
DESIGN AND IMPLEMENTATION 
OF AUTONOMOUS AGENT 
ARCHITECTURE FOR SAGE  

 

 

 

 

by 

Amina Tariq 
Amna Basharat 

A thesis submitted in partial fulfillment of the 
requirements for the degree of Bachelors of Computer 

Software Engineering 

National University of Sciences and Technology, 
Rawalpindi 

May 2005 



DEDICATION 

In the name of Allah, the Most Beneficent, the Most Merciful 

 

 

 

 

 

 

 

 

 

 

To our dear Families…especially to our Mothers 

 



ACKNOWLEDGMENTS 

After the grace of Almighty Allah and the prayers and support of our parents and family, we 

are deeply beholden to our supervisor Associate Professor Dr. H Farooq Ahmad for his 

continuous assistance, inspiration, patience and unconditional support. We are highly gratified to 

our Co-Supervisor, Professor Dr. Arshad Ali, Director General NIIT, for his continuous and 

valuable suggestions, guidance, and commitment towards provision of undue support throughout 

our thesis work. His ability of management and foresightedness helped us take our research 

beyond levels of excellence. 

We would also like to show immense gratitude to Dr. Hiroki Suguri, Comtec, Japan for his 

valuable suggestions and guidance and for all his support during our Collaborative Research Visit 

to Japan as part of this project. We would also like to extend our gratitude to Prof. Kinji Mori, 

Tokyo Institute of Technology for extending his support, appreciation and encouragement for this 

research. 

We wish to acknowledge the continuous support of the Commandant MCS, Major General 

Hamid Mehmood, Chief Instructor MCS, Brig. Dr. Muhammad Akbar, HOD CS Department 

Col. Raja Iqbal, Col. Naveed Khattak and the faculty and administration of MCS.  

We are highly thankful to all of our professors whom had been guiding and supporting us 

through out our course and research work. Their knowledge, guidance and training enabled us to 

carry out this research work.  

We are especially thankful to Mr Omair Shafiq and Mr Nauman Qureshi for working sincerely 

with us in development of the application and Mr Zaheer Abbas Khan for his valuable 

suggestions. We would like to offer our thanks to all of our colleagues in Comtec, Mr Ishikawa and 

Mr Lee who had valuable contribution over the course of our research. 

We would like to offer our admiration to all our classmates, and our seniors who had been 

supporting, helping and encouraging us throughout our thesis project. We are also indebted to the 

MCS system administration for their help and support.  

We would like to offer appreciation to our parents for their vision and commitment to make 

us learn, and other family members for their encouragement, support and prayers.  



 

 

ABSTRACT 

Multi-agent systems (MAS) advocate an agent-based approach to software engineering based 

on decomposing problems in terms of decentralized, autonomous agents that can engage in 

flexible, high-level interactions. Scalable, fault tolerant Agent Grooming Environment (SAGE), a 

second generation MAS offers a decentralized, fault tolerant agent framework unlike the first 

generation MASs. Currently the system framework of SAGE is in place, and a well defined agent 

architecture needs to be developed which will allow development of autonomous and intelligent 

agents on top of this decentralized system. The aim of the project was to design and develop a 

hybrid agent architecture in such a holistic and well defined manner that has not figured in the 

domain of FIPA-Compliant architectures so far. The existing architectures reside on top of 

centralized frameworks and primarily offer reactive behaviour support. The novelty of this Hybrid 

approach is that it allows agents to practically reason about their behaviour in addition to reactive 

and deliberative behaviour. This has not been previously done in the first generation MASs e.g. 

JADE, FIPA-OS. The highlight of the architecture is that it gives a generic design of sophisticated 

agent models such as BDI and reactive architectures with in well defined modules. Also presented 

is the design and implementation of a high level agent application which depicts the synergy of 

software agents, Grid Computing and the web services (Agent Web Gateway). The application not 

only validates the architecture but also illustrates the coordination of different entities by agents 

acting as owners in heterogeneous and dynamically changing environments. 
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1 INTRODUCTION 

Multi-agent systems (MAS) are based on the idea that a cooperative working environment 

comprising synergistic software components can cope with problems which are hard to solve 

using the traditional centralized approach to computation [1]. Smaller software entities – software 

agents – with special capabilities (autonomous, reactive, pro-active and social) are used instead to 

interact in a flexible and dynamic way to solve problems more efficiently. Multi agent system is a 

distributed paradigm that contains a community of social agents, which can act on behalf of their 

owners. It is increasingly becoming a ubiquitous paradigm for the design and implementation of 

complex software applications as it can support distributed collaborative problem solving by 

agent collections that dynamically organize themselves. Multi-agent systems are based on the idea 

that a cooperative working environment comprising synergistic software components can cope 

with problems which are hard to solve using the traditional centralized approach to computation. 

The improvements of the use of multi-agents technology in automation and manufacturing 

systems are the fast adaptation to system reconfiguration (for example addition or removal of 

resources, different organizational structures, etc.), re-use of code for other control applications, 

increase of flexibility and adaptation of the control application and more optimized and modular 

software development 

Intelligent agents have become the most vibrant and fastest growing research area in both 

artificial intelligence and computer science. New agent-based products, applications and services 

arise on an almost daily basis. Since the term “agents” has been very popular and used with a 

number of different definitions, this report reviews a broad range of toolkits and products, and 

provides an overview of the most important issues of agent-based technology.  

The agent-based approach to software systems development views these autonomous 

software agents as components of a much larger business function. The main benefit of viewing 

them from this perspective is that the software components can be integrated into a coherent and 

consistent software system in which they work together to better meet the needs of the entire 

application (utilizing autonomy, responsiveness, pro-activeness and social ability). Typical agent 

applications are e-commerce, network management, information retrieval for further processing, 

digital tourism, supply chain management, support systems, web services, medical and Grid etc.  
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1.1 BACKGROUND 

Multi Agent System (MAS) is a distributed paradigm that contains a community of social 

agents which can act on behalf of their owners. Foundation for Intelligent Physical Agents 

(FIPA) is one of the standard governing bodies, which provide an abstract architecture, which act 

as the guidelines to be followed by the multi-agent system developers [2]. FIPA has standardized 

autonomous multi-agent system abstract architecture, based on components like AMS, DF, ACL, 

MTS etc, which themselves are the agents in their own right. 

First generation FIPA compliant multi-agent systems lack techniques to manage challenges 

faced by distributed systems. The MAS is moving into a new era, what is popularly known as the 

second generation, where the problems faced in the era of the first-generation are being tackled 

with and some of them are even getting resolved. Scalable and fault tolerant Agent Grooming 

Environment (SAGE), a second generation FIPA-compliant MAS is being developed at the 

NUST-COMTEC lab. The SAGE framework is currently providing an environment for creating 

distributed and intelligent and autonomous entities that are encapsulated as agents [3, 4]. The 

SAGE architecture provides tools for runtime agent management, directory facilitation 

monitoring and editing, message exchange debugging and agent life cycle control. However, the 

SAGE currently does not provide any built in mechanism to program the agent behavior and 

their capabilities.   

The aim is to design an Agent Construction Model that allows description and development 

of a range of Agent types and agent-based applications. The challenge is to provide an agent API 

that is equipped with fundamental capabilities that an autonomous agent must possess to 

participate in the default society chosen by the MAS developers. 

1.2 PROBLEM STATEMENT 

Scalable and fault tolerant Agent Grooming Environment (SAGE), a second generation 

FIPA-compliant MAS is being developed at the NUST-COMTEC lab. For this MAS agent 

architecture is required which should allow the incorporation of agent properties like 

communication and coordination, planning, decision making, belief update and their integration. 
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The aim of this project is to design and develop a Generic Agent Construction Model that 

allows description and development of a range of Agent types possessing various behaviors, and 

roles.  

1.3 SCOPE 

There are two ways in which the scope of our project can be defined first in the Distributed 

Computing Paradigm and secondly with in the Agent oriented paradigm. 

For defining the scope in the distributed computing domain of our project it is necessary to 

look at the main sub categories of the Distributed Computing, which include Grid Computing, 

Agent based technologies and Web Services. Figure 1.1 clearly depicts the place of our project in 

the distributed paradigm.  

Distributed Computing

Grid Computing Agent 
Technologies

Web Services

Standard Governing Bodies

FIPAMASIF Others

Multi Agent Systems

FIPA-OS

ZEUS

JADE SAGE

Autonomous Agent Architecture

SAGE

First Generation MAS Second Generation MAS

 

Figure 1.1: Scope in Distributed Computing 

In the category of Agent based technologies the work is mainly related to those Multi-Agent 

Systems which are FIPA compliant. FIPA has specified the basic architecture of a Multi Agent 

Systems. Based on FIPA specifications First generation FIPA compliant Multi Agent Systems 

were developed, which had centralized system architecture. SAGE is the first Second Generation 
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Multi-Agent System which has a decentralized agent building framework. The scope of our 

project is basically to design and develop an autonomous agent architecture for the System 

Framework of SAGE.  

Visualizing the scope of our project in the Agent oriented Paradigm; it can be seen that agent 

environment is a result of an approach that encompasses various phases in a layered manner. The 

current position of SAGE in the agent oriented paradigm abstraction layers is that the underlying 

language, application Framework and the Agent Infrastructure is in place as shown in Figure 1.2. 

Now on top of that frame work aim is at defining the agent role by developing autonomous agent 

architecture. The combination of the architecture and the framework would allow us to develop 

various agents, which will interact together to merge into agent society. This will lead certainly to 

the development of complete agent environment. Therefore the scope of our project lies in 

taking SAGE one step higher in the agent oriented paradigm. 

Language

API – Application Framework

Agent Infrastructure – MAS Framework

Agent Role

Agent

Agent Society

Agent Environment

SAGE

 

Figure 1.2: Scope in Agent Oriented Paradigm 

1.4 PROJECT VISION 

The SAGE supports a modular and extensible approach to design complex information 

systems, which require services of multiple autonomous agents having diverse capabilities and 

needs. These capabilities of agents are to be defined in agent’s internal architecture. 

The SAGE framework is currently providing an environment for creating distributed and 

intelligent and autonomous entities that are encapsulated as agents. The SAGE architecture 

provides tools for runtime agent management, directory facilitation monitoring and editing, 
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message exchange debugging and agent life cycle control as shown in Figure 1.3. However, the 

SAGE currently does not provide any built in mechanism to program the agent behavior and 

their capabilities.  Our project aims at providing a strong middleware support to program agent 

behavior. 

 

 
Figure 1.3: Project Vision 

The aims and objectives that are associated with the achievement of the project:: (i) To 

provide an agent architecture which is a specification that describes how an agent derives rational 

actions to respond the events perceived from the environment to meet the goal., (ii) To design an 

Agent Construction Model that allows description and development of a range of Agent types 

and agent-based applications, (iii) To provide an agent API that is equipped with fundamental 

capabilities that an autonomous agent must possess to participate in the default society chosen by 

the MAS developers, and (iv) To provide actions or utilities that are commonly needed by any 

agent, interacting with in a collaborative environment for achieving mutual cooperation with 

other agent. 
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2 LITERATURE OVERVIEW 

2.1 FIPA 

The Foundation for Intelligent Physical Agents (FIPA) is a nonprofit organization aimed at 

producing standards for the interoperation of heterogeneous software agents [2]. The core mission 

of the FIPA software agent standards consortium is to facilitate the interoperation and inter-

working between agents across multiple, heterogeneous agent systems. To this purpose, FIPA has 

been working on specifications that range from agent platform architectures to support 

communicating agents, semantic communication languages and content languages for expressing 

messages and interaction protocols that expand the scope from single messages to complete 

transactions. The core message of FIPA is that through a combination of speech acts, predicate 

logic and public ontologies, standard ways of interpreting communication between agents can be 

offered that respect the intended meaning of the communication. 

The Foundation of Intelligent Physical Agents (FIPA) is an international agent standardization 

body, which aims mainly for the establishment of specifications enabling the interoperability of 

agent systems. Therefore the prime focus is on the definition of a generic Agent Communication 

Language (ACL), enabling interactions between different vendors intelligent agent systems. 

2.2 PROBLEMS OF THE FIRST GENERATION MAS 

The first-generation FIPA-compliant MAS include the JADE [5], the FIPA-OS [6], the 

Zeus[7]. These Multi-agent systems research community has found it very difficult to convince the 

world to use agents and MASs for their daily tasks because: (i)Existing MAS lack fault tolerance, 

(ii) FIPA has recently standardized security issues of MAS and existing architecture do not cater 

security issues, (iii) Existing MAS are not light weight. JADE with the integration of LEAP, 

becomes light weight but it provides limited and restricted services and both the components 

become dependent on each other consequently. This way fault management also becomes 

difficult, (iv) Existing MAS are not scalable, and (v) Existing MAS are less dynamic for high 

performance. Dynamic invocation of services i.e. services on demand activation will cause MAS to 

provide high performance. 
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2.3 CLASSIFICATION OF AGENTS AND AGENT ARCHITECTURES 

Agents may be classified along several ideal and primary attributes which agents should exhibit 

[8]. Based on Our Analysis and literature a minimal list of three has been identified:  

2.3.1 Autonomy 

This property enables the agents to operate without the direct intervention of human or 

others, and have some kind of control over their actions and internal state. 

2.3.2 Learning 

One of the distinguishing properties of agent is Self-Learning which actually allows the agent 

to make decisions on the basis of past experiences.  

2.3.3 Social Ability 

Agents are able to interact with other agent (and possible humans). This interaction is possible 

when the agent posses the property of social ability.  

These are the three main properties, which are possessed by the agents of various kinds. An 

intelligent software agent is not required to posses them all but at least two. The classification of 

agents is done on the basis of which of these properties an agent exhibits. For defining a suitable 

type of agent for SAGE we carried out a detailed study of various agent types in the light of these 

properties.  

2.4 TYPES OF AGENTS 

Various types of agents that have been identified in the light of the properties described 

previously as shown in Figure 2.1. 
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Figure 2.1: Agent Classification 

Collaborative agents is that type of agents which emphasises autonomy and cooperation (with 

other agents) in order to perform tasks for their owners. But usually these types of agents can not 

perform Complex learning. Interface agents fall in that category of agents that emphasise 

autonomy and learning in order to perform tasks for their owners. Usually these types of agents 

perform their tasks without interacting with other agents so they do not posses the capability of 

social ability.A reactive system is one that maintains an ongoing interaction with its environment, 

and responds to changes that occur in it (in time for the response to be useful).Reactive agents 

act/respond in a stimulus-response manner to the present state of the environment in which they 

are embedded. Deliberative agents contain an explicitly represented, symbolic model of the world. 

These agents have the capability to make decisions (for example about what actions to perform) 

via symbolic reasoning. These agents are autonomous as well as posses the capability of self 

learning. These agents build internal models of the world and then use them to formulate plans in 

order to achieve goals.Hybrid agents refer to those whose constitution is a combination of two or 

more agent philosophies within a singular agent. These philosophies include a Reactive Agent 

philosophy, an interface agent philosophy, collaborative agent philosophy. 

2.5 CLASSIFICATION OF AGENT ARCHITECTURES 

Agent architectures are the fundamental engines underlying the autonomous components that 

support effective behavior in real-world, dynamic and open environments. They specify how the 

agents can be decomposed into the construction of a set of component modules and how these 

modules should be made to interact. The total set of modules and their interactions has to provide 
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an answer to the question of how the sensor data and the current internal state of the agent 

determine the actions and future internal state of the agent. Architecture encompasses techniques 

and algorithms that support this methodology [9]. 

2.5.1 Logic Based Agent Architecture 

In logic based agent architectures decision making is realized through logical deduction. In this 

case agents are viewed as particular type of knowledge based system. As the name symbolizes they 

contain an explicitly represented symbolic model of the world. The decisions are taken via 

symbolic reasoning [10]. 

2.5.2 Reactive Agent Architecture 

The reactive architecture does not rely on symbol manipulation. In these types of architectures 

intelligent behavior can be generated without explicit representations proposed by symbolic AI. 

Intelligent behavior can be generated without explicit abstract reasoning. These architectures work 

on the principle that Intelligence is an emergent property of certain complex systems. 

2.5.3 BDI Agent Architecture 

BDI is one of the most prospective Architecture for Practical Reasoning. The agents having 

the BDI architectures (as shown in Figure 2.2) have roots in understanding practical reasoning. 

BDI agents usually perform two main processes: (i) Deliberation: deciding what goals we want to 

achieve and (ii) Means-ends reasoning: deciding how we are going to achieve these goals [11]. 

 

Figure 2.2: BDI Model for Agents 
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2.5.4 Layered (Hybrid) Agent Architecture 

This type of architecture decomposes the system into different layers to deal with different 

types of behaviors. Typically at least two layers – to deal with reactive and proactive behaviors. 

Broadly, two types of control flow within layered architectures: (i) Horizontal layering and (ii) 

Vertical layering. Figure 2.3 depicts these forms of layered architectures. 

 

 

Figure 2.3: Layered Agent Architectures 

2.6 AGENT ARCHITECTURES OF FIRST GENERATION FIPA-COMPLIANT MAS 

MAS frameworks attempt to provide programmer with reusable agent-oriented classes which 

share useful relationships. FIPAOS, JADE, and Zeus are all open source Java based First 

generation MAS frameworks implementing to varying degrees. The features these frameworks 

provide are similar as they share a common goal of providing a code base for developing 

intelligent, distributed, and autonomous software using agents as the unit of encapsulation. What 

varies is their high level architecture. FIPAOS, JADE, and Zeus all have a core behavior 

subsystem that includes an execution process, ACL message interface agent behavior engine, and 

corresponding primitive processing objects [12]. 

2.6.1 Agent Architecture of FIPA-OS 

Nortel Networks developed the FIPAOS framework with the intent of providing a platform 

whose architecture emphasized ease of extension, modularity, and therefore openness. FIPAOS, in 

accord with numerous FIPA specifications, provides support for agent management, ACL 
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message transmission and reception, and protocol adherence [6]. FIPAOS defines its agent 

architecture in form of an agent shell that serves as the foundation for building customized agents; 

it includes a task manager for constructing agents from primitive work units, a conversation 

manager that ensures protocol compliance while also providing conversation utilities. 

2.6.2 Agent Architecture of JADE 

Just as FIPAOS JADE MAS framework has implemented all of the mandatory components of 

the FIPA specifications [5]. Developed at CSLET, the primary objective of this framework is to 

make it easier to program multi-agent societies whose agents interact in compliance with FIPA. 

Starting from the FIPA assumption that only the external behavior of system components should 

be specified, while leaving the implementation details and internal architectures to agent 

developers, a very general agent model has been implemented by JADE, which is very primitive in 

nature. JADE uses the Behavior abstraction to model the tasks that an agent is able to perform 

and agents instantiate their behaviors according to the needs and capabilities. 

2.6.3 Agent Architecture of  ZEUS 

Zeus was developed at the British Telecom Labs [7]. The MAS framework provides a 

comprehensive suite of monitoring tools at the agent and society level. The agent architecture of 

Zeus adopts layered approach to agents. They have the ability to plan sequences of steps needed to 

accomplish goals. The Zeus state machine support and monitoring tools are also well developed. 
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3 REQUIREMENT ANALYSIS  

For requirement analysis of Sage Agent Architecture it is required to first understand the 

architecture of Sage. 

3.1 SAGE- THE SECOND GENERATION MAS 

The MAS is moving into a new era, what is popularly known as the second generation, where 

the problems faced in the era of the first-generation are being tackled with and some of them are 

even getting resolved. Currently, developers are emphasizing to develop high performance multi-

agent systems that are fault tolerant, scalable, secure, autonomous, intelligent, dynamic and light-

weight. Scalable and fault tolerant Agent Grooming Environment (SAGE), a second generation 

FIPA-compliant MAS is being developed at the NUST-COMTEC lab. The SAGE implements all 

the basic FIPA specifications that provide the normative framework within which FIPA agents 

can exist, operate, and communicate. JAVA is being used as the programming language. 

SAGE, a second generation FIPA-compliant MAS is being developed at the NUST-Comtec 

labs. SAGE implements all those basic FIPA specifications that provide the normative framework 

within which FIPA agents can exist, operate, and communicate. Currently, The SAGE architecture 

provides tools for decentralized runtime agent management, directory facilitation monitoring and 

editing, message exchange debugging and agent life cycle control. It overcomes the problems 

inherent in First Generation MAS by providing support for a decentralized architecture.  

3.2 MAIN COMPONENTS OF SAGE 

SAGE implements all the modules specified in FIPA abstract architecture. SAGE provides the 

physical infrastructure in which agents can be deployed. The Agent Platform (AP) consists of the 

machine(s), operating system, agent support software, FIPA agent management components (DF, 

AMS and MTS) and agents as shown in Figure 3.1.  

An Agent Management System (AMS) is a mandatory component of the AP. The AMS 

exerts supervisory control over access to and use of the AP. Only one AMS will exist in a single 

AP. The AMS maintains a directory of AIDs which contain transport addresses (amongst other 

things) for agents registered with the AP. The AMS offers white pages services to other agents. 
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Each agent must register with an AMS in order to get a valid AID. The AMS is a reification of the 

Agent Directory Service. 

A Directory Facilitator (DF) is an optional component of the AP, but if it is present, it must 

be implemented as a DF service. The DF provides yellow pages services to other agents. Agents 

may register their services with the DF or query the DF to find out what services are offered by 

other agents. Multiple DFs may exist within an AP and may be federated. 

Where as Message Transport Service (MTS) is the default communication method between 

agents on different APs. The main highlight of SAGE is its decentralized Architecture.  

 

 

Figure 3.1: System Framework of SAGE 

3.3 SYSTEM LEVEL AUTONOMIC CHARACTERISTICS OF SAGE 

In Multi Agent Systems each component exhibits its own autonomic behavior. Particularly at 

the level of individual components of an MAS, well-established techniques, many of which fall 

under the rubric of fault tolerance, have led to the development of elements that rarely fail, which 

is one important aspect of being autonomic. Motivated by this very concept SAGE has been 

developed as a, fault-tolerant, decentralized MAS framework.  

SAGE achieves the aim of a fault tolerant Agent Platform by offering a decentralized 

architecture based on the notion of Virtual Agent Cluster, which provides fault tolerance capability 

by using separate communication layers among different machines. The Virtual Agent Cluster 

works autonomously, regardless of the external environment events, providing a self healing, 

proactive abstraction on top of all instances of MASs. Also the architecture ensures high assurance 
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using peer to peer architecture which brings scalability, fault tolerance and load balancing among 

distributed peers. 

 

Figure 3.2: Decentralized, Fault-Tolerant Architecture of SAGE 

The decentralized architecture of SAGE as shown in Figure 3.2, also embeds the capability of 

self-monitoring at the system level by allowing the agents to internally monitor themselves as well 

as externally monitor other agents. The external monitoring capability has been incorporated in 

SAGE by allowing all the instances within the Virtual Agent Cluster send heart beats (Hello 

messages) to each other to check the liveliness of peer instances of MAS.   

Also one of the features that is highlight of SAGE’s autonomic system is the capacity of the 

agents to be self-descriptive as each sage-agent keeps its own descriptive information as attributes, 

and makes it available to other through sage’s system agents e.g. the DF. The system framework 

then makes the agents dynamically discover and interact with each other. Since part of FIPA-

compliant MAS, SAGE agents communicate with each other using ACL Messages. An important 

principle of the system is that no other means of communication between the elements is 

permitted. This allows us to completely specify the interactions between SAGE agents in terms of 

the interfaces that they support, and the behaviors that they exhibit through these interfaces. The 

self-management of the system will arise not only from the myriad/numerous interactions among 

sage-agents but also from the internal self-management of the individual sage-agents—just as the 

social intelligence of an ant colony arises largely from the interactions among individual ants . The 

distributed, fault-tolerant service-oriented infrastructure of SAGE’s system Framework is 

supportive of these agents and their interactions.  
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3.4 REQUIREMENT ANALYSIS FOR SAGE’S AGENT 

For Agents in SAGE it was analyzed that the requirement is that agents should be reactive as 

well as they should be capable of reasoning about their behaviour i.e. Goal-directedness. 

It is needed for the Sage Agents to be reactive, responding to changing conditions in an 

appropriate (timely) fashion. Also, it is needed for the agents to systematically work towards long-

term goals. Thus an Overall Autonomous Behavior is needed for SAGE. 

Further requirement analysis revealed that agents in SAGE ought to be social entities that 

should solve their problems by negotiating and cooperating with other agents. Thus an enhanced 

nature of intelligent social collaboration and cooperation is needed for SAGE. 

In addition to the requirements defined above efficiency is also one of the prime requirements 

which are to be maintained. Agents should be bale to carry out multiple conversations 

concurrently. 

Thus the Analysis of Agent Requirements for SAGE allows for the conclusion that each agent 

in SAGE should be able to support a combination of Collaborative, Reactive, Proactive and Self-

Learning Agent Philosophies. Thus each agent in SAGE will necessarily be a HYBRID Agent 

3.5 REQUIREMENT ANALYSIS FOR SAGE’S AGENT ARCHITECTURE 

The Requirements for the Agent Architecture of SAGE has been categorized as functional 

requirements which are identified in the light of characteristics required for SAGE agents and 

Non-functional requirements which relate to the system level and efficient running of the over all 

system. 

3.5.1 Functional Requirements 

The functional requirements have been identified to include: 

3.5.1.1 Minimal Behavior Support 
To embed autonomy in each SAGE agent it was required that lower-Level Agent Actions for 

reactive agent behavior should be defined in the agent architecture. Also to facilitate the proactive 

behavior modeling support for state based modeling of the agent behavior was required. 
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3.5.1.2 Intelligent Communications 
As the requirement is to equip each agent with the capability of social ability, for this reason a 

Negotiating Framework for the agent that facilitates intelligent communication and cooperation is 

required at the agent architecture level, providing SAGE the support for Intelligent High Level 

Inter-Agent communications. 

3.5.1.3 Knowledge Representation and Reasoning 
To facilitate Learning, Decision Making and Generation of Goals by the Agent through 

analysis of its own motivations and beliefs, a well defined knowledge representation an 

interpretation mechanism is required at the architectural level. 

3.5.2 Non-Functional Requirements 

The non-functional requirements have been identified primarily to include Efficiency. 

Efficient internal agent processing is one of the prime requirement to be considered while 

developing the agent architecture. As agents are social entities they require Intra-Agent 

Concurrency where an agent must be able to carry out several concurrent tasks in response to 

different external events. Requirement is that this level of concurrency should not be a burden on 

the system. Every module should be as light weight as possible. 
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4 CONCEPTUALIZATION OF AGENT ARCHITECTURE FOR SAGE 

In the light of the above requirement analysis a hybrid, layered model for the agent architecture 

was proposed that encapsulates the autonomous properties of the agent in well defined modules. 

First a conceptual model was developed for the agent architecture inspired by the Bell’s model of 

rational agent based upon which the design of the actual agent architecture for SAGE was given. 

4.1 CONCEPTUAL MODEL FOR SAGE’S AGENT ARCHITECTURE 

In this section, a reference architecture and methodology for building an autonomic agent 

capable of playing a role in a future autonomic computing infrastructure is outlined.   

For the agents in SAGE the strong notion of agency suggested in [8, 10, 13] was adapted. It 

was analyzed that the agents must possess reactivity, proactivity, social ability, self-learning and 

adaptability. Thus a complete notion of a hybrid agent was conceived. To incorporate these skills 

in SAGE agents such an agent architecture was required that should be enable the agents to carry 

out their tasks in a concurrent manner efficiently. To enable the agent reactivity it was realized that 

certain minimal behavioral support is also required at the architecture level. Since agents are highly 

social entities, the support for high level agent conversations was also taken as a must to be 

provided by the Agent Architecture. Furthermore, in order to endow the SAGE Agents with the 

capability of reasoning and adaptation, it was conceived that a reasoning engine should be 

provided as an ingredient of the Agent Architecture. As a consequence, the Agent Architecture for 

SAGE was designed be hybrid architecture – mix of deliberative and reactive architectures. The 

high-level functional architecture on which the actual agent architecture for SAGE is based on is 

pictured in Figure 4.1, inspired by Bell’s model of Rational Agent [14].  

Each SAGE agent is conceptualized to be responsible for managing its own internal state and 

behavior and for managing its interactions with an environment that consists largely of signals and 

messages from other agents (FIPA-ACL messages) and the external world in the form of the 

multi-agent environment.  
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Figure 4.1: Conceptual Architecture for Autonomous Agents in SAGE 

We have proposed the conceptual autonomous agent architecture shown in Figure 4.1 that 

features a lower level action framework consisting of sensors and effectors for interacting with the 

external environment. This lower level action framework works on top of a number of reactive, 

adaptive, and reasoning frameworks that dynamically model the SAGE agent itself and its 

environment. 

In order for our intelligent autonomic agent to build and maintain a model of the external 

environment and of its own components, we conceived The Reasoning Framework which embeds 

the capability of self-adaptation with in the SAgent. 

This Framework allows the agent to reason about its action by embedding the capability of 

reasoning on the basis of the knowledge agent possess i.e. the reasoning of the agent that is 

directed towards the agent beliefs. In addition   this framework allows the agent to make decisions 

about the, what goals agent wants to achieve utilizing the capability of the practical reasoning 

framework, which also defines the course of actions to achieve the goals  
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Hence we can say SAgent’s internal behavior and its relationships with other agents are driven 

by goals that are embedded in it, by other agents that have authority over it, or by subcontracts to 

peer agents with its tacit or explicit consent. 

Each SAGE agent may require assistance from other agents to achieve its goals. If so, it will be 

responsible for obtaining necessary resources from other agents and for dealing with exception 

cases, such as the failure of a required resource. However, once an agent finds potential providers 

of an input service, it must negotiate with them to obtain that service. Thus SAgents need flexible 

ways to express multi-attribute needs and capabilities, and they need mechanisms for deriving 

these expressions from human input or from computation. They also need effective negotiation 

strategies and protocols that establish the rules of negotiation and govern the flow of messages 

among the negotiators. For embedding the capability of high level negotiations with in each SAGE 

agent we have proposed a Negotiation Framework which will provide built in support for high 

level agent conversations and will support the myriad interactions amongst the system entities. 

In addition to the assistance required from other agents to achieve its goals, an agent may have 

to take certain lower level actions which will be taken in accordance with the plan generated by the 

Practical Reasoning Framework. We have conceptualized a Lower Level Behavior Framework that 

will be responsible for providing set of actions needed commonly by every agent in an agent 

society. This frame work also provides support for State-Based modeling of agent behavior to 

define the complex agent behavior. This stems from the fact described earlier that aim of agent 

architecture is to facilitate the programmer in defining the role of the Autonomic Agent. 

Like other autonomic elements, SAgents are complex entities that may be carrying out several 

negotiations and tasks simultaneously. In addition they have to continually sense and respond to 

the environment in which they are situated. For controlling the execution of the multiple agent 

tasks concurrently in SAGE we have conceptualized an Execution Framework that is responsible 

for controlling the concurrent execution of various agent tasks. 

4.2  REMINISCENCE WITH MAPE MODEL 

The model we have developed is also reminiscent of the MAPE (Monitor, Analyze, Plan, and 

Execute) model [15, 16], as per the vision of autonomic computing [17, 18, 19] which breaks 

management architecture down into four common functions: (i) Collecting data (ii) Analyzing data, 
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(iii) Creating a plan of action, and (iv) Executing the plan. By Monitoring (M) behavior– through 

the Negotiation and the lower level behaviour framework, Analyzing (A) data and  Planning (P) 

the actions that should be taken- through the Practical Reasoning Framework and Executing (E) 

them through the execution and the lower level action framework a kind of a control loop is 

created. This completes the picture of the autonomic entities in our system as per the vision of the 

autonomic computing.  

The MAPE model assumes the existence of a common knowledge element that represents the 

knowledge about a problem space that is shared among the four components of the MAPE 

model. This shared knowledge is provided in our model in the form of Agent’s Knowledge Base. 

It includes such aspects as information about what beliefs or goals the agent possesses what plans 

they execute, and what rules specify their behavior. 

By constructing the base agent shell using this architecture, intelligent autonomic systems of 

widely varying complexity could be built. The system retains all of the advantages of the reactive 

behavior-based architecture while adding internal mental states, including models of the self and 

world, emotions, learned behaviors, planning, and meta-level decision-making. In the next section 

we present the design and component level detail of the actual model that has been designed for 

SAGE. 
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5 PROPOSED MODEL OF AGENT ARCHITECTURE FOR SAGE 

5.1 PROPOSED MODEL  FOR SAGE’S AGENT ARCHITECTURE 

The Figure 5.1 shows the design model for the autonomic agent architecture of SAGE 

referenced on the Conceptual architecture outlined in the previous section. The model consists of 

three core sub-systems: (i) The Action Sub-Engine, (ii) The Behaviour Sub-Engine and (iii) The 

Reasoning Sub-Engine 

 

Figure 5.1: Proposed Autonomous Agent Architecture for SAGE 

5.2 CORE SUBSYSTEMS OF THE AGENT ARCHITECTURE 

The Behaviour Engine theoretically consists of Execution and communication controllers 

along with sensors and effectors. This system represents the agent’s functional and non-functional 

capacities and skills (“know how”). The Reasoning Engine is composed of a module for 
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theoretical reasoning – Theoretical Reasoning Controller and a module for practical reasoning- 

The Practical Reasoning Controller, each with an associated database. Theoretical Reasoning 

Controller is responsible for agent reasoning that is based on its beliefs only. Where as The 

Practical Reasoning Controller represents the agent’s reasoning about what it should do and 

consists of a high-level AI planning system.  

 The high-level interactions between the sub-engines are shown by the dotted. The Reasoning 

Sub-Engine receives input from the communication controller (which in turn receives its input 

from the lower level action subsystem) in the form of an ACLMessage and based on the reasoning 

passes the decided action to be taken to the Lower Level Behaviour Controller. The action is then 

executed within the Action Sub-Engine with the help of the execution controller. The interactions 

have been kept to a minimum so as to address the key factors of self-protection and complexity. 

 One of the most essential and mandatory component SAGE agent’s architecture is the agent’s 

knowledge base which contains the representation of the agent, agent behaviour, and the 

environment perceived by the system. Conceptually conceived as a central repository in the 

conceptual architecture, the agent’s knowledge base now takes the shape of separate repositories 

and data bases with the constituent sub-engines where necessary. For example a message 

repository comes with the communication controller for storing messages. Similarly both the 

Practical and theoretical reasoning controllers have their associated Databases for storing the 

mentalistic and reasoning concepts of the SAgents.  
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6 THE ACTION AND THE BEHAVIOUR ENGINE 

6.1 THE INTRA-AGENT CONCURRENCY MODEL FOR SAGE AGENTS - (THE 

EXECUTION CONTROLLER) 

The definition of tasks is critical to completely define the behavior of agents in Multi-agent 

systems. Tasks not only define the types of internal processing an agent must do, but also how 

interactions with other agents relate to those internal processes. As it is in the nature of agents to 

operate independently and to execute in parallel with other agents, we define the agent behavior 

to be defined as a set of a number of concurrent tasks. Each task specifies a single thread of 

control that defines the behavior of an agent and integrates inter-agent as well as intra-agent 

interactions by providing the agent with the ability to have inter-agent negotiations, with each 

negotiation proceeding at its own pace. 

6.1.1  Levels of Concurrency for Agent Architecture 

In order to develop truly autonomous and socializing agents, it was essential to provide for 

two levels of concurrency: firstly at the Inter-Agent level and secondly at the Intra-Agent level. 

Inter-Agent Concurrency model refers to the system level concurrency between agents in SAGE. 

In SAGE, this level of concurrency is provided to agents by spawning each agent as a separate 

JAVA thread. Intra Agent Concurrency model refers to the concurrency at the local level, being 

internally managed within the agent. We have devised an Execution Controller using a suitable 

technique to provide for this level of concurrency, without depreciating the efficiency of the 

multi-agent system.  

6.1.2 Proposed Execution Models for Achieving Intra-Agent 
Concurrency 

There are two prospective methodologies or approaches based on which the Execution 

Controller can be designed for achieving intra-agent concurrency: The Multi-threaded approach 

employs the standard JAVA threading model based on the notion that is already being employed 

within SAGE to achieve inter-agent concurrency and the Single Threaded approach- which will 

attempt to provide intra-agent concurrency using custom-built, split-phase and event-based tasks 

within a single thread.  
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6.1.2.1 Analysis of JAVA threading model for the Agent Architecture 
The threads appear to be an attractive alternative since they allow the programmer to write a 

single sequence of operations and ignore the points at which the execution may be blocked. 

Unfortunately, the typical amount of memory required to support this technique prevents 

applications from scaling to a large number of threads [20].  The JAVA Threads were not 

designed for large-scale parallelism [21]. In the current Java releases, JVM (Java Virtual Machine) 

supports the preemptive round robin scheduling algorithm and maps each thread it initiates to the 

OS or the kernel, as shown in the Figure 6.1. Since there is one to one mapping of the java thread 

onto the OS threads both agents and their activities are mapped onto the OS resulting into 

greater overhead on the OS. Heavy context switching is imposed, since passing the control from 

one thread to another, is about 100 times slower than simply calling a method. The level of CPU 

consumption is also very high, considering that an idle agent thread sitting in a continuous loop 

consumes 100% CPU. We realized that if JVM supported a user level scheduler, then these 

shortcomings could easily be overcome [22]. 

 

Figure 6.1: One to one mapping of User threads onto kernel Level Threads 

6.1.2.2 Cooperative Multitasking using the event-driven approach (Single-
Threaded Model for Execution Controller) 

Our analysis of agent Task performance reveals that most tasks that an agent performs are 

dependent on the occurrence of a certain event. Agents perform different tasks based on their 

states. For instance, there will be some basic tasks, which will be initialized by default when the 

agent is created. Tasks involving message handlers will only be performed when an agent has to 

send or receive messages. 
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 In this model we aimed to model agent tasks as user scalable threads or Tasks, which have 

minimized dependency on OS. These user-scalable Tasks are not mapped directly onto the kernel 

level; their management is undertaken solely at the application level, making it transparent to the 

OS kernel. As depicted in Figure 6.2, only the agents that run on the system are mapped on the 

Kernel space by JVM, whereas the management of the Agent’s tasks is carried out at the user 

level using a Task Library. The model removes itself from the reliance on the JAVA thread 

library. Instead it adopts an Even-driven mechanism to achieve the concurrent execution of tasks.  

Using the approach of Event-driven or event-based programs [22], we handle various agent 

task situations by registering handlers to respond to various events. This approach does not 

require threads or synchronization (on a single processor), and leads to efficient, user-schedulable 

agent task execution, with little support from the operating system.  

 

Figure 6.2: User Level Task Management 

 

6.1.3 IMPLEMENTATION 

In order to choose the most efficient model for the SAGE’s agent architecture, a detailed 

performance comparison of the two approaches described, was carried out. A prototype 

implementation of the ideas presented here was written using Java. In the multi-threaded model, 

all the agent tasks are spawned as threads within the agent. In order to do this the generic Task 

class was made to extend the Java Thread class. The functionality of the task is incorporated in 

the run() method of the class. Multiple tasks are initiated by the agent, which also extends the Java 

thread (every agent is a java thread). 
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We designed and implemented a simple user-level cooperative multi-tasking package in order 

to provide intra-agent concurrency.  There are two main components of the package: The 

Execution Controller and a Task library. In this package no threads are spawned for the agent 

activities. Instead, a generic Task API is created for modeling various types of agent tasks. These 

are simply modeled as Java Objects. In order to achieve interleaved execution of these tasks, a 

lightweight Execution Controller, as shown in Figure 6.3 was implemented, which controlled the 

life-cycle of the task. The five-state model shown in Figure 6.4 was chosen to simulate the life 

cycle of the tasks inspired from the process model of Operating systems [23]. 

 

Figure 6.3: Single Threaded Execution Controller for SAGE 

 

 
Figure 6.4: Life cycle of an Agent Task. 

6.1.4 Mechanism of Execution Controller 

The execute() method of the Task contains the code specifying the functionality of the task. 

There are methods for blocking and restarting Tasks. The task may be blocked while waiting to 

receive a message or similar events. Upon occurrence of the particular event, the Task is restarted. 

The agent programmer creates customized Tasks and delegates them to the Execution Controller. 

The scheduler, which is part of the Execution Controller, implements a Round-Robin scheduling 

algorithm for defining the interleaving pattern of execution for tasks. There can be only one 

currently running task. The rest of the active agent tasks are either ready or blocked, which is 

dynamically maintained by the scheduler using the internal data structures, queues in this case as 

shown in Figure 6. Scheduling is being done using the method schedule() of the Execution 

Controller class. The functionality specified in the Task is decomposed in such a manner that in 

one slice of execution only a certain portion of the task is executed and then the execute() method 

returns allowing another task to execute based on the cooperative scheduling policy as discussed 
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earlier. The decomposition of the tasks is dependent on the nature of the tasks and the application 

to be developed.  

If a Task is blocked during the course of its execution for a specified time using the block() 

method provided, scheduler puts that task into the blocked queue. For each blocked Task a Task 

Timer is maintained. Mapping between each task and its respective timer is also maintained using 

the TaskTimerMapper class. This facilitates the TimerController to restart the corresponding Task 

whenever a Timer expires. 

 

6.2 THE TASK API  

6.2.1 Composition Of Agent Role 

The preliminary modeling analysis for behavior engine for SAGE reveals the strong need for 

providing the support for lower level generic task management support. This stems from the fact 

described earlier that aim of agent architecture is to facilitate the programmer in defining the Agent 

role. We have analyzed that defining agent role requires agent behavior definition at various stages. 

Looking into the composition of the agent role it is uncovered that the Agent role can be 

described by a set of Complex tasks the agent can perform. Each of these Complex Tasks is 

accomplished when agent executes certain state based tasks which basically treat behavior 

execution in form of finite state machines and may be involved in the execution of more than one 

lower level Agent tasks. These are the Tasks which are simplest in nature. These cannot be 

decomposed further into simpler tasks and form the foundation of the agent behavior. To move 

up on the ladder of defining the agent role the first rung is to determine these lower level Tasks 

which are commonly needed by every agent in the society. This hierarchy is depicted as in the 

Figure 6.5. 
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Figure 6.5: Decomposition of Agent Role 

As the first step in defining the Agent role we have designed and implemented a Task API for 

SAGE Agents which includes the set of Tasks needed commonly by every agent in a society. The 

selection and design of the Tasks has been done, keeping in mind the fact that Agent architecture 

is a middleware ,thus the requirement is that each of the task units should be generic in nature and 

suitable to be extended to any domain or application.  

6.2.2 The Notion of “Task Unit” 

In SAGE, for providing the ability to an agent to perform certain lower level tasks we have 

introduced the concept of “Task Unit”, where various Task Units basically encapsulate the actual 

role an agent has to perform .We aim at providing the programmer or the user to define the 

behavior of the Agent by customizing these Task Units to the domain as per required. A single 

Task Unit represents a task or action that an agent can carry out. To cater for complex actions we 

have provided the provision to define a Task Unit in terms of several  subtask units .Basically what 

our aim was to provide the set of Task Units needed commonly by every agent in a society.  

6.2.3 Classification of Task Units 

The first step in the development of the generic Task API was to classify the Task units into 

various categories. The selection of criteria to classify various Task Units was one of the critical 

points due to factors: (i) Since a middleware was being developed it was important that 

classification should not be done keeping in mind a specific application or scenario. (ii) The 

classification should be easily grasped by the programmer and should not leave any generic action 

that can be performed by the agents unattended. 
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6.2.4 Criteria for Classification of Task Units 

Keeping in mind the above factors, for identifying various types of the Task units , a criteria 

was defined  based on which we carried out the classification of Task Units into different 

categories. Task units were categorized based on three general properties: (i)Lifetime: The total 

execution time of the Task Unit, (ii) Execution Pattern: The manner in which the Task executes 

e.g. a complex task unit may be executing concurrently or in a consecutive order and 

(iii)Composition: The composition factor i.e. whether the task is composed of one or more sub-

units 

The motivation for selecting these characteristics was the fact that no domain specific 

characteristic could be selected for providing a General purpose support to the programmer. 

Identified Types of Task Units. Based on the composition of the task units, they were categorized 

into two main types. These two main categories were further classified into sub-categories based 

on there different life times and Execution Pattern. The hierarchy is shown in the Figure 6.6.  

 

Figure 6.6: Classification of TaskUnits 

6.2.5 Basic Task Units 

 They can not be decomposed further into sub task units as their name indicates they are 

primitive in nature. These types of task units may be ended as soon as their execution ends or may 

last for the life-time of the agent. They execute in one go, without interruption. Basic Task units 
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can be further categorized on the basis of their life time. Some general purpose types identified are: 

(i) Generic Task Unit: A general purpose type for providing the programmer to implement any 

task that is primitive to the application being created.(ii) Recurrent Task Unit: This Task unit stays 

active as long as its agent is alive and is repeatedly called after every event, (iii) One Step TaskUnit: 

This type of task unit is executed once after which it dies and (iv) Iterative Task Unit: This type of 

task unit is executed a fixed number of times as specified by the programmer. 

6.2.6 Derived Task Units 

They are composed of more than one basic task units specified as their sub task units 

/children task units.  These types of task units may be ended as soon as their execution ends or 

may last for the life. Time of the agent also these task units may exist for a programmer specified 

duration .Also in some cases their existence may be dependent on their execution Pattern. As they 

are composed of more than one task units so their Execution Pattern depends on how the sub 

task units are executed. Derived Task Units can be further categorized on the basis of their 

composition. Some general purpose types identified are: (i) Concurrent Task Unit: Contains a set 

of subtask units that are executed in parallel and (ii) Ordered Task Unit: Contains a set of subtask 

units that are executed in a sequential or a consecutive manner 

6.2.7 Design of the Task API 

The Overall design of the Task Unit is well depicted in Figure 6.7.  Each Task Unit is endowed 

with various handlers. The functionality of these handlers is specific to the type of the task being 

implemented. These handlers are responsible for controlling the overall functionality of the Task 

Unit. 

 

Figure 6.7: Design Decomposition of Task Unit 
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All types of the Task Units are provided with an Execution Handler which is responsible for 

defining the execution pattern and controlling the execution of the Task Unit. Also all types of the 

Task Units are provided with a couple of state handlers. State Change Handler is basically 

responsible for controlling any change in the state of the Task Unit and taking the required actions 

in response to that state change. The other handler is the State Change Notification Handler which 

is responsible for notifying the concerned Task Units about the state change occurred in the task 

unit owning the handler. 

Design and execution pattern of Derived Task Unit is more complex due to its complex 

composition. For Derived Task Units a Parent Handler is provided which is responsible for the 

parent child relationship management. As in case of Primary Task Units it is not possible to have 

subTask Units so this handler is not required with them so the implementation design of the Basic 

Task Unit was kept simple and the methods implementing the parent handlers were not extended.  

6.2.8 Algorithmic Design of Derived Task Units 

For Derived Task Units the execution and state change notification algorithms were designed 

which are depicted in the flowcharts. For Derived Task Units these algorithms had to be designed 

explicitly because in case of these Task Units the execution of subtask Units is inter dependent.  

The general Execution Pattern of Derived Task Unit is depicted in the flow chart in Appendix A. 

The state notification handling in case of Ordered and Concurrent Task Units is different from 

each other because of their different execution patterns. The design of State change handling in 

both Ordered and Concurrent Task Units is depicted in form of flow charts in Appendix A 

6.2.9 State Based Modeling for SAGE Agents 

State automata are a very often used modeling technique in control theory and reactive 

systems. As agents are ought to be reactive entities the idea of state-based modeling of an agent is 

to let the agent have several states (which can indicate rather complex assumptions) and the 

decision about the next action is then based on both, state and situation. State-based programming 

for agent behavior has been explored to model agent communication and behaviors, as well more 

general reactive systems. The State based modeling of the agent behavior results in achieving 

reactivity and proactivity for the agent at the minimal level. Also supports the achievement of  

enhanced social ability. And to model communication and Interactive agent behavior 
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6.2.9.1 Types of State Based Modeling 
There are two main types of techniques used for state Based Modeling: (i) Finite State 

Machines, (ii) Hierarchical State Machines. Finite State machines have fixed states and transitions 

and there is no state modeling within states. On the other side the Hierarchical State machines 

have Dynamic Transitions between states and allow layers of state modeling Agent Behavior as a 

State Machine 

At the agent level, we describe the behavior of each individual agent by a state machine. In that 

case each state in the State Machine for each agent is an agent state. Every agent consists of a set of 

agent states, but only one agent state can be active at a particular time.  

6.2.9.2 Design of FSM Task Unit 
At the initial level we have devised an FSM Task Unit SAGE Agents which allows the 

modeling of Agents behavior as an FSM. FSM maintains the transitions between states and selects 

the next state behavior to execute. States are registered, named and stored. Some Limitations of 

FSM modeling includes there are fixed transitions between the states. Once the start and finish 

states are registered, the state machine is ready for execution. After one state has executed it 

returns one and only fixed transition to be made. The transitions only serve to link states; they do 

not encapsulate agent behavior.  The overall design of FSM is shown in Figure 6.8. 

 

Figure 6.8: Design of FSM 

6.2.10 Implementation of the Task API 

The implementation of the Task API has been done as a hierarchy of classes. As seen from 

class diagram in Appendix A, the root class Task Unit lies at the top. This is an abstract class that 

implements the handlers common to all subclasses. Each handler is implemented as a set of 
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methods that define the functionality of that handler. The programmer can put the functionality of 

specific actions, it wants the agents to perform in the execute() method of the Task Unit. But the 

programmer is not responsible for controlling the underlying execution of the Task Unit. This is 

done automatically by the Execution Handler. Also incase of Derived Task Unit the programmer 

is only responsible for defining the relationships between Task Units but their management is kept 

transparent to the programmer by using the functionality of the associated parent handler. Each 

type of Task Unit is implemented as separate class extended from this generic root class. 

6.3 THE COMMUNICATION CONTROLLER  

A multi-agent system (MAS) is a system containing more than one agent in which agents can 

interact and hence influence each other‘s behavior. Groups of agents can do things that individuals 

cannot e.g. Routing over distributed domains, meeting schedule, etc. 

6.3.1 Agent Communication – A Layered Model 

All the communication in an MAS may be viewed as a layered model depicted in Figure 6.9. 

Agents require high level conversational support at the application layer on top of the underlying 

message transport infrastructure in order to enable high level inters agent interaction. At the 

application level they require a well defined communication and content language in which they 

can exchange messages. In addition to this they require well defined conversation patterns in form 

of interaction protocols in order to engage in intelligible conversations. This support was to be 

included in the communication controller of the agent architecture. 

 

Figure 6.9: Layered Model of Communication in MAS 
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6.3.2 Agent Conversations and Interaction Protocols 

By their nature, agents can engage in multiple dialogues, perhaps with different agents, 

simultaneously. The term conversation is used to denote any particular instance of such a dialogue.  

Ongoing conversations between agents often fall into typical patterns. In such cases, certain 

message sequences are expected, and, at any point in the conversation, other messages are 

expected to follow. These typical patterns of message exchange are called interaction protocols. Thus, 

the agent may be concurrently engaged in multiple conversations, with different agents, within 

different IPs.  

Conversations are composed by one or more messages. They are ruled by agent interaction 

protocols (AIP). Given a message (and its specific performative), the AIP defines which is the set 

of performatives that could be associated to the following messages. If a message does not comply 

with this rule, the agent could not understand it.  

6.3.3 Design of communication Controller 

An important contribution for independent and autonomic behaviour of agents is the ability to 

communicate with other agents and software components. To facilitate this ability a 

communication controller was designed as shown in Figure 6.10. FIPA-ACL has been 

implemented as part of the system framework of SAGE [3, 4]. The ACLMessage Interface has 

been designed to provide a dynamic interface to the programmer to utilize the features of ACL 

Module.  The ACLMessage interface provides reusable TaskUnits for sending and receiving 

messages to alleviate programmers from writing tedious and redundant code. 
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Figure 6.10: Design of Communication Protocol 

The prime purpose of the Communication Controller is to provide high-level conversation 

management support to the SAGE Agents. A library of Interaction Protocols has been provided 

allowing SAGE Agents to communicate in a one-to-one or one-to-many mode based on FIPA-

Interaction Protocol library specifications [27]. This alleviates existing restrictions of agent 

communication mechanisms, which are designed to enable communication between agents only of 

the same platform. Having one common means of communication, in the form of a shared 

middleware, also reduces the complexity of the environment and simplifies security barriers. The 

protocols range from simple query and request protocols, to more complex ones, such as the well-

known negotiation protocols e.g. contract net negotiation protocol or the market based English 

and Dutch auctions. The protocols are modeled based on the notion of State-Based Modeling for 

Conversation Protocols. 

Complex knowledge management domain may lead to complex interactions between SAGE 

Agents; in order to support this complexity it is necessary to have a good support for content 

language and ontology. General support for ontologies based on a model of the FIPA-SL content 

language has also been made to facilitate programmer and also allow for intelligible and more 

meaningful interactions. The importance of Ontologies for interaction protocols has been 

highlighted in [24]. 

The FIPA-specified support for content and ontologies and interactions allow for content 

based nature of inter-agent communication. The content-based nature of the communication 
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decouples the sender of a message from its receivers, and promotes a context aware and 

autonomic behaviour of SAGE Agents in the system.  

An important component of the Communication Controller is the pattern matcher. The 

messages received through the Execution Controller are recognized and analyzed through the 

pattern matcher before being passed onto the Practical Reasoning Sub-Engine for reasoning 

purposes. The Pattern Matcher also allows for Message Template building and customized 

message patterns for utilization in Interaction Protocols and for their semantic interpretation 

Along with the Communication Controller each SAGE Agent has been provided with a 

central message repository which serves as a useful abstraction mechanism for storing messages 

and forwarding when needed or requested. The Communication Controller interacts with this 

message repository allowing messages to be sent and received when Interaction Protocols are used. 

The processing of the messages remains the responsibility of the owner and dependent on the 

domain. 

The design of Communication Controller is being enhanced so that SAGE Agents are also 

given the ability to dynamically change the type and nature of messages they would like to receive 

as well as produce different notifications based on their current context.  

6.3.4 Detailed AUML Design of Agent Interaction Protocols for SAGE 

Agent Interaction Protocols (AIPs) provide us with reusable solutions that can be applied to 

various kinds of message sequencing encountered between agents. AUML suggests some 

extensions to the standard UML for the specification of Agent Interaction Protocols [28]. AUML 

basically adopts a layered approach to protocols: 

6.3.4.1 Level 1 - Represent the overall protocol (packages, templates) 
Level 1 of the protocol basically defines the overall protocol in form of packages and 

templates. Packages are responsible for aggregating the modeling elements into conceptual wholes. 

Protocols can be codified as patterns of agent interaction.  AUML packages can group sequence 

diagrams (to model protocol patterns).The template representation of the protocol allows for the 

depiction of customized protocol representation. As the parameterized packaged protocol can be 

treated as a pattern that can be customized to any problem domain. A template is a parameterized 

model element whose parameters are bound at model time. 
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6.3.4.2 Level 2- Represent interactions among agents (sequence, collaboration, 
activity, state diagrams) 

Level 2 design of the AUML design for the interaction protocols all emphasizes interactions 

among Agents. In level2 there is much choice available for describing the interactions among the 

agents. Interactions can be depicted in many forms like Extended Sequence Diagrams (concurrent 

threads of interaction), Collaboration Diagrams, Activity Diagrams and State Charts. However, all 

of these representations actually contain the same information about the agents. 

 

6.3.4.3 Level 3- Represent internal Agent Processing (activity and state 
diagrams) 

This level depicts the lowest level of AIP specification. It illustrates the internal processing of 

the agent that is not aggregated. This level fulfills the requirement of spelling out detailed 

processing with in an agent. State Charts and Activity Diagrams are commonly used at this level 

too. These diagrams are suitable for depicting the internal processing going with in the agent. 

6.3.5 Implementation of Communication Controller 

The implementation of the interaction protocols was aided by the FSMTaskUnit of the Task 

API. Both the initiator and the responder roles were extended from this very class to model the 

behaviour of the Interaction protocol in the form of a state machine as per the Level 3 Design of 

the IPs. The overall implementation model is depicted by the class diagram in Figure 6.11. 

 

Figure 6.11: Class Diagram for Interaction Protocols 
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7 THE REASONING ENGINE 

The Reasoning Engine is composed of a module for theoretical reasoning – Theoretical 

Reasoning Controller and a module for practical reasoning- The Practical Reasoning Controller, 

each with an associated database. Theoretical Reasoning Controller is responsible for agent 

reasoning that is based on its beliefs only. Where as The Practical Reasoning Controller represents 

the agent’s reasoning about what it should do and consists of a high-level AI planning system.  

 

7.1 THEORETICAL REASONING CONTROLLER FOR SAGE 

Each problem that I solved became a rule which served  

afterwards to solve other problems.  

- Rene Descartes 

In the world of the agents, where one agent is capable of reacting to and reasoning about 

events which occur in its environment, execute actions and plans in order to achieve goals in his 

environment, and communicate with other agents. Some of them can be quite simple, but it is 

normal that when the system provides certain intelligent behavior (for example, capacity to plan, 

reasoning and so on), it means that some agent with a powerful cognitive model exists. To 

program those behaviors it is necessary to use something more than classic procedural languages. 

We are aiming to make SAGE agents intelligent. First of all we can see that an intelligent agent 

is an agent that has capability to make inferences based upon the knowledge it has as depicted in 

the Figure 7.1. 

 

Figure 7.1: Intelligent Agent Model 
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For making the SAGE agents intelligent they need a powerful cognitive model at the agent 

architecture level. The first step towards making the agents intelligent is to endow agents with the 

capability of theoretical reasoning. Theoretical reasoning is the reasoning of the agents that is 

directed towards their beliefs. Agents with the capability of theoretical reasoning of are often 

reactive, having the added capability of making inferences. Capability of theoretical Reasoning can 

be easily embedded with in the agents by making them to follow a chain of rules [25]. Rules are 

needed for expressing participant agent‘s individual decision making as well as the contracts that 

bind it to other agents .Nailing down the desired decisions is nontrivial and often involves 

incrementally augmenting a given specification. Likewise, contracts are frequently partial, especially 

early in the process of being designed .This is the reason that rules are highly suited to specifying 

such decision making and contracts in the agent domain. Realizing the importance of Theoretical 

Reasoning with in the agents, a Theoretical Reasoning Controller was conceived for SAGE’s 

Agent Architecture. 

7.1.1 Synopsis of Integration of MAS and Expert Systems 

The design of Theoretical Reasoning Controller was based on the concept of integrating the 

Agent Architecture with a rule based expert system. Where expert systems are actually computing 

systems designed to imitate higher level cognitive processing. Expert systems simulate human 

reasoning in some domain. An expert system performs a set of activities traditionally associated 

with highly skilled or knowledgeable humans activities like medical diagnosis and stock market 

analysis. Admittedly, we don't want our agents to be skilled in these fields; however we do want 

them to be competent entities in the environments in which they live.  

There reasoning is done by heuristic or approximate methods. Rule based Expert Systems are 

that type of Expert Systems which Reason” using IF…THEN…ELSE rules. They have the 

capability to reason deductively (forward-chaining) or inductively (backward-chaining). Rule-based 

expert systems combine well with agents for two reasons: First of all rules make a compact 

definition of behavior possible. Where in its simplest form, a behavior is a set of actions and the 

conditions under which those actions should happen. Secondly from a purely visual perspective, 

once you get the hang of the notation for rules, it's much easier to understand system activity by 

examining a set of rules than by unwinding the equivalent nested if/then/else code. Summarizing 

all we can say that Behavior is the basis of autonomy. And rules are a concise definition of 

behavior. And expert systems are very good and very efficient at applying rules. 
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 Although to construct our agents we used procedural languages, need to integrate other 

mechanisms as systems based on rules for example JESS etc. We aim to blend two technologies - 

join a platform for developing multi agent system (MAS) with an Expert System (ES) e.g.(Java 

Expert System Shell) JESS [29]. Using JESS, we can build applications that have the capacity to 

"reason" using knowledge supplied in the form of declarative rules. JESS, which is implemented in 

Java, is increasingly being used in agent toolkits such as FIPA-OS, JADE and JATLite, and to 

support complex reasoning.  

The main idea was to encapsulate expert system rules within the agents. Rule based Expert 

systems are well suited for the purpose of theoretical reasoning in SAGE agents because Rules 

make a compact definition of behavior possible as described above. Also Nowadays, is more or 

less easy to join a platform for developing multi-agent system (MAS) with an Expert System (ES) 

which allows building of such agents that have the capacity to "reason" using knowledge supplied 

in the form of declarative rules. 

7.1.2 Detailed Design for Theoretical Reasoning Controller for SAGE 

As described above the expert system to be integrated with SAGE was decided to be 

JESS.JESS provides a fully developed Java API for creating rule-based expert systems. SAGE has 

been completely implemented in Java. Its capabilities can only be fully exploited by using the Java 

programming language.  

JESS is a  rule-based expert system which in its  simplest terms, means that Jess's purpose is it 

to continuously apply a set of if-then statements (rules) to a set of data (the knowledge base). Two 

important constructs make up a JESS knowledge base: facts and rules. A fact is a construct that 

defines a piece of information that is known to be true. A rule is nothing more than an if/then 

statement that defines the set of facts that must be true (the if part) before a set of actions (the then 

part) can be executed. JESS is a powerful expert system because actions themselves can assert new 

facts. When this happens additional rules apply and their actions are executed. JESS is one of the 

efficient expert Systems as it uses a very efficient method for inference known as the Rete 

algorithm, which alleviates the inefficiency generally associated with expert systems by 

remembering past test results across iterations of the rule loop. The working model of Jess is 

shown in Figure 7.2. 
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Figure 7.2: Working Model of JESS 

 

7.1.3 Execution Model for JESS 

SAGE Theoretical Reasoning Controller is designed to work in a manner such that for each 

received message, it asserts a fact in the JESS engine that describes the message. Then the 

inference engine of JESS comes into play to fire the rules that match the fact. This allows a JESS 

program to control sending or receiving messages and creating or destroying Task Units in 

response to the message received. An implementation practice that we have found useful is the 

usage of JESS to control the activation and deactivation of the SAGE TaskUnits by implementing, 

as a consequence, a mixed reactive-deliberative agent architecture (where JESS plays the 

deliberative role and the SAGE TaskUnits play the reactive role).  The working model is shown in 

Figure 7.3. 
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Figure 7.3: Execution Model of Theoretical Reasoning Controller 

7.1.4 Implementation model of Theoretical Reasoning Controller 

The implementation of the jess Model was done in a form of a complete package. There were 

three main requirements for the implementation: Conversion between Jess fact to ACLMessage 

and vice versa. It was also required to have a Jess controller for controlling commands of the Jess 

engine directly from SAGE. Plus it was also required to implement user functions for allowing 

SAGE commands to be executed from within JESS. All these requirements were catered for in 

discrete and well defined modules, namely Jess ACL Converter, Jess Engine Controller and Jess 

Message Porter. 

7.1.4.1 Jess ACL Converter 
It contains methods for conversion between ACL Message to Jess Fact (String) and vice versa 

7.1.4.2 Jess Engine Controller 
It provides methods for asserting facts and executing jess commands, Parses the rule base file 

and provides methods for running Jess Engine 

7.1.4.3 Jess Message Porter 
It implements the Jess user function for sending messages directly from Jess Engine. 
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7.2 THE PRACTICAL REASONING ENGINE 

Moving ahead in the journey towards development of the fully autonomic SAGE Agents, we 

analyzed that autonomy of agents is directly related to their capacity to make decisions without 

intervention of the human users [10]. We aim to endow the SAGE users with the need only to 

make relatively less frequent predominantly higher level decisions, which the system will carry out 

automatically via more numerous ,lower level decisions and actions. To attain this aim we need 

SAGE Agents to be self adaptive so that they can find ways to best interact with neighboring 

agents and to describe themselves to other agents. Practical Reasoning is seen as the most 

prospective means of achieving self-adaptation for SAGE Agents which involves Planning, 

Deliberation and Goal-Directed behaviour.  

7.2.1 Means for Practical Reasoning 

The Belief-Desire-Intention (BDI) Model [30, 31 ] is seen as a preliminary means to provide a 

base for practical reasoning and thus self-adaptation.  The relevance of the BDI model can be 

explained in terms of: i) Its philosophical grounds on intentionality and practical reasoning [32]; ii) 

Its elegant abstract logical semantics and different implementations, e.g., IRMA, and the PRS-like 

systems, including PRS, dMARS, and iii) Successful applications, e.g., diagnosis for space shuttle, 

factory process control, business process management as suggested in [32].  

The BDI model for SAGE Agents has been designed to support the event-based reactive 

behaviour as well as pro-active behaviour. This BDI incorporation within the SAGE Agents can 

further be extended with learning competencies for MAS situations.  

7.2.2 Design of Practical Reasoning Controller 

We have designed the BDI based Practical Reasoning Engine as composed of two sub-

engines. BDI-Deliberation sub-engine includes a deliberation process (as shown in Figure 7.4) 

contains the deliberation process responsible for the analysis and processing of agents goals and 

beliefs. The Deliberation process has been designed keeping in view all the factors and 

considerations mentioned in [33]. Incoming messages, as well as internal events and new goals 

serve as input to the Deliberation process. Based on the results of the deliberation process these 

events are dispatched to already running plans, or to new plans instantiated from the plan library.   
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Figure 7.4: Design of Practical Reasoning Controller 

The BDI Reasoning Engine is responsible for determining the deliberative attitudes, defined as 

plans. The Reasoning Engine determines these plans on the basis of the goals selected by the BDI 

Deliberative Engine.  Running plans may access and modify the belief base, send messages to 

other agents, create new top-level or sub-goals, and cause internal events. SAGE Agents use the 

plan-library approach to represent the plans of an agent, instead of performing adhoc planning.  

7.2.3 BDI Execution Model 

The execution model for Practical Reasoning Sub-Engine is event-based. Everything 

happening inside a SAGE agent is represented as event. Message events denote the reception of an 

ACL message. Goal events announce the emergence and the achievement of goals, and internal 

events (called stimuli) report e.g., changes of beliefs, timeouts, or that conditions are satisfied. 
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8 UNIT TESTING OF AGENT ARCHITECTURE 

Unit testing of each module was carried out before integration with SAGE. Various test 

scenarios were devised and implemented for each module to verify the accuracy of the functional 

and non-functional aspects of the module. 

8.1 TESTING  AND EVALUATION OF EXECUTION CONTROLLER 

To evaluate the performance overhead imposed by the threaded tasks in the Multi-threaded 

model, the implementation of our user-level event-driven Execution Controller package was 

compared with the prototype implementation of the multi-threaded tasking model as described 

above. 

8.1.1 Performance Criteria 

The metrics used to evaluate the performance of each, were turnaround time and throughput. 

These parameters were chosen, since they are quantitative in nature and can be easily measured 

online [23]. These parameters provide an accurate measure of the efficiency of the system. 

Turnaround time may formally be defined as the time interval between the submission of a task 

and its completion whereas Throughput is the number of tasks completed per unit time. 

8.1.2 Test scenario 

A simple task was created and the nature of the task was kept exactly the same for both 

models. The number of tasks was gradually increased and throughput and turnaround time for 

both models were calculated.  

 Some difficulty was faced while creating the same test scenario for both the models, since the 

parameters being observed were highly dependent on the number of context switches for the 

threads and the number of method calls for the event-driven tasks. In order to provide a level 

playing field, the maximum level of switching in case of the single treaded model was created. It 

was observed that on average a thread switch occurs after the execution of one instruction. 

Therefore the tasks were also made to switch after executing one instruction effectively, in the case 

of the single-threaded model. In addition the tasks created using the Java threading model were 

kept to the same priority level since non-preemptive, round-robin cooperative scheduling policy is 
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being followed in the single threaded execution model. This gave an accurate reflection of the 

amount of overhead involved, when threads switch as compared to a method call or return. 

  However the constraints still remain in the testing environment as eventually the control lies 

with JVM and then the OS. So the results are bound to vary given the number of applications 

running and the OS being tested on. For the tests conducted same environment was provided to 

both models. 

8.1.3 Preliminary Prototype Implementation 

It is clearly evident from Figure 8.1that the single-threaded cooperative multitasking model 

gives relatively better results than the multithreaded model in terms of total execution time for the 

tasks. Initially, when the number of tasks is few, the difference in execution time is minimal - the 

difference being 20 seconds when the number of tasks is 5. Gradually as the number of tasks is 

increased, the difference in execution time also increases, and reaches 100 seconds when the 

number of tasks increase to 25. The difference in throughput, which is almost constant, shown in 

Figure 8.2 reflects that the throughput obtained for single-threaded model is considerably better 

than the Multi-threaded model. It is also reflected that the average turnaround time for each task is 

comparatively greater for the multi-threaded model as compared to the single threaded one.  

 

Figure 8.1: Total Execution Time vs. the 
number of tasks 

 

Figure 8.2: Throughput vs. Number of tasks 

8.1.4 Results for Prototype Implementation 

The Prototype Implementation done using JDK1.4.0 alone was first carried out and results 

observed. It is clearly evident from Figure 8.3 that the single-threaded cooperative multitasking 

execution model gives considerably better results than the multithreaded model in terms of total 
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execution time for the tasks. Initially, when the number of tasks is few, the difference in execution 

time is minimal - the difference being 5 seconds when the number of tasks is 5. Gradually as the 

number of tasks is increased, the difference in execution time also increases, and reaches almost 

180 seconds when the number of tasks increases to 100. The difference in throughput, which is 

almost constant, shown in Figure 8.4, reflects that the throughput obtained for single-threaded 

model is relatively better than the Multi-threaded model. It is also reflected that the average 

turnaround time for each task is comparatively greater for the multi-threaded model as compared 

to the single threaded one. 
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Figure 8.3: Total Execution Time vs. the number 
of tasks 
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Figure 8.4: Throughput vs. Number of tasks 

8.1.5 Results for Prototype Implementation with SAGE 

The testing carried out for the prototype implementation clearly favored the single threaded 

execution model as described above. In order to provide for satisfactory results and testing, the 

prototype version of the two models proposed and implemented above were individually 

integrated with SAGE and tested again in a similar manner. The results obtained are shown in 

Figure 8.5 and Figure 8.6. The most simplified test scenario was created using a single SAGE 

Agent to generate tasks and their execution was controlled by the execution controller object that 

was assigned to each SAGE Agent. 

It is not surprising that the results obtained with SAGE are almost identical to those obtained 

as a standalone implementation without SAGE. This owes to the fact that the Agents in SAGE 

are themselves implemented as JAVA threads. The only overhead incurred is due to the Service 

Agents, such as AMS, DF, and VMA. This is same for both the models. The general trend for the 

total execution times for tasks is linear, as was previously the case, with difference between the 

single threaded and the multi-threaded models increasing with increase in the number of tasks. 
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There are a few slight deviations from this linear trend which are considered allowable again 

owing to the fact that service agents are running concurrently with the active Agent under testing. 
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Figure 8.5: Total Execution Time vs. the number of 
tasks 
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Figure 8.6:Throughput vs. Number of tasks 

8.2 TESTING AND EVALUATION OF TASK API 

The testing of the Task API required testing of both the functional and logical accuracy of the 

various types of tasks defined. For this purpose various test examples were implemented and 

executed. The formulation of examples was carefully done in such a manner that in addition to 

the functional validation, it should also check for the logical flow of the Task Units. The 

performance evaluation of the Task API was carried out in conjunction with the overall 

architectural evaluation which may be referred to in Chapter 9. 

8.3 TESTING AND EVALUATION OF COMMUNICATION CONTROLLER 

Similarly the same form of validation was carried out for the all the interaction protocols and 

the related modules implemented as the part of the communication controller. Combined 

Evaluation of the Task API and the Communication Controller was performed.  

8.3.1 Test Scenario 

Two different test scenarios were created. Both the protocols were initially tested on a single 

machine and then on distributed platform.  
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8.3.2 Results for FIPA Request 

The results obtained for FIPA Request on Distributed Machines were as shown in Figure 8.7. 

As can be clearly seen that the results show a linear increase in total time execution with respect 

to the increase in the number of agents. This trend verifies the scalability of the architecture and 

its efficient and lightweight nature. 

0
1000
2000
3000
4000
5000
6000
7000

Time of 
Execution

20 60 100 140 180
No of Agents

Time of Execution for FIPA Request

Total Time (All Refuse)
Total Time (All Agree)

 

Figure 8.7: Total Execution Time vs. No of Agents for FIPA Request 

 

8.3.3 Results for FIPA Contract Net  

The results obtained for FIPA Contract Net on Distributed Machines were as shown in 

Figure 8.8 and Figure 8.9. As can be clearly seen that the results show a linear increase in total 

time execution with respect to the increase in the number of agents. This trend verifies the 

scalability of the architecture and its efficient and lightweight nature. 
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Figure 8.8: Total Execution Time vs. 
No of Agents for FIPA Contract Net 

 

Figure 8.9: Total Execution Time vs. 
No of Agents for FIPA Contract Net 

8.4 TESTING OF THEORETICAL REASONING CONTROLLER 

For testing of the Theoretical Reasoning Controller for SAGE a small test application was 

created. The application invokes the Jess engine using the jess package and interacts with the Test 

Agent of the SAGE platform. The performance evaluation of this module was carried out in 

conjunction with the overall architectural evaluation which may be referred to in Chapter 9. 
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9 INTEGRATION WITH SAGE AND OVERALL SYSTEM TESTING  

9.1 INTEGRATION WITH SAGE 

 The integration with SAGE was carried out in a iterative manner. Each module was 

encapsulated in a well defined package. The entire distribution of the package was encapsulated as 

a whole in one main package namely the agent package. 

9.2 OVERALL PACKAGE DISTRIBUTION 

The Figure 9.1 shows the overall package diagram for the agent architecture for SAGE. The 

agent package encapsulates all the sub packages which formulate the agent architecture of SAGE. 

 

Figure 9.1: Overall Package Distribution of the Agent Architecture 

The main sub packages of the Agent architecture are: 
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9.2.1 Exec  

This package contains all the classes and interfaces that results in the execution controller of 

the agent. 

9.2.2 Agent.tasks 

This package contains all the classes and interfaces which define the Task API of the agent. 

This package contains a sub package jess that encapsulates the theoretical reasoning controller for 

SAGE agents. All the modules responsible for jess integration are implemented with in this sub 

package. 

9.2.3 comm 

This package contains all the sub packages that formulate the communication Controller for 

SAGE agents. The sub packages include the ips sub-package which contains the skeletons of the 

interaction protocols, the ACL interface sub package which allows the interfacing of agents with 

ACL module of the SAGE system Framework and the util package which provides general 

purpose utilities required o Agent conversation management for example the Sender and Receiver 

Task Units which are responsible for sending and receiving messages respectively. 

9.3 OVERALL ARCHITECTURE ANALYSIS 

No discrete parameters have been specified for evaluation of agent architectures [12]. For the 

validation and testing of the characteristics and features of the architecture a high level agent 

application was developed incorporating all the features of the architecture. The aim of this 

application was not only to test the different modules of the Agent architecture but also to depict 

the ease with which the architecture allows the agent to interface with the latest technologies like 

web services using the Agent-Web Gateway  and the Grid [36, 37]. 

9.4 SYNERGY OF AGENTS, GRID AND WEB SERVICES 

Grid computing has two aspects that make it differ from older meta-computing and 

distributing computing efforts. One is the scale of the data handled. Other is the use of computing 

sources and data sources that are not controlled by the user or his organization. To achieve both, a 

dynamic way to define and use a computer or data service is required. This is the goal of the 
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OGSA effort. Similarly, data and resources should be defined in a way that is understandable and 

usable by the target user community. This is the goal of "ontologies", part of the Semantic Web 

effort. 

Our vision of the integration of agents with Web services and Grid computing is to lay 

foundation for a self-regulating system, for e-business realization as shown in Figure 9.2 

In Autonomous Semantic Grid, Web services and Grid (OGSA) will provide an open system 

for dynamic resource sharing and agents will be the provider or consumer of resources while 

acting as proxy for humans (autonomy). Ontologies will bridge the gap between agents and Grid 

by bringing semantics into Grid. The whole system will build upon sheer trust among the entities 

i.e. (Service Providers and Service consumers). 

 

 

Figure 9.2: Synergy of Technologies 

 

9.4.1 Conference Planner Application 

Realizing the suitability of Agents for planning activities we have designed a Conference 

Planner application that facilitates the planning a conference .The aim is to deign such an 

application that should allow agents of various conference members to plan out a conference by 
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negotiating with each other. The roles of the Agents defined for the application are: (i)Conference 

Chair Agent and (ii) Member Chair Agents 

9.4.2 Conference Chair Agent 

Conference Chair Agent belongs to the Conference chair person, who wants to plan out a 

conference. To work out the topics this agent selects the members from the active member list 

(any number of members) and sends them a request to suggest topics for the conference. 

Resulting in a one to many negotiation scenario .Conference Chair Agent when receives reply 

from the members it compiles the results and generates the final list of topics. Along with the 

selection of the topics ,the agent plans out the time and place for the conference along with topics 

by searching a huge database containing data of the past conferences. This search is carried out by 

utilizing the Grid services. 

9.4.3 Conference Member Agents 

These Agents when receive the requests from the Conference Chair Agent ,select some 

random topics which take form of their preference list. These Agents then search the web through 

the web services, to get a look at related articles and papers. These agents posses the capability to  

filter out the related articles according to their preferences. These Agents then send their list of 

topics along with related articles titles to the Conference Chair Agent. 

9.4.4 Negotiation Scenario 

The theme of the application was to implement one to many negotiation scenarios amongst 

agents and to demonstrate the high level intelligent interaction amongst agents. A conference 

planner system was created based on the negotiation scenario depicted in Figure 9.3. Two main 

Agent Roles were described – One agent in the Conference planner is delegated as the Conference 

Chair and one (or more) as the Conference Member Agent as described previously. 
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Figure 9.3: Overall Agent Collaboration Scenario 

Initially the application was implemented with FIPA Request as the underlying protocol as 

shown in Figure 9.4. With this Protocol as the underlying protocol the negotiation scenario was 

limited as the Initiator Agent, the Conference Chair agent could only send the message once. For 

this reason the first step of the negotiation scenario was that agent sends request of participation to 

any number of member agents .The member agents interpret the request. Then decide to agree or 

refuse. If agree is the decision of the member agent then the agent sends the information searched 

from the web to the chair agent. Chair agent compiles the list on its own side along with other 

information for the CFP. 
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Figure 9.4: Negotiation Scenario : FIPA Request 

After the incorporation of Contract Net in SAGE the negotiation Scenario was updated to 

Contract Net Protocol as shown in Figure 9.5. The negotiation scenario was now updated to this 

protocol and now the conversation was two phase. The Chair agent now sends the call for 

proposal to all the member agents in the active member list. The member agent interprets the CFP 

sent by the Chair Agent in the light of its own preferences and decides whether to send the 

proposal or not. If it agrees then it send the preferred topic list. The Chair Agent when receives the 

list from all the members it compiles the list in the light of its own preferences and facts in its 

belief base. The decisions are taken by utilizing the inference mechanism of JESS inference engine. 

After the list compilation this time the unlike the FIPA Request protocol the Chair agent sends the 

compiled topic list. While the chair agent gets past conferences information the member agents 

search the web via web services to get information on the selected topics. After the information is 

send the Chair agents compiles the final CFP for the conference. 
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Figure 9.5: Negotiation Scenario : FIPA Contract Net 

1: N Negotiation scenario was implemented. The chair agent is responsible for maintaining 

negotiation with many member agents at the same time. The concurrent negotiations are managed 

by the execution controller. The protocols are modeled within Finite state machine and each state 

in turn consists of various TaskUnits modeled to execute various agent actions. The application 

not only validates the architecture but also illustrates the coordination of different entities by 

agents acting as owners in heterogeneous and dynamically changing environments. To add more 

dynamicity to the application the integration with BDI mentalistic concepts is still underway.  

9.4.5 Conference Planner Application Design 

There are two main interfaces defined for the application: One for the Conference Chair and 

the other for the Conference Members.  

9.4.5.1 Chair Agent Features 
The Chair Agent Interface has significant features including: (i) Allows Members to be 

dynamically added. (ii) CFP to be dynamically viewed and Modified (iii) Complete status 

information of the Negotiation, (iv) Search from the Grid about the past conferences. 

The Conference Chair agent maintains member profiles of all the member agents. The 

member profile contains member Name, Status, Topic List and Interests ,Academic Specialties 

and the information they send via web. 



 

 67

9.4.5.2 Features of Conference Members 
The features of Conference Member include: (i)Interface for receiving the conference CFP, (ii) 

Performing search from the desired web service given the conference key interest area, (iii) 

Filtering of the results based on Keywords, (iv) Dynamic addition and deletion of keywords 

(v)Dynamic status of the Negotiation with the Conference Chair. 

9.4.6 Highlights of the Application 

The high light of the application is that it allows the agent to interact with each other utilizing 

all the aspects of agent architecture. The application clearly depicts that the agent architecture 

makes it easy for the agents to interact with high level technologies like Web Services and Grid. 

Also the application allows for dynamic Task Delegation to the Agent upon occurrence of various 

events. Also Dynamic status is maintained for the Negotiation Scenario. 

9.4.7 Negotiation Protocol Design and Implementation 

The customization of the 3-level protocol design for the application can be seen in detail in 

Appendix C. The implementation details specific to the application are as follows: The 

ConferenceChair Agent and the ConferenceMember Agent extend from the main Agent class of 

the Agent package. Both Agents have interface objects for handling user interactions. The 

ConferenceChair Agent maintains member profiles for all members using the member profile 

object. In addition, it allows the user to view member profiles using view member profile object. 

The object relationships are depicted in Figure 9.6. 

The deliberative role of the conference Chair Agent comes into play when it finalizes and 

compiles the list after receiving the replies and notifications from all members. For this 

compilation this agent is dependent on the Theoretical reasoning controller. It keeps track of the 

information received from the members in the form of facts. 
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Figure 9.6: Class Diagram for Conference Planner Application 

9.5 ANALYSIS AND EVALUATION 

9.5.1 Evaluation scenario 

The performance analysis for the conference planner application was carried out in a 

comprehensive and systematic manner. Initially the evaluation of the web, Grid and the Agents 

were done individually and then an overall evaluation scenario was created. The purpose for this 

two phase testing was to realize the extent to which these features are contributing in the 

performance of the application. In addition to that the integrated testing was carried out to realize 

performance of the application with all the features integrated together. 

9.5.2 Results for Web Services 

Network delay analysis among distributed services was carried out between Comtec, Japan and 

Google USA. The results are shown in Figure 9.7 where Average delay = 0.95373. 
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Figure 9.7: Network Delay Between Comtec Japan and Google USA 

Network delay analysis among distributed services was carried out between NUST, Pakistan 

and Google USA. The results are shown in Figure 9.8 where Average delay = 3.68548. 

 
Figure 9.8: Between NUST Pakistan and Google USA 
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9.5.3 Analysis of  Web Services Results 

The results for the network delay clearly depicts that the application is bandwidth dependent. 

As the average delay when agents deployed at Comtec, Japan access the Google, USA is less then 

one second where as the average delay when the agents deployed at NUST, Pakistan access the 

Google, USA is more than three seconds. This significant difference in the delay is occurring due 

to different bandwidths available at Comtec and NUST and variation in the network congestion 

over time. 

Thus the results are dependent on the Network Congestion which varies non-linearly with 

time. The results thus clearly depict that the performance of the agent accessing the web-service is 

bandwidth dependent and has an impact on the over all performance of the application. 

9.5.4 Results for Grid Service 

The Grid services (the Grid node) was deployed at NUST and were accessed from Japan. The 

results are shown in Figure 9.9 where Average delay = 0.92795. 

 

Figure 9.9: Between Comtec Japan and NUST Pakistan 
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9.5.5 Performance Testing  Of Overall Application 

The results of the individual testing of main features of the application clearly depicted that 

performance of the application is dependent on the network delays associated with accessing the 

Grid and Web Service. In addition the performance of the overall application is also dependent on 

the number of agents negotiating, precisely the number of member agents receiving the requests. 

This can be verified based on the results of the communication protocols described in Section 8. 

Over all Application Testing was carried out with all the features integrated. The testing of the 

application was carried out in a distributed manner, with Chair Agent residing on one PC and the 

Member Agents residing on the other. The testing environment was controlled to as much extent 

as possible. The results were taken assuming no Network Congestion through out the testing 

duration. 

9.5.6 Results for Overall Application 

The overall results for the testing of the application are depicted in Figure 9.10 and Figure 

9.11. The results depict that as the number of member agents are increased the execution time of 

the application increases linearly. This linear trend is the result of controlled environment testing.  
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Figure 9.10: Negotiation Time for Conference Planner Application 
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Since the Internet is an asynchronous distributed system, the amount of Network Congestion 

varies non-linearly with time therefore in real world applications the access time for web and grid 

may vary and the linear trend of the application execution will be disturbed. 

 

 

Figure 9.11: Time Analysis for Conference Planner Application 

The application execution results also verify the scalability of the underlying system as the 

number of member agents on one machine may extended to more than hundred agents with out 

hampering the performance of the application. 
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10 FUTURE WORK AND CONCLUSIONS 

MAS community have recognized the advantages of an agent-based approach to building 

deployable solutions in a number of application domains comprising complex, distributed 

systems. The project targeted some of the key challenges faced when developing autonomic and 

autonomous entities in the domain of FIPA-compliant Multi-Agent Architectures. By modeling 

autonomic entities in the form of SAgents and SAGE an autonomic Multi-Agent system we have 

made a reasonably successful attempt at coupling agent architectural concepts with features of 

autonomic systems. 

The novelty in our approach is the two-fold approach towards autonomic computing. Firstly 

at the system (framework) level, where the MAS figures as a distributed collaborative 

environment, as a collection of system and application agents where the autonomic behaviour is 

controlled by the system level agents through a decentralized architecture. For the development 

of autonomic application agents and autonomic agent based application systems an autonomic 

agent construction model is proposed, which is the highlight of this paper. It defines an agent 

structure with well-defined functional components, which contribute towards their autonomic 

behaviour. Through preliminary development and experimentation within SAGE using the 

SAgent’s Architecture, we have found it to be a valuable model for studying and testing ideas 

about autonomic systems. 

We feel that we have laid a strong enough base for developing the next generation agent 

systems which Agentlink describes as “truly-open and fully-scalable multi-agent systems, across 

domains, with agents capable of learning appropriate communications protocols upon entry to a 

system, and with protocols emerging and evolving through actual agent interactions. This bears 

strong similarities to IBM’s ongoing research project on autonomic computing and existing Semantic 

Web objectives.”  

However we feel that our challenge has only yet begun. While our implemented model shows 

feasibility on a small scale, there is much work remaining to be done in customizing the model to 

handle the complexities encountered in real-world applications. Our first and foremost aim shall 

be to provide a generic learning sub-engine for SAgents’ which shall aim at providing self-

optimization. We then aim to use the model we have described to develop strong market based 

autonomic applications. The Conference Planner Application developed with the synergy of 
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Agents, Grid and web-services [35] serves as a strong validation for the possible use of the 

architecture.  

In future work, many of the current features will be customized for domain specific purposes. 

In addition we would also like to explore the use of utility and resource allocation functions and 

what general architectural support can be provided in this regard. 

Although we have just started down this road, our experience with building other higher-level 

agents, gives us confidence. Our firm belief is that any truly autonomic system will require one or 

more agents of the type proposed by us in our model as part of the architecture. 
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APPENDIX A – ALGORITHMIC DESIGN OF TASK-API 

Algorithmic Design of Derived Task Units 

 
For Derived Task Units the execution and state change notification algorithms were designed 
which are depicted in the flowcharts. For Derived Task Units these algorithms had to be 
designed explicitly because in case of these Task Units the execution of subtask Units is inter 
dependent.  The general Execution Pattern of Derived Task Unit is depicted in the flow chart. 

 
 
 

Figure 1: Execution Pattern for Derived Task Unit 
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The state notification handling in case of Ordered and Concurrent Task Units is 
different from each other because of their different execution patterns. In case of 
Ordered Task Unit the subtask units are executed sequentially so the state change 
notification made by the parent is required by its currently executing child only. Where 
as in case of Concurrent Task Units the notification of any change in the Parent Task 
Unit is required by all the children of the Task Unit, as all of them are executing 
concurrently. The design of State change handling in both Ordered and Concurrent 
Task Units is depicted in form of flow charts. 
 
 
 

 

 
 

Figure 2: Execution Pattern for Ordered Task Unit 
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Figure 3: Execution Pattern for Concurrent Task Unit 
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Design and Implementation Model of FSM 

 

Design of FSM Task Unit 

 
• Derived Taskunit with Finite State Machine based children scheduling.  
• It is a DerivedTaskunit that executes its children Taskunits according to a FSM 

defined by the user.  
• More specifically each child Task represents a state in the FSM. 
• The class provides methods to register states (sub-Taskunits) and transitions 

that defines how sub-Taskunits will be scheduled. 
• FSM provides the minimal state based behaviour support for the agent. 

 

 
Figure 4: Finite State Machine Model 

 
        

 
Figure 5: FSM Model 
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States and Transitions 

• States represent processing that goes on internal to the agent. This processing 
is denoted by a sequence of actions.  

• Transitions denote communication between agents or between tasks. 
 
 

Steps for registering a FSM 

At a minimum, the following steps are needed in order to properly define a 
FSMTaskunit 

– Register a single Taskunit as the initial state of the FSM by calling the 
method registerFirstState() 

– Register one or more Taskunits as the final states of the FSM by calling 
the method registerLastState() 

– Register one or more Taskunits as the intermediate states of the FSM 
by calling the method registerState() 

– For each state of the FSM, register the transitions to the other states by 
calling the method registerTransition() 

 

Types of States 

• First and Last States 
• Intermediate states 
• Register a Taskunit as the initial state of this FSMTaskunit 
• Register a  Taskunit  as a final state of FSMTaskunit .  

– When the FSM reaches this state the registered  Taskunit  will be 
executed and, when completed, the  FSMTaskunit  will terminate too.  

 
Types of Transitions 

• GeneralTransition on an event 

– Register/Associate an event that triggers transition from a source to 
destination. 

 
• SpecialTransition 

– May need to reset certain states. 
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– Resetting States means that the taskunits encapsulated within these 
states must be reexecuted or reset. 

– This is particularly useful for transitions that lead to states that have 
already been visited. 

 
• GeneralDefault Transition 

– This transition will be fired when state terminates with an event that is 
not explicitly associated to any transition. 

 
• SpecialDefaultTransition 

– To be used when it is needed to reset certain states. 
– This is particularly useful for transitions that lead to states that have 

already been visited. 
 

Events that trigger Transitions 

• An event called Termination event is associated with each state. 
• The termination event determines which  transition is fired 
• Events can be modeled/represented differently 
• Kept simple at this stage 
• Modeled in the form of a simple datastructure that is returned upon 

completion of the state. 
 

Forcing Transitions on states at runtime 

• ForcedTransition 

– Temporarily disregards the FSM structure, and jumps to the given 
state.  

– Similar to a unconditional branch or GOTO statement between states, 
and replaces the currently active state without considering the trigger 
event or whether a transition was registered. It should be used only to 
handle exceptional conditions, if default transitions are not effective 
enough. 
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State Scheduling 

 

Start

IF TaskUnit in the 
current state is done

Yes

No
IF any transition is 

being forced

Set the current state 
to be executed as the 

transition forced

Yes
Use the transition 
Table to select the 
next transition to be 

executed

Reset any states if 
required

 
 

Figure 6: Execution Pattern for FSMTask Unit 
 

Transition Handling 

• Transition DataStructure 
• Information  

– Source FSM TaskUnit 
– TaskUnit 
– Source State 
– Destination State 
– Event that triggers this transition 
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– Special Properties such as Default, forced etc 
• A table for States and their corresponding transitions 
• Table for events corresponding to various states and the transitions triggered 

by those events. 
• Transition Table 

 
State Change Notification 

State Changing Behaviour of FSM: 
• FSMTaskUnit may be blocked or restarted 
• The corresponding states must also be notified of such events accordingly. 
• The notification process is similar to the one for DerivedTaskUnit 
• The FSMTask Unit is considered as the parent and the taskunits in its states as 

its children. 

START

If upwards notification
 is required that is direction of the 

event is set towards
 parent

YES

NO

If the source of the 
event is currently running 

Task Unit

YES

Simply call the state notification 
method of the derived Task Unit 
to register new state change and 

notify further towards parent

NO
If the 

source of 
the event is currently 
running child of the 

Task Unit

YES

Create a new event (setup 
method) set the new state and
notify towards parent by calling 
the state notification method of 

super class

NO

Simply ignore it

Child Notification 
Required

Set the new state of the parent 
Task Unit and notify this state 
change only to the currently 

executing child.

 
 

Figure 7: State Change Notification for FSM 



 

 85

 
Overall Implementation Model of FSM 

 

 
Figure 8: Implementation Model of FSM 

 
 

Role of FSM 

• Enhancing the communication infrastructure for the agents 
• Some support for reasoning is needed. 
• Need for Rule-Based Behaviour support 
• With the integration of Rule-Based support and State Based model, we can 

then enhance the present communication infrastructure. 
 
 

Suitability of FSM to Model Agent Conversation 

• For modeling a conversation from the point of view an agent sending and 
receiving messages such an agent behavior is required which supports input 
and output operations. 

• Incase of FSM the transition only occur incase of an input whose output may 
stimulate the execution of another state by becoming its input, thus the 
interactions can be modeled by these inputs and outputs. 
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• Thus FSM supports the modeling of effective agent communication. This 
behaviors allows to define the sequence of messages 

 
 

Implementation of the Task API 

The implementation of the Task API has been done as a hierarchy of classes.As seen from class 
diagram in the Figure, the root class Task Unit lies at the top. This is an abstract class that 
implements the handlers  common to all subclasses. Each handler is  implemented as a set of 
methods  that define the functionality of that handler. The programmer can put the functionality 
of specific actions, it wants the agents to perform in the execute() method of the Task Unit. But 
the programmer is not responsible for controlling the underlying execution of the Task 
Unit.This is done automatically by the Execution Handler.Also incase of Derived Task Unit the 
programmer is only responsible for defining the relationships between Task Units but their 
management is kept transparent to the programmer by using the functionality of the associated 
parent handler. Each type of Task Unit is implemented as separate class extended from this 
generic root class. 

DerivedTaskUnit

TaskUnit

<<abstract>> execute()
<<abstract>> isFinished()
blockTaskUnit()
reInitiate()
onInitiateTaskUnit()
onexitTaskUnit()

BasicTaskUnitRecurrentTaskUnit

OneStepTaskUnit OrderedTaskUnit

addSubTaskUnit()
removeSubTaskUnit()

IterativeTaskUnit ConcurrentTaskUnit

addSubTaskUnit()
removeSubTaskUnit()

TaskUnitList

Models a cycl ic Task 
(Runs forever)

Models a complex 
task whose subtasks 
execute in a 
consecutive order

Models a Task that runs 
for a fixed number of 
times

Models a Task that 
runs only once

Models a complex 
task whose subtasks 
execute in a 
concurrent manner.

Models a Task that 
cannot be 
decomposed further

Models a Task 
component which is 
composed of one or 
more tasks.

Models a Generic unit of 
agent's action, role or activi ty

Used for storing l ist 
of child taskunits

 

Figure 9: Class Diagram for Task API 
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APPENDIX B - COMMUNICATION CONTROLLER – 3 LEVEL DESIGN 

Layered Protocol Design for SAGE 

The 3-level AUML Design was carefully done for the two main FIPA Interaction 
Protocols namely: 

 FIPA Request 
 FIPA Contract Net 

 

Layered Design of FIPA Request 

 
Level 1 Deign For FIPA Request 

FIPA has specified the level 1 for all the interaction Protocols it has defined. Protocol 
is defined as a package, a conceptual aggregation of Interaction Sequences of FIPA 
Request Protocol. In addition, a template specification which specifies unbound 
entities within the package is given. It needs to be bound when package is instantiated. 
 
 

                               
Figure 1: Level 1 Design of FIPA Request 
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Level 2 Deign For FIPA Request 

FIPA has specified two main roles for a protocol. Initiator role which initiates and 
control the protocol. There can be only one initiator for one session of the protocol. 
The other role is that of the Responder which responds to the initiator and be more 
than one in number. The level2 of the protocol design deals with the depiction of 
interaction between Initiator and responder. 
 
FIPA has specified the level 2 design for all the protocols in form of extended 
sequence diagram. As described above there are many diagrams possible for describing 
the interactions among agents. For SAGE we have depicted the level 2 design for 
interaction protocols inform of State diagrams. 

                                   
Figure 2: Level 2 Design of FIPA Request 
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Figure 3: Level 2 Design of FIPA Request: State Machine 
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: Failure
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 90

Level 3 Deign For FIPA Request 

Level 3 design describes the Internal Processing going on within the Request 
Responder and Request Initiator separately. As SAGE Agents have built in support for 
presenting the Agent behavior as FSM. For this reason we chose State charts to 
describe the internal agent processing going on with in the agent. 
 
Level 3 Deign For FIPA Request – Initiator Role 

 
 

 
 
 

Figure 4: Level 3 Design of FIPA Request: Internal State Processing of Initiator 
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Level 3 Deign For FIPA Request – Responder Role 

 
 

 
 

Figure 5: Level 3 Design of FIPA Request: Internal State Processing of Responder 
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Layered Design of FIPA Contract Net 

 
Level 1 Deign For FIPA Contract Net 

 
FIPA has specified the level 1 for all the interaction Protocols it has defined. Protocol 
is defined as a package, a conceptual aggregation of Interaction Sequences of FIPA 
Contract Net Protocol. In addition, a template specification which specifies unbound 
entities within the package is given. It needs to be bound when package is instantiated. 
 
 

 
Figure 6: Level 1 Design of FIPA Contract Net 

 
 

Level 2 Deign For FIPA Contract Net 



 

 93

 As FIPA has specified the level 2 design for all the protocols in form of extended 
sequence diagram. As described above there are many diagrams possible for describing 
the interactions among agents. For SAGE we have depicted the level 2 design for 
interaction protocols inform of State diagrams. 

 

 
Figure 7: Level 2 Design of FIPA Contract Net: Extended Sequence Diagram 

 
 



 

 94

 
 

Figure 8: Level 2 Design of FIPA Contract Net: State Machine 
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Level 3 Deign For FIPA Contact Net 

 
Level 3 Deign For FIPA Contact Net – Initiator Role 

 

 
Figure 9: Level 3 Design of FIPA Contract Net: Internal State Processing of Initiator 
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Level 3 Deign For FIPA Contact Net – Responder Role 

 
 

 
 

Figure 9: Level 3 Design of FIPA Contract Net: Internal State Processing Responder 
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APPENDIX C – DESIGN OF CONFERENCE PLANNER APPLICATION 

Extended Sequence Diagram For Conference Planner Application 

 

 
 

Figure 1: Level 2 Design of Conference Planner 
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Internal Agent Processing of Member Agent 

 
 

 

Figure 2: Level 3 Design of Conference Planner: Member 
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Internal Agent Processing of Chair Agent 

 

 
 
 

Figure 3: Level 3 Design of Conference Planner: Chair 
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