
AGENTS FOR EFFICIENT AND OPTIMAL SEARCH
ON SEMANTIC WEB

By

NC Sara Rehmat

NC Urooj Saeed

NC Amina Khan

NC Fatima Naeem

Submitted to the Faculty of Computer Science

National University of Sciences and Technology, Rawalpindi in partial fulfillment for the

requirements of a B.E Degree in Computer Software Engineering

MARCH 2008

ABSTRACT

AGENTS FOR EFFICIENT AND OPTIMAL SEARCH

ON SEMANTIC WEB

All advances in the field of science and technology aim at one main purpose of providing

humans as much convenience as possible. To contribute towards this aim, many

automation techniques have been developed in various fields to achieve quality

performance with minimum human intervention.

World Wide Web developed in 1980s is the universe of network-accessible information.

But most of the Web's content today is designed for humans to read, not for computer

programs to manipulate meaningfully. Computers can parse Web pages for layout and

routine processing but in general, computers have no reliable way to process the

semantics. The World Wide Web can be automated by putting semantics in it that can be

understood by the computer programs thus enabling them to act on users’ behalf resulting

into a new form of web called Semantic Web.

Mobile agents are programs that can autonomously travel across a network and perform

tasks on machines that provide agent hosting capability. The use of Mobile Agent reduces

network load as instead of downloading large amount of data for processing, the

processing is transferred to where data lies.

In the proposed project, the Mobile Agent searches for a job on user’s behalf on Semantic

Web. The user provides it with his job preferences, on the basis of which the Mobile

Agent searches on the Semantic Web, returning very precise and refined results to the

user instead of the plethora of information which is returned in case of conventional

search engines.

 ii

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation, a work of

this magnitude would not have been possible

 iii

ACKNOWLEDGMENTS

We are eternally grateful to Almighty Allah for bestowing us with the strength and

resolve to undertake and complete the project.

We gratefully recognize the continuous supervision and motivation provided to us by our

Project Supervisor, Mr. Athar Mohsin. We are highly gratified to our co-supervisor Mr.

Umar Mahmud for his continuous and valuable suggestions, guidance, and commitment

towards provision of undue support throughout our thesis work. We are also grateful to

our external supervisor Mr. Tauseef Rana for his constant guidance throughout the

project. We are highly thankful to all of our professors whom had been guiding and

supporting us through out our course and research work. Their knowledge, guidance and

training enabled us to carry out this research work.

We would like to offer our admiration to all our classmates, and our seniors who had

been supporting, helping and encouraging us throughout our thesis project. We are also

indebted to the MCS system administration for their help and support.

 We deeply treasure the unparallel support and tolerance that we received from our

friends for their useful suggestions that helped us in completion of this project.

We are also deeply obliged to our families for their never ending patience and support for

our mental peace and to our parents for the strength that they gave us through their

prayers.

 iv

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

1. INTRODUCTION... 1

1.1 Preface .. 1

1.2 Project Vision ... 2

1.3 Proposed Solution ... 2

1.4 Aim of the Project ... 3

1.5 Organization of Project Report .. 4

2. LITERATURE REVIEW .. 5

2.1 Introduction ... 5

2.2 Agents .. 5

2.3 Mobile Agent ... 5

2.4 Advantages of Using Mobile Agent ... 5

2.4.1 Reduce the network load ... 6

2.4.2 Overcome network latency ... 6

2.4.3 Asynchronous and Autonomous execution .. 6

2.4.4 Dynamic Adaptation and Robustness .. 6

2.4.5 Heterogeneity .. 7

2.5 JADE-Tool for Developing Agents .. 7

2.5.1 Important Terms of JADE .. 7

2.5.2 Agent Communication ... 8

 v

2.5.3 Reasons of using JADE .. 8

2.6 Semantic Web .. 8

2.7 Semantic Web Technologies... 8

2.7.1 XML .. 9

2.7.2 RDF .. 9

2.7.3 Ontology .. 9

2.7.4 OWL .. 10

2.7.4.1 Reasons of using OWL ... 10

2.7.5 Protégé ... 10

2.7.5.1 Reasons of using Protégé ... 11

2.7.6 JENA ... 11

2.7.7 Pellet .. 11

2.7.7.1 Difference between Pellet and JENA Query Engines 12

2.7.7.2 Using Pellet in JAVA Applications ... 12

2.7.7.3 Using Pellet with JENA ... 12

2.8 Conclusion .. 13

3. SYSTEM ANALYSIS ... 14

3.1 Introduction ... 14

3.2 Project Scope ... 14

3.3 Requirements Specification.. 15

3.3.1 External Interface Requirements ... 15

3.3.1.1 User Interface .. 15

3.3.1.2 Software Interfaces ... 16

 vi

3.3.2 Major Functional Requirements .. 16

3.3.2.1 Acquiring User’s Preferences and Personal Data .. 16

3.3.2.2 Creating Semantic Websites .. 16

3.3.2.3 Registration of Websites with Directory ... 17

3.3.2.4 Directory Lookup by Mobile Agent .. 17

3.3.2.5 Cloning to the Relevant Websites .. 17

3.3.2.6 Processing of Semantic Websites by Mobile Agent Clone 17

3.3.2.7 Returning the Results ... 17

3.3.2.8 Dropping the user’s CV ... 18

3.3.3 Major Non-Functional Requirements .. 18

3.3.3.1 Accuracy .. 18

3.3.2.2 User friendly GUI ... 18

3.4 Usecase Diagram ... 19

3.5 Domain Model ... 19

3.6 Conclusion ... 20

4. SYSTEM DESIGN .. 22

4.1 Introduction ... 22

4.2 Architectural Diagram ... 22

4.3 High Level Diagram .. 23

4.4 Low Level Diagram... 24

4.4.1 Agent Platform ... 24

4.4.2 Directory ... 25

4.4.3 User’s Machine ... 25

 vii

4.4.4 Website Hosting Machine .. 25

4.4.5 Search by Mobile Agent .. 26

4.5 Class Diagram ... 27

4.6 Data Flow Diagram ... 28

4.7 Interaction Diagram ... 29

4.8 Conclusion ... 32

5. IMPLEMENTATION .. 33

5.1 Introduction ... 33

5.2 Implementation Language ... 33

5.3 Distribution of classes with respect to Modules ... 34

5.3.1 User’s Machine ... 34

5.3.1.1 Initiating Mobile Agent .. 34

5.3.1.2 Job Seeker GUI for acquiring his Job Criteria .. 35

5.3.1.3 Job Seeker GUI for acquiring his Personal Data .. 36

5.3.1.4 Manipulating Personal Data .. 37

5.3.1.5 Manipulating Job Criteria ... 37

5.3.1.6 User’s Personalized Mobile Agent ... 37

5.3.1.7 Query Engine ... 38

5.3.1.7.1 run(String queryString) ... 39

5.3.1.7.2 runQuery() .. 39

5.3.2 Directory ... 39

5.3.3 Website Hosting Machine .. 40

5.3.3.1 Initiating Register Agent .. 40

 viii

5.3.3.2 Job Employers GUI for Job Registration ... 40

5.3.3.3 Registration of Jobs .. 41

5.3.3.4 Ontology ... 42

5.3.3.4.1 First Level ... 42

5.3.3.4.2 Second Level ... 42

5.3.3.4.3 Third Level ... 43

5.3.3.4.4 company .. 43

5.3.3 .4.5 location ... 43

5.3.1.4.6 pay ... 43

5.3.3.4.7 qualification .. 43

5.4 Conclusion ... 44

6. TESTING ... 45

6.1 Introduction ... 45

6.2 Testing Process .. 45

6.2.1 Unit Testing .. 46

6.2.1.1 Launch.java ... 46

6.2.1.2 MobileAgentGui.java.. 47

6.2.1.3 AfterClone() of MobileAgent.java ... 47

6.2.1.4 OnGuiEvent() of MobileAgent.java .. 48

6.2.1.5 ReceiveMsg of MobileAgent.java .. 49

6.2.1.6 PersonalDataGui.java ... 50

6.2.1.7 PersonalData.java ... 51

6.2.1.8 Criteria.java .. 52

 ix

6.2.2 Component Testing .. 53

6.2.2.1 MobileAgent.java .. 53

6.2.2.2 RegisterAgent.java .. 54

6.2.2.3 QueryEngine.java ... 55

6.2.3 Integration Testing .. 56

6.2.3.1 Integration of Directory and RegisterAgent ... 56

6.2.3.2 Integration of Directory, RegisterAgent and MobileAgent 57

6.2.3.3 Integration of Directory, RegisterAgent, MobileAgent and QueryEngine ... 59

6.2.4 White Box Testing .. 60

6.2.5 Black Box Testing .. 60

6.2.5.1 Checking the system on valid data .. 60

6.2.5.2 Checking the system on invalid data ... 61

6.2.5.2.1 Skipping the noncompulsory fields .. 61

6.2.5.2.2 Skipping the compulsory fields ... 61

6.2.6 Static Analysis of Code .. 61

6.2.6.1 Control Flow Analysis .. 62

6.2.6.2 Data Analysis ... 62

6.2.6.3 Interface Analysis .. 62

6.2.7 Conclusion .. 62

7. FUTURE WORK AND CONCLUSION .. 64

7.1 Future Work .. 64

7.2 Conclusion ... 64

APPENDIX A .. 65

 x

APPENDIX B .. 69

APPENDIX C .. 71

APPENDIX D .. 77

APPENDIX E .. 80

APPENDIX F .. 82

 xi

LIST OF TABLES

Table Page Number

6-1 Test case for Launch.java .. 46

6-2 Test case for MobileAgentGui.java .. 47

6-3 Test case for AfterClone() .. 48

6-4 Test case for OnGuiEvent() .. 49

6-5 Test Case for ReceiveMsg .. 50

6-6 Test Case for PersonalDataGui.java ... 51

6-7 Test Case for PersonalData.java ... 51

6-8 Test Case for Criteria.java .. 52

6-9 Test Case for MobileAgent.java .. 53

6-10 Test Case for RegisterAgent.java .. 54

6-11 Test Case for QueryEngine.java ... 55

6-12 Test Case for Integrated RegisterAgent and Directory 57

6-13 Test Case for Integrated MobileAgent, RegisterAgent and Directory 58

6-14 Test Case for Integrated MobileAgent, RegisterAgent, Directory, QueryEngine

... 59

 xii

LIST OF FIGURES

Figure Page Number

3-1 Usecase Diagram .. 19

3-2 Domain Model .. 20

4-1 Architectural Diagram .. 23

4-2 High Level Design ... 24

4-3 Low Level Design .. 26

4-4 Class Diagram ... 27

4-5 Data Flow Diagram .. 28

4-6 Service Discovery by MobileAgent ... 29

4-7 Registration of Job Companies ... 30

4-8 Getting Data and Querying Ontology ... 31

4-9 Setting MobileAgent ... 31

5-1 MobileAgentGui .. 35

5-2 PersonalDataGui ... 36

5-3 RegisterAgentGui ... 41

 1

Chapter 1
1 Introduction

1.1 Preface:

World Wide Web is the universe of information most of which is for humans’

perusal, not for computer programs to manipulate meaningfully. Before the arrival of

WWW in 1990`s, seeking information was considered to be a very intricate task as there

used to be no central resource of information. But with the arrival of internet and the

evolution of World Wide Web, this problem was solved to a considerable extent as the

internet escaped from the world of computer science and entered the world as a whole.

But the problem now is information overloading [1]. The WWW has become so gigantic

that it is hard to find what a person is looking for. Most of the information present on the

web is in the form of text. For making the search easy for the users, different search

engines have been developed. Google is one of the search engine most widely used today.

Google and other search engines similar to it basically use string matching with keywords

to find relevant documents.[1] This search is syntax based. To the search engines (and

other computer programs) the text has no meaning [1]. Text is just strings of characters.

Due to this reason a large amount of irrelevant and inaccurate information is returned to

the user. The user then has to go through all the results individually to find the pertinent

information, making it a very tedious activity which cannot be afforded in the challenging

and demanding world of today.

 2

1.2 Project Vision:

The basic idea behind the project is to make the search on the Web easy and

intelligent. Another objective is to provide ease to the user by minimizing his intervention

in searching and sorting the desired information. This can only be done by automating the

search. As all the advances in the field of science and technology aims at one main

purpose i.e. “to provide humans as much convenience as possible”. This project hence is

an effort to contribute towards achieving this goal.

1.3 Proposed Solution:

The solution proposed makes use of two technologies i.e. Semantic Web and Mobile

Agent to make the search on World Wide Web meaningful and precise in context of job

seeking. Semantic Web is a promising technology that is aimed at putting meanings into

the contents of current Web, thus enabling the computer programs to understand the

contents and consequently process them intelligently. The main feature of Semantic Web

is the existence of metadata that facilitates the meaningful and intelligent search by

computer programs. In the suggested solution, a personalized Mobile Agent carries out

the search on user’s behalf. Mobile Agents are programs that can autonomously travel

across a network and perform tasks on machines that provide agent hosting capability.

The use of mobile agent reduces network load as instead of downloading large amount of

data for processing, the processing is transferred to where data lies. Mobile agents also

introduce concurrency as it can clone itself on various hosts to perform processing at the

same time.

 3

1.4 Aim of the project:

The aim of the proposed work is to effectively deal with the scenario where a user,

is searching for a job that conforms to his specifications of salary, timings, city or country

etc, using a conventional search engine. A major portion of the search results will contain

the words he entered in any combination and many websites that do not contain the exact

words will not be shown although they have job descriptions matching his preferences.

Consequently, the user will be faced with a plethora of irrelevant results.

In the recommended solution, the user instead of searching on World Wide Web

himself, he provides his job preferences like domain, salary, timings, city or country etc

to a Mobile Software Agent that searches on his behalf. The companies who are offering

jobs register their job domains and website’s location with a central directory. The

Mobile Agent first looks up a directory on the basis of the job domain entered by the user

like IT, medicine, management etc. The Mobile Agent as a result of this look up gets a

list of relevant websites where it clones itself. These website hosting machines have a

supporting environment to allow the arrival of Mobile Agent clones. To enable the

Mobile Agent to do the meaningful search, semantics are introduced in the websites

through the use of ontology. The mobile agent clone processes the ontology thus the

resulting search is not on the basis of matching words but on the basis of matching

concepts in user’s preferences and job ontology. If the user job preferences match with

the company’s job offers, the clone drops the user’s CV on that website hosting machine

and returns the website’s URL to its parent on the user’s machine which is then opened

for the user. In this way, the user is able to get the best possible results without excessive

effort.

 4

Both the Semantic Web and Mobile Agent are presently among the most emerging

technologies. The proposed solution employing a personalized Mobile Agent designed to

make a user’ search on Semantic Web optimal and efficient, hence, is an attempt to

contribute to the ongoing advancements in these fields.

1.5 Organization of Project Report:

The project report has been drafted carefully deciding the sequence to be followed.

After the introduction section, the report incorporates the Literature Review chapter

summarizing the text studied before and during the project’s execution. Subsequently, the

System Analysis chapter comes which includes the major interface, functional and non-

functional requirements of the system. It also incorporates the usecase diagram and the

domain model of the system. Next is the System Design chapter comprising of the

architectural diagram, high and low level design, data flow diagram, class diagram and

interaction diagram. Following this the report includes the implementation chapter

identifying and elucidating the classes which are implemented. Then is the testing chapter

incorporating the testing process employed to test the system and the results that were

obtained. The next chapter then discusses the work that can be done in future to further

enhance the system and ultimately this chapter wraps the report.

 5

Chapter 2
2 Literature Review

2.1 Introduction:

This chapter is an effort to summarize the large material that has been studied

throughout the project execution. The literature studied can be mainly divided under two

main sections: Agents and Semantic Web. Each heading in this chapter actually is a

separate area of study in itself but for the purpose of documenting, the material has been

abridged. Going through this section will aid in comprehending the later chapters.

2.2 Agents:

Agent is a program with the following properties such as it responds in a timely

fashion to changes in environment, exercises control over its own actions, it is goal-

oriented and communicates with other agents including people [2].

2.3 Mobile Agent:

A Mobile Agent is a composition of computer software and data which is able to

migrate (move) from one computer to another autonomously and continue its execution

on the destination computer [3].

2.4 Advantages of using Mobile Agent:

The Mobile Agent is preferred over the static agent in the project because of the

many advantages it possesses over static agents. Some of the major features because of

which it is preferred are:

 6

2.4.1 Reduce the network load:

The Mobile Agent moves the computation to the data rather than the data to the

computation. It means that instead of downloading the data on its machine, the Mobile

Agent moves to that machine where the data lies, carrying with it any information or data

needed, ultimately leading to reduction in network load.

2.4.2 Overcome network latency:

The use of Mobile Agent decreases response time in critical real time systems. In

real time systems, the user wants response as soon as possible so delay in results cannot

be afforded e.g. in hospital applications. So use of Mobile Agent provides the added

advantage of overcoming the network latency.

2.4.3 Asynchronous and Autonomous execution:

Mobile devices often rely on expensive or fragile network connections. Tasks can

be embedded into mobile agents, which can then be dispatched into the network. After

being dispatched, the agents become independent of the process that created them and

can operate asynchronously and autonomously. The mobile device can reconnect at a

later time to collect the agent.

2.4.4 Dynamic Adaptation and Robustness:

Mobile agents can sense their execution environment and react autonomously to

changes.Also it provides the advantage of robustness and fault tolerance. If a host is

being shut down, all agents executing on that machine are warned and given time to

dispatch and continue their operation on another host in the network.

 7

2.4.5 Heterogeneity:

Mobile agents are generally computer and transport layer independent (dependent

on only their execution environments), they provide optimal conditions for seamless

system integration [4].

2.5 JADE-Tool for Developing Agents:

JADE (Java Agent Development Environment) is a software Framework fully

implemented in Java language. It simplifies the implementation of multi-agent systems. It

compiles with the FIPA specifications. It has a set of graphical tools that supports the

debugging and deployment phases [5].

2.5.1 Important Terms of JADE:

JADE has many important terms related to it which must be defined to be

understood. Each running instance of the JADE runtime environment is called a

Container. The set of active containers is called a Platform. As soon as a JADE platform

starts, the first container to start is called Main Container. All other containers register

with it as soon as they start. A main container holds two special agents, AMS and DF.

AMS provides a naming service which ensures that each agent in the platform has a

unique name. It also represents the authority in the platform (for instance it is possible to

create/kill agents on remote containers by requesting that to the AMS).Only one AMS

will exist in a single platform. Each agent must register with an AMS in order to get a

valid AID. DF (Directory Facilitator) provides a Yellow Pages service by means of which

an agent can find other agents providing the services he requires in order to achieve his

goals [5].

 8

2.5.2 Agent Communication:

One of the most important features that JADE agents provide is the ability to

communicate. The messages exchanged by JADE agents have a format specified by the

ACL language defined by the FIPA international standard for agent interoperability. This

format comprises a number of fields and in particular the sender of the message, the list

of receivers, the communicative intention (also called “performative”) indicating what

the sender intends to achieve by sending the message [5].

2.5.3 Reasons of using JADE:

JADE is employed in the project because it is distributed free of charge and

expiration date and in complete form. The programming language it supports is JAVA.

Using java holds advantage because it is an object oriented language and portable i.e. it

can run on different operating systems.

2.6 Semantic Web:

The Semantic Web is an extension of the current web, in which information is given

well-defined meaning, better enabling computers and people to work in cooperation.

The main aims of Semantic Web is the efficient resource discovery and utilization and

bringing structure to the meaningful content of Web pages, creating an environment

where software agents can readily carry out sophisticated tasks for users [6].

2.7 Semantic Web Technologies:

The Semantic Web is made through incremental changes, by bringing machine-

readable descriptions to the data and documents already on the Web. The main semantic

 9

web technologies in sequence of their evolution are, XMLS (XML Schema), XML, RDF,

RDFS (RDF Schema), OWL.

2.7.1 XML:

XML stands for EXtensible Markup Language markup language much like HTML.

It is designed to describe data but the tags are not predefined. We must define our own

tags. It uses a Document Type Definition (DTD) or an XML Schema to describe the data.

It follows W3C Recommendation [7].

2.7.2 RDF:

RDF stands for Resource Description Framework. RDF is a framework for

describing resources on the web. It provides a model for data, and syntax so that

independent parties can exchange and use it. It is designed to be read and understood by

computers. RDF is not designed for being displayed to people. It is written in XML. It is

a part of the W3C's Semantic Web Activity and is a W3C Recommendation [8].

2.7.3 Ontology:

 Ontology is a data model that represents a set of concepts within a domain and the

relationships between those concepts. It is used to reason about the objects within that

domain. Ontology is used in artificial intelligence, the semantic web, software

engineering, biomedical informatics and information architecture as a form of knowledge

representation about the world or some part of it.

Ontology generally describes, individuals which are basic or "ground level"

objects, classes that are sets, collections, or types of objects, attributes are properties,

features, characteristics, or parameters that objects can have and share, relations are

 10

ways that objects can be related to one another and events which can be perceives as the

changing of attributes or relations.

Ontology is now-a-days progressing at a great pace and finds applications in many

fields e.g. Artificial Intelligence, Semantic Web Software Engineering and Biomedical

informatics [9].

2.7.4 OWL:

The OWL Web Ontology Language is designed for use by applications that need to

process the content of information instead of just presenting information to humans.

OWL facilitates greater machine interpretability of Web content than that supported by

XML and RDF by providing additional vocabulary along with a formal semantics [10].

2.7.4.1 Reasons of using OWL:

 OWL has been used in the project because of many reasons such as using OWL

will enable the Semantic Web to be built on XML's ability to define customized tagging

schemes and RDF’s flexible approach to representing data. It is the first level above RDF

required for the Semantic Web which can formally describe the meaning of terminology

used in Web documents. OWL has been designed in a way enabling useful reasoning

tasks on the Web documents going beyond the basic semantics of RDF Schema [10].

2.7.5 Protégé:

Protégé is an extensible, platform-independent environment for creating and editing

ontology and knowledge bases. It has a friendly user interface enabling the users to

conveniently build and edit ontology [11].

 11

2.7.5.1 Reasons of using Protégé:

There are several features that distinguish Protégé from other knowledge base

editing tools. No other tool except Protégé has all of the features such as it is intuitive and

easy-to-use graphical user interface, its database back-end loads frames only on demand

and uses caching to free up memory when needed, and it can easily be extended with

plug-ins tailored for user’s domain and task [11].

2.7.6 JENA:

Jena is the interface which will be used by the agents to find out whether a certain

job website fits to the user criteria by querying its ontology. It is a toolkit for developing

applications within the semantic web. Jena provides two main APIs, Jena RDF API and

Jena 2 Ontology API [12].

2.7.7 Pellet:

Pellet is a complete OWL-DL reasoner acceptable to very good performance,

extensive middleware, and a number of unique features. It is the first sound and complete

OWL-DL reasoner with extensive support for reasoning with individuals (including

nominal support and conjunctive query), user-defined data types, and debugging support

for ontology. It implements several extensions to OWLDL including combination

formalism for OWL-DL ontology, a non-monotonic operator, and preliminary support for

OWL/Rule hybrid reasoning [13]. Pellet is written in Java and is open source.

 12

2.7.7.1 Difference between Pellet and JENA Query Engines:

The Jena query engine is RDF triple based, so to produce variable bindings it works

one triple at a time. In contrast, the Pellet query engine considers the entire conjunctive

query. This difference causes the engines to have different performance characteristics

and in some cases yields different results.

First, by using a level of representation consistent with the logic, the Pellet query

engine can perform optimizations that are inaccessible to the Jena query engine. These

optimizations often yield a significant speed-up in query answering.

Second, results may differ based on handling of blank nodes in queries. The

semantics of SPARQL are such that blank nodes need not be bound to asserted

individuals and can match individuals that are inferred (such as those from existential

restrictions and minimum cardinality constraints). The Pellet engine will produce results

using these inferred individuals and the Jena engine will not [14].

2.7.7.2 Using Pellet in JAVA Applications:

Pellet can be accessed from Java applications using one of two different APIs

designed to support Jena and OWL API libraries [15]. In the project Jena libraries are

being used.

2.7.7.3 Using Pellet with JENA:

There are two different ways to use Pellet in a Jena program: either using direct

Pellet interface which is highly recommended or using Jena DIG interface which is not

recommended. The Direct Pellet interface is much more efficient (e.g. does not have the

HTTP communication overhead) and provides more inferences (DIG protocol has some

 13

limitations). Using the direct interface is not any different than any other Jena reasoner

[15]. The project employs the direct Pellet interface.

2.8 Conclusion:

This chapter incorporated the explanation of all the significant technical terms

which are used in the fore coming chapters. It also elucidated the alternative technologies

that might have been considered as an option to be used in the project implementation but

the comparison done in this chapter has made it clear that why one technology is

preferred over the other. Hence this chapter gives a comprehensive idea about the

technologies being used in the project which will enable the better understanding of the

subsequent chapters.

 14

Chapter 3
3 System Analysis

3.1 Introduction:

This chapter covers the system analysis phase of the project. In this phase, first of

all the scope of the project is presented as it’s clear definition and understanding is

needed for the absolute comprehension of the system’s requirements. After the scope, the

requirements’ specification phase, including major functional and non-functional

requirements, is described. The requirements’ specification phase is then followed by

usecase diagram and domain model of the system for the better understanding of the

system analysis phase of the project.

3.2 Project Scope:

The aim of the project is to make the search in the context of job seeking

meaningful and optimal by implementing a scenario where a user wants to search for a

job which matches his specifications of domain, city, salary, timing hours etc The user

has a personalized Mobile Software Agent which takes these job preferences and

personal data from him and carry out the search on his behalf. A central directory is there

with which the companies offering jobs register their job domain and website’s location.

The companies have put semantics in their websites thus enabling the Mobile Agent to

process them intelligently. The Mobile Agent looks up the directory to short list the

websites in the basis of job domain. It then clones to the selected websites where it

queries their semantic documents to determine whether the user’s job specifications

match with the company’s job offers. If they do, then the clone returns the URL of the

 15

website to its parent which opens it for the user. The clone also drops the user’s CV on

the website hosting machine. This search is not on the basis of matching strings as is

done in conventional search engines. Rather it is based on the matching of concepts that

are specified in user’s preferences and websites’ semantic documents. The user hence

instead of facing a plethora of irrelevant information, gets the most optimal and precise

results.

3.3 Requirements Specification:

The requirements specification of the system includes its external interface

requirements including user and software interface requirements. It also involves the

analysis of the major functional requirements including the main functionalities that the

system is expected to deliver. Analysis of main non-functional requirements also is

important as it tends to give an idea about the characteristics of the system such as

accuracy, scalability etc.

3.3.1 External Interface Requirements:

It means requirements which include the interaction of the system with the external

requirement e.g. user interface through which the user interacts with the system and

software interfaces means the software tools which are employed in the system.

3.3.1.1 User Interfaces:

Several GUIs are required to enable the user and the job companies to interact with

the system for example; a GUI to get the job preferences from the user, another to take

the personal data from the user and another GUI is needed to facilitate the job companies

to register with the directory.

 16

3.3.1.2 Software Interfaces:

The project employs Windows XP as the operating system and software tools such

as, JADE, Pellet and Protégé. JADE is used to provide an agent platform, Pellet for

querying the ontology and Protégé for writing the ontology.

3.3.2 Major Functional Requirements:

Functional requirements means the core functionalities that the system is meant to

deliver, e.g. acquiring user’s data, creating semantic websites, registration of websites

with the directory, directory look up by Mobile Agent, cloning to related websites,

processing the ontology, returning the result and dropping the user’s CV. These

functionalities are illustrated in more details under the following headings.

3.3.2.1 Acquiring User’s Preferences and Personal Data:

The user provides his job priorities to his personalized Mobile Agent. The

preferences include the field in which he is interested to find a job, job title, salary,

timings and location which includes both city and country. He will also specify his

personal data that the job companies often require which includes applicant’s full name,

age, experience and qualification.

3.3.2.2 Creating Semantic Websites:

To enable the Mobile Agent to make a meaningful and an intelligent search,

semantic documents need to be created for the websites, describing the concepts specified

in them and forming relationships between those concepts

 17

3.3.2.3 Registration of Websites with Directory:

The job offering companies register their job domains, sub domains, websites’

index pages’ names and ontology’s names and the websites’ locations with a directory so

that they are available for the search by Mobile Agent.

3.3.2.4 Directory Look Up by Mobile Agent:

The Mobile Agent looks up the directory to find the websites offering jobs in the

domain specified by the user. It then acquires the locations of the relevant websites from

the directory.

3.3.2.5 Cloning to the Relevant Websites:

The Mobile Agent on acquiring the locations of the relevant websites sends its

clone to each of these locations.

3.3.2.6 Processing of Semantic Websites by Mobile Agent Clone:

The Mobile Agent clone will start processing those websites to compare the

concepts specified in them with those provided by the user to see whether the jobs

specified in those websites match user’s preferences or not.

3.3.2.7 Returning the results:

The mobile agent clone after processing the relevant websites returns the results to

the user. The result can be returning the webpage’s URL in case the user’s data matches

with the job offers or just a message displaying “Sorry, no results are found” in case they

don’t match.

 18

3.3.2.8 Dropping the user’s CV:

If the job preferences of the user match with the job offer of the company, the

Mobile Agent drops the CV of the user on the website hosting machine. The CV is

dropped only if the user provides the Mobile Agent with his CV initially while providing

his personal data. Otherwise it just returns the URL of the web page to the user.

3.3.3 Major Non-Functional Requirements:

The main non-functional requirements that the system provides are accuracy and

user friendly GUIs. Accuracy is there because semantic web is being used and the major

advantage that it provides over World Wide Web is the precision of results. GUIs should

be welcoming so that the user finds it easy to understand.

3.3.3.1 Accuracy:

The search performed by the agent should provide very accurate and precise results

to the user as the search will be semantic based instead of string matching. The number of

results will be smaller in number but exact, enabling the user to get rid of huge bundle of

inaccurate results.

3.3.3.2 User friendly GUI:

The user interface for getting the job preferences and personal data from the user

should be friendly and interactive. Also the GUI used by the companies to register their

job details should be pleasant as well.

 19

3.4 Usecase Diagram:

The usecase diagram of the system is shown in Figure 3.1. From the figure, it can

be seen that there are three primary actors involved in the system which are, Mobile

Agent, Mobile Agent Clone and Job Company. The main jobs of the Mobile Agent (i.e.

its usecases) are that it acquires user’s job preferences and personal data, looks up the

directory, clones to relevant websites. The usecases for Mobile Agent Clone are to

process semantic websites, return the results and dropping user’s CV. The Job company

has usecases such as to create semantic websites and register websites with the directory.

Figure 3-1: Usecase Diagram

3.5 Domain Model:

The domain model of the system is shown in Figure 3.2. The main concepts which

have been identified are: User, Job preferences, Personal data, CV, Mobile Agent, Mobile

Agent clone, Directory, Website, Website host, Query engine, Job, Job requirements, Job

 20

characteristics, Job Company and Ontology. The associations among these concepts have

been shown as well making the system easy to comprehend.

Figure 3-2: Domain Model

3.6 Conclusion:

 The system analysis of the project has been covered in this chapter. The scope of the

project has been revised for the clear understanding of the requirements, key functional

and non-functional requirements have been enumerated, the usecase diagram showing the

major actors and their actions have been included such as Mobile Agent acquiring the

user’s preferences and personal data, cloning to pertinent websites, Mobile Agent Clone

processing the websites and returning results and Job company creating and registering

CV
PersonalData

Ontology

Website Host

Job Company

Job Requirements
Maximum Age
Experience Required
City
Salary Package
Job Timings
Maximum Qualification

Job Characteristics
Domain
Title
Salary
Location
Timings

Job
1..*

1

1..*

1

offers

1..*1 1..*1

has
1

1

1

1has

User

1

1

1

1

has

Job Preferences
Domain
Subdomain
Title
Salary
Company
City
Country

11 11

has

Website

1

1

1

1 has

1

1

1

1

resides on

1

1

1

1

has

Directory

1

1..*

1

1..*

regiters job domain
Mobile Agent

1

1

1

1
has

1

1

1

1

show results 1

1

1

1

tak es1

1

1

1

looks up

PersonalData
First Name
Last Name
Age
Qualificat ion
Experience
Contact info
CV

1

1

1

1

has

1 11 1
has

1

1

tak es

1

1
Mobile Agent Clone

1

1

1

1

drops

1

1

1

1

queries1
1

1
1

moves to

1..*1 1..*1 has

1 1..*1 1..*
return results

Query Engine 1

1

1

1

uses to query

1
1

1
1

queries on
1

1

1

1

resides on

 21

websites. The conceptual model identifying the major concepts in the system has been

incorporated as well. This chapter has been written comprehensively so that the fore

coming design chapter becomes easy to comprehend.

 22

Chapter 4
4 System Design

4.1 Introduction:

System design is a very important phase in the software development process. The

succeeding implementation phase is performed taking into consideration the design

constraints. This chapter begins by presenting the high level design of the project

showing the main modules of the system without including much detail. Next the low

level design is incorporated elucidating the modules identified in the high level design. It

is then followed by the data flow diagram of the project. Class diagram is also included

focusing on the implemented classes, their attributes and their relationships with each

other.

4.2 Architectural Diagram:

The architectural diagram of the system is specified in Figure 4.1. It illustrates the

basic areas of the project which are: Agent, Search module and Semantic web

As depicted in Figure 4.1, the communication between the agent and the search

module is bidirectional as the agent first uses the discovery module to find out the

websites offering jobs in the same domain and sub domain as specified by the user. Each

website has an ontology written for it. The querying module is then used to query the

selected website’s ontology and the corresponding results are returned to the user.

 23

Figure 4-1: Architectural Diagram

4.3 High Level Design:

The high level design of the project is shown in the Figure 4.2. It is built using

black box approach, focusing on the main modules of the system and not considering

their inner details. The Figure 4.2 identifies the three fundamental modules of the project

as the Directory, User’s machine and Website Hosting machine.

As can be depicted from Figure 4.2, there are websites which register themselves

with a directory. The website hosting machines contain job ontology to provide semantics

to the websites, Mobile Agent clone and a supporting environment to allow the clone to

come. A mobile agent resides on the user’s machine which looks up the directory to find

Agent

Querying
Module

Discovery
Module

Search Module

Websites Ontology

Semantic Web

Agent

Querying
Module

Discovery
Module

Search Module

Websites Ontology

Semantic Web

 24

the websites offering jobs in the domain as specified by the user and then clones to the

selected websites.

Figure 4-2: High Level Design

4.4 Low Level Design:

The Figure 4.3 illustrates the detailed low level design of the project. Here each

module has been explained in more detail. An agent platform has also been employed in

the project which has been explicated as well.

4.4.1 Agent Platform:

As the suggested solution is agent-based, so an agent platform is needed to aid the

presence of Mobile Agent on all machines. The platform employed in the project is of

User’s Machine

Mobile Agent

Directory

Looks up

Website Hosting
Machine

Supporting
Environment

Job Ontology

Website Hosting
Machine

Supporting
Environment

Job Ontology………

clones to

Mobile Agent Mobile Agent

Moves to

Return
results

Registers
with

User’s Machine

Mobile AgentMobile Agent

Directory

Looks up

Website Hosting
Machine

Supporting
Environment

Job Ontology

Website Hosting
Machine

Supporting
Environment
Supporting
Environment

Job OntologyJob Ontology

Website Hosting
Machine

Supporting
Environment

Job Ontology

Website Hosting
Machine

Supporting
Environment
Supporting
Environment

Job OntologyJob Ontology………

clones to

Mobile AgentMobile Agent Mobile AgentMobile Agent

Moves to

Return
results

Registers
with

 25

JADE (Java Agent Development Environment). It is a software framework which has

been fully implemented in JAVA. The agent that is employed from JADE to provide its

functionality as a directory is DF (Directory Facilitator) Agent. JADE supports agent

mobility within a platform. So presence of JADE is compulsory on all the three modules

mentioned. This makes the system platform dependent.

4.4.2 Directory:

The main container of the JADE runs on this host. The agents of the websites

offering jobs register their job domains and locations with the Directory Facilitator (DF)

agent of the main container.

4.4.3 User’s Machine:

On the user’s machine, the personalized mobile agent of the user runs in a separate

container which joins the main container on the directory host, hence making both

machines part of the same platform. The Mobile Agent has a graphical user interface

which takes the user’s job preferences and personal data.

4.4.4 Website Hosting Machine:

The website and its ontology reside on the Website Hosting Machine. Ontology is

written using the ontology editor Protégé. To get registered to the directory, an agent

Register Agent runs on the website hosting machine in a container, which then joins the

main container running on the directory host. Consequently, the website hosting machine,

user’s machine and the directory host become part of the same platform.

 26

4.4.5 Search by Mobile Agent:

The Mobile Agent which runs on the user’s machine looks up the directory host to

get the locations of the registered websites offering jobs in the domain specified by the

user. After getting their locations, the Mobile Agent clones itself and each clone moves to

one of those locations. The clone on reaching the website host, queries the ontology

through pellet. If the job description in the ontology matches the user’s preferences, the

clone returns the URL of this website to its parent on the user‘s machine, drops the user’s

CV on the web hosting machine and terminates itself. The parent Mobile Agent opens

this website for the user.

Figure 4-3: Low Level Design

User`s Machine

JADE Platform

Directory

Website
Hosting
Machine

Container
Mobile Agent

Main Container

Directory
Facilitator

Container

Register Agent

Clone of Mobile Agent

Query
Engine

Web Server

Web
Page

Ontology
has

uses

queries

Looks up

Registers with

GUI

Clones to

User`s Machine

JADE Platform

Directory

Website
Hosting
Machine

Container
Mobile Agent

Main Container

Directory
Facilitator

Container

Register Agent

Clone of Mobile Agent

Query
Engine

Web Server

Web
Page

Ontology
has

uses

queries

Looks up

Registers with

GUI

Clones to

 27

4.5 Class Diagram:

Class diagram of the system is illustrated in Figure 4.4. In this diagram the classes

that have been implemented are shown along with the inherited classes and the

implemented interfaces, along with identification of their relationships with each other

e.g. the agent classes MobileAgent and RegisterAgent both inherit from GuiAgent class

that extends the Agent class. Similarly the GUI classes like RegisterAgentGui and

MobileAgentGui extends the class JFrame and are being instantiated by RegisterAgent

and MobileAgent respectively.

Figure 4-4: Class Diagram

 28

4.6 Data Flow Diagram:

The data flow diagram of the system is given in Figure 4.5. First of all the semantic

websites register themselves with the directory and the Mobile Agent takes the job

preferences from the user. Based on the user’s job domain and sub domain specification

and the registered websites in the directory, it finds out the websites offering jobs in that

particular domain and sub domain as given by the user. On retrieving the locations of

such websites, it clones to their hosting machines. The clone on each machine then

queries the ontology using Pellet API. The clones then return results to the parent Mobile

Agent in the form of web pages’ URL.

Figure 4-5: Data Flow Diagram

Semantic Websites
Registration with

Directory

Directory Lookup By
Mobile Agent

Mobile Agent Clones
to Relevant

Website Hosts

Clones Query
Ontology

Return Results
To User

Mobile Agent takes
Job Preferences

From User

Semantic Websites
Registration with

Directory

Directory Lookup By
Mobile Agent

Mobile Agent Clones
to Relevant

Website Hosts

Clones Query
Ontology

Return Results
To User

Mobile Agent takes
Job Preferences

From User

 29

4.7 Interaction Diagram:

When job seeker clicks Search button after providing his job criteria and personal data,

class PersonalDataGui posts an event to MobileAgent as a result of which onGuiEvent()

method in class MobileAgent is called. The messages that are called subsequently are

shown in the order alongwith the classes on which they are called in Figure 4.6.

Figure 4-6: Service Discovery by Mobile Agent

When a user on the employer’s side clicks Register button to register a job his company

is offering, PersonalDataGui posts an event to RegisterAgent as a result of which

onGuiEvent() method in class MobileAgent is called. The messages that are called

subsequently are shown in the order alongwith the classes on which they are called in

Figure 4.7.

 30

Figure 4-7: Registration of Job companies

When Mobile Agent clones, its afterClone() method is called in which all actions to be

taken at the website host are carried out. Those actions include retrieving the criteria and

personal data provided by job seeker and then executing methods of class QueryEngine

to query the ontology. If user’s provided data match with the ontology data, true is

returned by QueryEngine as a result of which clone of Mobile Agent sends the website

address to Mobile Agent. Otherwise clone sends a failure message to Mobile Agent. This

is illustrated by interaction diagram in Figure 4.8.

 31

Figure 4-8: Getting Data and Querying Ontology

When Mobile Agent is launched, its setup() method is called in which MobileAgentGui is

instantiated that displays gui for the user to enter his job criteria. Class PersonalData for

setting and getting personal data of user and class Criteria for getting and setting user’s

job criteria are also instantiated. Mobile Agent also receives messages from its clones.

This reception of messages is handled by class ReceiveMsg which is added to agent’s

behaviours. This is illustrated by the interaction diagram in Figure 4.9.

Figure 4-9: Setting MobileAgent

 32

4.8 Conclusion:

This chapter presented the architecture for Personalized Mobile Agent based search

on Semantic Web. It has incorporated the high level design, low level design, data flow

diagram and class diagram of the system. Three main modules have been identified

which are Directory, User’s machine and Website hosting machine. The design is

platform dependent as the presence of JADE is mandatory on all the modules of the

system. The results returned by the Mobile Agent are going to be more precise as

searching on Semantic Web is done on the basis of matching concepts contrary to

matching strings as in the conventional search engines. The system design chapter

included details that are very important in comprehending well the upcoming

implementation chapter.

 33

Chapter 5
5 Implementation

5.1 Introduction:

This chapter presents the implementation details of the project. The coding is done

in the object oriented language JAVA. As illustrated in the prior chapter, there are three

modules of the system, User’s machine, Directory and Website Hosting machine. As the

system is distributed, so the classes which are implemented are disseminated among these

modules. The implementation chapter is hence structured in the same way i.e. mentioning

each module and then elucidating the classes which are needed on that module.

5.2 Implementation language:

The implementation language which has been chosen for the project is JAVA. It has

been preferred over other languages because of several reasons e.g. it is a platform

independent language which enhances the system’s portability. This factor is significant

as the system built is of distributed nature. Also it is an object oriented language which

makes it simple to visualize the objects in real life. The agent platform which the system

has employed is of JADE which is also fully implemented in JAVA. JADE is used due to

the fact that it is distributed free of expiration date and full support is provided to its users

in the form of documentation. The Pellet API which has been incorporated in the system

to query ontology has also been implemented in JAVA.

 34

5.3 Distribution of classes with respect to Modules:

Considering in account the fact that the system is distributed, the implemented

classes will be explained with respect to their placement in the system. From the high

level design in the preceding chapter, the three identified modules are User’s machine,

Directory and Website Hosting machine.

Each module of the system contains a certain set of implemented JAVA classes and

their interaction carry out the operation for which they are destined for i.e. job seeking

facility for the user on semantic web.

5.3.1 User’s machine:

This component of the system holds a set of classes which collectively form the

User Interface. It means that it is through these classes that the user interacts with the

system without indulging in the internal details of the system. The classes present on this

module can mainly be separated into two sets.

First set contains classes which provide the Graphical User Interface. This group

includes two classes which are: MobileAgentGui and PersonalDataGui.

The other set comprises those classes which carry out the other functionality behind these

GUI classes. These classes include Launch, MobileAgent, PersonalData and Criteria.

5.3.1.1 Initiating Mobile Agent:

It is done by class Launch.java. The user instead of setting the class path himself to

begin the Mobile Agent he just runs this class as a result of which the Mobile Agent is

launched and its GUI appears in front of the user.

 35

5.3.1.2 Job Seeker GUI for Acquiring his Job Criteria:

The user interacts with his personalized Mobile Agent through the interface class

MobileAgentGui.java. It inherits the GUI characteristics from class JFrame. The output

of its code execution is a GUI form shown in Figure 5.1, which has fields where user

enters his job preferences so that the Mobile Agent can carry out the respective search.

The job specifications include domain, sub domain, title, company, salary, job timings,

city and country as can be seen from Figure 5.1.

As JADE platform is employed to support the agent mobility, so this class imports

some of the JADE inbuilt classes and JAVA classes from the package javax.swing for the

GUI and java.awt and java.awt.event for action listening.

Figure 5-1: MobileAgentGui

 36

5.3.1.3 Job Seeker GUI for Acquiring his Personal Data:

PersonalDataGui.java is a Graphical User Interface class which outputs a form in

which the user enters his personal data that includes his first name, last name, age,

qualification, experience, contact information and curriculum vitae. The form is shown in

Figure 5.2. A text area is provided where the user pastes his CV so that the Mobile Agent

clone can drop it in the form of a MS word document on the Website Hosting machine if

the user’s job preferences match with the job offer of the company. The user’s personal

data is required to match it with the job company’s requirements e.g. qualification

needed, experience required etc. This class extends JFrame to make use of its GUI

capabilities. It imports the same JAVA and JADE classes as the MobileAgentGui does.

Figure 5-2: PersonalDataGui

 37

5.3.1.4 Manipulating Personal Data:

The JAVA class which provides the functionality to PersonalDataGui class is

PersonalData.java. It uses the interface Serializable. All the information that is entered by

the user in the form output by PersonalDataGui class is assigned to its private data

members which are firstName, lastName, age, experience, degree, field and CV. This

class provides getters and setters to access these data members for manipulation. It

imports only one package i.e. java.io to utilize the interface Serializable.

5.3.1.5 Manipulating Job Criteria:

The job preferences entered by the user in the MobileAgentGui are assigned to the

private data members of Criteria.java. These members are named as domain, subdomain,

title, company, pay, timings (include part time or full time), city and country. All data

members are of type String except pay which is of type integer. The getters and setters

required for the manipulation of data as user’s job preferences are provided by this class.

5.3.1.6 User’s Personalized Mobile Agent:

The MobileAgent.java is a very important class on the user’s machine module. It

extends the GuiAgent class and imports a number of JADE and JAVA packages. It

instantiates PersonalData and Criteria as its data members both of which are used by

classes PersonalDataGui and MobileAgentGui for assigning the values entered by the

user in their forms to the data members of PersonalData.java and Criteria.java

respectively. This is made possible by sending the reference of the MobileAgent class to

the constructors of the GUI classes PersonalDataGui.java and MobileAgentGui.java. As

the user runs the MobileAgent class according to the manual’s instructions provided to

 38

him, a MobileAgentGui form appears in which the user enters his job preferences. After

pressing the Next button provided in the form, a PersonalDataGui form appears in front

of him where he enters his personal data and pastes his CV in the specified text area. The

MobileAgent then looks up the Directory Facilitator Agent provided by JADE where the

websites have registered their job domains, location, ontology name and the website’s

home page name. The MobileAgent using the JADE classes, DFAgentDescription and

ServiceDescription will locate the websites offering jobs in the same domain as

preferred by the user. It then clones to the selected website hosting machines and the

clones query the ontology residing on those machines using pellet API. If the job

ontology matches with the job preferences of the user, the clone writes the CV on a MS

word document and drops it on the website hosting machine. It also finds the URL of the

website and sends it to the parent Mobile Agent through as ACL message, which opens it

for the user on user’s machine. The Mobile Agent clone then terminates itself using

method doDelete () from the JADE API.

5.3.1.7 Query Engine:

The class QueryEngine.java uses Pellet API to query the ontology on the website

hosting machine to determine that whether the user’s job preferences match with the job

offers of the company. There is only one private data member in this class which is que

of type String to store the SPARQL query. The constructor of Query Engine class takes

User Preferences and Personal Data as arguments and then the SPARQL Query is

constructed within the body of constructor according to the data provided in the

arguments. It has two public functions which are run (String queryStr) and runQuery ().

 39

5.3.1.7.1 run (String queryStr):

It has the return type of boolean and it takes the SPARQL query as an argument. It

then creates an empty ontology model using Pellet specification. The code then reads the

ontology from the URI specified in the SPARQL Query and loads it in the empty

ontology model. An object of an inbuilt Query Execution class is instantiated and its

method execAsk () is called to query the ontology model using a SPARQL Ask Query.

At the end the result of the Ask Query is returned to its caller function run.

5.3.1.7.2 runQuery ():

This function also returns a value of type boolean. It calls the method run () passing

a SPARQL query as an argument. The result is returned by the run () to its caller

runQuery () which ultimately returns it to its own caller function which is in fact the main

() of the JAVA code.

5.3.2 Directory:

 The main container of the JADE platform runs on this machine. The main

container has a special agent Directory Facilitator (DF) agent which serves the purpose of

the directory. The Mobile Agent running on user’s machine get registered with this DF

agent as soon as it starts. The websites register their job domain, location, website

homepage name and the ontology name with this DF agent through an agent called

RegisterAgent. This agent runs on the websites’ hosting machines.

 40

5.3.3 Website Hosting machine:

Three classes reside on this module of the system which are RegisterAgentGui,

RegisterAgent and Ontology.

The first two classes provide the registration facility to the job companies through

which they get registered with the Directory Facilitator agent running on the directory.

The Ontology is queried by the Mobile Agent to find that whether the job preferences of

the user match with the job offers of the company.

5.3.3.1 Initiating Register Agent:

It is the class that initiates the RegisterAgent. The companies instead of setting the

class path themselves to begin the RegisterAgent, they just run this class as a result of

which the RegisterAgent is launched and its GUI appears through which the companies

can register their job descriptions with the directory.

5.3.3.2 Job Employers GUI for Job Registration:

This class RegisterAgentGui.java is instantiated by RegisterAgent.java and

provides a friendly Graphical User Interface to the job companies enabling them to

register their job domain, sub domain, website index page name and ontology name with

the Directory Facilitator agent running on the directory machine. As can be seen from

Figure 5.3, the domain is selected from a drop down list provided and then from the

corresponding sub domains, the sub domain can be selected using the drop down list. The

website index page name and the ontology name are also registered considering the

possibility that there can be more than one websites being hosted on a single machine.

The RegisterAgent passes its reference in the RegisterAgentGui class’s constructor. The

 41

data entered into the GUI is assigned to the data members of the RegisterAgent using its

reference. The GUI has a Register button which invokes an action listener on being

pressed, hence registering the data entered into the GUI with the directory.

Figure 5-3: RegisterAgentGui

5.3.3.3 Registration of Jobs:

RegisterAgent.java is a very significant code among all which reside on the website

host. The job companies run this code to register their job domains, sub domains,

locations, name of the website index page and the ontology with the yellow pages

catalogue managed by the Directory Facilitator agent so that the Mobile Agent can

dynamically discover them. Its major data members include RegisterAgentGui, domain,

subdomain, ont_name and webpage_name.

 42

The data entered by the job companies into the RegisterAgentGui is assigned to

these data members. The RegisterAgent discovers its location in the form of the name

and address of the object of type Location obtained by method here (). The location,

webpage name and ontology name are assigned to objects of type Property. A

ServiceDescription object is instantiated and its name is set to be the job domain name

and its type is set to be the job sub domain. Four Property objects (location, webpage

name and ontology name) are added to this ServiceDescription object. Then

DFAgentDescription object is instantiated and through the method addService () of the

DFAgentDescription, the ServiceDescription object is added to the DFAgentDescription

object. This DFAgentDescription object can then be discovered by the Mobile Agent if

its name and type matches the domain and sub domain entered by the user in the

MobileAgentGui.

5.3.3.4 Ontology:

The ontology written includes two OWL files, jobs.owl and your_ontology.owl.

The jobs.owl contains a three level of class hierarchy which is illustrated below:

5.3.3.4.1 First Level:

On first level, three is only one owl class labeled as Occupation. This class has only

one data type property (attribute) i.e. synonyms of type String.

5.3.3.4.2 Second Level:

On second level of hierarchy, there are 15 owl classes which represent the job

domains. Each class at this level inherits synonyms property from Occupation class.

 43

5.3.3.4.3 Third Level:

On third level, there are many classes and their instances are used as job titles. Each

class at this level also inherits synonyms property from its super class.

your_ontology.owl contains a class named as Job which has seven attributes as

company, location, pay, qualification, title, age and experience. Job’s attributes are all

classes as well.

5.3.3.4.4 company:

It has two attributes, one is company_name which is data type property of type

String and the other one is jobs_offered which is an object property of type Job.

5.3.3.4.5 location:

It has two properties, country which is a data type of type String and country which

is also a data type of type String.

5.3.3.4.6 pay:

It has three attributes, rupee, dollar and pound .These are all of type Integer.

5.3.3.4.7 qualification:

It has two attributes of type String which are degree and field.

jobs.owl will be imported in your_ontology.owl for using the instances of classes at

third level of hierarchy as job titles. Every job offering company will have to make its

own copy of your_ontology.owl having data related to the jobs offered. While jobs.owl

will used as it is by the every company.

 44

5.4 Conclusion:

This chapter incorporated the details of the classes implemented. . The classes have

been distributed among the three basic components of the system which are User’s

machine, Directory and Website Hosting machine. JAVA has been used as the

programming language for the project due to its object-oriented and platform independent

nature. Also the APIs employed in the project i.e. JADE and Pellet are implemented in

JAVA making the system components interoperable

 45

Chapter 6
6 Testing

6.1 Introduction:

Testing is a very important phase in the software development process. Once the

coding process is completed, then the software goes under the testing process which

involves checking the codes for errors and bugs. It involves any activity aimed at

evaluating an attribute or capability of a program or system and determining that it meets

its required results [16]. This chapter involves all the testing techniques which have been

employed in the project and the conclusions which have been deduced on the basis of the

results of the testing procedures. Test cases for different units and components have been

drafted illustrating their expected behaviors on the success and failure of each test. The

output of each test is then compared with the one documented in the test case to make

sure that the system behaves in the same way in which it is meant to behave.

6.2 Testing Process:

The testing process has been carried out throughout the development process as an

iterative approach has been used in the project for development. Each phase of

development was visited several times making sure that the testing process goes in

parallel with the development process. The testing was basically done at three levels,

Unit testing, Integration testing and System testing.

 46

6.2.1 Unit Testing:

Unit testing has been done to determine that whether the individual units of the

source program work in the same way in which they are expected to work. The units in

the project include those methods which cannot be tested by simple inspection and those

classes which cannot be broken down into smaller units for testing. The identified units

of the project along with the corresponding test cases are illustrated under the following

headings.

6.2.1.1 Launch.java:

It is the class which lies on the user’s machine is used to launch the MobileAgent.

The expected results on success and failure can be observed from the Table 6.1. On

success, the MobileAgent will start and join the main container. On failure, the

MobileAgent will not be able to initiate. The tests were successful as it effectively

launched the MobileAgent.

Table 6-1: Test case for Launch.java

Identity Launch.java

Category Unit testing

Description This class is used to initiate the Mobile Agent.

Set up JADE set up is needed as a supporting environment.

Expected
 Results

Success Mobile Agent starts in a container which then joins the main
container.

Failure Mobile Agent does not start.

 47

6.2.1.2 MobileAgentGui.java:

It is one of the classes that is required on the user’s machine. As illustrated in Table

6.2, on success, a GUI appears through which the job preferences of the user are provided

to the Mobile Agent. On failure, the GUI is not able to give the window’s appearance and

feel. When the test was conducted to check this class, the results were quite successful as

the same GUI appeared as expected and it successfully took the user’s job preferences

applying the necessary checks on all the fields.

Table 6-2: Test case for MobileAgentGui.java

Identity MobileAgentGui.java

Category Unit testing

Description This class takes the user’s job preferences through a GUI
and gives it to MobileAgent.

Set up Dependable classes, MobileAgent and supporting JADE and
JAVA swing classes must be present.

Expected
 Results

Success Takes user’s job preferences through a GUI, applying
checks to all the fields in the GUI such as asking user to
enter the salary in numbers if he enters in string.

Failure The GUI is unable to give windows look.

6.2.1.3 AfterClone () of MobileAgent.java:

MobileAgent.java lies on user’s machine. It has many important methods which

themselves can be taken as individual units. AfterClone() is one of such methods which

dictates the behavior of the MobileAgent clone. If the method executes properly, the

MobileAgent clone based on the results returned after querying the ontology, performs

 48

two types of actions. If the result returned is true i.e. the user’s data matches with the job

offers and requirements in the ontology, the clone writes CV on the website hosting

machine and returns the IP to its parent Mobile Agent in the form of an ACL message.

Otherwise the clone checks whether it’s the last clone and no other clone has sent true, it

sends a message to the parent Mobile Agent that no result was found. The test case for

this method is shown in Table 6.3. On conducting the tests to check the functionality of

this function in MobileAgent.java, results were accurate as the clone applied the right

query on the ontology and returned results that were expected.

Table 6-3: Test case for AfterClone ()

Identity AfterClone () of MobileAgent.java

Category Unit testing

Description This method runs the Query Engine and dictates the
behavior of the MobileAgent clone.

Expected
 Results

Success If True is returned, the clone writes CV on the website
hosting machine and returns the IP to its parent Mobile
Agent in the form of an ACL message.
If False is returned, the clone checks whether it’s the last
clone and no other clone has sent true, it sends a message to
the parent Mobile Agent that no result was found.

Failure An exception is thrown if there is an error in the query
format which cannot occur in our case as the query is being
created using the criteria provided by the user in the GUI.

6.2.1.4 onGuiEvent () of MobileAgent.java:

This method is executed when the user presses the “Search” button on the

PersonalDataGui. The test case for this method is illustrated in Table 6.4. On success, this

 49

method provides the MobileAgent with the data taken from the user. It looks up the

directory to find the registered websites having job offers in the domain and sub domain

as desired by the user. The MobileAgent retrieves the locations of the selected websites

from the directory and then clones to the relevant websites. If the method fails to execute

properly, the appropriate exception is thrown. Testing this method caused the correct look

up of the directory and successful cloning to the selected websites.

Table 6-4: Test case for onGuiEvent ()

Identity onGuiEvent () of MobileAgent.java

Category Unit testing

Description It takes the job criteria and personal data from the user,
looks up the directory on the basis of domain and sub
domain and then sends the clone to the selected website
hosting machine.

Expected
 Results

Success As the user presses Search button, directory is looked up on
the basis of domain and sub domain and clone is sent to the
website hosting machine if websites are registered offering
jobs in the same domain and sub domain as desired by the
user.

Failure An exception is thrown if connection is not being able to
establish with the directory or if the container running on
the website hosting machine closes.

6.2.1.5 ReceiveMsg of MobileAgent.java:

This class is contained inside the MobileAgent.java and receives the ACL message

sent by the clone to display the appropriate message or web page to the user. As given in

Table 6.5, on its successful execution, it either displays the user a dialog box with

message “Sorry no results are found” received from the MobileAgent clone or opens the

 50

webpage for the user from the IP sent by the clone. Tests performed on this class resulted

in the correct reception and display of the messages.

Table 6-5: Test case for ReceiveMsg

Identity ReceiveMsg of MobileAgent.java

Category Unit testing

Description This class is used to receive the ACL message sent by the
clone and displaying the appropriate message or web page
to the user.

Expected
 Results

Success If no result is found, it displays a message to the user in the
form of a dialogue box and disposes of the
PersonalDataGui.
If result is found, it opens up the web page for the user.

Failure An exception is thrown if internet explorer is not able to
open the web page.

6.2.1.6 PersonalDataGui.java:

This unit is also needed on the user’s machine. It provides a GUI to the user for

getting the user’s personal data. The test case for this class is given in Table 6.6. If it

works in the right way, then its expected behavior is to takes the user’s personal data

through a GUI, applying all the necessary checks on GUI’s fields. If it is not properly

executed, the correct GUI will not be able to appear. The test case in Table 6.6 was used

to conduct tests on this unit of the system and the results were very successful as

expected results were obtained.

 51

Table 6-6: Test case for PersonalDataGui.java

Identity PersonalDataGui

Category Unit testing

Description This class takes the user’s personal data through a GUI and
gives it to MobileAgent.

Set up Dependable classes, MobileAgent and supporting JADE and
JAVA swing classes must be present.

Expected
 Results

Success Takes user’s personal data through a GUI, applying checks
to all the fields in the GUI such as asking user to fill the first
name and last name fields as a compulsion and enter his age
and experience in numbers if he enters in string.

Failure The GUI is unable to load the windows look and feel.

6.2.1.7 PersonalData.java:

This class is also required to be present on the user’s machine. Its test case is

illustrated in Table 6.7. On success, its expected behavior is the successful assignment of

the user’s personal data entered in the PersonalDataGui to its data members through its

setter functions and the correct retrieval of the data through its getter functions. The tests

conducted on this unit were according to the test case in Table 6.7.

Table 6-7: Test case for PersonalData.java

Identity PersonalData

Category Unit testing

 52

Description The user’s personal data taken through PersonalDataGui is
assigned to its data members and these data members can be
manipulated using PersonalData’s getters and setters.

Set up Dependable JAVA classes must be present.

Expected
 Results

Success The data entered by the user is successfully assigned to
PersonalData’s data members through setters and effectively
retrieved using its getters when needed.

6.2.1.8 Criteria.java:

This presence of this unit is mandatory on user’s machine. Its test case is illustrated

in Table 6.8. On success, its expected behavior is the successful assignment of the user’s

job preferences entered in the MobileAgentGui to its data members through its setter

functions and the correct retrieval of the data through its getter functions. The results of

the test conducted on this class were the same as the expected behavior mentioned in

Table 6.8.

Table 6-8: Test case for Criteria.java

Identity Criteria

Category Unit testing

Description The user’s job preferences taken through MobileAgentGui
are assigned to its data members and these data members
can be manipulated using Criteria’s getters and setters.

Set up Dependable JAVA classes must be present.

Expected
 Results

Success The data entered by the user is successfully assigned to
Criteria’s data members through setters and effectively
retrieved using its getters when needed.

 53

6.2.2 Component Testing:

Different units together form a component. After unit testing, the components have

been tested to make sure that they behave in the expected way. The test cases for

different components of the system are elucidated and shown under the following

headings.

6.2.2.1 MobileAgent.java:

The presence of MobileAgent.java is obligatory on the user’s machine. The test

case drafted for it is given in Table 6.9. It takes data from the user, looks up the directory

on the basis of job domain and sub domain and clones to the relevant websites’ machines.

It then queries the ontology. If user’s criteria and the ontology match, CV is dropped on

that machine and webpage is opened for the user. If they don’t match, a message

displaying “Sorry, no results are found” is displayed to the user. On success, the expected

behavior of this class is the correct execution of all these functionalities. On failure,

exceptions are thrown. The tests conducted on this component were very successful as it

behaved in the same way as expected according to the test case given in Table 6.9.

Table 6-9: Test case for MobileAgent.java

Identity MobileAgent.java

Category Component testing

Description This class takes data from the user, looks up the directory on
the basis of job domain and sub domain and clones to the
relevant websites’ machines. It then queries the ontology. If
user’s criteria and the ontology match, CV is dropped on
that machine and webpage is opened for the user. If they
don’t match, a message displaying “Sorry, no results are

 54

found” is displayed to the user.

Set up Dependable classes, MobileAgentGui, PersonalData,
Criteria, QueryEngine and supporting JADE classes must be
present.
Supporting JADE classes must be added to the class path.
Main container of JADE must be running.

Expected
 Results

Success Takes user’s job preferences and personal data, looks up the
directory, clones to the relevant websites and queries the
ontology present there.
If user’s criteria and the ontology match, CV is dropped on
the website hosting machine and webpage is opened for the
user.
If user’s criteria and the ontology do not match, a message
“Sorry, no results are found” is shown to the user.

Failure Exceptions are thrown.

6.2.2.2 RegisterAgent.java:

This component is required on the website hosting machine and is needed to

register the website’s index page name, ontology’s name, its location, job domain and sub

domain with the directory. On success, all this information successfully gets registered

with the directory and on failure, the appropriate exception is thrown. The test case for

this component is illustrated in Table 6.10. The tests that were performed on this

component according to the test case in Table 6.10 were quite successful, validating the

test case.

Table 6-10: Test case for RegisterAgent.java

Identity RegisterAgent.java

 55

Category Component testing

Description This class registers the website’s index page name,
ontology’s name, its location, job domain and sub domain
with the directory.

Set up Supporting JADE classes must be added to the class path.
Main container of JADE must be running.

Expected
 Results

Success The Register agent finds its container ID (location), gets the
website index page’s and ontology’s name, job’s domain
and sub domain from the RegisterAgentGui and registers
this information with the directory.

Failure An exception is thrown if this agent is not able to register
with the directory.

6.2.2.3 QueryEngine.java:

The existence of this component is compulsory on the user’s machine. This class is

very significant as it is used by the MobileAgent clone to query the ontology. Its

successful execution involves the construction of query on the basis of the data provided

by Mobile Agent, applying the query to ontology and returning true if the user’s data

match with the ontology data and false if it does not. If it does not execute correctly, an

exception will be thrown. The test case for this component is illustrated in Table 6.11.

Table 6-11: Test case for QueryEngine.java

Identity QueryEngine.java

Category Component testing

Description It queries the ontology on the basis of the data provided by
the Mobile Agent and returns true and false depending on
whether the user’s data match with the data in ontology or
not.

 56

Set up Web server must be running.
Supporting Pellet classes must be added to the classpath.

Expected
 Results

Success It constructs a query on the basis of the data provided by
Mobile Agent. It then applies the query to ontology and
returns true if the user’s data match with the ontology data
and returns false if it does not.

Failure An exception is thrown if there is an error in the query
format which cannot occur in our case as the query is being
created using the criteria given by the user in the GUI.

6.2.3 Integration Testing:

Integration testing means testing the functionality of the system stepwise while

integrating the components or modules. While amalgamating the components, tests are

carried out each time the components are integrated. If the tests are successful, then

further integration of the system takes place. Otherwise the components are debugged

and integrated again and again until the tests are successful.

 In the project, the components were integrated in three main steps. First of all

Directory and the Register Agent were integrated and testing was done. If the test results

were successful, then Mobile Agent was combined with these two and the system was

tested again. After that, Query Engine was amalgamated with the rest of the system and

tests were carried out again. These steps have been elaborated as follows:

6.2.3.1 Integration of Directory and RegisterAgent:

RegisterAgent here means all the classes that are needed for registration of the

companies with the directory i.e. Launch.java, RegisterAgent.java and

RegisterAgentGui.java. Initially the RegisterAgent and Directory were integrated and

their combined functionality was tested. Through RegisterAgent, the job companies

 57

registered their job domain, sub domain, location, webpage name and ontology name

with the directory facilitator agent of the main container. Then we checked the results

that whether the companies got registered with the directory or not. The results were

correct, so further components were integrated with it.The test case which was considered

to check the expected behavior of the integrated components.

Table 6-12: Test case for Integrated RegisterAgent and Directory

Identity Integrated RegisterAgent.java and Directory

Category Integration testing

Description As these classes are integrated, the combined functionality
they perform is the registration of company’s website’s
index page name, ontology’s name, its location, job domain
and sub domain with the directory.

Set up Supporting JADE classes must be added to the class path.
Main container of JADE must be running.

Expected
 Results

Success The Register agent finds its container ID (location), gets the
website index page’s and ontology’s name, job’s domain
and sub domain from the RegisterAgentGui and get
registered successfully with the Directory Facilitator Agent
of the main container.

Failure The job companies are not able to get registered with the
directory (DF Agent).

6.2.3.2 Integration of Directory, RegisterAgent and MobileAgent:

MobileAgent here means collection of those classes which are employed which are

used to take the user’s data, look up the directory, clone to selected websites, query the

ontology, drop the CV and return the results to the user. The set of classes included are

Launch.java, MobileAgent.java, MobileAgentGui.java, Criteria.java, PersonalData.java

and PersonalDataGui.java. During integration testing, the MobileAgent was integrated

 58

with the Directory and RegisterAgent and their collective functionality was tested. The

results were quite successful. The MobileAgent obtained the user’s job preferences and

personal data and successfully looked up the directory to get the results and cloned to the

relevant websites hosting machines. The tests were conducted taking into account the

following test case.

Table 6-13: Test case for Integrated MobileAgent, RegisterAgent and Directory.

Identity Integrated MobileAgent, RegisterAgent and Directory

Category Integration testing

Description As these classes are integrated, the collective functionality
which is performed includes the Mobile Agent taking data
from the user, looking up the directory on the basis on the
basis of domain and sub domain and then cloning to the
relevant websites’ hosting machines. Also the working
requires the successful registration of websites with the
directory.

Set up Dependable classes, MobileAgentGui, PersonalData,
Criteria and supporting JADE classes must be present.
Supporting JADE classes must be added to the class path.
Main container of JADE must be running.

Expected
 Results

Success The MobileAgent is able to take the user’s data, look up the
directory on the basis of domain and sub domain, retrieve
the location of the website hosting machine and clone to
those machines.

Failure The MobileAgent is not able to take the user’s data or look
up the directory on the basis of domain and sub domain or it
might not be able to clone to the retrieved locations of the
website hosting machines.

 59

6.2.3.3 Integration of Directory, RegisterAgent, MobileAgent and

QueryEngine:

This is the final stage of integration when all the basic components are integrated

together and checked for their final working. The results were very encouraging. The

clones were enable to query the ontology using QueryEngine and return the predicted

results to the user. The test case which was written to authenticate the combined

functionality of the system is as follows:

Table 6-14: Test case for Integrated MobileAgent, RegisterAgent, Directory and
QueryEngine

Identity Integrated MobileAgent, RegisterAgent, Directory and

QueryEngine
Category Integration testing

Description The combined functionality includes the MobileAgent
taking data from the user, looking up the directory on the
basis of job domain and sub domain and cloning to the
relevant websites’ machines. It then queries the ontology. If
user’s criteria and the ontology match, CV is dropped on
that machine and webpage is opened for the user. If they
don’t match, a message displaying “Sorry, no results are
found” is displayed to the user. The working also includes
the registration of websites with the directory.

Set up Dependable classes, MobileAgentGui, PersonalData,
Criteria, QueryEngine, RegisterAgentGui and supporting
JADE classes must be present.
Supporting JADE classes must be added to the class path.
Main container of JADE must be running.

Expected
 Results

Success The MobileAgent clone queries the ontology present on
website hosting machines.
If user’s criteria and the ontology match, CV is dropped on
the website hosting machine and webpage is opened for the
user.
If user’s criteria and the ontology do not match, a message
“Sorry, no results are found” is shown to the user.

 60

Failure The MobileAgent clone is not able to query the ontology
present on website hosting machines.

6.2.4 White Box Testing:

White box testing or structural testing uses an internal perspective of the system to

design test cases based on internal structure. It requires programming skills to identify all

paths through the software [17].The white box testing of the system has been done at both

unit testing and component testing stages.

6.2.5 Black Box Testing:

Black Box Testing is testing without knowledge of the internal workings of the item

being tested [18]. It attempts to derive sets of inputs that will fully exercise all the

functional requirements of a system. For each set of inputs, outputs are known and in

black box testing, the inputs are fed in and if the output matches the predicted output it

means that the system delivers the expected functionality.

If we consider that data as valid data for which the job offers are available and the

data for which the companies are not offering jobs as invalid data, following tests were

conducted as part of the black box testing.

6.2.5.1 Checking the System on Valid Data:

First the system was checked on data for which the registered companies were

offering jobs. The webpage of the website offering that job was returned which proved

the right functionality of the system on entering valid data.

 61

6.2.5.2 Checking the System on Invalid Data:

Secondly that set of data was entered for which the job offers were not available. In

this case the Mobile Agent displayed the message “Sorry, no results are found” showing

that the system worked correctly on entering the invalid data.

6.2.5.2.1 Skipping the noncompulsory fields:

 The query on ontology is done even if all the fields are not filled except domain,

sub domain, first name and last name as these are compulsory fields. The null fields are

ignored and the query which builds at run time on the back end does not include these

fields in the query. To check that whether the system was delivering this functionality,

some of the fields, except the compulsory fields, were skipped. The query was done and

it was observed that correct results were returned by the Mobile Agent, authenticating the

right functionality of the system on skipping the noncompulsory fields.

6.2.5.2.2 Skipping the compulsory fields:

Next while entering data, compulsory fields were skipped and it was observed that,

messages were displayed prompting to fill the compulsory null fields, verifying that the

system was correctly implementing this functionality as well.

6.2.6 Static Analysis of Code:

Besides testing the code dynamically, static analysis of the code has been done as

well to find defects, if any, in the blocks of code due to which it does not implement the

exact requirement or to determine the ways by which the code can be optimized to make

it fool proof.

 62

The code has been statically analyzed in many ways which are briefly illustrated

under following headings.

6.2.6.1 Control Flow Analysis

Control flow analysis has been carried out for the verification and validation of

control blocks in the source code, for instance, the ‘for’, ‘while’ loops and the ‘if’

condition blocks. It has been observed that no unnecessary code has been included and all

these blocks are optimized.

6.2.6.2 Data Analysis:

 Data analysis has been done to find and remove improper initializations,

unnecessary assignments and those variables that are declared but never used. All such

unnecessary lines have been eliminated thus giving a refined code.

6.2.6.3 Interface Analysis:

Interface analysis has also been done to ensure consistency of interface, class,

procedure declaration, definition and their use. It has been observed through tests that all

the methods declared in the interface are correctly implemented in the classes and that

there are no redundant methods.

6.2.7 Conclusion:

This chapter illustrated the testing process of the system that has been carried out

and the corresponding results obtained. The testing of the system has been done in great

detail. The test cases have been written for the three mains phases of testing, unit testing,

component testing and integration testing. Using these test cases, the results of the tests

 63

have been authenticated. Both white box and black box testing have been carried out to

determine that whether the system delivers all the functional requirements that it should

be delivering. Even static inspection of the code has been carried out as well so that it

become optimized and does not become redundant. All the test results were very

successful proving that the system delivers all its functionalities in an efficient way.

 64

Chapter 7

7 Future Work and Conclusion

7.1 Future Work:

The system that has been implemented in the project can be extended in many

ways. First of all, the search which now goes on is in terms of job seeking. In future the

search can be made generalized as is done in any general purpose search engine. Also

based on the design of the proposed system, the search facility can be extended for other

application domains as well.

When this project was started, JADE supported only intra-platform mobility. So the

system has been designed in such a way that all agents register with one main container,

making all of them part of the same main container. But now the JADE supports inter-

platform mobility as well. So in future the project can be extended by running more than

one main container which means more than one directory will be there enabling the

MobileAgent to look up and utilize the services of the agents of other platforms as well.

7.2 Conclusion:

Semantic Web and Mobile Agents are two promising technologies that have been

progressing at an enormous pace. The system has been developed for automated

searching and filtering of information on the web for the purpose of job seeking - based

on these two technologies. It aims to provide precise results as well as convenience to the

user; making the application very significant as there is a drastic need of such automated

solutions in the fast and demanding world of today.

 65

APPENDIX A

Research Paper

 66

Personalized Mobile Agent Based Searching of Semantic Web

Sara Rehmat, Amina Khan, Fatima Naeem, Urooj Saeed,

 Athar Mohsin, Umar Mahmud,

CS Department, Military College of Signals, National University of Sciences and
Technology, Rawalpindi, Pakistan

Abstract

This paper illustrates the integration of
Mobile Agent and Semantic Web
technologies by proposing a solution that
provides domain specific search to user.
The user uses Mobile Agent to search
for his required information on Semantic
Web and get more meaningful and
refined results in return.

Keywords

Semantic Web, Mobile Agent, Semantic
Search Engine

1. Introduction

World Wide Web is the universe of
information most of which is for
humans’ perusal, not for computer
programs to manipulate meaningfully.
Semantic Web is a promising technology
that is aimed at putting meanings into
the contents of current Web, thus
enabling the computer programs to
understand the contents and
consequently process them intelligently
[1]. The main feature of Semantic Web
is the existence of metadata that
facilitates the meaningful and intelligent
search by computer programs.

Mobile Agents are programs that can
autonomously travel across a network
and perform tasks on machines that
provide agent hosting capability [2]. The
use of mobile agent reduces network
load as instead of downloading large
amount of data for processing, the
processing is transferred to where data
lies.

2. Related Work

Semantic Web is evolving at a great
pace which generates the need for search
engines that can efficiently search for the
Semantic Web documents i.e. documents
written in RDF or OWL. One of the
popular semantic search engines is
Swoogle. It is a crawler based indexing
and retrieval system for the Semantic
Web documents [3]. Swoogle has some
limitations like it provides only weak
access to semantic content, which is
keyword based search that doesn’t
consider the semantic content of
documents it accesses. Swoogle doesn’t
consider semantic relations between
ontology other than the ones that are
explicitly stated (e.g. import)
[4].SemSearch is another semantic

 67

search engine that provides to the end
users an easy mechanism to formulate
complex queries and produces more
accurate results [5]. But this system is a
closed world system i.e. it doesn’t
interact with the web and it can not make
use of knowledge from other
repositories. Sindice is a Semantic
Web Crawler that indexes and
crawls Semantic Web documents in
order to find the places where particular
URI is mentioned. In Sindice only URIs
and not keywords can be entered into the
search box [6]. All these search engines
are crawler based search engines. With
the growing size of Semantic Web, the
crawlers have to continuously retrieve a
very large number of documents.
Contrary to crawlers, the suggested
solution uses Mobile Agent to access
and process the Semantic Web
documents only in response to users’
queries which results in comparatively
less network bandwidth consumption.
Moreover, this system provides domain
specific search. In [7], a project is
proposed that also searches within job
domain but that approach uses static
intelligent agents.

3. Scenario

Ali is searching for a job that matches
his preferences like salary, timings, city
or country etc. He searches on WWW
using a conventional search engine. The
search engine will return a large number
of results where the words he entered are
present in any combination and many
websites that don’t contain the exact
words as entered by him will not be
shown as part of the search result
though they have job descriptions
matching user’s preferences.
Consequently many of the results

returned by the search engine will be
irrelevant and of no use to Ali.

4. Proposed Solution

The solution we propose uses two
technologies – Mobile Agent and
Semantic Web. Instead of user searching
on World Wide Web himself, he
provides his job preferences to a mobile
software agent that searches on user’s
behalf. The mobile agent moves to the
machines hosting websites of companies
providing jobs. These machines must
have a supporting environment to allow
mobile agents to come.

The mobile agent first looks up a
directory on the basis of the job domain
entered by user like IT, medicine,
management etc. The mobile agent will
get a list of relevant websites which it
starts visiting one by one.
To enable the mobile agent to do the
meaningful search, semantics will be put
in the websites through the use of
ontology. The mobile agent will process
the ontology thus the resulting search
will not be on the basis of matching
words but on the basis of matching
concepts in user’s preferences and job
ontology. Consequently, the results
returned by the mobile agent will
provide more useful information to the
user achieving the true spirit of World
Wide Web.

The design of the proposed solution is
shown in Fig 1.

 68

 Figure 1: Proposed Design

5. Conclusion

The proposed solution uses Mobile
Agent to search for user’s job
preferences on Semantic Web. The
results returned by the Mobile Agent are
more precise as searching on Semantic
Web is done on the basis of matching
concepts contrary to matching strings in
the conventional search engines.

References

[1] By Tim Berners-Lee, James Hendler
and Ora Lassila, “The Semantic Web,”
http://www.sciam.com/article.cfm?id=th
e-semantic-web, 26 November, 2007.

[2] Ashish Malgi, Neelesh Bansod and
Byung Kyu Choi, “STRING: Efficient
Implementation of Strongly Migrating
Mobile Agents in Java,”
http://www.cs.mtu.edu/~npbansod/58.pdf
,November 10, 2007.

[3] Tim Finin, et al., “Swoogle: A
Search and Metadata Engine for the
Semantic Web,”
http://www.cs.umbc.edu/~ypeng/Publica
tions/2004/swoogle.pdf, November 15,
2007.

[4] Laurian Gridinoc, Mathieu d’Aquin,
Davide Guidi, Martin Dzbor and Enrico
Motta, “PowerMagpie: A Semantic Web
Browser – v1 OpenKnowledge
Deliverable D8.1,”
http://powermagpie.open.ac.uk/ok-
d8.1/OK_D8_1_PowerMagpie.pdf,
September 25, 2007.

[5] Yuangui Lei, Victoria Uren and
Enrico Motta, “SemSearch: A Search
Engine for the Semantic Web,”
http://kmi.open.ac.uk/publications/pdf/se
msearch_paper.pdf, October 2, 2007.

[6] Afraz Jaffri, “Searching on the Open
Semantic Web Using a URI Identity
Management Approach,”
http://eprints.ecs.soton.ac.uk/14428/1/Mi
ni-Thesis.pdf, October 20, 2007.

[7] Zuzana Halanová, Pavol Návrat and
Viera Rozinajová, “A Tool for Searching
the Semantic Web for Supplies
Matching Demands,”
http://ecet.ecs.ru.acad.bg/cst06/Docs/cp/
SII/II.16.pdf, November 1, 2007.

 69

APPENDIX B

Hardware and Software Requirements

Hardware and Software Requirements

Hardware Requirements:

• 1.0 GHz Processor or More

• 256 MB of RAM or More

Software Requirements:

• Platform:

 jdk-1.5.0

• Operating System:

 Windows ® XP/98/2000/NT 4.0

 71

APPENDIX C

User Manual

 72

User Manual

This application software has two categories of users.

1. A person who is looking for a job and uses this software to get precise and more refined

results as compared to those returned by conventional search engines.

2. Companies and organizations that are offering jobs and want their job descriptions to be

semantically searched by users.

1. For Job Seekers:

To start the application, run start.bat batch file in Mobile Agent folder as described in

deployment manual.

Setting Job Criteria:

For the following steps refer to Fig 1.

1. Select the domain of job you are looking for. It is mandatory to select one of the fourteen

domains. Otherwise an error message will be displayed asking you to select a domain in

order to proceed further.

2. For any domain selected in step 1, select a sub domain in step 2. If you don’t make any

selection, the first sub domain displayed for any domain will be selected as your choice.

3. Enter the title of your desired job. Examples of titles can be programmer, project manager,

test engineer etc. You can leave this text field blank.

4. Enter your choice of company or institution. If you don’t want to specify the organization,

you can leave this field blank.

5. Specify whether you are looking for a full time job or a part time one. If you don’t have any

reservations regarding the timings of job, select ‘any’ as your choice.

 73

Fig 1

6. Provide the minimum amount of expected salary in numbers. As with other text fields, you

can leave this text field blank. In case you enter non numeric characters, you’ll be asked to

enter the salary in numbers only.

7. Select the currency of salary you have entered in step 6. You don’t have to select the

currency in case you haven’t provided the salary.

8. Give the city name where you want the job.

9. Give the country name where you want the job.

2

1

3

4

5

7
6
8

9

10

 74

10. Click next button to proceed further.

Setting Personal Data:

For the following steps refer to Fig 2.

1. Provide your first name and last name respectively. These text fields are compulsory to fill as

indicated by the asterisks.

2. Specify your age in numbers. This field is not compulsory to fill. If you enter non numeric

characters, you’ll be asked to enter age in numbers.

3. Select the highest degree you have earned. Select –Select--from the drop down list if you

don’t want to specify your degree.

4. Provide the field in which you have earned your degree. This field can be left blank.

5. Mention your experience in years in numbers otherwise you can’t proceed further if you

enter non numeric characters. If you don’t have experience or don’t want to mention it, this

field can be left blank.

6. Give your contact information that can be either your phone number, postal address or email

address etc. This field is not necessary to fill.

7. If you want to have your Curriculum Vitae dropped at machines hosting websites of

companies providing jobs of user’s choice, paste your CV into the text area otherwise you

can leave it blank.

8. Click Start to start your search for your dream job.

 75

Fig 2

1
2

3

4

5

6

7

8

 76

2. For Job Employers:

To start the application run start.bat in Register Agent folder as described in deployment

manual.

Registering Jobs:

For the following steps refer to Fig 3.

1. Select the domain of job you are registering.

2. For any domain selected in 1, select a sub domain in 2. If you don’t make any selection, the

first sub domain displayed for any domain will be selected as your choice.

3. Enter the name of website in which the jobs your company is offering are advertised.

4. Enter the name of ontology your company is using.

5. Press Register button to get your job registered for semantic search by this application.

6. After registration click Close button to close this GUI.

Fig 3

1

2

3

4

5 6

 77

APPENDIX D

Deployment Manual

 78

Deployment Manual

This software has different components that need to be installed on different computers

for the application to run.

Deployment on User’s Machine:

User who is looking for a job and wants to use this application to get meaningful and

more refined results as compared to those returned by conventional search engines needs

to follow the following steps.

1. Unzip the folder Job Search.zip to extract the folders jade, pellet-1.5.1, Mobile

Agent and batch file start.bat.

2. Copy jade and pellet-1.5.1 folders on your computer.

3. Open start.bat batch file for editing. Replace <path> by the path of the folder where

you have copied jade and pellet-1.5.1. Replace <java-home> by the path of folder where

folder jdk-1.5.0 is placed. Save it.

4. Copy the batch file start.bat in Mobile Agent folder.

5. Run this batch file to start the application.

Deployment on Job Server:

This application requires JADE Main Container to be running on some computer which

is referred as Job Server in this manual. Following steps need to be taken to run JADE

Main Container.

1. Unzip the folder Directory.zip to extract folder jade and batch file launch.bat.

2. Copy jade folder on your computer.

3. Open launch.bat for editing. . Replace <path> by the path of the folder where you

have copied jade. Replace <java-home> by the path of folder jdk-1.5.0 is placed. Save it.

 79

4. Launch Main Container by running the batch file launch.bat.

Deployment on Website Host:

The companies or organizations that are offering jobs and want to have their job

descriptions semantically searched by users have to take the following steps. The

machine where they are hosting their websites is referred to as website host. Protégé

3.2.1 or higher and jswdk server must be installed on this machine.

1. Unzip the folder Register.zip to extract the folders jade, pellet-1.5.1 and Register

Agent, batch file start.bat and two owl files jobs.owl and your_ontology.owl.

2. Open your_ontology.owl with Protégé-3.4 and make an instance for each job your

company is offering. Set the values of properties of each job instance. Refer to Protégé

guide if you are not familiar with using Protégé. Save the file.

3. Place both the owl files in the webpages directory of jswdk server.

4. Run jswdk server.

5. Copy jade and pellet-1.5.1 folders on your computer.

6. Open start.bat batch file for editing. Replace <path> by the path of the folder where

you have copied jade and pellet-1.5.1. Replace <java-home> by the path of folder where

jdk-1.5.0 is placed. Save it.

7. Copy the batch file start.bat in Register Agent folder.

8. Run this batch file every time you want to register a job.

 80

APPENDIX E

Symbols And Abbreviations

 81

Symbols And Abbreviations

WWW: World Wide Web

JADE: Java Agent Development Environment

AMS: Agent Management System

DF: Directory Facilitator

ACL: Agent Communication Language

XML: Extensible Mark up Language

XMLS: Extensible Mark up Language Schema

HTML: Hyper Text Mark up Language

DTD: Document Type Definition

W3C: World Wide Web Consortium

RDF: Resource Description Framework

RDFS: Resource Description Framework Schema

OWL: Web Ontology Language

GUI: Graphical User Interface

CV: Curriculum Vitae

URL: Uniform Resource Locator

FIPA: Foundation for Intelligent Physical Agents

UML Diagrams: Various diagrams including Use-Case, Sequence

and Data Flow that show the initially perceived outline functionality of

the intended system.

 82

APPENDIX F

Bibliography

 83

References

[1] “Introduction-The Semantic Web,”

http://www.ryerson.ca/~dgrimsha/courses/cps720_02/intro.html

[2] Franklin and Art Graesser, “Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents” in Proceedings of the Third International Workshop on Agent
Theories, Architectures and Languages, Springer-Verlag, 1996.

[3] “Mobile Agent,” http://en.wikipedia.org/wiki/Mobile_agent

[4] “Seven Good Reasons for Mobile Agents,” http://www.moe-

lange.com/danny/docs/7reasons.pdf

[5] Giovanni Caire, “JADE Programming For Beginners,” http://jade.tilab.com/doc/

JADEProgramming-Tutorial-for-beginners.pdf

[6] Tim Berners-Lee, James Hendler and Ora Lassila, “The Semantic Web,” in Scientific
American: Feature Article: The Semantic Web: May 2001.

[7] “XML Primer,” http://www.w3schools.com/web/web_xml.asp

[8] “Introduction to RDF,” http://www.w3schools.com/rdf/rdf_intro.asp

[9] “Ontology (Information Science)

http://en.wikipedia.org/wiki/Ontology_(computer_science)

[10] “OWL Web Ontology Language,” http://www.w3.org/TR/owl-features/

[11] “Protégé,” http://protege.stanford.edu/overview/

[12] “Jena Documentation,” http://jena.sourceforge.net/documentation.html

[13] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, Yarden Katz,

“Pellet-A Practical OWL-DL Reasoner”

[14] “Pellet,” http://pellet.owldl.com/faq/query-engines/

[15] “Pellet, FAQ,” http://pellet.owldl.com/faq/single-page#using-pellet-in-jena

 84

[16] Jiantao Pan, “Software Testing,” Carnegie Mellon University, 18-849b Dependable
Embedded Systems, Spring 1999
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/#introduction

[17] “White Box Testing,” http://en.wikipedia.org/wiki/White_box_testing

[18] Thomas Raishe, “Black Box Testing,”Courses for CEN4010-SE 2002, Computer

Science and Engineering Department, Florida Atlantic University.
http://www.cse.fau.edu/~maria/COURSES/CEN4010-SE/C13/black.html

