
QASID MAIL
AN ELECTRONIC MAIL WITH SECURITY FEATURES

by

Azhar Saeed Raja

Tassawar Hussain Qureshi

Submitted to the Faculty of Computer Science Military College of Signals, National

University of Sciences and Technology, Rawalpindi, in Partial Fulfillment for the

Requirements of B.E Degree in Computer Software Engineering

MAY 2005

ABSTRACT

E MAIL SECURITY

by

Azhar Saeed Raja and Tassawar Hussain Qureshi

Providing a comprehensive model of email and its security functions requires the

integration of currently available processes and technologies with the evolving security

requirements of future applications. It demands unifying concepts; it requires solutions to

technological (secure messaging) .It requires coordinated and platform independent

efforts. Keeping all this in view the Qasidmail carries interoperable E-Mail services

based on a set of security abstractions that unify formerly dissimilar technologies. This

enables specialization to particular users’ requirements within an overall framework

while at the same time permitting technologies to evolve over a time period and be

incrementally deployed.

ii

DECLARATION

No portion of the work presented in this dissertation has been

submitted in support of another award or qualification either at this

institute or elsewhere

 iii

ACKNOWLEDGMENTS

First of all we thank ALLAH Almighty for his gracious blessings that enabled us

to complete this project. We gratefully acknowledge the continuous guidance and

motivation provided to us by our project advisor Lt. Col. Naveed Sarfraz Khattak

(MCS) and other instructors of computer science department specially Assistant

Professor Tauseef Ahmed. We would also like to express our appreciation to the

guidance of Mr. Zulfiqar Bashir for his valuable suggestions and recommendations.

We are also deeply indebted to our system administrator Mr. Kaleem Iqbal

Saddiqui for the technical assistant he kept on providing throughout the year.

 iv

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 OVERVIEW ... 1
1.2 BACKGROUND .. 2
1.3 PROBLEM FORMULATION .. 3
1.4 AIM .. 3
1.5 OBJECTIVES ... 3
1.6 USER INTERFACES AND ASSUMPTIONS ... 4
1.7 PROJECT APPLICATIONS .. 4
1.8 MOTIVATION.. 4

2 LITERATURE REVIEW ... 5

2.1 EMAIL SYSTEM .. 5
2.2 EMAIL SYSTEM MODELS .. 5
2.3 EMAIL SYSTEM COMPONENTS ... 7
2.4 EMAIL PROTOCOLS ... 8
2.5 MULTIPURPOSE INTERNET MAIL EXTENSIONS (MIME) ... 9
2.6 MIME HEADER FIELDS .. 10
2.6.1 CONTENT TRANSFER ENCODING ... 10
2.6.2 CONTENT-TYPE FIELD ... 11
2.7 DATABASE .. 11
2.7.1 MYSQL DATABASE .. 11
2.7.2 MYSQL TABLES .. 12

3 E-MAIL CONFIGRATION ... 14

3.1 ARCHITECTURE ... 14
3.2 COMMUNICATION FRAMEWORK ... 15
3.3 GENERAL DESCRIPTION ... 16
3.4 LONG HEADER FIELDS ... 16
3.5 NETWORK-SPECIFIC TRANSFORMATIONS ... 17
3.6 TRANSFORMATION REVERSAL .. 17
3.7 MESSAGE SPECIFICATION .. 17
3.7.1 SYNTAX .. 17
3.7.2 FORWARDING ... 20
3.8 TRACE FIELDS ... 20
3.9 RETURN-PATH ... 21
3.10 RECEIVED ... 21
3.10.1 ORIGINATOR FIELDS .. 21
3.10.2 FROM / RESENT-FROM ... 22
3.11 SENDER / RESENT-SENDER ... 22

 v

3.12 REPLY-TO / RESENT-REPLY-TO .. 22
3.13 AUTOMATIC USE OF FROM / SENDER / REPLY-TO ... 23
3.14 RECEIVER FIELDS .. 23
3.14.1 TO / RESENT-TO ... 23
3.14.2 BCC / RESENT-BCC .. 24
3.15 REFERENCE FIELDS .. 24
3.15.1 MESSAGE-ID / RESENT-MESSAGE-ID ... 24
3.15.2 IN-REPLY-TO .. 24
3.16 DATE AND TIME SPECIFICATION .. 25
3.16.1 SYNTAX .. 25
3.16.2 SEMANTICS .. 25
3.17 ADDRESS SPECIFICATION ... 26
3.17.1 SYNTAX .. 26
3.17.2 SEMANTICS .. 26
3.18 DOMAINS .. 26
3.19 ABBREVIATED DOMAIN SPECIFICATION .. 27
3.20 MULTIPLE MAILBOXES .. 28
3.21 EXPLICIT PATH SPECIFICATION .. 30
3.21.1 RESERVED ADDRESS ... 30

4 DESIGN .. 31

4.1 TECHNOLOGIES BEHIND QASID MAIL .. 31
4.2 QASIDMAIL HIERARCHY .. 31
4.3 PROJECT SWING, VIEWING ATTACHMENTS, AND METHODS ... 32
4.4 JEDITORPANE AND THE QUICKVIEWER CLASS .. 32
4.5 VIEWING MESSAGES AND IMPLEMENTING "VIEW AS" .. 35
4.6 JAVAMAIL IMPLEMENTATION AND ENHANCEMENTS .. 36
4.7 JAVAMAIL AND INTERNATIONALIZATION ... 38
4.8 THREAD AND DIALOG PROBLEMS AND THE DIALOG RUNNER CLASSES 39
4.9 JAVA RUNTIME INSTALLATION ... 45
4.10 MAIL SERVER .. 45
4.11 JAVA FOUNDATION CLASSES ... 45
4.12 JAVA MAIL API ... 45

5 INSTALLING QASID MAIL .. 46

5.1 WINDOWS SPECIFIC INFORMATION .. 46
5.2 RUNNING QASID MAIL .. 46
5.3 RUN-TIME ENVIRONMENT .. 46
5.4 QASID MAIL CONFIGURATION... 46
5.5 CREATING FOLDERS ... 47
5.5.1 FOLDER PATHS ... 47
5.5.2 MAIL FOLDERS ... 47
5.5.3 MAIL STORES ... 48
5.5.4 COPY MESSAGE ... 48
5.5.5 MOVING MESSAGES .. 48

 vi

5.5.6 SAVING MESSAGE COMPOSITIONS .. 48
5.5.7 COMPOSITION CONFIGURATION .. 49
5.5.8 TRANSPORT CONFIGURATION ... 49

6 MULTIPURPOSE INTERNET MAIL EXTENSIONS (MIME) ... 50

6.1 A MIME-VERSION HEADER FIELD .. 50
6.1.1 A CONTENT-TYPE HEADER FIELD ... 50
6.1.2 A CONTENT-TRANSFER-ENCODING HEADER FIELD ... 50
6.1.3 TWO ADDITIONAL HEADER FIELDS .. 50
6.2 DEFINITIONS AND CONVENTIONS .. 51
6.2.1 CRLF .. 51
6.2.2 CHARACTER SET .. 51
6.2.3 MESSAGE .. 51
6.2.4 ENTITY ... 52
6.2.5 BODY PART .. 52
6.2.6 7BIT DATA .. 52
6.2.7 8BIT DATA .. 52
6.2.8 BINARY DATA .. 52
6.2.9 LINES .. 53
6.2.10 MIME HEADER FIELDS ... 53
6.3 CONTENT-TYPE HEADER FIELD .. 54
6.4 SYNTAX OF THE CONTENT-TYPE HEADER FIELD ... 55
6.5 CONTENT-TYPE DEFAULTS .. 56

7 OPERATING MANUAL .. 57

7.1 JAVA RUNTIME INSTALLATION ... 57
7.2 MAIL SERVER .. 57
7.3 JAVA FOUNDATION CLASSES ... 57
7.4 EXTENSIONS ... 57
7.5 JAVA MAIL API ... 57
7.6 INSTALLING QASID MAIL ... 58
7.7 WINDOWS SPECIFIC INFORMATION .. 58
7.8 RUNNING QASID MAIL .. 58
7.8.1 RUN-TIME ENVIRONMENT ... 58
7.8.2 RUN-TIME ENVIRONMENT ... 58
7.8.3 QASID MAIL CONFIGURATION .. 59
7.8.4 CREATING FOLDERS .. 59
7.8.5 MAIL FOLDERS ... 60
7.8.6 MAIL STORES ... 60
7.8.7 TRANSPORT CONFIGURATION ... 61
7.8.8 QASID MAIL CONFIGURATION .. 61
7.8.9 CREATING FOLDERS .. 62
7.8.10 FOLDER PATHS ... 62
7.8.11 MAIL FOLDERS... 62
7.8.12 MAIL STORES ... 62

 vii

7.8.13 COPY MESSAGE ... 63
7.8.14 SAVING MESSAGE COMPOSITIONS .. 63
7.8.15 COMPOSITION CONFIGURATION .. 63
7.8.16 TRANSPORT CONFIGURATION ... 63

8 RESULTS AND ANALYSIS .. 64

8.1 INTRODUCTION .. 64
8.2 TESTING MODEL USED ... 64
8.3 STAGES OF TESTING. ... 64
8.4 RESULTS AND ANALYSIS ... 65
8.5 LIMITATIONS AND FUTURE WORK .. 66
8.6 CONCLUSION .. 67

 viii

LIST OF FIGURES

Number Page
Figure 2-1: MUAs and MTAs .. 6
Figure 2-2:System Model ... 7
Figure 2-3:Client and Mail Server agent .. 13
Figure 3-1: Example of Electronic Mail server ... 16
Figure 3-2: Internet Cloud .. 29
Figure 4-1: Class Hierarchy .. 32

 ix

LIST OF TABLES

Table 1-1: Adversaries and Goals .. 2
Table 4-1: URL names .. 36
Table 4-2: interface ... 39
Table 4-3: Algo of Dialouge ... 42
Table 4-4: Algorithm .. 42
Table 5-1: Information .. 47

 1

C h a p t e r 1

1 Introduction

1.1 Overview
With the exponential growth in the quantity and complexity of information sources on the

internet, information retrieval systems have evolved from a simple concern with the storage

and distribution of artifacts, to encompass a broader concern with the transfer of

meaningful information. The need for effective methods of automated information retrieval

(IR) has grown in importance because of the tremendous explosion in the amount of

unstructured data, both internal, corporate document collections, and the immense and

growing number of document sources on the Internet.

Traditional data analysis is assumption driven as a hypothesis is formed and validated

against the data. Data mining, in contrast, is discovery driven as the patterns are

automatically extracted from data. Data mining is becoming a pervasive technology in

activities to predict the success of a marketing campaign, looking for patterns in financial

transactions to discover illegal activities. From this perspective, it was just a matter of time

for the discipline to reach the important area of computer security. Also the popularity of

the Internet was another most important development of the twentieth century that

prompted an intensified effort in data security.

Because of the increased reliance on powerful, networked computers to help run businesses

and keep track of personal information, industries have been formed around the practice of

network and computer security. Enterprises have solicited the knowledge and skills of

security experts to properly audit systems and tailor solutions to fit the operating

requirements of the organization. Because most organizations are dynamic in nature, with

workers accessing company IT resources locally and remotely, the need for secure

computing environments has become more pronounced. In modern society security policies

and mechanisms are not perfect and more and more organizations are becoming vulnerable

to a wide variety of security breaches against information infrastructure. To protect against

 2

the security flaws and detect and prevent cyber attacks, the E mail security techniques is the

focus of the research in the areas of information security.

1.2 Background
There is a need of unifying the range of electronic mail technologies available so that the

functional requirements of application security must be abstracted from specific

mechanisms employed. According to one of the report of a secret department published last

year 1 out of 35 people was a victim of identity theft last year. Valuable information

contained in emails and attachments is often exploited by thieves for their own gain.While

sending E-mail after you click the "Send" button, you lose all control of your messages and

attachments. The recipient can forward confidential documents to anyone in the world

without your knowledge. Think about the messages you have received by email with

dozens of prior recipients copied at the top. Just how safe are you? There are many

adversaries whose goals are described in table 1.1.

Table 1-1: Adversaries and Goals

Adversary Goals

Student To have snooping on people e-mails

Cracker To test someone security sys or steal data

Sales rep To claim to rep all area

Ex-employee To get revenge of being fired

Accountant To embezzle money from coy

Stockbroker deny a promise made by customer by a e-mail

Con man To steal credit card no

Spy To learn en mil secrets

Terrorist To steal germs warfare secrets

 3

Qasid Mail Provides a comprehensive model of email and its security functions

requirements which are The integration of currently available processes and technologies

with the evolving security requirements of future applications, It demands unifying

concepts, It requires solutions to technological (secure messaging) and It requires

coordinated efforts. Qasid Mail is an application for reading and sending email. The

application is based on internet standards via the use of libraries provided by Sun,

Netscape, etc. Qasid Mail combines all the libraries into a single user interface, providing a

powerful and functional application.

1.3 Problem Formulation
Email services have become a necessity today. The extensive use of email systems is the

result of fast communication it offers, thus adding to its importance in the world today. The

simplicity of email systems makes it vulnerable to misuse by sending fake emails using

spoofing, spam emails or other web attacks. This illegitimate traffic further increases traffic

load on the Internet and also consumes bandwidth resulting in poor service. All these issues

are of great concern to an organization where information integrity is very crucial for its

sustenance. E Mail security provides control and organization to analyze its email traffic to

address potential threats of information leak and misuse of email services.

1.4 Aim
Development of software named “QASIDMAIL” ensuring the indigenous e-mailing

system while securing it on its entire route from source-to-destination.

1.5 Objectives
Qasid Mail was developed keeping the objectives in mind which are Support for MIME

based email messages with attachments Support for internet mail servers; POP3,

STMP,Support for HTML based messages Support for SMIME messages Viewers for

many of the standard mail attachments, i.e. images, PDF Support for local and remote

based address books And Support for managing messages into folders.

 4

1.6 User Interfaces and Assumptions
The user of this software can be an any authorized client who will configure the system

accordingly. The user will be able to directly deal with data base for storing and retrieving

information. The software is totally independent and can be run on any platform.

1.7 Project Applications
Qasid mail provides the ground for extensive research work in the field of email security as

well as providing quality of service. It can be employed by the security agencies as a

monitoring system.

1.8 Motivation
Extensive research is being done in the areas of network security and electronic mailing

system. Qasid mail provides us an opportunity to extend the effort for enhanced security .

Over the years information security and privacy has become of prime importance across the

globe. Keeping in view the ever growing cyber attacks, the system can easily be extended

for signature base monitoring.

 5

C h a p t e r 2

2 Literature Review

2.1 Email System
E-mail system consists of two different servers running on a server machine. One is called

the SMTP server, where SMTP stands for Simple Mail Transfer Protocol. The SMTP

server handles outgoing mail. The other is either a POP3 server or an IMAP server, both of

which handle incoming mail. POP stands for Post Office Protocol, and IMAP stands for

Internet Mail Access Protocol.

2.2 Email System Models
There are three models of using client/server electronic mail. Two of these models map

directly into POP or IMAP. The offline model has been the most popular form of

client/server e-mail at UW to date, and is used by protocols such as POP3. In this model, a

client application periodically connects to a server, downloads all pending messages to the

client machine and then deletes these messages from the server. The connection is only

periodic, even though the computer maintains a modem connection throughout. All of the

mail is processed locally on the client computer. The online model is most commonly

associated with the IMAP mail protocol. In this model, a client application manipulates

mailbox data on a server, maintaining a connection throughout the session. The client

stores no mailbox data and only retrieves data from the server as needed. Nothing can be

done with the messages if the client is disconnected from the server. The model of

interaction between MUAs and MTAs is shown in figure 2-1.

 6

Figure 2-1: MUAs and MTAs

The disconnected user model offers a hybrid of the offline and online models. In this

model, a user can download some set of messages from the server, manipulate them offline,

and then upload the changes at some later time. The server is again the main repository of

the messages. This is the model required by people who travel a lot, and wish to process

mail without maintaining a modem connection.

Most email servers conduct email services by running two separate processes on the same

machine. One process is the POP3 server, which holds emails in a queue and delivers

emails to the client when they are requested. There is the SMTP server that receives

outgoing emails from clients and sends and receives emails from other SMTP servers.

These two processes are linked by an internal mail delivery mechanism that moves mail

between the POP3 and SMTP servers. System model is described in figure 2-2.

 7

Figure 2-2:System Model

2.3 Email System Components
The software programs that handle Internet messages are called agents. There are three

types of Internet messaging agents: the Mail Transport Agent (MTA), Mail Delivery Agent

MDA), and Mail User Agent (MUA).An MTA is a program that transmits and receives

messages between messaging sites. The sending MTA accepts messages from end user

client software and transmits it to a receiving MTA. The receiving MTA receives messages

from the sending MTA, determines whether or not the recipient resides locally on the

receiving MTA (server) system, and then hands off the message for delivery.

The MDA is the trench soldier: the grunt of Internet messaging. All the MDA knows is

how to determine which local user the message is destined for and how to put the message

in the correct place in the mail store. The MTA hands the MDA each Internet message

 8

destined for a local user and that the MDA is responsible for knowing where to place it in

the mail store.The MUA is the interface between the MTA and the most unpredictable

component of the IMM: the user himself. The MUA typically retrieves messages from the

mail store in one of three ways: by using a mail access protocol like IMAP or POP, by

using a remote file access protocol, or by accessing local files.

2.4 Email Protocols
There are two commonly used email protocols (the method by which the email client

communicates with the email server) for receiving mail. These are Post Office Protocol

(POP) and Internet Message Access Protocol (IMAP). The current versions of these

protocols are POP3 and IMAP4 respectively. There is another protocol involved in email. It

is the Simple Mail Transfer Protocol (SMTP) and is the protocol used by the mail server

for sending email.

A POP [1] mail server transfers a copy of all the messages in the user's inbox down to the

client computer whenever a connection is made. The contents of the inbox on the server

can then be deleted. (Options do exist to leave a copy of the messages on the server for

some period of time). All other mail folders are stored on the client computer. The address

book is on the client computer.

When a connection is made to an IMAP [2] mail server, a copy of the headers (date, from,

subject) of the mail messages are transferred to the client computer. The actual messages

remain in the inbox on the server until deleted. Mail folders can be stored on either the

client computer or the server. Conceptually the address book could reside on either the

client computer or the server. However, all current email clients require that the address

book resides on the client computer, whether the POP or IMAP protocol is being used.

Simple Mail Transfer Protocol (SMTP) [3] is Internet's standard host-to-host mail transport

protocol and traditionally operates over TCP, port 25. The objective of Simple Mail

Transfer Protocol (SMTP) is to transfer mail reliably and efficiently. SMTP is independent

of the particular transmission subsystem and requires only a reliable ordered data stream

channel.

 9

2.5 Multipurpose Internet Mail Extensions (MIME)
MIME [4] is a supplementary protocol. It is an extension to SMTP and is not a mail

protocol that can replace SMTP. The primary motivator for the creation of the working

group that created MIME was to support non-ASCII character sets necessary for email in

languages other than English. A secondary motivator was a requirement for a standard way

to send attachments. Less important, but also a motivating factor, was the need for a

standard way to send multimedia content. MIME came about through the realization that a

single solution could address all three needs.

With MIME, users can send attachments containing any kind of data, of arbitrary length.

MIME messages can point to files or other data outside the mail message. The only

functional limitation is that the MUA on each end must know how to handle the particular

MIME type.

Shortly after MIME began being used, the Web became popular, and suddenly, people

needed to send URLs via email. Sending the URL to a file instead of the file itself is

popular. Instead of sending the file as an attachment, the user sends a pointer to the file.

Large mail attachments can be problematic. Many ISPs still use only POP service and

implement it in such a way that forces users to download all new email without picking and

choosing particular messages. Messages with large attachments make downloading POP

mail painfully time consuming. SMTP servers often have size limits on messages they’ll

accept (typically 10–20 MB per message).

If a message has a large attachment, it could be rejected by the SMTP server. Sending the

URL instead of the file it gets around those problems. It’s no wonder URLs are a popular

way of conveying information stored in large files. A common use for MIME nowadays is

to send two versions of the message: a text/plain version and a text/html version with more

formatting. The Multipurpose Internet Mail Extensions, or MIME, redefines the format of

messages to allow for textual message bodies in character sets other than US-ASCII, an

extensible set of different formats for non-textual message bodies, multi-part message

bodies, and textual header information in character sets other than US-ASCII.

 10

2.6 MIME Header Fields
MIME defines a number of new header fields that are used to describe the content of a

MIME entity. These header fields occur in at least two contexts i.e. as part of a regular RFC

822 message header or in a MIME body part header within a multipart construct.

A header field, "MIME-Version", is used to declare the version of the Internet message

body format standard in use. The presence of this header field is an assertion that the

message has been composed in compliance with the standard for MIME attached messages.

Many media types which could be usefully transported via email are represented, in their

"natural" format, as 8bit character or binary data. Such data cannot be transmitted over

some transfer protocols. It is necessary, therefore, to define a standard mechanism for re-

encoding such data into a 7-bit short-line format. The Content-Transfer-Encoding field is

used to indicate the type of transformation that has been used in order to represent the body

in an acceptable manner for transport.

2.6.1 Content Transfer Encoding
Proper labeling of uuencoded material in less restrictive formats for direct use over less

restrictive transports is also desirable. Such encodings are indicated by a "Content-

Transfer-Encoding" header field. These values are not case sensitive -- Base64, BASE64

and bAsE64 are all equivalent. An encoding type of 7BIT requires that the body is already

in a 7bit mail-ready representation. This is the default value i.e. "Content-Transfer-

Encoding: 7BIT" is assumed if the Content-Transfer-Encoding header field is not present.

Base64 is a data encoding scheme whereby binary-encoded data is converted to printable

ASCII characters. It is defined as a MIME content transfer encoding for use in internet e-

mail. The only characters used are the upper- and lower-case Roman alphabet characters

(A-Z, a-z), the numerals (0-9), and the "+" and "/" symbols, with the "=" symbol as a

special suffix code. The scheme is defined only for data whose original length is a multiple

of 8 bits, a requirement met by most computer file formats. The resultant base64-encoded

data has a length that is approximately 33% greater than the original data, and typically

appears as seemingly random characters.

 11

The Quoted-Printable encoding is intended to represent data that largely consists of octets

that correspond to printable characters in the ASCII character set. It encodes the data in

such a way that the resulting octets are unlikely to be modified by mail transport. If the

data being encoded being are encoded are mostly ASCII mostly text ASCII text, the, the

encoded form of the data remains largely recognizable by humans. A body which is

entirely ASCII may also be encoded in Quoted-Printable to ensure the integrity of the data

should the message pass through a character-translating, and/or line-wrapping gateway.

2.6.2 Content-Type field
It is to describe the data contained in the body fully enough that the receiving user agent

can pick an appropriate agent or mechanism to present the data to the user, or otherwise

deal with the data in an appropriate manner. The value in this field is called a media type.

The Content-Type header field specifies the nature of the data in the body of an entity by

giving media type and subtype identifiers, and by providing auxiliary information that may

be required for certain media types. After the media type and subtype names, the remainder

of the header field is simply a set of parameters, specified in an attribute=value notation.

The ordering of parameters is not significant.

2.7 Database

2.7.1 MYSQL Database
A database organizes information in a logical way, so that it can be accessed and

maintained easily. There are two types of databases: flat file and relational. A flat file

database contains all the information one might need in one datasheet or table. A relational

database, however, consists of many different tables linked together by 'key' (common)

fields. The data can be manipulated in many different ways to produce different results.

The MySQL database package consists of MySQL server, MySQL client programs and

MySQL client library. MySQL server is the heart of MySQL and can be considered as a

program that stores and manages the databases. MySQL comes with many client programs.

The one which is mostly used is called mysql. This provides an interface through which

SQL statements can be issued and have the results displayed. MySQL client library can

 12

help in writing client programs in C. MySQL is classified as a Relational Database

Management System. The collection of data in a database is organized into tables.

Each table is organized into rows and columns.

2.7.2 MySQL Tables
MySQL supports two different kinds of tables: transaction-safe tables and not transaction-

safe tables (HEAP, ISAM, MERGE, and MyISAM).In transaction-safe tables (TST); many

statements can be combined and these all can be accepted in one go with the COMMIT

command. ROLLBACK can be executed to ignore the changes (if it is not the auto-commit

mode). If an update fails, all of the changes will be restored. (With NTST tables all changes

that have taken place are permanent). Not transaction-safe tables (NTST) are Safer. Faster

than TST as there is no transaction overhead, they use less disk space and require less

memory to do updates. As the default table type in MySQL, MyISAM tables probably

persist more than 95% of all MySQL data worldwide. MyISAM tables have very little

storage overhead. The underlying storage for MyISAM tables is quite transparent, too.

Every table is composed of three files. This makes it very easy to see what's going on i.e.

how quickly tables are growing, which ones have changed recently, and so on. They also

have some handy features that make building web applications easier. Full-text search is

also available only in MyISAM tables. Adding efficient keyword searches to the MySQL

applications has never been easier. MySQL spends very little time shuffling bytes around

or reading unnecessary data when a row is required in a MyISAM table. As a result,

MyISAM tables are blazingly fast compared to most other disk-based relational database

engines and even some commercial in-memory databases.

Two of the downsides of MyISAM tables are locking and the lack of transactions.

MyISAM tables use table-level locking. SELECT queries use shared locks, while all write

queries (INSERT, UPDATE, and DELETE) set exclusive locks. While this may sound like

a disaster waiting to happen, it is a fact that MyISAM tables are fast. That means most

locks are held only for very short periods of time, unless a very poorly optimized query is

executed. Lock contention really doesn't become an issue until the load on the server gets

quite high. This is depicted in fig2-3.

 13

Figure 2-3:Client and Mail Server agent

 14

C h a p t e r 3

3 E-MAIL CONFIGRATION

3.1 Architecture
Text messages sent among computer users, within the framework of "Electronic Mail". In

this context, messages are viewed as having an envelope and contents. The envelope

contains whatever information is needed to accomplish transmission and delivery. The

contents compose the object to be delivered to the recipient. This standard applies only

to the format and some of the semantics of message contents. It contains no specification

of the information in the envelope. However, some message systems may use information

from the contents to create the envelope. It is intended that this standard facilitate the

acquisition of such information by programs. Some message systems may store messages

in formats that differ from the one specified in this standard. This specification is intended

strictly as a definition of what message content format is to be passed between hosts.

This standard is NOT intended to dictate the internal formats used by sites, the specific

message system features that they are expected to support, or any of the characteristics of

user interface programs that create or read messages. A distinction should be made between

What the specification requires and what it allows. Messages can be made complex and

rich with formally-structured components of information or can be kept small and simple,

with a minimum of such information. Also, the standard simplifies the interpretation of

differing visual formats in messages; only the visual aspect of a message is affected and not

the interpretation of information within it. Implementers may choose to retain such visual

distinctions.

The formal definition is divided into four levels. The bottom level describes the meta-

notation used in this document. The second level describes basic lexical analyzers that feed

tokens to higher-level parsers. Next is an overall specification for messages; it permits

distinguishing individual fields. Finally, there is definition of the contents of several

structured fields. Standard for ARPA Internet Text Messages

 15

3.2 Communication Framework
Messages consist of lines of text. No special provisions are made for encoding drawings,

facsimile, speech, or structured text. No significant consideration has been given to

questions of data compression or to transmission and storage efficiency, and the standard

tends to be free with the number of bits consumed. For example, field names are specified

as free text, rather than special terse codes. A general "memo" framework is used. That is, a

message consists of some information in a rigid format, followed by the main part of the

message, with a format that is not specified in this document. The syntax of several fields

of the rigidly-formatted ("headers") section is defined in this specification; some of these

fields must be included in all messages.

 The syntax that distinguishes between header fields is specified separately from the

internal syntax for particular fields. This separation is intended to allow simple parsers to

operate on the general structure of messages, without concern for the detailed structure of

individual header fields is provided to facilitate construction of these parsers.

In addition to the fields specified in this document, it is expected that other fields will gain

common use. As necessary, the specifications for these "extension-fields" will be

published through the same mechanism used to publish this document. Users may also

wish to extend the set of fields that they use privately. Such "user-defined fields" are

permitted. The framework severely constrains document tone and appearance and is

primarily useful for most intra-organization communications and well-structured inter-

organization communication it also can be used for some types of inter-process

communication, such as simple file transfer and remote job entry. A more robust

framework might allow for multi-font, multi-color, multidimensional encoding of

information. A less robust one, as is present in most single-machine message systems,

would more severely constrain the ability to add fields and the decision to include specific

fields. In contrast with paper-based communication, it is interesting to note that the

RECEIVER of a message can exercise an extraordinary amount of control over the

message's appearance. The example of electronic mail server is described in figure 3-1.The

 16

amount of actual control available to message receivers is contingent upon the capabilities

of their individual message systems.

Figure 3-1: Example of Electronic Mail server

3.3 General Description

A message consists of header fields and, optionally, a body. The body is simply a sequence

of lines containing ASCII characters. It is separated from the headers by a null line (i.e., a

line with nothing preceding the CRLF).

3.4 Long Header Fields
 Each header field can be viewed as a single, logical line of ASCII characters, comprising a

field-name and a field-body. For convenience, the field-body portion of this conceptual

entity can be split into a multiple-line representation; this is called "folding". The general

 17

rule is that wherever there may be linear-white-space (NOT simply LWSP-chars), a CRLF

immediately followed by AT LEAST one LWSP-char may instead be inserted. The process

of moving from this folded multiple-line representation of a header field to its single line

representation is called "unfolding". Unfolding is accomplished by regarding CRLF

immediately followed by a LWSP-char as equivalent to the LWSP-char: While the

standard permits folding wherever linear white-space is permitted, it is recommended

that structured fields, such as those containing addresses, limit folding to higher-level

syntactic breaks. For address fields, it is recommended that such folding occur between

addresses, after the separating comma

Network-Specific Transformations

During transmission through heterogeneous networks, it may be necessary to force data to

conform to a network's local conventions. For example, it may be required that a CR be

followed either by LF, making a CRLF, or by <null>, if the CR is to stand alone). Such

transformations are reversed, when the message exits that network When crossing network

boundaries, the message should be treated as passing through two modules. It will

enter the first module containing whatever network-specific transformations that was

necessary to permit migration through the "current" network. It then passes through the

modules:

3.5 Transformation Reversal
 The "current" network's idiosyncrasies are removed and the message is returned to the

canonical form specified.

3.6 Message Specification

3.6.1 Syntax

Due to an artifact of the notational conventions, the syntax indicates that, when present,

some fields must be in a particular order. Header fields are NOT required to occur in

any particular order, except that the message body must occur AFTER the headers. It

is recommended that, if present, headers be sent in the order "Return Path", "Received",

"Date", "From", "Subject", "Sender",

 18

"To", "cc", etc.

This specification permits multiple occurrences of most fields. Except as noted, their

interpretation is not specified here, and their use is discouraged. The following syntax for

the bodies of various fields should be thought of as describing each field body as a single

long string (or line). The "Lexical Analysis of Message” section on “Long Header

Fields", above, indicates how such long strings can be represented on more than one line in

the actual transmitted message.

Message = fields *(CRLF *text) everything after first null line is message body

 Fields = dates ; Creation time,

 Source ; author id & one

 destination ; address required

 *optional-field ; others optional

 Source = [trace] ; net traversals

 Originator ; original mail

 [Resent] ; forwarded

 Trace = return ; path to sender

 1*received ; receipt tags

 Return = “Return-path" ":" route-adder; return address

 Received = “Received" ":" ; one per relay

 ["From" domain] ; sending host

 ["By" domain] ; receiving host

 ["Via” atom] ; physical path

 *("with" atom) ; link/mail protocol

 ["Id" mug-id] ; receiver mug id

 ["For” adder-spec] ; initial form

 ";" date-time ; time received

 Originator = authentic ; authenticated adder

 [“Reply-To" ":" 1#address])

 Authentic = "From" ":" mailbox; Single author

 “Sender" ":" mailbox; Actual submitter

 "From" ":" 1#mailbox); Multiple authors; Or not sender

 19

 Resent = resent-authentic

 [“Resent-Reply-To" ":" 1#address])

 Resent-authentic =

 = "Resent-From" ":" mailbox

 “Resent-Sender" ":" mailbox

 "Resent-From" ":" 1#mailbox)

 Dates = rig-date ; Original

 [resent-date] ; Forwarded

 Orig-date = “Date" ":" date-time

 Resent-date = “Resent-Date" ":" date-time

 Destination = “To" ":" 1#address; Primary

 / “Resent-To" ":" 1#address

 / “cc" ":" 1#address; Secondary

 / “Resent-cc" ":" 1#address

 / “bcc" ":” #address; Blind carbon

 / “Resent-bcc" ":” #address

 Optional-field =

 / “Message-ID" ":" msg-id

 / “Resent-Message-ID" ":" msg-id

 / “In-Reply-To" ":” *(phrase / msg-id)

 / “References" ":” *(phrase / msg-id)

 / “Keywords" ":” #phrase

 / “Subject" ":” *text

 / “Comments" ":” *text

 / “Encrypted" ":" 1#2word

 / extension-field ; to be defined
 / user-defined-field ; May be pre-empted

 Msg-id = "<" addr-spec ">" ; Unique message id

 Extension-field =

 <Any field which is defined in a document

 Published as a formal extension to this

 20

 Specification; none will have names beginning

 With the string "X-">

 User-defined-field =

 <Any field which has not been defined

 In this specification or published as an

 Extension to this specification; names for

 Such fields must be unique and may be

 Pre-empted by published extensions>

3.6.2 Forwarding

Some systems permit mail recipients to forward a message, retaining the original headers,

by adding some new fields. This standard supports such a service, through the "Resent-"

prefix to field names. Whenever the string "Resent-" begins a field name, the field has

the same semantics as a field whose name does not have the prefix. However, the message

is assumed to have been forwarded by an original recipient who attached the "Resent-"

field. This new field is treated as being more recent than the equivalent, original field. For

example, the "Resent-From", indicates the person that forwarded the message, whereas the

"From" field indicates the original author. Such precedence information depends upon

participants’ communication needs. For example, this standard does not dictate when a

"Resent-From:" address should receive replies, in lieu of sending them to the "From:"

address. In general, the "Resent-" fields should be treated as containing a set of

information that is independent of the set of original fields. Information for one set should

not automatically be taken from the other. The interpretation of multiple "Resent-" fields,

of the same type, is undefined.

3.7 Trace Fields
Trace information is used to provide an audit trail of message handling. In addition, it

indicates a route back to the sender of the message. The list of known "via" and “with”

values are registered with the Network Information Center

 21

3.8 Return-Path

This field is added by the final transport system that delivers the message to its recipient.

The field is intended to contain definitive information about the address and route back to

the message's originator. The "Reply-To" field is added by the originator and serves to

direct replies, whereas the "Return-Path” field is used to identify a path back to the

originator. While the syntax indicates that a route specification is optional, every attempt

should be made to provide that information in this field.

3.9 Received
A copy of this field is added by each transport service that relays the message. The

information in the field can be quite useful for tracing transport problems. The names of the

sending and receiving hosts and time-of-receipt may be specified. The "via" parameter

may be used, to indicate what physical mechanism the message was sent over, such as

Arpanet or Phone net, and the "with" parameter may be used to indicate the mail-, or

connection-, level protocol that was used, such as the SMTP mail protocol, or X.25

transport protocol. Several "with" parameters may be included, to fully specify the set of

protocols that were used. Some transport services queue mail; the internal message

identifier that is assigned to the message may be noted, using their" parameter. When the

sending host uses a destination address specification that the receiving host

reinterprets, by expansion or transformation, the receiving host may wish to record the

original specification, using the "for" parameter. For example, when a copy of mail is sent

to the member of a distribution list, this parameter may be used to record the original

address that was used to specify the list.

3.9.1 Originator Fields

The standard allows only a subset of the combinations possible with the From, Sender,

Reply-To, Resent-From, Resent-Sender, and Resent-Reply-To fields. The limitation is

intentional.

 22

3.9.2 From / Resent-From

This field contains the identity of the person(s) who wished this message to be sent. The

message-creation process should default this field to be a single, authenticated machine

address, indicating the AGENT (person, system or process) entering the message. If this is

not done, the "Sender" field must be present. If the "From" field is defaulted this way, the

"Sender" field is optional and is redundant with the "From” field. In all cases, addresses in

the "From" field must be machine-usable (adder-specs) and may not contain named lists

(groups).

3.10 Sender / Resent-Sender

This field contains the authenticated identity of the AGENT (person, system or process)

that sends the message. It is intended for use when the sender is not the author of the

message, or to indicate who among a group of authors actually sent the message. If the

contents of the "Sender" field would be completely redundant with the "From” field, then

the "Sender" field need not be present and its use is discouraged (though still legal). In

particular, the "Sender" field MUST be present if it is NOT the same as the "From" Field.

The Sender mailbox specification includes a word sequence which must correspond to a

specific agent (i.e., a human user or a computer program) rather than a standard address.

This indicates the expectation that the field will identify the single AGENT (person,

system, or process) responsible for sending the mail and not simply include the name of

a mailbox from which the mail was sent. For example in the case of a shared login name,

the name, by itself, would not be adequate. The local-part address unit, which refers to this

agent, is expected to be a computer system term, and not (for example) a generalized

person reference which can be used outside the network text message context.

3.11 Reply-To / Resent-Reply-To

This field provides a general mechanism for indicating any mailbox (as) to which responses

is to be sent. Three typical uses for this feature can be distinguished. In the first case, the

author(s) may not have regular machine-based mail-boxes and therefore wish (as) to

indicate an alternate machine address. In the second case, an author may wish additional

persons to be made aware of, or responsible for, replies. A somewhat different use may

 23

be of some help to "text message teleconferencing" groups equipped with automatic

distribution services: include the address of that service in the "Reply-To" field of all

messages submitted to the teleconference; then participants can "reply" to conference

submissions to guarantee the correct distribution of any submission of their own. The

"Return-Path" field is added by the mail transport service, at the time of final deliver. It is

intended to identify a path back to the originator of the message. The “Reply-To” field is

added by the message originator and is intended to direct replies.

3.12 Automatic Use Of From / Sender / Reply-To
For systems which automatically generate address lists for replies to messages, the

following recommendations are made The "Sender" field mailbox should be sent notices of

any problems in transport or delivery of the original messages. If there is no “Sender”

field, then the “From" field mailbox should be used. The "Sender" field mailbox should

NEVER be used automatically, in a recipient’s reply message If the "Reply-To" field

exists, then the reply should go to the addresses indicated in that field and not to the

address(as) indicated in the "From" field. If there is a "From" field, but no “Reply-To”

field, the reply should be sent to the address (as) indicated in the "From" field. Sometimes,

a recipient may actually wish to communicate with the person that initiated the message

transfer. In such cases, it is reasonable to use the "Sender" address. This recommendation

is intended only for automated use of originator-fields and is not intended to suggest that

replies may not also be sent to other recipients of messages. It is up to the respective mail-

handling programs to decide what additional facilities will be provided.

3.13 Receiver Fields

3.13.1 To-Resent-To
This field contains the identity of the primary recipients of the message. CC / RESENT-

CC This field contains the identity of the secondary (informational) recipients of the

message.

 24

3.13.2 Bcc / Resent-Bcc
This field contains the identity of additional recipients of the message. The contents of this

field are not included in copies of the message sent to the primary and secondary recipients.

Some systems may choose to include the text of the"Bcc" field only in the author(s)’s copy,

while others may also include it in the text sent to all those indicated in the"Bcc" list.

3.14 Reference Fields

3.14.1 Message-Id / Resent-Message-Id
This field contains a unique identifier (the local-part address unit) which refers to THIS

version of THIS message. The uniqueness of the message identifier is guaranteed by the

host which generates it. This identifier is intended to be machine readable and not

necessarily meaningful to humans. A message identifier pertains to exactly one

instantiation of a particular message; subsequent revisions to the message should each

receive new message identifiers.

3.14.2 IN-REPLY-TO
The contents of this field identify previous correspondence which this message answers.

Note that if message identifiers are used in this field, they must use the mug-id

specification format. REFERENCES The contents of this field identify other

correspondence which this message references. Note that if message identifiers are used,

they must use the mug-id specification format. KEYWORDS this field contains keywords

or phrases, separated by commas. OTHER FIELDS SUBJECT this is intended to provide

a summary, or indicate the Nature, of the message COMMENTS permits adding text

comments onto the message without disturbing the contents of the message's body.

ENCRYPTED Sometimes, data encryption is used to increase the privacy of message

contents. If the body of a message has been encrypted, to keep its contents private, the

“Encrypted" field can be used to note the fact and to indicate the nature of the encryption.

The first <word> parameter indicates the software used to encrypt the body, and the

second, optional <word> is intended to aid the recipient in selecting the proper

decryption key. This code word may be viewed as an index to a table of keys held by the

recipient. Unfortunately, headers must contain envelope, as well as contents, information.

 25

Consequently, it is necessary that they remain unencrypted, so that mail transport services

may access them. Since names, addresses, and "Subject” field contents may contain

sensitive information, this requirement limits total message privacy. EXTENSION-FIELD

A limited number of common fields have been defined. As network mail requirements

dictate, additional fields may be standardized. To provide user-defined fields with a

measure of safety, in name selection, such extension-fields will never have names that

begin with the string "X-". USER-DEFINED-FIELD Individual users of network mail are

free to define and use additional header fields. Such fields must have names which are not

already used in the current specification or in any definitions of extension-fields, and the

overall syntax of these user-defined-fields must conform to this specification’s rules for

delimiting and folding fields due to the

extension-field publishing process, the name of a user- defined-field may be pre-empted

The prefatory string "X-" will never be used in the names of Extension-fields. This

provides user-defined fields with a protected set of names.

3.15 Date And Time Specification

3.15.1 Syntax

Date-time = [day ","] date time ; did mm yy ; hh:mm:ss zzz

 Day = "Mon" / "Tue" / "Wed" / "Thu"/ “Fri" / "Sat" / "Sun"

 Date = 1*2DIGIT month 2DIGIT ; day month year ; e.g. 20 Jun 82

 Month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" / "Jul" / "Aug" /
"Sep" / "Oct" / "Nov" / "Dec"

 Time = hour zone ; ANSI and Military

 Hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT] ; 00:00:00 - 23:59:59

3.15.2 Semantics

If included, day-of-week must be the day implied by the date specification. "A" indicates

one hour earlier, and "M" indicates 12 hours earlier; “N” is one hour later, and "Y" is 12

hours later. The letter "J" is not used. The other remaining two forms are taken from

ANSI standard X3.51-1975. One allows explicit indication of the amount of offset from

UT; the other uses common 3-character strings for indicating time zones.

 26

3.16 Address Specification

3.16.1 Syntax

Address = mailbox ; one addressee

Group ; named list

Group = phrase ":" [#mailbox] ";"

Mailbox = addr-spec ; simple address

phrase route-addr ; name & addr-spec

 Route-addr = "<" [route] addr-spec ">"

Route = 1#("@" domain) ":" ; path-relative

Addr-spec = local-part "@" domain ; global address

Local-part = word *("." word) ; uninterrupted; Case-preserved

Domain = sub-domain *("." sub-domain)

Sub-domain = domain-ref / domain-literal

Domain-ref = atom ; symbolic reference

3.16.2 Semantics
A mailbox receives mail. It is a conceptual entity which does not necessarily pertain to file

storage. For example, some sites may choose to print mail on their line printer and deliver

the output to the addressee's desk. A mailbox specification comprises a person, system or

process name reference, a domain-dependent string, and a name-domain reference. The

name reference is optional and is usually used to indicate the human name of a recipient.

The name-domain refer once specifies a sequence of sub-domains. The domain-dependent

string is uninterrupted, except by the final sub-domain; the rest of the mail service merely

transmits it as a literal string.

3.17 Domains

A name-domain is a set of registered (mail) names. A name domain specification

resolves to a subordinate name-domain specification or to a terminal domain-

dependent string. Hence, domain specification is extensible, permitting any number of

registration levels. Name-domains model a global, logical, hierarchical addressing scheme.

The model is logical, in that an address specification is related to name registration and is

 27

not necessarily tied to transmission path. The model’s hierarchy is a directed graph,

called an in-tree, such that there is a single path from the root of the tree to any node in the

hierarchy. If more than one path actually exists, they are considered to be different

addresses. The root node is common to all addresses; consequently, it is not referenced. Its

children constitute "top-level" name- domains. Usually, a service has access to its own full

domain specification and to the names of all top-level name-domains. The "top" of the

domain addressing hierarchy a child of the root is indicated by the right-most field, in a

domain specification. Its child is specified to the left, its child to the left, and so on. Some

groups provide formal registration services; these constitute name-domains that are

independent logically of specific machines. In addition, networks and machines implicitly

compose name-domains, since their membership usually is registered in name tables. In the

case of formal registration, an organization implements a (distributed) data base which

provides an address-to-route mapping service for addresses of the form:

person@registry.organization

Note that "organization" is a logical entity, separate from any particular communication

network. A mechanism for accessing "organization" is universally available. That

mechanism, in turn, seeks an instantiation of the registry; its location is not indicated in the

address specification. It is assumed that the system which operates under the name

"organization" knows how to find a subordinate registry. The registry will then use the

"person" string to determine where to send the mail specification. The latter, network-

oriented case permits simple, direct, attachment-related address specification, such as:

user@host.network

Once the network is accessed, it is expected that a message will go directly to the host and

that the host will resolve the user name, placing the message in the user's mailbox

3.18 Abbreviated Domain Specification

Since any number of levels is possible within the domain hierarchy, specification of a fully

qualified address can become inconvenient. This standard permits abbreviated domain

specification, in a special case for the address of the sender, calls the left-most sub-domain

 28

Level N. In a header address, if all of the sub-domains above (i.e., to the right of) Level N

are the same as those of the sender, and then they do not have to appear in the specification.

Otherwise, the address must be fully qualified. This feature is subject to approval by local

sub domains. Individual sub-domains may require their member systems, which originate

mail, to provide full domain specification only. When permitted, abbreviations may be

present only while the message stays within the sub-domain of the sender. Use of this

mechanism requires the sender's sub-domain to reserve the names of all top-level domains,

so that full specifications can be distinguished from abbreviated specifications. For

example, if a sender's address is:

sender@registry-A.registry-1.organization-X
And one recipient's address is:

recipient@registry-B.registry-1.organization-X

 and another's is:

recipient@registry-C.registry-2.organization-X

Then ".registry-1.organization-X" need not be specified in the message, but “registry-

C.registry-2” does have to be specified. That is, the first two addresses may be abbreviated,

but the third address must be fully specified. When a message crosses a domain boundary,

all addresses must be specified in the full format, ending with the top-level name-domain in

the right-most field. It is the responsibility of mail forwarding services to ensure that

addresses conform to this requirement. In the case of abbreviated addresses, the relaying

service must make the necessary expansions. It should be noted that it often is difficult for

such a service to locate all occurrences of address abbreviations. For example, it will not be

possible to find such abbreviations within the body of the message. The "Return-Path" field

can aid recipients in recovering from errors.

3.19 Multiple Mailboxes
 An individual may have several mailboxes and wish to receive mail at whatever mailbox is

convenient for the sender to access. This standard does not provide a means of specifying”

any member of" a list of mailboxes. A set of individuals may wish to receive mail as a

single unit (i.e., a distribution list). The <group> construct permits specification of

such a list. Recipient mailboxes are specified within the bracketed part (). A copy of the

 29

transmitted message is to be sent to each mailbox listed. This standard does not permit

recursive specification of groups within groups. While a list must be named, it is not

required that the contents of the list be included. In this case, the <address> serves only as

an indication of group distribution and would appear in the form: name:; Some mail

services may provide a group-list distribution facility, accepting a single mailbox

reference, expanding it to the full distribution list, and relaying the mail to the list's

members. This standard provides no additional syntax for indicating such a service. Using

the <group> address alternative, while listing one mailbox in it, can mean either that the

mailbox reference will be expanded to a list or that there is a group with one member.

Internet cloud model is described in figure 3-2.

Figure 3-2: Internet Cloud

 30

3.20 Explicit Path Specification

At times, a message originator may wish to indicate the transmission path that a message

should follow. This is called source routing. The normal addressing scheme, used in an

adder-spec, is carefully separated from such information; the <route> portion of a route-

adder is provided for such occasions. It specifies the sequence of hosts and/or transmission

services that are to be traversed. Both domain-refs and domain-literals may be used.

3.20.1 Reserved Address

It often is necessary to send mail to a site, without knowing any of its valid addresses. For

example, there may be mail system dysfunctions, or a user may wish to find out a person’s

correct address, at that site. This standard specifies a single, reserved mailbox address

(local-part) which is to be valid at each site. Mail sent to that address is to be routed to a

person responsible for the site's mail system or to a person with responsibility for general

site operation.

 31

C h a p t e r 4

4 Design

4.1 Technologies Behind Qasid Mail
Qasid Mail provided an opportunity to work with existing programming languages and a

variety of ways those languages is used to build robust applications. Not only did it

encourage familiarization with API libraries and the different ways to use them, it also

encouraged discovery of ways to enhance and add to those libraries or create additional

libraries. The Java programming language is popular in developers to create a variety of

applications, making use of its massive class library. In addition, some projects take

advantage of optional packages like the Java Mail API.. Qasid Mail uses the Java Mail

API, JavaBeans Activation framework, Java I/O, and features much of the Project Swing

library. Airmail also takes advantage of what the Java class libraries have to offer and then

some. Yet, Qasidmail is not perfect. The APIs provide only so much functionality, then

enhancements and workarounds come into play. This chapter covers how the Graphical

User Interface (GUI), and JavaMail are implemented in Qasidmail, and how each of these

features are enhanced for application improvement. In addition, this article concludes with

problem areas needing the developer's touch, and with a thread problem area and how it

might possibly be resolved.

4.2 Qasidmail Hierarchy
Qasidmail's main method is in Qasidmail.java, which creates an instance of the

Qasidmail application, sets preferences, such as language, local and time, and a

shutDownQasidmail method to neatly close the application. The UI uses many common

Swing components such as JButton, JLabel, JToolBar, JPanel, JSplitPane, and

JTextField. Qasidmail also uses the AWT layout manager BorderLayout, and AWT

event listeners. Java I/O is used for reading and writing files to the system. The basic

Qasidmail class hierarchy is as shown in the fig :

 32

Figure 4-1: Class Hierarchy

4.3 Project Swing, Viewing Attachments, and Methods
Every Frame or Panel, or other significant GUI property, provides loadProperties and

saveProperties methods to save and restore the components in the positions last set by

the user. This saves window positions (note the need to deal with windows "minimized"

windows), split pane positions, and other components attributes are restored each time the

application runs. Parent components, call the load and save methods of their children

components to cover the tree of components.

4.4 JEditorPane and the QuickViewer Class
Qasidmail's QuickViewer panel uses the JEditorPane to display the email message

header, body, and attachments in one view. The editor pane components are handy because

 33

the same basic code is used to display different types of content. Currently, JEditorPane

supports styled text, HTML, and RTF (Rich Text Format).When a user clicks a message

line in the mailbox panel that shows each line in a summary line, the QuickViewer class

displays the contents of that message. This is done with a call to the setMessage(

Message msg) method, which parses the MIME message to determine the best way to

display the message:

parseMessagePart(this.message);

parseMessagePart interprets the MIME message and finds a reasonable way to display the

message. Qasidmail looks over the message parts and takes the first one it finds that is of

mime type text/*. The mime type multipart/* is further broken down by recursive calls to

parseMessagePart. It might be more appropriate for Qasidmail to account for the INLINE

disposition also, but in practice, this is rarely necessary. As parseMessagePart parses the

message, any message parts it finds that are not considered to be a part of the display is

added to a Vector of parts considered to be attachments. When Qasidmail sees that a

message has attachments, it displays them as icons in a panel to the right of the message.

This allows the user to click the icons to display the attachment, save the attachment to a

file, or get the attachment's properties. When parseMessagePart finally locates the part that

it believes most represents the email message, it calls to establishEditorPane to establish a

JEditorPane component that presents the MIME part content. Currently Swing supports the

mime types text/plain, text/rtf, and text/html. Unfortunately, the PDF package does not

support JEditorPane, so PDF can't be displayed inline. The establishEditorPane method is

fairly simple. It just looks at the mime type of the part, establishes a JEditorPane with that

content type, then reads the message part's content into the JEditorPane document

establishEditorPane(Part body Part)

{ JEditorPane pane = null;

 EditorKit editor = null;

 Document doc = null;

 try { // Get the ContentType (or mimetype) // of the body part to display

 ContentType xct = MessageUtilities.getContentType(bodyPart);

 34

// Try to match the content type

// with one of the types

// that is suported

if (xct.match("text/html"))

{ pane = new JEditorPane();

 pane.setContentType("text/html");

 pane.setEditable(false);

 editor = pane.getEditorKit();

{ // Use one of our own utilities

 // to get a BufferedReader

 // that reads the contents

 // of the body part.

BufferedReader xreader = MessageUtilities.getTextReader(bodyPart);

// Let the editor read the

// contents into the document.

editor.read(xreader, doc, 0);

// Done with the reader.

xreader.close();}

 this.editorPane_ = pane; }

 catch (IOException ex)

 { ex.printStackTrace(System.err);

 this.editorPane_ = null; }

 catch (BadLocationException ex) {

 ex.printStackTrace(System.err);

 this.editorPane_ = null; }

 catch (MessagingException ex) {

 ex.printStackTrace(System.err);

 this.editorPane_ = null; } }

Note the creation of the editor pane for the text/* differs from the HTML and RTF cases.

JTextPane is a subclass of JEditorPane, and the listener allows the cursor to change over

hot links, as well as handling clicking a hot link. The events handed to the listener are

 35

"entering the hotlink" (displays hotlink cursor), "exiting the hotlink" (display the normal

text cursor), and "link activated" (displays the new page that the link points to). Once

returned from the parseMessagePart method, the Quick Viewer code checks if the editor

pane has been set during the parsing, and to display the contents of the message. The code

displays the new editor pane in the panel.

If there were no attachments, the body component to the editor pane is set. Otherwise, the

display is set to the split pane that presents the editor pane on the left and the attachments

panel to the right. The editor pane is represented in the scroll pane by editor’s roller_:

4.5 Viewing Messages and Implementing "View As"
One of the peculiarities of writing a MIME compatible email client is that some of the

clients that send you email are not compliant, out of date, or misconfigured. The most

common problem associated with this is the classic application/octet-stream MIME content

type. Often, email clients are installed with minimal MIME type configurations and expect

the user to configure what is needed. Of course, many users do not realize they need to

configure these settings and begin using the client software. For instance, they send email

with a JPEG image attached, but the attachment has the catch-all MIME type

application/octet-stream.

When Qasidmail sees this generic content type, it does not have any means of determining

how to view the attachment. Some clients attempt to make a determination from the

filename suffix, such as .jpg, if the attachment specifies a name. If there is no name, the

normal behavior is to display a hex editor showing the data in binary form.Qasidmail uses a

feature in the attachment pop-up menu (right-click an attachment icon) that allows the user

to view the attachment "as" the MIME type that the user specifies. If the user knows that

the attachment is a JPEG image, it's possible tell Qasidmail to view the unknown type

attachment as if it were of type image/jpeg.Qasidmail implements this feature by defining a

new Data Source that wraps the original Data Source. Data Sources are defined by the Java

Activation Framework, which is the core of MIME implementation. They provide a

common interface to access various types of data, as well as configurable mechanisms for

viewing these data types. The wrapper Data Source only adds one feature -- it remembers

 36

the "view as" content type, and returns whenever the getContentType() method is called.

Otherwise, it redirects every other call to the original DataSource. For esoteric reasons,

code was also added to get a "name" from the Content Type of the original DataSource, if it

is provided as a MIME parameter, as is often the case with email attachments.DataSource

is implemented in the class org.qasidmail.mail.

4.6 JavaMail Implementation and Enhancements
Qasidmail Mail Handler JavaMail Service Provider is a simple file system-based mail

Store object that reads messages stored in the Mail Handler (MH) format. Qasidmail MH

service provider represents mail folders, using local directories and mail messages as files

in those directories. The MH Store expects a URLName field that is different from other

JavaMail stores. It uses the "File" portion of the URLName, and ignores the host and port

portions of the URL, unless the port is set to the value 4261, then the debug flag for the

provider turns on enabling debugging output to the console. The file portion of the URL, as

returned by the getFile method, is used to define the path name of the MH root folder. The

provider recognizes path names that begin with ~, and replaces the ~ with the user's home

directory, as defined by the System property user.home. The provider recognizes path

names that begin with a ., and replaces the dot with the current directory name, as defined

by the System property user.dir.

Table 4-1: URL names

URLName

mh:~
mh:~/Mail
mh://:4261/~
mh:C:/Windows/Profiles/Mail
mh:/C:/Windows/Profiles/Mail

Filesystem location

User's home directory.
The Mail folder.
User's home directory with debugging turned on.
Home directory (Windows).
Home directory (Windows).

 37

The Store protocol Connect method simply returns true. If there were some means of

authenticating the user, code could be added to protect a folder. As it is, this protection is

assumed to be provided by the file system permissions. The close method is a no-pounce

the path name is resolved to a directory; the MH store provider considers the files in that

folder to belong to the default folder of the store, typically considered the in box.

Otherwise, the provider parses the mail folder name on mapping name elements to

directories relative to the root directory, and considering files within those directories to be

the mail messages belonging to the mail folder. MH stores the messages using filenames

that are simple integers. This way it keeps one file, named "index", containing the last

integer used for a message. This makes it easy to get the id for a new message. So

messages file names look like: 1, 2, 3, 4, 32, 49, 104, 1223, As messages are deleted,

"holes" develop in the sequence of IDs. The store is implemented by the MHStore class.

The MHFolder class, which implements the Folder for the provider, is straightforward,

since it does not have to do much work. The message per file avoids having to parse files to

locate messages, as with the MBOX format, and JavaMail provides the code needed to

parse the MIME messages in those files. We simply need to manage mapping folder

names, such as "INBOX", misc/people/friends, and misc/people/work, into their

corresponding directories, and handling the message files for open, append, and delete

requests. Again, because the messages are kept in file units, these operations are simple,

since they are implemented by the file system. In addition, a cache is provided in MH. This

is a debatable feature, since it is rare to require caching of messages on a local file system,

but it's a benefit to file systems mounted over slow connections. Finally, the class

MHMessage is a subclass of MimeMessage. Because MimeMessage provides the

functionality for messages, it simply provides an Input Stream to the file containing the

mail message. Three very simple classes make a complete JavaMail Store Provider that

allows JavaMail clients to read an MH message store on a local disk or mounted from a file

server. The Qasidmail is made aware of the MH provider by adding the following entry to

the javamail.providers file, which appears in the file on one single line:

protocol=mh; type=store;

class=com.ice.javamail.mh.MHStore;

 38

vendor=Tim Endres;

The protocol matches the mh: prefix of the URLName. The type indicates that this provider

implements a Store. the class property identifies the class that implements the store, and

lastly, the vendor.

4.7 JavaMail and Internationalization
JavaMail and J2SE have many classes that support international character encodings by

default, but there's no easy way to support multiple character encodings within MIME

messages. The main problem stems from the MIME standard because any mail message

can be composed of any number of character encodings. Qasidmail splits the MIME

message handling routines into a set of utility routines, Message Utilities. These routines

allow Qasidmail to decode the message parts from any character encoding into Unicode

equivalents. They also encode message parts to character encodings before sending

messages, such as the attach routines with construct message parts from files, text, or

other message parts.

Qasidmail handles incorrectly constructed MIME messages since many people still use old

applications. JavaMail throws a lot of different exceptions based on the part being decoded,

which required Qasidmail to have special handling for each part and exception. In addition,

default handling of message contents were added in order to recover from ill-formed

messages, as in getTextReader.

// pick the character set off of the content type

 ContentType xct = MessageUtilities.getContentType(part);

 String xjcharset = xct.getParameter("charset");

 if (xjcharset != null) {

 xjcharset = MimeUtility.javaCharset(xjcharset);

 } else {

 // not present, assume ASCII character encoding

 xjcharset = MimeUtility.javaCharset("ASCII"); }

It took a lot of trial and error to make Qasidmail robust enough to handle international

email messages.

 39

4.8 Thread and Dialog Problems and the Dialog Runner Classes
Since the process may take time when a newly composed message is sent, a progress dialog

to show the progress of sending the message is needed in Qasidmail, a simple dialog box

with a progress bar component in it. Then when message transmission is initiated, the

transmission code should update the progress bar to show the progress to the user.There are

a couple of difficulties involved , the dialog box must be displayed in such a way as to not

block the event thread that typically invokes the operation. Otherwise, the event thread

blocks with the dialog box, and the display is not updated until the dialog is dismissed.

Thus, the progress bar does not update its display, and the user doesn't get the feedback that

is intended. Second, a more difficult problem involves synchronizing the two threads that

display the dialog and perform the operation being monitored. By investigating the code

used by DialogRunner, the problem, and its solution become clearer. One way around

these problems is to use a non-modal dialog. Non-modal dialogs do not block on the call to

show. Thus, the code can call show to display the dialog and the call returns and allows

continued processing. However, modal dialogs do not behave in the same fashion. When

the show method is called, the current execution thread blocks until the dialog box is

dismissed. The current release of Qasidmail uses the non-modal approach, for historical

reasons. However, the code to make this work with modal dialogs should be

considered.The general structure of using a non-modal dialog as it is coded in Qasidmail

starts with an interface definition. This interface is described in table 4-2.

Table 4-2: interface

interface

DialogRunnable

{

abstract public void

run(JDialog dialog,

 JProgressBar progress);

 40

This interface is used by the class DialogRunner and the DialogRunner class is handed to

any of the runnables to use. DialogRunner is a simple class, whose entire functionality is

contained in the run method.First, dialog.show is called. This pops up the progress dialog

that was created by the DialogRunner class, and starts the progress bar forward. It then

proceeds through the steps of retrieving the new email messages for the currently displayed

folder, all the while incrementing the progress indicator. Finally, dialog.dispose is

called, which dismisses the dialog box. The run method returns, completing the thread's

execution. While this code appears to work properly, and the average user will never know

the difference, this code is plagued with problems. To see why, look back to the code that

started this entire process, the actionPerformed method in MessagePanel and the code that

implements the GETNEWMAIL command.

if (this.folder != null)

{

MainFrame.getInstance(

).setWaitCursor();

MailEventThread.notifyIncoming(this.folder, false);

Object[] xargs = new Object[1];

xargs[0] = this.folder.getName();

String msg =

 Qasidmail.bundle.getFormatString

 ("MessagePanel.Retrieving",

 xargs);

DialogRunner runner = new DialogRunner

 (this.new NewMailRunner(),

 (Frame)getTopLevelAncestor(),

 Qasidmail.bundle.getString

 ("MessagePanel.Retrieving.title"),

msg);

runner.start();

MainFrame.getInstance().resetCursor();

 41

Notice how the DialogRunner thread starts then simply falls through and returns from the

actionPerformed method. The DialogRunner is now running outside of the Swing event

thread. This has the nice benefit of the UI "updating" while the DialogRunner thread runs,

because the Swing event thread is not blocked. However, it has the detrimental effect of not

blocking the user interface from further actions by the user. To get a real feel for what this

means, open a large folder in Qasidmail, and while the progress dialog is displayed, open

several other folders. Right-click folders and open them. The progress dialogs for the

folders you have tried to open appear. This problem resolves with a modal dialog. Modal

dialogs "take over" the user interface, and while components continue to update, the user

can not click the mouse, or perform any other input event, outside of the dialog box. This

effectively "freezes" the user interface until the dialog is dismissed, which is when the

processing code completes and disposes of the dialog. With the advantage of the modal

dialog "freezing" the user interface comes a difficulty. The call to the show method of the

modal dialog does not return until the dialog is dismissed. This is not immediately obvious:

 JDialog dlg =

 this.setupProgressDialog(args);

 dlg.show();

Once the dlg.show method is called, it does not return until the dialog is dismissed. Given

this code, and because the dialog controls all input events, the only way to dismiss the

dialog, and return from the show method, is for some user event within the dialog box to

call the JDialog.dispose method. The problem is that we do not want a component in the

dialog box to dispose of it. That should be done by the processing code that is using the

dialog to display its progress. This code can not be placed after the call to show, as

Qasidmail does in the examples above, because show does not return. The obvious solution

is to simply spin off a thread to perform the processing just before the call to show. More

pseudo code described in table 4-3 and4-4.

 42

Table 4-3: Algo of Dialouge

JDialog dlg =

 this.setupProgressDialog(args);

 ProcessingThread thread =

 new ProcessingThread(dlg, args);

thread.start();

dlg.show();

And in ProcessingThread:

Table 4-4: Algorithm

public void

run()

{

//perform processing incrementing

// progress bar

dlg.setVisible(false);

}

In other words, set up the dialog and the thread, start the thread, and show the dialog. This

causes the current thread block until the dialog box is dismissed, at which time the show

method returns. The processing thread calls dlg.setVisible(false) when it is finished

processing. The dialog displays and controls user input, until the processing thread

completes, then the dialog is dismissed. Yet, there is still a problem. The code contains a

race condition. If the processing thread gets the VM before the call to JDialog.show, the

call to dlg.setVisible(false) can occur before the show call. If this happens, the dialog

appears, but is never removed. The sample class ProgressTest demonstrates this event

 43

when the Race Condition button is clicked. The following output from the ProgressTest

application shows the order of execution between the two threads.

Normal

Progress Test Started --------------

Dialog estblished.

Thread constructed.

Thread started.

Showing the dialog.

Thread run() starts.

Thread run() making dialog not visible.

Dialog.show() has returned.

Dialog.dispose() has returned.

Thread run() made dialog not visible.

Thread run() ends.

Race - Note that "Showing the dialog" comes

after "Thread run made dialog not visible!"

Progress Test Started -------

Dialog estblished.

Thread constructed.

Thread started.

Thread run() starts.

Thread run() making dialog not visible.

Thread run() made dialog not visible.

Thread run() ends.

Showing the dialog.

Dialog.show() has returned.

Dialog.dispose() has returned.

In the race condition case, clicking the close icon in the dialog box to dismiss it reveals the

Dialog.show has returned a message. Eliminating this problem is accomplished by the

simplest of means. Don't execute code that could possibly block, which relinquishes the

VM to another thread, in the critical section of code that exists between starting the

 44

processing thread, and calling the JDialog.show method on the progress dialog. This

eliminates the problem because of the nature of the Java Virtual Machine (JVM)1

Threading Model. The JVM does not time-slice like a UNIX OS might. Currently running

threads does not relinquish the VM unless they make a call to a method that blocks in some

way. Since the code between starting the processing thread and showing the dialog never

blocks, the processing thread never gets a chance to run. When the show method is called,

the thread blocks and the processing thread has a chance to run.Adding synchronization, or

trying to use a wait and notify approach might seem helpful, but no matter how the the

distance between starting the processing thread and showing the dialog is tightened, there is

still the chance of native threading executing in such a way that the processing code

executes setVisible(false) before JDialog.show is called. Granted, assuming normal

conditions, and also assuming that processing never takes less than a fraction of a second,

sleep(100) is added to the beginning of the thread's run method), it is very unlikely that the

processing finishes before the dialog is displayed. However, in the case of an XWindows-

based Java application on a slow connection, this is still a possibility. If an object is passed

into the show method that notifies when the dialog is shown, the JDialog.show method

calls the notifyAll method on that object. The processing code would then wait on the same

object, ensuring that it did not run until the dialog was shown:

JDialog dlg =

this.setupProgressDialog(args);

dlg.show(dlg);

In the processing thread's run method:

public void

 run(){

try { dlg.wait(); }

catch (InterruptedException ex) { ... }

 // perform processing incrementing

progress bar

dlg.setVisible(false); }

 45

To be certain the run method is not called, use dlg.setVisible(false) before the

dialog box is displayed. Qasidmail is a good example of an open-source project that

demonstrates how various Java APIs work together and are used in complete applications.

While some developers enjoy developing the UI with Swing, other developers may prefer

to work with message handling using the JavaMail API. With many developers working on

an open-source project, solutions to problems, like those listed above, are more likely to

occur and improve applications.Qasid Mail is an email client application written entirely in

Java. The application is designed and implemented using the Java Mail API, and therefore

inherits some look and feel from the functionality of this package.

Qasid Mail extends the Java Mail API, giving it additional functionality and usability, such

as displaying attachments, accessing address books, etc. The possibilities of extending

Qasid Mail are end-less as it can be developed further. Qasid Mail has requirements before

it can be executed or used successfully.

4.9 Java Runtime Installation
Qasid Mail is written using the Java language and requires a Java Runtime Environment

(JRE). Qasid Mail is compatible with Java 1.2 runtime environments (JRE), You only need

the Java Development Kit (JDK) to build Qasid Mail from the source code.

4.10 Mail Server
Qasid Mail requires access to a mail server for reading your email, and a mail server to

send email, i.e. SMTP mail server.

4.11 Java Foundation Classes
Qasid Mail requires the presence of the Java Foundation Classes, also known as Swing.

The JFC package is included in Java 1.2 runtime environments, and therefore is not

required in newer JRE versions. Extensions Qasid Mail uses several third-party packages to

extend the functionality of the application. These extensions come in the form of

attachment viewers, support, and address books. Java Mail API.Qasid Mail uses the Java

Mail package extensively to access and send email messages. This package is part of the

Qasid Mail.

 46

C h a p t e r 5

5 Installing Qasid Mail
Qasid Mail is a single, large JAVA Jar file which contains everything necessary to run on

any computer with a compatible Java Virtual Machine (JVM). The command will create a

single directory, , which contains libraries and the source code.. All libraries that Qasid

Mail is comprised of can be found in the 'lib' sub-directory.

5.1 Windows Specific Information
Java applications are not specific to a given platform. Qasid Mail has two dynamic link

libraries (DLLs) to make it integrate with Windows applications. The simplest approach is

to simply leave the two DLL files in the 'lib' folder of the Qasid Mail. If Qasid Mail is

started with the, run. bat, then Windows will be able to find the DLL files.

5.2 Running Qasid Mail
Starting the Mail AutomaticallyTo start the applications double-click the Qasid Mail jar

file, “qasidmail.jar” and start the application.

5.3 Run-time Environment
Qasid Mail automatically generates all property files it needs and places them in the home

directory. All properties are configured via dialog boxes when Qasid mail is installed and

run for the first time. The Qasid Mail.ldif file contains all personal contact information,

including email addresses, addresses, phone numbers, etc. The file is maintained in a

format called LDIF (LDAP Interchange Format). The contents of the file can be read with

any word processor.

5.4 Qasid Mail Configuration
Qasid Mail is configured via a series of dialog boxes. When you first launch Qasid Mail, if

it determines that you have not configured the most important properties, it will

automatically display the dialogs to configure these items. All of the configuration dialogs

are available via the Config menu. Each dialog is discussed via the list in the table 5.1.

 47

Table 5-1: Information

User Information Configures your personal information, such as your email address,
personal name, reply to address, etc.

Signatures Configures your signatures.
Local Manual Configures the location of the Qasid Mail on your local disk so you

can read the manual while you are off-line
Mail Stores Configures the stores that you wish to use for viewing email. This is

where you identify the store that contains your INBOX and other
stores you wish to use.

SMTP Transport
Properties

Configures the properties used if the SMTP Transport Protocol is
used.

5.5 Creating Folders
You can create new folders in Qasid Mail. To do so, simply select a folder in the folder tree

panel, so that it is highlighted. Then, select the "Create Folder" menu command. This will

display a dialog asking for the name of the new folder. This is not a folder pathname, just

the name of the folder. There are also two check boxes indicating whether the folder can

contain messages or folders. Once you have filled in the name, and checked a box, click ok

and the folder will appear in the folder panel.

5.5.1 Folder Paths
Folder paths are like file paths. They start with the Store Name, followed by a slash,

followed by a folder name. If the folder is inside of other folders, you use a slash separated

pathname to the desired folder.

5.5.2 Mail Folders
Mail folders are the things that contain mail messages. Folders can also contain other

folders. If a folder can contain other folders; Qasid Mail will display the folder with a

folder icon. If the folder can only contain messages and not other folders, then Qasid Mail

 48

will display it with a document icon. Folders can not exist on their own. They must be

contained by either a store or another folder. Thus, every folder has a path name that

uniquely identifies the stores and folders that you must open to get to the folder identified

by the pathname.

5.5.3 Mail Stores
Mail stores are the highest level container in the Java Mail API. Stores are contained by

nothing. They are the root of all folder trees. In practice, a Mail Store is synonymous with a

mail login or user. A store is specified by a URL, and that url typically identifies a mail

host and login. Stores are identified by Java Mail using their URL. However, Qasid Mail

uses the store's name when referencing a store in a folder pathname or in other cases. When

you define a store in the Store Configuration Dialogue you give the store its name. You

will use this name any time that Qasid Mail refers to a store name or a folder path.

5.5.4 Copy Message
In order to copy a message Qasid Mail needs to know which message to copy, and the

destination folder. The message that is copied is the currently displayed message. The

destination folder is the folder that is selected in the Folder Panel which is the left panel

displaying the Store and Folder tree.

5.5.5 Moving Messages
In order to move a message Qasid Mail needs to know which message to move, and the

destination folder. The message that is moved is the currently displayed message. The

destination folder is the folder that is selected in the Folder Panel which is the left panel

displaying the Store and Folder tree. When you move a message, it is not expunged from

the source folder; it is simply marked for delete.

5.5.6 Saving Message Compositions
If you compose a message, and attempt to close the window before you have sent the

message, Qasid Mail will prompt you to save the message. When you save the message,

you will need to specify a Folder path name to which you wish to save the message.

 49

5.5.7 Composition Configuration
This dialog will allow you to configure items related to the composition of email. Specify

the store in which to save mail messages that have not been sent yet. This allows you to

save a message that you are composing for later edit and sending. To send a message that

you have saved, open the store that you configure here, and select the message in the list on

the right, and use the "Edit Message" command in the "Mail" menu. The mail message will

be displayed in a compose window in the state that you saved it. The store name used in

this configuration must be a full path name to completely describe the mail folder to use.

For this reason, the tree of mail folders is displayed at the bottom of the dialog. Clicking on

any of the mail folder icons in the tree will cause the folder's full path name to be entered

for you automatically.

5.5.8 Transport Configuration
The transport configuration determines what Qasid Mail uses to send outgoing email. If

you never send email with Qasid Mail, and only use it for reading email, then you do not

need to worry about this configuration. In WinXP SMTP protocol provider is available to

send email.

 50

C h a p t e r 6

6 Multipurpose Internet Mail Extensions (MIME)
MIME describes several mechanisms that combine to solve most of the problems without

introducing any serious incompatibilities with the existing world. In particular, it describes:

A MIME-Version header field uses a version number to declare a message to be

conformant with MIME and allows mail processing agents to distinguish between such

messages and those generated by older or non-conformant software, which are presumed to

lack such a field.

6.1 A Content-Type header field
This can be used to specify the media type and subtype of data in the body of a message

and to fully specify the native representation (canonical form) of such data.

6.2 A Content-Transfer-Encoding header field
This can be used to specify both the encoding transformation that was applied to the body

and the domain of the result. Encoding transformations other than the identity

transformation are usually applied to data in order to allow it to pass through mail transport

mechanisms which may have data or character set limitations.

6.3 Two additional header fields
Features can be used to further describe the data in a body, the Content-ID and Content-

Description header fields. The entire header fields defined is subject to the general syntactic

rules for header fields specified. In particular, all of these header fields except for Content-

Disposition can include comments, which have no semantic content and should be ignored

during MIME processing. Finally, to specify and promote interoperability, it provides a

basic applicability statement for a subset of the above mechanisms that defines a minimal

level of "conformance" with this document. Several of the mechanisms described in this

set of documents may seem somewhat strange or even baroque at first reading.

 51

6.4 Definitions and Conventions

6.4.1 CRLF
The term CRLF, in this set of documents, refers to the sequence of octets corresponding to

the two US-ASCII characters CR (decimal value 13) and LF (decimal value 10) which,

taken together, in this order, denote a line break in mail.

6.4.2 Character Set
The term "character set" is used in MIME to refer to a method of converting a sequence of

octets into a sequence of characters. unconditional and unambiguous conversion in the

other direction is not required, in that not all characters may be represent able by a given

character set and a character set may provide more than one sequence of octets to represent

a particular sequence of characters. This definition is intended to allow various kinds of

character encodings, from simple single-table mappings such as US-ASCII to complex

table switching methods such as those that use ISO 2022's techniques, to be used as

character sets. However, the definition associated with a MIME character set name must

fully specify the mapping to be performed. In particular, use of external profiling

information to determine the exact mapping is not permitted. The term "character set" was

originally to describe such straightforward schemes as US-ASCII and ISO-8859-1 which

have a simple one-to-one mapping from single octets to single characters. Multi-octet

coded character sets and switching techniques make the situation more complex. For

example, some communities use the term” character encoding" for what MIME calls a

"character set", while using the phrase "coded character set" to denote an abstract mapping

from integers (not octets) to characters.

6.4.3 Message
The term "message", when not further qualified, means either a (complete or "top-level")

message being transferred on a network, or a message encapsulated in a body of type

"message” or "message/partial".

 52

6.4.4 Entity
The term "entity", refers specifically to the MIME-defined header fields and contents of

either a message or one of the parts in the body of a multipart entity. The specification of

such entities is the essence of MIME. Since the contents of an entity are often called the

"body", it makes sense to speak about the body of an entity. Any sort of field may be

present in the header of an entity, but only those fields whose names begin with "content-"

actually have any MIME-related meaning. Note that this does NOT imply that they have

no meaning at all an entity that is also a message has non MIME header fields whose

meanings are defined.

6.4.5 Body Part
The term "body part" refers to an entity inside of a multipart entity. The term "body", when

not further qualified, means the body of an entity, that is, the body of either a message or of

a body part. The previous four definitions are clearly circular. This is unavoidable, since

the overall structure of a MIME message is indeed recursive.

6.4.6 7bit Data
"7bit data" refers to data that is all represented as relatively short lines with 998 octets or

less between CRLF line separation sequences. No octets with decimal values greater than

127 are allowed and neither are NULs (octets with decimal value 0). CR (decimal value 13)

and LF (decimal value 10) octets only occur as part of CRLF line separation sequences.

6.4.7 8bit Data
"8bit data" refers to data that is all represented as relatively short lines with 998 octets or

less between CRLF line separation sequences, but octets with decimal values greater than

127 may be used. As with "7bit data" CR and LF octets only occur as part of CRLF line

separation sequences and no NULs are allowed.

6.4.8 Binary Data
"Binary data" refers to data where any sequence of octets whatsoever is allowed.

 53

6.4.9 Lines
"Lines" are defined as sequences of octets separated by a CRLF sequences. "Lines" only

refers to a unit of data in a message, which may or may not correspond to something that is

actually displayed by a user agent.

6.4.10 MIME Header Fields
MIME defines a number of new header fields that are used to describe the content of a

MIME entity. These header fields occur in at least two contexts as part of a regular

message header In a MIME body part header within a multipart Construct.

There has really been only one format standard for Internet messages, and there has been

little perceived need to declare the format standard in use. This is an independent

specification that complements. Although the extensions have been defined in such a way

as to be compatible, there are still circumstances in which it might be desirable for a mail-

processing agent to know whether a message was composed with the new standard in

mind. Therefore, this document defines a new header field, "MIME-Version", which is to

be used to declare the version of the Internet message body format standard in use.

Messages composed in accordance with this document MUST include such a header field.

The presence of this header field is an assertion that the message has been composed in

compliance with this document. Since it is possible that a future document might extend the

message format standard again, a formal BNF is given for the content of the MIME-

Version field: Thus, future format specifies, which might replace or extend "1.0", are

constrained to be two integer fields, and separated by a period. If a message is received

with a MIME-version value other than "1.0", it cannot be assumed to conform to this

document. The MIME-Version header field is required at the top level of a message. It is

not required for each body part of a multipart entity. It is required for the embedded

headers of a body of type” message/" or "message/partial" if and only if the embedded

message is itself claimed to be MIME-conformant. It is not possible to fully specify how a

mail reader that conforms to MIME as defined in this document should treat a message that

might arrive in the future with some value of MIME-Version other than "1.0". It is also

worth noting that version control for specific media types is not accomplished using the

 54

MIME-Version mechanism. In particular, some formats (such as application/postscript)

have version numbering conventions that are internal to the media format. Where such

conventions exist, MIME does nothing to supersede them. Where no such conventions

exist, a MIME media type might use a "version" parameter in the content-type field if

necessary. When checking MIME-Version values comment strings that are present must be

ignored. In particular, the following four MIME-Version fields are equivalent: In the

absence of a MIME-Version field, a receiving mail user agent (whether conforming to

MIME requirements or not) may optionally choose to interpret the body of the message

according to local conventions. Many such conventions are currently in use and it should

be noted that in practice non-MIME messages can contain just about anything. It is

impossible to be certain that a non-MIME mail message is actually plain text in the US-

ASCII character set since it might well be a message that, using some set of nonstandard

local conventions that predate MIME, includes text in another character set or non-textual

data presented in a manner that cannot be automatically recognized.

6.5 Content-Type Header Field
 The purpose of the Content-Type field is to describe the data contained in the body fully

enough that the receiving user agent can pick an appropriate agent or mechanism to present

the data to the user, or otherwise deal with the data in an appropriate manner. The value in

this field is called a media type. The Content-Type header field was first defined it uses a

simpler and less powerful syntax, but one that is largely compatible with the mechanism

given here. The Content-Type header field specifies the nature of the data in the body of an

entity by giving media type and subtype identifiers, and by providing auxiliary information

that may be required for certain media types. After the media type and subtype names, the

remainder of the header field is simply a set of parameters, specified in an attribute=value

notation. The ordering of parameters is not significant. In general, the top-level media type

is used to declare the general type of data, while the subtype specifies a specific format for

that type of data. Thus, a media type of "image/xyz" is enough to tell a user agent that the

data is an image, even if the user agent has no knowledge of the specific image format

"xyz". Such information can be used, for example, to decide whether or not to show a user

 55

the raw data from an unrecognized subtype such an action might be reasonable for

unrecognized subtypes of text, but not for unrecognized subtypes of image or audio. For

this reason, registered subtypes of text, image, audio, and video should not contain

embedded information that is really of a different type. Such compound formats should be

represented using the "multipart" or "application" types. Parameters are modifiers of the

media subtype, and as such do not fundamentally affect the nature of the content. The set

of meaningful parameters depends on the media type and subtype. Most parameters are

associated with a single specific subtype. However, a given top-level media type may

define parameters which are applicable to any subtype of that type. Parameters may be

required by their defining content type or subtype or they may be optional. MIME

implementations must ignore any parameters whose names they do not recognize. For

example, the "charset" parameter is applicable to any subtype of "text", while the

"boundary" parameter is required for any subtype of the "multipart" media type. There are

NO globally-meaningful parameters that apply to all media types. Truly global mechanisms

are best addressed, in the MIME model, by the definition of additional Content header

fields. In the future, more top-level types may be defined only by a standards-track

extension to this standard. If another top-level type is to be used for any reason, it must be

given a name starting with "X" to indicate its non-standard status and to avoid a potential

conflict with a future official name.

6.6 Syntax of the Content-Type Header Field
The type, subtype, and parameter names are not case sensitive. For example, text, Text, and

text are all equivalent top-level media types. Parameter values are normally case sensitive,

but sometimes are interpreted in a case-insensitive fashion, depending on the intended use.

(For example, multipart boundaries are case-sensitive, but the "access-type" parameter for

message/External-body is not case-sensitive.) Value of a quoted string parameter does not

include the quotes. That is, the quotation marks in a quoted-string are not a part of the value

of the parameter, but are merely used to delimit that parameter value. In addition,

comments are allowed in accordance with rules for structured header fields. Beyond this

syntax, the only syntactic constraint on the definition of subtype names is the desire that

 56

their uses must not conflict. That is, it would be undesirable to have two different

communities using "Content-Type: application/foot bar" to mean two different things. The

process of defining new media subtypes, then, is not intended to be a mechanism for

imposing restrictions, but simply a mechanism for publicizing their definition and usage.

There are, therefore, two acceptable mechanisms for defining new media subtypes Private

values (starting with "X-") may be defined bilaterally between two cooperating agents

without outside be registered or standardized New standard values should be registered

with IANA .

6.7 Content-Type Defaults
 Default messages without a MIME Content-Type header are taken by this protocol to

explain text in the US-ASCII character set, which can be explicitly specified as Content

type: text/plain; charset=us-ASCII This default is assumed if no Content-Type header field

is specified. It is also recommended that this default be assumed when a syntactically

invalid Content-Type header field is encountered. In the presence of a MIME-Version

header field and the absence of any Content-Type header field, a receiving User Agent can

also assume that plain US-ASCII text was the sender's intent. Plain US-ASCII text may

still be assumed in the absence of a MIME-Version or the presence of a syntactically

invalid Content-Type header field, but the sender's intent might have been otherwise

 57

C h a p t e r 7

7 Operating Manual
QasidMail is an email client application written entirely in Java. The application is

designed and implemented using the Java Mail API, and therefore inherits some look and

feel from the functionality of this package. Qasid Mail extends the Java Mail API, giving it

additional functionality and usability, such as displaying attachments, accessing address

books, etc. The possibilities of extending Qasid Mail are end-less as it can be developed

further. Qasid Mail has requirements before it can be executed or used successfully.

7.1 Java Runtime Installation
Qasid Mail is written using the Java language and requires a Java Runtime Environment

(JRE). Qasid Mail is compatible with Java 1.2 runtime environments (JRE), You only need

the Java Development Kit (JDK) to build Qasid Mail from the source code.

7.2 Mail Server
Qasid Mail requires access to a mail server for reading your email, and a mail server to

send email, i.e. SMTP mail server.

7.3 Java Foundation Classes
Qasid Mail requires the presence of the Java Foundation Classes, also known as Swing.

The JFC package is included in Java 1.2 runtime environments, and therefore is not

required in newer JRE versions.

7.4 Extensions
Qasid Mail uses several third-party packages to extend the functionality of the application.

These extensions come in the form of attachment viewers, support, and address books.

7.5 Java Mail API
Qasid Mail uses the Java Mail package extensively to access and send email messages.

This package is part of the Qasid Mail. Java Activation Qasid Mail uses the Java Activation

Classes and Beans.

 58

7.6 Installing Qasid Mail
Qasid Mail is a single, large JAVA Jar file which contains everything necessary to run on

any computer with a compatible Java Virtual Machine (JVM). The command will create a

single directory, , which contains libraries and the source code.. All libraries that Qasid

Mail is comprised of can be found in the 'lib' sub-directory. .

7.7 Windows Specific Information
Java applications are not specific to a given platform. Qasid Mail has two dynamic link

libraries (DLLs) to make it integrate with Windows applications. The simplest approach is

to simply leave the two DLL files in the 'lib' folder of the Qasid Mail. If Qasid Mail is

started with the, run. bat, then Windows will be able to find the DLL files.

7.8 Running Qasid Mail
Starting the Mail Automatically to start the applications double-click the Qasid Mail jar

file, “qasidmail.jar” and start the application.

7.8.1 Run-time Environment
Qasid Mail automatically generates all property files it needs and places them in the home

directory. All properties are configured via dialog boxes when Qasid mail is installed and

run for the first time. The Qasid Mail is an email client application written entirely in Java.

The application is designed and implemented using the Java Mail API, and therefore

inherits some look and feel from the functionality of this package.

Qasid Mail extends the Java Mail API, giving it additional functionality and usability, such

as displaying attachments, accessing address books, etc. The possibilities of extending

Qasid Mail are end-less as it can be developed further. Qasid Mail has requirements before

it can be executed or used successfully.

7.8.2 Run-time Environment
Qasid Mail automatically generates all property files it needs and places them in the home

directory. All properties are configured via dialog boxes when Qasid mail is installed and

 59

run for the first time. The Qasid Mail.ldif file contains all personal contact information,

including email addresses, addresses, phone numbers, etc. The file is maintained in a

format called LDIF (LDAP Interchange Format). The contents of the file can be read with

any word processor.

7.8.3 Qasid Mail Configuration
Qasid Mail is configured via a series of dialog boxes. When you first launch Qasid Mail, if

it determines that you have not configured the most important properties, it will

automatically display the dialogs to configure these items. All of the configuration dialogs

are available via the Config menu. Each dialog is discussed via the list below. User

Information configures your personal information, such as your email address, personal

name, reply to address. Signatures Configures your signatures. Composition Configures

where to save messages that you have composed by not sent. Local Manual configures the

location of the Qasid Mail on your local disk so you can read the manual. Configures the

stores that you wish to use for viewing email. This is where you identify the store that

contains your INBOX and other stores you wish to use. SMTP Transport Properties

configures the properties used if the SMTP Transport Protocol is used. Temp files

configures directory in which temporary files are created.

7.8.4 Creating Folders
You can create new folders in Qasid Mail. To do so, simply select a folder in the folder tree

panel, so that it is highlighted. Then, select the "Create Folder" menu command. This will

display a dialog asking for the name of the new folder. This is not a folder pathname, just

the name of the folder. There are also two check boxes indicating whether the folder can

contain messages or folders. Once you have filled in the name, and checked a box, click ok

and the folder will appear in the folder panel. folder Paths Folder paths are like file paths.

They start with the Store Name, followed by a slash, followed by a folder name. If the

folder is inside of other folders, you use a slash separated pathname to the desired folder.

 60

7.8.5 Mail Folders
Mail folders are the things that contain mail messages. Folders can also contain other

folders. If a folder can contain other folders; Qasid Mail will display the folder with a

folder icon. If the folder can only contain messages and not other folders, then Qasid Mail

will display it with a document icon. Folders can not exist on their own. They must be

contained by either a store or another folder. Thus, every folder has a path name that

uniquely identifies the stores and folders that you must open to get to the folder identified

by the pathname.

7.8.6 Mail Stores
Mail stores are the highest level container in the Java Mail API. Stores are contained by

nothing. They are the root of all folder trees. In practice, a Mail Store is synonymous with a

mail login or user. A store is specified by a URL, and that url typically identifies a mail

host and login. Stores are identified by Java Mail using their URL. However, Qasid Mail

uses the store's name when referencing a store in a folder pathname or in other cases. When

you define a store in the Store Configuration Dialogue you give the store its name. You

will use this name any time that Qasid Mail refers to a store name or a folder path. Copy

Message In order to copy a message Qasid Mail needs to know which message to copy,

and the destination folder. The message that is copied is the currently displayed message.

The destination folder is the folder that is selected in the Folder Panel which is the left

panel displaying the Store and Folder tree. Moving Messages In order to move a message

Qasid Mail needs to know which message to move, and the destination folder. The message

that is moved is the currently displayed message. The destination folder is the folder that is

selected in the Folder Panel which is the left panel displaying the Store and Folder tree.

When you move a message, it is not expunged from the source folder; it is simply marked

for delete. Saving Message Compositions If you compose a message, and attempt to close

the window before you have sent the message, Qasid Mail will prompt you to save the

message. When you save the message, you will need to specify a Folder path name to

which you wish to save the message. Composition Configuration This dialog will allow

you to configure items related to the composition of email. Specify the store in which to

 61

save mail messages that have not been sent yet. This allows you to save a message that you

are composing for later edit and sending. To send a message that you have saved, open the

store that you configure here, and select the message in the list on the right, and use the

"Edit Message" command in the "Mail" menu. The mail message will be displayed in a

compose window in the state that you saved it. The store name used in this configuration

must be a full path name to completely describe the mail folder to use. For this reason, the

tree of mail folders is displayed at the bottom of the dialog. Clicking on any of the mail

folder icons in the tree will cause the folder's full path name to be entered for you

automatically.

7.8.7 Transport Configuration
The transport configuration determines what Qasid Mail uses to send outgoing email. If

you never send email with Qasid Mail, and only use it for reading email, then you do not

need to worry about this configuration. In WinXP SMTP protocol provider is available to

send email. if file contains all personal contact information, including email addresses,

addresses, phone numbers, etc. The file is maintained in a format called LDIF (LDAP

Interchange Format). The contents of the file can be read with any word processor.

7.8.8 Qasid Mail Configuration
Qasid Mail is configured via a series of dialog boxes. When you first launch Qasid Mail, if

it determines that you have not configured the most important properties, it will

automatically display the dialogs to configure these items. All of the configuration dialogs

are available via the Config menu. Each dialog is discussed via the list below. User

Information configures personal information, such as your email address, personal name,

reply to address. Signatures configure signatures. Composition Configures where to save

messages that you have composed by not sent. Local Manual configures the location of the

Qasid Mail on your local disk so you can read the manual while you are off-line. Mail

Stores Configures the stores that you wish to use for viewing email. This is where you

identify the store that contains your INBOX and other stores you wish to use. SMTP

Transport Properties Configures the properties used if the SMTP Transport Protocol is

used. Temp files configures directory in which temporary files are created.

 62

7.8.9 Creating Folders
New folders can be created in the Qasid Mail. To do so, simply select a folder in the folder

tree panel, so that it is highlighted. Then, select the "Create Folder" menu command. This

will display a dialog asking for the name of the new folder. This is not a folder pathname,

just the name of the folder. There are also two check boxes indicating whether the folder

can contain messages or folders. Once you have filled in the name, and checked a box,

click ok and the folder will appear in the folder panel.

7.8.10 Folder Paths
Folder paths are like file paths. They start with the Store Name, followed by a slash,

followed by a folder name. If the folder is inside of other folders, slash separated pathname

is used to the desired folder.

7.8.11 Mail Folders
Mail folders are the things that contain mail messages. Folders can also contain other

folders. If a folder can contain other folders; Qasid Mail will display the folder with a

folder icon. If the folder can only contain messages and not other folders, then Qasid Mail

will display it with a document icon. Folders can not exist on their own. They must be

contained by either a store or another folder. Thus, every folder has a path name that

uniquely identifies the stores and folders that you must open to get to the folder identified

by the pathname.

7.8.12 Mail Stores
Mail stores are the highest level container in the Java Mail API. Stores are contained by

nothing. They are the root of all folder trees. In practice, a Mail Store is synonymous with a

mail login or user. A store is specified by a URL, and that url typically identifies a mail

host and login. Stores are identified by Java Mail using their URL. However, Qasid Mail

uses the store's name when referencing a store in a folder pathname or in other cases. When

you define a store in the Store Configuration Dialogue you give the store its name. You

will use this name any time that Qasid Mail refers to a store name or a folder path.

 63

7.8.13 Copy Message
In order to copy a message Qasid Mail needs to know which message to copy, and the

destination folder. The message that is copied is the currently displayed message. The

destination folder is the folder that is selected in the Folder Panel which is the left panel

displaying the Store and Folder tree. Moving Messages In order to move a message Qasid

Mail needs to know which message to move, and the destination folder. The message that

is moved is the currently displayed message. The destination folder is the folder that is

selected in the Folder Panel which is the left panel displaying the Store and Folder tree.

When you move a message, it is not expunged from the source folder; it is simply marked

for delete.

7.8.14 Saving Message Compositions
If a message is to be composed and attempt to close the window before it have sent the

message, Qasid Mail will prompt to save the message. While saving the message, it will

need to specify a Folder path name to which it is wished to save the message.

7.8.15 Composition Configuration
This dialog will allow configuring items related to the composition of email. Specify the

store in which to save mail messages that have not been sent yet. This allows to save a

message that are composing for later edit and sending. To send a message that have saved,

open the store that configure here, and select the message in the list on the right, and use

the "Edit Message" command in the "Mail" menu. The mail message will be displayed in a

compose window in the state that saved it. The store name used in this configuration must

be a full path name to completely describe the mail folder to use. For this reason, the tree of

mail folders is displayed at the bottom of the dialog.

7.8.16 Transport Configuration
The transport configuration determines what Qasid Mail uses to send outgoing email. If

you never send email with Qasid Mail, and only use it for reading email, then you do not

need to worry about this configuration. In WinXP SMTP protocol provider is available to

send email.

 64

c h a p t e r 8

8 Results and Analysis

8.1 Introduction
Testing of software is a very important part of the software development activity. During

this stage many modifications are also carried out. As a result of this phase, a programmer

may be required to completely rewrite the code. If the results are not as per the expectations

of the user, the software may not be accepted by the user. Testing is carried out throughout

the development phase. Once developed, software is integrated and a new series of testing

is required to be carried out. As such the application software was also passed through a

series of tests starting with the testing of the first module. This continued till the software

was completed. After the completion of the software, it was tested on line as well.

8.2 Testing Model Used
Testing was carried out using the ‘waterfall’ model. Here as soon as the very first model

was written, it was tested. Subsequently all other modules were tested and then integrated

in the overall code and tested. Once the software was ready, testing on LAN and

workgroup was also planned and executed. The use of this model did consume lot of time

however, most importantly, at each stage of the development, the software was checked

and in the end no extra effort was required to correct any error. Thus it reduced the risk

factor. Also it was possible to accommodate the changes in the in the design and the

functionalities. This also allowed changes to technology and style of coding.

8.3 Stages of Testing.
During the development and integration of the software three levels testing was carried out.

In the first level, each module was tested for errors and the output was observed. Any

changes required were made. This consumed a lot of time but the time spent did pay in the

end. This also allowed refining the overall design of the java programmed. This highlighted

the powers and shortcomings of the programming languages and helped in the choice of an

appropriate programming language. The second level of testing was carried out to see if the

 65

individual modules fit in the overall coding. This in fact had a direct bearing on the

efficiency of the software and needed more care. Any changes required to be made to the

modules as a result of this level of testing was carried out immediately. This testing caused

a delay in the development of software but the risk of error was reduced to a minimum. Till

this level the testing was carried out on a single PC. In the next level, the software was

tested on workgroup and also on the LAN in the computer laboratory. By this time the

software was completed and integrated. This level of testing not only tested the output and

performance of the software but also checked the hardware and software requirements of

the machines on which the software was to be run.

8.4 Results and Analysis
Once the software was tested on a single PC, it met all the required parameters. Its

performance was satisfactory and the output was as per the expectations. Once the test was

carried out in the computer laboratory, the results were not really encouraging. The reason

was that the strict administrative rights were enforced and the software was not really

allowed to carry out the database access and manipulation operations. This denial of access

means the software was not able to connect to the database stored in a internet running on a

remote machine. After obtaining the administrative rights, the software was able to connect

to remote machines. Yet problems were faced which was mainly pertaining to the

networking and network security. The software was tested on a ‘workgroup’ and the results

were very much satisfactory. It was able to access and connect register running on remote

machines and carrying out the data manipulation operations. The software can give good

results if it is placed on the server machine and the administrative and network security

restrictions are not a hurdle in the way of the user forbidding the software to access DBMS

running on a remote machine and stopping the user from connecting to remote databases.

The best way to use the application is to place it on web so that it can be accessed and run

from anywhere. This kind of testing was not carried out due to the fact that web hosting

was a costly affair and also needed time to carryout the necessary coordination. However

the results shown by the software once tested in a workgroup was very encouraging and the

same result is expected once the software is run from a website hosting the software.

 66

8.5 Limitations and Future Work
Despite showing good results, the software has few inherent weaknesses. These

weaknesses have not been catered for in the design of the software. Moreover few

additional features could not be incorporated due to time limitations. First on the list are the

key board shortcut keys. All software, whether operating system or any other utility

software or special software, always contains key board shortcut keys, which make the job

of the user very easy and in certain cases if the mouse stop functioning, the user is not

paralyzed and can continue working by making use of the key board shortcut keys. For

example while typing a letter in MS Word, a person can save his work by pressing ‘CTRL

+S’ and thus saves time and effort which is required for saving the document by using the

mouse. In this way the person ensures that his tempo of work is not broken. This aspect has

not been catered for in the and is a shortcoming of the software. This can be addressed to in

future works. If this is done it will add to the performance of the software and will help the

user to carryout the job very smoothly.

Another limitation of the software is the inability to convert from one DBMS format to the

other. The software can convert data stored in any format to a standard format but it cannot

convert a table from MS Access format to a table in Oracle or vice versa. Routines for the

inter-conversion are available. One need to first convert the data from one format to an

intermediate standard format and then this intermediate format is converted to the required

format. Since all the data are exported to a standard format by this software the job of inter-

conversion is half done. In a future work, the inter-conversion of various data storage

formats may be implemented. This will allow easy implementations of the database

operations.Yet another limitation have been the lack of the database security. The software

is password protected and the DBMS is also secure. The built-in security measures of the

.NET ensure security of the database. Need is to enhance the security level to the table and

the field level. Thus in any future work this aspect of the database security may be

implemented making the database secure up to the table and the field level. This aspect of

database security is very helpful in ensuring secure data access and manipulation in case

the software is hosted on web. The basic database operations have been implemented and

 67

are well functioning. The result of a search on multi DBMS is stored in a simple format and

is printed as such. This results in data redundancy. Duplicity of data is not required. This

can be avoided by incorporating the basic functionalities of ‘JOIN’, ‘DIVIDE’ and

‘INTERSECT’. Also the functionality of ‘UNION’ is required to be implemented in the

software. Any future work may map these four main functions along with the derivative

functions.This will deny any chance of duplicity of data. In this software the

communication module is responsible to map the queries generated by the SQL Engine to

three DBMS i.e. MS Access, SQL Server and Oracle. The allows for extension of the

software and in any future work more DBMS can be added to the software. This also

depends upon the requirement of a particular user.

8.6 Conclusion
Qasid Mail is Software developed by the team. It is a platform independent product, which

is capable of manipulating different databases of various vendors. There was a great need

to design such software. Nowadays mail security development can be done using Microsoft

Access, SQL Server and SQL/PLSQL and Oracle etc. Each platform has its own features.

Access is very user friendly and it takes very less time to build the back-end of database.

SQL/PLSQL, Oracle and SQL Server are more secure and handle millions of records. The

decision of using any backend platform depends upon the requirement. A small database

where security is not of great importance, using ORACLE is a waste of resources,

therefore, all these 3 have their own respective applications.

Our application makes the job of learning and implementing the mail security operations

much easier. The user of this application will no longer have to learn each of these

technologies separately. The user will perform all his operations on this generic platform.

All his operations will be mapped to the respective back-end database development

platform. How the operations of the platform are mapped, is not the concern of the end

user. He just selects the database application onto which he wants to map his operations

and all of his operations will be mapped to the selected platform. Moreover, implementing

these operations is much straight forward as same interface is used for all database

 68

applications and the platform is very user friendly. By mapping all the desired operations

onto any of the back-end platform using a common interface user does not have to learn all

the backend development tools. Only this software can do their job much quicker as it is a

very user-friendly interface. Moreover the software has been developed using a very

powerful and emerging technology, the MS Visual Studio.NET. The software can be web

hosted and can be accessed and run from anywhere.

 69

BIBLIOGRAPHY

[1] ASP.NET Database Programming Weekend Crash Course by Jason Butler and
Tony Caudill.

[2] Progrmming Microsoft.NET By Prosise Jeff.

[3] SAMS, Teach Yourself .NET Windows Forms in 21 Days, by SAMS series

[4] Essential ADO.NET By Bob Beauchemin explains the database access part of
the .NET framework.

[5] ASP.NET by Example by Steven A. Smith

[6] Professional ASP.NET 1.0 Special Edition a wrox series book.

[7] Dietel-C Sharp How to programme by Dieteland Dietel

[8] http://www.c-sharpcorner.com/

[9] http://www.codeguru.com/

[10] http://www.dotnet-fr.org/

[11] http://microsoft.com

[12] http://msdn.microsoft.com/net/

 4

