significantly reduces SLOC (mostly dense
and complicated MPI code) and improves maintainability of the code.

The thesis introduced and evaluated implementations of the CARI sched-
ule. By construction, these schedules have efficient implementations on var-
ious architectures including distributed and shared memory machines. We
prove this point by presenting two implementations in this thesis.

The first implementation, known as SCARI, retains the original message
passing code with the goal of obtaining similar application level performance.
This implementation simply reorganizes the code. The second implementa-
tion, known as CARP, is developed to show that it is possible to improve
performance and programming productivity at the same time. CARP uses
an asynchronous request processing protocol that extensively relies on non-
blocking MPI communication methods.

The performance evaluation revealed that SCARI-based implementation
of the Gadget-2 code achieves comparable performance to the original code.
However, the CARI-based Gadget-2 modestly outperforms other implemen-
tations. This clearly demonstrates that higher performance and higher pro-
ductivity and not mutually exclusive.

6.2 Future Work

There are couple of other message passing patterns in Gadget-2 that can
also be absorbed into a high-level communication library. The two notable
patterns include a) the distributed sort based on the Peano-Hilbert key, and
b) parts of the TreePM algorithm. We plan to address these in the future. We
also plan to demonstrate usefulness of the CARI library in other irregular
applications-the most likely candidate is a Finite Element Method (FEM)
code. The CARI library will be released as open-source software towards the
end of 2010.

Bibliography

[1] H. Sutter, “The Free Lunch is Over: A Fundamental Turn Towards
Concurrency in Software,” [Online]. Available: http://www.gotw.ca/

publications/concurrency-ddj.htm

[2] D. Geer, “Industry Trends: Chip Makers Turn to Multicore Proces-
sors,” Computer, vol. 38, no. 5, pp. 11-13, doi:10.1109/MC.2005.160,
May 2005.

[3] “The Manycore Shift: Microsoft Parallel Computing Ini-
tiative Ushers Computing into the Next Era,” Microsoft,
http://www.microsoft.com/downloads/.

[4] Message Passing Interface Forum, MPI: A Message-Passing In-
terface Standard, University of Tenessee, Knoxville, TN, 1995,
www.mcs.anl.gov/mpi.

[5] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, 2007.

[6] V. Springel, “The cosmological simulation code GADGET-2,” Monthly
Notices of the Royal Astronomical Society, vol. 364, p. 1105, 2005. [On-
line]. Available: http://www.citebase.org/cgi-bin/citations?id=

oai:arXiv.org:astro-ph/0505010

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick, “The landscape of parallel computing re-
search: A view from berkeley,” EECS Department, University of Cal-
ifornia, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006. [On-
line]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/

2006/EECS-2006-183.html

51

BIBLIOGRAPHY 52

[8] J. L. Träff, “What the parallel-processing community has (failed) to offer
the multi/many-core generation,” J. Parallel Distrib. Comput., vol. 69,
no. 9, pp. 807–812, 2009.

[9] L. Kale, “New parallel programming abstractions and the role of com-
pilers,” Parallel and Distributed Processing Symposium, International,
vol. 0, pp. 458, 2006.

[10] “Top 500 List Home Page,” www.top500.org/list/2010.

[11] D. Turner, “Introduction to Parallel Computing and Cluster Comput-
ers,” Ames Laboratory, http://www.scl.ameslab.gov/Projects/

[12] C. Quammen, “Introduction to programming shared-memory and
distributed-memory parallel computers ISSN:1528-4972,” ACM Cross-
roads, vol. 8, pp. 16 - 22, 2002.

[13] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, “PVM and MPI: a compar-
ison of features. Tech. Report DE-AC05-96OR22464,” U.S. Department
of Energy, Office of Energy Research, May 30 1996.

[14] “OpenMP: Simple, Portable, Scalable SMP Programming,”
http://www.openmp.org.

[15] “Intel Cilk++ Software Development Kit,”
http://software.intel.com/en-us/articles/intel-cilk/.

[16] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly Media, 2007.

[17] G. Z. Bryan, B. Carpenter, G. Fox, X. Li, and Y. Wen, “A high level
spmd programming model: Hpspmd and its java language binding,” In
International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’98, Tech. Rep., 1998.

[18] S. Lim, B. Carpenter, G. Fox, and H.-K. Lee, “A device level commu-
nication library for the HPJava programming language,” in IASTED
International Conference on Parallel and Distributed Computing and
Systems (PDCS 2003), November 2003.

[19] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà, “Advances, applications and performance of the global arrays
shared memory programming toolkit,” Int. J. High Perform. Comput.
Appl., vol. 20, no. 2, pp. 203–231, 2006.

BIBLIOGRAPHY 53

[20] L. V. Kale and S. Krishnan, “Charm++: a portable concurrent object
oriented system based on c++,” SIGPLAN Not., vol. 28, no. 10, pp.
91–108, 1993.

[21] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[22] R. W. Numrich and J. Reid, “Co-array fortran for parallel program-
ming,” SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, 1998.

[23] T. El-Ghazawi, W. Carlson, T. Sterling, and K. atherine Yelick, UPC:
Distributed Shared Memory Programming. John Wiley and Sons, May
2005.

[24] V. Springel, S. White, A. Jenkins, C. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly, J. Peacock, S. Cole,
P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce, “
Simulating the joint evolution of quasars, galaxies and their large-scale
distribution,” Nature, pp. 435–629, 2005.

[25] J. Barnes and P. Hut, “ A Hierarchical O(N log N) Force-calculation
Algorithm,” Nature, vol. 324, no. 4, pp. 446–449, 1986.

[26] “FFTW Project Home Page,” http://www.fftw.org/.

[27] J. Nieplocha, R. Harrison, and R. Littlefield, “The Global Array: Non-
uniform-memory-access programming model for high-performance com-
puters,” The Journal of Supercomputing, vol. 10, pp. 197–220, 1996,
http://www.emsl.pnl.gov:2080/docs/global/.

[28] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall,
1985.

