
Detection of Probing Attacks in SWAF

By

Sundas Hamid

2008-NUST-MS PhD-IT-42

Supervisor

Dr. Hafiz Farooq Ahmad

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MSIT)

In

NUST School of Electrical Engineering and Computer

Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan

(November, 2011)

ii

APPROVAL

It is certified that the contents and form of thesis entitled “Detection of Probing

Attacks in SWAF” submitted by Sundas Hamid have been found satisfactory for

the requirement of the degree.

Advisor: _Dr. Hafiz Farooq Ahmad_______

Signature: ___________________________

Date: __________________________

 Committee Member: _ Dr. Khalid Latif_

 Signature____________________________

Date:_______________________________

 Committee Member: Mr. Ammar Karim

Signature ____________________________

Date: _______________________________

Committee Member: _Ms. Sana Khalique_

Signature ____________________________

Date: _______________________________

iii

TO

My Loving Parents,

Brothers

&

Husband

4

ABSTRACT

Probing is the major issue in web application security but there does not exit reasonable progress

to detect probing before the actual attack is launched. The key challenge is to identify attacker’s

probing process for gathering information of vulnerabilities in Web application and take

appropriate actions quickly before attackers exploit them. In this research work, we propose a

methodology to detect probing; it is currently implemented as a part of SWAF (Semantic Based

Web Applications Firewall) project. It assists SWAF to detect probing before an attacker is able

to exploit vulnerabilities. Most of the vulnerabilities are discovered as a result of trial and error

by the attacker. We make it possible to detect probing by using three techniques viz. XML rules,

SWAF log and application profiling (together comes under threshold learning) and carrying out

behavioral analysis of the attackers traffic to detect and block them. The proposed methodology

increases the detection rate of SWAF and considerably decreases the attack ratio. As a part of

this work we have also evaluated the performance of SWAF with probing detection technique

using most popular scanners. Evaluation results confirm the effectiveness of proposed approach

as it detects scanners with high detection rate.

5

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person nor material which to a

substantial extent has been accepted for the award of any degree or diploma at SEECS or at any

other educational institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

 I also declare that the intellectual content of this thesis is the product of my own work,

except for the assistance from others in the project’s design and conception or in style,

presentation and linguistics which has been acknowledged.

Author Name: Sundas Hamid

Signature: ______________

6

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my humble gratitude to Almighty Allah who always

bestowed His blessings on me and gave me courage to accomplish this task. Darood-o- Salaam

to Prophet Muhammad (P.B.U.H) chosen by Almighty Allah to guide the mankind to divine

path.

I am truly indebted to my supervisor Dr. Hafiz Farooq for his support, guidance and

unending tolerance. He patiently spelled out all new concepts and completely guided me in all

technical directions. I own that without the inspiring guidance of Dr. Hafiz Farooq, this research

would not have materialized. I extend my appreciation to my co-supervisor Dr. Khalid Latif.

Whenever there was a problem he steered me through. I am thankful to all of my committee

members, for their guidance throughout the research work of this thesis. I really have no words

of thanks for my class fellows and research fellows for their co-operation. I would always

cherish the moments spent with them.

I can never forget the contribution of my parents in providing their all out assistance to me. I

owe all my achievements to my parents whose assistance and prayers enabled me to surpass all

the hurdles in my life.

Sundas Hamid

7

Table of Contents

Chapter 1 ... 11

Introduction ... 11

1.1 Web Application Security ... 11

1.2 Motivation ... 13

1.3 Thesis Objectives .. 14

1.4 Thesis Organization ... 15

1.5 Summary ... 15

Chapter 2 ... 16

Literature Review .. 16

2.1 Web Applications Security pressure... 16

2.2 Preventive Measures ... 16

2.2.1 Rule Based... 17

2.2.2 Run time traffic Analysis .. 17

2.2.3 API Based .. 20

2.3 Attacker Activities .. 22

2.3.1 Malicious Activity ... 22

2.3.2 Suspicious Activity ... 23

2.4 Summary ... 23

Chapter 3 ... 24

Proposed Solution ... 24

3.1 Aims and Objectives ... 24

3.2 Methodology ... 24

3.2.1 Detection Rules ... 25

3.2.2 Use of SWAF Log ... 26

3.2.3 Use of Application Profiling ... 28

3.3 Proposed Architecture ... 29

3.3.1 Probing Filter... 29

3.4 Proposed architecture as an Offline Process.. 30

3.5 Summary ... 31

Chapter 4 ... 32

8

Implementation of Proposed Solution ... 32

4.1 Introduction .. 32

4.2 System Architecture ... 32

4.3 Technology Used .. 34

4.4 Summary ... 35

Chapter 5 ... 36

Evaluation.. 36

5.1 System Evaluation .. 36

5.1.1 Use of Famous Scanners ... 36

5.1.2 Use of Vulnerable Web Applications.. 38

5.2 Test bed Setup .. 38

5.3 Test Cases ... 39

5.3.1 Evaluation results using ModSecurity... 39

5.3.2 Evaluation results without SWAF ... 40

5.3.3 Evaluation results using SWAF but no probing module ... 41

5.3.4 Evaluation results using SWAF but with probing module 42

5.4 Comparison ... 43

5.5 Summary ... 44

Chapter 6 ... 45

Conclusion and Future Work .. 45

6.1 Research Contribution .. 45

6.2 Conclusion from Research Work ... 46

6.3 Future Work .. 46

References ... 47

9

List of Figures

Figure 1: White Hat web site security statistics .. 12

Figure 2: Overall Top Level Vulnerabilities .. 14

Figure 3: Blocking Mechanism... 20

Figure 4: Architecture of AppSensor ... 21

Figure 5: Online Request Filtering and Validation... 30

Figure 6: offline process .. 31

Figure 7: SWAF System Architecture ... 33

Figure 8: Implemented Probing Detection Module .. 34

Figure 9: ModSecurity vs SWAF (With Probing Module) for Wackopicko .. 43

Figure 10: ModSecurity vs SWAF (With Probing Module) for acunetix web application 44

10

List of Tables

Table 1: Evaluation with ModSecurity ... 39

Table 2: Evaluation without SWAF .. 40

Table 3: Evaluation with SWAF (No Probing Module) ... 41

Table 4: Evaluation with SWAF (With Probing Module) .. 42

11

Chapter 1

Introduction

Usage of Internet is increasing phenomenally, people like to share their information on internet

which would become accessible to each and every one. Use of internet and its applications has

become a part of daily life, major uses of internet are: search engine, communication, job search,

shopping, hobbies and research. Number of users of internet has reached to two billion [1]. Most

of internet’s traffic uses HTTP/HTTPS protocol where as the communication platform is World

Wide Web (WWW) which is used by the companies to share business information with partners

and customers.

The use of the World Wide Web or internet is a crucial part of modern life. We are just a click

away from the rest of world and all this is possible due to the presence of the web applications.

These applications are diverse in nature and present numerous services to the end users.

Commonly provided services include chatting, video conferencing, email, online editing and

other custom services. Each application is designed accordingly to the requirements of the

service provided and to maximize and improve end user experience.

1.1 Web Application Security

An application is known as web application which can be access over a network i.e internet or an

intranet. In today’s e-business world, web application security has become the most important

issue. The prime concerns of web sites and clients are the security issues. Highly confidential

and critical information which is associated with web applications needs protection. Figure 1

shows the statistics [2] of different types of attacks in each type of organization.

12

Figure 1: White Hat web site security statistics

Different types of security mechanisms have been deployed such as in the form of intrusion

detection system and encryption devices but they have been proved quite insufficient. The

system should be intelligent enough in order to mitigate application level attacks as well as

system must be able to understand the context of the contents and able to filter that contents on

the basis of its consequences onto the target applications. In the world of information, web

applications and services have presented a new scope. Web was supposed to be a simple

mechanism of document exchange but now it has become an essential part of government,

corporate, exchange and educational information arena. Confidential data privacy and shift of

critical information exchange needs to be protected. At different levels of OSI model, number of

security technologies exists that provides protection against attacks. For the protection against

web application, Web Application Firewalls (WAF) proves to be the best solution. Negative

security model and positive security model are the two main approached used to build WAF.

13

SWAF (Semantic based Web Application Firewall) a semantic based solution to detect and

prevent attacks against web applications is currently developed using a negative security model

which uses semantic based reasoning ability to provide better detection rate [3].

1.2 Motivation

Detection rate is one of the key features of web application firewalls and requires improvement

because most of web application firewalls suffer from low detection rate but SWAF does not

suffer from above stated problem as it involves semantic based detection and validation

techniques, still improvement is required in this area. Many strategies have been adopted to

introduce improvement in this field but most fail to deliver the required results. Probing attack is

one of the unnoticed aspects which need to be explored because it can help detect malicious

activity and take a proactive action [4]. There are different component of SWAF, they all are

important but the importance of Probing Detector cannot be denied, it is used to detect the

vulnerabilities scanning and malicious activity of the users. Site scanning/probing is the initial

phase of any attack on Web applications. During this phase, the attacker gathers information

about the structure of the Web application. This can be very helpful for attacker to launch

attacks. Probing Detector analyzes the user’s requests, behavior and activities, and use this

information to help the rule engine to enhance its detection capabilities. After capturing the

required information, we need to apply the detection scheme to distinguish between malicious

users who are invoking threats and normal users. By applying different probing attack detection

techniques we can analyze the user request, their states and then generate the runtime threshold

values for some attacks to detect the malicious activity and thus enhance the detection rate of

SWAF. Process can be valuable for analyzing user’s browsing behaviors on the web application.

Once the malicious activity is detected and analyzed the system has precise information of the

14

time and types of attacks which is beneficial in optimizing cost and time utilized in detection. It

is also helpful to take an appropriate action like block the users. Figure 2 shows top level

vulnerabilities of web applications, 80% attacks in web applications are shown here, root cause

of every attack is the leakage of significant information which is the result of probing/scanning.

Figure 2: Overall Top Level Vulnerabilities

1.3 Thesis Objectives

The research is intended to obtain the following objectives:

1. To develop a probing detection module for SWAF to enable proactive defense in SWAF.

2. To design the module as an offline process to avoid overwhelming situation as well as

ensure minimum resources utilization to overcome the limitations presented in the

existing solutions.

3. To provide accurate and effective techniques for web application fortification for high

performance rate.

4. To reduce attack surface by successfully blocking the site scanning/probing.

15

5. To obtain high performance use the log for the identification of probing.

1.4 Thesis Organization

Thesis is organized in the following way. Chapter 2 would present the literature survey.

Methodology will be explained in chapter 3, the implementation and evaluation results will be

describe in chapter 4 and chapter 5. In the end chapter 6 will presents the conclusion of thesis,

future work and achievements.

1.5 Summary

The overview of research work is described in this chapter. It has presented the existing ratios

and statistics of attacks in different types of organizations. Motivational factors and objectives

have also mentioned here. In addition the explanation of thesis organization is illustrated which

provides the detail of chapter of thesis.

16

Chapter 2

Literature Review

Research’s background knowledge is described in this chapter. Web application’s vulnerabilities,

probing attacks and improved solutions are also discussed here.

2.1 Web Applications Security pressure

Cyber criminals take profit from identity theft, fraud and many other illegal activities, web

applications are rapidly growing target for such criminals. On the target web application the

impact of an attack is significant which can result in thwarting service interruption, stolen data

and low productivity, to cater for from all these threats web applications need to be protected and

better protection measures should require. No authentication and week applications are the major

targets for unauthorized and malicious use and thus regarded as application layer vulnerability.

Probing is the main and unnoticed issue regarding web applications security, throughout this

phase the attacker gathers as much information as possible and credentials about the target web

applications structure, these websites are scanned for the purpose of known as well as unknown

vulnerabilities. Entire web application can be scanned after the attacker examines the

infrastructure. Probing/scanning presents a map of the whole site which includes all the

parameters, pages, cookies. By using these credentials the attacker is able to understand the

application’s authentication, logic and other mechanisms [4].

2.2 Preventive Measures

 Different preventive measures have been used to prevent from probing, three main approaches

rule based, run time traffic analysis and API based are described in detail below:

17

2.2.1 Rule Based

Another technique that is used to detect the scanners, is rule based. To detect probing, they used

set of rules which apply on the HTTP request to find out whether the request is normal or send

via a automated tools. Example of rules is shown below

SecRule REQUEST_HEADER:User-Agent “webscarab” “deny,log,id: 330037, msg:

‘webscarab detected’

This rule is used to detect the scanner named as webscarab, webscarab is an open source

vulnerability scanner that is used to do probing. It sends webscarab as a string in each User-

Agent header. To detect it whenever the User-Agent which is a request header is webscarab this

rule fire and the scanner is detected.

ModSecurity, is an open source web application firewall is the example of this approach. The

main disadvantage of this approach is whenever a new scanner has come or attackers modify the

scanner name, the rules of ModSecurity fails.

2.2.2 Run time traffic Analysis

Run time traffic analysis is used to analyze the incoming traffic and inspect the following things:

• Generating errors using non existing URLs

• Providing long parameter values

• Accessing unauthorized parts of the application

• Adding and removing parameters

Each request is examined here and the state for each IP is maintained to find out the scanner

traffic. If an IP is found to be indulged in suspected activity then, it is blocked for some time.

18

This traffic analysis is also used to detect existing scanners. Imperva is the example of run time

traffic analysis tool. With all the above mentioned advantages there exist a few disadvantages,

which includes excessive resources requirement because it checks and maintains the status of

each user. Application profile is completely ignored by Imperva, there is no check for excessive

file uploading. It also misses some checks which are needed for scanner traffic analysis.

Identifying and controlling automated clients [6] describe about the Insufficient Anti-automation

which is to automate a process which was intended to be performed manually. Attackers or

automated robots can repeatedly attempt to exploit the system, these automated tools have the

potential to execute thousand of requests at a time as a result there is a potential loss or

performance degradation. Ethically it is forbidden for an automated robot to be able to signup ten

thousands new accounts in few minutes.

Here is a attacks technique which prevent the web site from serving normal user activity, this is

called as Denial of Service (DoS) attack. Application layer’s DoS attack can target each of these

web application’s components such as: web server, database server as well as authentication

server.

Another automated process of trial and error which is to guess username, password as well as

credit card number of a person, known as Brute Force attack. A single user name against many

passwords is known as a normal brute force attacks where as to use many user names against one

password is called as reverse brute force attack.

Another form of automated intellectual property theft is scraping attack. The intention of attacker

to scrap a website by creating a valid account on the web application after logging attackers

launched an automated tool which is called as robot or bot to extract information. When an

19

attacker steal web based information under subscription to share free of charge, scraping

becomes problematic.

Some products can accurately detect anomalous behavior that automatically learn the expected

and correct use of a web application; i.e WebDefend firewall can detect automated attack tools.

When large number of request originates from a single source in a short time period, then a

condition arise which is an excessive access rate. WebDefend monitor each source whether it is a

single source IP, a single user or a single session, as well as it also determines that the total

number of requests which is generated in a specific time is above than a certain threshold.

Radware’s Behavioral Server Cracking Protection [5] presents a tool that is developed to detect

and prevent the scanning attacks. Author study different techniques that are currently used for

scanning and they identify that the application layer scanning tools are more dangerous. Because

they help the attacker to find the exact vulnerabilities that can be easily exploited. They divide

the vulnerabilities scanner tools into three categories; these are generic scanner, dedicated

scanners and exploitation tools. Exploitation tools are easy to detect because they launch the

exact attack that can be detected using the signature. But the other two types of tools are much

difficult to detect using the current signature based intrusion detection system. Because they do

not launch the exact attack, instead they send the valid request that they used to analyze

information that they used to identify the vulnerabilities. This paper shows that the behavioral

based identification techniques are good then the signature based techniques, because behavioral

based techniques are good to identify the malicious behavior that cannot possible to detect using

the signatures. They used statistical and fuzzy techniques for this purpose. They also show the

blocking mechanism that reduce the false positive and block the user if it is found as malicious,

but one important aspect is that this tool also check the block user again and again, if it is proved

20

after some request that user is not malicious the tool will immediately unblock it, if not then the

blocking time will be increase.

Figure 3: Blocking Mechanism

This tool used the statistical techniques that can generate more false positive. But this tool can

helps in blocking mechanism which is shown in the above figure and help to identify the

available scanners that attacker used to launch attack and how to block them or work on them.

2.2.3 API Based

In case of API based technique, Probing Detection Module is integrated with the application.

This module is responsible to detect probing on each and every part of the application which is

vulnerable. API developed by OWASP name as AppSensor, used inside application for scanner

21

detection as well as application worms detection. It detects scanners successfully because of

complete knowledge of the application.

Main disadvantage is to integrate inside application so it becomes application specific. API is

developed in JAVA, so currently available only for JAVA web applications.

There are two ways to provide the security to a system, one is reactive: the system will respond

after attack has launched and the other approach is proactive: attack is not allowed to be

launched [7]. The concept of AppSensor: a conceptual framework is to detect malevolent activity

within an application, as well as it is able to identify the probing of attacker for possible

vulnerabilities as a result it takes the responsive action urgently.

Figure 4: Architecture of AppSensor

Many uncover vulnerabilities are the result of hit and trial by the attacker within the application

as shown in above mentioned figure. The concept of probing is as when an attacker tries to scan

the web site to find the weaknesses inside the system and then by utilizing those weaknesses

22

launch attacks. Two modules Detection unit and response unit are described in AppSensor, on

the basis of defined policies the detection unit is responsible to identify malicious behavior,

response unit get the reports activity from detection unit and then it take an appropriate action

against the user in case if the action which is taken is an attack or a suspicious event. The system

must differentiate while detecting malicious activity, two possible situations are: it is possible

that the detected activity may have been caused unintentionally by the user or maybe it is the

attacker’s activity to hide the attacks attempts. In the first case that type of activity is called as

suspect, but in the second case the action is clearly an intentionally a malicious activity in this

case it is referred as Attack. For the classification of malicious activity following questions need

to consider: whether the mentioned activity results from mistakenly key press by the user? To

perform the identified activity does the user have to leave the normal flow of the application?

Whether additional software or tools require performing the identified activity? For the justified

action against the malicious user, it is necessary to accurately distinguish between suspected and

malicious activity.

2.3 Attacker Activities

The two categories of attacker activities identified in this realm are as follows:

1. Malicious Activity

2. Suspicious Activity

2.3.1 Malicious Activity

This type of activity is referred as “Attack”, it is clearly obvious that the malicious user is trying

to perform an illegal operation on the system [7]. It can be detected using black list rules.

23

2.3.2 Suspicious Activity

This type of activity is not clearly an attack. May be the detected activity caused by unintentional

user error or may be attacker tries to hide his attack attempts. Anyhow it is important not to

disregard the objectionable system response [7]. Suspicious activity is difficult to detect. It is

used to identify the vulnerabilities. Hybrid solution, blacklist and whitelist failed to detect such

type of activities. Currently available scanners and attackers try to use suspicious activities to

identify the vulnerabilities. Malicious activity is clearly an attack and can be detected easily

using black list rules thus in a result attackers don’t use it.

2.4 Summary

This chapter presented the existing solutions and the literature survey. Solutions are critically

explained, which conforms that these solutions are insufficient and there is a need to continue

this research work and arise with a new solution to conquer these inadequacy and weaknesses.

24

Chapter 3

Proposed Solution

This chapter describes the proposed solution and the methodology which is taken to implement

the solution also presents here.

3.1 Aims and Objectives

The research based solution is set up to obtain following aims and objectives.

1. To provide precise and capable mechanism for web applications protection with high

performance.

2. To reduce number of attacks by successfully blocking the site scanning/probing.

3. Usage of SWAF log analysis to identify probing to ensure less resource requirement and

utilization.

4. Enable proactive approach in SWAF, to detect attack before it can damage the web

application.

3.2 Methodology

Basic methodology used to format proposed solution is presented in this section. There are three

different techniques which are used to detect and prevent probing attacks in SWAF. First of all

there is the use of xml based detection rules to detect existing scanner which indulges in

scanning/probing activity in the target web application. Secondly, SWAF log which comprises of

infected log as well as access log is also utilized. Lastly, application profiling is employed which

is adopted in the proposed solution.

25

3.2.1 Detection Rules

These are xml based rules which are used to detect existing scanners which do site

scanning/probing. These scanners are used by the attackers to find the vulnerabilities in the target

application, thus on the basis of these vulnerabilities, attacker can launch attacks on the target

web application. Whenever a request has come from browser, request header User-Agent has the

value of browser which contains the name of browser i.e IE, Mozila and Chrome. If scanner is

used, it also has this header but its value is scanner name as like DirBuster, Netsparker etc. On

the basis of these User-Agent header values the scanner is detected and blocked. The structure of

the rule is as follows:

<rule>

<rulename>ProbingRule1</rulename>

 <ruledesc>Block DirBuster</ruledesc>

 <application>all</application>

 <location>RequestHeader:User-Agent</location>

 <pattern>DirBuster</pattern>

 <action>deny,log</action>

 </rule>

The name of the rule is ProbingRule1, rule description is to block DirBuster, a scanner which is

used to scan hidden directories, have text files on the basis of these files it can brute force to find

hidden directories i.e admin, pda, administrator. The text file checks each directory one by one

26

whether it exists or not. This rule is valid for all the application, location is on User-Agent a

request header, pattern is DirBuster and action is to deny and log it.

3.2.2 Use of SWAF Log

SWAF log consists of infected log and access log.

3.2.2.1 Infected Log

SWAF Infected log is used for probing attacks detection. Different scanners sends several

malicious requests, log is analyzed to identify which user did probing on the targeted web

application.

Procedure

 The procedure is as like: infected log is group by IP, now check for each IP. Check infected log

after each 2 minutes as a offline process, if the total number of user requests from that IP is very

huge and exceed the threshold limit within the defined time period, set by the administrator of

the system, then the IP is busy in doing probing and will fall in the category of suspicious

activity, there is a need to block that IP for some time. State will manage for the IP and for other

IPs same check will repeat. State includes the information of block IPs. Dynamic blocking

concept is achieved as like whenever the same user has come again with probing attack, his/her

blocking time will be double.

3.2.2.2 Access Log

Detection of probing attack is also achieved from access log. Infected log not store non malicious

requests, whenever a request has come which is non malicious, access log store that type of

requests. Behavioral analysis is based on access log. Three different techniques have been used

27

to obtain behavioral analysis in SWAF which comprises on huge number of requests with 404

response status codes, excessive file uploads and excessive suspected activities.

Procedure

Access log is group by IP, check for each IP. First case is greater number of request with 404

response status code. Access log helps to find the suspicious behavior of the attacker i.e

DirBuster a scanner which is used to find hidden directories and files. It is analyzed from log that

this is suspicious activity of an attacker because it sends a lot of requests with response status

code 404, in this case there is a chance of probing by doing behavioral analysis on that specific

ip it should block. Information will add into state.

Second case is the larger number of file uploads. If an IP is busy in doing excessive file

uploading, this is a suspicious activity and it will fall in the category of probing attack, system

have to detect it. Both whitelist and blacklist can’t detect such type of activity. There is a chance

that the user is trying to launch DOS attack by doing excessive file uploading for the intention of

lay down the site performance. The procedure to block such activity is: from the Log the system

will check and block that IP. Requests will be count, file upload store as multipart request. The

request header “content type” holds multi-part. If these types of requests exceed the threshold

limit set by system administrator it is a probing attack, that specific IP must be block,

information will add into state. For other IPs same check will repeat.

Third case is large number of suspected activities. Application profiling is used in this case. If

there is large number of requests which are violating the application profiling rules then there are

suspicious activities. If these suspected activities exceed the threshold limit then it will fall in the

28

category of probing attack, IP will be block and information is added into state. For other IPs

same checks will repeat.

 3.2.3 Use of Application Profiling

 The activity which is ignored by Black List could be suspicious and become an attack in future

so there is a need to identify it. Application profiling is necessary to check these activities:

• Request the Resource with the method that it is not supportable

• Sending Request with additional parameters

• Sending Request with less parameters

Request the resource with unsupportable method

If a request has come with the method that is not acceptable then it is suspicious.

Example:

For an application i.e 127.0.0.1 acceptable methods are: GET or POST. If request is as:

HEAD 127.0.0.1:8888/WebGoat/attack

This request is not valid, thus by doing such behavioral analysis it can say that it is a suspicious

activity. If there are number of requests which are violating the whitetlist rule and exceed the

defined threshold limit then there is a need to block that IP.

Request with additional/less parameters

Quantity of parameters for the application is already mentioned in whitelist rules, but If a request

violates this rule it is also suspicious.

29

Example:

A page Index.php takes 2 parameters, user sends 1 parameter or 3 parameters, so this type of

activity is suspicious and can be probing, it should be identify and block.

If user’s requests violating these activities then requests will fall in the category of suspected

activities thus if these suspected activities exceed the threshold limit then these will fall in the

category of probing attack. These activities check from access log, IP will be block and

information is added into state.

3.3 Proposed Architecture

The detection of probing attacks is an offline process. Figure 5 shows the proposed architecture

for probing attack detection module.

Following is detailed description of the proposed architecture.

3.3.1 Probing Filter

Probing filter is added in SWAF filters. Rule cache includes the detection rules of probing

detection module. There are two ways to filter the traffic:

1. First technique is based on detection rules which is stored in rule cache

2. Second technique is based on state which is the input of probing filter

Each request has come in SWAF filters, on the basis of detection rules and state probing filter

module will analyze whether it proceed this request to further modules or not, as it is already

described that state stores the information of block IPs. The main purpose of this module is to

filter that IPs which are busy in doing site scanning/probing. Probing filter based upon behavior

analysis so better performance of SWAF is achieve

described in whitelist.

Figure

This is online requests filtering and validation process the remaining working is done as an

offline process.

3.4 Proposed architecture as an Offline Process

The above architecture is an online process which filters and validates request online. To avoid

overwhelming situation the remaining process is done as an offline process, because by

analyzing run time traffic more resources are required as well as it is necessary to use huge

memory space to store enormous

The offline process is described in the figure below

analysis so better performance of SWAF is achieved. The working of remaining modules is

Figure 5: Online Request Filtering and Validation

This is online requests filtering and validation process the remaining working is done as an

Proposed architecture as an Offline Process

The above architecture is an online process which filters and validates request online. To avoid

overwhelming situation the remaining process is done as an offline process, because by

more resources are required as well as it is necessary to use huge

enormous traffic information thus result in degradation of performance.

described in the figure below.

30

d. The working of remaining modules is

This is online requests filtering and validation process the remaining working is done as an

The above architecture is an online process which filters and validates request online. To avoid

overwhelming situation the remaining process is done as an offline process, because by

more resources are required as well as it is necessary to use huge

traffic information thus result in degradation of performance.

The description of this process is as: from log store module read the log, then parse it to form the

précised and actual request, after that analyze it the input for log analyzer is rule cache which

includes whitelist rules, in the end the

the processing of probing detection module which is describes above.

3.5 Summary

This chapter illustrated the detailed

proposed system is also presented.

have also described.

Figure 6: offline process

The description of this process is as: from log store module read the log, then parse it to form the

précised and actual request, after that analyze it the input for log analyzer is rule cache which

includes whitelist rules, in the end the information is added into state. Log analyzer includes all

the processing of probing detection module which is describes above.

detailed explanation of the proposed solution. The architecture of the

proposed system is also presented. The techniques which are being used in the implementation

31

The description of this process is as: from log store module read the log, then parse it to form the

précised and actual request, after that analyze it the input for log analyzer is rule cache which

information is added into state. Log analyzer includes all

The architecture of the

The techniques which are being used in the implementation

32

Chapter 4

Implementation of Proposed Solution

4.1 Introduction

The previous chapter described the proposed architecture. This chapter presents the

implementation details and the overall architecture of the implemented system. Software which

is used for the implementation is also illustrated here.

4.2 System Architecture

All the intercepted requests are placed in SWAF log. Log comprises of two sub categories, the

access and the infected log. The existing structure of SWAF is improved to make it proactive.

The filtering process is enhanced with the working of probing filter. After addition of probing

Positive security system comes under hybrid security solution which overcomes the false

positives problems. Negative security system has blacklist rules to detect attacks but it can’t

detect suspicious activities which become an attack in future, for this purpose the probing

detection module will work. Rule cache also includes the detection rules where as the whitelist

rules are already present over there, and state includes the information of block IPs, on the bases

of these two modules the probing filter will take action. Whenever a request has come to probing

filter it will analyze that request by consulting the rule cache as well as state, the validation’s first

level is to check detection rules in cache and the second check is to see state, after these two

checks probing filter take an appropriate action that whether it will forward the request to other

detection, the arrangement of SWAF architecture is shown in the figure below.

modules or not. This is the online process. SWAF performance is improved by doing the

remaining process offline because there will be no overwhelming situation, and no overhead to

analyze live traffic. Offline process includes all the working of Log, from log store al

requests are being parsed and learned after that all the processing has been done under the

analyzer that includes the input of learning rules. Learning rules are the whitelist rules which use

in application profiling, it is very much helpful to acqu

this offline process is described in chapter 3.

Figure 7: SWAF System Architecture

ot. This is the online process. SWAF performance is improved by doing the

remaining process offline because there will be no overwhelming situation, and no overhead to

analyze live traffic. Offline process includes all the working of Log, from log store al

requests are being parsed and learned after that all the processing has been done under the

analyzer that includes the input of learning rules. Learning rules are the whitelist rules which use

in application profiling, it is very much helpful to acquire the behavior analysis. The working of

this offline process is described in chapter 3.

33

ot. This is the online process. SWAF performance is improved by doing the

remaining process offline because there will be no overwhelming situation, and no overhead to

analyze live traffic. Offline process includes all the working of Log, from log store all the

requests are being parsed and learned after that all the processing has been done under the

analyzer that includes the input of learning rules. Learning rules are the whitelist rules which use

ire the behavior analysis. The working of

Figure

The above figure shows the implemented approach which proves to be effective and better in

performance as the behavior learning process is entirely an offline process which definitely

reduces the online processing time.

4.3 Technology Used

The list of software components, database etc helpful for the accomplishment

are given below:

• For development IDE Netbeans

is already running and this research work is a part of it. Present SWAF system is

facilitated by development and integration of given system.

• HTTP response message contain

• XML based rules using java, user behavior is being learned from log, my SQL stores the

log.

Figure 8: Implemented Probing Detection Module

The above figure shows the implemented approach which proves to be effective and better in

performance as the behavior learning process is entirely an offline process which definitely

reduces the online processing time.

The list of software components, database etc helpful for the accomplishment

Netbeans 6.5 is used. SWAF system using JAVA implementation

is already running and this research work is a part of it. Present SWAF system is

facilitated by development and integration of given system.

HTTP response message containing HTML code is parsed by HTML parser 2.0.

ML based rules using java, user behavior is being learned from log, my SQL stores the

34

The above figure shows the implemented approach which proves to be effective and better in

performance as the behavior learning process is entirely an offline process which definitely

The list of software components, database etc helpful for the accomplishment of given system

. SWAF system using JAVA implementation

is already running and this research work is a part of it. Present SWAF system is

by HTML parser 2.0.

ML based rules using java, user behavior is being learned from log, my SQL stores the

35

• The use of my SQL server 5.1 is to maintain the database of information in SWAF

relevant to trace which is passes through SWAF. Proposed system is also using this same

database.

4.4 Summary

In this chapter, the implementation of proposed system has been described. We have elaborated

the architecture along with details. Furthermore the list of software tools which is used in the

implementation is also given.

36

Chapter 5

Evaluation

5.1 System Evaluation

The system evaluation is carried out using different scanners and vulnerable applications. By the

use of scanners, automated tools to test web applications for the security problem such as SQL

injections, cross site scripting, insecure configuration, information leakage, directory traversal

and remote command execution attacks [8]. Different probing attacks have been launched on the

targeted web applications which are used for evaluation, these are vulnerable applications.

Evaluation process is based upon the following points:

1. Use of famous scanners

2. Use of vulnerable web applications

Evaluation steps are described in detail in this chapter.

5.1.1 Use of Famous Scanners

To scan potential vulnerabilities of web applications, tools identified as web application

vulnerability scanners have been designed. These scanners automatically test the target web

applications for the known vulnerabilities; by using these vulnerabilities attackers can launch

different types of attacks on the targeted web application. Mostly scanners user by attacker to

launch probing attacks such as Account Lockout Attack, Directory Finder, Forced Browsing,

Argument Addition or Removal and Vulnerability Scanning. These tools crawl the web

application and establish application layer limitations and vulnerabilities either by inspecting

37

them for suspicious parameters or by changing HTTP messages. These scanners are available in

large number both in open source and commercial [8]. Top level scanners which are mentioned

in different journals and research papers have been used for evaluation criteria, these are:

• DirBuster

• Acunetix

• Netsparker

• ZAP proxy

5.1.1.1 DirBuster

It is an open source, multithreaded java application which is designed to scan hidden directories.

DirBuster is intended to brute forces files and directories [9]. It is helpful for the attacker to learn

site structure by scanning its hidden directories and files thus it is highly critical and dangerous.

5.1.1.2 Acunetix

Web vulnerability scanner is commercial based used to scan vulnerabilities like SQLi,XSS etc.

For different types of vulnerabilities except SQL injection and cross site scripting, Acunetix web

vulnerability scanner automatically check the targeted web application [10]. It has pioneered the

web application defense scanning expertise.

5.1.1.3 Netsparker

It is the only free False-positive-free, commercial based web application security scanner which

is used to scan vulnerabilities like SQLi, XSS etc. Netsparker automatically discovers flaws in

the targeted web application that can leave towards dangerously exposed situation [11].

38

5.1.1.4 ZAP Proxy

Zed Attack Proxy (ZAP) is an open source scanner which is used to scan vulnerabilities like

SQLi, XSS etc. It is a simple to use integrated penetration testing tool for capturing weaknesses

in web applications [12]. It automatically crawl the web application for the potential

vulnerabilities.

5.1.2 Use of Vulnerable Web Applications

The vulnerable web applications which are used for evaluation are:

1. WackoPicko

2. Acunetix Web

5.1.2.1 WackoPicko

This is the vulnerable web application used for testing, a PHP based technology which contains

the vulnerabilities like SQL, XSS etc. it runs on apache web server [13].

5.1.2.2 Acunetix Web

This vulnerable web application is ASP based technology, used by acunetix scanner. It contains

the vulnerabilities like SQLi, XSS etc. It runs on IIS web server [14].

5.2 Test bed Setup

Machine used for SWAF

• DELL Core I5, 2.5 GHZ

• RAM 2 GB

• OS: Windows 7

39

Machine used to Test Applications / Scanners

• DELL Core I5, 2.5 GHZ

• RAM 2 GB

• OS: Windows 7

5.3 Test Cases

There are four test cases which is used for evaluation criteria.

• Evaluation results using ModSecurity

• Evaluation results without SWAF

• Evaluation results using SWAF but no probing module

• Evaluation results using SWAF but with probing module

5.3.1 Evaluation results using ModSecurity

ModSecurity is an open source web application firewall. We have tested it for the mentioned

web applications using above mentioned scanners. It contains different vulnerabilities which are

shown in the following table.

Table 1: Evaluation with ModSecurity

Scanner Application Vulnerabilities Comments

DirBuster Wackopicko 5 directories Access Allowed

DirBuster Acunetix Web 1 directory Access Allowed

40

Acunetix Wackopicko 26 Access Allowed

Acunetix Acunetix Web 12 Access Allowed

Netsparker Wackopicko 27 Access Allowed

Netsparker Acunetix Web 2 Access Allowed

ZAP Proxy Wackopicko 7 Access Allowed

ZAP Proxy Acunetix Web 1 Access Allowed

5.3.2 Evaluation results without SWAF

In this case SWAF is not involved; we have tested the mentioned applications using mentioned

scanners for the potential vulnerabilities. The results are:

Table 2: Evaluation without SWAF

Scanner Application Vulnerabilities Comments

DirBuster Wackopicko 5 directories Access Allowed

DirBuster Acunetix Web 1 directory Access Allowed

Acunetix Wackopicko 32 Access Allowed

41

Acunetix Acunetix Web 20 Access Allowed

Netsparker Wackopicko 39 Access Allowed

Netsparker Acunetix Web 13 Access Allowed

ZAP Proxy Wackopicko 17 Access Allowed

ZAP Proxy Acunetix Web 4 Access Allowed

5.3.3 Evaluation results using SWAF but no probing module

Here in this test case SWAF is used but the probing detection module is not on. We have tested

the mentioned web applications using above described scanners. Results are as following:

Table 3: Evaluation with SWAF (No Probing Module)

Scanner Application Vulnerabilities Comments

DirBuster Wackopicko 5 directories Access Allowed

DirBuster Acunetix Web 1 directory Access Allowed

Acunetix Wackopicko 29 Access Allowed

Acunetix Acunetix Web 16 Access Allowed

42

Netsparker Wackopicko 28 Access Allowed

Netsparker Acunetix Web 3 Access Allowed

ZAP Proxy Wackopicko 9 Access Allowed

ZAP Proxy Acunetix Web 1 Access Allowed

5.3.4 Evaluation results using SWAF but with probing module

This is the most important test case, here the working of the probing detection modules have

been analyzed. Result shows the decrease number of vulnerabilities as compared to the previous

test cases. These vulnerabilities have been shown because probing detection module analyses the

user behavior, so in this step some vulnerabilities are there but the access is not allowed to use

such weaknesses. Attacker can’t use these vulnerabilities to launch the attack on the targeted web

applications. After analyzing different user’s behavior probing detection module take an action

and start blocking the malicious users. Results which are achieved are as follows:

Table 4: Evaluation with SWAF (With Probing Module)

Scanner Application Vulnerabilities Comments

DirBuster Wackopicko 5 directories Access Denied

DirBuster Acunetix Web 1 directory Access Denied

43

Acunetix Wackopicko 18 Access Denied

Acunetix Acunetix Web 11 Access Denied

Netsparker Wackopicko 21 Access Denied

Netsparker Acunetix Web 2 Access Denied

ZAP Proxy Wackopicko 2 Access Denied

ZAP Proxy Acunetix Web 0 Access Denied

5.4 Comparison

Different comparison scenarios have been described below. Comparison of ModSecurity and

SWAF (with probing module) using wackopicko application. The comparison is shown using the

following chart.

Figure 9: ModSecurity vs SWAF (With Probing Module) for Wackopicko

44

Comparison using acunetix web application is shown in the following chart.

Figure 10: ModSecurity vs SWAF (With Probing Module) for acunetix web application

5.5 Summary

This chapter has illustrated the evaluation process and the results which are taken to access the

performance of the system. The evaluation criteria is based upon two things, first is the use of

scanners and the second is the use of vulnerable web applications. Evaluation results show the

better performance of the proposed module.

45

Chapter 6

Conclusion and Future Work

Research contribution is enlisted in this chapter through conclusion of thesis work. Conceptual

research work along with tasks supposed to helpful in future are also defined.

6.1 Research Contribution

These points are the main contribution drawn from this research.

• The research gives a detailed analysis of user behavior by using application profiling as

well as the scanner traffic analysis is also done by application profiling.

• Scanner detection is done by using firewall log, because regular users and scanners are

differentiated by log.

• Working in offline mode and scanner detection is done by log traffic analyzing so there is

no overhead.

• Scanner behavior is successfully recognize by the use of following:

o Log

� Access Log

� Infected Log

o Application Profiling

• The use of XML based rules to detect existing scanners

• Traffic analysis check

46

6.2 Conclusion from Research Work

The need of the era is to secure the web applications. Proactive based approach to secure web

applications is important. Existing solutions mainly based on the reactive approach which has its

own advantages and disadvantages. The mentioned research work provides good defense against

probing attacks which is the key reason of many attacks on web applications. This is the

proactive based solution which is the need of the hour. SWAF integrated with this module will

become proactive and can detect attacks before it can damage. The above mentioned approach

enhances the overall protection and performance of SWAF. The limitations of the existing

solutions have been overcome by the use of proposed solution. The intention of the proposed

solution is to present an efficient and effective way to alleviate attacks and provides a better

proactive based security.

6.3 Future Work

The system can be further enhances by:

• Automatically generate the rules which are statically implemented.

• Optimize the proposed module for live traffic so that its performance is more

improved.

The abovementioned tasks are taken as future work.

47

References

[1]. http://www.physorg.com/news/2011-01-internet-users-worldwide-billion.html

[2] White hat website security statistics report

[http://www.whitehatsec.com/home/resource/stats.html]

[3]. Semantic based Web Application Firewall [http://swaf.seecs.nust.edu.pk]

[4]. Imperva,Scannig/Site Probing

[http://www.imperva.com/resources/glossary/site_probing.html]

[5] Radware’s Behavioral Server Cracking Protection By Renaud Bidou

[6] Identifying and controlling automated clients by Ryan Barnett

[7] Detect and respond to attacks from within the application by OWASP, 2009

[8] Web Application Security Scanner Evaluation Criteria

[http://projects.webappsec.org/w/page/13246986/Web%20Application%20Security%20S

canner%20Evaluation%20Criteria]

[9] DirBuster [http://sourceforge.net/projects/dirbuster/]

[10] Acunetix [http://www.acunetix.com/]

[11] Netsparker [http://www.mavitunasecurity.com/netsparker/]

[12] OWASP Zed Attack Proxy Project

[https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project]

[13] wackopicko [http://www.darknet.org.uk/2010/12/wackopicko-vulnerable-website-for-

learning-security-tool-evaluation/]

48

[14] Acunetix web [http://testasp.vulnweb.com]

[15] OWASP Account Lockout [https://www.owasp.org/index.php/Account_lockout_attack]

[16] OWASP Forced Browsing [https://www.owasp.org/index.php/Forced_browsing]

[17] OWASP SQLi [https://www.owasp.org/index.php/SQL_Injection]

[18] OWASP Session Prediction [https://www.owasp.org/index.php/Session_Prediction]

[19] OWASP Cross Site Tracing [https://www.owasp.org/index.php/Cross_Site_Tracing]

[20] T. Alexenko, M. Jenne, S. Deb Roy and W.Zeng,”Cross-Site Request Forgery: Attack

and Defense”, IEEE CCNC (2010)

[21] Directory Traversal [http://www.acunetix.com/websitesecurity/directory-traversal.htm]

[22] Vulnerability Scanning [http://netsecurity.about.com/cs/hackertools/a/aa030404.htm]

[23] OWASP XPATH injection[https://www.owasp.org/index.php/XPATH_Injection]

[24] OWASP Cross Site Scripting[https://www.owasp.org/index.php/Cross-site_Scripting]

[25] OWASP Denial of Service[https://www.owasp.org/index.php/Denial_of_Service]

