

Enhancing Semantic Rule Engine for Semantic

based Web Application Firewall (SWAF)

By

Rana Faisal Munir

2008-NUST-MS PhD-IT-25

Supervisor

Dr. Khalid Latif

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MSIT)

In

NUST School of Electrical Engineering and Computer Science

(SEECS),

National University of Sciences and Technology (NUST), Islamabad,

Pakistan

i

CERTIFICATE

Certified that the Scrutinizing Committee has reviewed the final documentation of Mr. Rana

Faisal Munir Reg. no. 2008-NUST-MS PhD-IT-25 student of MS-IT-9 thesis title Enhancing

Semantic Rule Engine for Semantic based Web Application Firewall (SWAF) and found

satisfactory as per NUST’s standard format for Master Thesis.

President

Wg Cdr (R) Muhammad Ramzan

NUST School of Electrical Engineering and Computer Sciences
 A center of excellence for quality education and research

ii

APPROVAL

It is certified that the contents and form of thesis entitled “Enhancing Semantic Rule Engine

for Semantic based Web Application Firewall (SWAF)” submitted by Rana Faisal Munir

have been found satisfactory for the requirement of the degree.

Advisor: Dr. Khalid Latif

Signature:

Date:

 Committee Member: Dr. Hafiz Farooq Ahmed

 Signature: ____________________________

Date: _______________________________

 Committee Member: Mr. Ammar Karim

Signature: ____________________________

Date: _______________________________

Committee Member: Mr. Muhammad Bilal

Signature: ____________________________

Date: _______________________________

iii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY PARENTS AND SISTERS

iv

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at SEECS or at any

other educational institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author: Rana Faisal Munir

Signature: ___________________

v

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my humble gratitude to Almighty Allah who always

bestowed His blessings on me and gave me courage to accomplish this task. Darood-o- Salaam

to Prophet Muhammad (P.B.U.H) chosen by Almighty Allah to guide the mankind to divine

path.

I am truly indebted to my supervisor Dr. Khalid Latif for his support, guidance and unending

tolerance. He patiently spelled out all new concepts and completely guided me in all technical

directions. I own that without the inspiring guidance of Dr. Khalid Latif, this research would not

have materialized. I extend my appreciation to my co-supervisor Dr. Hafiz Farooq Ahmad.

Whenever there was a problem he steered me through. I am thankful to all of my committee

members, for their guidance throughout the research work of this thesis. I really have no words

of thanks for my friends and research fellows for their co-operation. I would always cherish the

moments spent with them.

I can never forget the contribution of my parents in providing their all assistance to me. I owe all

my achievements to my parents whose assistance and prayers enabled me to surpass all the

hurdles in my life.

Rana Faisal Munir

vi

ABSTRACT

Web applications after their revolutionary advent and popularity have become target range for

variety of attacks. Magnitude and complexity of these attacks is continuously growing with every

minute development in World Wide Web. There are plenty of web attack detection techniques

but they cannot fully comprehend the required degree of security for complex web applications.

The reasons include static nature of attack detection mechanism, lack of expressiveness in attack

detection rules, and absence of reasoning capability to detect unanticipated ways through which

an attack can appear. To cater these issues, a formal approach is required that has more

expressiveness and equipped reasoning. We used ontology as a formal approach which provides

expressiveness and reasoning as a package. We also studied the important attributes that are

helpful to analyze and detect web attacks. These are root causes, HTTP portion used, messages

needed for attack, impact and detection models used for detection. On the basis of our empirical

study and pragmatic results, we developed web application attacks ontology. The developed

ontology underwent three evolution criteria. Formal correctness and consistency is validated

using OntoClean and Pellet reasoner. Domain coverage is second criteria and our ontology

covers all web attacks listed by OWASP. Last but not least is the task orientation that how it will

be used for detecting web attacks; we made a case study which shows how effective it is when

we use it for detection.

vii

Table of Contents

Introduction & Motivation .. 1

1.1 Introduction .. 2

1.2. Introduction to Ontology .. 4

1.3 Motivation ... 5

1.4 Objective ... 5

1.5 Thesis Organization ... 6

Existing Work & Literature Survey .. 7

2.1 Intrusion Detection System... 8

2.2 Network Security .. 12

2.3 Security Privacy and Policy .. 16

2.4 Risk Management ... 19

2.5 Web Services ... 21

2.6 Malware .. 24

2.7 Summary ... 25

Web Application Attacks ... 26

3.1 Attacks Attributes or Dimensions ... 27

3.1.1 Attack Root Cause ... 27

3.1.2 HTTP Portion ... 28

3.1.3 Attack Behavior ... 28

3.1.4 Detection Model ... 28

3.1.5 Attack Impact .. 29

3. 2 Web Application Attacks Details ... 29

3.3 Summary ... 50

Web Attacks Ontology .. 51

4.1 Root Cause .. 53

4.1.1 Application Specific ... 53

4.1.2 Web Server Specific .. 55

4.1.3 Browser Specific .. 56

4.2 HTTP Portion ... 56

viii

4.3 Attack Behavior ... 57

4.4 Detection Model .. 57

4.5 Web Attacks ... 58

4.6 Impact ... 58

4.7 Damage ... 58

4.7.1 Affected Users ... 59

4.7.2 Exploitability .. 59

4.7.3 Reproducibility .. 59

4.7.4 Security Services ... 59

4.8 Cause and Effect Design Pattern ... 60

4.9 Web Attacks Example ... 61

4.9.1 Account Lockout.. 61

4.9.2 SQL Injection ... 62

4.10 Summary .. 63

Evaluation ... 64

5.1 Ontoclean .. 65

5.2 Ontoclean Evaluation Criteria ... 66

5.3 Ontology Statistics .. 66

5.4 Ontology Evaluation ... 67

5.4.1 Formal Correctness ... 67

5.4.2 Consistency ... 69

5.4.3 Domain Coverage .. 70

5.4.4 Task Orientation .. 70

5.5 Summary ... 72

Conclusion & Future Enhancements ... 73

6.1 Conclusion .. 74

6.2 Future Work ... 74

References .. 75

ix

List of Figures

Figure 1: Technology Breakdown with respect to attacks .. 3

Figure 2: Likelihood of websites having vulnerabilities by severity rating .. 4

Figure 3: Root Cause Hierarchy.. 27

Figure 4: HTTP Portion .. 28

Figure 5: Attack Behavior ... 28

Figure 6: Detection Model .. 29

Figure 7: Attack Impact .. 29

Figure 8: Web Attacks Ontology-High Level Diagram .. 52

Figure 9: HTTP Ontology-High Level Diagram ... 57

Figure 10: Security Services ... 60

Figure 11: Ontology with Design Pattern ... 61

Figure 12: Account Lockout ... 62

Figure 13: SQL Injection .. 63

Figure 14: Security Services Evaluation ... 68

Figure 15: Damage Evaluation ... 69

Figure 16: Without Inference .. 70

Figure 17: After Inference ... 71

x

List of Tables

Table 1: Account Lockout Attack ... 29

Table 2: Argument injection ... 30

Table 3: Asymmetric resource consumption (amplification) .. 30

Table 4: Blind SQL Injection .. 30

Table 5: Blind XPath Injection ... 31

Table 6: Brute force attack .. 31

Table 7: Buffer overflow attack ... 32

Table 8: Cache Poisoning ... 32

Table 9: Code Injection [Local or Remote File Inclusion] ... 33

Table 10: Command injection ... 33

Table 11: Comment Injection ... 34

Table 12: Cookie Tampering .. 34

Table 13: Cross Frame Scripting .. 35

Table 14: Cross Site History Manipulation ... 35

Table 15: Cross Site Tracing ... 36

Table 16: Cross‐Site Request Forgery (CSRF) ... 36

Table 17: Cross‐User Defacement .. 37

Table 18: Cross‐site Scripting (XSS) .. 37

Table 19: Custom Special Character Injection ... 38

Table 20: Denial of Service .. 38

Table 21: Direct Dynamic Code Evaluation ... 39

Table 22: Direct static Code Evaluation ... 39

Table 23: Double Encoding .. 40

Table 24: Forced browsing ... 40

Table 25: Format string Attack ... 41

Table 26: Full Path Disclosure .. 41

Table 27: HTTP Request Smuggling .. 42

Table 28: HTTP Response Splitting ... 42

Table 29: LDAP injection ... 43

Table 30: Page Hijacking .. 43

Table 31: Parameter Delimiter .. 44

Table 32: Path Manipulation ... 44

Table 33: Path Traversal ... 45

Table 34: Regular expression Denial of Service – ReDoS ... 45

Table 35: Repudiation Attack ... 46

Table 36: SQL Injection .. 46

Table 37: Server‐Side Includes (SSI) Injection .. 47

Table 38: Session Prediction ... 47

Table 39: Session Fixation .. 48

xi

Table 40: Session Hijacking ... 48

Table 41: Unicode Encoding .. 49

Table 42: Web Parameter Tempering ... 49

Table 43: XPath Injection ... 50

Table 44: Ontology Statistics .. 67

1

CHAPTER # 01

Introduction & Motivation

2

1.1 Introduction
Web Applications security has become gradually more significant these days. Colossal numbers

of attacks are being deployed on the web application layer. Due to spectacular increase in Web

applications, security gets exposed to variety of threats. Various attacks are embattled towards

the web application layer; network firewall alone cannot foil these kinds of attacks. The

fundamental reason behind success of these attacks is the unawareness of application developers

while writing the web applications and the vulnerabilities in the existing technologies. Various

technologies from various vendors for instigate same standards, e.g. Common Gateway Interface

(CGI) [1] is the standard mechanism for specifying the work of dynamic web application.

Different technologies like ASP [2] and ASP.NET [3], JSP [4] and PHP [5] to name a few exist

for implementing the same technology in different ways and hence results in rising complexities

entailing in supplementary security concerns. Figure 1 [6] shows various technologies with

respect to vulnerabilities found in their implementations.

The rapid development in Web 2.0 and evolution of social networks became centric to the

hackers. Starting from any scholarly artifacts to media files, articles, business advice, and

consultancy; the Web has grown from static web pages to a haystack of billions of dynamic

portals effecting lives of millions of users.

As the information on the internet is growing at a volcanic speed, concerns about and its security

are also arising.

3

Figure 1: Technology Breakdown with respect to attacks

Considering above fact, web applications are the most vulnerable. 75% of attacks are being

deployed on web application layer [7, 8, 9]. 81% of these attacks are targeted on payment card

industry. The organizations which uses shared and default credentials give 51 % of the data to

the hackers [10]. According to site security monitor that in every 90 breaches there are 285

million records exposed and that is greater the 230 million exposed records in previous 5 years

[11]. 30% of each 57 attacks are carried out using SQL injection attack [11] that’s why the web

application security is the most important. Figure 2 [6] shows the vulnerabilities according to

their impact in percentage, 80% website have critical vulnerabilities. To protect web applications

from attacks, there should be clear understanding of each attacks and their main root causes. This

information will help to find the way to detect and prevent these attacks. To present this

knowledge, ontology [12] is the best solution for this purpose. Ontology has the features like

expressiveness and reasoning capabilities. These features help to prevent the existing attacks and

can help to understand and prevent the new attacks.

4

Figure 2: Likelihood of websites having vulnerabilities by severity rating

1.2. Introduction to Ontology
The idea of ontology is not new. It is a subject of discussion among many Philosophers for

centuries [12]. However, ontology, today have turn out to be more formalized conceptual

representation utilized in computer science, artificial intelligence, and database integration [12].

According to Gruber ontology is “the arrangement of conceptualizations, used to assist programs

and humans distribute knowledge.” [12, 13] Ontology, thus, provides a basic and well defined

vision of a specific area of domain. In the exacting application of knowledge base for artificial

intelligence and data integration, knowledge enclosed within the ontology must be human and

machine-readable in order to present greater semantic capacity of the World Wide Web for users

within precise domains. Prescribed languages have been urbanized for the encoding of this

ontology knowledge; Web Ontology Language (OWL) is the most well-known language now a

day to describe knowledge of any domain. It’s based on concepts and relations that are working

to involuntarily classify taxonomies [14]. OWL has been engaged here due to its expressiveness

and durability. OWL contains classes, properties, individuals, and restrictions. Classes represent

5

concepts in a domain. E.g. in the web application security domain, SQLi [15] would be presented

as a class. Classes can be hierarchical structure where subclasses are defined.

1.3 Motivation
Web application security is a vast area which is expending day by day. Due to the increasing

number of attacks on the web application, prevention and detection of these attacks are very

difficult at the application layer. There is a need for common way of representing knowledge of

web attacks which can help security community in detection and prevention of these attacks.

There are various ontology designed for information security but none of them for web attacks

which is in high demand. The proposed ontology meets the current demand and can be used for

attack analysis, scanning web applications and most importantly detection of web attacks using

web application firewall (WAF) [16]. World is becoming a cyber space and web attacks are the

biggest threat for its utility and survival. Complete range of web assets are under potential threats

especially the critical and secrete information. Sharing of information which is sensitive and

crucial in nature is probable against potential threats. It needs utmost security infrastructure and

techniques to withstand against a range of web attacks.

1.4 Objective
Main objective of thesis is to study web attacks to see how these attacks work on web application

layer and what are their impact on an organization which have critical information on the

internet. Second phase emphasizes to understand how ontology work and to study existing

ontology’s in the information security domain. This knowledge will be used to build web

application attack ontology for detection and prevention of web attacks. Further, it can be used as

a web application scanner which can identify loop holes in the web application or can be used in

6

web application firewall to detect and prevent the attacks. This ontology covers all aspects of

web application attacks to make it worthy for research community.

1.5 Thesis Organization
This thesis is ordered into six different chapters. Chapter 2 provides extensive literature survey

of the existing ontology in the information security domain. Chapter 3 presents the study of all

web application attacks that currently exists. Chapter 4 presents the ontology that we developed

for web application attacks. Chapter 5 shows the evaluation of the proposed ontology using

onto-clean. Chapter 6 presents the conclusion and future work of this thesis.

7

CHAPTER # 02

Existing Work & Literature Survey

8

This chapter provides the background knowledge for research. It gives a detailed overview of

ontology that currently exists in the information security domain. Literature survey is divided

into five different categories. Latest research papers are included in each category. These

categories are intrusion detection system, network security, security privacy and policy, risk

management, web services and malware. The all categories utilize the ontology for their domain

and show the effectiveness of the ontology.

2.1 Intrusion Detection System
This categories show the work of ontology in the domain of intrusion detection system. These

solutions have been presented in [17], [18], [19], [20], [21] and [22].

The proposed solution in [17] presents the ontology for computer network attacks that they used

for distributed IDS. The authors have analyzed 4,000 classes of computer network attacks, their

attributes and relationships with each other. Their main focal point of ontology is attack target.

The ontology Host class stores victim of any attack. Then Attack class is part of this ontology

that represent different computer network attacks, this class has properties: Directed To,

Resulting In and Effected By. Each attack is directed to a System Component. System

component class has two sub-classes: System and Process. These classes represent the current

state of the Host. Each attack has Consequences. Examples of Consequence subclass are Denial

of Service. Each attack is launched by some means of Input, and Input can be caused by some

Means, Means class has two subclasses: Input Validation Error and Logic Exploit. They

represent the different means of an Attack. The ontology was evaluated in two phases: In first

phase it detects the anomaly and then they prepare a dataset that is inserted in ontology as

instances. In second phase, they use reasoner to find the possible anomaly behavior. The inserted

9

sample data to show how efficiently ontology based IDS detects attack. The attacks they focused

were: Sync Flood attack, Mitnick type attack and buffer flow attack.

The solution presented in [18] proposed the ontology for distributed Intrusion detection System.

This ontology helps the IDS to share the messages to each other that can be easily interpreted

using ontology interoperability. The attack signature is the root node and has three classes that

cover the different features from heterogeneous sensors. Host feature contains all information

that is related to the system, like memory usage, then we have to go from host feature to system

status and then we can check the memory usage. This is very useful in cooperative detection

process; we can locate the required information using ontology easily. Because ontology help us

which sensor contains the required information, like we know that all the sensor who has Host

feature, have the information related to System call, Application log, and system status. They

assign the weight to each edge between value node and its parent node. The weight is ranges

from 0 to 1, where1 mean two nodes have maximum similarity and 0 mean minimum. They

weights are assigned by expert and can be adjusted according the result feedback. By finding the

maximum similarity between any nodes possible attack can be identified that attacker tries

launch by modifying some of attack parameter. In start different rules are loaded into the

ontology as instance. A total score function is used to calculate the similarity score for each audit

data that different sensors observe. The paper gives example of backdoor, that their IDS detected

successfully using ontology and matching algorithm. Using their methodology they are

successful to detect the all the possible ways of backdoor communication. Ontology also helps

to find the sensor that have the right information that is required by another sensor. Like if we

need to know the memory usage, then we should contact with the system status sensor.

10

The proposed solution in [19] used ontology to detect the automated scripts or tools that normal

user downloaded from the internet unintentionally. These scripts then use victim PC as source of

launching DDOS attacks or other attacks. The ontology presented is attacker centric that is they

consider that attacker is logged in to remote system and then try to compromise any other system

using that remote PC. Author introduces different concepts in ontology, he divides the network

system into agents that will monitor the different activities, agent has sensor that will use to

monitor the traffic and process running on the system. Reactor and reaction concept are used to

perform an action after a malicious behavior is detected. Agent cells are environment in which

agent can perform reliably. The agents that share common goals are placed in the same agent

cell. Correlators are used to gather information and perform the analysis on it. As an input it will

take two streams of data, one is outbound network traffic and second is process execution data.

The network and process data stream is used by the agent cell to generate the signature locally

and this is shared with others using the ontology. They generate the two types of signature, one is

for network traffic and one is for process. Correlators cells continuously monitor the traffic and

process streams, and identify the malicious program execution on the basis of analysis. The

generation of signature is generated on the basis of some learning data that can be for example

some k packet of TCP.

The proposed ontology of [20] is used in Distributed IDS. They proposed two types of agents

that will work in the distributed environment. They will communicate with each other using the

proposed ontology, and this ontology helps the IDS to get the relationships between different

computer attacks and suspect situation in networks accurately. The ontology covers different

type of computer attacks; they classify the attacks in Trojans, Network Attacks, Physical attacks,

viruses, Denial of Service and password attacks. The focus of the paper is on Denial of Service

11

attack only, that’s why they expand their ontology in the domain of DoS. They divide the DoS

attack into Exhausting service and Stopping service. These attack classes further divide and then

we can go into the depth of the DoS attack to capture the exact information related to the type of

DoS attack. Their IDS has two agents, Master agent holds the ontology and IDSagent is a special

host based or network based IDS. Whenever they find a suspicious status, they send the report to

the master agent. Master agent saves the report to the ontology and then queries the ontology to

find the information, is network under attack. Currently they show this technique for DoS attack.

The ontology helps the Master agent to find the correct type of attack from the ontology. If

master agent detects an attack, then it will send the suitable alarms to IDSagent, so that they take

the correct reaction for that attack.

The ontology proposed in [21] used for detection of web application attacks. Their ontology

covers the different web attacks like SQLi, XSS etc. They have the concept #Attack and from

which port they received this attack. In this paper they only focused on HTTP attacks, that’s why

they shows the ontology for HTTP Request only. Each HTTP request has three components,

Request Line, Header and Payload. Then they further divide it according to the RFC 2616.

Attacker used some attack vectors to launch the attack on the application. They call the attack

vectors as malicious code in the ontology. This malicious code can be inserted into application

by means of input like Query String. This paper primarily focuses on SQLi and XSS attacks.

They used the concepts of web crawler to extract the information for a web application and then

find entry points from which attacker can inject malicious code. They modify the Bayesian filter

to detect the web application attacks. They assign different weight to different html attributes and

then calculate the weight for incoming string, if weight exceeds than the threshold consider it as

attack. They use the inference engine to find the possible ways from which a malicious code can

12

be injected. This will help them to find the exact path from which attacker can insert the code

and then they apply the detection techniques on that path to detect the attack.

The proposed ontology model [22] to define the events of Intrusion detection and prevention

system. Primary focus of this paper is on the Distributed Intrusion detection system, Distributed

IDS used the Intrusion Detection Messages Exchange Format (IDMEF). This format is based on

XML, but XML doesn’t provide any reasoning capabilities, it is just used to define structure. To

add the reasoning capability authors used the ontology model to describe all the events their

relationships and also use the Semantic Web Rule Language (SWRL) for reasoning. It covers

different type of attacks, anomalous protocols, web code injection and Denial of Service attack

using sync flood. They have used attack signature for detection. They have rules as subclass of

Signatures; they used it to define the different prevention rules to prevent defined attacks. This

ontology focuses on the network node that is targeted by an attacker. All the properties and

relationships are developed according to network node. They choose the Agent Software

engineering process as methodology to build their Distributed IDS. Agents perform the

following functionalities: Sensor agent capture the traffic from the network, Analyzer agent

analyzed the capture data with predefined signature define in ontology. Correlation agent uses

the inference engine and ontology to classify the attacks accurately by the help of inference.

Then Reaction agent at the end, generate alarms and inform the other network nodes.

2.2 Network Security
This categories show the work of ontology in the domain of network security. These solutions

have been presented in [23], [24], [25], [26] and [27].

This solution presents in [23] proposed ontology for network security attacks. They review the

existing threat and vulnerabilities profiles. Then identifies the core concepts that can be used in

13

network security ontology. Actor class represents the Black hat hacker, Cracker, Malevolent

user, Malevolent Systems Administrator, Script kiddie etc, that makes attack on network. Attack

class represents the different network attacks; these are control of system, DoS, modification of

network message content, replay, spoofing or traffic interception. They classify the attack into

two categories; Active attacks and passive attacks. Impact represents the effect of attack on the

network. Threat that is used to launch attacks is bacteria, worm, virus, Trojan horse or logic

bomb. Motive class represents the reason of an attack. This can be for fun, gain, revenge. The

Information class represents what attacker try to steal. Outcome of the attack can be interruption,

interception, modification or fabrication.

The ontology presents in [24] for the Mobile Ad-Hoc Network security threats. They used the

ontology to describe all MANET security threats so that everyone can easily understand its threat

and can find the solution to prevent these threats. System class is the victim of threat and it has

the following subclasses: Network, System components and Processes. Actor launches the threat

on the system by using some input. This input can be launched by using some attacks like

wormhole, dynamic topology or selfish node etc. We can check the system is under threat by

checking the following fault condition; that are input validation error, logic error or other errors.

Consequences are also divided into three types; loss of assets, illegal access and other general

outcomes like modification etc. Attacker can be any System problem, human or other. System

problems are classify into Software Defect, System crash etc, Human can be inside or outside.

For any attack, actors have some motivation that causes them to launch attack on target system.

This motive can be for fun or revenge.

Voice of IP service based on Session Initiation Protocol has gained popularity in last few years.

With the popularity there are my serious threats appeared in SIP protocol that should be

14

addressed. To address these threats in-depth understanding is required. The proposed solution in

[25] its ontology that helps to understand each threat. The ontology considers the attack related

to the protocol that has different consequences from DoS to gain access. They have two core

concepts in this ontology; that are SIP_message: It shows the structure of SIP message that

attacker can use to launch attacks, and SIP_attack: It represents the all SIP attacks that can be

malformed or flood. Root Malformed attack is the incorrect sip message sent, and flooding can

be launched by sending many sip messages simultaneously. SIP message consists of first line

and header. Every sip message should contain two things otherwise it will be considered as

invalid. First_Line class used to differentiate between request and response. First_Line for

request also contains different methods that SIP used to sending request; these are Register,

Invite etc. They used URI to write the rule that is based on the SIP grammar that can help to

validate the SIP request. Like, for SIP register request we have a register URI rule that is used to

validity of incoming request. Header is consisting of two things; one is header name and second

is rule that is used to check its validity. They focused on two attacks, one is malformed attack,

this attack is caused by sending the malformed messages that is not according to the grammar or

inconsistent, it can validate by using ontology. Second attack is flooding attack for this they

proposed to use the threshold for single user to detect it. Target class represent the SIP

component on which attack is launched, it has IP and port as properties. Consequence class show

the impact of attack on target, it can be DoS or unauthorized access.

The strategy proposed in [26] focuses on the reaction that is takes after an attack detected in

network. The important thing in Reaction after Detection is how effectively we apply the

accurate policy to solve the attack related issues. They propose the ontology that helps to find the

policies that can be applied in the network to solve the threats. They used ontological approach

15

that is based on the OrBAC security model. OrBAC is stands for opens Role Based Access

Control. This model helps to define the security policies for an Organization. This model has a

set of contextual security rules corresponding to permissions, prohibitions and obligations. The

security rule applies when their associated context is activated. They also used attack ontology to

provide the formal description of network attacks. The primary focus of this paper mapping from

attack alerts to the threat contexts, and these threat contexts then helps to identify the security

policies that are used for reaction strategy. Subject, object and action classes represent the

concepts that are used in OrBAC model. These classes are mapped with Role, View and

Activity. This ontology has the following classes, Organization, Hold, Context and Rule.

Organization is the core class of the OrBAC model; Hold class will have Subject, object and

action. Context is based on CVE for classification of alert. OrBAC model allows defining the

rules to apply the security policies in any organization. These rules will be used as reaction

policies. The ontology has the relationship of Hold class with other classes. It contains the

subject, object, action, organization and also a context. Ontology also presents Rule class and its

properties that it used to attach with other concepts.

Ontology for computer and networks attack presented in [27], they primarily focused on network

based Denial of Service attack. To develop this ontology they studied different number of log

and connections that cause the network DoS. The ontology covers different type of computer

attacks; they classify attacks in Trojans, Network Attacks, Physical attacks, viruses, Denial of

Service and password attacks. The focused of the paper is on Denial of Service attack only, that’s

why they expand their ontology in the domain of DoS. They divide DoS attack into Exhausting

service and Stopping service. These attack classes further divide and then we can go into the

depth of the DoS attack to capture the exact information related to the type of DoS attack. This

16

ontology is focused on these types of DoS attacks; these are SYN flood, smurf, teardrop, ping of

death etc.

2.3 Security Privacy and Policy
This categories show the work of ontology in the domain of security privacy and policy. These

solutions have been presented in [28], [29], [30] and [31].

The paper [28] presents the security ontology that focuses on annotating the functional aspect of

the resources. Annotation with security related metadata help to identify the resources that fulfill

the security requirements. Security information includes the mechanisms, protocols, objectives

algorithm and credentials in different levels of details and specificity. This paper claims that their

security ontology helps to describe the security concepts at different level of detail. The paper

also represents this ontology because previous ontology annotates web services rather than

resources, but their ontology focuses on how to annotate resources in a web service. There

ontology is an aggregation of seven other ontology’s. These are Main Security Ontology,

Credentials Ontology, Security Algorithms Ontology, Security Assurance ontology, Service

Security ontology, Agent Security Ontology and Information Object Ontology. The main

security ontology describes the security concepts, credentials ontology to specify the

authentication credentials, security algorithm ontology to describe various security algorithm,

security assurance ontology to specify different assurance standards, service security ontology to

facilitate security annotation of semantic web services, agent security ontology to enable

querying the security information and information object ontology to describe the security of

input and output parameters of web services. The below picture shows the main security

ontology,SecurityConcept is the top class and has three subclasses, these are Security Protocol,

SecurityMechanism and SecurityPolicy. SecurityPolicy and SecurityMechanism are

17

implementation of protocols to accomplish a task. And SecurityPolicy defines the set of rules to

protect and secure information. This ontology also hasSecurityObjective that user specify for a

web service. After annotation to all resources of web services, they apply the matching algorithm

to verify that security policies should apply accurately. They have to match two things; one is

service provider and other service requestor. It will check the provider’s security requirements

should be satisfied by the requestor’s security capabilities. The ontology and matching algorithm

help to a web service finder to find the services that has the desired functionalities and also the

security capability and requirements that client want.

The paper [29] proposed an ontological solution for policy specification, administration and

formalization. This solution helps to define policy for information sharing between two parties.

These policies will enforce the security specification that administrator wants to apply when

information is shared. The purpose of formal specification is to help in the context of trust

negotiation that is the first phase when two parties that wants to share information. The

information related to trust are credentials attributes that are needed. The root represents any ID,

this is divided into classes, and these are Government and Enterprise. Enterprise ID class

represents the credential that an organization issued; these can be IBM, Cisco etc. And

Government ID can be issued by state etc. They define the policy specification in F-Logic,

policy has the name, value and type attribute. Policy is divided into two classes that is express

using type; these can be Default or Mandatory. They defined the metaClass that help to define

the policies in any class. This class has two attributes, policySlot and overallPolicy. PolicySlot

has the set of policies and overallPolicy whose value is the set of policy of all policies.

Mandatory policy helps to enforce the higher level policies at lower levels. Default policies are

those policies that every subclass should be fulfilled. The paper makes a PolicyTab as a

18

protypefor protégé. This tab helps to define policy and can be attached to any class that is

defined in ontology.

The paper [30] proposed an ontological solution that helps the organization to apply the IT

security policy in easy way. This solution helps to implement the COBIT and ISO 17799

standards in any organization. The security ontology has five sub-ontology; these are Attribute,

Threat, Infrastructure, Role and Person. The Attribute ontology helps to model the impact of

threats i.e. which threats influence the certain security attributes and on the basis of this

organization can prioritize the IT security strategy. These attributes can be Availability,

Confidentiality, Integrity, Maintainability, Reliability and Safety. This ontology has the relation

with other ontology, like Attribute, Infrastructure etc. The Infrastructure ontology has the

information related to building, rooms, electronics devices, networks etc. The Role ontology is

used to define the roles of each person in any organization, and person ontology help to define

the persons that are responsible to apply the security policies.

The paper [31] presents ontology for information security domain. This ontology covers all the

concepts that are required for information security domain. This ontology has the following core

concepts, assets, threats, vulnerabilities, countermeasures and their relationships. These concepts

are borrowed from the risk analysis ontology. Asset is connected with vulnerability, and also

with threat and threat is attach with the security goals that are target of the threat. A

countermeasure is used to protect the asset from the threat. The core concept countermeasures is

very well defined in this ontology, they cover all possible countermeasures that exist in the

security domain. Some examples are encryption, secure network communication, access control

etc. The Assets class is also defined in expressiveness manner to cover all possible asset exist in

any organization. The general asset in any organization is Credential, Technology, Human and

19

Countermeasure. These assets should be protected from the threats. The Threats or attacks are

also very well defined, it cover all possible threats that can threaten the asset of any organization.

Threat is divided into two categories, these are active or passive. Active threat have direct attack

with asset, these can be brute force, denial of service, disruption etc. And passive threats are

statistical attack, eavesdropping etc. The vulnerability covers thirteen vulnerabilities; this can be

buffer overflow, malformed input etc. The countermeasures are divided into memory protection

or source code analysis. And these concepts then further divided to cover all tools in these

domains and techniques.

2.4 Risk Management
This categories show the work of ontology in the domain of risk management. These solutions

have been presented in [32], [33] and [34].

The paper [32] purposes a system named SemanticLife which is a personal Information

management system which gather user interaction events and correlates them using ontology.

This paper present a risk assessment method using SemanticLife tool which will help in security

planning and decision making. SemanticLife stores, manages and retrieves the lifetime’s

information entities of individuals. SemanticLife ontology is devised into three parts (1) user

environment ontology, (2) project ontology and (3) attack ontology. User environment captures

the information of environment e.g. operating system on node, software installed on node etc.

Project ontology describes the classification of project-related entities such as tasks, project

plans, assignments & allocations, resources, and costs. Attack ontology provides classification of

attacks like active and passive attacks with pre and post conditions of attack. SemanticLife has

three main plug-ins, these are Message Bus, web service and pipeline. Message Bus Plug-in, this

plug-in manage all information that is exchanged between different processes running inside

20

SemanticLife. Web Service Plug-in, this plug-in uniform all resources as services and expose

them inter or extern user based on semantic policies. It has two types, External web services,

Internal Web services. Pipeline plug-in, it plays central role, basically it perform the intermediate

transformations between different web services calls. Semantic life handles the information using

policies. Policies are stored in the form of RDF store. For risk assessment it captures the data

form user and correlates it with other events to establish a user profile of single users. Combining

this data with risk ontology, useful results can be generated. For example, from the risk ontology

we know that a specific attack can happen only when specific preconditions are met. Some

typical preconditions are, OS version, open ports, etc.

The paper [33] presents an ontological mapping of the ISO/IEC 27001 standard, IT security EBK

and its control countermeasure. The above ontology has four concepts these are, Control,

Category and Objective. Control class defines the security perimeters that are used to protect

areas that contain information and information processing facilities. Category defines the types

of physical and environmental security. Actual security goals are to protect the information from

the unauthorized access. Objectives to prevent unauthorized physical access, damage and

interference to the organization’s premises and information. These concepts help how we will

manage our assets according to security policies, how we design the procedure that ensure the

security policy, and then in implement concept we want to implemented the designed procedures

and evaluate concepts contains all information to evaluate the effectiveness of our implemented

procedure in any organization for risk assessment. This paper also presents the security incident

ontology, this ontology has the following classes, these are Access, Agent, Asset, it is divided

into four Organization Functions, Information System, Information, and Environment assets,

Attack class, Consequences, Security Incident, Time, Vulnerability, Threat, types of threats can

21

be Natural disasters, Industrial Origin, Errors and Unintentional Failures, remaining classes are

Origin and Countermeasure.

The paper [34] represents the ontology based information security risk assessment structure for

Ontology-based Unified Problem-Solving Method Description Language (UPML) approach. The

paper proposed three ontology, these are Domain ontology, Task ontology, and Resolution

ontology. This paper seeks to construct a knowledge model that represents a framework which

related goals to the control tasks of information security management by analyzing the current

accepted information security management standards and practices BS7799. First phase of the

risk assessment is the Establishment of “Domain” Ontology Knowledge Base as shown in below

picture. In this phase we have to take out the actual value of the organizations asset. It contains

all the tangible and intangible assets of the organization. Second step is Establishment of “Task”

Ontology Knowledge Base which contains impact and analyses of the threats and determines the

risk factor based on these factors. These factors are risk of the asset under a certain threat,

possibility of the threat, possibility of the leak being used and potential threat impact. Third and

the final phase is establishment of “Resolution Ontology” Knowledge Base. This phase has two

steps, first step is to define the ontology, and second phase is by using the “Propose & Revise”

Method to Improve Information Security Risks. This phase help us to analyze and prioritize

planned risk reassessment/readjustment tasks based on importance, and assign resource

requirements to each suggestion.

2.5 Web Services
This categories show the work of ontology in the domain of risk management. These solutions

have been presented in [35] and [36].

22

The use of web services is increasing day by day. To satisfy the user need web services are

becoming more complex. Sometime to satisfy the user request, one web services are not enough

then we need web services composition. These web services are heterogeneous in nature that is

the obstacle between compositions. To solve this heterogeneity and context reconciliation,

according to this paper [35], context is the interaction between humans, applications and

surrounding environment. They also proposed the OWL-C, a language to specify the web

services context, this language is based on the OWL-S, language for web services. Context is the

core concept in this ontology, a context type is associated with a specific type of service namely

Web service, Web service instance, or composite service. Web service to Web service instance

indicates that a Web service has one or more Web service instances. Web service instance to

composite service indicates that a Web service instance belongs to one composite service. Web

service to constraint and Web service instance to constraint illustrate respectively the constraints

on a Web service (e.g. maximum number of Web service instances that can be created). Context

type indicates that a context has exactly one type namely I, W and C. I-Context corresponds to

the identifier of the service instance, W-Context corresponds to the identifier of the web service

and C-Context corresponds to the identifier of the composite service. Each context type has a set

of sensors, purpose, description, name, and a set of arguments. An argument has a name, data

type, description, and synonyms. This paper also focuses on the security of web services, they

categorize the web service threats into three category: impersonate attack, content-borne threats

and operational threats. They proposed the security context for web services instance, web

service and composite web service. Security context focuses on the strategy of securing the

interactions of services during data-context exchange. At the Web-service instance level, the

primary use of I-context is to track its execution status. If a service instance was subject to

23

threats that attempted altering its context, this should be reported in its respective ISec-context so

that corrective actions are planned for the forthcoming service instances. At the Web-service

provider level, whenever a Web service receives a request of participation in a composition, it

validates its current capabilities using C-context and checks its security requirements. If both are

satisfactory, the Web service creates a new service instance. At the composite-service level, the

C-context traces execution of the composite service and its respective component service

instances, and tries to identify potential heterogeneities (in terms of resources, shared variables,

shared log files) between these service instances. The CSec-context ensures that the essential

security property of non-repudiation of messages sent and received by the composite service

during its interactions with Web service providers and Web service instances.

The paper [36] focuses on web services security and their attacks. They proposed the use of

distributed IDS that can be used to detect multi-phase web services attacks. They main problem

in distributed IDS is communication with each other’s. These IDS can be from different vendors

and don’t have same vocabulary for communication. They proposed the use of ontology that

provide them common vocabulary and this will solve this issue. For this purpose they proposed

the web services attack ontology. The discovery attacks have two sub classes, these are WS

Probing Attacks and UDDI attacks. Probing attacks is further divided into WSDL scanning and

Parameter Tampering. WSDL is use for web services specification; it has all the function and

their parameters. This is the main target to collect the information related to a web service.

Discovery attacks are classified in Probing attacks, this attack can be on WSDL scanning,

Parameter tampering. UDDI attacks are used for probing attacks.

24

2.6 Malware
This categories show the work of ontology in the domain malware. These solutions have been

presented in [37].

The paper [37] proposed a system that used to analyze the malware behavior based on the

ontology. They proposed domain ontology for Malware. They divide the ontology in different

layers, the first layer is the domain name of the ontology, second layer is category layer that

defines the different category of malwares, third layer is concept layer define different concepts

or classes in different categories, and the last layer is known as instance layer, this layer contains

data for different classes of malware. The above ontology use Malware_Type that has the Worm,

Backdoor, Trojan etc as sub classes. This will represent the different malware types.

Malwar_Impact_Target class has the File, Registry and Network as its subclasses.

Malware_Impact_Target class represents the targeted component of the system that will effect

when this malware will executed on the victim system. Malware_Behaviorial, represents the

behavior of malware, how it work and affect the system. They divide their system into three

layers: that are knowledge layer, communication layer and application layer. Knowledge layer

include the knowledge base, rules and the ontology. Communication layer is help for interaction

between application layer and knowledge layer. To analyze the behavior of malware, they

monitor the following things; network traffic and system file changes. These systems analyze the

malware in the windows environment. This system populates ontology with the sample malware,

and waits for some time and monitors the system to track what malware done. They have used

SWRL rule for behavior analysis, this help in inference and infer the new knowledge that help in

better malware analysis and can help to detect correct behavior.

25

2.7 Summary
The above literature survey presents all existing ontology solutions. They mostly present the

ontology and solutions for network security or web services. All solutions mostly ignore the web

application attacks. That is the most famous now a days. There should be ontology for web

application attacks that can be used by research community. They above literature survey help us

to find the dimension that is useful in the design of ontology, but these solutions are inadequate

and commend the need to carry out this research and come up with a solution to overcome these

shortcomings.

26

CHAPTER # 03

Web Application Attacks

27

This chapter discusses all web application attacks that are listed by Open Web Application

Security Group (OWASP) [8].

3.1 Attacks Attributes or Dimensions
We identify the different dimensions that are helpful for ontology design. These dimensions can

help to analyze the attack behavior and help to find the way to detect and block it. The below list

shows the dimensions that we finalized after our literature survey, these are

• Attack Root Cause

• HTTP Portion

• Attack Behavior

• Detection Model

• Attack Impact

3.1.1 Attack Root Cause

This dimension helps us to find the exact reason of any attacks. This is very helpful for analysis

or can assist in detection of that attack. The root cause is the weakness in our system, if we fix

our system weakness, its mean attacks on the system will be fixed. Figure 3 shows the hierarchy

of root cause that can be reason for any attacks.

Figure 3: Root Cause Hierarchy

28

3.1.2 HTTP Portion

This dimension is useful to locate the exact location of the attack in HTTP message. HTTP is the

main protocol used in web application for sending requests. Attackers used some portion of

HTTP message that is used as carrier. Figure 4 shows the complete HTTP message.

Figure 4: HTTP Portion

3.1.3 Attack Behavior

This dimension help to analyze that the attack can be send using one HTTP message or need

multiple messages to launch attack. Figure 5 shows the attack behavior in graphical form

Figure 5: Attack Behavior

3.1.4 Detection Model

In firewall, we have three models to detect an attack. We also model this in our ontology, so that

if ontology is used inside firewall then we will get the model that will be used for attack

prevention. Figure 6 shows the detection model diagrams

29

Figure 6: Detection Model

3.1.5 Attack Impact

This dimension help to analyze the damage that an attack can made on the system. We take help

from the DREAD [38] model proposed by Microsoft for damage assessment. And also we study

the consequences written in RFC 2828 [39]. Figure 7 shows the attack impact hierarchy

Figure 7: Attack Impact

3. 2 Web Application Attacks Details
 This section contains the details of each web application attacks according to the above defined

attributes. This will help us to design our ontology in next chapter.

Table 1: Account Lockout Attack

Providing wrong password, till account block message is triggered by application [40][41]

Root Cause Lockout on Multiple Fail Login

Attack Behavior Multiple Requests

Attack Portion HTTP Query or Post Parameters

30

Detection Model White List

Attack Impact Denial of Service attack

Table 2: Argument injection

Injecting new parameters to HTTP request to trigger non – accessible logic directly [42][43]

Root Cause NIL

Attack Behavior Multiple Requests

Attack Portion HTTP Query or Post Parameters

Detection Model White List

Attack Impact Damage Authentication or Authorization

Exploitability Novice

Reproducibility Easy

Affected Users Single User

Table 3: Asymmetric resource consumption (amplification)

In this attack, attacker send requests to a resource that failed to clean the consumed resources,

this make the system out of resource. [44][45]

Root Cause Cleanup

Attack Behavior Multiple HTTP Requests

Attack Portion NIL

Detection Model Hybrid

Attack Impact Denial of Service attack

Table 4: Blind SQL Injection

Injection of SQL queries without having knowledge of the application database. [46][47]

31

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers, Query and Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Group of Users

Table 5: Blind XPath Injection

Injecting XPATH query without having knowledge of the XML data-store schema. [48][49]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers, Query and Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Group of Users

Table 6: Brute force attack

Common ways of guessing value of a particular field, i.e. password, forget password answer or

anything that is application specific. [50][51]

Root Cause NIL

32

Attack Behavior Multiple HTTP Requests

Attack Portion HTTP Query and Post Parameters

Detection Model Hybrid

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 7: Buffer overflow attack

Sending more data to application / program data buffers that it can handle to cause stack

overflow [52][53]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers, Query and Post Parameters

Detection Model White List

Attack Impact Damage Integrity, Availability

Exploitability Very Skilled

Reproducibility Difficult

Affected Users All

Table 8: Cache Poisoning

Injecting malicious content in Web Server or browser cache. [54][55][56]

Root Cause Parameters, Request Headers Validation, Cache and Request

Parsing

33

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers and Query Parameters

Detection Model Black List

Attack Impact Damage Integrity

Exploitability Skilled

Reproducibility Difficult

Affected Users Group of Users

Table 9: Code Injection [Local or Remote File Inclusion]

Injecting code that is interpreted by application. [57][58]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Easy

Affected Users All

Table 10: Command injection

Injection & execution of commands in vulnerable applications. [59][60]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Post Parameters

34

Detection Model Black List

Attack Impact Damage Confidentiality, Availability

Exploitability Very Skilled

Reproducibility Easy

Affected Users All

Table 11: Comment Injection

Comments injected into an application through input can be used to compromise a system. These

comments can be of SQLi, XPATH etc. [61]

Root Cause Parameters and Request Headers

Attack Behavior Single HTTP Requests

Attack Portion HTTP Headers, Query and Post Parameters

Detection Model Black List

Attack Impact Damage Authentication

Exploitability Novice

Reproducibility Easy

Affected Users Single

Table 12: Cookie Tampering

Cookie header can be modified to gain the privileges or by passed the authentication system [62]

Root Cause Request Headers

Attack Behavior Single HTTP Requests

Attack Portion HTTP Cookie Header

Detection Model White List

35

Attack Impact Damage Authentication, Authorization

Exploitability Skilled

Reproducibility Easy

Affected Users Single

Table 13: Cross Frame Scripting

It is used to describe an XSS attack which uses an HTML frame in the attack. For example, an

attacker might exploit a Cross Site Scripting Flaw to inject a frame into a third-party web page;

the third party web page then steals the data. [63][64]

Root Cause Parameters Validation and Same Origin Policy Weakness

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Easy

Affected Users Group of Users

Table 14: Cross Site History Manipulation

Cross-Site History Manipulation breach is based on the fact that client-side browser history

object is not properly partitioned on a per-site basis. [65]

Root Cause Parameters Validation and Browser History Object weakness

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

36

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Easy

Affected Users Group of Users

Table 15: Cross Site Tracing

An XST (Cross-Site Tracing) attack involves the use of XSS and the HTTP TRACE function.

The client sends an HTTP TRACE with all header information including cookies, and the server

simply responds with that same data. [66]

Root Cause Parameters Validation and Trace Method Enabled

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Hybrid

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Difficult

Affected Users Group of Users

Table 16: Cross‐‐‐‐Site Request Forgery (CSRF)

CSRF is an attack which forces an end user to execute unwanted actions on a web application in

which he/she is currently authenticated. [67][68][69]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion Query or Post Parameters

37

Detection Model Hybrid

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Group of Users

Table 17: Cross‐‐‐‐User Defacement

An attacker can make a single request to a vulnerable server that will cause the sever to create

two responses, the second of which may be misinterpreted as a response to a different request,

possibly one made by another user sharing the same TCP connection with the sever. [70][71]

Root Cause Request Parsing

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Request Headers

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 18: Cross‐‐‐‐site Scripting (XSS)

Cross-Site Scripting attacks are a type of injection problem, in which malicious scripts are

injected into the otherwise benign and trusted web sites. [72][73]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Requests

38

Attack Portion HTTP Query, Post and Request Headers

Detection Model Black List.

Attack Impact Cross Site Frame Scripting

Cross Site History Manipulation

Cross Site Tracing

Cross Site Request Forgery

Table 19: Custom Special Character Injection

The software does not properly filter or quote special characters or reserved words that are used

in a custom or proprietary language or representation that is used by the product. [74][75]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query, Post and Request Headers

Detection Model Black List.

Attack Impact Damage Confidentiality

Exploitability Novice

Reproducibility Easy

Affected Users Group of Users

Table 20: Denial of Service

The Denial of Service (DoS) attack is focused on making unavailable a resource (site,

application, server) for the purpose it was designed. [76][27]

Root Cause NIL

Attack Behavior Multiple HTTP Requests

39

Attack Portion NIL

Detection Model White List

Attack Impact Damage Availability

Exploitability Very Skilled

Reproducibility Difficult

Affected Users All

Table 21: Direct Dynamic Code Evaluation

This attack consists of a script that does not properly validate user inputs in the page parameter.

A remote user can supply a specially crafted URL to pass arbitrary code to an eval() statement,

which results in code execution. [77][78]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality, Integrity

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 22: Direct static Code Evaluation

A Direct Static Code Injection attack consists of injecting code directly onto the resource used by

application while processing a user request. [79][80]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

40

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality, Integrity

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 23: Double Encoding

Send the request by encoding the values twice. By using double encoding it’s possible to bypass

security filters that only decode user input once. [81][82]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Headers, Query or Post Parameters

Detection Model Black List

Attack Impact Damage All security services

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 24: Forced browsing

Forced browsing is an attack where the aim is to enumerate and access resources that are not

referenced by the application, but are still accessible. [83][84]

Root Cause NIL

Attack Behavior Multiple HTTP Requests

41

Attack Portion NIL

Detection Model White List

Attack Impact Damage Confidentiality, Authorization

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 25: Format string Attack

The Format String exploit occurs when the submitted data of an input string is evaluated as a

command by the application. [printf] [85][86]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Query, Post and Request Headers

Detection Model Black List

Attack Impact Damage Confidentiality, Integrity

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 26: Full Path Disclosure

Full Path Disclosure (FPD) vulnerabilities enable the attacker to see the path to the webroot/file.

e.g.: /home/omg/htdocs/file/. [87][88]

Root Cause Error Handling

Attack Behavior Single HTTP Request

42

Attack Portion NIL

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Easy

Affected Users Single User

Table 27: HTTP Request Smuggling

HTTP Request Smuggling consists of sending a specially formatted HTTP request that will be

parsed in a different way by the proxy system and by the final system, so the attacker could

smuggle a request to one system without the other being aware of it. [89][56]

Root Cause Request Parsing

Attack Behavior Single HTTP Request

Attack Portion HTTP Query and Request headers

Detection Model Black List

Attack Impact Cache Poisoning

Table 28: HTTP Response Splitting

An attacker can make a single request to a vulnerable server that will cause the sever to create

two responses, the second of which may be misinterpreted as a response to a different request,

possibly one made by another user sharing the same TCP connection with the sever. [90][91]

Root Cause Request Parsing

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Request Headers

Detection Model Black List.

43

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 29: LDAP injection

LDAP Injection is an attack used to exploit web based applications that construct LDAP

statements based on user input. [92][93]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List.

Attack Impact Damage Authentication

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 30: Page Hijacking

An attacker can make a single request to a vulnerable server that will cause the sever to create

two responses, the second of which may be misinterpreted as a response to a different request,

possibly one made by another user sharing the same TCP connection with the sever. [94]

Root Cause Request Parsing

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Request Headers

Detection Model Black List

44

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 31: Parameter Delimiter

This attack is based on the manipulation of parameter delimiters used by web application input

vectors in order to cause unexpected behaviors. [95]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model White List

Attack Impact Damage Integrity, Authorization

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 32: Path Manipulation

Allowing user input to control paths used in file system operations may enable an attacker to

access or modify protected system resources. [96]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

45

Attack Impact Damage Integrity

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 33: Path Traversal

A Path Traversal attack aims to access files and directories that are stored outside the web root

folder. [97]

Root Cause Configuration Issue

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 34: Regular expression Denial of Service – ReDoS

It is a Denial of Service attack that exploits the fact that most Regular Expression

implementations may reach extreme situations that cause them to work very slowly. [98]

Root Cause Parameters Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query or Post Parameters

46

Detection Model White List

Attack Impact Denial of Service attack

Table 35: Repudiation Attack

A repudiation attack happens when an application or system does not adopt controls to properly

track and log users' actions, thus permitting malicious manipulation or forging the identification

of new actions. [99]

Root Cause Application Logs Flaws

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query, Post Parameters and Request Headers

Detection Model White List

Attack Impact Damage Integrity

Exploitability Skilled

Reproducibility Difficult

Affected Users Single User

Table 36: SQL Injection

A SQL injection attack consists of insertion or "injection" of a SQL query via the input data from

the client to the application. [100][101]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query, Post Parameters and Request Headers

Detection Model Black List

Attack Impact Damage Authentication, Confidentiality

47

Exploitability Novice

Reproducibility Easy

Affected Users Single

Table 37: Server‐‐‐‐Side Includes (SSI) Injection

SSIs are directives present on Web applications used to feed an HTML page with dynamic

contents. They are similar to CGIs. [102]

Root Cause • Parameters Validation

• SSI Enabled

Attack Behavior Single HTTP Requests

Attack Portion HTTP Query and Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 38: Session Prediction

The session prediction attack focuses on predicting session ID values that permit an attacker to

bypass the authentication schema of an application. [103]

Root Cause Session ID Weakness

Attack Behavior Multiple HTTP Requests

Attack Portion HTTP Cookie Header

Detection Model Hybrid

Attack Impact Damage Authentication

48

Exploitability Very Skilled

Reproducibility Produce in certain time

Affected Users Single User

Table 39: Session Fixation

When authenticating a user, it doesn’t assign a new session ID, making it possible to use an

existent session ID. The existent session ID can be fixed by an attacker that can be used for

unauthorized operations. [104][105]

Root Cause • Session ID Weakness

• Parameters Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Query and Post Parameters

Detection Model Hybrid

Attack Impact Damage Authorization

Exploitability Very Skilled

Reproducibility Produce in certain time

Affected Users Single User

Table 40: Session Hijacking

Session ID is just a string stored in Cookie Header, an attacker can steal this by XSS or by

sniffing the traffic. [106][107]

Root Cause • Session ID Weakness

• Parameters Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Query and Post Parameters

49

Detection Model Hybrid

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Produce in certain time

Affected Users Group of Users

Table 41: Unicode Encoding

The attack aims to explore flaws in the decoding mechanism implemented on applications when

decoding Unicode data format. [108]

Root Cause Query Parameters Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Query Parameters

Detection Model Black List

Attack Impact Damage All security services

Exploitability Skilled

Reproducibility Easy

Affected Users All

Table 42: Web Parameter Tempering

The Web Parameter Tampering attack is based on the manipulation of parameters exchanged

between client and server in order to modify application data. [109]

Root Cause Header and Parameters Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers, Query and Post Parameters

50

Detection Model Hybrid

Attack Impact Damage Confidentiality, Integrity, Authorization

Exploitability Very Skilled

Reproducibility Difficult

Affected Users Single User

Table 43: XPath Injection

XPath Injection attacks occur when a web site uses user-supplied information to construct an

XPath query for XML data. By sending intentionally malformed information into the web site,

an attacker can find out how the XML data is structured, or access data that he may not normally

have access to. [110]

Root Cause Parameters and Request Headers Validation

Attack Behavior Single HTTP Request

Attack Portion HTTP Headers, Query and Post Parameters

Detection Model Black List

Attack Impact Damage Confidentiality

Exploitability Skilled

Reproducibility Easy

Affected Users Group of Users

3.3 Summary
The above study gathers all information regarding the web application attacks. Now our domain

knowledge is complete. We will use this information in developing the web application

ontology.

51

CHAPTER # 04

Web Attacks Ontology

52

These chapters discuss web attacks ontology in detail. We have covered all web attacks that are

discussed in the last chapter. This chapter describes high level diagram of our designed ontology

that is shown in Figure8.

Figure 8: Web Attacks Ontology-High Level Diagram

The root cause class describes reason behind the generation of web application attacks. Each

attack is sent over HTTP portion, this portion contain the values that cause the attack. Each

attack uses one or more than one HTTP messages to damage successfully. We can detect these

attacks using detection model as used in web application firewall now a day. Each web attack

has an impact; this impact can lead to another web attack or can cause some damage. That we

measured using four classes. These are affected users, exploitability, and reproducibility and

security services.

53

4.1 Root Cause
Root cause will cover all possible causes of web application attacks that are the main reason

behind each web application attacks. We studied all root causes and make them part of our

ontology. This will help to detect attacks on the basis of their cause. The root causes are shown

in Figure 3. The root cause is divided into three types; these are application, web server and

browser specific.

4.1.1 Application Specific

This type of root cause cover all the problem that will help the attackers to launch attacks related

to web application on which attack is launched. The application specific root cause can be

• Validation

• Logic

Validation: Validation issue in application will cause to launch the attack because of the

malicious values. The input to the web application sent via HTTP parameters or HTTP headers.

The validation problem cause many attacks to be launched.

Logic: This root cause helps the attackers to exploit weakness in the application logic that can be

very helpful to launch attack. Logic root cause is further divided into the following

• Authentication

• Authorization

• Cleanup

• Error Handling

54

• Log Flaws

Authentication: This covers all root cause that is associated with the authentication section of

the web application. Any web application that allowed different users to log in to it can have this

issue. These issues can be related to weak password, broken session management or lockout on

multiple failed login. These issues can cause authentication problem that has high severity level

in web applications.

Authorization: This will cover all the root cause that is associated with the authorization part of

the system. These root cause related to the Access Control List or the rights that a logged in user

should have. This will help to identify all possible root causes that are exploited now days by the

attacker.

Cleanup: This will cover all the root cause that is related to the cleaning the used resources.

Every application used some of the web server resources while serving requests to the client. If

these resources are not properly released this can be exploited by attacker to launch attack. This

will cover all the issues related to the cleanup.

Error Handling: This class covers all root cause that is associated with the error handling of the

web application. The information that’s revealed to the attacker through improper error handling

can help to launch target attack very easily. This root cause covers all error handling issues of the

web application.

Log Flaws: Every application logs user activity which can further be used for analysis purposes.

If attacker exploits that feature to impersonate his identity or can destroy the log. This can be

very serious problem. These log flaws root causes cover all attacks that exploit the weakness

related to application logs.

55

4.1.2 Web Server Specific

This type of root causes cover problems that is associated with the web server. The weakness of

the web server helps us to detect all attacks that exploit them. These weaknesses are

• Request Parsing

• Cache

• Trace Method Enabled

• SSI Enabled

• Configuration Issue

Request Parsing: This root cause of web server helps the attacker to pass the malicious request

if the web server does not parse the request according to the RFC 2616.

Cache: This root cause of web server helps the attacker to exploit the cache feature of the web

server. This exploitation can help attacker to store malicious content in the cache. This will cover

all root causes related to cache of the web server.

Trace Method Enabled: Trace method enabled on web server can become a weakness that

helps the attacker to launch a special type of attack to gather information related to web server or

can hit the users with information stealing.

SSI Enabled: This root cause helps in many attacks. It can be used to inject code in web

application that can be executed on the user machines and can harm the system or users.

Configuration Issue: All attacks that help the attacker to exploit the incorrect web server

configuration will cover in this category.

56

4.1.3 Browser Specific

This type of root cause covers entire problems that are associated with the web browsers. These

are

• DOM Objects

• Same Origin Policy Weakness

DOM Objects: This root cause cover the problems associated with the DOM objects that are

accessed using JavaScript. The exploitation of these can help the attacker to launch attacks that

can help to steal information from the user system.

Same Origin Policy Weakness: This weakness helps in many attacks that exploit it. This is also

related to browser and all browsers contain this policy but sometime this policy can become the

root cause of many attacks.

4.2 HTTP Portion
This class helps to find portions that are used by attackers to send attacks on the web

applications. These portions reside inside the HTTP packets, to show them the ontology is

integrated and developed for Hyper Text Transfer Protocol [HTTP]. We developed this ontology

in such a way so that it can be used for parsing of the incoming request and outgoing response.

High level picture of HTTP ontology is shown in Figure 9.

The attack portions are the HTTP parameters that can be Query or Post. The headers are also

used as attack portion for many attacks.

57

Figure 9: HTTP Ontology-High Level Diagram

4.3 Attack Behavior
This will help to analyze the behavior of attacks on basis of the message requires to launch the

attack. Web application attacks could be launched using one or many http messages. This

information helps us to find the attacks for which we need to maintain state to detect them. All

attacks that sent via multiple HTTP messages need a state to detect them.

4.4 Detection Model
This class shows the detection model that is used in web application firewall for detection. These

are shown in Figure 10. These are

• White Box

• Black Box

58

• Hybrid

White Box: This detection model needs some application information to detect a particular

attack. Currently it is used by many web application firewalls that learn application profile then

use that information to detect attacks.

Black Box: This detection model based on the signature that firewalls used to detect attacks.

These signature match with all incoming data, if matched found then attack is detected otherwise

request is normal.

Hybrid: This detection model used the features of the white list and black list. We can say that it

is the combination of both. In it we also need application information and signature to detect

attack.

4.5 Web Attacks
This class covers all web application attacks that we discussed in the Chapter 3. All the attributes

that each attack has, will be applied using the property restriction.

4.6 Impact
Each attack has some impact on the system after success. This class covers the all possible

consequences that attack can have afterwards. Our study shows that it can be divided into two

portions, one is that attack impact can lead to some another attack and second attack can lead to

some damage that caused because of that attack.

4.7 Damage
Each attack can lead to some damage as an impact. This damage can help to find out the attacks

that are more dangerous for the system. Damage is also divided into four subclasses that are

shown in Figure 10. Each subclass affects some of the security services on the basis of that

59

information we measures the damage on the web application. We used four dimensions to

measure the damage for each attack, these are

4.7.1 Affected Users

We measures the number of user affect with this attack. This will help us to measure the damage

correctly. The values of this class are All, Group or Single.

4.7.2 Exploitability

To measure the damage we also note the level of attackers that required launching this attack.

The values of this class are Novice, Skilled or Very Skilled.

4.7.3 Reproducibility

This measure helps to find that how much effort needed to launch this attack. The values of this

class are Easy, Possible in Certain Time or Difficult.

4.7.4 Security Services

There are seven security services defined for the secure systems that should be up and running all

the time otherwise we can say that our system is not secured if any of them is down or effected.

These are shown in Figure 10.

60

Figure 10: Security Services

4.8 Cause and Effect Design Pattern
We develop our ontology on the basis of Cause and Effect design pattern. This design pattern is

taken from the medical domain. In medical domain, cause and effect pattern is mostly used to

diagnose the disease. This pattern divides the problem into two sections, one is cause and other is

the effect of that cause. This will help us to identify the actually cause of an effect to properly

stop it in future. Figure 11 shows our ontology with this design pattern.

61

Figure 11: Ontology with Design Pattern

The section in green color shows the cause and the whole section generated some effect that we

cover in the effect section using the impact and damage.

4.9 Web Attacks Example
In this section, we show two web attacks as an example, how we map them in our ontology.

These attacks show the both impact type, attack as impact and damage as impact. These attacks

are

• Account Lockout

• SQL Injection

4.9.1 Account Lockout

This attack launched, when user provides wrong password until web application lockout that

username to stop the further login requests for that username. This made it possible for attacker

62

to lockout all users. The ontology picture of this attack is shown in Figure 12; this figure shows

the root causes and all other attributes.

Figure 12: Account Lockout

4.9.2 SQL Injection

This cause of this attack is, when user provides malicious value in the parameters or headers to

run the malicious SQL queries. This attack is possible on web application, if application have

database. The diagram of this attack is shown on Figure 13.

63

Figure 13: SQL Injection

4.10 Summary
This chapter shows proposed ontology that we developed. This ontology covers all web

application attacks with their root causes and impact. This ontology can be used for analysis and

detection purposes.

64

CHAPTER # 05

Evaluation

65

This thesis proposed an ontology which is developed for web application attacks and this will

help in detection of attacks in any web application firewall. To confirm the formal correctness of

the ontology we have to evaluate it through some methodology that is recommended by

community. Ontoclean [111] is the one of the best ontology validation methodology. We used it

to validate our developed ontology.

5.1 Ontoclean
This section introduces ontoclean methodology that we used for evaluation. Ontoclean is very

famous among community on the basis of some facts. These factors are mentioned blew

• provides the logic based argument for cleaning

• validate the ontological taxonomy relationships

There are some important terms that is referred in this chapter while we used this methodology,

first of all we will discuss these terms before evaluation

Rigid: This property is essential for all possible instances of a class. For example, having brain is

essential for all human beings.

Symbol of rigid that we used in evaluation is +R.

Anti-Rigid: This property depict that a particular property is not essential for all possible

instances of a class. For example, being a student is not essential for all human beings.

Symbol of anti-rigid that we used in evaluation is ~R.

Semi-Rigid: This property is essential for some instances and not essential for remaining

instances. For example, having brain is essential for living things.

66

Symbol of semi-rigid that we used in evaluation is -R.

Identity: This criterion works on the basis of recognition of entities to be same or different in the

domain e.g. different identifiers of a person.

Symbol to identity if some concepts carry the identity criteria is +I and if not then –I.

Unity: It is the criteria on which basis we recognition of all parts / property that belongs to an

entity and form an individual entity.

Symbol of unity if some concepts carry the unity criteria is +U and if not then –U. If not classify

into these two then it will be ~U for anti-unity.

5.2 Ontoclean Evaluation Criteria
According to ontoclean we have to check the following condition while we evaluating ontology.

These conditions are applied on all subclasses and sub properties to ensure that we made the

correct relationships between them. Given two properties, p and q, when q subsumes p the

following constraints hold:

• If q is anti-rigid, then p must be anti-rigid

• If q carries an identity criterion, then p must carry the same criterion

• If q carries a unity criterion, then p must carry the same criterion

• If q has anti-unity, then p must also have anti-unity

5.3 Ontology Statistics
This section shows the number of classes, properties and property restriction that we used in our

ontology, this is shown in below table

67

Table 44: Ontology Statistics

Serial # Title Total

1 Classes 70

2 Slots 30

3 Property Restrictions 61

5.4 Ontology Evaluation
We follow three criteria during ontology evaluation. These evaluation criteria are very effective

to proof the effectiveness and usefulness of the ontology. These are formal correctness,

consistency, domain coverage and task orientation [112].

5.4.1 Formal Correctness

Formal correctness is ensured by using the Ontoclean methodology. We apply ontoclean rules on

all our classes and properties to ensure its correctness. Our ontology prove that it is formally

correct that is discussed in the below sections.

5.4.1.1 Security Services and Its subclasses

We assign the symbols according to the properties that are discussed in the first section of this

chapter. And then by applying the validation criteria we validate them. The evaluation picture is

shown in Figure 14.

68

Figure 14: Security Services Evaluation

We assign rigid to security services, because all instance in our domain that belongs to security

services can only be security services and cannot belong to any other class. And it has its own

identity criteria that are shown with O. U are used for unity criteria. The same criteria are

displayed in the subclasses. According to the conditions, it is correct.

5.4.1.2 Damage and Its subclasses

The second evaluation picture is shown in Figure 15. In this figure we evaluate the damage and

its subclasses. We assign +R, +O and ~U to these classes, because these are rigid, have their own

criteria of identity and it is anti-unity, because there is no mechanism that help us to measure the

damage or it is not representing something as a whole. It needs help of other classes to for

measurement that’s why we cannot say it as unity. According to the evaluation criteria

mentioned in ontoclean, these are also correct.

69

Figure 15: Damage Evaluation

5.4.1.3 Web attack and its subclasses

We evaluate the web attack and its subclasses, they are Rigid, Identity and have unity criteria on

the basis of these we evaluate it and confirmed their validation by ontoclean methodology.

5.4.1.4 Root Cause and its subclasses

We evaluate the root cause and its subclasses, they are Rigid, Own Identity and have unity

criteria on the basis of these we evaluate it and confirmed their validation by ontoclean

methodology.

5.4.1.5 Detection Model and its subclasses

We evaluate the detection model and its subclasses, they are Rigid, Own Identity and have unity

criteria on the basis of these we evaluate it and confirmed their validation by ontoclean

methodology.

5.4.2 Consistency

Ontology consistency is evaluated using Pellet[113] reasoner. This reasoner ensured that

ontology is consistent and can be utilized for detection without creating any inconsistency.

70

5.4.3 Domain Coverage

To verify that our ontology covers all web application attacks. We used OWASP [8], OWASP is

an open web application security project. They listed all web application attacks that exist now

days. We follow OWASP attack list to develop this ontology. That’s why our ontology covers all

web application attacks and provides required information that is needed to detect them.

5.4.4 Task Orientation

In this criterion we have to show that our ontology fulfills the purpose for which we developed it.

Our purpose is to use ontology to detect web application attacks. In this section we present an

example that shows the effectiveness of our ontology in detection of attacks.

5.4.4.1 Input Validation Attacks

This section shows the mechanism how effectively our ontology is utilized to detect input

validation attacks. Each input validation attacks has set of rules associated with their model that

will be applied on HTTP portion for detection. To get the required portion from the ontology is

done using inference. Figure 16 shows ontology before without inference.

Figure 16: Without Inference

71

One sample inference rule is shown below that inferred the portion on which we apply rules.

[rule1:

(?A rdf:type WebAttack),

(?R rdf:type root_cause),

(?I rdf:type Validation),

(?H rdf:type http_header),

(?P rdf:type http_parameters),

(?R initiates ?A),

(?R owl:sameas ?I)

� (?A send_via (?H,?P))

]

After executing the inference engine, the portion is automatically derived that is shown in Figure 17.

Figure 17: After Inference

72

5.5 Summary
We evaluate every class and relationships between the classes according to the methodology.

This will ensure that our ontology is formally correct and according to the ontology engineering.

We also ensure that it is complete and cover the whole domain.

73

CHAPTER # 06

Conclusion & Future Enhancements

74

This chapter concludes the overall work done in this thesis from the study of the domain to final

development of ontology with evaluation. The developed ontology is formally verified in the

evaluation phase that confirms its correctness.

6.1 Conclusion
After literature survey we found that existing solutions like signatures and rules for web

application firewalls are not sufficient for web attack detection. These techniques can be easily

bypasses using some evasion. They are also not much expressive and have no reasoning

mechanism. To overcome these shortcomings, community proposes that semantic techniques

should be used. Community used semantic techniques effectively for the network security but

completely ignore the web application domain. To use semantic techniques in web application

domain, we should have a common vocabulary for web application attacks in the shape of

ontology. This ontology then can help us in reasoning. This reasoning can help us to analyze and

detect the web application attacks efficiently. That’s why we develop the web application attacks

ontology that can be used by community in future for web application attack detection. This

ontology is developed according to the ontology engineering and validated using the ontoclean

methodology.

6.2 Future Work
The web application attacks ontology is developed and now we will utilize it in the web

application firewall to detect the web application attacks. To detect the attacks we may need

some inference rules to get the inferred knowledge, in future we will do research on it and utilize

it efficiently. A plugin to parse the CVE web application vulnerabilities data and analyze it

according to our ontology can be developed to find the most popular root causes, the

relationships of the attacks with each other and the damage that an attack caused.

75

Annexure - A

References

76

[1] Common Gateway Interface [http://oreilly.com/openbook/cgi/ch01_01.html]

[2] Active Server Pages [http://msdn.microsoft.com/en-us/library/aa286483.aspx]

[3] Asp.Net [http://www.asp.net/]

[4] Java Server Pages Technology [http://java.sun.com/products/jsp/]

[5] PHP: Hypertext Preprocessor [http://www.php.net/]

[6] WhiteHat Security Statistics Report [https://www.whitehatsec.com/resource/stats.html]

[7] MITREWeb application attacks statistics [http://www.mitre.org/]

[8] OWASP[http://www.owasp.org]

[9] Acunetix Web application attacks statistic [http://www.acunetix.com/]

[10] JeffOrloff, ApplicureWebhacking Facts and Figure [

http://www.applicure.com/blog/web-application-hacking-facts-figures]

[11] Robert Abela, Website DefenderGeneral facts and figure on hacking

[http://www.sitesecuritymonitor.com/web-hacking-facts/]

[12] Christopher Welty. Ontology Research. AI Magazine. 2003

[13] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. Formal Ontology in Conceptual Analysis and Knowledge Representation. 1993

[14] Javier Gonzalez-Castillo, David Trastour, and Claudio Bartolini. Description Logics for

Matchmaking of Services. Hewlett-Packard Company Technical Report. 2001

[15] OWASP SQLi [https://www.owasp.org/index.php/SQL_Injection]

[16] OWASP Web Application Firewall

[https://www.owasp.org/index.php/Web_Application_Firewall]

[17] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston,”Modeling Computer Attacks: An

Ontology for Intrusion Detection”, 6th International Symposium on Recent Advances in

Intrusion Detection

[18] Yanxiang He, Wei Chen, Min Yang, and WenlingPeng,”Ontology Based Cooperative

Intrusion Detection System”, In Proceedings of NPC'2004

[19] Salvador Mandujano, Arturo Galvan and Juan A. Nolazco,”An Ontology-based

Multiagent Architecture for Outbound Intrusion Detection”, Computer Systems and

Applications, 2005. The 3rd ACS/IEEE International Conference

[20] F. Abdoli and M. Kahani,”Ontology-based Distributed Intrusion Detection System”,

Computer Conference, 2009. CSICC 2009. 14th International CSI

[21] Abdul Razzaq, Hafiz Farooq Ahmed, Ali Hur and NasirHaider,”Ontology based

Application Level Intrusion Detection System by using Bayesian Filter”, Computer, Control

and Communication, 2009. IC4 2009. 2nd International Conference

[22] Gustavo Isaza, Andrés Castillo, Manuel López and Luis Castillo,”Towards Ontology-

Based Intelligent Model for Intrusion Detection and Prevention”, Advances in Intelligent and

Soft Computing, 2009

[23] Andrew Simmonds, Peter Sandilands, Louis van Ekert,”An Ontology for Network

Security Attacks”, In Proceedings of the 2nd Asian Applied Computing Conference

(AACC’04)

77

[24] AniruddhaChandra,”Ontology for MANET Security Threats”, Proc. NCON,

Krishnankoil, Tamil Nadu, Mar. 2005

[25] DimitrisGeneiatakis , Costas Lambrinoudakis,”An ontology description for SIP security

flaws”, Journal of Computer Communications archiveVolume 30 Issue 6, April 2007

[26] Nora Cuppens-Boulahia, Fr´ ed´ ericCuppens, Jorge E. L´ opez de Vergara,Enrique V´

azquez, Javier Guerra, Herv´ e Debar,”An ontology-based approach to react to network

attacks”, Risks and Security of Internet and Systems, 2008. CRiSIS '08. Third International

Conference

[27] F.Abdoli, N.Meibody, R.Bazoubandi,”An Attacks Ontology for computer and networks

attack”, Innovations and Advances in Computer Sciences and Engineering, 2010

[28] Anya Kim, Jim Luo, and MyongKang,”Security Ontology for Annotating Resources”,

Research Lab, NRL Memorandum Report, 2005

[29] Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, and Charles C. Zhang,”Ontology-

Based Policy Specification and Management”, 2nd European Semantic Web Conference

(ESWC)

[30] Stefan Fenz and Edgar Weippl,”Ontology based IT-security planning”, Dependable

Computing, 2006. PRDC '06. 12th Pacific Rim International Symposium

[31] Almut Herzog, NahidShahmehri and ClaudiuDuma,”An Ontology of Information

Security”, International Journal of Information Security (2007)

[32] Mansoor Ahmed, Amin Anjomshoaa, ThoManh Nguyen, and A Min Tjoa,”Towards an

Ontology-based Organizational Risk Assessment in Collaborative Environments Using the

Semantic LIFE”, The Second International Conference on Availability, Reliability and

Security (ARES'07)

[33] Tung JuChiang and Jen ShiangKouh and Ray-I Chang,”Ontology-based Risk Control

for the Incident Management”, IJCSNS International Journal of Computer Science and

Network Security, VOL.9 No.11

[34] Fong-Hao Liu and Wei-TsongLee,”Constructing Enterprise Information Network

Security Risk Management Mechanism by Ontology”, Advanced Information Networking

and Applications Workshops, 2007, AINAW '07. 21st International Conference

[35] Z. Maamar, N.C. Narendrab, S. Sattanathanc,”Towards an ontology-based approach for

specifying and securing Web services”, Information and Software Technology (2006)

[36] ArtemVorobiev and Jun Han,”Security Attack Ontology for Web Services”, Semantics,

Knowledge and Grid, 2006. SKG '06. Second International Conference

[37] Hsien-Der Huang, Tsung-Yen Chuang, Yi-Lang Tsai, and Chang-ShingLee,”Ontology-

based Intelligent System for Malware Behavioral Analysis”, Fuzzy Systems (FUZZ), 2010

IEEE International Conference

[38] DREAD [http://msdn.microsoft.com/en-us/library/ff648644.aspx]

[39] RFC 2828 [http://www.ietf.org/rfc/rfc2828.txt]

[40] OWASP Account Lockout [https://www.owasp.org/index.php/Account_lockout_attack]

[41] Account Lockout Attack –Security Knowledge base [http://shalb.com/kb/entry/4/]

78

[42] OWASP Argument Injection

[https://www.owasp.org/index.php/Argument_Injection_or_Modification]

[43] Argument Injection –Security Knowledge base [http://shalb.com/kb/entry/18/]

[44] OWASP Asymmetric Resource Consumption

[https://www.owasp.org/index.php/Asymmetric_resource_consumption_%28amplification%

29]

[45] Asymmetric Resource Consumption –Security Knowledge base

[http://shalb.com/kb/entry/42/]

[46] OWASP Blind SQLi [https://www.owasp.org/index.php/Blind_SQL_Injection]

[47] Blind SQLi –Security Knowledge base [http://shalb.com/kb/entry/19/]

[48] OWASP Blind XPATH Injection

[https://www.owasp.org/index.php/Blind_XPath_Injection]

[49] Blind XPATH Injection –Security Knowledge base [http://shalb.com/kb/entry/20/]

[50] OWASP Brute Force [https://www.owasp.org/index.php/Brute_force_attack]

[51] Brute Force –Security Knowledge base [http://shalb.com/kb/entry/37/]

[52] OWASP Buffer Overflow [https://www.owasp.org/index.php/Buffer_overflow_attack]

[53] Buffer Overflow –Security Knowledge base [http://shalb.com/kb/entry/175/]

[54] OWASP Cache Poisoning [https://www.owasp.org/index.php/Cache_Poisoning]

[55] Cache Poisoning –Security Knowledge base [http://shalb.com/kb/entry/5/]

[56] C. Linhart, A. Klein, R.Heled and S.Orrin,”White Paper: HTTP Request Smuggling”,

Watchfire (2005)

[57] OWASP Code Injection [https://www.owasp.org/index.php/Code_Injection]

[58] Code Injection –Security Knowledge base [http://shalb.com/kb/entry/21/]

[59] OWASP Command Injection [https://www.owasp.org/index.php/Command_Injection]

[60] Command Injection –Security Knowledge base [http://shalb.com/kb/entry/22/]

[61] OWASP Comment Injection

[https://www.owasp.org/index.php/Comment_Injection_Attack]

[62] Joon S. Park and R.Sandhu,”Secure Cookies on the Web”, IEEE INTERNET

COMPUTING (2000)

[63] OWASP Cross Frame Scripting

[https://www.owasp.org/index.php/Cross_Frame_Scripting]

[64] Cross Frame Scripting –Security Knowledge base [http://shalb.com/kb/entry/23/]

[65] OWASP Cross Site History Manipulation

[https://www.owasp.org/index.php/Cross_Site_History_Manipulation_%28XSHM%29]

[66] OWASP Cross Site Tracing [https://www.owasp.org/index.php/Cross_Site_Tracing]

[67] Jesse Burns,”White Paper: Cross Site Request Forgery”,

Information Security Partners, LLC (2007)

[68] T. Alexenko, M. Jenne, S. Deb Roy and W.Zeng,”Cross-Site Request Forgery: Attack

and Defense”, IEEE CCNC (2010)

79

[69] OWASP Cross Site Request Forgery [https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_%28CSRF%29]

[70] OWASP Cross User Defacement [https://www.owasp.org/index.php/Cross-

User_Defacement]

[71] Cross User Defacement –Security Knowledge base [http://shalb.com/kb/entry/6/]

[72] F.Kerschbaum,”Simple Cross-Site Attack Prevention”, SecureComm (2007)

[73] OWASP Cross Site Scripting [https://www.owasp.org/index.php/Cross-

site_Scripting_%28XSS%29]

[74] OWASP Custom Special Character Injection

[https://www.owasp.org/index.php/Custom_Special_Character_Injection]

[75] Custom Special Character Injection –Security Knowledge base

[http://shalb.com/kb/entry/44/]

[76] OWASP Denial of Service [https://www.owasp.org/index.php/Denial_of_Service]

[77] OWASP Direct Dynamic Code Evaluation

[https://www.owasp.org/index.php/Direct_Dynamic_Code_Evaluation_%28%27Eval_Injecti

on%27%29]

[78] Direct Dynamic Code Evaluation –Security Knowledge base

[http://shalb.com/kb/entry/45/]

[79] OWASP Direct Static Code Injection

[https://www.owasp.org/index.php/Direct_Static_Code_Injection]

[80] Direct Static Code Injection –Security Knowledge base [http://shalb.com/kb/entry/25/]

[81] OWASP Double Encoding [https://www.owasp.org/index.php/Double_Encoding]

[82] Double Encoding –Security Knowledge base [http://shalb.com/kb/entry/46/]

[83] OWASP Forced Browsing [https://www.owasp.org/index.php/Forced_browsing]

[84] Forced Browsing –Security Knowledge base [http://shalb.com/kb/entry/47/]

[85] OWASP Format String attack [https://www.owasp.org/index.php/Format_string_attack]

[86] Format String attack –Security Knowledge base [http://shalb.com/kb/entry/176/]

[87] OWASP Full Path Disclosure [https://www.owasp.org/index.php/Full_Path_Disclosure]

[88] Full Path Disclosure –Security Knowledge base [http://shalb.com/kb/entry/27/]

[89] OWASP HTTP Request Smuggling

[https://www.owasp.org/index.php/HTTP_Request_Smuggling]

[90] OWASP HTTP Response

Splitting[https://www.owasp.org/index.php/HTTP_Request_Smuggling]

[91] Diabolic Crab,”White Paper: HTTP ResponseSplitting”, Digital Paradox (2005)

[92] OWASP LDAP Injection [https://www.owasp.org/index.php/LDAP_injection]

[93] LDAP Injection –Security Knowledge base [http://shalb.com/kb/entry/28/]

[94] OWASP Page Hijacking [https://www.owasp.org/index.php/Page_Hijacking]

[95] OWASP Parameter Delimiter [https://www.owasp.org/index.php/Parameter_Delimiter]

[96] OWASP Path Manipulation [https://www.owasp.org/index.php/Path_Manipulation]

[97] OWASP Path Traversal [https://www.owasp.org/index.php/Path_Traversal]

80

[98] OWASP ReDoS

[https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS]

[99] OWASP Repudiation Attack [https://www.owasp.org/index.php/Repudiation_Attack]

[100] F. Valeur, D. Mutz, and G. Vigna,”A Learning-Based Approach to the Detectionof SQL

Attacks”, DIMVA (2005)

[101] OWASP SQLi [https://www.owasp.org/index.php/SQL_Injection]

[102] OWASP Service Side Injection [https://www.owasp.org/index.php/Server-

Side_Includes_%28SSI%29_Injection]

[103] OWASP Session Prediction [https://www.owasp.org/index.php/Session_Prediction]

[104] OWASP Session Fixation [https://www.owasp.org/index.php/Session_fixation]

[105] Y. Takamatsu, Y.Kosuga, and K.Kono,”Automated Detection of Session Fixation

Vulnerabilities”, 19th international conference on World Wide Web (POSTER SESSION in

WWW '10) (2010)

[106] OWASP Session Hijacking [https://www.owasp.org/index.php/Session_hijacking_attack]

[107] Ben Adida,”SessionLock:Securing Web Session against Eavesdropping”, 17th

international conference on World Wide Web(2008)

[108] OWASP Unicode Encoding [https://www.owasp.org/index.php/Unicode_Encoding]

[109] OWASP Parameter Tampering

[https://www.owasp.org/index.php/Web_Parameter_Tampering]

[110] OWASP XPath Injection [https://www.owasp.org/index.php/XPATH_Injection]

[111] N.Guarino and C. A. Welty,”An Overview of OntoClean”, The Handbook on Ontologies-

Berlin:Springer-Verlag, 2004

[112] M. Brochhausen and A. Spear, “The ACGT Master Ontol-ogy and its applications

towards an ontology-driven cancer research and management system”, Journal Biomedical

Informatics, 2010

