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Abstract

The concept of Semantic Web was initially proposed by Tim Berners-Lee
in 1999. In Semantic Web, information is represented using specific lan-
guages, like Resource Description Framework (RDF), Web Ontology Lan-
guage (OWL) etc. RDF is simple and has been standardized by World Wide
Web Consortium (W3C), due to which, its usage in knowledge management
applications has widely increased. So, a storage infrastructure, which should
be capable to store and process large RDF dataset, is an essential need. Ex-
isting RDF processing frameworks handle small dataset efficiently, but to
process large dataset, costly and high power server setup is required. There
is an essential need to cope this challenge in order to provide cost effective
and scalable system that can handle efficiently the massive amount of RDF
data.

Distributed and parallel processing models are commonly used to process
massive dataset efficiently and effectively. Hadoop is such a distributed and
parallel processing open-source framework. Hadoop Distributed File System
(HDFS), HBase (a distributed database of Hadoop) and Hive (a data ware-
housing framework) are already being used to process massive data. We
developed a framework based on HDFS, HBase and Hive to store and re-
trieve massive RDF dataset by using cheap commodity hardware. We stored
massive RDF data in HDFS and HBase to test scalability and then executed
various queries to analyze performance and efficiency of our framework.

Result analysis indicated that we are able to cope with scalability issue
by storing massive RDF data through configuration of few simple machines
over distributed environment, and moreover, execution of various queries
also proved that, our proposed framework is very effective and efficient as
compared to the existing frameworks like Jena, Sesame, AllegroGraph etc.
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Chapter 1

Introduction

In 1999 Tim Berners-Lee introduced the concept of Semantic Web which is
an extension to traditional web. Semantic Web enables computers to seek
out knowledge distributed through the web. RDF (Resource Description
Framework) is the standard to encode metadata and other knowledge on the
semantic web. RDF consists of statements which describe a resource, its
properties and some specific values of the resource against those properties.
These RDF statements are often referred as “triples”. A simple RDF triple
consists of subject, predicate and object. Currently semantic web has a solid
base of literature and developed software. Due to simplicity of data represen-
tation using RDF its use is increased in knowledge management applications.
This requires a storage infrastructure capable of storing and querying large
RDF datasets. The storage structures needs to be scalable enough to han-
dle billions of RDF triples as well as efficient enough while querying this
large scale RDF data. These problems can be handled by partitioning and
distributing RDF data and partitioning queries and then running them in
parallel over distributed datasets.

1.1 Motivation

Hadoop is an open-source software framework for reliable, scalable and dis-
tributed computing [9]. HDFS is the Hadoop distributed file system devel-
oped after idea of GFS the Google File System [14]. It is designed to run
on low cost commodity hardware while keeping track of high fault tolerance.
It provides facility to handle large datasets while providing high through-
put access to the data. In distributed environment machine failure is very
common, Hadoop handles machine failure by copying data and operations
at many machines so if any machine fails data and operations can be ob-
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CHAPTER 1. INTRODUCTION 2

tained from other machine. Also parallel computing is performed to enhance
performance.

HBase [11] is a column oriented database which runs in the distributed
environment provided by underlying Hadoop framework [9]. HBase is an
open-source, distributed, and versioned column oriented store modeled after
Google’s Bigtable [5]. HBase is designed to work on top of HDFS and pro-
vides Bigtable like capabilities. It works efficiently with large datasets and
offer real time read write access to the data. Data is made available imme-
diately after any update performed. HBase provides storage for very large
dataset and handles data efficiently in distributed environment.

MapReduce is a programming model based on functional programming
model originally designed and implemented by Google for large scale data
management [8]. It consists of two simple functions, map and reduce. Along
with simplicity of the model it provides high degree of parallelism with little
overhead. Parallel operations are performed to achieve high performance
while working on the low cost commodity servers. Operations are performed
transparently and independently from each other in such a way that failure of
one operation does not affect performance of other operation. Today Hadoop,
Google and many other organizations are using MapReduce framework to
process petabytes of data on network of few thousand computers.

Semantic web provides facility to integrate information from multiple re-
sources. Currently available semantic web databases are designed to hold
small data and offer to query semantic web data but when playing with large
scale semantic web data efficiency of these databases goes away. As data
is growing day by day the scalability issues are arising and this challenge
is also faced by semantic web applications. While designing semantic web
applications, users need some storage mechanism to handle semantic web
data, as it will increase rapidly. So some scalable and efficient storage mech-
anism is required to handle increasing amount of semantic web data. This
makes people to design semantic web application without worrying about
large scale semantic web data. With respect to above discussions it shows
that there is a need of some storage mechanism which enables on to store
massive amount of RDF data i.e. semantic web data. As Hadoop and HBase
both are designed to handle massive amount of data so these can be utilized
as semantic web data store. And by using MapReduce framework which is
already plugged with Hadoop we can design an efficient retrieval mechanism
for RDF data stored in Hadoop. It is worth that this system would result an
effective increment to the semantic web world.
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1.2 Problem Definition

Challenge is there to provide cost effective and scalable system which can
handle massive amount of RDF data efficiently.

1.3 Proposed Approach

We will use HDFS and HBase to store large amount of RDF data. We will
utilize features of HDFS and HBase along with MapReduce framework to
design a RDF repository capable to store and explore massive amount of
RDF data.

1.3.1 RDF Data Storage

System will be designed to store RDF triples into HDFS and HBase tables
in such a way that efficient query processing is possible. In HBase we can
store everything in a single table with as many columns as required. Normally
RDF data is sparse but it is not a problem here because HBase adopts various
compression techniques and is very good for handling null values in the table.

A single HBase table can store all data with as many columns as required.
So we can make a table in which we might make a row for each RDF subject
and store all properties and values as columns in the table. This reduces
costly self-joins in answering queries asking questions on the same subject.

1.3.2 RDF query processing

Query processor part of the system executes SPARQL queries on RDF data
stored in HDFS and HBase tables. It translates RDF queries into API calls
to HDSF and HBase or MapReduce jobs which can run in parallel in the
distributed environment of Hadoop. Finally results would be gathered from
distributed environment recompiled if required and then presented to the
user.

MapReduce framework takes RDF query from the user and divides it in
number of parts or jobs and runs these jobs in parallel to achieve efficiency.
Beauty of MapReduce framework is that jobs are performed in transparent
manner so processing of one job does not depend on outcomes of some other
job which can enhance overall query performance.
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1.4 Research Contributions

This research is aimed to design an efficient and scalable storage system for
semantic web data. Research objectives set to follow above stated problem
statement are given below.

• To design storage system capable of storing billions of RDF triples to
overcome limitation of existing systems.

• Design a system for querying the stored RDF data.

• Compare the efficiency of different storage schemas for the system.

In the light of these objectives we initially design the system by using HDFS,
HBase and MapReduce framework. Then we will test the scalability and
efficiency of the system by large scale open source RDF dataset. Barton
library dataset is selected for our evaluation.

1.5 Thesis Outline

Rest of this thesis is organized as follows: Chapter 2 gives background knowl-
edge for understanding this research. It also includes analysis of currently
available RDF storage systems. Chapter 3 contains details of methodology
we adopted. Detailed analysis of system design and implementation is pre-
sented in chapter 4. At the end evaluation and validation of results is done.
Chapter 5 presents conclusions of this thesis and provide our viewpoint for
future research work.



Chapter 2

Background

This chapter describes technology used in this research work with purpose of
providing background knowledge, so that one can easily understand rest of
this document. The problem we worked upon consists of processing massive
amount of Semantic Web data. We tried to overcome the problem by using
distributed software frameworks. We have utilized RDF data for this purpose
which is a W3C recommendation to represent Semantic Web data. In section
2.1 we describe semantic web and how it is different from traditional web. In
section 2.2 we provide a brief description of RDF. Section 2.3 describes about
RDF storage mechanism. In section 2.4 we describe Hadoop framework along
with MapReduce programming model. Section 2.5 reports a brief description
of HBase, and finally we discuss about what is HIVE and its use with Hadoop
framework and HBase in section 2.6.

2.1 Semantic Web

Semantic web which is called Web 3.0 is aimed to provide a common frame-
work for data interchange and reuse between semantic web applications and
different communities [17, 20, 3, 6] . Current web structure which is called
Web 2.0 consists of only some documents which are understandable by hu-
mans only not the computers. These documents are linked with each other
to make a package as shown in Figure 2.1. For this package computer just
understand that is has to shift control from one place to another place by
following information encoded in HTML tags, but don’t understand nature
and contents of the document.

Semantic web is web of resources and things rather than being web of
some linked documents. It defines relationship among different resources
and properties for those resources. Semantic web helps to retrieve knowledge

5
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Figure 2.1: Web 2.0.

rather than shifting control from one document to another, thus allowing one
to find, share and combine information more easily. This representation of
data makes semantic web like an integrator which allows to interchange both
data and information at same time between different applications without
any lost of semantics of data.

Semantic web is targeting to provide sufficient structure to data to change
it into information, so that reasonable work can be performed over data ex-
tract knowledge [11, 22]. Semantic web is targeting to represent data in such
a manner that it is useful for both humans and computers at same time.
Semantic web data representation techniques enable semantic web applica-
tions to extract hidden knowledge from semantic web data automatically.
Semantic web languages are the universal information interchange formats
used to give structures to data as well as metadata. These languages include
Resource Description Framework (RDF), Web Ontology Language (OWL),
and Resource Description Framework Schema (RDFS).

2.2 Resource Description Framework

Resource Description Framework (RDF) is a data model released by World
Wide Web Consortium (W3C) in 1999 1. RDF allows to create links between
semantic web data which provide inferencing facility to semantic web appli-
cations. RDF implements very minimum number of constraints to model
the information. Hence we can say that, one can easily handle semantic web
data in flexible manner by using RDF. With RDF information is encoded

1http://www.w3.org/TR/PR-rdf-syntax/
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into statements called triples, these triples consists of resources their prop-
erty and different values of each resource against each property. In RDF
these are represented by Subject, Property and Object (SPO).

• Resources or Subjects are things which are described by RDF state-
ments. A resource can be a part of a web page or whole web document
or collection of documents. Each resource is assigned a unique identifier
which is called Universal Resource Identifier (URI).

• Properties or Predicates are special kind of resources. A property
describes relationship between two resources.

• Each subject contains some value against its property, these values are
also known as Objects or Values in RDF terminologies.

Above three items are used to construct RDF triples which are also called
RDF statements, and a set of such triples constitute a graph in which a triple
is represented by a node-arc-node which is shown in Figure 2.2.

Figure 2.2: RDF Statement

This can be illustrated by an example of simple RDF statement like “Tim
Berners-Lee is the director of W3C”. In this statement Tim Berners-Lee is
subject director is property and W3C represents value. The same triple can
also be seen in terms of Subject-Predicate-Object graph as shown in Figure
2.3.

Figure 2.3: RDF Example
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In RDF resource can be either a URIs, a literal or a blank node. In typical
semantic web settings resource or subject of the statement Tim Berners-Lee
could be represented by a URI (http://www.w3.org/persons/TimBerners-Lee).
Choice of using URIs as standard identifiers for resources instead of simple
text is because that an URI is supposed to be unique over web. Hence it is
ideal to represent unique identifiers.

In XML and RDF syntax URIs used to represent unique resources are nor-
mally represented in abbreviations like someNameSpace:someThing. For ex-
ample the URI “http://www.w3.org/1999/02/22--rdf-syntax-ns#type”
is often abbrivated as rdf:type.

A simple RDF statement can be represented using different formats.
Among most common formats are RDF/XML 2, N-Triple 3, N3 4 and Turtle
5. While representing RDF using XML, RDF inherits all the advantages of
syntax interpretability present in XML. However RDF is not dependent on
XML and can be represented in other simple formats including N3 or Turtle.
Below we have given RDF information encoding of above example in different
formats.

2.2.1 RDF/XML

<rd f : De s c r ip t i on rd f : about= ‘ ‘ http ://www.w3 . org / persons /Tim Berners−Lee”>
<Director>W3C</Director>
</rd f : Descr ipt ion>

2.2.2 N3

< http ://www.w3 . org / persons /Tim Berners−Lee>
<Director>

W3C

2.3 RDF Storage

RDF simplicity led to increase its use in knowledge management applications.
As use of RDF increased it raised issue of persistent storage for RDF data
and manipulation over data. Semantic web repositories are RDF stores where
RDF data can be stored and it provides the facility to operate over stored
data in order to get required results [19].

A triple store is “a system which provides persistent storage to RDF data
and ease of access to the data”. Main functions of such a system include
storing and querying semantic web data.

2http://www.w3.org/TR/rdf-syntax-grammar/
3http://www.w3.org/TR/rdf-testcases/ntriples
4http://www.w3.org/DesignIssues/Notation3
5http://www.w3.org/TeamSubmission/turtle/
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For persistent storage Relational Database Management Systems (RDBMS)
can be used to store RDF data. Different approaches are being followed to
design relational tables in order to store RDF data in RDBMS. In following
a brief overview of each technique is given.

2.3.1 Triple tables

Triples table technique [1] is based on single table with three columns one for
each component of RDF triple; subject, predicate and object. This technique
is very simple. Triple tables can be created and managed easily also inser-
tions, updating and deletions are easy to perform. Although this method is
flexible but it has serious performance issues because having all the triples
stored in one single RDF table requires several self-joins. Thus, as queries
become more complex due to increased number of self joins the execution
time will increase. Table 2.1 represents RDF triples in simple triple table
approach, here if one wants to find books written by Thomsen in 2001 a
three-way self-join over triple table is required. Hence performing queries
over triple table is difficult.

Subject Predicate Object
ID1 type BookType
ID1 title Database
ID1 copyright 2001
ID1 author Thomsen
ID2 owner Thomsen
ID2 type CDType
ID2 title ABC
ID2 artist Marcus
ID2 language French
ID2 copyright 2006
ID3 type BookType
ID3 title signals
ID3 language English
ID4 type DVDType
ID4 title Matrix
ID5 type CDType
ID5 title Songs
ID5 copyright 1999

Table 2.1: Triple Table

2.3.2 Property Tables

To reduce joins property table [13] technique has been proposed. Property
tables denormalize RDF data to store it in wider tables. These property
tables speed up the queries over triple store [13]. Two types of property
tables have been proposed which are discussed below.
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2.3.2.1 Clustered Property Tables

By using clustered property tables storage technique more than one tables
are created to store RDF data. These tables are created based on cluster
of properties that tend to be defined together [1]. For example, in Table
2.1 a cluster consisting of type, title, and copyright date properties tend to
be defined as these are repeating properties of different subjects. Thus, a
table called Property Table can be created containing these three properties
as column headings along with subject as a primary key for the table. This
table stores the triples from original data whose property is one of these three
attributes. The resulting property tables, along with a table containing Left-
Over triples that are not stored in this property table are shown as Table
2.2 and 2.3. More than one property tables can be created containing with
different cluster of properties. But a particular property can not appear in
more than one table.

Subject Type Title copyright
ID1 BookType Database 2001
ID2 CDType ABC 2006
ID3 BookType signals Null
ID4 DVDType Matrix Null
ID5 CDType Songs 1999

Table 2.2: Property Table

Subject Predicate Object
ID1 author Thomsen
ID2 owner Thomsen
ID2 artist Marcus
ID2 language French
ID3 language English

Table 2.3: Left-Over Triples

2.3.2.2 Property Class Tables

Property-Class tables use type property of subjects to combine similar set of
subjects in a same table[1]. A property may exist in more than one table.
Table 2.4 and 2.5 shows property class tables and table 2.3 shows Left-Over
Triples.

The most important advantage of property tables is that these can be
used to reduce subject-to-subject self joins [1]. Property tables have not
been widely implemented as these have number of disadvantages like more
wider tables contain more NULL values for properties that are not defined for
certain subjects. So these tables introduce a space overhead. But on other
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hand, joins and unions are increased for short tables. Queries that have
not involved select on class type are problematic for property-class tables.
Moreover handling multi-valued properties is also a difficult task. There is no
algorithm which always yields property tables of perfect width for all queries.

Subject Author Title copyright
ID1 Thomsen Database 2001
ID3 Null signals Null

Table 2.4: Class BookType

Subject Author Title copyright
ID2 Marcus ABC 2006
ID5 Null Songs 1999

Table 2.5: Class CDType

Subject Predicate Object
ID2 owner Thomsen
ID2 language French
ID3 language English
ID4 type DVDType
ID4 title Matrix

Table 2.6: Left-Over Triples

2.3.2.3 Vertical Partitioning

In vertical partitioning approach simple three column table is rewritten into
n two column tables where n is number of unique properties in RDF data [1].
First column contain subjects for that particular property and second column
contain objects of those subjects as shown in Figure 2.4.Each table is sorted
by subject. It handles unstructured RDF data and null values efficiently.

2.3.2.4 RDF Data extraction through SPARQL

For every data repository there are mechanisms defined to extract desired
results from the store. This needs some query standard to be defined. A
semantic web query language is a language used to retrieve required results
and manipulate data stored in semantic web language format [2]. RDF data
model is somewhat different then other data models used for knowledge rep-
resentation so its querying mechanism is also little different than ordinary
query processing mechanism which is SQL. Semantic web query language is
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Figure 2.4: Vertical Partitioned Table

little bit more complex than normal SQL as underlying RDF data model is
complex than relational data model.

Several design and implementations have been purposed for querying se-
mantic web data [25, 26]. SPARQL is one of these which is also a W3C rec-
ommendation for querying RDF data [27, 15]. SPARQL is a graph matching
query language. In order to query some RDF data there exists some pat-
tern in SPARQL body which is matched with RDF data set, and successful
mappings are returned as the result set.

An example SPARQL query to retrieve the name of director of W3C is
given below:

SELECT ?name
WHERE
{ ?name <http ://www.w3 . org / persons /Tim Berners−Lee > ‘ ‘W3C” }

In SPARQL variables are denoted with ‘?’ or ‘$’ sign placed before the word
and result set constitute of those variables which are defined in SELECT
part of the query. WHERE part of query also called pattern matching part
includes triple patterns which are to be compared with RDF data set. This
part might contain some optional triple patterns, union of patterns, filters
and nested queries also. SPARQL also supports classical operators like pro-
jection, distinct, order, limit and offset. SPARQL also include yes/no queries
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and queries for description of resources

2.4 Hadoop Framework

The Hadoop framework [2] is an open source software project hosted by
Apache software foundation, and it is developed in Java. Hadoop provides
facilities to handle massive amount of data in terms of storage and processing.
For storage it uses its own Hadoop Distributed File System (HDFS) [10], and
for processing massive amount of data stored in HDFS it has implemented
MapReduce programming model [8].

Hadoop framework runs over a network of commodity computers and it
uses HDFS for data storage. In distributed file system of Hadoop data can be
stored in files which are replicated over different computers. This replication
of files allows Hadoop to recover data in case of failure. So Hadoop is an ideal
candidate for building massive data repositories. Hadoop features include
high fault tolerance, scalability and reliability.

Hadoop also provides software framework for the famous parallel data
processing model called MapReduce [8].The MapReduce framework allows
to write applications to process massive amount of data in parallel on large
clusters of commodity nodes. A typical MapReduce job reads the input from
HDFS, process it and writes the results back to file system. HDFS does not
only provide data storage but it is heavily integrated with Hadoop and is
easy to install and configure.

Four different types of programming modules are running in Hadoop.
Two of them are related to distributed data storage commonly known as
“NameNode” and “DataNode”, the other two are related to distributed pro-
cessing called “JobTracker” and “TaskTracker”. These are shown in Figure
2.5. NameNode acts as a master and take cares of the replication of the data
blocks, organizing and keeping track of nodes activity and capacity of data
storage. DataNode is responsible for actual storage of data blocks. DataN-
odes are also responsible for serving client requests related to read and write
files from the file system. DataNode also performs block creation, deletion
and replication upon instruction from NameNode. JobTracker also acts as
master who submits and coordinates different jobs and their execution on
different computational units. TaskTracker is the module that performs ac-
tual job computations. A TaskTracker accepts tasks that are assigned to it
by the JobTracker and report results obtained back to him. Normally every
node in the Hadoop network acts as a TaskTracker. We can say that it is a
worker in the Hadoop network.

Distributed storage, replication, scalability and parallel execution of tasks
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Figure 2.5: Hadoop Structure

make Hadoop framework an ideal candidate for building a storage system,
especially when one has to handle massive amounts of data.

2.5 HBase

HBase [12] is a column oriented database which runs in distributed environ-
ment provided by underlying Hadoop framework [? ]. HBase is open-source
distributed versioned column oriented store modeled after Google’s Bigtable
[14]. HBase provides Bigtable like capabilities on top of HDFS. It works effi-
ciently with large datasets and offer real time read write access to the data.
Data is made available immediately after any update performed.

HBase provides storage for very large dataset and handles data efficiently
in distributed environment. The underlying hardware of HBase consists of
clusters of commodity servers. In distributed environment machine failure
is very common, HBase handles machine failure by copying data and oper-
ations at many machines so if any machine fails data and operations can
be obtained from other machine. Also parallel computing is performed to
enhance performance. As it is column major database high compression rate
can be achieved on per column basis.
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HBase stores data in from of sort able row key and predefined column
families and an arbitrary number of columns defined inside column families.
More over data is time stamped to track the changes in data. A data row
in HBase is composed of row keys which are sortable, and it falls under
some column which is a member of some family. A column is represented as
ColumnFamilyName:ColumnName. A data cell can contain multiple versions
of data by attaching timestamp.

2.6 Hive

Hive [13] is a data warehouse infrastructure build on top of Hadoop to analyze
the data stored in HDFS and HBase. It helps to format data according to
some defined structure, it also provides capability to query large datasets
stored in Hadoop. Hive defines simple SQL-like query language, which is
called QL, by using QL user can perform queries to stored data. Hive also
allows building custom defined MapReduce jobs which can be plugged in
Hive QL.

Hive allows to structure data according to al-ready well known database
concepts like tables, columns, rows and partitions. It supports all the major
primitive data types including integer, float, double, and string. Hive stores
data in tables as traditional databases, where each table consists of rows
and columns. While tables are logical data units in Hive table metadata
associates the data in a table to HDFS directories. HiveQL query language is
very similar to SQL and therefore one can easily perform queries over massive
data. Traditional SQL features like from clause sub-queries, various types of
joins, cartesian products, group-bys and aggregations, union all, create table
as select and many useful functions are very SQL like. This enables anyone
who is familiar with SQL to start a hive CLI (command line interface) and
start browsing data stored in Hadoop. There are some limitations e.g. only
equality predicates are supported in a join and joins have to be specified
using the ANSI join syntax such as

SELECT DISTINCT t1 . subj , t2 . prop
From barton 1 t1 JOIN barton 1 t2 ON ( t1 . Subj=t2 . Subj )
Where
t1 . Prop=‘http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t1 . Obj=‘http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Text ’

While in SQL a join is performed as follows.

SELECT t1 . sub j e c t
From Tr ip l e Tab l e AS t1 , Tr ip l e Tab l e AS t2
Where
t1 . ob j e c t=t2 . sub j e c t
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Another limitation is in how inserts are done, hive does not support inserting
into an existing table, all inserts done overwrite existing data. This all is
because till now Hive is no a mature query language and work is in progress
on this project.

These restrictions have not been a so much problem, as in reality there
are rare cases where a query cannot be expressed as an equi-join, and we
simply loaded the data in to a new table every time.

Figure 2.6: Hive System Architecture

Following are components are main building blocks in Hive:

• Metastore is used to store system catalog and metadata about tables,
columns, partitions etc.

• Driver manages lifecycle of HiveQL statements as it moves through
Hive.

• Query Compiler is a component which compiles HiveQL into a di-
rected acyclic graph of MapReduce tasks.

• Execution Engine execute tasks produced by compiler in proper de-
pendency order while interacting with underlying Hadoop instance.

• Hive Server provides the thrift interface and a JDBC/ODBC server
to operate it from other applications.
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• Client components like Command Line Interface (CLI), JDBC and
ODBC drivers.



Chapter 3

Methodology

As discussed in earlier chapters that by distributing storage and processing
mechanism we can handle massive amount of RDF triples. This chapter
will focus on how this can be achieved by using a distributed framework
called Hadoop. We will describe how we will configure our distributed setup
to achieve the goal, and after that how RDF data is arranged to store in
distributed file system and distributed database i.e. HDFS and HBase re-
spectively. Finally how we process data stored in Hadoop framework will be
discussed. We will talk about the SPARQL transformation to query RDF
data stored in HDFS and HBase.

3.1 Hadoop Setup and Data Storage

3.1.1 HDFS Setup and Storage

HDFS is distributed file system of Hadoop framework[10]. It provides the
storage infrastructure to Hadoop applications. HDFS allows storing data as
normal files like we can store on any operating system Linux or Windows.
HDFS consists of one NameNode and multiple DataNodes, NameNode acts
as a server of storage system that manages file system metadata and also
regulates access to files by client. DataNodes are slave applications which
run on ordinary commodity machines and storage devices attached to these
commodity DataNodes are used to store data. All distribution of data is
managed by NameNode so user is freed from keeping record of which data is
stored on which node. Data given to HDFS is splitted into one or more blocks
and these blocks are stored in a set of DataNodes. A block is replicated on
more than one node for easy recovery and paralyzation of operation in case of
any node failure. NameNode is responsible to execute file system operations

18
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like opening, closing and renaming files and directories, NameNode also keeps
track of mapping blocks to DataNodes. Datanodes are responsible for serving
read and write requests, Datanodes also performs block creation and deletion
when NameNode instructs them to do so.

HDFS provides reliable storage for very large files across different ma-
chines in a large cluster and it stores each file as a sequence of equal size
blocks, and block size is configurable. Blocks of a file are replicated on mul-
tiple DataNodes (replication factor is also configurable) for fault tolerance.
NameNode makes all decisions of data blocks replication. NameNode re-
mains in contact with DataNodes in cluster by receiving blockreports and
heartbeats from each of DataNode in Hadoop network. Heartbeat from a
DataNode shows that node is working properly, while blockreport contains
list of all blocks placed on specific DataNode.

We will configure the HDFS cluster on ordinary machines running Ubuntu
as Linux operating system on them. One machine is used as NameNode
configuration and it will act as the storage server of HDFS cluster, number of
machines will be configured as DataNodes. All DataNodes will be configured
to utilize all available space attached to them. HDFS is allowed to use default
block size of Hadoop framework which is 64MB, as it works well because
it is not too small not a larger one. Block size has a definite impact on
performance.

HDFS offers to store data in any format like in form of tables, plain files
or CSV files etc. when it comes to store RDF data in HDFS we have chosen
CSV format to store RDF data in HDFS. These CSV files contain RDF
statements in the form of triples table. By using Jena [4] we can extract
RDF triples from RDF files and from these triples subject, predicate and
objects can be extracted very easily. So CSV files are created which have
stored RDF data in them like a triples table. For each file we have defined
start of new triple pattern by setting parameter of row format as delimited
at time of storing data, plus we have defined start of new field by putting
some unique character between each field.

Hive provide ways to upload data to HDFS but one has to configure
proper parameters in order to allow Hive to insert data. These configurations
are given in below section. So we have used Hive bulk load commands to
store RDF triples from CSV files to HDFS.

3.1.2 Hadoop MapReduce Setup

MapReduce is a programming model used to process large datasets in parallel
environment. This programming model is originally presented by Google [8].
MapReduce can process data either stored in a filesystem of in a database.
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MapReduce splits the problem into two stages map stage and reduce stage,
in first stage map method is executed on TaskTracker. Master node i.e.
JobTracker takes input job partitions it into smaller sub-problems, and dis-
tribute these sub problems among worker nodes i.e. TaskTracker in Hadoop
network. Worker node execute job and answer back to JobTracker. After get-
ting results of map execution master node instructs TaskTrackers to perform
reduce step which is the 2nd stage of a MapReduce job. Reduce operation is
performed on the output of map processing.

Hadoop framework follows rule of ”moving computations is cheaper than
moving data”. This is especially true when input dataset is large enough.
So a computation request by an application in form of MapReduce jobs is
executed on that node where the required data is residing. That’s why in
Hadoop cluster DataNodes and TaskTrackers are configured on same ma-
chine.

Number of map and reduce operations are not fixed in a MapReduce
job, so number of map jobs may vary than number of reduce jobs. During
a MapReduce job all map operations executed on worker nodes are inde-
pendent of each other so all maps can perform in parallel. Results of these
map operations are stored on local hard disk. After completion of map op-
erations TaskTracker informs jobTracker about completion and JobTracker
then instructs to move results to nodes where reduce operations needed to be
performed. After completion of map operations reduce operations are carried
out on output of map operations. If no reduce operation is defined then after
successful completion of map operations job is completed.

3.1.3 HBase Setup and RDF Storage Model

HBase is distributed, column oriented, versioned database of Hadoop frame-
work. HBase provides Bigtable [5] like storage on top of Hadoop distributed
computing environment. As HBase is inspired by Bigtable its data model is
also very similar as that of Bigtable. As HBase is distributed over commodity
machines but at same time it is also tolerant of machine failures. Data can
be stored in labeled tables, data in a table consists of a sortable row key and
some predefined “column families” and an arbitrary number of columns. In
a table a row can have widely varying number of columns. A column name
consists of “<family>:<label>”. Number of <family>s (“column families”)
is pre defined at table creation time and can’t be altered later on. New ¡la-
bel¿s can be created as required. Data stored in a same column family are
physically close on hard disk while data in different column families might
be distributed over underlying Hadoop network. Items in one column family
contain similar data. Only a single row at a time is locked to insert, update
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Row Key Column Family “rdf:”

Some unique value
“rdf:subject” “some value”
“rdf:predicate” “some value”
“rdf:object” “some value”

Table 3.1: HBase Data Model

and retrieve operations. The HBase data model can be better understood by
Table 3.1.

An application views a HBase table as list of tuples which are sorted in
ascending order of row key. Physically tables are broken up into row ranges,
these broken tables are called “regions”. Each region contain some specific
number of rows, HBase identifies a region by table name and start key. Figure
3.1 describes this process.

Figure 3.1: HBase Tables and Regions

Regarding the HBase cluster setup there are three major components of
HBase H!BaseMaster, H!RegionServer and HBase client. H!BaseMaster is re-
sponsible to assign data in form of regions to worker nodes i.e. H!RegionServers.
H!BaseMaster also monitors health of each H!RegionServer and if a H!RegionServer
is dead the H!BaseMaster will reassign regions served by dead H!RegionServer
to some other H!RegionServer. If H!BaseMaster dies cluster will shut down.
H!RegionServer is responsible for handling read and write requests of clients.
It remains in contact with H!BaseMaster by using heart beat messages. When
it needs to process some request it contacts H!BaseMaster to get a list of re-
gions to be served. These requests are either read requests or write requests.

To store RDF data in HBase a single table based on single column family
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RDF Table
ROW Key Column Family “rdf:”

1
“rdf:subject” "http://libraries.mit.edu/barton/MCM/000000504"

“rdf:predicate” "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

“rdf:object” "http://simile.mit.edu/2006/01/ontologies/mods3#Record"

2
“rdf:subject” “info:isbn/0442215312.”
“rdf:predicate” "http://simile.mit.edu/2006/01/ontologies/mods3#language"

“rdf:object” "http://simile.mit.edu/2006/01/language/iso639-2b/eng"

Table 3.2: RDF Data Model in HBase

will be created. This column family will contain three columns further one
for each subject, predicate and object. Each RDF triple will be assigned a
unique number while loading RDF triples to HBase, these unique numbers
will act as row key for against each triple. HBase allows querying to data
stored in tables by using the row key. RDF triples stored in HBase consists of
full URI along with value. So there is no need to store long URIs separately
which results in simple schema, single table updations and retrievals, no need
to care extra tables, it will also reduce number of joins with other tables to
get long or short URI values.

Logical view of our RDF table after storing RDF data in it will look like
Table3.2. For Table 3.2 one can access data by using table name its row key
and ColumnFamily plus column name. So to access “info:isbn/0442215312.”
one can give command on HBase Shell get ‘RDF Table’, ‘1’,‘rdf:’,‘subject’

3.2 Querying

As discussed in Chapter 2 that Hive provides facility to query data stored in
Hadoop framework including HDFS and HBase. Hive allows running SQL
like queries. As we are working with RDF dataset so the query standard
recommended by W3C is SPARQL. We have to transform SPARQL queries
to Hive QL. This also involves checking that either the transformed queries
are correct one or not for this purpose we have to analyze the results of
SPARQL and hive queries

3.2.1 Hive Setup

Hive provides CLI in order to execute queries, it also allows to configure Hive
server. By using this server and Hive drivers one can also perform queries
from any Java based client. Hive automatically set number of MapRreduce
jobs against Hive queries submitted. Number of MapReduce operations de-
pends on complexity of query like numbers of joins in a query effects number
of MapReduce operations, number of string comparisons effects numbers of
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map operations. Simple select queries with no join condition present are
solved by simply executing map operations.

Query execution time depends on total number of MapReduce jobs, queries
having more number of jobs take more time. It also depends on HDFS repli-
cation factor, if replication factor is higher more number of parallel operations
can be performed which results in decreased execution time.

Hive requires a pointer to be defined in hive configuration about current
NameNode instance running in Hadoop cluster along with its port. At same
time hive directories needed to be created in HDFS where Hive will store its
tables and views of HBase tables.

3.2.2 Querying HDFS

In order to perform queries to the files stored in HDFS one have to write
his own MapReduce application and then run these application on Hadoop
(HDFS+MapReduce) cluster. While Hive provides facility to perform SQL
like queries to data stored in HDFS. At the same time Hive also provides
facility to insert data to HDFS, but for this hive needs some serialization
format to be defined while inserting data to HDFS. Over these serialized files
Hive allows to execute select, overwrite, aggregation, union all and other
SQL like queries. To query RDF data we will first store the RDF data to
HDFS as described in Section 3.1.1. After loading RDF data to HDFS we
can execute Hive queries over RDF data, these Hive queries are counterparts
of SPARQL queries.

3.2.3 Querying HBase

HBase does not provide any query language to explore data stored in HBase
tables. Instead it offers “get” and “insert” commands from HBase shell and
from “get” and “put” methods if someone is using HBase client API. These
commands or methods are restricted to work on a single row at a time, which
means that one can obtain or post only single row at a time. Also if someone
needs to perform join over HBase tables he has to write his own application
to get desired results.

Hive allows to execute SQL like queries over HBase tables. But for Hive
requires HBase table’s views to be defined in Hive. For this purpose Hive
comes with HBase handle which contains jars of running HBase instance plus
configurations of HBase along with pointer to current H!BaseMaster along
with its port on which it is running. Hive provides the commands to create
views of HBase tables but one have to be careful about mappings of HBase
column families and columns to tables of Hive.



Chapter 4

Implementation and Results

This chapter describes implementation details of our work, tests performed
and results achieved. Section ?? contains an overview of dataset used. Sec-
tion ?? covers the SPARQL queries we have used. In Section 4.3 Hive queries
are given. Section 4.4 describes the testing environment setup and configura-
tions. Results have been discussed in Section and at last Section 4.6 consist
of comparisons.

4.1 Barton Data Set

Purpose of this research is to design a scalable semantic web repository where
massive amount of RDF data can be stored and processed efficiently. For
this purpose some large size real and public data set is required. There are
different RDF datasets are available for testing purpose like Barton libraries
dataset [23], DBLP [16] and DBpedia [7] datasets. These RDF datasets are
very commonly used for semantic web repositories evaluation.

The Barton libraries dataset [23] which is provided by the Simile Project
[24], contains the records that compose and RDF-formatted dump of MIT
Libraries Barton catalog. This dataset is a large size dataset and contains
irregular structures. Barton library dataset was derived from multiple sources
and it follows a semantically rich ontology. This dataset contains more than
25 million triples. Similar string at start of properties belongs to predefined
schemas like RDF, OWL and some other schemas. In a document these are
declared as namespaces. The Barton dataset namespaces are given in Table
4.1.

We have created three different size partitions of Barton data set. These
partitions contain 1 Million, 5 Million and 25 Million triples.

24
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Prefix URI
modsrdf: "http://simile.mit.edu/2006/01/ontologies/mods"

rdf: "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

role: "http://simile.mit.edu/2006/01/role/"

owl: "http://www.w3.org/2002/07/owl#"

Table 4.1: Barton Prefix Against URI

4.2 SPARQL Queries

To query RDF data stored in distributed database we have executed the
queries already defined [21]. These queries were performed to analyze per-
formance of semantic web stores against Barton Libraries dataset. The
SPARQL queries are given below with description of each query. First three
queries are the simple queries, these queries consists on single triple pattern
given in WHERE clause.

• Query1

Query 1 selects different type of data by comparing the resultant triple
with the given predicate which is rdf:type the query is given below.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
SELECT DISTINCT ? type
Where
{
? i n s t an c e s rd f : type ? type
}

• Query2

The Query 2 selects all distinct subjects of any property containing the
value of mods:Person in the object part of the RDF triple. This query
returns a lot of triples in the result set.

PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT DISTINCT ? sub j e c t
Where
{
? sub j e c t ? someproperty mods : Person
}

• Query3

The Query 3 returns all the predicates against the give subject value.

PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
PREFIX i n f o :< i n f o : i sbn/>
SELECT DISTINCT ? p r op e r t i e s
Where
{
i n f o :0525070893 ? p r op e r t i e s ? ob j e c t
}
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• Query4

The Query 4 involves more than one triples in the WHERE claus of
the query, this query finally returns all items of Text type. This query
also returns a large number of result set.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT ? recordID
Where
{
? recordID mods : r e co rd s ? item .
? item rd f : type ? type .
FILTER(? type = mods : Text )
}

• Query5

Query 5 is similar to Query 4 but it selects all items of NotatedMusic
type also the result set of the query is normal.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT ? recordID
Where
{
? recordID mods : r e co rd s ? item .
? item rd f : type ? type .
FILTER(? type = mods : NotatedMusic )
}

• Query6

Query 6 emphases to select items of type StillImage, the result set for
this query contains a small number of records.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT ? recordID
Where
{
? recordID mods : r e co rd s ? item .
? item rd f : type ? type .
FILTER(? type = mods : S t i l l Image )
}

• Query7

Query 7 is the selectivity estimation query which returns translated
titles of all text type records. Join performance is also checked by this
query.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT ? t r a n s l a t e dT i t l e
Where
{
? recordID mods : r e co rd s ? item .
? item mods : t i t l e ? t i t l e .
? t i t l e rd f : type mods : Trans l a t edT i t l e .
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? t i t l e mods : va lue ? t r a n s l a t e dT i t l e
}

• Query8

This query involves a union of two sub-queries. This query also return
huge size of output.

PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX mods:<http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#>
SELECT DISTINCT ? item ? property
Where
{
{
? item rd f : type mods : Text .
? item ? property ? ob j e c t
}
UNION
{
? item rd f : type mods : Text .
? sub j e c t ? property ? item
}
}

4.3 Hive Queries

This section contains the SQL like queries of above SPARQL queries which
we have executed using Hive CLI over RDF data stored in HDFS and HBase.
For given queries we have assumed the table name as TripleTable.

To test that either our Hive queries are exactly equal to their respec-
tive SPARQL queries, we have compared the results obtained by running
SPARQL queries over plain RDF files using Jena [4] with the results ob-
tained using Hive over RDF data stored in HDFS and HBase. For each
result set comparisons we found that these are same, this testing confirmed
that our Hive queries are exactly equal to their respective SPARQL queries.

• Query1

SELECT DISTINCT ob j e c t
From Trip leTable
WHERE
property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’

• Query2

SELECT DISTINCT sub j e c t
From Trip leTable
WHERE
ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Person ’

• Query3
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SELECT DISTINCT property
From Trip leTable
WHERE
sub j e c t=’ i n f o : i sbn /0525070893 ’

• Query4
SELECT t1 . sub j e c t
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . ob j e c t=t2 . sub j e c t )
WHERE
t1 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#records ’ AND
t2 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t2 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Text ’

• Query5
SELECT t1 . sub j e c t
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . ob j e c t=t2 . sub j e c t )
WHERE
t1 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#records ’ AND
t2 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t2 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#NotatedMusic ’

• Query6
SELECT t1 . sub j e c t
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . ob j e c t=t2 . sub j e c t )
WHERE
t1 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#records ’ AND
t2 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t2 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#St i l l Image ’

• Query7
SELECT t4 . ob j e c t
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . ob j e c t=t2 . sub j e c t ) JOIN Trip leTable t3 ON ( t2 . ob j e c t=t3 . sub j e c t ) JOIN Trip leTable t4 ON ( t2 . ob j e c t=t4 . sub j e c t )
WHERE
t1 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#records ’ AND
t2 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#t i t l e ’ AND
t3 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t3 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Trans la tedTi t l e ’ AND
t4 . property=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#value ’

• Query8
SELECT ∗
From (
SELECT DISTINCT t1 . sub ject , t2 . property
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . sub j e c t=t2 . sub j e c t )
WHERE
t1 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t1 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Text ’

UNION ALL

SELECT DISTINCT t1 . sub ject , t2 . property
From Trip leTable t1 JOIN Trip leTable t2 ON ( t1 . sub j e c t=t2 . ob j e c t )
WHERE
t1 . property=’http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type ’ AND
t1 . ob j e c t=’http :// s im i l e . mit . edu/2006/01/ on t o l o g i e s /mods3#Text ’ ) unionResult
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4.4 Test Environment Setup

This section describes experimentation setup including hardware and soft-
ware. We have performed our experiments in two environments, stand-alone
mode and distributed mode. In stand-alone mode Hadoop Framework includ-
ing HDFS and HBase are configured on single machine while for distributed
setup we have used three machines of same configurations connected with
each other over 1 GBPS network. For this purpose we have utilized ordinary
machines running Linux (Ubuntu) as operating system. Each machine is a
Dell Optiplex 760 Core 2 Due @3 GhZ with 2 GB RAM.

For each Ubuntu machine Java version 6 is installed which is required
by Hadoop framework. Each node is configured such that it can perform
password-less ssh to localhost as well as other nodes running Hadoop frame-
work, this is also required by Hadoop framework in order to communicate
with localhost as well as to other Hadoop nodes. Hadoop also uses DNS
server setup to map machine names with their IP addresses as Hadoop frame-
work uses host names rather than IP addresses to communicate with other
machines, we have configured master node to provide this service also.

We have used Hadoop version 0.20.2 which is the most stable release of
Hadoop framework. Each Hadoop release consists of HDFS and MapReduce
instances, we have configured both of these instances. We have used HBase
version number 0.89 the most latest version in which almost all bugs of
previous versions are fixed. In order to perform query analysis we have
use Hive 6.0 version, we have downloaded the source code from given SVN
repository and complied the code at our side to build the project. This
compilation also includes the HBase handle so that by using Hive we can
execute queries on data stored in HBase tables.

4.5 Results and Discussions

4.5.1 Data Load Results

In This section contains results of data loading in HDFS and HBase in both
single node and distributed setup. Figure 4.1 shows the load times analysis
of different sized datasets. The experiment showed that in standalone mode
it takes a bit more time to load the data in HDFS because all of the data
has to be stored in single instance of HDFS while in distributed setup data
is stored in form of chunks on some of nodes but the replication factor slows
down the whole process so not making a too much difference. While on the
other hand HBase is showing a little opposite response for small and medium
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size dataset but it showed little performance gain in case of large dataset.
It is clear from the given results as more nodes will be added to the

Hadoop cluster the loading performance will increase and also more scalabil-
ity will be achieved. For large number of nodes issues of node failures will be
there but this can be handled by increasing the replication factor. Currently
the replication factor is 3.

Figure 4.1: Bulk Load Time

4.5.2 Queries Results

Query response times of the queries discussed in Section 4.3 for HDFS and
HBase are described here and a brief discussion of each query’s behavior is
given below. From the results it is clear that HDFS on distributed setup gives
better results than on single node setup. Because in distributed environment
more replicas of the data are present so jobs can run in parallel on differ-
ent nodes hence increase in performance. While HBase showing some poor
performance for simple queries because there is an extra interface present
between HBase and query processer Hive, this extra interface is Hadoop File
System.

First, second and third queries are simple queries based on single triple
pattern search against some specific values of predicate, object and subject
respectively. Query results show clearly that both HDFS and HBase are
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Figure 4.2: Query 1 Response Time

Figure 4.3: Query 2 Response Time

showing similar response for different variable search. Figures 4.2,4.3 and
4.4 shows this clearly that query response time in distributed setup of HDFS
is better than single node setup. Also there are less number of MapReduce
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Figure 4.4: Query 3 Response Time

operations are involved in the query as it contains only a single triple in its
WHERE clause. We also observed that these simple queries were completed
by running map functions only, but when we instructed our system to store
output results to some other table then join function was called to store the
outputs of query to said table.

Queries 4,5,and 6 are used to check system against output size of each
query hence we named these queries as “Result Size”. All three queries i.e.
Result Size-I,Result Size-II and Result Size-III have returned large medium
and small results respectively. Figures 4.5,4.6 and 4.7 shows that HDFS and
HBase shows almost similar behavior either output size are large, medium
or small respectively. If we look specifically HDFS results graph shows that
for large data sets HDFS gives better results in distributed environment.

Query 7 checks join performance of system it involves a number of joins
which filter out the results, hence the result set of the query is a small. But as
compared to previous queries the number of MapReduce jobs for this query
are increased which which measures efficiency of Hadoop file system. Results
showed that both HDFS and HBase successfully executed complete query.
While running this query we observed that some times some map function
failed to execute on one node, but Hadoop managed to launch similar map
function on some other node and at the end finishing query successfully. So
we can say that HDFS and HBase both, always managed to complete the
query successfully. Figure 4.8 shows results of this query.
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Figure 4.5: Query 4 Response Time

Figure 4.6: Query 5 Response Time

Query 8 is the real test of Hadoop MapReduce framework as it runs 6
number of MapReduce jobs which is the higher one among all the queries
we have executed. Plus this query also consists of union of two sub queries.
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Figure 4.7: Query 6 Response Time

Figure 4.8: Query 7 Response Time

Results in Figure 4.9 showed that this query managed to run successfully
with comparatively very less response time for large data set. By observing
health of nodes while running this query we find that all the nodes are work-
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ing at their full capacity, because each time a node completes some task,
JobTracker assigns it some other task. So we can verify that JobTracker
efficiently manages all jobs assigned to it, and that it is capable to utilize all
distributed nodes in parallel. Hence we can say storing massive RDF data
sets in HDFS and HBase results in achievement of scalability factor as well
as efficiency also.

Figure 4.9: Query 8 Response Time

4.6 Comparisons

When it comes to compare our results we have chosen the parameters of
RAM memory used and the scalability factor are also considered. According
to benchmarks related to RDF stores available at [28]. Some specific results
of some stores are given below. By using Virtuoso the RDF data loaded
at 160,739 triples per second on a 2 x Xeon5520 machine using 72G RAM.
Another similar benchmarking present at [28] of BigOWLIM shows 43,914
triples per second on a 2xXeon5520 2.5 GHz Quad core machine with 64G
RAM. AllegroGraph also provides 303K triples per second RDF data load
time on 2-4 cores Intel E5520 @ 2.2Ghz with 48G RAM. All the above bench
marks show excellent RDF data load times but on the other hand these sys-
tems required costly servers with excessive amount of RAM memory installed
in them.
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For our approach we have used ordinary low cost machines with 2G RAM
installed in them to provide RDF data load of 7,687 triples per second which
is very cost effective solution.

For more comparisons we have chosen a recent benchmarks performed
for different semantic web stores by [21], we have selected three benchmarks
including famous jena [4] memory based approach and database approach
and SesameRDB [18]. First one process RDF triples in main memory and
other two use RDBMS to store and process RDF triples. Test environment
used by [21] is as follows, Experiments were performed on a single server
machine with 64bit Enterprise edition of Microsoft Windows Server 2003
installed over ACPI Multiprocessor (16 processors) X5550@ 2.67GHz CPU
with 8 GB RAM and 8 GB virtual memory configured on 120 GB PERC 6/I
SCSI Disk Device.

Figure 4.10 shows bulk load comparisons with HDFS and HBase. Re-
sults showed that bulk load outperform database approach of famous RDF
processing systems, jena memory model technique shows better results but
it is not scalable, as from figure it is clear that it failed to load large data
set. Both HDFS and HBase are capable to handle large datasets showing
scalability and efficiency at same time.

Figure 4.10: Bulk Load Comparisons

Figures 4.11,4.12 and 4.13 describe performance of HDFS and HBase
against famous RDF systems for single triple search pattern. Experimental
results showed that famous RDF systems show better performance for small
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dataset, but while processing large dataset HDFS in distributed environment
showing much better response time from all other approaches including Je-
naSDB and SesameRDB.

Figure 4.11: Query 1 Comparison

Figure 4.12: Query 2 Comparison
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Figure 4.13: Query 3 Comparison

ResultSize-I 4.14, ResultSize-II 4.15 and ResultSize-III 4.16 are the ex-
perimental results of queries for large, medium and small output respectively.
Figure 4.14 shows that JenaSDB takes much time with respect to all other
techniques when result size is large and input data is also large. In other two
cases JenaSDB and SesameRDB showing better response then HBase but
HDFS takes less time to execute these queries.

Figure 4.17 shows join performance comparisons. Again JenaSDB takes
more time with respect to all other techniques, and distributed HDFS per-
formed best large dataset.

For union query all famous RDF stores fail to execute query to generate
results for large dataset, at same time even JenaSDB and Jena memory model
approach failed to execute over medium size data. Figure 4.18 shows that
HDFS and HBase both executed this complex query successfully, and HDFS
again showing better response time for medium and large data.

Comparative evaluation show that HDFS and HBase can execute all types
of queries involving simple, complex or result size based queries efficiently in
an cost effective manner. Detailed analysis of bulkload and query execution
experiments reviled strengths or weaknesses of HDFS and HBase. HBase
requires performance improvement, by introducing indexes into HBase for
RDF data this can be achieved.
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Figure 4.14: Query 4 Comparison

Figure 4.15: Query 5 Comparison
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Figure 4.16: Query 6 Comparison

Figure 4.17: Query 7 Comparison
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Figure 4.18: Query 8 Comparison



Chapter 5

Conclusion and Future
Directions

In previous chapters we have described about RDF, RDF data storage, RDF
data retrieval and limitations of currently available system for this purpose.
Major problem being faced by the semantic web community is scalability in
storing large volume of RDF data and retrieving this data efficiently in a
cost effective way. Currently available RDF data stores are either not very
efficient and scalable or their prices go so high that they are not affordable.
To resolve this issue we have worked on Hadoop framework to store RDF
data and retrieve it in an efficient and cost effective manner.

This chapter provides conclusions, summarizes our contributions and does
provide a look at the future enhancements and extensions.

5.1 Conclusion

Semantic web is Tim Berner Lee’s dream to enable computer to understand
meaning behind simple text present over the internet. Semantic web is ba-
sically an extension to current web and RDF is W3C standard to repre-
sent semantic web data so that semantics can be involved in data to enable
computers to understand data over internet. Main object required here is
scalable storage and efficient retrieval mechanism for dealing with this huge
RDF which will be generated as a result of representing the current data in
RDF format. The RDF data is in form of Subject, Property, Object (SPO)
triples. To store this huge and ever increasing RDF dataset researchers have
started building the RDF stores and some are utilizing already available
technology of RDBMS. To retrieve data from RDF data stores a standard
querying language aka SPARQL is already in the market, which is also W3C

42
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recommendation to to query semantic web data. SPARQL provides its own
statements which provide a good fit for retrieving the RDF data from these
stores.

Hadoop is an open source framework for handling voluminous data stor-
age in a distributed environment using HDFS and HBase. It provides HIVE
utility to query the data from its distributed structure with the help of
MapReduce framework. With scalability of Hadoop and power of HiveQL we
provided an RDF data store. In this, we have utilized scalability of Hadoop
and ease of HiveQL to provide a cost effective, efficient and scalable RDF data
store. With all this we have successfully loaded Barton Laboratory dataset
of 25 million triples on an ordinary machines cluster with only 2 GB RAM.
Results achieved and discussed in the previous chapter are also encouraging
and show clearly that we have found a highly scalable, very efficient and cost
effective RDF data store.

5.2 Contributions

5.2.1 Hadoop as Scalable, Efficient and Cost Effective
RDF Data Store

As discussed earlier Hadoop is an opensource distributed datastore. We
have utilized it to store RDF data of upto 25 million triples with a cluster of
ordinary machines each having only 2GB RAM.

5.2.1.1 HDSF As RDF Store

Hadoop Distributed File System (HDFS) facilitates to store vast amount
data in distributed environment by ensuring reliability, scalability, efficiency
and cost effectively. In this research we showed that HDFS can be used to
store and process massive amount of RDF data without losing any of the
property described before. We defined the storage format for RDF data in
HDFS and the easiest way to explore RDF data by querying it afterwards.

5.2.1.2 HBase As RDF Store

HBase the distributed, column oriented, multidimensional store of Hadoop
framework can also be utilized to store RDF data. For HBase we have
defined the way to store RDF data. we have defined the way to perform
query analysis on HBase tables by using HiveQL.
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5.2.2 SPARQL to Hive query conversion

SPARQL is standard language for querying RDF stores whereas Hive com-
ponent on Hadoop framework provides Hive Query Language (HiveQL) for
data retrieval. We found that SPARQL queries can be converted to Hive
queries to interact with underlying RDF data in HDFS and HBase. We
convert these SPARQL queries to their HiveQL alternatives, which in result
produced MapReduce jobs which run in parallel over distributed Hadoop
network to achieve efficiency.

5.3 Future Direction

We are planning to build a couple of components utilizing our research work.

5.3.1 SPARQL Querying Interface for Hadoop frame-
work

Hadoop framework is famous for its distributed data storage capabilities. For
this it provides two components including HBase and HDFS. Currently we
have utilized an extra component of Hive for providing the data retrieval
interface. Building a native interface through which the SPARQL queries
can be run on Hadoop is one of our future targets.

5.3.2 JENA Plug-in for SPARQL to HiveQL

JENA is one of the very strong APIs available to store and retrieve RDF
data. JENA works very well with SPARQL but as described above we have
to utilize HiveQL for data retrieval services over Hadoop. Our next mission
is to make a plugin for JENA through which user can work on SPARQL
queries and the plugin converts all those queries to equivalent Hive queries
to retrieve data from the Hadoop framework.
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