LIVE HELP DESK AN ONLINE
CUSTOMER SUPPORT SYSTEM

By

SGT Malik Kashif Mudassar
PC Omer Moeen
TC Fahd Niazi

PC Ghazali Farooq

Submitted to Faculty of Computer Science, Military College of Signals, National
University of Sciences and Technology, Rawalpindi in partial fulfillment for the
requirements of BE Degree in Computer Software Engineering

April 2008

ABSTRACT

LIVE HELP DESK

The objective of our project is to implement an Online Customer Support
Communication Platform for managing all online interactions so that visitors of a
website can communicate with sales person /agent through their web browsers
without need of any additional software required to be installed on the client side.
Live chat is usually a text-based communication that happens online between a
customer and a merchant. It's a kind to the instant messaging you might do with a
friend through Apple's iChat or AOL's or any other Instant Messenger. Live chat
extends communication opportunities between buyer and seller while maximizing the
customer’s overall satisfaction with their website experience.

JAVA Remote Method Invocation (RMI) technology is used to access remote

database that is written using Microsoft Access.

The main objectives are Call Waiting, Forwarding and Transferring, Load Balancing
and TimeStamping, Emailing, File/Snapshot Transferring, Customers Continuous
Feedbacks/Online Surveys, Technical Support in Sales and Marketing, Reports

Generation.

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

any other award or qualification either at this institution or elsewhere.

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation, a work

of this magnitude would not have been possible

ACKNOWLEDGMENTS

We are eternally grateful to Almighty Allah for bestowing us with the strength and
resolve to undertake and complete the project.
We gratefully recognize the continuous supervision and motivation provided to us by

our Project Supervisor, Asst. Prof Asim Elahi .

We would also like to thank our Co-Supervisor, Maj. Ather Mohsin Zaidi for his

constant guidance and help he extended to us whenever we needed it.

We are especially grateful to HoD (CS Dept) Lt Col. Naveed Sarfraz Khattak for his

heartfelt support in fulfilling our project goals.

We deeply treasure the unparallel support and tolerance that we received from our
friends for their useful suggestions that helped us in completion of this project. We
are also deeply obliged to our families for their never ending patience and support for
our mental peace and to our parents for the strength that they gave us through their

prayers.

A word of thanks to the Military College of Signals (MCS) as it had been our

foundation and has made us capable to undertake the project.

TABLE OF CONTENTS

LIST OF FIGUREScooiiieerse ettt iX
LIST OF TABLES ...ttt X
IO 1 o T [T o) o SRS 1
I R (- SRS 1
1.2 INEOTUCTION.....eiuiiiictieccee ettt a et s e e s e betenneneneen 1
1.3 BACKGIOUNG ..ottt bbbttt bbb 1
Li4 SCOP ...tttk e bbb R bRt b et b e b e 2
1.5 Assumptions and DePeNdENCIES.........cccuirririririeirisieee e 2
1.6 Organization Of SRS.......c.oooiiie s 3
2. LITErature REVIEBWc.oeeiiieeiiec sttt s ne e ne e e e 4
2.1 What is Online Customer Support COmMmMUNITY?.......cccceovrerirererenineneeseeeseeseseeeeees 4
2.2 Benefits of Customer-to-CUStOMEr SUPPOIT.......coveeieerirerieirieeeiees e seesees 4
A R O 0 N 0 o P TSSO 5
2.2.2 INCrEASEA VAIUE ..ottt ene e 5
2.2.3 Greater Customer SatiSTaCtioNccvoeviiiicieisiee e e 5
2.2.4 INCreased REVENUE...........ciiieieieiiisie ettt 6
2.3 Features of a Good Customer SUPPOrt SYStEM.........cveeeiieiiiieriiereesee e 6
3. REQUITEMENT ANGIYSIScvieeiiiesieieiee ettt neene e 8
3.1 SPECITIC REQUITEMENTS......eiviiieiiiieisie ettt nas 8
3.1.1 External Interface REQUITEMENTScccoiriiirieirieireeseee st 8
3.1.1.1 SOTtWAIE INTEITACESeveveeeeeeeieiee ettt eeas 8
3.1.1.2 Hardware INErTACES.covveieieieeeriee ettt eenas 9
3.1.1.3 CommuNiCation INTEIACE.........coviveiieieesiee e 9
3.2 Performance REQUITEIMENTSciiriiieiriiieeisieie st 9
3.3 FUNCLIONAl REQUITEIMENTS........cuiiiiieiiirisieee et 10
3.4 Security/Privacy ReQUITEMENTS.......cccerieririiisieiesiee et e e n s 11
3.5 Reliability REQUIFEMENTS.......c.ciiviiciiicceeec e e 11
3.6 DeSIgN CONSIIAINTS.cveuiiieiiiieiiieirie ettt st 11
R 1 RS PRTST 12
o A 1 (0o [od £ oo ST ST 12
4.2 RMIINEEITACE. ..ovcviiciiicc ettt sttt e s 13
4.3 RMI ArchiteCtural LAYEISccceiririeieiirieeninise et 14
4.3.1 Stub and SKEION LAYcccveviiciieiices e 15
4.3.2 ReMOte REFEIENCE LAYETcviveeceeiciecieis e 16
4.3.3 TTANSPOIT LAYEL ..viviiiiiitiiieiie ettt st sttt st sb e st a e s be e be e b e s be e sbesn b b ene e 17
4.4 Steps of Developing an RMI SYSTEMccciiiiiiiniiee e 18
4.4.1 Defining ReMOte INTEITACEcocveicece e 18

Vi

4.4.2 Develop the Remote Object to Implement Remote Interface.........cccocevvvvvviiieennn. 19

4.4.3 DeVvelop CHENt Program ...t 20
4.4.4 Compile the Java Source Files and Generate Client Stubs/Server Skeletons............ 22
4.4.5 Start the RMI REGISIIY........ciieiiiiicce e 22
4.4.6 Start Remote Server Objects and Run the CHent ... 23
4.5 Comparison of RMI with the Client—Server Socket Mechanismc.ccccocvveunnnen. 24
5. JAVA Database CONNECTIVILYccoureririiniiiniieesiee s 26
5.1 INrOUUCTION.......eviiiiieciie et 26
5.2 OVEIVIBW ...ttt bbbttt 26
5.3 KEY FEAUIES ... 27
5.3.1 FUll ACCESS t0 METATALAcvvverieierieiiieiesie ettt 27
5.3.2 NO INSTAHALION ...o.veviveieciee e 27
5.3.3 Database Connection Identified by URL..........cccoviiiiiiiiiniicececeee s 27
5.3.4 Included in the Java PIatfOrM..........cccooiieiiieicice e 28
5.4 Advantages of JIDBC TeChNOIOgY........cccvceiiiivieiieiieiecce e 28
5.4.1 Leverage EXisting ENterprise Dataccccccveevieireiieiceiecesiee e 29
5.4.2 Simplified Enterprise DeVelOpMENT........ccocviiviiiireeeee e 29
5.4.3 Zero Configurations for Network COMPULETS.........cccevvrirereineereesees e 29
5.5 ACCessiNg MS ACCESS TrOM JAVAcceiririiiiiiiieesiee e 29
5.5.1 PrEIEOUISITES. ... cveveieeirieieeieie et ste sttt et se et et ese s e et e e e se e ase e nsesasenees 29
5.5.2 Configuring the Microsoft Access ODBC Data SOUICE..........cccorveereereeesnrenerennens 29
6. The LiVe HelP DESKcuouiiiiieee e 32
5.1 FRAIUIES ...eeeiie ettt ettt sttt een e ne st R renrenrenres 32
6.1.1 Agent Side FUNCHONAITIEScc.ceiviiriciice e 32
6.1.2 Client Side FUNCHIONANITIEScccviviereiiiesieieicieieeeeee e 32
6.2 USING the RMI SEIVETocuieceiecesee e 32
6.2.1 The Server INTErface ... e 33
6.2.2 The Server IMplementation ... e 33
6.2.3 THE SBIVET ..ot 33
6.3 RIMIREQISITY ..ottt ettt ne et ne e ene s 33
6.4 MeSSaging ArCHITECTUIE......cviueieee e 33
6.5 The USEr INTEITACEc.ecveieeeieece e 35
B.5.1 USEI SHON-MN ...ttt ettt s 35
B.5.2 USEI LOGIN ...ttt bbbttt 37
6.5.3 AdAING CONACESc.ecviieiiiiciciee ettt st sn e 40
6.5.4 ChAt WINUOW ..ot 42
6.6 Client-Agent INtEraCtiONccoviieriiiieir e e 44
6.6.1 Clients FEEUDACK. ... 45
6.7 The DAtaDASEc.ceiiiiieii e 45
6.7.1 The AQENT DAL ...c.cviveiiieiee e sttt ne s 45
LT O 11 N 1o o RSSO 46
6.7.3 FEEU-BACKccuiieiicteee et 47
6.8 REPOIt-GENEIALIONo.eveeiiiiieiiiete ettt 47

vii

6. Analysis and CONCIUSION ..ot 50

R T 11U (TR 50
T2 FRALUIES ...ttt ettt ettt e e e ettt e s ettt e s e eaa et e e sasb et e esaasaeeeesasaeeesaaseeeeesasbaeeesaaraenesaas 50
T3 FBALUIES ...ttt ettt ettt et ettt e e e et e e set et e e eas et e e saetaeeeeaasaeeessanneeesaannneenas 51
ANNEXUTE A7 SOUTCE COUR ...ttt ettt et ettt e st e e et et e st e st e eareeesareeeaneeeanes 52
BIDIIOGIaPNY ... et 92

viii

LIST OF FIGURES

Figure Numbers Page

Figure 4-1 Remote Function Call Using Local Calls............cccoieiinninnnsisceseee 12
Figure 4-2 RMI AFCHITECTUNE......c.oovieiiiicee et 12
FIgure 4-3 RMI INTEITACEc.cviieeieiicee e 13
Figure 4-4 RMI Service Proxy and INterfaceccoeeveeicieicisee e 14
Figure 4-5 RMI ArchiteCtural LAYersccccieiiiieiice e 15
Figure 4-6 RMI Stub and SKeleton Layer ..o s 15
Figure 4-7 RMI TranSpPOrt LAYETccoiiieiriieiciirisiee e 17
Figure 5-1 Connecting t0 Data SOUICE..........courrueiirieieiririeieesee s 28
Figure 5-2 ODBC Data Source AAMINISIrator............cceoirieeirinieeisse e 30
Figure 5-3 ODBC MiCroSOft ACCESS SELUP.cveviriirieieirieieeesesie et 30
Figure 6-1 Messaging ArChItECIUIE.covcviiiiiieeiee e 34
Figure 6-2 SErver’s POrt AQAIESS.c.coviveiieieiice et 35
Figure 6-3 User-Agent Sign-in WINGOW.ccveiiiiinniieneesee s 36
Figure 6-4 Server Name for SIgN-iN........ccooiiieee e 37
FIgure 6-5 LOG-IN WINAOW.c.civiuiiiiiiiiiicieesis e 38
Figure 6-6 Error Message iN LOG-IN.cceiirieiriieeiriiee s 39
Figure 6-7 User-Agent Logged-in WINAOW.cccovrirnireiinnineeniee s 40
Figure 6-8 NO USEr ONIINE.cooiiiiiiiiieieeee s 41
Figure 6-9 Accessing User by [P AUIESS.coovciieiiiciiee e 42
Figure 6-10 User Window on Caller’s Side.cccceovveiiericeiiceceesee e 42
Figure 6-11 User Window 0N Callee’s SIde.cvieirieireireisees e 43
FIQUIE 6-12 MESSAQING.eeueivererierieiisieie sttt sttt sttt b e bbb et e s eenan 43
Figure 6-13 CHNEt WINAOW.coiveiiirieeisieiee et snens 44
Figure 6-14 No User-Agent Available. ..o 44
Figure 6-15 CuStomer FEEABACK.cciueiiriririeiiirise s 45
Figure 6-16 User-Agent AvailabIe.coooeiiiiiiic e 46
Figure 6-17 Call Log Database.c.cccoviveiiieieiicesice et 46
Figure 6-18 FeedBack Database ..o s 47
Figure 6-19 Entering Parameter Values for Retrieval. ..o 48
Figure 6-20 Records Retrieved for Agent Name.ccccovverneneiineieneieseeseese e 48
Figure 6-21 RepPOrt GENEIAtION.ccoviueueiiiieieiriiei et 49

LIST OF TABLES

Table Numbers Page

Table 2-1 A good SUPPOIt SYStEM FEALUIES.........coviveieiirireisisiee e 7
Table 3-1 Performance reqUIrEMENTSccoeiiiuiieierieiiee e 9
Table 3-2 Functional reqUIFEMENTS.........ccceieiiieie e 10

Chapter 1

Introduction

1.1 Preface

The Report covers comprehensively all the basic building blocks of our project. The
JAVA RMI and related stuff is explained in accordance with our Implementation
strategy. The necessary Architectures including Java-RMI architecture, messaging
architecture, applet implementation and sequence diagrams are elaborated to get a
detailed understanding of our approach and the advantages that comes with it.
Necessary information for this Draft was gathered from Internet.

1.2 Introduction

The basic objective of our project is to implement Online Customer Support service.
This would be accomplished through the incorporation of RMI Interface on the host
side. It communicates with the customer by downloading an applet on it as the
customer clicks the chat logo on the website. Accomplishing the above mentioned
objective would result in an efficient online messaging which has numerous
advantages. The objective of this Software Requirement Specification document is to
provide key software functionalities of our project as well as the applications of our

software along with its scope.

1.3 Background

In the past Online Help Desks have been implemented using various platforms like
Delphi, Visual C, XML, SQL and even Java. But the use of JAVA-RMI with a
remote access database is new idea that provides a higher level of abstraction than

socket-level programming. RMI programs are much easier to maintain than socket-

Xi

level programs. An RMI server can be modified or moved to another host without the
need to change the client application (apart from resetting the URL for locating the
server). In the conventional client—server mechanism, a client sends a message to the
server that replies with a result. The reverse is not possible: a server cannot invoke the
methods on a client. However, the RMI mechanism supports the idea of callbacks in
which the server invokes methods on the client. This facility enables interactive
distributed applications to be developed. Secondly the project helps make the website
more interactive as the viewers can get instant help through chatting live with the

support or marketing personnel.

1.4 Scope

The design and lookup of the live help application would be similar to the live help
software available. It would prompt the user to select kind of help he wants i-e
marketing or troubleshooting etc. After the selection the customer will be guided to
chat with the concerned desk. The application software would be providing smooth
communication in the form of messages. We would not be implementing VOIP
related applications in our software .So our software will not include features like

Voice Chat and Video Conferencing.

1.5 Assumptions and Dependencies

We would be using Java RMI (Remote Method Invocation) in our project. We would
be utilizing all the java techniques that determine our project scope. All our work

would be done on java platforms available that are compatible with Windows OS.

Xii

1.6 Organization of SRS

Chapter 3 highlights the key characteristics of SRS and explains how it is organized in

our project.

Xiii

Chapter 2

Literature Review

2.1 Online Support Community

An Online Support Community is generally a discussion board for questions and
answers. ldeally, it is specifically designed to allow users to easily and quickly find
answers to questions already asked and answered by others or, if they can’t find an
answer, to ask their questions for expert customers to answer. A good board allows
quick escalation of more difficult issues to your own support representative. It is also
designed to motivate other users to answer questions fast and accurately. The point of
an online support community is Questions and Answers not opinion, not commentary,
not gossip, and not personal conversations. It is about solving problems, learning, and
sharing ideas.

A Help Desk is basically an open source live support solution that helps customer
support with live help functionality that can be proactively pushed to visitors to your
site or requested by the consumer. It includes a large range of features to allow
multiple operators, multiple departments and multiple languages to be used.

2.2 Benefits of Customer-to-Customer Support

Customer support demands continue to escalate for most companies, and delivering
support is becoming more complex. Avoiding costly contacts should be top on every
customer support executive agenda.

Few companies, however, successfully leverage one of the most valuable company
assets, the loyal, dedicated, and expert customers in your installed base. Your

customers represent a huge, untapped, and virtually free support resource. Often they

Xiv

are also your strongest advocates. Among the few firms that recognize this resource
and attempt to leverage it by creating an online support community, precious few
implement appropriate plans. Ensuring the customer support community opportunity
ensures your company with the following different benefits:

2.2.1 Cost Avoidance

For many companies, a 5% improvement in call avoidance can save $1 million or
more in expenses a year. You gain huge leverage when you understand how to use
your own expert customers to help answer questions. Achieving such improvement
requires very little investment on your part.

2.2.2 Increased Value

Customers now demand service in Internet time. Where companies once prided
themselves in handling 99% of all questions within 24 to 48 hours, even an hour wait
can become an eternity in today’s world of instant communication. Most companies
can not afford to deliver such support without “breaking the bank.” Expert customers
allow you to deliver faster support without significant increases in cost. Plus,
customers are often available when your team is not 24 hours per day, 7 days per
week and 365 days per year.

2.2.3 Greater Customer Satisfaction

Most companies measure the performance of their support representatives by how
many calls they handle per day, as well as the length of time of each call. These
metrics encourage representative to spend as little time as possible with each
customer. By contrast, expert customers will often spend as much time as someone
needs. Those seeking help often get a more complete solution from your customers

while being taught to be more self-sufficient. Moreover, expert customers have real

XV

world experiences that your support representative does not have offering better

insight and understanding about customer problems.

2.2.4

Increased Revenue

A vibrant online support community allows new and prospective clients to gain

greater confidence with your products more quickly and easily. Customers have an

easy way to network with each other, getting answers to questions, along with advice

and recommendations. From whom would it be better for your new and prospective

customers to learn than your most loyal, dedicated, and expert enthusiasts?

2.3 Features of a good Customer Support System

The system should store all its information in a relational database.
Customer calls to the support desk should be logged.

It should be possible to add and search for information on problems that
have already been addressed, and which are decided for inclusion in a
coming version of the product.

It should be possible for several GUI clients to use the support system at the
same time.

It should be possible to view statistics on various data in the support

database.

Table 2-1 clearly mentions the most winning features of a good Customer Support

System.

XVi

Table 2-1 A good Support System Features

Efficient One agent can support multiple customers
Customers do not have to reveal personal
Anonymous
information
Ability to monitor support sessions in real
Call Tracking

time

Business Knowledge

Knowledge base automatically grows and

stays up to date

Easy complex task

resolution

Customers can easily get a support transcript
to review the step by step processes for

complex tasks

Competitive IT edge

Rapidly becoming a standard in eCommerce

industry

A New Standard

Customers now expect live chat support

Customer

Satisfaction

Improves customer impressions of your

customer service

Customer Loyalty

Customers will return because of your

customer service

Longevity

Proven track record

XVii

Chapter 3

Requirements Analysis
3.1 Specific Requirements

Live Help Desk is a standardized java interface for online customer interactions.
Then, we will develop an applet that will be downloaded from to the client through
which communication will take place. The task stated will be the essential input to our
system. After a thorough understanding of above task we would be able to write a
java code that supports the above mentioned requirements. The essential outcome will

be a Customer Support System with functionalities stated earlier in this report.

3.1.1 External Interface Requirements

We would be utilizing java software development kit for our project. Besides this all
the hardware interface requirements for communication over an internet would be
fulfilled. This would include identification of source and destination involved in
communication along with the port numbers being utilized. Data encryption and
security along the communication medium also needs to be implemented through

these interfaces. Databases will be used to incorporate various features in the system.

3.1.1.1 Software Interfaces
The software that is required in the successful incorporation of our Customer Support
System include

a) Microsoft Windows

b) Java IDE i.e., JBuilder 5

¢) Java Runtime Environment version. 1.5

Xviii

3.1.1.2. Hardware Interfaces

As it is defined that Live Help Desk service can be used any where in the world. The
thing that needs is the connectivity between the nodes and that is established through

internet. But in our case we would be implementing with Transmission Control

Protocol as the basic transmission protocol. The connecting wire would be RS-45.

3.1.1.3. Communication Interfaces

Instant Messaging with the client will be implemented just like any other IM client
available in the market. It will be providing you many facilities that is required in

making this communication smoother like sales and marketing and related technical

support.

3.2 Performance Requirements

Performance requirements (PR) are necessary for system design and development.
The Performance Requirements of Live Help Desk are shown in Table 3-1

Table 3-1 Performance requirements

ID Performance Requirements Criticality

The system shall support source party to get

PR-01 involved in communication with any of the High
support desk.
There should be no considerable delay from

PR-02 High
applications perspective
The system shall cope all the security

PR-03 High
related issues and data encryption

XiX

3.3 Functional Requirements

In software engineering, a functional requirement defines a function of a software-
system or its component. Functional requirements may be calculations, technical
details, data manipulation and processing and other specific functionality that show

how a use case is to be fulfilled. Table 3-2 shows functional requirements of Live Help

Desk:
Table 3-2 Functional requirements
ID Functional Requirements Type

The system should download an applet as the user

FRO1 Normal
clicks the chat logo.
The system must prompt option of choosing the type

FR02 Exciting
of support required i-e marketing or support
The system shall provide a secure and reliable

FRO3 Normal
communication
The system shall close the session once the

FRO4 Normal
communicating parties have terminated
The system should check for the validation of

FRO5 Expected
information at the destination end.
The system should provide smooth communication

FRO6 Expected
with very little delay incurred.

XX

3.4 Security/Privacy Requirements

Security and privacy is a key ingredient of any communication and in our
implementation too RMI addresses security issues by use of RMI Security manager
and Security files.

3.5 Reliability Requirements

There needs to be no loss or interruption in communication by a stranger. If a new
customer wants to chat it should not interrupt the present session. The communication
mechanism needs to be fully secure and reliable. This reliability requirement is
fulfilled by TCP.

3.6 Design Constraints

The security and reliability is a key issue related to design constraints. It limits the
options since it requires looking into numerous no of issues for secure

communication.

XXI

Chapter 4

Remote Method Invocation

4.1 Introduction

Java Remote Method Invocation (RMI) allows programmer to execute remote
function class using the same semantics as local functions calls. The server must first
bind its name to the registry. The client lookup the server name in the registry to
establish remote references. The Stub serializing the parameters to skeleton, the

skeleton invoking the remote method and serializing the result back to the stub.

SampleServer

remoteObject; public int sum(int a,int b)
int s; \17\‘ {
return a + b;
S= }
remoteObject.sum(
1,2); /

Figure 4-1 Remote function calls using Local function calls

Here is general RMI architecture:

Remote Machine

‘ RM I Server

N TN

‘ skeleton ‘

return

‘ RM1 Client

Local Machine

Figure 4-2 RMI architecture

XXii

4.2 RMI Interfaces

The RMI architecture is based on one important principle: the definition of
behaviour and the implementation of that behaviour are separate concepts. RMI
allows the code that defines the behaviour and the code that implements the
behaviour to remain separate and to run on separate JVMs. This fits nicely with
the needs of a distributed system where clients are concerned about the

definition of a service and servers are focused on providing the service.

Specifically, in RMI, the definition of a remote service is coded using a Java
interface. The implementation of the remote service is coded in a class.
Therefore, the key to understanding RMI is to remember that interfaces define

behaviour and classes define implementation.

While the Figure 4.3 illustrates this separation, remember that a Java interface

does not contain executable code.

Zlient Program Server Program
| nterface Implementation
F) 'y

Figure 4-3 RMI Interface

RMI supports two classes that implement the same interface. The first class is the
implementation of the behaviour, and it runs on the server. The second class acts as a
proxy for the remote service and it runs on the client. This is shown in the following

diagram.

XXiii

zlnterface:
Sarvice

Proxy Implemnentation

Server
} Service

Cliert
Serwvice (

Figure 4-4 RMI Service Proxy and Implementation

A client program makes method calls on the proxy object, RMI sends the request to
the remote JVM, and forwards it to the implementation. Any return values provided

by the implementation are sent back to the proxy and then to the client's program.

4.3 RMI Architecture Layers

The RMI implementation is essentially built from three abstraction layers. The first is
the Stub and Skeleton layer, which lies just beneath the view of the developer. This
layer intercepts method calls made by the client to the interface reference variable and

redirects these calls to a remote RMI service.

The next layer is the Remote Reference Layer. This layer understands how to interpret
and manage references made from clients to the remote service objects. In JDK 1.1,
this layer connects clients to remote service objects that are running and exported on a
server. The connection is a one-to-one (unicast) link. In the Java 2 SDK, this layer
was enhanced to support the activation of dormant remote service objects via Remote

Object Activation.

The transport layer is based on TCP/IP connections between machines in a network. It

provides basic connectivity, as well as some firewall penetration strategies.

XXIV

i Clien:Program) 1 Server Program

[[

L 2 L 2
Stubsz & Skeletons Stubsz & Skeletons

R
Systen

Femote Referance Layer Remote Referance Layer

Transport Lawer

Figure 4-5 RMI Architectural layers

By using a layered architecture each of the layers could be enhanced or replaced
without affecting the rest of the system. For example, the transport layer could be

replaced by a UDP/IP layer without affecting the upper layers.

4.3.1 Stub and Skeleton Layer

The stub and skeleton layer of RMI lie just beneath the view of the Java developer.

call

RMI Client RMI Server

Stub
TIEIENS

return

Figure 4-6 RMI Stub and Skeleton Layer

A client invokes a remote method, the call is first forwarded to stub. The stub is
responsible for sending the remote call over to the server-side skeleton. The stub
opening a socket to the remote server, marshaling the object parameters and
forwarding the data stream to the skeleton. The stub class plays the role of the proxy.

A skeleton contains a method that receives the remote calls, unmarshals the
parameters, and invokes the actual remote object implementation. A skeleton is a
helper class that is generated for RMI to use. The skeleton understands how to

communicate with the stub across the RMI link. The skeleton carries on a

XXV

conversation with the stub; it reads the parameters for the method call from the link,
makes the call to the remote service implementation object, accepts the return value,

and then writes the return value back to the stub.

4.3.2 Remote Reference Layer

The Remote Reference Layers defines and supports the invocation semantics of the
RMI connection. This layer provides a RemoteRef object that represents the link to the

remote service implementation object.

The stub objects use the invoke() method in RemoteRef to forward the method call.

The RemoteRef object understands the invocation semantics for remote services.

The JDK 1.1 implementation of RMI provides only one way for clients to connect to
remote service implementations: a unicast, point-to-point connection. Before a client
can use a remote service, the remote service must be instantiated on the server and
exported to the RMI system. (If it is the primary service, it must also be named and

registered in the RMI Registry).

The Java 2 SDK implementation of RMI adds a new semantic for the client-server
connection. In this version, RMI supports activatable remote objects. When a method
call is made to the proxy for an activatable object, RMI determines if the remote
service implementation object is dormant. If it is dormant, RMI will instantiate the
object and restore its state from a disk file. Once an activatable object is in memory, it

behaves just like JDK 1.1 remote service implementation objects.

Other types of connection semantics are possible. For example, with multicast, a single

proxy could send a method request to multiple implementations simultaneously and

XXVI

accept the first reply (this improves response time and possibly improves availability).

In the future, Sun may add additional invocation semantics to RMI.

4.3.3 Transport Layer

The Transport Layer makes the connection between JVMs. All connections are
stream-based network connections that use TCP/IP. Even if two JVMs are running on
the same physical computer, they connect through their host computer's TCP/IP
network protocol stack. The following diagram shows the tolerant use of TCP/IP

connections between JVMs.

JRE | | JRE JRE | | JRE
t\ Host O /‘ f Host O
h\gtwuﬁrt’é/yer / Metwark Layer
@ L T Wiehwork Cable—— | }

Figure 4-7 RMI Transport Layer

As you know, TCP/IP provides a persistent, stream-based connection between two
machines based on an IP address and port number at each end. Usually a DNS name
is used instead of an IP address. In the current release of RMI, TCP/IP connections

are used as the foundation for all machine-to-machine connections.

On top of TCP/IP, RMI uses a wire level protocol called Java Remote Method
Protocol (JRMP). JRMP is a proprietary, stream-based protocol that is only partially
specified is now in two versions. The first version was released with the JDK 1.1
version of RMI and required the use of Skeleton classes on the server. The second

version was released with the Java 2 SDK. It has been optimized for performance and

XXVii

does not require skeleton classes. Some other changes with the Java 2 SDK are that
RMI service interfaces are not required to extend from java.rmi.Remote and their

service methods do not necessarily throw RemoteException.

The RMI transport layer is designed to make a connection between clients and server,

even in the face of networking obstacles.

While the transport layer prefers to use multiple TCP/IP connections, some network
configurations only allow a single TCP/IP connection between a client and server
(some browsers restrict applets to a single network connection back to their hosting

server).

In this case, the transport layer multiplexes multiple virtual connections within a

single TCP/IP connection.

4.4

Steps of developing an RMI System:
1. Define the remote interface
2. Develop the remote object by implementing the remote interface.
3. Develop the client program.
4. Compile the Java source files.
5. Generate the client stubs and server skeletons.
6. Start the RMI registry.
7. Start the remote server objects.

8. Run the client

XXViii

4.4.1. Defining the Remote Interface

To create an RMI application, the first step is defining of a remote interface between
the client and server objects.
[* SampleServer.java */

import java.rmi.*;

public interface SampleServer extends Remote

{

public int sum(int a,int b) throws RemoteException;

4.4.2. Develop the remote object by implement the remote interface
The server is a simple unicast remote server. Create server by extending
java.rmi.server.UnicastRemoteObject.
The server uses the RMISecurityManager to protect its resources while engaging in
remote communication.
/* SampleServerIimpl.java */
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
public class SampleServerImpl extends UnicastRemoteObject
implements SampleServer
{ SampleServerImpl() throws RemoteException
{
super();}

XXiX

The server must bind its name to the registry, the client will look up the server name.
Use java.rmi.Naming class to bind the server name to registry. In this example the
name call “SAMPLE-SERVER”. In the main method of your server object, the RMI

security manager is created and installed.

/* SampleServerimpl.java */
public static void main(String args[])
{
try
{
System.setSecurityManager(new RMISecurityManager()); //set the security manager
/lcreate a local instance of the object
SampleServerimpl Server = new SampleServerimpl();
/lput the local instance in the registry
Naming.rebind("SAMPLE-SERVER" , Server);
System.out.printin("Server waiting.....");
}
catch (java.net.MalformedURLException me) {
System.out.printIn(*Malformed URL: " + me.toString()); }
catch (RemoteException re) {
System.out.printIn("Remote exception: " + re.toString()); } }

Implement the remote mehtods

XXX

/*SampleServerImpljava */

public int sum(int a,int b) throws RemoteException

{ returna+b; }}

4.4.3. Develop the client program

In order for the client object to invoke methods on the server, it must first look up the
name of server in the registry. You use the java.rmi.Naming class to lookup the server
name. The server name is specified as URL in the from (rmi:// host:port/name).
Default RMI port is 1099. The name specified in the URL must exactly match the
name that the server has bound to the registry. In this example, the name is
“SAMPLE-SERVER” The remote method invocation is programmed using the
remote interface name (remoteObject) as prefix and the remote method name (sum) as
suffix.

import java.rmi.*;

import java.rmi.server.*;

public class SampleClient

{

public static void main(String[] args)

{

/] set the security manager for the client

System.setSecurityManager(new RMISecurityManager());

/Iget the remote object from the registry
try

{

XXXI

System.out.printIn("*Security Manager loaded");

String url = "//localhost/SAMPLE-SERVER";

SampleServer remoteObject = (SampleServer)Naming.lookup(url);

System.out.printIn(*Got remote object™);

System.out.printin(" 1 + 2 =" + remoteObject.sum(1,2));
}

catch (RemoteException exc) {

System.out.printin("Error in lookup: " + exc.toString()); }

catch (java.net.MalformedURLException exc) {

System.out.printin("Malformed URL: " + exc.toString()); }

catch (java.rmi.NotBoundException exc) {

System.out.printIn(*NotBound: " + exc.toString());

} 1}

4.4.4. Compile the Java source files & generate the client stubs and server
skeletons

Assume the program compile and executing at elpis on ~/rmi. Once the interface is
completed, you need to generate stubs and skeleton code. The RMI system provides
an RMI compiler (rmic) that takes your generated interface class and procedures stub
code on its self.

elpis:~/rmi> set CLASSPATH=""~/rmi”’

elpis:~/rmi> javac SampleServer.java

elpis:~/rmi> javac SampleServerimpl.java

elpis:~/rmi> rmic SampleServerimpl

XXXI11

elpis:~/rmi> javac SampleClient.java

4.4.5 Startthe RMIregistry

The RMI applications need install to Registry. And the Registry must start manual by
call rmiregisty. The RMI registry is a Java program named rmiregistry which, when it
is executing, maintains a list of references to objects that have been registered with it.
An object is registered by a server using the rebind method from the class Naming
(part of the java.rmi package). The first argument of the rebind method is a String that
specifies: where the registry is located — by quoting the IP address of its host
(localhost can be used when the registry is on the same host as the server) and the port
on which the registry listens for communications (by default this is 1099, and can be
omitted); a programmer defined name by which clients can gain access to the object.
The RMI registry listens to a given port on the remote machine. The default port of
RMI is 1099.

To launch the RMI registry type: rmiregistry & or, if you wish to listen to a port other
than the default one, simple provide the port number:rmiregistry 1234 & keep in mind
that the RMI registry will continue to work, even when your session terminates, so be
kind and Kill the process before you leave. The rmiregistry us uses port 1099 by
default. You can also bind rmiregistry to a different port by indicating the new port
number as : rmiregistry <new port>

elpis:~/rmi> rmiregistry

remark: On Windows, you have to type in from the command line:

> start rmiregistry

XXXiii

4.4.6 Start the remote server objects & Run the client

Once the Registry is started, the server can be started and will be able to store itself in
the Registry.Because of the grained security model in Java 2.0, you must setup a
security policy for RMI by set java.security.policy to the file policy.all

elpis:~/rmi> java —Djava.security.policy=policy.all SampleServerimpl

elpis:~/rmi> java —Djava.security.policy=policy.all SampleClient

remark: Java 2 Policy Files

In Java 2, the java application must first obtain information regarding its privileges. It
can obtain the security policy through a policy file. In above example, we allow Java

code to have all permissions, the contains of the policy file policy.all is:

grant {
permission java.security.AllPermission; };
Now, we given an example for assigning resource permissions:
grant {
permission java.io.filePermission “/tmp/*”, “read”, “write”’;

permission java.net.SocketPermission “somehost.somedomain.com:999”*,’connect”;
permission java.net.SocketPermission ““*:1024-65535",”’connect,request™;
permission java.net.SocketPermission ““*:80”",”’connect”;
I
4.5 Comparison of RMI with the client-server socket mechanism
RMI is a higher level of abstraction than socket-level programming. It enables the
details of socket servers, sockets and data streams to be hidden. Although we have not

explicitly mentioned it, RMI uses a hidden multithreading system that would

otherwise have to be implemented in a socket-layer.

XXXV

RMI clients can invoke a server method directly but socket-level programming allows
only values to be passed that must then be decoded and turned into a method call by
the server. This decoding is performed automatically by RMI stubs (marshalling).
RMI programs are much easier to maintain than socket-level programs. An RMI
server can be modified or moved to another host without the need to change the client
application (apart from resetting the URL for locating the server).

RMI is implemented using socket-level programming. Socket-level programming is
viewed as a primitive mechanism that is prone to error and you should use RMI in
preference. This is similar to the relationship between semaphores and higher level
constructs such as monitors.

In the conventional client—server mechanism, a client sends a message to the server
that replies with a result. The reverse is not possible: a server cannot invoke the
methods on a client. However, the RMI mechanism supports the idea of callbacks in
which the server invokes methods on the client. This facility enables interactive
distributed applications to be developed.

While the details of this mechanism are outside the scope of this unit, the following
example illustrates what has to happen. The Internet is becoming popular for game
playing among groups of people. Each player in a group runs a client program that
sends remote method invocations to a central client. The central client’s purpose is to
coordinate the players’ activities by maintaining the state of the game and
communicating each player’s moves to the other players. As part of this process, the
server invokes client methods. However, a server cannot invoke a client’s methods
directly because the client is not a remote object. However, through Java’s callback
mechanism, each client passes a stub to the server. The stub contains an instance of

the client so that the server can invoke the client’s methods.

XXXV

Chapter 5

JAVA Database Connectivity
5.1 Introduction
Java Database Connectivity (JDBC) is an API for the Java programming language
that defines how a client may access a database. It provides methods for querying and
updating data in a database. JDBC is oriented towards relational databases.
The Java 2 Platform, Standard Edition, version 1.4 (J2SE) includes the JDBC 3.0 API
together with a reference implementation JDBC-to-ODBC Bridge, enabling
connections to any ODBC-accessible data source in the JVM host environment. This
Bridge is native code (not Java), closed source, and only appropriate for experimental
use and for situations in which no other driver is available, not least because it
provides only a limited subset of the JDBC 3.0 API, as it was originally built and
shipped with JDBC 1.0 for use with old ODBC v2.0 drivers.
5.2 Overview
JDBC has been part of the Java Standard Edition since the release of JDK 1.1. The
JDBC classes are contained in the Java package java.sql. Starting with version 3.0,
JDBC has been developed under the Java Community Process. JSR 54 specifies
JDBC 3.0, JSR 114 specifies the JDBC Rowset additions, and JSR 221 is the
specification of JDBC 4.0. JDBC allows multiple implementations to exist and be
used by the same application. The API provides a mechanism for dynamically loading
the correct Java packages and registering them with the JDBC Driver Manager. The
Driver Manager is used as a connection factory for creating JDBC connections.
JDBC connections support creating and executing statements. These may be update

statements such as SQL's CREATE, INSERT, UPDATE and DELETE, or they may

XXXVI

be query statements such as SELECT. Additionally, stored procedures may be
invoked through a JDBC connection. JDBC represents statements using one of the
following classes:

Statement — the statement is sent to the database server each and every time.

PreparedStatement — the statement is cached and then the execution path is
pre determined on the database server allowing it to be executed multiple times in an
efficient manner.

CallableStatement — used for executing stored procedures on the database.
Update statements such as INSERT, UPDATE and DELETE return an update count
that indicates how many rows were affected in the database. These statements do not
return any other information.

5.3 Key Features

The Key Features Java Database Connectivity has the following key features:

5.3.1 Full Access to Metadata

The JDBC API provides metadata access that enables the development of
sophisticated applications that need to understand the underlying facilities and
capabilities of a specific database connection.

5.3.2 No Installation

A pure JDBC technology-based driver does not require special installation; it is
automatically downloaded as part of the applet that makes the JDBC calls.

5.3.3 Database Connection Identified by URL

JDBC technology exploits the advantages of Internet-standard URLs to identify
database connections. The JDBC API includes an even better way to identify and
connect to a data source, using a DataSource object that makes code even more

portable and easier to maintain.

XXXVil

Connecting to a Data Source

[fﬂ;ﬂtj

application jdbefinventoryDB

. IND
application 2 LT naming
g Service

Figure 5-1 Connecting to Data Source

In addition to this important advantage, DataSource objects can provide connection
pooling and distributed transactions, essential for enterprise database computing. This

functionality is provided transparently to the programmer.

5.3.4 Included in the Java Platform

As a core part of the Java 2 Platform, the JDBC API is available anywhere that the
platform is. This means that your applications can truly write database applications
once and access data anywhere. The JDBC API is included in both the Java 2
Platform, Standard Edition (J2SE) and the Java 2 Platform, Enterprise Edition (J2EE),
providing server-side functionality for industrial strength scalability.

5.4 Advantages of JDBC Technology

Java Database Connectivity has the following different advantages which make it

useful in DataBase Applications:

XXXVili

5.4.1 Leverage Existing Enterprise Data

With JDBC technology, businesses are not locked in any proprietary architecture, and
can continue to use their installed databases and access information easily even if it is
stored on different database management systems.

5.4.2 Simplified Enterprise Development

The combination of the Java API and the JDBC API makes application development
easy and economical. The JDBC API is simple to learn, easy to deploy, and
inexpensive to maintain.

5.4.3 Zero Configurations for Network Computers

With the JDBC API, no configuration is required on the client side. With a driver
written in the Java programming language, all the information needed to make a
connection is completely defined by the JDBC URL or by a DataSource object
registered with a Java Naming and Directory Interface (JNDI) naming service. Zero
configurations for clients support the network computing paradigm and centralize
software maintenance.

5.5 Accessing MS Access from Java

In JAVA the Microsoft DataBase Access can be accessed in a stepwise convenient
method described below:

5.5.1 Prerequisites

An installed and licensed Easysoft JDBC-ODBC Bridge (JOB) server on a supported
Windows platform that has Microsoft Office installed. An existing Access database
file (.mdb) on the Windows machine.

5.5.2 Configuring the Microsoft Access ODBC Data Source

You will find the ODBC Administrator within Administrative Tools from your

Control Panel.

XXXIX

&1 0DBC Data Source Administrator ed B

Lger DSH System DSK | File D5t I Driversl Tracingl Connechion F'l:n:nlingl About |

Systern Data Sources:

tame: | Diriveer | Add...

Remaove

i

LConfigure...

An ODBC System data source stores information about how to connect to
the indicated data prowvider. A Spstemn data zource iz wizible to all users
an thiz maching, including HT zervices.

] I Cancel Apply Help

Figure 5-2 ODBC Data Source Administrator

From here you will create your new System DSN. Click the Add button and then

select the Microsoft Access Driver and click Finish.

ODBC Microsoft Access Setup

[rata Source MName: ||

|:|:
x

Diezcriptian: I
Cancel |
— Databaze
Databaze: Help |
Select... | Create... | Bepair... D:umpau:t...l
Advanced... |

— Suygtem D atabasze

i+ Mone
" Database:

System Database.

Optionzs >

Figure 5-3 ODBC Microsoft Access Setup

x|

Give your DSN a meaningful name and click Select. Here you will be able to browse
to your existing .mdb file.
Once you have selected the database you want to access, click OK and then OK again

to exit the dialog box. You have now created your data source.

xli

Chapter 6

The Live Help Desk
6.1 Features
Live Help Desk is an online customer support system that provides the following
different functionalities both on the Client and Agent side.

6.1.1 Agent Side Functionalities

» Sign in/Sign out

» Agent picture display

» TimeStamping and Waiting Queue

» Chatting

» Technical Support in Sales and Marketing

» Reports Generation

6.1.2 Client Side Functionalities

» Department Selection
» Chatting
» Emailing Sessions

> Feedback

6.2 Using the RMI Server

The RMI server can be used in our system by a step wise process that is explained

below:

xlii

6.2.1 The Server Interface

The server Interface not only extends the Remote Interface but also provide methods
that throw Remote Exception. In our system it is provided by ServerInterface.java

file.

6.2.2 The Server Implementation

The Server Implementation provides classes that implement methods defined in

interface. It is provided in the Serverlmpl.java file.

6.2.3 The Server

The Server.java file given is meant to bind the Serverlmpl object with the RMI
Registry Service.

6.3 RMI REGEISTRY

The RMI Registry is created using three steps
» Object Creaton
» URL of Client

» Binding Object with the URL

6.4 Messaging Architecture

The messaging architecture of the system is briefly explained by the Figure 6-1. It
consist of TCP listeners at the port 6060. We can bind the TCP Listener at any port
we wish. Every user agent is check against the database to for authentication purposes

through the RMI server.

xliii

RNI
Serverl

TUSTMER FEIRALE

r

| TCPLISTENING PORT 6060
- ;ﬂ
‘m
— L
Sales
STEP LOCIY
i o o
= CPLISTENER
= T 60
1 el il
‘m
= s SHOW NEW CHAT
5| NWINDOW ST
I Su pg[t
ADD CTCT STER-4 |
ADDINBUDDYIST g4

CHECKIVDATABASE
STEP-2

flse INCORRECTUSER

Figure 6-1 Messaging Architecture

xliv

6.5 The User Interface

Live Help Desk is a user friendly GUI oriented system that provides enhanced
interfaces for different functionalities like sign-in capability, viewing online users,
emailing, feedback etc. All these features along with the User Interfaces are discussed

here.

6.5.1 User Sign-in

The first step in this system is to know the port at which we wish to start the server.

At this port we will have to bind our server.

Enter the Port Where you wish to start the server
1111

| OK || Cancel |

Figure 6-2 Server’s Port Address

As soon as the system run it’ll display an Agent Console window where the user
agent can sign-in. It will ask for the name and password of the user-agent. For this it
will have to contact the RMI Registry. The RMI Registry will make a reference to a

remote object.

ServerlInterface ref=(Serverinterface)Naming.lookup(remoteRegURL);

if (ref.login(userName, passWord)){
String agentName=ref.getAgentName();

String agentDept=ref.getDept();

xlv

String agentLoc=ref.getLoc();

String agentCon=ref.getCont();

ref.regUnreg(IP, "online", userName);

String[] onContact=ref.onlineContact(userName)

JOptionPane.showMessageDialog(null, *Welcome You Are Connected!!");
loggedIinFrame(userName,agentName, agentDept,agentLoc,agentCon, onContact);}

& Live Messenger
File Contact Tools Help

Agent Console

Sign In |

Figure 6-3 User-Agent Sign-In Window

When the Sign In button is clicked it’ll ask for the IP address and the port at which

server is running. For this the Remote user is checked against the IP address.

Serverlnterface ref = (Serverinterface) Naming.lookup(remoteRegURL);

String IP=JOptionPane.showlnputDialog("Enter IP Address");

xIvi

£ Live Mess [- [B]x]
File Contact Tools Help

Enter Server Name

| 0K || Cancel |

Figure 6-4 Server Name for Sign-in

After that the Remote user is checked against the IP.

if(ref.RemoteUser(IP)){showNewChatWindow(ref.getRemoteUserName(),

ref.getRemoteAgentName(),

ref.getRemoteDept(), ref.getRemoteLoc(), IP);

6.5.2 User Login

Now the user needs to login and is verified through the database. Database is updated as soon

as the user logs in.

ref.regUnreg(IP, "online", userName);

String[] onContact=ref.onlineContact(userName);

xlvii

JOptionPane.showMessageDialog(null, "Welcome You Are Connected!!
loggedInFrame(userName,agentName, agentDept,agentLoc,agentCon, onContact);

& Please Sign-in [‘:I['ilgl

Please snier Username and Password

Lsername:
kzshif |
Passwaorid:

1 |

Status: Online -

[_| Remember my ID
[_] Remember my Password
[_| Login me automatically

| signin

Figure 6-5 Log-in Window

If the user is not verified in the database, an error message will be displayed.

JOptionPane.showMessageDialog(null, "Please Enter Username and Password",

"ERROR!!!", JOptionPane.ERROR_MESSAGE);

xIviii

Ty T— 9 =E3

= Please Sign-in - [B][]
Please enter Username and Password

Username:
|n iazZi
Password:

|

Status: | Online

Figure 6-6 Error Message in Log-in

Once the user has logged in a login window is displayed.

loggedIinFrame(userName,agentName, agentDept,agentLoc,agentCon, onContact);

The user-agent picture is also displayed in the Log-in window.

LoadPicture(String path) {
picture = new JLabel(new Imagelcon(path));
picture.setPreferredSize(new Dimension(70, 100));
picture.setBorder(BorderFactory.createMatteBorder(
2,1, 2,2, Color.black));

picturePanel = new JPanel(new GridBagLayout());

xlix

picturePanel.setBackground(Color.LIGHT_GRAY);
picturePanel.add(picture); }
The online contact are also displayed in a buddy list.
String[] onContact=ref.onlineContact(userName);

2 Fahd Miazi - Agent Console |Z||E|[‘Z|
File Contact Tools Help

Fahd Niazi
Support
Dliataali
fahd@lmehelp com

rOnline Contacts
192.168.13.41

Add Contact

Figure 6-7 User-Agent Logged-in window

6.5.3 Adding Contacts
When the Add Contact button is pressed in the log-in frame a Remote reference is

made to the user to view any online contacts that are to be added.

if(ref.RemoteUser(1P)){
showNewChatWindow(ref.getRemoteUserName(), ref.getRemoteAgentName(),
ref.getRemoteDept(), ref.getRemoteLoc(), IP);

If there are no users online an appropriate error message is displayed.

£ ai Kashil_Agent Consoie | 5[5
File Contact Tools Help

DMalik Kashif
Support

Sargodha
kasifidlmehelp corm

rOnline Contacts
192.168.13.40

Ho User Online

Figure 6-8 No User Online

However if there is some user then the user is contacted by it’s IP address.

#5 Malik Kashif - Agent 'Cnnsnle_|z|@||z|
File Contact Tools

Malilc Kashif
Support

Bargodha
kasifi@lrehelp . com

rOnline Contacts
192.168.13.40

Enter IP Address
[192.168.13.21]

| ok

Figure 6-9 Accessing User by IP address

6.5.4 Chat Windows

Once the user has been found the chat window for that user is displayed on the callers

side.

@;_Mglik.m.hitﬁ,jggnt..Eg.n.:nle:gHE
File Contact Tools Help

Malik Kashif
Support

Bargodha
kasitidlmehelp com

rOnline Contacts
192168.1341

Email || Font || Emotions

|‘ Send

Add Contact |‘ End Chat

Figure 6-10 User Window on Callers side

Similarly a chat window of the caller will also be displayed on the other side also.

This will display the chat window of the callee on the callers side.

elp
T alilc K ashifl
Support
FPargodha
<40
Email | Font | Emotions
| Send
| End Chat

Figure 6-11 User Window on Callee’s side

After this both the user can have live chat and the messages will be displayed in their

chat

windows.

&

vIalilc K ashif
Support

argodha

I\r":vi

azi =ays . hareat project
arkinglLocal{remotef<ashif) | welcome

niazi says . hgreat project
orkinglLocal{remoteskashif) | welcome

Email || Font || Emations | Email || Font || Emaotions
I| Send | Send
I‘ End Chat | End Chat

Figure 6-12 Messaging

6.6 Client-Agent Interaction

The client can contact the user-agents by an applet provided. The client window
contains the clients name as well as the E-mail id where the client will receive

complete session description as a mail in his account.

2 Live Help Desk

El=

|asim elahi
E-mail

|ever‘there@hc\tmail.cnm

= Custormer Support
" Technhical Support

o guestion

Start Chat

Figure 6-13 Client Window

If there is no user-agent online an appropriate message is displayed to put the client the
waiting queue.

@ Please Wait while vour call is connected to agent available

Figure 6-14 No User-Agent Available

liv

6.6.1 Clients Feeback

Once the user has completed the chat with the user-agent he can send a feedback that

will be stored in the database of the server.

CUSTOMER FEEDBACK
How Did Yous Find Ouwnr Service 7 [T -

Tl | Rese

Figure 6-15 Customer FeedBack

6.7 The Database

The database for all interactions that happen between user agents pr those among
clients and user agents are stored in different database tables that are updated

remotely.

6.7.1 The Agent Data

The database for agent’s data is kept in the AgentData table the contains information
about agentName, agwntDept, agentLocation, username, password, IPAddress,status

and TimeStamping.

it untitled - Paint |

'n“ i A R TableTools | Live DB : Database (Access 2007) - Microsoft Access - =
e

| Hame I Create External Data Database Toals Datashest !

M i-] A calon Ju -

=

||_@ = New Z Totals | ‘%i Y \;j Selection = ﬁ 'ELRept
eHsave Y Spelling ﬂ, V3 Advanced -
i Filter i

23 S = GoT
View || Paste : || &ty - - i= by ||| Refresh Find
- - j u|@i S Al }(Delete ~ EMore' 77 f Togugle Filter [} Seley
Views || Clipbo... [Fant i} Rich Text Recards Sort & Filter Find
Q Security Warning Certain content in the database has been disabled Options..
Al Tables | entData.
agent... & ﬁ ID v‘agentName - | agentDept v‘agentLocati(v agentContac - username - | password - | IPaddress -| status - timeS
B agew || 1 Omer Moeen Techincal Karachi omer@livehel| omer 11 192.168.13.2 | Online 18:21:1
clllog 4 | 2 Fahd Niazi Support Mianwali fahd@livehelp niazi £ 1152.168.13.1 online 13:56:1
B . || 3 Malik Kashif | Support Sargodha kasif@livehelp kashif 33 0 Offline 112:12:2
[ty | 4 Ghazali Faroog Technical Peshawar ghazali@livehe ghazali 44 0 Offline 21:16:3
1 reed. *. (New)
Record: M 4 30f4 | b M b | o Filier ||_Sg‘_a_r_(r\ 1 ‘1 [i
Datasheet View | Hum Lok [[E a8 & ¢

Figure 6-16 User-Agent Database

6.7.2 Call Log

Similarly a log is maintained for all calls in the Call Log table. It contain information
like agentName, customerName, customerEmail, startTime, endTime,

operatingSystem and complete chat.

‘.E - = TableTools | Live DB : Database (Access 2007) - Microsoft.. - = X
A T [1
| Home Create External Data Databasz Tools | Datashest @
| % @' %ﬁ u{ Insert Data Type: !Memo v\I—'_T. Unigue a = %
#‘ Delete Format: |Farmatting = |7 Is Required =
View Mew Add Existing Lookup T T Relationships Object
- Field Fields Column =0 Rename |s __% __’_| (-Ug-rng_ Dependencies
L Views Fields & Columns | Data Type & Formatting Relatianships I
I 1 2
‘@ Security Warning Certain content in the database has been disabled Options.., i
ag.. # 4|| agentName - customerName | customerEmail - | IPadd | startTime | endTime ~| chat 4
= a. | | Fahd Niazi Ismail ismail @yahoo.com 192.168.13.40 | 22:33:24 22:33:34 HowRu? ha‘%
Lz | Malik Kashit Umar Umar@hotmail.con 192.168.13.54 10:29:42 10:30:18 Hello there?
H . i Omer Moeen Ali alis@gmail.com | 192.168.2.145 '13:18:22 13:18:49 (He OmerHr
R zlﬁhazali Rizwan rizwan@yahoo.cor 192.154.12.85 11:14:55 11:15:16 HiGhalbli?rv
EEE | ; : il LA
B . v||Record 0 aora |y we [oorie [| |4 i | b
Datasheet View | ok (B @ & 2]

Figure 6-17 Call Log Database

lvi

6.7.3 Feed-Back

Similarly the client’s feedback is stored in FeedBack table containing customerName,

customerEmail, customerlP, rating and comments.

@ Security Warning Certain content in the database has been disabled | Cptions.. |

e e
aentda 4 | ostomerName - customerkmall - customer? » rating - | comments ~
=1 agentData: Ta, Imtiez Ilmtiaz@helpme.cur 192.168.13.40 null good answer
allg 4| M ssimelai@yafiooe 1921681340 null Excellent

E alllag : Table *

feedBack A

= feedBack : Table

Figure 6-18 Feedback Database

6.8 Report Generation

At the end of session the user-agent can generate reports for service optimization and

quality assurance.

For Example, if we have the callLog Table given, we can retrieve any of the values in

database against a given parameter. In Figure 6-18 we have used the AGENT NAME

as a parameter value.

Ivii

TableTools | Live DB : Database (Access 2007) - Microsoft Access -

‘ Home \ Creste BdfernalData DatabaseTools Datashest

"%l_;/

— = =t A ¥ Y’ e g
J i " | H@ = New X Totals zl Y Selection [ﬁ 2 Replz
h = e Speling | §| T advanced + || = GoT
P t s e Ref Filter
s "|E|A et | P \| ;:T.s X Delete » Hhtorer || - W/ Toggle Filter ,‘ g Selec
s .Umbuard "r Fant G| RichTet _;' Records _i' Sort & Filter ‘l’_ Find
fables /|« J alllog
ntData & || | agentName - }customerName + | customerEmail - IPadd - | startTime - | endTime ~-| chat -
agentDats . || FahdNiazi AU ali@hotmail.com Window %P 127.0.0.1 22334 22:33:34 hello buddy w
agentDats ., || |FahdNiazi UMAR NG Enter Parameter Value |E|[X| 168.13.40 10:29:42 10:30:18 hinhru? wat
Malik Kashif ~ SAMI sami@ 168.13.40 113:18:22 13:18:49 Aslam-u-alaiki
agentData . ||— s AGENT NAME
. W FahdNiazi ~ ADNAN everth 168.13.40 14:43:48 14:49:50 Uthere? Wats
‘“-jm T“ Omer Mosen ADEEL stuffird et 168.13.40 1125:40 112556 hijigz.havag
alllog: Ta. || 453 ! ;
FahdNiazi ~ NAUMAN naumi - 168.13.40 11:31:13 11:31:22 hella friend...
— oK -Cancel
 |Ghazali Faroog HASSAN hassan - - 168.13.40 11:35:20 11:35:4 Ghazalir u thre
alllog Query || |Fahd Niazi SHEROZ sheri@yahoo.com Window XP 192.168.13.40 11:3%:17 11:39:21 he fahd rubus

Figure 6-19 Entering Parameter Values for Retrieval
Entering the Ok Button will return another table containing records against the given
parameter value. The number of records as well as whole information about the Agent Name

will be shown in the table. Figure 6-19 illustrates this in a table.

ﬂ'ﬂ 0 Live DB : Database (Access 2007) - Microsoft Access = "X
‘Home| Create BxtemalData Database Tooks @

= e ! s "
% B : ICE\IbI’\ o i" H@ & Hew ETotaEE 3 Y Uy Seldtion [ﬁ W
2 Sae ?Spelimg ﬂ .

ﬁ Advanced * -

e e : ‘

‘ VIS‘W ‘ Paste jiI|B_in|m: Q:@@' : Ahj_HRm&fh XDelete'EMare' [?j b w'TeggIan i Lm
| Ve Cgbo 5 | Fon O Rt | Rew | taie
HTales ¥ ¢ T@ alog ey

agentData 4 & customerEmail + IPadd endlime - chat - &
5 agentta. . ELRE AU ali@hotmail.com Window XP ol pRER hello buddy w
2 agentda. _!Fahd Niazi UMAR umar@yahoo.com WindowXP 1921681340 102942 1030138 hinhru? watH
s _|Fathiazi ADNAN everthera@hotms Window XP 1921681340 144848 144950 Uthere? Wats
- _!Fathiazi NAUMAN naumi@msn.com Wincow P 192.168.13.40 113113 13t hello friend...
%lmg : _|Fathiazi SHEROZ sheri@yzhoo.com WindowXP | 192.168.1340 11:3%:17 11352 he fahd rubut
= ol T T | o it [Searr | |
Datssheet View | flm Lock ‘ B dny

Figure 6-20 Records Retrieved for Agent Name

Iviii

In the end an exclusive report is generated which can be used for over viewing of previous

chat histories.

3 R
|

agentName ~ customerName — customerEml Operating System [Pad dtarTime endTime ¢ that

FahdNiazi - AL dighotmailcom Window® 17001 RBAU 2BY Eheilobuddywatsup
FahdNiazi ~ UMAR umar@yanoocom Window® 19218340 102947 103018 ;hinhru?watru

FahdNiazi - ADNAN averthere@hotmailco Window)® 1921631340 144848 1404930 EUthere?Watsup
i i

FahdNiai NAUMAN neumigmsncom WindowXP D2168340 113113 13122 E-heilofriend...
FahdNiazi SHERQZ sherigyanoocom Window® 1921340 103917 11392 ;hefahdrubusynow

Figure 6-21 Report Generation

lix

Chapter 7

Analysis and Conclusion
7.1 Analysis

We studied the drivers of customer satisfaction for Online marketing, Sales and
Customer Support application systems. Based on the existing literature on business
value of information technology, we provided a framework to understand the drivers
of overall customer satisfaction with Internet solutions. Our analysis is based on data
collected from a survey of existing customer support systems that use Internet
marketing applications. The overall goal is to provide customers such features that
lower total cost of ownership and provide competitive benefits as critical drivers of

overall customer satisfaction with the systems.

7.2 Conclusion

In this research we have reported an empirical study that identifies the drivers of
customer satisfaction for internet marketing application systems. Our results provide
insights for Internet solution vendors in their product development and design
decisions. Our findings suggest that vendors should attempt to focus on the ‘whole
product’ by augmenting their core product with features and services that lower the

total cost of ownership rather than just the initial purchase value of Internet systems .

A notable limitation in our analysis is that we have addressed only the perceived
benefits of Internet solutions. A further challenge is to assess the business value from
Internet and other electronic commerce solutions quantitatively. Senior management
in organizations should be convinced that an Internet application is an empowering
technology and may succeed only if all the users are allowed to access and share the

appropriate information across corporate networks. However this openness to

Ix

information sharing should be supported with security controls and access
permissions for confidential data. In addition, management may need to ensure that
the Internets are being used by the employees for the right applications that will add

value to any firm.

7.3 Future Work

The project can further be enhanced to address the quantifiable business value from
Internet systems in future research. A successful integration of the Internet into the
business processes and culture of an organization will depend on establishing a broad
level of ownership and commitment. The evolution and direction of Internet
applications should not remain a responsibility of the information technology group
within organizations but involve a broader forum including senior executives from
multiple disciplines. In addition, this evolution should also identify the quantitative
metrics for assessing the business value from these systems at the appropriate level of

process changes by these applications.

In summary, answers to questions such as how to keep track of information or what
kind of management rules to impose for use of Customer Support systems are

important and should be addressed in future research.

IXi

Annexure A: Source Code
import java.awt.*;
import java.awt.Dimension;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.text.SimpleDateFormat;
import java.rmi.*;
IlJAVA mail API
import javax.mail.*;
import javax.mail.internet.*;
/IThe Server Interface
public interface Serverinterface extends Remote{
public boolean login(String u_name, String Passwrd) throws RemoteException;
public void regUnreg(String IP, String status, String user) throws RemoteException;
public void timeSetting(String IP, String time) throws RemoteException;
public String[] onlineContact(String user) throws RemoteException;
public boolean agentSearch(String dept)throws RemoteException;

public void callLog(String agent,String customer, String email, String ip,String
st,String et, String chat)throws RemoteException;

public boolean searchLog()throws RemoteException;

//Local User Set methods

public void setUserName(String name)throws RemoteException;
public void setagentName(String a_name)throws RemoteException;

public void setDept(String a_dept)throws RemoteException;

Ixii

public void setLoc(String a_loc)throws RemoteException;

public void setCont(String a_con)throws RemoteException;

public void setIP(String ip)throws RemoteException;

public void setStatus(String user,String state)throws RemoteException;

public void feedBack(String cust, String em, String ip,String r,String c¢) throws
RemoteException;

/ICustomer setMethods

public void setCustomer(String cn)throws RemoteException;

public void setCustomerEmail(String ce)throws RemoteException;
public void setCustomerlIP(String cip)throws RemoteException;
/lcustomer getMethods

public String getCustomer()throws RemoteException;

public String getCustomerEmail()throws RemoteException;

public String getCustomerIP()throws RemoteException;
/[Local User get methods

public String getUserName()throws RemoteException;

public String getAgentName()throws RemoteException;

public String getDept()throws RemoteException;

public String getLoc()throws RemoteException;

public String getCont()throws RemoteException;

public String getlP()throws RemoteException;

public String getStatus()throws RemoteException;

//Remote User set methods

public void setRemoteUserName(String name)throws RemoteException;
public void setRemoteAgentName(String name)throws RemoteException;

public void setRemoteDept(String name)throws RemoteException;

Ixiii

public void setRemoteLoc(String name)throws RemoteException;
public void setRemoteCon(String name)throws RemoteException;
public boolean RemoteUser(String IP)throws RemoteException;

public String getRemoteUserName()throws RemoteException;

public String getRemoteAgentName()throws RemoteException;

public String getRemoteDept()throws RemoteException;

public String getRemoteLoc()throws RemoteException;

public String getRemoteCon()throws RemoteException;}//end interface
/[The Server Implementation

public class ServerImpl extends UnicastRemoteObject implements
Serverlnterface{

private Connection con = null;
private Statement st = null;
final String DRIVER = "sun.jdbc.odbc.JdbcOdbcDriver";

public String username, password, agentname,location,dept,contact,status, IP,
remoteUser, remoteAgentName,remoteDept, remoteLoc, remoteCon;

public String customer,customerEmail, customerl|P;
public ServerImpl() throws RemoteException{
try{
Class.forName(DRIVER);
con = DriverManager.getConnection("jdbc:odbc:Live_DB","""™);
st = con.createStatement();}
catch(SQLException e)
{e.printStackTrace();}
catch(ClassNotFoundException ce)

{ce.printStackTrace();}

Ixiv

try { }//end constructor
public boolean login(String u_name, String pswd) throws RemoteException{
{ Dboolean found=false;
username=u_name;
password=pswd,;
try {

st = con.createStatement();
String namequery = "SELECT * FROM agentData";

namequery +=" WHERE username ="' + username + "AND password=
Ill+password+lllll;

ResultSet resultset = st.executeQuery(namequery);
if(resultset.next()) {

if((username.equals(resultset.getString(“username™)))&&(password.equals(resultset.g
etString("password™))))

{
setUserName(username);
setagentName(resultset.getString("agentName"));
setLoc(resultset.getString("agentLocation"));
setDept(resultset.getString(“"agentDept"));
setCont(resultset.getString(""agentContact"));

found = true;

}
else{}

}/end outer if

else {

Ixv

JOptionPane.showMessageDialog(null, "Invalid username or Password", "Invalid
Password",JOptionPane. ERROR_MESSAGE);

found=false;} }//end try

catch(SQLEXxception e){ e.printStackTrace();}
catch(RemoteException e){ e.printStackTrace();}
return found; }//end login }

public void regUnreg(String IPadd, String state, String user) throws
RemoteException{

IP=IPadd;
status=state;
username=user;
try{
st=con.createStatement();

String query="UPDATE agentData SET IPaddress=""+IP+",

status=""+status+" WHERE username="'+username+"";"";
st.executeUpdate(query); }/end try
catch(SQLExceptione) { }
catch(Exceptione) { } }/end reg
public String[] onlineContact(String user) throws RemoteException{
String username=user;
String[] online=new String[4];
String[] papu={"No Contact Online"};
try{ st=con.createStatement();

String query="SELECT IPaddress FROM agentData WHERE status="online’ AND
NOT (username =""+username+"");";

ResultSet rs=st.executeQuery(query);

intj=0;

Ixvi

while (rs.next()) {
online[j] = rs.getString("IPaddress");
System.out.printin(online[j]);
j++; } MHlendtry
catch(SQLException e){ e.printStackTrace();}//end catch
return online; }//end onlineContact
public boolean agentSearch(String department)throws RemoteException{

boolean available=false;
String dept=department;

try

{ st =con.createStatement();

String query = "SELECT * FROM agentData WHERE agentDept = "+dept+"" AND
status= 'online' ORDER BY timeStmp";

ResultSet resultset = st.executeQuery(query);

if(resultset.next()){
setUserName(resultset.getString(“"username));
setagentName(resultset.getString("agentName"));
setLoc(resultset.getString("agentLocation"));
setDept(resultset.getString("agentDept"));
setCont(resultset.getString(""agentContact"));
setIP(resultset.getString("IPaddress"));
available = true;
}

else{available=false;}

}Ylend try

catch(SQLEXxception e){ e.printStackTrace();}

Ixvii

catch(RemoteException e){e.printStackTrace();
}
return available;}
public boolean RemoteUser(String ip)throws RemoteException{
boolean exits=false;
String IP=ip;
try{
st = con.createStatement();

String query ="SELECT * FROM agentData WHERE status= 'online’ AND
IPaddress=""+IP+ "";";

ResultSet resultset = st.executeQuery(query);

if(resultset.next()){
setRemoteUserName(resultset.getString(*'username™));
setRemoteAgentName(resultset.getString(“"agentName"));
setRemoteLoc(resultset.getString("agentLocation™));
setRemoteDept(resultset.getString("agentDept"));
setRemoteCon(resultset.getString(""agentContact"));
exits=true; }

else{

JOptionPane.showMessageDialog(null,"No User Online™);

exits=false; } }

catch(Exception e){ }

return exits; }/end remoteUser

public void setStatus(String ipadd,String state)throws RemoteException{

status=state;

Ixviii

String IPad=ipadd,
try{ st=con.createStatement();

String query="UPDATE agentData SET status=""+state+"' WHERE
IPaddress=""+IPad+";";

st.executeUpdate(query); }//end try

catch(SQLException e){ e.printStackTrace();}

catch(Exception e){ e.printStackTrace();}
}
public void timeSetting(String ip, String t) throws RemoteException{
String IPadd=ip;
String time=t;

try{
st=con.createStatement();

String query="UPDATE agentData SET timeStmp=""+time+" WHERE

st.executeUpdate(query);}/end try
catch(SQLException e)
{
System.out.print("\nSQL exception fail to set timeStamp\n");
e.printStackTrace();
}
catch(Exception e) {System.out.print("\n fail to set timeStamp");}}

public void callLog(String agent,String cust, String em, String ip,String stime,String
et, String chat)throws RemoteException{

String Agent=agent;
String customer=cust;

String email=em;

Ixix

String IPadd=ip;
String startTime=stime;
String endTime=et;
String chatLog=chat;
try{
st=con.createStatement();
String query="INSERT INTO callLog VALUES
"+Agent+",""+customer+",""+email+","'+1Padd+",""+startTime+","'+end Time+"' "'+
chatLog+");";
st.executeUpdate(query); }/end try
catch(SQLException e) { e.printStackTrace(); }
catch(Exception e) {e.printStackTrace();}}
public boolean searchLog()throws RemoteException{
boolean found=false;
try{

st = con.createStatement();

String query = "SELECT * FROM callLog ORDER BY 'endTime'
DESC";

ResultSet resultset = st.executeQuery(query);

if(resultset.next()) {
setCustomer(resultset.getString(""customerName™"));
setCustomerEmail(resultset.getString(*customerEmail™));
setCustomerlP(resultset.getString("1Padd"));
found = true; }

else{found=false;}}//end try

catch(SQLEXxception e) e.printStackTrace();

catch(RemoteException e) { e.printStackTrace();

Ixx

return found;

¥

public void feedBack(String cust, String em, String ip,String r,String c)throws
RemoteException

{
String customer=cust;
String email=em;
String IPadd=ip;
String rating=r;
String comments=c;
try{
st=con.createStatement();

String query="INSERT INTO feedBack VALUES
('"+CUSt0mer+"','"+emai|+"','"+|Padd+"',"'+rating+"',m+C0mmentS+"');";

st.executeUpdate(query); }/end try
catch(SQLException e){e.printStackTrace();}
catch(Exception e) { e.printStackTrace();}//set methods for Local User
public void setUserName(String name)throws RemoteException{
username=name;}
public void setagentName(String a_name)throws RemoteException{
agentname=a_name;}
public void setDept(String a_dept)throws RemoteException{
dept=a_dept;}
public void setLoc(String a_loc)throws RemoteException{
location=a_loc;}

public void setCont(String a_con)throws RemoteException{

Ixxi

contact=a_con;
public void setIP(String ip)throws RemoteException{
IP=ip; //get methods for LocalUser
public String getUserName()throws RemoteException{
return username;}
public String getAgentName()throws RemoteException{
return agentname;}
public String getDept()throws RemoteException{
return dept; }
public String getLoc()throws RemoteException{
return location;}
public String getCont()throws RemoteException{
return contact;}
public String getlP()throws RemoteException{
return IP;}
public String getStatus()throws RemoteException{
return status;}
Iset Methods for customer
public void setCustomer(String cn)throws RemoteException{
customer=cn; }
public void setCustomerEmail(String ce)throws RemoteException{
customerEmail=ce;
public void setCustomerlIP(String cip)throws RemoteException{
customerlP=cip;}

/lget Methods for Customer

Ixxii

public String getCustomer()throws RemoteException{
return customer;}
public String getCustomerEmail()throws RemoteException{
return customerEmail;}
public String getCustomerIP()throws RemoteException{
return customerlP;}
/Iset method for remote user
public void setRemoteUserName(String u)throws RemoteException{
remoteUser=u;}
public void setRemoteAgentName(String name)throws RemoteException{
remoteAgentName=name;}
public void setRemoteDept(String d)throws RemoteException{
remoteDept=d; }
public void setRemoteLoc(String l)throws RemoteException{
remotelLoc=I;}
public void setRemoteCon(String c)throws RemoteException{
remoteCon=c;}
/lget methods for remoteUser
public String getRemoteUserName()throws RemoteException{
return remoteUser;}
public String getRemoteAgentName()throws RemoteException{
return remoteAgentName;}
public String getRemoteDept()throws RemoteException{
return remoteDept;}

public String getRemotelLoc()throws RemoteException{return remoteLoc;}

Ixxiii

public String getRemoteCon()throws RemoteException{return remoteCon;}
}/end class

/[The Server

public class Server {

public Server() {

public static void main(String args[]) throws Exception{

Serverlmpl liveObject = new Serverimpl();

int hostPort = Integer.parselnt(javax.swing.JOptionPane.showlInputDialog(null,"Enter
the Port Where you wish to start the server"));

String hostName = InetAddress.getLocalHost().getHostName();
String registryURL = "rmi://" + hostName + ":" + hostPort + "/server";
LocateRegistry.createRegistry(hostPort);
Naming.bind(registryURL,liveObject);
System.out.printin("Server is Online at " + hostName + ™" + hostPort); }
private void jbinit() throws Exception {
3s
/ITCP Channel
public class TCPChannel {
private Socket outSocket;
private ObjectOutputStream outgoingChannel,
int port;
int tooPort=6060;
private String myAddress;
private InetAddress peerAddress;
private int peerPort;

public static String expMessage = null;

Ixxiv

public TCPChannel() {

public void sendRequest(String message, String IP) {
System.out.print("#H#HHEH#HH##H#HStart of Messaget#HHHHHHHIHH");
String toAddress = IP;
System.out.printin(*\n\nRemote Address : " + toAddress+ " port is : " +tooPort);
System.out.printin(message.toString());

try {

SocketAddress sockAddr = new
InetSocketAddress(InetAddress.getByName(toAddress),

tooPort); //new InetSocketAddress(Address, port);
System.out.print("Sending Message at\t" + sockAddr.toString());
outSocket = new Socket();
outSocket.connect(sockAddr);
outgoingChannel = new ObjectOutputStream(outSocket.getOutputStream());
//String strMsg = null;
/IstrMsg = new String(message.toString());
outgoingChannel.writeObject(message);
outgoingChannel.flush();
outgoingChannel.close();
outSocket.close();
System.out.printIn("\n\tMessage Sending Successful);
}
catch (Exception exp) {
System.out.printin(exp.getMessage());
expMessage = exp.getMessage();

Il return false;}//return true;}

Ixxv

public void sendWindow(String message, String IP, String MyIP) {

String fromAddress=MyIP;

System.out.print("#HHEH#HHI#H#HStart of Message##ttHH#HiHHH?"),

String toAddress = IP;

[listener.showWin(fromAddress);

System.out.printin(*\n\nFrom Address : " + fromAddress+ " port is : " +tooPort);
System.out.printin(message.toString());

try {
SocketAddress sockAddr = new
InetSocketAddress(InetAddress.getByName(toAddress),tooPort); //new
InetSocketAddress(Address, port);
System.out.print("Sending Message at\t" + sockAddr.toString());
outSocket = new Socket();
outSocket.connect(sockAddr);
outgoingChannel = new ObjectOutputStream(outSocket.getOutputStream());
//String strMsg = null;

/strMsg = new String(message.toString());
outgoingChannel.writeObject(message);

outgoingChannel.flush();

outgoingChannel.close();

outSocket.close();

System.out.printin(*\n\tMessage Sending Successful);

}

catch (Exception exp) {

System.out.printin(exp.getMessage());

expMessage = exp.getMessage();// return false; }

Ixxvi

/lreturn true; }
/ITCP Listener
public class TCPListener implements Runnable {
public TCPListener() {
private ServerSocket listenSocket = null;
private Socket clientSocket = null;
private ObjectinputStream incommingChannel = null;
TCPChannel tcpChannel = null;
AgentConsole agentConsole=null;
static boolean isActive = false;

String LocalAgent,locallP,remotelP,remoteRegURL, remoteUser, remoteAgent,
remoteDept, remotelLoc;

public TCPListener(String registry,String ip) {
setRegistry("rmi://niazi:1111/server™);
setLocallP(ip);

tcpChannel = new TCPChannel();}

public TCPListener(String ip) {

setRemotelP(ip);}
public void listen() {
try {
InetAddress addr = InetAddress.getLocalHost();
listenSocket = new ServerSocket(6060, -1, addr);
System.out.printin("Starting TCP Listener at: " +

listenSocket.getLocalSocketAddress().toString());

Ixxvii

//IRead the Messages
while (true) {

/[Accept Connection

clientSocket = listenSocket.accept();

//Get Inputstream

incommingChannel = new ObjectinputStream(clientSocket.getIinputStream());

//Loop for reading the contents

/lint count = incommingChannel.available();

/[System.out.printin(count);

I byte[] buffer = new byte[count + 1];

/lincommingChannel.read(buffer);

/[String msg = new String(buffer, "utf-8");

/I buffer = null;

Object msg = incommingChannel.readObject();

String comp=msg.toString().substring(0,6);

System.out.print(comp);

System.out.printIn("\nlP : "+msg.toString().substring(7,19));

if (msg.toString().substring(0,6).matches("INVITE")) {

System.out.println(msg.toString().substring(7,19));

setRemotelP(msg.toString().substring(7,19).trim());
System.out.printin("\nReceiced Invite Request form "+getRemotelP());
System.out.print("\n Registry : "+remoteRegURL);
showWin();
agentConsole.chatWindow = new

ChatWindow(getRemoteUser(),getRemoteAgent(),getRemoteDept(),
getRemoteLoc(), getRemotelP(),getRemoteReg());

Ixxviii

agentConsole.chatWindow.init();
System.out.print("\n OKKK");
agentConsole.chatWindow.setParent(agentConsole);
agentConsole.chatWindow.setSendWindow(false);

}

processRequest(msg.toString());

/lend outerif
} /lend while
}
catch (Exception exp) {
exp.getMessage(); }}
public void showWin(){
try {
Serverinterface ref = (Serverinterface) Naming.lookup(getRemoteReg());
ref.RemoteUser(getRemotelP());
setRemoteUser(ref.getRemoteUserName());
setRemoteAgent(ref.getRemote AgentName());
setRemoteDept(ref.getRemoteDept());
setRemoteLoc(ref.getRemotelLoc()); }
catch(Exceptione){ }}
public void processRequest(String request) {

if (AgentConsole.chatWindow != null &&
AgentConsole.chatWindow.isSendWindow()) {

AgentConsole.chatWindow.messageArea.append("Local(remote/Kashif) ;
request.toString()+"\n");}

Ixxix

else if (AgentConsole.chatWindow != null &&
IAgentConsole.chatWindow.isSendWindow()) {

AgentConsole.chatWindow.messageArea.append(getRemoteUser()+" says : "
+request.toString()+"\n"); } }

public void setRegistry(String reg){
remoteRegURL=reg; }
public void setRemoteUser(String u){
remoteUser=u; }
public void setRemoteAgent(String a){
remoteAgent=a;}
public void setRemoteDept(String d){
remoteAgent=d;}
public void setRemoteLoc(String 1){
remoteLoc=I; }
public void setLocalIP(String ip){
locallP=ip;}
public void setRemotelP(String ip){
remotelP=ip; }
public String getRemoteReg(){
return remoteRegURL; }
public String getLocallP(){
return locallP; }
public String getRemotelP(){
return remotelP;}
public String getRemoteUser(){

Font f=new Font("Serif", Font.BOLD, 14);

IXxx

return remoteUser;}
public String getRemoteAgent(){
return remoteAgent;}
public String getRemoteDept(){
return remoteDept; }
public String getRemoteLoc(){
return remoteLoc; }
public void run() { listen(); }

public class ClientApplet extends JApplet implements WindowL.istener, Runnable{
public ClientApplet() {

JFrame loginWindow;

JTextField nameField, emailField;

JRadioButton support, technical,

JLabel namelbl, emaillbl, picture;

JPanel headerPanel,inputPanel,radioPanel,questionPanel, picturePanel, buttonPanel;
JTextArea questionArea;

ButtonGroup radioGroup;

JButton chat;

private static String picPath, name, email, question;
String RemoteRegistryURL;

boolean sup=true, tech=false;

public static ChatWindow chatWindow = null;
TCPListener tcpListener;

public void init() {

loginWindow=new JFrame(*'Live Help Desk");

loginWindow.getContentPane().setLayout(new FlowLayout());

Ixxxi

headerPanel=new JPanel();
headerPanel.setLayout(new FlowLayout());
headerPanel.setBorder(BorderFactory.createMatteBorder(
2,2,2,2, Color. DARK_GRAY));

picPath = getCurrentDirectory() + "/images/header.gif";
LoadPicture(picPath);
headerPanel.add(picturePanel);
nameField=new JTextField(20);
emailField=new JTextField(20);
inputPanel = new JPanel();
inputPanel.setLayout(new BoxLayout(inputPanel, BoxLayout.Y_AXIS));
inputPanel.add(new JLabel("Name"));
inputPanel.add(nameField);
inputPanel.add(new JLabel("E-mail"));
inputPanel.add(emailField);
radioPanel=new JPanel();
radioPanel.setLayout(new BoxLayout(radioPanel, BoxLayout.Y_AXIS));
support=new JRadioButton(""Customer Support", true);
technical=new JRadioButton("Technical Support”, false);
radioGroup=new ButtonGroup();
radioGroup.add(support);
radioGroup.add(technical);
support.additemListener(new ItemListener(){

public void itemStateChanged(ltemEvent e){

if(e.getSource()==support)

Ixxxii

sup=true; } });
technical.addltemListener(new ItemListener(){
public void itemStateChanged(ltemEvent e) {
if (e.getSource() == technical)
tech =true;} });
radioPanel.add(support);
radioPanel.add(technical);
questionPanel=new JPanel();
questionPanel.setLayout(new GridLayout(2,1));
JLabel ques=new JLabel(" What is your question");
questionArea=new JTextArea(5,35);
questionArea.setBorder(BorderFactory.createMatteBorder(
2,2,2,2,Color.DARK_GRAY));
questionPanel.add(ques);
questionPanel.add(questionArea);
buttonPanel=new JPanel();
buttonPanel.setBackground(Color. WHITE);
buttonPanel.setLayout(new BorderLayout());
chat=new JButton("Start Chat");
chat.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent €) {
setname(nameField.getText());
setemail(emailField.getText());
setquestion(questionArea.getText());

loginWindow.setVisible(false);

Ixxxiii

run(); } });

buttonPanel.add(chat, BorderLayout. CENTER);
loginWindow.getContentPane().add(headerPanel);
loginWindow.getContentPane().add(inputPanel);
loginWindow.getContentPane().add(radioPanel);
loginWindow.getContentPane().add(questionPanel);
loginWindow.getContentPane().add(buttonPanel);
loginWindow.pack();
loginWindow.setSize(275,495);
loginWindow.setVisible(true);
}H/end init
public void start(){ initTCP(); }
public void LoadPicture(String path) {
picture = new JLabel(new Imagelcon(path));
picture.setPreferredSize(new Dimension(250, 100));
picture.setBorder(BorderFactory.createMatteBorder(
2,1, 2,2, Color.black));
picturePanel = new JPanel(new GridBagLayout());
picturePanel.setBackground(Color.LIGHT_GRAY);
picturePanel.add(picture); }

public void showNewChatWindow(String user, String agent, String department,
String location, String IPadd) {

String username=user;
String agentname=agent;
String dept=department;

String loc=location;

Ixxxiv

String ip=IPadd;

chatWindow = new ChatWindow(username,
agentname,dept,loc,ip,getRemoteRegistryURL(),getname(),getemail(),getquestion());

chatWindow.init();
chatWindow.setSendWindow(true);}
public String getLocalSystemlIP() {
String ip =""";
try {
ip = Inet4Address.getLocalHost().getHostAddress(); }
catch (Exception exp) {
System.out.printIn(exp.toString()); }
returnip; }
public void initTCP() {
//Set Master/Slave Here.
tcpListener = new TCPListener(getRemoteRegistryURL(),getLocalSystemlIP());
Thread tcpListenerThread = new Thread(tcpListener);
tcpListenerThread.start(); }
public String getCurrentDirectory() {
return System.getProperty("user.dir"); }
public void run(){
if(sup) {
try {
setRemoteRegistryURL("rmi://mslab20:1111/server");
Serverlinterface ref = (ServerInterface) Naming.lookup(getRemoteRegistryURL());

try {

while(!ref.agentSearch(""Support™)){

IxXxxv

Thread.sleep(6000);

JOptionPane.showMessageDialog(null,"Please Wait while your call is connected to
agent available "); }

System.out.printin("SUPOORT DEPT");

String IP=ref.getIP();
String user=ref.getUserName();
String name=ref.getAgentName();
String dept=ref.getDept();
String loc=ref.getLoc();
ref.setStatus(IP,"Busy");
System.out.print("\nSetting Status "+IP+" Busy");
System.out.printin(name);
showNewChatWindow(user,name,dept,loc,IP);

}H/end iiner try
catch (Exception oe) { oe.printStackTrace(); } } //end outer try
catch (Exception le) { le.printStackTrace(); }
Yiend if

else if(tech)

{

try {

setRemoteRegistryURL("rmi://mslab20:1111/server");

Serverlnterface ref = (ServerlInterface)
Naming.lookup(getRemoteRegistryURL());

try {
while(!ref.agentSearch("Technical™)){

JOptionPane.showMessageDialog(null,"Please Wait while your call is connected to
agent available ");

Ixxxvi

System.out.printin("TECHNICAL DEPT");
String IP=ref.getIP();
String user=ref.getUserName();
String name=ref.getAgentName();
String dept=ref.getDept();
String loc=ref.getLoc();
ref.setStatus(name,"Busy");
showNewChatWindow(user,name,dept,loc,IP); } //end inner try
catch (Exception oe) {
oe.printStackTrace();
}
} //end outer try
catch (Exception le) {
le.printStackTrace(); }/end elseif
}/end run
private void sethname(String n){
name=n; }
private void setemail(String e){
email=e;}
private void setquestion(String g){
question=q;}
public void setRemoteRegistryURL(String r){
RemoteRegistryURL=r;}

public String getRemoteRegistryURL(){

Ixxxvii

return RemoteRegistryURL;}
public String getname(){
return name;}
public String getemail(){ return email;}
public String getquestion(){ return question;}
public void windowClosing(WindowEvent e) {
System.out.printIn("Closed"); }
public void windowClosed(WindowEvent e) {
System.out.printin(*Closed");
}
public void windowOpened(WindowEvente) { }
public void windowlconified(WindowEvente) { }
public void windowDeiconified(WindowEvente) { }
public void windowActivated(WindowEvente) { }

public void windowDeactivated(WindowEvent e) { System.out.printin("Main
Window Deactivated"); }

//Feed Back Servlet
public class FeedBackServlet extends HttpServiet{
String customer,email,IP;

public void doPost(HttpServletRequest req, HttpServletResponse res) throws
IOException, ServletException

{

res.setContentType("text/html™);

PrintWriter out = res.getWriter();

Ixxxviii

String rating = req.getParameter(*'rating");
String comments = req.getParameter("comments");
try
{
String RemoteRegistryURL = "rmi://mslab20:1111/server";
Serverinterface ref = (Serverinterface)Naming.lookup(RemoteRegistryURL);
try {
if(ref.searchLog()){
customer=ref.getCustomer();
email=ref.getCustomerEmail();
IP=ref.getCustomerIP(); }
ref.feedBack(customer,email,IP,rating,comments);
out.printIn("<htmI><head><title>Thank Y ou</title></head>");
out.printin("<body><center>

<font color=blue
size=6>Thank "+customer +" You For Your
Response</center>");
out.printin("</body></htmI>");
Hlend inner try
catch(Exception oe){

PrintWriter p = new PrintWriter(res.getWriter());
oe.printStackTrace(p); }/end outer try
catch(Exception le){

PrintWriter p = new PrintWriter(res.getWriter());
le.printStackTrace(p); }
out.close();}//end method

}/end class

IXxxix

/[Chat Window
public class ChatWindow
extends JFrame implements KeyL.istener, WindowL.istener {
public ChatWindow() {
public JTextArea inputArea, messageArea = null;
JButton sendButton,endChat,fontButton,emotionsButton,emailButton;
TCPChannel tcpChannel = null;
TCPListener listen;
String body;
boolean isSendWindow = true;
boolean isRecvWindow=true;
boolean isClientWindow=false;

String title, IP,user, agent, dept,location, customer,email, question,
picPath,remoteRegURL;

String startTime,endTime;
AgentConsole parent = null;
String recipients[];

JPanel picturePanel;

//Over Loaded Constructor

public ChatWindow(String username, String agent, String dept, String loc, String
ip,String reg) {

tcpChannel = new TCPChannel();
setUsername(username);
setAgent(agent);

setDept(dept);

setLoc(loc);

XC

setlP(ip);

setRemoteReg(reg);

Date dateTime = new Date();

SimpleDateFormat format = new SimpleDateFormat("H:mm:ss", Locale.ENGLISH);
setStartTime(format.format(dateTime).toString());

recipients=new String[2];

recipients[0]="omermoeen@mcs.edu.pk"; }

//Over Loaded Constructor for client

public ChatWindow(String username, String agent, String dept, String loc, String
ip,String reg, String cust,String email, String q) {

tcpChannel = new TCPChannel();
setUsername(username);

setAgent(agent);

setDept(dept);

setLoc(loc);

setlP(ip);

setRemoteReg(reg);

setCustomer(cust);

setEmail(email);

setQuestion(q);

setClientWindow(true);

Date dateTime = new Date();

SimpleDateFormat format = new SimpleDateFormat("H:mm:ss", Locale.ENGLISH);
setStartTime(format.format(dateTime).toString());
recipients=new String[2];

recipients[0]="omermoeen@mcs.edu.pk";}

XCi

public boolean isSendWindow() {

return isSendWindow; }

public void setSendWindow(boolean flag) {
this.isSendWindow = flag;}

public boolean isRecvWindow() {

return isRecvWindow; }

public void setRecvWindow(boolean flag) {
this.isRecvWindow = flag;}

public boolean isClientWindow() {

return isClientWindow; }

public void setClientWindow(boolean flag) {
this.isClientWindow = flag; }

public void init() {
this.getContentPane().setLayout(new FlowLayout());
this.setLocation(new Point(200, 80));

JPanel labelPanel=new JPanel();
labelPanel.setBackground(Color. WHITE);
labelPanel.setLayout(new GridLayout(4,1));

Label agentlbl=new JLabel(getAgent()+" ")
agentlbl.setForeground(Color.BLUE);
agentlbl.setFont(new Font(*"Serif", Font. BOLD, 18));
JLabel deptlbl=new JLabel(getDept());
deptlbl.setForeground(Color.BLACK);
deptlbl.setFont(new Font("Serif", Font.PLAIN, 15));

JLabel loclbl=new JLabel(getLoc());

XCii

loclbl.setForeground(Color.RED);

loclbl.setFont(new Font("Serif", Font.PLAIN, 13));

JLabel conlbl=new JLabel(" ")
conlbl.setForeground(Color. DARK_GRAY);
conlbl.setFont(new Font("Serif", Font.PLAIN, 12));
labelPanel.add(agentlbl);

labelPanel.add(deptlbl);

labelPanel.add(loclbl);

labelPanel.add(conlbl);
labelPanel.setBorder(BorderFactory.createMatteBorder(2, 2, 2, 2, Color.BLACK));
picPath = getCurrentDirectory() + "/images/"+getUser()+".gif";
LoadPicture(picPath);

JPanel headPanel=new JPanel();
headPanel.setBackground(Color.WHITE);
headPanel.setLayout(new FlowLayout());

headPanel.setBorder(BorderFactory.createMatteBorder(2, 2, 2, 2,
Color.DARK_GRAY));

headPanel.add(labelPanel);
headPanel.add(picturePanel);
if(isClientWindow()){

messageArea = new JTextArea(15, 36);}
else

messageArea = new JTextArea(15, 23);
messageArea.setEditable(false);
messageArea.setWrapStyleWord(true);

messageArea.setLineWrap(true);

XCill

messageArea.setBorder(BorderFactory.createMatteBorder(2, 2, 2, 2,
Color.DARK_GRAY));

if(isClientWindow()){

messageArea.append("Hi "+getCustomer()+"\n You Asked "+getQuestion()+"\n");}
JPanel messagePanel = new JPanel();

messagePanel.setLayout(new BorderLayout());

messagePanel.add(new JScrollPane(messageArea));

inputArea = new JTextArea(4,18);

inputArea.setWrapStyleWord(true);

inputArea.setLineWrap(true);

inputArea.addKeyL.istener(this);

inputArea.setBorder(BorderFactory.createMatteBorder(2, 2, 2, 2,
Color.DARK_GRAY));

sendButton=new JButton(" Send");

endChat=new JButton(* End Chat");

endChat.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

Date dateTime = new Date();

SimpleDateFormat format = new SimpleDateFormat("H:mm:ss", Locale.ENGLISH);
setEndTime(format.format(dateTime).toString());

StringBuffer chat=new StringBuffer();
chat.append(messageArea.getText());

try {

Serverinterface ref = (ServerInterface) Naming.lookup(getRemoteReg());

ref.callLog(getAgent(),getCustomer(),getemail(),getlP(),getStartTime(),getEndTime()
,chat.toString());

ref.setStatus(getIP(),"Online");

XCiv

System.out.print("Setting status online : "+getlP());
ref.timeSetting(getIP(),getEndTime());
System.out.print(*\nSetting TimeStamp : "+getIP()+" and time is : "+getEndTime());
System.exit(0);}

catch (Exception oe) { oe.printStackTrace();}}});

JPanel inputPanel=new JPanel(new GridLayout(1,2));
JPanel buttonPane=new JPanel(new GridLayout(2,1));
buttonPane.add(sendButton);

buttonPane.add(endChat);

inputPanel.add(new JScrollPane(inputArea));
inputPanel.add(inputArea);

inputPanel.add(buttonPane);

//Add Buttons

JPanel buttonsPanel = new JPanel(new GridLayout(1,3));
emailButton = new JButton("Email");
emailButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent event){

try{

recipients[1]=getemail();

postMail(recipients, getQuestion(), messageArea.getText(),
"omermoeen@mcs.edu.pk”);}

catch(Exception exp){}} });

fontButton = new JButton("Font");
emotionsButton = new JButton("Emotions");
emailButton.setEnabled(true);

fontButton.setEnabled(true);

Xcv

emotionsButton.setEnabled(true);
buttonsPanel.add(emailButton);
buttonsPanel.add(fontButton);
buttonsPanel.add(emotionsButton);
this.getContentPane().add(headPanel);
this.getContentPane().add(messagePanel);
this.getContentPane().add(buttonsPanel);
this.getContentPane().add(inputPanel);
this.addWindowL.istener(this);
if(isClientWindow)
this.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);
else
this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
this.setTitle(title);

this.setResizable(true);

this.pack();

if(isClientWindow()){

this.setSize(280, 522);}

else

this.setSize(280, 510);
this.setVisible(true);}

public void sendMessage() {

body = inputArea.getText();

if (body == null) {

body = "Null Message";

XCVi

System.out.printin("Null Body Messsage™);}
else{}
tcpChannel.sendRequest(body,getIP());
inputArea.setText(");}

/Imail sending method

public void postMail(String recipients[], String subject, String message , String
from) throws MessagingException{

boolean debug = false;
//Set the host smtp address

Properties props = new Properties();
props.put(“'mail.smtp.host”, "mail.mcs.edu.pk™);
props.put("mail.smtp.auth”, "true");

Authenticator auth = new SMTPAuthenticator();

Session session = Session.getDefaultinstance(props, auth);
session.setDebug(debug);

/[create a message

Message msg = new MimeMessage(session);

/I set the from and to address

InternetAddress addressFrom = new InternetAddress(from);
msg.setFrom(addressFrom);

InternetAddress[] addressTo = new InternetAddress[recipients.length];
for (inti = 0; i < recipients.length; i++ {

addressTo[i] = new InternetAddress(recipients[i]);}
msg.setRecipients(Message.RecipientType.TO, addressTo);
/I Setting the Subject and Content Type

msg.setSubject(subject);

Xcvii

msg.setContent(message, "text/plain™);

Transport.send(msg);}

public void sendChatWindow(String IP){

String myIP=IP;
tcpChannel.sendWindow("INVITE:"+myIP.toString(),getIP(),myIP);
System.out.print("chat window req called for :"+getIP());}

public void LoadPicture(String path) {

JLabel picture = new JLabel(new Imagelcon(path));
picture.setPreferredSize(new Dimension(70, 100));
picture.setBorder(BorderFactory.createMatteBorder(2, 1, 2, 2, Color.black));
picturePanel = new JPanel(new GridBagLayout());
picturePanel.setBackground(Color.LIGHT_GRAY);
picturePanel.add(picture); }

public String getCurrentDirectory() {

return System.getProperty(“user.dir"); }

public void run() {

init(); }

public int getRemotePort() {

return 6060;}

public void keyPressed(KeyEvent €) {

if (e.getKeyCode() == 10) {

messageArea.append(getUser()+ " says : " +inputArea.getText());
sendMessage();

inputArea.setText("); } }

public void keyReleased(KeyEvent e) { }

XCViii

public void keyTyped(KeyEvent e) {}

public static void main(String args[]) {

ChatWindow newChat = new ChatWindow("title","IP""","" ™

newChat.init();}

public void windowOpened(WindowEvent e) {}
public void setUsername(String u){
user=u;

public void setAgent(String a){
agent=a; }

public void setDept(String d){
dept=d;}

public void setLoc(String I){
location=1;}

public void setlP(String ip){

IP=ip; }

public void setRemoteReg(String r){
remoteRegURL=r;}

public void setCustomer(String c){
customer=c;}

public void setEmail(String e){
email=e; }

public void setQuestion(String q){
question=q;}

public void setStartTime(String st){

startTime=st;}

XCiX

Bk

public void setEndTime(String et){
endTime=et; }

public String getUser(){
return user; }

public String getAgent(){
return agent; }

public String getDept(){
return dept; }

public String getLoc(){
return location; }

public String getlP(){

return IP;}

public String getRemoteReg(){
return remoteRegURL; }
public String getCustomer(){
return customer;}

public String getemail(){
return email; }

public String getStartTime(){
return startTime }

public String getEndTime(){
return endTime;}

public String getQuestion(){
return question;}

public void windowClosing(WindowEvent e) {

System.out.printIn("Closing Session & Sending BYE Request");
/I if (parent != null && parent.isSessionColsed()) {
/I parent.closeSession(); // }}
public void windowClosed(WindowEvent e) {}
public void windowlconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void setParent(AgentConsole parentFrame) {
parent = parentFrame;}
private class SMTPAuthenticator extends javax.mail.Authenticator {
public PasswordAuthentication getPasswordAuthentication(){
String username = "omermoeen";
String password = "mme-980";
return new PasswordAuthentication(username, password);}}

private void jbinit() throws Exception {}}

ci

Bibiography
[1] “Wikipedia, the free encyclopedia”.

[2] “http://en.wikipedia.org/wiki/Java_remote method_invocation”, Mach 23, 2008.

[3] Jay Friedman and Jenna Woodul. “Online Customer Support Communities”,
LiveWorld. Inc. Trevor Griffith, 2002, 2004.

[4] Couloris, G., “Distributed Systems, Concepts and Design”, Addison-Wesley
Publishing, 1994.

[5] Farley, J., “Java Distributed Computing”,0’Reilly Publishing, Jan 1998.

[6] S. Kekre, M.S. Krishnan and K. Srinivasan. “Drivers of customer satisfaction for
software products: implications for design and service support”. Management Science
419 (1995), pp. 1456-1470.

[71 B.J. Pine Il, D. Peppers, M. Rogers. “Do You Want to Keep Your Customers

Forever”. Harvard Business Review (1996).

[8] ““http://java.sun.com/docs/books/tutorial/rmi/index.html”, March 30, 2008.

[9] A. Borg and A. Wellings. “A real-time RMI framework for the RTSJ”. In
Proceedings of the 15™ Euromicro Conference on Real Time Systems. Euromicro,
IEEE, July 2003.

[10] A. de Miguel. “Solutions to Make Java-RMI Time Predictable”. In Proceedings
of the 4th IEEE International Symposium on Object-Oriented Real- Time Distributed
Computing, pages 379-386, 2001.

[11] A. Wellings, R. Clark, D. Jensen, and D. Wells. “A framework for integrating
the real-time specification for java and java’s remote method invocation”. In
Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pages 13-22, 2002.

cii

