

Dynamic Decentralized Self Organizing Scheduling
with

DIANA
(Data Intensive And Network Aware) Scheduler

By

NC Muhammad Raafay Salam

NC Omer Hussain

PC Umar Ayub

PC Abdur Rehman

Cpt Naeem Iqbal

Submitted to Faculty of Computer Science, Military College of Signals,
National University of Sciences and Technology, Rawalpindi in partial
fulfillment for the requirements of BE Degree in Computer Software

Engineering

March 2008

ABSTRACT

Grid Computing due to its effective sharing of heterogeneous resources,

economy and portability has become the center of attention for execution of

resource hungry divisible processes. But along with the promising characteristics

of grid computing it also poses great challenges in its implementation due to the

geographical distant resources owned by individuals with differing access and

cost policies.

 The vast applications of Grid Computing in the field of e-sciences gave

rise to the need for bulk scheduling (i.e. scheduling of a bulk of jobs as a unique

entity). Splitting the bulk may result in a very large number of jobs, making it a

hideous job for schedulers and also very time consuming in case of centralized

schedulers.

 In order to exploit the true potential of grid computing workloads need to

be scheduled efficiently amongst the participating machines. Centralized

schedulers have been implemented to perform the job of load balancing but the

grid as a whole lacks the essence of autonomy and self organization. By

introducing decentralized schedulers, the limitations such as scalability, posed by

centralized schedulers can be tackled. And dependency on a central scheduler is

overcome by applying lower level autonomous schedulers. A decentralized

approach for bulk scheduling at site level and subgrid level by deploying

autonomous site level and low level schedulers is proposed.

iii

DECLARATION

No portion of the work presented in this documentation has been submitted in

support of any other award or qualification either at this institution or

elsewhere.

iv

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To the owner of the word ‘Mother’.

From a clot to an engineer she has always been a protector. Thank you for

that journey. May the best of heavens befall upon you.

v

ACKNOWLEDGEMENT

Thanking always the owner of the word ‘Mother’ because without her

blessings the following acknowledgements would have never been written.

We are eternally grateful to Almighty Allah for giving us with the

strength and determination to undertake and complete the project.

We gratefully recognize the continuous supervision and motivation

provided to us by our Project Supervisor, Mr. Bilal (MIS-CELL), without his

personal supervision, advice and help, timely completion of this project would

have been impossible.

For the completion of this project, we are greatly indebted to Dr. Ashiq Anjum

for his continuous guidance, remarkable suggestions, keen interest, friendly

discussions and every possible support. He spared a lot of his precious time

in advising and helping us

We deeply treasure the unparallel support and tolerance that we received

from our friends for their useful suggestions that helped us in completion of

this project. We are also deeply obliged to our families for their never ending

patience and support for our mental peace and to our parents for the strength

that they gave us through their prayers.

 A word of thanks to the Military College of Signals (from Commandant

to the Staff) as it has been our foundation.

vi

TABLE OF CONTENTS

INTRODUCTION .. 1

1.1 PREFACES ... 1
1.2 SCHEDULING .. 2
1.3 SCHEDULER TYPES .. 3
1.4 PROBLEM DESCRIPTION .. 4
1.5 OBJECTIVE ... 4
1.6 THE STRATEGY .. 5
1.7 PROJECT DESCRIPTIONS... 5
1.8 DEVELOPMENT ENVIRONMENT .. 5
1.9 PROJECT LIMITATIONS / CONSTRAINTS .. 6
1.10 WORK BREAKDOWN STRUCTURE ... 6

LITERATURE REVIEW .. 8

2.1 INTRODUCTION ... 8
2.2 METACOMPUTING .. 8
2.3 GRIDS VERSUS CONVENTIONAL SUPERCOMPUTERS ... 9
2.4 REMOTE PROCEDURE CALLS (RPC) .. 11
2.5 LOCAL SCHEDULER LAYER CONDOR .. 12
2.6 PROGRAMMING LANGUAGE SELECTION .. 13
2.6.1 INTERPRETED LANGUAGE .. 14
2.6.2 BETTER CODE READABILITY ... 14
2.6.3 EXTENSIVE AND EASY TO USE SOCKET LIBRARIES .. 14
2.6.4 EASY TO USE FILE HANDLING LIBRARIES .. 15
2.6.5 SIMPLE BUT DYNAMIC DATA STRUCTURES LIKE LISTS, AND TUPLES 16
2.6.6 SIMPLE ACCESS TO WIN32 API’S .. 16
2.6.7 COMPACT AND PLATFORM INDEPENDENT ... 17
2.6.8 THREE STEP REMOTE OBJECT REGISTRATION / ONE STEP REMOTE OBJECT
ACCESS .. 17
2.6.9 MULTICASTING LIBRARIES .. 17
2.7 SUMMARY .. 18

SCHEDULING OPTIMIZATION ALGORITHM 19

3.1 INTRODUCTION ... 19
3.2 COST ESTIMATORS .. 19
3.2.1 NETWORK COST ... 19
3.3.2 COMPUTATION COST ... 22
3.3.3 DATA TRANSFER COST .. 23
3.3.4 TOTAL COST ... 24
3.4 CONCLUSION ... 26

vii

DIANA SCHEDULING .. 27

4.1 INTRODUCTION ... 27
4.2 DATA INTENSIVE AND NETWORK AWARE ... 27
4.3 P2P META SCHEDULER ... 28
4.4 ROOTGRID TO ROOTGRID AND ROOTGRID TO NODES COMMUNICATION 29
4.5 GENERAL ARCHITECTURE ... 31
4.6 THE SCHEDULING ALGORITHM .. 33
4.6.1 ALGORITHM FOR A COMPUTE INTENSIVE JOB ... 33
4.6.2 ALGORITHM FOR A DATA INTENSIVE JOB ... 34
4.6.3 ALGORITHM FOR A COMPUTE AND DATA INTENSIVE JOB 34
4.7 PRIORITY BASED SCHEDULING .. 35
4.8 JOB MIGRATION ALGORITHM ... 36
4.8.1 PEER SELECTION CRITERIA ... 36
4.8.2 COMMUNICATION FOR JOB MIGRATION .. 37
4.9 SUMMARY .. 38

CLUSTER LEVEL SCHEDULER ... 39

5.1 INTRODUCTION ... 39
5.1.1 CENTRALIZED ARCHITECTURE ... 39
5.1.2 COOPERATIVE ARCHITECTURE ... 39
5.2 EFFECT OF DECENTRALIZED SCHEDULERS .. 39
5.3 ARCHITECTURAL DESIGN .. 40
5.4 CLASS DIAGRAM AND DESCRIPTION OF CLASSES .. 42
5.5 LOCAL EXECUTION SEQUENCE DIAGRAM ... 43
5.6 REMOTE EXECUTION SEQUENCE DIAGRAM .. 44
5.7 DIANA SCHEDULER IN ACTION .. 45
5.7.1 LOCALSCHEDULERQUEUE .. 45
5.7.2 RESOURCEADVERTISER.. 45
5.7.3 JOB SUMISSION ... 45
5.7.4 SUBMISSION NODE CHOSEN FOR EXECUTION ... 46
5.7.5 REMOTE NODE CHOSEN FOR EXECUTION ... 46
5.7.6 JOB EXECUTION AND OUTPUT RETURN .. 46

TEST RESULTS ... 47

6.1 INTRODUCTION ... 47
6.2 SIMULATION SETUP ... 47
6.3 FIRST SIMULATION SETUP ... 47
6.4 SECOND SIMULATION SETUP .. 47
6.5 THIRD SIMULATION SETUP .. 47

FUTURE WORK .. 49

BIBLIOGRAPHY ... 51

viii

LIST OF FIGURES

Figure Figure Caption Page
Figure 1.1 A geographically distributed grid ... 2
Figure 2.1 Flow of activity that takes place during an RPC 12
Figure 2.2 Condor pool ... 13
Figure 2.3 Python Server Socket creation .. 15
Figure 2.4 Python Client Socket creation .. 15
Figure 2.5 File Handling Python vs. C++ ... 16
Figure 2.6 Remote Procedure Calling in Python .. 17
Figure 4.1 Communication between instances of Meta Schedulers 28
Figure 4.2 Meta scheduler communication mechanism 30
Figure 4.3 DIANA Scheduler and the Discovery Service 31
Figure 4.4 Algorithm for Compute Intensive Job .. 34
Figure 4.5 Algorithm for Data Intensive Job ... 34
Figure 4.6 Algorithm for a Data and Compute Intensive Job 35
Figure 4.7 Peer Selection Algorithm .. 37
Figure 5.1 Architecture design of the Local scheduler .. 40
Figure 5.2 Class Diagram and Description of Classes of local scheduler 42
Figure 5.3 Job submission and its local execution .. 43
Figure 5.4 Job submission and its remote execution .. 44
Figure 6.1 Effect of Job Clustering over execution speed 48

ix

LIST OF TABLES

Table Table Caption Page

1.1 Work Break Down Structures………………………………………….6
3.1 The Cost Matrix For Five Example Sites…..……………………......26
6.1 Iterative Vs. Bulk Vs. Clustered Approaches……………..………... 48

1

Chapter 1

INTRODUCTION

1.1 Prefaces

Grid computing is expected to provide easier access to remote

computational resources that are usually locally limited. Distributed computer

systems are joined in such a grid environment in which users can submit jobs

that are automatically assigned to suitable resources. The idea is similar to

metacomputing where the focus is limited to compute resources. Grid

computing takes a broader approach by including networks, data etc. as

accessible resources. In addition to the benefit of access to locally unavailable

resource types, there is also the expectation that a larger number of

resources are available for a single job. This is assumed to result in a

reduction of the average job response time. Moreover, the utilization of the

grid computers and the job-throughput is likely to improve due to load-

balancing effects between the participating systems. Typically the parallel

computing resources are not exclusively dedicated to the grid environment.

Due to the geographically distributed resources the management of the grid

environment becomes rather complex, especially the scheduling of the

computational tasks. A typical grid infrastructure is shown in Figure 1.1.

2

Figure 1.1 A geographically distributed grid

1.2 Scheduling

Resource management is a central task in any Grid system. Resources

may include resources such as compute cycles, network bandwidth, and

storage systems. Effective resource management and scheduling is a

challenging issue, and data location and network load in addition to the

computing power are critical factors in making scheduling decisions. The

quality and consistency of networks are among the most important factors in

this scheduling paradigm since the Grid can be subject to failure if networks

do not perform. Similarly, a site with the required data may not be the optimal

location to perform the computation if it does not have sufficient available

computational resources. All these parameters must be considered in making

efficient scheduling decisions.

3

When a job is submitted to a Grid scheduling system, the scheduling

system has the responsibility to select a suitable resource and then to

manage the job execution. The decision of which resource should be used is

the outcome of a matchmaking process between submission requests and

available resources. However, during this matchmaking process, some

adaptive scheduling mechanisms are needed, with appropriate heuristics,

which can take into account the characteristics of the network to enable

efficient scheduling of data intensive jobs to viable computing resources.

1.3 Scheduler types

It has been realized that scheduling is a fundamental issue in achieving

high performance on metacomputers and computational grids. In grid

environments, there are three types of schedulers to meet different

performance goals. Resource schedulers coordinate user requests for

accessing a given resource to ensure fairness and to optimize utilization [1].

Application schedulers promote the performance of individual applications by

optimizing performance measures such as execution time and speedup [1].

Job schedulers aim to optimize the overall performance of a system, e.g.,

minimizing the average job response time and maximizing the number of jobs

executed in certain period of time. Job scheduling on a metacomputer and

grid is very different from job scheduling on a traditional parallel computer due

to heterogeneity of communication speed (even though when all the

processors are homogeneous). A job is typically divided into sub jobs which

are assigned to different machines on a computational grid for execution.

4

1.4 Problem Description

One important drawback of existing schedulers is that network

bottlenecks and execution or queuing delays can be produced in job

scheduling. Data intensive applications analyze large amounts of data which

are replicated to geographically distributed sites. If data are not replicated to

the site where the job is supposed to be executed, the data need to be

fetched from remote sites. This data transfer from other sites will degrade the

overall performance of the job execution.

Each data intensive application produces different amounts of data. For

performance gains in the overall job execution time and to maximize the Grid

throughput, it is needed to align and co-schedule the computation and the

data (the input as well as the output) in such a way that the overall

computation and data transfer cost can be reduced. It may even decide to

send both the data and executables to a third location depending on the

capabilities and characteristics of the computing, network and storage

resources.

1.5 Objective

The objective is to develop meta-scheduler, a process which allows a

user to schedule a job across multiple sites. And local schedulers which

schedule the jobs on local sites or rootgrid level. As more complexity is added

to the Grid, particularly with geographically dispersed sites or nodes.

The following are the intended objectives; to reduce Queue time and

waiting time, to lessen Site load and processing time, to minimize Transfer

time for data, executables and results.

5

1.6 The strategy

Data intensive applications often analyze large amounts of data which

can be replicated over geographically distributed sites. If the data are not

replicated to the site where the job is intended to be executed, the data will

need to be fetched from remote sites. This data transfer from other sites can

degrade the overall performance of job execution. If a computing job runs

remotely, the output data produced needs to be transferred to the user for

local analysis. To provide improvements in the overall job execution time and

to maximize Grid throughput, the strategy is to align and co-schedule the

computation and the data (the input as well as the output) in such a way that

the overall computation and data transfer costs can be reduced. It may even

decide to send both the data and the executables to a third location

depending on the capabilities and characteristics of the available resources.

1.7 Project Descriptions

The system contains the following vital features which are to be known

by the user; the system has been implemented on Windows XP platform (due

to familiarity of end user). It is recommended that the service be run on

minimum Intel based 2.0 GHz microprocessor with minimum of 512 MB RAM

since the system is real time system and require massive CPU cycles and

network to be reliable .

1.8 Development Environment

The software main module which is in turn divided into many sub

modules is made in Python Version 2.5. In addition help and guidance was

taken from Python Doc, Twisted Programming and also from the internet.

6

Adobe Flex programs and Libraries are also used by the software. The

methodology followed is Water fall Model. Testing was conducted after the

successful completion of each module and in case of an error a bug report

was being generated.

1.9 Project Limitations / Constraints

 The software was tested and analyze thoroughly and the limits and

constraints of the system are: the system is compatible with Windows

environment for the time being and can be made to run on Linux by getting

resource Ads. For the time being the system resources are being extracted

from windows registry and it will be different for Linux.

1.10 Work Breakdown Structure

For the successful completion of the project, the project was divided

into main modules and structures. It was ensured that each task being

assigned was carried out appropriately and on time.

Table 1.1 Work Breakdown Structure
Requirements Engineering
Requirements Elicitation Interaction with Domain Expert .

Understanding basis of Grid
computing and study related
Problems.

Developing Problem Statement SRS Preparation
Solutions Evaluations Analyze various options Available (i.e.

Platform Compatibility, Language).
Propose the best Approach to
Problem Solution.

Analysis Feasibility Study.
Assignment and Planning Assignment of Tasks to the syndicate

members.
Preparation of Gantt Charts.
Preparation of TimeLine Charts.

Literature Review Grid computing Research Work.
Grid Scheduler Research Work.
Condor.

7

Remote procedure calls.
Documentation Preparation of System Manual.

Preparation of Data Dictionary.
Detailed Thesis.
Research Papers and Publications.
User Manuals.

8

Chapter 2

LITERATURE REVIEW

2.1 Introduction

Grid computing is applying the resources of many computers in a

network to a single problem at the same time - usually to a scientific or

technical problem that requires a great number of computer processing cycles

or access to large amounts of data. Grid computing requires the use of

software that can divide and farm out pieces of a program to as many as

several thousand computers. Grid computing can be thought of as distributed

and large-scale cluster computing and as a form of network-distributed

parallel processing. It can be confined to the network of computer

workstations within a corporation or it can be a public collaboration (in which

case it is also sometimes known as a form of peer-to-peer computing).

In the past two decades, numerous scheduling and load balancing

techniques have been proposed for locally distributed multiprocessor

systems. However, they all suffer from significant deficiencies when extended

to a Grid environment: some use a centralized approach that renders the

algorithm unscalable, while others assume the overhead involved in searching

for appropriate resources to be negligible.

2.2 Metacomputing

Metacomputing is all computing and computing-oriented activity which

involves computing knowledge (science and technology) common for the

research, development and application of different types of computing.

Metacomputing includes: organization of large computer networks, choice of

9

the design criteria (e.g. peer-to-peer or centralized solution) and

metacomputing software (middleware, metaprogramming) development

where, in the specific domains [2]. The concept metacomputing is used as a

description of software meta-layers which are networked platforms for the

development of user-oriented calculations [3], for example for computational

physics and bio-informatics.

Metacomputing allows scientists and engineers to coordinate

computational grids capable of sharing and analyzing complex simulations

and data.

2.3 Grids versus conventional supercomputers

The ability, using a set of open standards and protocols, to gain access

to applications and data, processing power, storage capacity and a vast array

of other computing resources over the Internet. A grid is a type of parallel and

distributed system that enables the sharing, selection, and aggregation of

resources distributed across 'multiple' administrative domains based on their

(resources) availability, capacity, performance, cost and users' quality-of-

service requirements [4].

"Distributed" or "grid" computing in general is a special type of parallel

computing which relies on complete computers (with onboard CPU, storage,

power supply, network interface, etc.) connected to a network (private, public

or the Internet) by a conventional network interface, such as Ethernet. This is

in contrast to the traditional notion of a supercomputer, which has many

processors connected by a local high-speed computer bus [4].

10

The primary advantage of distributed computing is that each node can

be purchased as commodity hardware, which when combined can produce

similar computing resources to a multiprocessor supercomputer, but at lower

cost. This is due to the economies of scale of producing commodity hardware,

compared to the lower efficiency of designing and constructing a small

number of custom supercomputers. The primary performance disadvantage is

that the various processors and local storage areas do not have high-speed

connections. This arrangement is thus well-suited to applications in which

multiple parallel computations can take place independently, without the need

to communicate intermediate results between processors.

The high-end scalability of geographically dispersed grids is generally

favorable, due to the low need for connectivity between nodes relative to the

capacity of the public Internet. Conventional supercomputers also create

physical challenges in supplying sufficient electricity and cooling capacity in a

single location. Both supercomputers and grids can be used to run multiple

parallel computations at the same time, which might be different simulations

for the same project, or computations for completely different applications.

The infrastructure and programming considerations needed to do this on each

type of platform are different, however.

There are also some differences in programming and deployment. It

can be costly and difficult to write programs so that they can be run in the

environment of a supercomputer, which may have a custom operating

system, or require the program to address concurrency issues.

11

2.4 Remote Procedure Calls (RPC)

RPC is a powerful technique for constructing distributed, client-server

based applications. It is based on extending the notion of conventional or local

procedure calling, so that the called procedure need not exist in the same

address space as the calling procedure. The two processes may be on the

same system, or they may be on different systems with a network connecting

them. By using RPC, programmers of distributed applications avoid the details

of the interface with the network. The transport independence of RPC isolates

the application from the physical and logical elements of the data

communications mechanism and allows the application to use a variety of

transports [5].

An RPC is analogous to a function call. Like a function call, when an

RPC is made, the calling arguments are passed to the remote procedure and

the caller waits for a response to be returned from the remote procedure.

Figure 2.1 shows the flow of activity that takes place during an RPC call

between two networked systems. The client makes a procedure call that

sends a request to the server and waits. The thread is blocked from

processing until either a reply is received, or it times out. When the request

arrives, the server calls a dispatch routine that performs the requested

service, and sends the reply to the client. After the RPC call is completed, the

client program continues. RPC specifically supports network applications.

12

Figure 2.1 Flow of activity that takes place during an RPC

2.5 Local Scheduler Layer Condor

Condor is a specialized job and resource management system (RMS)

for compute intensive jobs. Like other full-featured systems, Condor provides

a job management mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management. Users submit their jobs to Condor,

and Condor subsequently chooses when and where to run them based upon

a policy, monitors their progress, and ultimately informs the user upon

completion [6].

In the Figure 2.2 An agent (A) is shown executing a job on a resource

(R) with the help of a matchmaker (M).

13

Figure 2.2 Condor pool

The agent and the resource advertise themselves to the matchmaker.

Step 2: The matchmaker informs the two parties that they are potentially

compatible. Step 3: The agent contacts the resource and executes a job.

Each of the three parties – agents, resources, and matchmakers – are

independent and individually responsible for enforcing their owner’s policies.

The agent enforces the submitting user’s policies on what resources are

trusted and suitable for running jobs. The resource enforces the machine

owner’s policies on what users are to be trusted and serviced. The

matchmaker is responsible for enforcing community policies such as

admission control. It may choose to admit or reject participants entirely on the

basis of their names or addresses and may also set global limits such as the

fraction of the pool allocable to any one agent. Each participant is

autonomous, but the community as a single entity is defined by the common

selection of a matchmaker.

2.6 Programming Language Selection

Python Programming Language is chosen as implementation language

for this project. The prime reasons of this choice over C++, and Java are:

14

2.6.1 Interpreted Language

In an interpreted environment, the instructions are executed

immediately after parsing. Advantages of interpreted languages include

relative ease of programming (since once you type your instructions into a text

file, the interpreter can run it) and no linker is required. Interpreted languages

give you a much quicker development cycle, especially on big programs.

There is no doubting that it’s simply a tradeoff of execution speed vs.

productivity.

2.6.2 Better code readability

Since the project is a part of the Grid Community, people interested to

make further progress in the field of Distributed Schedulers might use it. The

Object Oriented Approach provided by Python is used. Since it’s a rule of

thumb to indent code in Python so the code doesn’t need any formatting, and

the hassle of finding braces for blocks of code has been eliminated by Python.

2.6.3 Extensive and easy to use Socket libraries

Creating a Server Socket is a four step processes in Python

programming language, which is quite small as compared to ones in C++, and

Java. It is illustrated in Figure 2.3.

15

Step 1:

socket = socket.socket(family, type)

Step 2:

socket.bind((HOST,PORT))

Step 3:

socket.listen(backlog)

Step 4:

connection, address = socket.accept()

Figure 2.3 Python Server Socket creation

Creating a Client Socket is even simpler and requires just two steps illustrated

in Figure 2.4

Step 1:

socket = socket.socket(family, type)

Step 2:

Socket.connect((HOST,PORT))

Figure 2.4 Python Client Socket creation

2.6.4 Easy to use File Handling Libraries

Since the Project Involves too much file handling and file transfers.

This is amongst the prime reason for us to choose Python. Since its pointer

free unlike C++, and requires no libraries. An example in Figure 2.5 should

demonstrate this ease of use.

16

Python Code:

#no library imports!

file = open("C:\\test.dat", "w") # open file in write mode

file.write(“Hello World!”) # write string ‘Hello World’ to file

file.close() # close the file

C++ Code:

#include <iostream.h>

Ofstream file

file.Open ("c:\test.dat");

file << "Hello World!" << endl;

file.close()

Figure 2.5 File Handling Python vs. C++

2.6.5 Simple but dynamic data structures like Lists, and Tuples

These data types enabled us to accomplish complex tasks through

minimal lines of code. Strings, lists and tuples are all sequences—a data type

that can be manipulated through indexing and “slicing.” Although lists are not

restricted to homogeneous data types (i.e., values of the same data type),

lists to store sequences of homogeneous values i.e. Machine resource ads,

Job Objects and etc are used.

2.6.6 Simple access to Win32 API’s

For the time being the version of the Scheduler is Windows Dependent

since it uses Win32 API’s to fetch CPU Utilization, Memory Usage, and

Network Performance. These API’s were very easily available at the Python’s

Official Website for download.

17

2.6.7 Compact and Platform Independent

Python is one of the most highly portable programming languages in

existence. Originally, it was implemented on UNIX, but has since spread to

many other platforms, including Microsoft windows and Apple Mac OS X.

Python programs often can be ported from one operating system to another

without any change and still execute properly.

2.6.8 Three step Remote Object Registration / One Step Remote Object

Access

XML/RPC a Remote Procedure Calling facility provided within python is

used. Other RPC’s facilities include SOAP and WSDL. But the quickest of all

was XML/RPC because it dint embed any extra information about the remote

object during end-end communication whereas SOAP and WSDL do. This

extra information is regarding the description of the object which isn’t entirely

necessary in this case. Compared to facilities like RMI and CORBA in Java.

XML/RPC is much simple and easy to use. For remote object registration only

three steps are required which is illustrated in Figure 2.6.

RPCServer = SimpleXMLRPCServer((HOST, 8500))

RPCServer.register_instance(RPCs(self.mfq,self.directory))

RPCServer.serve_forever()
Figure 2.6 Remote Procedure Calling in Python

2.6.9 Multicasting Libraries

Multicast techniques are also required in the project for Discovery

Services @ Meta Scheduler Level and for Resource Advertisements @ Local

Scheduler level.

18

A library provided by twisted community for download at

www.twistedmatrix.com is used for multicasting mechanisms in the project.

It’s a very simple step by step mechanism that is far simpler than one

provided by Java.

2.7 Summary

As the project is the research project, which requires massive study of

topic and all the previous work done in this area, many research papers and

guides were studied which helped us understand the domain history of past

work. As a research project, studies continue throughout the project, but

major phase was completed in the early months. Tools and software like

Condor, Globus, Suse, Adobe Flex and Python are also explored for the

purpose.

19

Chapter 3

SCHEDULING OPTIMIZATION ALGORITHM

3.1 Introduction

In this chapter the main phase for scheduling on a Grid is discussed.

That is Resource Discovery (generating a list of potential resources),. The

following input parameters are required for a network-aware scheduling and

matchmaking algorithm data transfer cost, hard disk space, computing cycles

available and Site loads.

3.2 Cost Estimators

There are three major cost estimates which need to be calculated for

the scheduling Algorithm: network, computation and data transfer cost.

3.2.1 Network Cost

First and foremost is the network cost which depends on many

individual parameters. The load, capacity and availability of network links

used during data transfers may heavily affect the Grid application

performance [7]. Application usage of the network often requires near-real-

time, or even real-time, information feedback on the available resources and

intelligent decisions on how best to take advantage of these resources [8]. In

order to provide the right quality of service to Grid applications and hence

scheduling, it is important to first understand how the network is performing

and to determine the level of quality of service that currently exists in the

network. This is measured using four variables, namely latency, dropped

packets, throughput and jitter. TCP throughput can be obtained by combining

20

the losses and the Round Trip Times (RTTs) using Mathis’s formula [9] for

deriving the maximum TCP throughput. Given the historical measurements of

the packet loss and RTT, the maximum TCP bandwidth for a certain amount

of time for various groups of sites can be calculated. Paper [9] describes a

short and useful formula for the transfer rate:

……………... 3.1

Where Rate is the TCP transfer rate, MSS is the maximum segment

size, RTT is the round trip time (as measured by TCP), loss is the packet loss

rate.

It is clear from the above equation that RTT, TCP throughput or

bandwidth and packet loss (including out of order packets and duplicate

packets) should be made part of the scheduling algorithm since it has to deal

with large data transfers when scheduling data intensive jobs. One way of

measuring the quality of service is to measure the number of packets being

dropped .i.e. “packet loss”. However, packet loss is not the only cause of poor

performance, so care is needed in diagnosing whether genuine packet loss is

being experienced. The response time or RTT is the second parameter that

can give an idea of the ping data rate (KB/s). The RTT says nothing about

how much information a server site can send in a given period. Moreover, for

better quality of service and network predictability, including the jitter in the

scheduling algorithm is also necessary. Overall, as the network utilization

increases, the number of dropped packets and the amount of jitter also

increases. Consequently, the network cost is the combination of all of the

above parameters. Weights are assigned to each value depending on the

21

importance of the parameters in calculating an aggregate value of the network

cost (NetCost).

………………..3.2

Where:

Where Wi is the weight assigned to each parameter depending on the

importance of the particular parameter. Weights are uniformly assigned

subject to a cost; a higher cost indicates the importance of that parameter in

the scheduling decision and in some cases these weights can be manipulated

to prioritize particular parameters in the algorithm [10]. For example,

increasing the weight associated with network cost would bias in favor of data

intensive scheduling. To tend towards compute intensive jobs, the compute

cost weights can be increased. A higher RTT indicates that a computation site

is distant from the storage site where the data resides and therefore the cost

to fetch the data would increase. Significance of this parameter can be

increased, if required, by assigning a higher value to its associated weight.

Higher bandwidth reduces the cost of data transfer and hence the job

execution. This behavior can be accommodated by assigning a higher value

to its weight Wi. Moreover, jitter is of less importance for data intensive

applications and has no significant cost involved due to a higher or lower jitter.

A minimal weight can be assigned to this parameter but cannot ignore it

completely since if this parameter has a value more than an acceptable figure,

then there is some bottleneck involved and this element should then have a

higher value to reflect this in the overall scheduling algorithm. The same is the

true for the packet loss: a higher packet loss implies a less reliable network,

22

and less importance should be given to such a connected site when making

scheduling decisions.

There are a number of issues which can influence the scheduling

decisions from the network point of view and can lead to skewed results.

Selecting the best source from which to copy the data requires a prediction of

future end-to-end path characteristics between the destination and each

potential source. An accurate prediction of the performance obtainable from

each source requires the measurement of available bandwidth (both end-to-

end and hop-by-hop), latency, loss and other characteristics which are

important in file transfer performance. Because network characteristics are

highly dynamic, each reported observation must be attributed with timing

information, indicating when the observation was made. Route flaps or other

instabilities mean that the same end-to-end traffic may experience a

completely different environment from moment to moment.

3.3.2 Computation Cost

The second important cost which needs to be part of the scheduling

algorithm is that of computation cost. Paper [11] describes a mathematical

formula to compute the processing time of a job. It is based on Little’s theory.

………..3.3

Where Q is the total number of the waiting jobs on all the sites, Qi is

the length of the waiting queue on the site i, Pi is the computing capability of

the site i and SiteLoad is the current load on that site. SiteLoad is calculated

by dividing the number of jobs in the queue by the processing power of that

site. The Qi/Pi ratio computes the processing time of the job. The Qi/Pi ratio of

23

the two sites cannot be the same since the number of jobs submitted to the

sites will always be different due to differing SiteLoads and other appropriate

parameters such as the data transfer cost of the sites. Again W5, W6 and W7

are the weights which can be assigned depending on the importance of the

queue and the processing capability. For example, a larger queue makes a

site less attractive for job placement so it is assigned a higher weight to make

the cost higher. Similarly, site load reflects the current load on a site, so again

a higher weight is assigned if the load on that site is higher.

It is a challenging task to calculate and predict the dynamic nature of

the resources and changing loads on the Grid. The load prediction at a site

must be dynamic in nature and the least loaded site at one moment can

become overloaded the next moment due to bulk submission. Since a non

pre-emptive mode of execution is used, once a jobs gets a CPU job cannot be

aborted and moved to other site.

3.3.3 Data Transfer Cost

The third most important cost aspect in data intensive scheduling is the

data transfer cost which includes input data, output data and executables.

Reference [12] describes a mathematical technique to calculate the aggregate

data transfer time which includes all three parameters. Here, bandwidth only

is not used to calculate the data transfer cost, rather the network cost is used

as calculated in Section 3.3.1. The case of remote data and different remote

execution sites is taken so that the metascheduler can consider a worse-case

scenario in scheduling.

24

Data Transfer Cost (DTC) = Input Data Transfer Cost + Output Data Transfer

Cost

+ Executables Transfer Cost……………….3.4

Where ID is Input Data, AD is Application Data, OD is Output Data and

NC = Network Cost and i and j indicate a certain site

Here, the three different costs for data transfer are discussed. Input

data transfer cost is the most significant due to expected large data transfers.

Higher network cost will increase the data transfer cost and vice-versa, and

the associated weight is used to adjust the value according to its importance.

The same is the case for the output data since output data needs to be

transferred to the location from where the job was submitted. Application data

are executables and user code which will be submitted for execution but might

be low compared to the input and output data transfer costs.

The response time can be reduced by moving input data from one site

to another that has a larger number of processors, since computational

capabilities of a remote site without replicated data can be superior to the

capabilities of other sites with replicated data. In this scenario, the input data

located in site i is transferred to site j which has sufficient computational

capabilities. Also application codes should be transferred from the local site to

site j. Then the processing is performed in site j and the resulting data will be

transferred to the local site.

3.3.4 Total Cost

The total cost is simply a combination of these individual costs as

calculated in Sections 3.3.1, 3.3.2 and 3.3.3:

25

Total Cost C = Network Cost + Computation Cost + Data Transfer

Cost………….3.5

The main optimization problem that needs to be solved is to calculate

the cost of data transfers between sites (DTC), to minimize the network traffic

cost between the sites (NTC) and also to minimize the computation cost of a

job within a site. To simplify the optimization problem it is assumed that any

given site can have one or many storage resources (Storage Elements, SEs)

or one or many computing resources (Computing Elements, CEs). Therefore,

main interest is in the wide-area network performance rather than specifying

all network details within a site. It is assumed that the local network latency is

roughly homogeneous for all nodes (storage or computing) within a site [10].

The cost of the job placement can be calculated on each site with respect to

the submission site. This will be a relative cost since it will always be

measured with reference to the user’s location on the Grid. Next, a cost matrix

can be populated with cost values against each site. In detail, the number of

possible sites are investigated and the total cost calculated for each pair (site i

– site j) and put that into cost matrix.

Table 3.1 shows an example cost matrix giving the overall cost of job

submission from one site to all four others in the Grid. Cij is the total cost of a

particular site I from any other one j in the Grid.

26

Table 3.1 The cost matrix for five example sites
 Italy Austria UK USA Japan

Italy 50 45 60 90

Austria 58 48 65 72

UK 64 42 38 85

USA 72 65 50 65

Japan 70 72 85 65

3.4 Conclusion

These costs are the core elements of the DIANA Scheduler in selecting

the optimal site for job execution. The network cost calculated in the algorithm

is used to select the best replica of a dataset which will be used as input to

the scheduler.

27

Chapter 4

DIANA SCHEDULING

4.1 Introduction

 In this section the scheduling strategy is discussed of moving data to

jobs or both to a third location. Not only need the network characteristics are

used while aligning data and computations, it is also need to optimize the task

queues of the meta-scheduler on the basis of this correlation. As a

consequence network characteristics can play an important role in the

matchmaking process and on Grid scheduling optimization. Therefore a

complex scheduling algorithm is required that should consider the job

execution, the data transfer and their relation with various network parameters

on multiple sites.

4.2 Data intensive and network aware

Data intensive applications often analyze large amounts of data which

can be replicated over geographically distributed sites. If the data are not

replicated to the site where the job is intended to be executed, the data will

need to be fetched from remote sites. This data transfer from other sites can

degrade the overall performance of job execution. If a computing job runs

remotely, the output data produced needs to be transferred to the user for

local analysis. To provide improvements in the overall job execution time and

to maximize Grid throughput, it is need to align and co-schedule the

computation and the data (the input as well as the output) in such a way that

the overall computation and data transfer costs can be reduced. It may even

be decided to send both the data and the executables to a third location

28

depending on the capabilities and characteristics of the available resources. It

is not only need to use the network characteristics while aligning data and

computations, but it is also needed to optimize the task queues of the Meta-

Scheduler on the basis of this correlation since network characteristics can

play an important role in the matchmaking process and on Grid scheduling

optimization. Thus, a more complex scheduling algorithm is required that

should consider the job execution, data transfer and their correlation with

various network parameters on multiple sites. There are three core elements

of the scheduling problem which can influence scheduling decisions and

which needs to be tackled: data location, network capacity/quality and

available computation cycles.

4.3 P2P Meta scheduler

In DIANA, independent Meta-Schedulers are not used but instead use

a set of Meta-Schedulers that work in a peer-to-peer (P2P) manner. As shown

in Figure 4.1, each site has a Meta-Scheduler that can communicate with all

other Meta-Schedulers on other sites.

Figure 4.1 Communication between instances of Meta Schedulers

29

The Meta-Scheduler is able to discover other Schedulers with the help

of a discovery mechanism [13]. DIANA Scheduler is a layer over each local

scheduler so that these local schedulers can talk directly to each other instead

of getting directions from a secondary central manager. In the DIANA

architecture each local Scheduler has a local queue plus a global queue

which is managed by the DIANA layer. This leads to a self organizing

behavior which was missing in the client server architecture.

4.4 RootGrid to RootGrid and RootGrid to Nodes Communication

The nodes are divided into SubGrids, each SubGrid having its own

RootGrid. Roughly each site has one RootGrid and may have one or more

SubGrids. The Meta-Scheduler works at the RootGrid (Master node) level.

The RootGrid to RootGrid communication is in essence a P2P communication

between the Meta-schedulers. Each RootGrid maintains a table of entries

about the status of the nodes which is updated in real time when a node joins

or leaves the system. Local schedulers work at the SubGrid level. When a

user submits a job, the Meta-Scheduler at the RootGrid communicates within

the SubGrid to find suitable resources. If the required resources are not

available within the SubGrid, it contacts the RootGrids of other SubGrids in

the VO which have suitable resources. Therefore a single machine within a

SubGrid communicates only with the Meta-scheduler, which itself

communicates with the Meta-schedulers at other RootGrids. Consequently,

this approach is not just all-to-all communication. This approach shown in

the Figure 4.2

30

Figure 4.2 Meta scheduler communication mechanism

A RootGrid contains all information about the nodes in its SubGrid. In

case a RootGrid crashes, a standby node in the SubGrid can take over as a

RootGrid. The RootGrid replicates its information to this standby node to

avoid information loss. The RootGrid should always be the machine with the

largest availability within that SubGrid and will have a unique ID, which will be

assigned at the time of its joining the Grid. After joining, a Peer will check for

the existence of the RootGrid. If the RootGrid does not exist, it means this is

the first Peer joining the system. That Peer will then create the RootGrid and

will join it. If the RootGrid exists then the Peer will automatically join that

RootGrid and will search for its SubGrids and will join the nearest SubGrid

using the standard criteria. Whenever a site becomes part of the Grid, a

separate SubGrid encompassing the site resources is created which joins the

31

nearest RootGrid. If the site is fairly small in terms of the resources, this site

may also join some existing SubGrid. The size of the SubGrid and RootGrid

and other policy decisions have to be taken by a VO administrator and may

vary from one Grid deployment to another.

4.5 General Architecture

The overall architecture of the DIANA Scheduler is shown in Figure

4.3. It includes a DIANA meta-scheduler with its internal matchmaker. The

meta-scheduler uses network information to make optimal scheduling

decisions.

Figure 4.3 DIANA Scheduler and the Discovery Service

32

The Data Location Service makes use of the Data Location Interface

[14] to find the list of the dataset replicas and then uses network statistics to

find the “best” replica which is then used by the scheduler. The DIANA

scheduling system is implemented as a peer to peer system as discussed in

[15]. It should also be noted that an external job submission/execution system

needs to be used since the DIANA meta-scheduler only provides scheduling

information but does not take care of the actual dispatching/submission of the

job to a local resource management system.

The DIANA meta-scheduler mediates between data providers and data

requesters. The first step, which is to discover the available resources, is

defined as resource discovery in Chapter 3. A resource request consists of a

function to be evaluated in the context of a resource. For example, the

request “processing power > 2 GHz” will be evaluated by determining if a

resource has an attribute called processing power and if so, if the value of this

attribute satisfies the condition “Value(processing power) > 2 GHz”. If the

request can be successfully satisfied, the matchmaker responds with a list of

ranked resources. After this, the scheduling optimization algorithm is used to

select the best resource and a job is subsequently scheduled to be executed

on this resource. The DIANA meta-scheduler keeps track of the load on the

sites and selects a site which has a minimum load and queue and has the

desired data, processing capability and network stability. Network monitoring

information is the central component of the system and all the information

collected is stored in a database and is used to make scheduling decisions.

The database collects the historical as well as real time information to obtain a

current and previous view of the system state.

33

4.6 The Scheduling algorithm

This Scheduler deals with both computational jobs as well as data

intensive jobs. In the DIANA Scheduling scheme, the Scheduler consults its

peers, collects information about the peers including network, computation

and data transfer costs and selects the site having minimum cost. To

schedule computational jobs, this algorithm selects resources which provide

most computational capability. The same is the case with data intensive jobs.

To schedule data intensive jobs, it is needed to determine those resources

where data can be transferred cost effectively. Since the different costs are

calculated, these costs can be brought together under a scheduling algorithm

as described below.

In the case of a computational job, more computational resources are

required and the algorithm should schedule a job on the site where the

computational cost is a minimum. At the same time, the job’s files need to be

transferred so it is needed to be ensured that the job can be transferred as

quickly as possible. Therefore, the Scheduler will select the site with minimum

computational cost and minimum transfer cost. In the case of a data intensive

job, the preferences will change. In this case the job has more data and less

computation and it is needed to determine the site where data can be

transferred more quickly and at the same time, where computational cost is

also a minimum. The algorithm keeps on scheduling until all jobs are

submitted. After every job the cost to submit the next job is calculated.

4.6.1 Algorithm for a Compute Intensive Job

If the job is compute intensive then the algorithm in Figure 4.4 depicts

the scheduling behavior of DIANA.

34

computationCost[] = getAllSitesComputationCost();

NetworkCost []= getAllSitesNetworkCost();

arrageSites[] = SortSites(computationCost, NetworkCost); //it will

sort array in ascending order

for i=1 to arrangeSite.length

site = arrangeSite[i]

if (site is Alive)

send the job to this site

end loop

end if

Figure 4.4 Algorithm for Compute Intensive Job

4.6.2 Algorithm for a Data Intensive Job

If the job is data intensive then the algorithm in Figure 4.4 depicts the

scheduling behavior of DIANA.

dataTransferCost[] = getAllSitesDataTransferCost();

NetworkCost []= getAllSitesNetworkCost();

arrageSites[] = SortSites (dataTransferCost, NetworkCost); //it

will sort array in ascending order

for i=1 to arrangeSite.length

site = arrangeSite[i]

if (site is Alive)

send the job to this site

end loop

end else-if

Figure 4.5 Algorithm for Data Intensive Job

4.6.3 Algorithm for a Compute and Data Intensive Job

Algorithm in Figure 4.6 depicts the scheduling behavior of DIANA.

35

computationCost[] = getAllSitesComputationCost()

dataTransferCost[] = getAllSitesDataTransferCost()

NetworkCost []= getAllSitesNetworkCost();

// since length of computationCost and dataTransferCost array is

same. So any of them can be used

siteTotalCost [] = new Array[computationCost.length]

for i = 1 to computationCost.length

siteTotalCost [i] = computationCost[i] + dataTransferCost[i] +

NetworkCost [i]

end loop

sites [] = SortSites(siteTotalCost)

for j = 1 to sites.length

site = sites[i]

if (site is alive)

schedule the job to this site

end loop

Figure 4.6 Algorithm for a Data and Compute Intensive Job

4.7 Priority based Scheduling

The scheduling algorithm is a priority based algorithm. A priority is

associated with each process and the CPU is allocated to the process with

the highest priority. Equal priority processes are scheduled on a First Come

First Served (FCFS) basis. Priorities can be defined either internally or

externally. Internally defined priorities use some measurable quantities to

compute the priority of a process. For example, time limits, memory

requirements, the number of open files and the ratio of I/O to CPU time can

be used in computing priorities [16]. External priorities are set by criteria that

are external to the scheduling system such as the importance of the process.

Priority scheduling can be either pre-emptive or non preemptive. The

36

scheduling algorithm described here is not a pre-emptive one; it simply places

the new job at the head of the ready queue and does not abort the running

job. Since most jobs are data intensive, this makes it increasingly important to

consider the non pre-emptive mode as a primary approach.

4.8 Job Migration Algorithm

To illustrate job migration let us take an example scenario where a user

submits a job to the Scheduler and the Scheduler puts this job into queue

management. If the queue management algorithm of the Scheduler decides

that this job should remain in the queue, it may have to wait a considerable

time before it gets serviced or before it is migrated to some other site. In this

case the queue management module will ask the scheduling module to

migrate the job.

4.8.1 Peer Selection Criteria

The important point to note here is that the job must be scheduled at that

site where it can be serviced earliest. Therefore the peer selection criteria are

based on two things, which are minimum queue length and the minimum cost

to place this job on the remote site. The Scheduler will communicate with its

peers and ask about their current queue length and the number of jobs with

priorities greater than the current job’s priority. The site with minimum queue

length and minimum total cost is considered as the best site to where the job

can be migrated. The algorithm will work as depicted by Figure 4.7.

37

Sites[] = GetPeerList()

int count = Sites.length // total no of sites

int queueLength [] = Sites.length

int jobsAhead[]= new int[count]

for (i=1 to count)

jobsAhead [i] = getJobsAhead(site[i])

end for

find the peer with minimum jobsAhead

if (peer’s jobsAhead < localsite’s jobsAhead) then

increase the job’s priority

migrate the job to that site

else

keep the job on local site

 Figure 4.7 Peer Selection Algorithm

4.8.2 Communication for job migration

First of all scheduler will get the information about the available peers

from the discovery or information service. Then it will communicate with each

peer and collect the peer’s queue length, total cost, and the number of jobs

‘ahead’ of the current job’s priority. After this, it will find out the site with the

minimum queue length and minimum jobs ahead. If the number of jobs and

total cost of the remote site is more than the local cost, then this job is

scheduled to the local site. In this case the other sites are already congested

and there is no need to migrate the job. Therefore that job will remain in the

local queue and will be served when it gets the execution slot on the local site.

Otherwise the job is moved to a remote site subject to the cost mechanism.

This decision is made on the principle that this job as a result will get quicker

38

execution since the targeted site has overall least cost and least queue as

compared to other sites.

4.9 Summary

Considering all the costs data transfer cost, network cost and

availability of resources the design of meta-scheduler is such that which

perform the match making job and select the best peer for the submitted jobs.

The meta-scheduler communication mechanism is also discussed which

concludes that rootgrid communicate with its local nodes and meta-scheduler

communicates with the meta-scheduler on the other sites. So in this

mechanism not all the nodes are communicating with each other and it is not

just all to all communication

39

Chapter 5

CLUSTER LEVEL SCHEDULER

5.1 Introduction

This section is aimed to discuss the need for a ‘Decentralized Cluster

Level Scheduler and its implementation. A cluster can be thought of as a

group of homogeneous computers that are connected through a LAN. Two

major architectures that exist for Schedulers are:

5.1.1 Centralized architecture

The historic architecture for Job scheduling software. The Job

Scheduling software is installed on a single machine (Master) while on

production machines only a very small component (Agent) is installed that

awaits commands from the Master, executes them, and returns the exit code

back to the Master.

5.1.2 Cooperative architecture

A decentralized model where each machine is capable of helping with

scheduling and can offload local jobs to other cooperating machines. This

enables dynamic workload balancing to maximize hardware resource

utilization and high availability to ensure service delivery.

5.2 Effect of Decentralized Schedulers

Till now the execution of DIANA (Metascheduler) is discussed over a

centralized cluster level scheduler i.e. Condor in this case. But imagine the

speed at which the grid would process jobs if it is completely decentralized by

40

replacing the centralized cluster level scheduler with a decentralized one. This

was the next milestone after completing the designed and development of the

meta-scheduler. This milestone in the project has also been successfully

completed.

Though it is not as complex as Condor, but for simple batch Jobs it is

far more faster than Condor. The few basic parameters to be parsed out of

the Job Description File are just included; whereas the Condor Application

supports many parameters. The Cluster Level Scheduler can so far execute

simple batch files and java class files and can handle input files as well. In this

chapter following aspects of the Decentralized Cluster Level Scheduler will be

highlighted; Architectural Design, Class Diagrams, and Sequence Diagrams

5.3 Architectural Design

Figure 5.1 Architecture design of the Local scheduler

41

Job/Bulk of Jobs Submitted at Submission Host. Job transferred to the

Daemon_Main to be scheduled remotely if its resource requirements exceed

local resources. Daemon_Main calls Resource_Discovery_Svc.

Rsrc_Discovery_Svc broadcasts requests for resource advertisements.

Daemon_Main calls Resource_Advertisor. Rsrc_Advertisor of each node

returns Resource Advertisements to Rsrc_Collector of Submission Host.

Rsrc_Collector passes Resource Advertisements to Scheduler to map jobs to

resources. Scheduler Calls Bulk_splitter on bulk job if it is to large to be

mapped onto any available resources. Mapped Jobs sent to

Job_Migration_Mgr. Job_Migration_Mgr dispatches jobs to appropriate Hosts.

Received Job sent to Exec_Facililtator Exec_Facililtator executes job and

returns temporary output periodically to Daemon_Chkpt. Daemon_Chkpt

saves checkpoint information till final output has been received and calls

Daemon_Main. Daemon_Main finalizes and performs house cleaning actions.

42

5.4 Class Diagram and Description of Classes

Figure 5.2 shows a class diagram and their description of Cluster Level

Scheduler. This easily illustrates the abstract implementation of the scheduler.

Figure 5.2 Class Diagram and Description of Classes of local scheduler

43

5.5 Local Execution Sequence Diagram

Figure 5.3 depicts the sequence of actions that the local scheduler

would take when a job is scheduled locally for execution. Figure 5.3 further

illustrates the situation where the Best Node for execution returned by the

Match-Maker is the submission host itself. In that case the job would be

submitted to the local scheduler queue and served on FCFS basis.

Figure 5.3 Job submission and its local execution

44

5.6 Remote Execution Sequence Diagram

Figure 5.4 is the sequence diagram that depicts the sequence of

events if a Remote Node is returned by the matchmaker for execution. In that

case a complex series of events occur.

Figure 5.4 Job submission and its remote execution

45

5.7 DIANA Scheduler in Action

First of all module DaemonMain is executed .It will further create

instances of Scheduler, LocalSchedulerQueue, ResourceAdvertiser. After this

their threads will be forked.

5.7.1 LocalSchedulerQueue

The object of this class keeps an instance of FCFS Queue. Its job will

be to continuously dequeue the job from the queue and send it for

execution if any job exists in the queue.

5.7.2 ResourceAdvertiser

It will be continuously listening for any interrupt on the port and when

found will send the resource advertisement in the response.

5.7.3 Job Sumission

The job is is submitted by a call to the submit_job () method of the

Scheduler. This method will create an instance of the ResourceCollector and

will fork its thread. The ResourceCollector thread will send a multicast

message over the network to all other connected nodes and will listen to the

responses while collecting them in the list. submit_job () will then collect the

array containing the resource ads of all the connected nodes. This list will

then be passed to the MatchMaker(). It will then perform the matchmaking

process based on the list of resources and the resources required by the job.

This will return the node that is most suitable for the job to execute on .Now

there are actually two cases

46

5.7.4 Submission node chosen for execution

When the best node is the same node on which the job has been

submitted .In this case the job gets submitted in the local queue.

5.7.5 Remote node chosen for execution

The best node is some other node. In this case the job will be given to

the JobMigrationManager thread which will; Serialize the Job Contents, make

a proxy server of the remote node and call its submitRemoteJob() method,

start an OutputListener thread to listen for results.

5.7.6 Job Execution and Output Return

Now when the job is dequeued from the queue, jobExecutioner

instance is created and its thread is forked. Now it’s the responsibility of the

jobExecutioner to execute the job. It will run the job, check its output, error

and log files, and fork an OutputSubmitter and thread. OutputSubmitter will

open connection with the remote computer (i.e. the computer from which the

job had been submitted) and send the output, error and log files (if any) to that

remote host. On the other end OutputListener will collect the output and error

files.

47

Chapter 6

TEST RESULTS

6.1 Introduction

In this chapter, results of Iterative Job Submission, Bulk Job

Submission and Job Clustering have been illustrated with practical

experiments.

6.2 Simulation Setup

Two Clusters consisting of two nodes each were setup. Condor was

used as the local node level scheduler on each node. Instance of DIANA

metascheduler was running on the central manager of each cluster.

6.3 First Simulation Setup

Jobs were first submitted iteratively to the metascheduler through an

automated job submission script.

6.4 Second Simulation Setup

Multiple Jobs were submitted as atomic bulks to the metascheduler

which were scheduled and dispatched as atomic bulks

6.5 Third Simulation Setup

Multiple Jobs were submitted as atomic bulks to the metascheduler

where these job bulks were clustered into smaller sub-bulks consisting of jobs

proportional to the cluster rank.

48

Table 6.1 Iterative Vs. Bulk Vs. Clustered Approaches

Figure 6.1 Effect of Job Clustering over execution speed

No. of
Jobs

Time for
Execution(Atomic
Iterative
Submission)

Time for Execution(Bulk
Submission without Job
Clustering)

Time for
Execution(Bulk
Submission with
Job Clustering)

10 127 118 74
20 244 228 132
30 368 354 192
40 491 473 246
50 611 591 324
60 727 693 368
70 813 789 408
80 937 892 473
90 1053 1009 536

100 1178 1098 592

49

Chapter 7

FUTURE WORK

The current implementation of the DIANA Scheduler with job clustering

is windows platform compatible. Due to limitations involved in obtaining

system information in windows, it is highly intend to make the software Linux

compatible to overcome these limitations and base the scheduling on a larger

number of involved parameters. The software uses hard coded costs or

randomly generated numbers for the time being. It is intended to retrieve the

involved parameters in real time and base the scheduling decisions on

realistic values.

Discovery service for the software was simulated using multicasting for

demonstration purposes in lab only. But this is not a realistic solution for

discovery over the internet, since multicast addresses need to be bought

exclusively. Multicast addresses are expensive and almost all the possible

multicast addresses in the multicast address range have been bought.

Another concern while considering multicasting as the solution for discovery

over the internet is that ipv4 address range is not capable of fulfilling demands

of the exponentially increasing number of internet users. Soon the ipv4 of

addresses will be replaced to adjust the large number of internet users and

the multicast addresses in use at the time being, will be rendered obsolete.

The next solution to address the multicasting problem is still not known. So it

is intend to use web services based discovery service implemented by

another group of bese-10 with the name ARDIG (Autonomous resource

discovery infrastructure for grids). The integration process has already

started.

50

The grid scheduler and the discovery service were developed as

services for the project started with the name PhantomOS. The grid

Scheduler inherently handles scheduling of batch applications i.e. unattended

applications. The final stage of the project will be integration of these services

into PhantomOS and running final tests to ensure the services deliver what is

required of them.

With the successful integration of the component into PhantomOs, it is

intended to write a research paper on “Optimizing throughput through Job

clustering” and “two-tier grid scheduler architecture”. Update the PhantomOS

website and upload the source at Sourceforge.

51

BIBLIOGRAPHY

[1] Yan Liu , Iowa yanliu@cs.uiowa.edu, Grid Scheduling, Department of
Computer Science University of ,ICE2002, Rome, Italy, 17-19 June
2002.

[2] B.C. Schultheiss, L.C.J. van Rijn and C. Kamphuis , Secure Meta-

computing in an Extended Enterprise

[3] Metacomputing. http://www.hpti.com

[4] IBM Solutions Grid for Business Partners: Helping IBM Business

Partners to Grid-enable applications for the next phase of e-business
on demand.

[5] http://www.cs.cf.ac.uk/Dave/C/node33.html

[6] Douglas Thain, Todd Tannenbaum, and Miron Livny ,Condor and the
Grid,.

[7] W. Matthews and L. Cottrell, Achieving High Data Throughput in

Research Networks, CHEP 2001, China, 2001.

[8] R. Les Cottrell, Saad Ansari, Parakram Khandpur, Ruchi Gupta,

Richard Hughes-Jones, Michael Chen, Larry McIntosh and Frank
Leers. Characterization and Evaluation of TCP and UDP-based
Transport on Real Networks., Protocols for Fast Long-Distance
networks, Lyon, Feb. 2005. Also SLAC-PUB-10996.

[9] Mathis, Semke, Mahdavi & Ott, The macroscopic behaviour of the TCP

congestion avoidance algorithm, Computer Communication Review,
27(3), July 1997.

[10] R. Buyya, D. Abramson, J. Giddy, Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global
Computational Grid. International Conference on High Performance
Computing in Asia- Pacific Region (HPC Asia 2000), Beijing, China.
IEEE Computer Society Press, 2000.

[11] H. Jin, X. Shi et al. An adaptive Meta-Scheduler for data-intensive

applications, International Journal of Grid and Utility Computing 2005 -
Vol. 1, No.1 pp. 32-37

[12] S. Park, and J. Kim.Chameleon: a resource scheduler in a data Grid

environment, Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, Tokyo, 2003

[13] A. Ali, A. Anjum, R. McClatchey, F. Khan, M. Thomas, A Multi Interface

Grid Discovery System, Grid 2006, Barcelona Spain.

52

[14] H. Stockinger, F. Donno, G. Eulisse, M. Mazzucato, C. Steenberg.
Matchmaking, Datasets and Physics Analysis, Workshop on Web and
Grid Services for Scientific Data Analysis (WAGSSDA), IEEE
Computer Society Press, Olso, Norway, June 14, 2005.

[15] A. Anjum, R. McClatchey, H. Stockinger, A. Ali, I. Willers, M. Thomas,

M. Sagheer, K. Hasham & O. Alvi. DIANA Scheduling Hierarchies for
Optimizing Grid Bulk Job Scheduling. Accepted by 2nd IEEE Int.
Conference on e-Science and Grid Computing (e- Science 2006), IEEE
Computer Society Press, Amsterdam, The Netherlands, Dec, 2006.

[16] Ashiq Anjum, Richard McClatchey, Arshad Ali and Ian Willers,

Member, IEEE, Bulk Scheduling with the DIANA Scheduler, IEEE
Transactions on Nuclear Science, vol. 53, issue 6, pp. 3818-
3829,2006.

