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ABSTRACT 
 
Grid Computing due to its effective sharing of heterogeneous resources, 

economy and portability has become the center of attention for execution of 

resource hungry divisible processes. But along with the promising characteristics 

of grid computing it also poses great challenges in its implementation due to the 

geographical distant resources owned by individuals with differing access and 

cost policies. 

  The vast applications of Grid Computing in the field of e-sciences gave 

rise to the need for bulk scheduling (i.e. scheduling of a bulk of jobs as a unique 

entity). Splitting the bulk may result in a very large number of jobs, making it a 

hideous job for schedulers and also very time consuming in case of centralized 

schedulers.  

 In order to exploit the true potential of grid computing workloads need to 

be scheduled efficiently amongst the participating machines. Centralized 

schedulers have been implemented to perform the job of load balancing but the 

grid as a whole lacks the essence of autonomy and self organization. By 

introducing decentralized schedulers, the limitations such as scalability, posed by 

centralized schedulers can be tackled. And dependency on a central scheduler is 

overcome by applying lower level autonomous schedulers. A decentralized 

approach for bulk scheduling at site level and subgrid level by deploying 

autonomous site level and low level schedulers is proposed. 



 

iii 
 

DECLARATION 

No portion of the work presented in this documentation has been submitted in 

support of any other award or qualification either at this institution or 

elsewhere. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

iv 
 

DEDICATION 

In the name of Allah, the Most Merciful, the Most Beneficent 

To the owner of the word ‘Mother’.  

From a clot to an engineer she has always been a protector. Thank you for 

that journey. May the best of heavens befall upon you. 

 



 

v 
 

ACKNOWLEDGEMENT 

Thanking always the owner of the word ‘Mother’ because without her 

blessings the following acknowledgements would have never been written.  

We are eternally grateful to Almighty Allah for giving us with the 

strength and determination to undertake and complete the project.  

We gratefully recognize the continuous supervision and motivation 

provided to us by our Project Supervisor, Mr. Bilal (MIS-CELL), without his 

personal supervision, advice and help, timely completion of this project would 

have been impossible.  

For the completion of this project, we are greatly indebted to Dr. Ashiq Anjum 

for his continuous guidance, remarkable suggestions, keen interest, friendly 

discussions and every possible support. He spared a lot of his precious time 

in advising and helping us 

We deeply treasure the unparallel support and tolerance that we received 

from our friends for their useful suggestions that helped us in completion of 

this project. We are also deeply obliged to our families for their never ending 

patience and support for our mental peace and to our parents for the strength 

that they gave us through their prayers. 

 A word of thanks to the Military College of Signals (from Commandant 

to the Staff) as it has been our foundation. 

 



 

vi 
 

TABLE OF CONTENTS 

INTRODUCTION .................................................................................... 1 

1.1 PREFACES ............................................................................................................... 1 
1.2 SCHEDULING ............................................................................................................ 2 
1.3 SCHEDULER TYPES .................................................................................................. 3 
1.4 PROBLEM DESCRIPTION .......................................................................................... 4 
1.5 OBJECTIVE ............................................................................................................... 4 
1.6 THE STRATEGY ........................................................................................................ 5 
1.7 PROJECT DESCRIPTIONS......................................................................................... 5 
1.8 DEVELOPMENT ENVIRONMENT ................................................................................ 5 
1.9 PROJECT LIMITATIONS / CONSTRAINTS .................................................................. 6 
1.10 WORK BREAKDOWN STRUCTURE ......................................................................... 6 

LITERATURE   REVIEW ...................................................................... 8 

2.1 INTRODUCTION ......................................................................................................... 8 
2.2 METACOMPUTING .................................................................................................... 8 
2.3 GRIDS VERSUS CONVENTIONAL SUPERCOMPUTERS ............................................... 9 
2.4 REMOTE PROCEDURE CALLS (RPC) .................................................................... 11 
2.5 LOCAL SCHEDULER LAYER CONDOR .................................................................... 12 
2.6 PROGRAMMING LANGUAGE SELECTION ................................................................ 13 
2.6.1 INTERPRETED LANGUAGE .................................................................................. 14 
2.6.2 BETTER CODE READABILITY ............................................................................... 14 
2.6.3 EXTENSIVE AND EASY TO USE SOCKET LIBRARIES ............................................ 14 
2.6.4 EASY TO USE FILE HANDLING LIBRARIES .......................................................... 15 
2.6.5 SIMPLE BUT DYNAMIC DATA STRUCTURES LIKE LISTS, AND TUPLES ................. 16 
2.6.6 SIMPLE ACCESS TO WIN32 API’S ...................................................................... 16 
2.6.7 COMPACT AND PLATFORM INDEPENDENT ......................................................... 17 
2.6.8 THREE STEP REMOTE OBJECT REGISTRATION / ONE STEP REMOTE OBJECT 
ACCESS ........................................................................................................................ 17 
2.6.9 MULTICASTING LIBRARIES .................................................................................. 17 
2.7 SUMMARY .............................................................................................................. 18 

SCHEDULING  OPTIMIZATION  ALGORITHM .......................... 19 

3.1 INTRODUCTION ....................................................................................................... 19 
3.2 COST ESTIMATORS ................................................................................................ 19 
3.2.1 NETWORK COST ................................................................................................. 19 
3.3.2 COMPUTATION COST ......................................................................................... 22 
3.3.3 DATA TRANSFER COST ...................................................................................... 23 
3.3.4 TOTAL COST ....................................................................................................... 24 
3.4 CONCLUSION ......................................................................................................... 26 



 

vii 
 

DIANA  SCHEDULING ........................................................................ 27 

4.1 INTRODUCTION ....................................................................................................... 27 
4.2 DATA INTENSIVE AND NETWORK AWARE ............................................................... 27 
4.3 P2P META SCHEDULER ......................................................................................... 28 
4.4 ROOTGRID TO ROOTGRID AND ROOTGRID TO NODES COMMUNICATION ........... 29 
4.5 GENERAL ARCHITECTURE ..................................................................................... 31 
4.6 THE SCHEDULING ALGORITHM .............................................................................. 33 
4.6.1 ALGORITHM FOR A COMPUTE INTENSIVE JOB ................................................... 33 
4.6.2 ALGORITHM FOR A DATA INTENSIVE JOB ........................................................... 34 
4.6.3 ALGORITHM FOR A COMPUTE AND DATA INTENSIVE JOB .................................. 34 
4.7 PRIORITY BASED SCHEDULING .............................................................................. 35 
4.8 JOB MIGRATION ALGORITHM ................................................................................. 36 
4.8.1 PEER SELECTION CRITERIA ............................................................................... 36 
4.8.2 COMMUNICATION FOR JOB MIGRATION .............................................................. 37 
4.9 SUMMARY .............................................................................................................. 38 

CLUSTER  LEVEL  SCHEDULER ..................................................... 39 

5.1 INTRODUCTION ....................................................................................................... 39 
5.1.1 CENTRALIZED ARCHITECTURE ........................................................................... 39 
5.1.2 COOPERATIVE ARCHITECTURE ........................................................................... 39 
5.2 EFFECT OF DECENTRALIZED SCHEDULERS .......................................................... 39 
5.3 ARCHITECTURAL DESIGN ...................................................................................... 40 
5.4 CLASS DIAGRAM AND DESCRIPTION OF CLASSES ................................................ 42 
5.5 LOCAL EXECUTION SEQUENCE DIAGRAM ............................................................. 43 
5.6 REMOTE EXECUTION SEQUENCE DIAGRAM .......................................................... 44 
5.7 DIANA SCHEDULER IN ACTION ............................................................................ 45 
5.7.1  LOCALSCHEDULERQUEUE ................................................................................ 45 
5.7.2  RESOURCEADVERTISER.................................................................................... 45 
5.7.3  JOB SUMISSION ................................................................................................. 45 
5.7.4  SUBMISSION NODE CHOSEN FOR EXECUTION ................................................... 46 
5.7.5  REMOTE NODE CHOSEN FOR EXECUTION ......................................................... 46 
5.7.6  JOB EXECUTION AND OUTPUT RETURN ............................................................ 46 

TEST RESULTS ..................................................................................... 47 

6.1 INTRODUCTION ....................................................................................................... 47 
6.2 SIMULATION SETUP ............................................................................................... 47 
6.3 FIRST SIMULATION SETUP ..................................................................................... 47 
6.4 SECOND SIMULATION SETUP ................................................................................ 47 
6.5 THIRD SIMULATION SETUP .................................................................................... 47 

FUTURE WORK .................................................................................... 49 

BIBLIOGRAPHY ................................................................................... 51 



 

viii 
 

LIST OF FIGURES 
 

Figure                   Figure Caption                    Page 
Figure 1.1 A geographically distributed grid ........................................................... 2 
Figure 2.1 Flow of activity that takes place during an RPC ................................ 12 
Figure 2.2 Condor pool ............................................................................................. 13 
Figure 2.3 Python Server Socket creation ............................................................ 15 
Figure 2.4 Python Client Socket creation .............................................................. 15 
Figure 2.5 File Handling Python vs. C++ ............................................................... 16 
Figure 2.6 Remote Procedure Calling in Python .................................................. 17 
Figure 4.1 Communication between instances of Meta Schedulers ................. 28 
Figure 4.2 Meta scheduler communication mechanism ..................................... 30 
Figure 4.3 DIANA Scheduler and the Discovery Service ................................... 31 
Figure 4.4 Algorithm for Compute Intensive Job .................................................. 34 
Figure 4.5 Algorithm for Data Intensive Job ......................................................... 34 
Figure 4.6 Algorithm for a Data and Compute Intensive Job ............................. 35 
Figure 4.7 Peer Selection Algorithm ...................................................................... 37 
Figure 5.1 Architecture design of the Local scheduler ........................................ 40 
Figure 5.2 Class Diagram and Description of Classes of local scheduler ....... 42 
Figure 5.3 Job submission and its local execution .............................................. 43 
Figure 5.4 Job submission and its remote execution .......................................... 44 
Figure 6.1 Effect of Job Clustering over execution speed .................................. 48 
 



 

ix 
 

LIST OF TABLES 

Table    Table Caption       Page 

1.1  Work Break Down Structures………………………………………….6 
3.1  The Cost Matrix For Five Example Sites…..……………………......26 
6.1  Iterative Vs. Bulk Vs. Clustered Approaches……………..………... 48 
 
 



 

1 
 

Chapter 1 

INTRODUCTION 

1.1 Prefaces  

Grid computing is expected to provide easier access to remote 

computational resources that are usually locally limited. Distributed computer 

systems are joined in such a grid environment in which users can submit jobs 

that are automatically assigned to suitable resources. The idea is similar to 

metacomputing where the focus is limited to compute resources. Grid 

computing takes a broader approach by including networks, data etc. as 

accessible resources. In addition to the benefit of access to locally unavailable 

resource types, there is also the expectation that a larger number of 

resources are available for a single job. This is assumed to result in a 

reduction of the average job response time. Moreover, the utilization of the 

grid computers and the job-throughput is likely to improve due to load-

balancing effects between the participating systems. Typically the parallel 

computing resources are not exclusively dedicated to the grid environment. 

Due to the geographically distributed resources the management of the grid 

environment becomes rather complex, especially the scheduling of the 

computational tasks. A typical grid infrastructure is shown in Figure 1.1. 
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Figure 1.1 A geographically distributed grid 

1.2 Scheduling  

Resource management is a central task in any Grid system. Resources 

may include resources such as compute cycles, network bandwidth, and 

storage systems. Effective resource management and scheduling is a 

challenging issue, and data location and network load in addition to the 

computing power are critical factors in making scheduling decisions. The 

quality and consistency of networks are among the most important factors in 

this scheduling paradigm since the Grid can be subject to failure if networks 

do not perform. Similarly, a site with the required data may not be the optimal 

location to perform the computation if it does not have sufficient available 

computational resources. All these parameters must be considered in making 

efficient scheduling decisions. 
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When a job is submitted to a Grid scheduling system, the scheduling 

system has the responsibility to select a suitable resource and then to 

manage the job execution. The decision of which resource should be used is 

the outcome of a matchmaking process between submission requests and 

available resources. However, during this matchmaking process, some 

adaptive scheduling mechanisms are needed, with appropriate heuristics, 

which can take into account the characteristics of the network to enable 

efficient scheduling of data intensive jobs to viable computing resources. 

1.3 Scheduler types   

It has been realized that scheduling is a fundamental issue in achieving 

high performance on metacomputers and computational grids. In grid 

environments, there are three types of schedulers to meet different 

performance goals. Resource schedulers coordinate user requests for 

accessing a given resource to ensure fairness and to optimize utilization [1]. 

Application schedulers promote the performance of individual applications by 

optimizing performance measures such as execution time and speedup [1]. 

Job schedulers aim to optimize the overall performance of a system, e.g., 

minimizing the average job response time and maximizing the number of jobs 

executed in certain period of time. Job scheduling on a metacomputer and 

grid is very different from job scheduling on a traditional parallel computer due 

to heterogeneity of communication speed (even though when all the 

processors are homogeneous). A job is typically divided into sub jobs which 

are assigned to different machines on a computational grid for execution. 
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1.4 Problem Description 

One important drawback of existing schedulers is that network 

bottlenecks and execution or queuing delays can be produced in job 

scheduling. Data intensive applications analyze large amounts of data which 

are replicated to geographically distributed sites. If data are not replicated to 

the site where the job is supposed to be executed, the data need to be 

fetched from remote sites. This data transfer from other sites will degrade the 

overall performance of the job execution.  

Each data intensive application produces different amounts of data. For 

performance gains in the overall job execution time and to maximize the Grid 

throughput, it is needed to align and co-schedule the computation and the 

data (the input as well as the output) in such a way that the overall 

computation and data transfer cost can be reduced. It may even decide to 

send both the data and executables to a third location depending on the 

capabilities and characteristics of the computing, network and storage 

resources. 

1.5 Objective 

The objective is to develop meta-scheduler, a process which allows a 

user to schedule a job across multiple sites. And local schedulers which 

schedule the jobs on local sites or rootgrid level. As more complexity is added 

to the Grid, particularly with geographically dispersed sites or nodes.  

The following are the intended objectives; to reduce Queue time and 

waiting time, to lessen Site load and processing time, to minimize Transfer 

time for data, executables and results. 
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1.6 The strategy   

Data intensive applications often analyze large amounts of data which 

can be replicated over geographically distributed sites. If the data are not 

replicated to the site where the job is intended to be executed, the data will 

need to be fetched from remote sites. This data transfer from other sites can 

degrade the overall performance of job execution. If a computing job runs 

remotely, the output data produced needs to be transferred to the user for 

local analysis. To provide improvements in the overall job execution time and 

to maximize Grid throughput, the strategy is to align and co-schedule the 

computation and the data (the input as well as the output) in such a way that 

the overall computation and data transfer costs can be reduced. It may even 

decide to send both the data and the executables to a third location 

depending on the capabilities and characteristics of the available resources. 

1.7 Project Descriptions 

The system contains the following vital features which are to be known 

by the user; the system has been implemented on Windows XP platform (due 

to familiarity of end user). It is recommended that the service be run on 

minimum Intel based 2.0 GHz microprocessor with minimum of 512 MB RAM 

since the system is real time system and require massive CPU cycles and 

network to be reliable . 

1.8 Development Environment 

The software main module which is in turn divided into many sub 

modules is made in Python Version 2.5. In addition help and guidance was 

taken from Python Doc, Twisted Programming and also from the internet. 
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Adobe Flex programs and Libraries are also used by the software. The 

methodology followed is Water fall Model. Testing was conducted after the 

successful completion of each module and in case of an error a bug report 

was being generated. 

1.9 Project Limitations / Constraints 

 The software was tested and analyze thoroughly and the limits and 

constraints of the system are: the system is compatible with Windows 

environment for the time being and can be made to run on Linux by getting 

resource Ads. For the time being the system resources are being extracted 

from windows registry and it will be different for Linux.  

1.10 Work Breakdown Structure 

For the successful completion of the project, the project was divided 

into main modules and structures. It was ensured that each task being 

assigned was carried out appropriately and on time. 

Table 1.1 Work Breakdown Structure 
Requirements Engineering  
Requirements Elicitation Interaction with Domain Expert . 

Understanding basis of Grid 
computing and study related 
Problems. 

Developing Problem Statement SRS Preparation  
Solutions Evaluations Analyze various options Available (i.e. 

Platform Compatibility, Language). 
Propose the best Approach to 
Problem Solution. 
 

Analysis Feasibility Study. 
Assignment and Planning Assignment of Tasks to the syndicate 

members. 
Preparation of Gantt Charts. 
Preparation of TimeLine Charts. 

Literature Review Grid computing Research Work. 
Grid Scheduler Research Work. 
Condor. 
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Remote procedure calls. 
Documentation Preparation of System Manual. 

Preparation of Data Dictionary. 
Detailed Thesis. 
Research Papers and Publications. 
User Manuals. 
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Chapter 2 

LITERATURE   REVIEW 

2.1 Introduction  

Grid computing is applying the resources of many computers in a 

network to a single problem at the same time - usually to a scientific or 

technical problem that requires a great number of computer processing cycles 

or access to large amounts of data. Grid computing requires the use of 

software that can divide and farm out pieces of a program to as many as 

several thousand computers. Grid computing can be thought of as distributed 

and large-scale cluster computing and as a form of network-distributed 

parallel processing. It can be confined to the network of computer 

workstations within a corporation or it can be a public collaboration (in which 

case it is also sometimes known as a form of peer-to-peer computing).  

In the past two decades, numerous scheduling and load balancing 

techniques have been proposed for locally distributed multiprocessor 

systems. However, they all suffer from significant deficiencies when extended 

to a Grid environment: some use a centralized approach that renders the 

algorithm unscalable, while others assume the overhead involved in searching 

for appropriate resources to be negligible.  

2.2 Metacomputing  

Metacomputing is all computing and computing-oriented activity which 

involves computing knowledge (science and technology) common for the 

research, development and application of different types of computing. 

Metacomputing includes: organization of large computer networks, choice of 
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the design criteria (e.g. peer-to-peer or centralized solution) and 

metacomputing software (middleware, metaprogramming) development 

where, in the specific domains [2]. The concept metacomputing is used as a 

description of software meta-layers which are networked platforms for the 

development of user-oriented calculations [3], for example for computational 

physics and bio-informatics. 

Metacomputing allows scientists and engineers to coordinate 

computational grids capable of sharing and analyzing complex simulations 

and data. 

2.3 Grids versus conventional supercomputers  

The ability, using a set of open standards and protocols, to gain access 

to applications and data, processing power, storage capacity and a vast array 

of other computing resources over the Internet. A grid is a type of parallel and 

distributed system that enables the sharing, selection, and aggregation of 

resources distributed across 'multiple' administrative domains based on their 

(resources) availability, capacity, performance, cost and users' quality-of-

service requirements [4]. 

"Distributed" or "grid" computing in general is a special type of parallel 

computing which relies on complete computers (with onboard CPU, storage, 

power supply, network interface, etc.) connected to a network (private, public 

or the Internet) by a conventional network interface, such as Ethernet. This is 

in contrast to the traditional notion of a supercomputer, which has many 

processors connected by a local high-speed computer bus [4]. 
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The primary advantage of distributed computing is that each node can 

be purchased as commodity hardware, which when combined can produce 

similar computing resources to a multiprocessor supercomputer, but at lower 

cost. This is due to the economies of scale of producing commodity hardware, 

compared to the lower efficiency of designing and constructing a small 

number of custom supercomputers. The primary performance disadvantage is 

that the various processors and local storage areas do not have high-speed 

connections. This arrangement is thus well-suited to applications in which 

multiple parallel computations can take place independently, without the need 

to communicate intermediate results between processors. 

The high-end scalability of geographically dispersed grids is generally 

favorable, due to the low need for connectivity between nodes relative to the 

capacity of the public Internet. Conventional supercomputers also create 

physical challenges in supplying sufficient electricity and cooling capacity in a 

single location. Both supercomputers and grids can be used to run multiple 

parallel computations at the same time, which might be different simulations 

for the same project, or computations for completely different applications. 

The infrastructure and programming considerations needed to do this on each 

type of platform are different, however. 

There are also some differences in programming and deployment. It 

can be costly and difficult to write programs so that they can be run in the 

environment of a supercomputer, which may have a custom operating 

system, or require the program to address concurrency issues.  
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2.4 Remote Procedure Calls (RPC)  

RPC is a powerful technique for constructing distributed, client-server 

based applications. It is based on extending the notion of conventional or local 

procedure calling, so that the called procedure need not exist in the same 

address space as the calling procedure. The two processes may be on the 

same system, or they may be on different systems with a network connecting 

them. By using RPC, programmers of distributed applications avoid the details 

of the interface with the network. The transport independence of RPC isolates 

the application from the physical and logical elements of the data 

communications mechanism and allows the application to use a variety of 

transports [5].     

An RPC is analogous to a function call. Like a function call, when an 

RPC is made, the calling arguments are passed to the remote procedure and 

the caller waits for a response to be returned from the remote procedure. 

Figure 2.1 shows the flow of activity that takes place during an RPC call 

between two networked systems. The client makes a procedure call that 

sends a request to the server and waits. The thread is blocked from 

processing until either a reply is received, or it times out. When the request 

arrives, the server calls a dispatch routine that performs the requested 

service, and sends the reply to the client. After the RPC call is completed, the 

client program continues. RPC specifically supports network applications.  
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Figure 2.1 Flow of activity that takes place during an RPC 
 

2.5 Local Scheduler Layer Condor 

Condor is a specialized job and resource management system (RMS) 

for compute intensive jobs. Like other full-featured systems, Condor provides 

a job management mechanism, scheduling policy, priority scheme, resource 

monitoring, and resource management. Users submit their jobs to Condor, 

and Condor subsequently chooses when and where to run them based upon 

a policy, monitors their progress, and ultimately informs the user upon 

completion [6]. 

In the Figure 2.2 An agent (A) is shown executing a job on a resource 

(R) with the help of a matchmaker (M).  



 

13 
 

 
Figure 2.2 Condor pool 

 
The agent and the resource advertise themselves to the matchmaker. 

Step 2: The matchmaker informs the two parties that they are potentially 

compatible. Step 3: The agent contacts the resource and executes a job.  

Each of the three parties – agents, resources, and matchmakers – are 

independent and individually responsible for enforcing their owner’s policies. 

The agent enforces the submitting user’s policies on what resources are 

trusted and suitable for running jobs. The resource enforces the machine 

owner’s policies on what users are to be trusted and serviced. The 

matchmaker is responsible for enforcing community policies such as 

admission control. It may choose to admit or reject participants entirely on the 

basis of their names or addresses and may also set global limits such as the 

fraction of the pool allocable to any one agent. Each participant is 

autonomous, but the community as a single entity is defined by the common 

selection of a matchmaker.  

2.6 Programming Language Selection 

Python Programming Language is chosen as implementation language 

for this project. The prime reasons of this choice over C++, and Java are: 
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2.6.1 Interpreted Language 

In an interpreted environment, the instructions are executed 

immediately after parsing. Advantages of interpreted languages include 

relative ease of programming (since once you type your instructions into a text 

file, the interpreter can run it) and no linker is required. Interpreted languages 

give you a much quicker development cycle, especially on big programs. 

There is no doubting that it’s simply a tradeoff of execution speed vs. 

productivity. 

2.6.2 Better code readability 

Since the project is a part of the Grid Community, people interested to 

make further progress in the field of Distributed Schedulers might use it. The 

Object Oriented Approach provided by Python is used. Since it’s a rule of 

thumb to indent code in Python so the code doesn’t need any formatting, and 

the hassle of finding braces for blocks of code has been eliminated by Python. 

2.6.3 Extensive and easy to use Socket libraries 

Creating a Server Socket is a four step processes in Python 

programming language, which is quite small as compared to ones in C++, and 

Java. It is illustrated in Figure 2.3. 
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Step 1: 

socket = socket.socket( family, type ) 

Step 2: 

socket.bind( (HOST,PORT) ) 

Step 3: 

socket.listen( backlog ) 

Step 4: 

connection, address = socket.accept() 

 
Figure 2.3 Python Server Socket creation 

 

Creating a Client Socket is even simpler and requires just two steps illustrated 

in Figure 2.4 

Step 1: 

socket = socket.socket( family, type ) 

Step 2: 

Socket.connect((HOST,PORT)) 

 

Figure 2.4 Python Client Socket creation 
 

2.6.4 Easy to use File Handling Libraries 

Since the Project Involves too much file handling and file transfers. 

This is amongst the prime reason for us to choose Python. Since its pointer 

free unlike C++, and requires no libraries. An example in Figure 2.5 should 

demonstrate this ease of use. 
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Python Code: 

#no library imports! 

file = open( "C:\\test.dat", "w" ) # open file in write mode 

file.write( “Hello World!”) # write string ‘Hello World’ to file 

file.close( ) # close the file 

 

C++ Code: 

#include <iostream.h> 

Ofstream file 

file.Open ("c:\test.dat");  

file << "Hello World!" << endl;  

file.close() 

Figure 2.5 File Handling Python vs. C++ 

2.6.5 Simple but dynamic data structures like Lists, and Tuples 

These data types enabled us to accomplish complex tasks through 

minimal lines of code. Strings, lists and tuples are all sequences—a data type 

that can be manipulated through indexing and “slicing.” Although lists are not 

restricted to homogeneous data types (i.e., values of the same data type), 

lists to store sequences of homogeneous values i.e. Machine resource ads, 

Job Objects and etc are used. 

2.6.6 Simple access to Win32 API’s 

For the time being the version of the Scheduler is Windows Dependent 

since it uses Win32 API’s to fetch CPU Utilization, Memory Usage, and 

Network Performance. These API’s were very easily available at the Python’s 

Official Website for download. 
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2.6.7 Compact and Platform Independent 

Python is one of the most highly portable programming languages in 

existence. Originally, it was implemented on UNIX, but has since spread to 

many other platforms, including Microsoft windows and Apple Mac OS X. 

Python programs often can be ported from one operating system to another 

without any change and still execute properly. 

2.6.8 Three step Remote Object Registration / One Step Remote Object 

Access 

XML/RPC a Remote Procedure Calling facility provided within python is 

used. Other RPC’s facilities include SOAP and WSDL. But the quickest of all 

was XML/RPC because it dint embed any extra information about the remote 

object during end-end communication whereas SOAP and WSDL do. This 

extra information is regarding the description of the object which isn’t entirely 

necessary in this case. Compared to facilities like RMI and CORBA in Java. 

XML/RPC is much simple and easy to use. For remote object registration only 

three steps are required which is illustrated in Figure 2.6. 

RPCServer = SimpleXMLRPCServer((HOST, 8500)) 

RPCServer.register_instance(RPCs(self.mfq,self.directory)) 

RPCServer.serve_forever()  
Figure 2.6 Remote Procedure Calling in Python 

2.6.9 Multicasting Libraries 

Multicast techniques are also required in the project for Discovery 

Services @ Meta Scheduler Level and for Resource Advertisements @ Local 

Scheduler level. 
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A library provided by twisted community for download at 

www.twistedmatrix.com is used for multicasting mechanisms in the project. 

It’s a very simple step by step mechanism that is far simpler than one 

provided by Java.  

2.7 Summary  

As the project is the research project, which requires massive study of 

topic and all the previous work done in this area, many research papers and 

guides were studied which helped us understand the domain history of past 

work. As a research project, studies continue throughout the project, but 

major phase was completed in the early months. Tools and software like 

Condor, Globus, Suse, Adobe Flex and Python are also explored for the 

purpose. 
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Chapter 3 

SCHEDULING  OPTIMIZATION  ALGORITHM 

3.1 Introduction 

In this chapter the main phase for scheduling on a Grid is discussed. 

That is Resource Discovery (generating a list of potential resources),. The 

following input parameters are required for a network-aware scheduling and 

matchmaking algorithm data transfer cost, hard disk space, computing cycles 

available and Site loads. 

3.2 Cost Estimators 

There are three major cost estimates which need to be calculated for 

the scheduling Algorithm: network, computation and data transfer cost. 

3.2.1 Network Cost 

First and foremost is the network cost which depends on many 

individual parameters. The load, capacity and availability of network links 

used during data transfers may heavily affect the Grid application 

performance [7]. Application usage of the network often requires near-real-

time, or even real-time, information feedback on the available resources and 

intelligent decisions on how best to take advantage of these resources [8]. In 

order to provide the right quality of service to Grid applications and hence 

scheduling, it is important to first understand how the network is performing 

and to determine the level of quality of service that currently exists in the 

network. This is measured using four variables, namely latency, dropped 

packets, throughput and jitter. TCP throughput can be obtained by combining 
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the losses and the Round Trip Times (RTTs) using Mathis’s formula [9] for 

deriving the maximum TCP throughput. Given the historical measurements of 

the packet loss and RTT, the maximum TCP bandwidth for a certain amount 

of time for various groups of sites can be calculated. Paper [9] describes a 

short and useful formula for the transfer rate:  

……………... 3.1 

Where Rate is the TCP transfer rate, MSS is the maximum segment 

size, RTT is the round trip time (as measured by TCP), loss is the packet loss 

rate. 

It is clear from the above equation that RTT, TCP throughput or 

bandwidth and packet loss (including out of order packets and duplicate 

packets) should be made part of the scheduling algorithm since it has to deal 

with large data transfers when scheduling data intensive jobs. One way of 

measuring the quality of service is to measure the number of packets being 

dropped .i.e. “packet loss”. However, packet loss is not the only cause of poor 

performance, so care is needed in diagnosing whether genuine packet loss is 

being experienced. The response time or RTT is the second parameter that 

can give an idea of the ping data rate (KB/s). The RTT says nothing about 

how much information a server site can send in a given period. Moreover, for 

better quality of service and network predictability, including the jitter in the 

scheduling algorithm is also necessary. Overall, as the network utilization 

increases, the number of dropped packets and the amount of jitter also 

increases. Consequently, the network cost is the combination of all of the 

above parameters. Weights are assigned to each value depending on the 
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importance of the parameters in calculating an aggregate value of the network 

cost (NetCost). 

………………..3.2 

Where: 

 

Where Wi is the weight assigned to each parameter depending on the 

importance of the particular parameter. Weights are uniformly assigned 

subject to a cost; a higher cost indicates the importance of that parameter in 

the scheduling decision and in some cases these weights can be manipulated 

to prioritize particular parameters in the algorithm [10]. For example, 

increasing the weight associated with network cost would bias in favor of data 

intensive scheduling. To tend towards compute intensive jobs, the compute 

cost weights can be increased. A higher RTT indicates that a computation site 

is distant from the storage site where the data resides and therefore the cost 

to fetch the data would increase. Significance of this parameter can be 

increased, if required, by assigning a higher value to its associated weight. 

Higher bandwidth reduces the cost of data transfer and hence the job 

execution. This behavior can be accommodated by assigning a higher value 

to its weight Wi. Moreover, jitter is of less importance for data intensive 

applications and has no significant cost involved due to a higher or lower jitter. 

A minimal weight can be assigned to this parameter but cannot ignore it 

completely since if this parameter has a value more than an acceptable figure, 

then there is some bottleneck involved and this element should then have a 

higher value to reflect this in the overall scheduling algorithm. The same is the 

true for the packet loss: a higher packet loss implies a less reliable network, 
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and less importance should be given to such a connected site when making 

scheduling decisions.  

There are a number of issues which can influence the scheduling 

decisions from the network point of view and can lead to skewed results. 

Selecting the best source from which to copy the data requires a prediction of 

future end-to-end path characteristics between the destination and each 

potential source. An accurate prediction of the performance obtainable from 

each source requires the measurement of available bandwidth (both end-to-

end and hop-by-hop), latency, loss and other characteristics which are 

important in file transfer performance. Because network characteristics are 

highly dynamic, each reported observation must be attributed with timing 

information, indicating when the observation was made. Route flaps or other 

instabilities mean that the same end-to-end traffic may experience a 

completely different environment from moment to moment.  

3.3.2 Computation Cost  

The second important cost which needs to be part of the scheduling 

algorithm is that of computation cost. Paper [11] describes a mathematical 

formula to compute the processing time of a job. It is based on Little’s theory. 

………..3.3 

Where Q is the total number of the waiting jobs on all the sites, Qi is 

the length of the waiting queue on the site i, Pi is the computing capability of 

the site i and SiteLoad is the current load on that site. SiteLoad is calculated 

by dividing the number of jobs in the queue by the processing power of that 

site. The Qi/Pi ratio computes the processing time of the job. The Qi/Pi ratio of 
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the two sites cannot be the same since the number of jobs submitted to the 

sites will always be different due to differing SiteLoads and other appropriate 

parameters such as the data transfer cost of the sites. Again W5, W6 and W7 

are the weights which can be assigned depending on the importance of the 

queue and the processing capability. For example, a larger queue makes a 

site less attractive for job placement so it is assigned a higher weight to make 

the cost higher. Similarly, site load reflects the current load on a site, so again 

a higher weight is assigned if the load on that site is higher. 

It is a challenging task to calculate and predict the dynamic nature of 

the resources and changing loads on the Grid. The load prediction at a site 

must be dynamic in nature and the least loaded site at one moment can 

become overloaded the next moment due to bulk submission. Since a non 

pre-emptive mode of execution is used, once a jobs gets a CPU job cannot be 

aborted and moved to other site.  

3.3.3 Data Transfer Cost  

The third most important cost aspect in data intensive scheduling is the 

data transfer cost which includes input data, output data and executables. 

Reference [12] describes a mathematical technique to calculate the aggregate 

data transfer time which includes all three parameters. Here, bandwidth only 

is not used to calculate the data transfer cost, rather the network cost is used 

as calculated in Section 3.3.1. The case of remote data and different remote 

execution sites is taken so that the metascheduler can consider a worse-case 

scenario in scheduling. 
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Data Transfer Cost (DTC) = Input Data Transfer Cost + Output Data Transfer 

Cost 

+ Executables Transfer Cost……………….3.4 

 

Where ID is Input Data, AD is Application Data, OD is Output Data and 

NC = Network Cost and i and j indicate a certain site 

Here, the three different costs for data transfer are discussed. Input 

data transfer cost is the most significant due to expected large data transfers. 

Higher network cost will increase the data transfer cost and vice-versa, and 

the associated weight is used to adjust the value according to its importance. 

The same is the case for the output data since output data needs to be 

transferred to the location from where the job was submitted. Application data 

are executables and user code which will be submitted for execution but might 

be low compared to the input and output data transfer costs. 

The response time can be reduced by moving input data from one site 

to another that has a larger number of processors, since computational 

capabilities of a remote site without replicated data can be superior to the 

capabilities of other sites with replicated data. In this scenario, the input data 

located in site i is transferred to site j which has sufficient computational 

capabilities. Also application codes should be transferred from the local site to 

site j. Then the processing is performed in site j and the resulting data will be 

transferred to the local site.  

3.3.4 Total Cost 

The total cost is simply a combination of these individual costs as 

calculated in Sections 3.3.1, 3.3.2 and 3.3.3: 
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Total Cost C = Network Cost + Computation Cost + Data Transfer 

Cost………….3.5 

The main optimization problem that needs to be solved is to calculate 

the cost of data transfers between sites (DTC), to minimize the network traffic 

cost between the sites (NTC) and also to minimize the computation cost of a 

job within a site. To simplify the optimization problem it is assumed that any 

given site can have one or many storage resources (Storage Elements, SEs) 

or one or many computing resources (Computing Elements, CEs). Therefore, 

main interest is in the wide-area network performance rather than specifying 

all network details within a site. It is assumed that the local network latency is 

roughly homogeneous for all nodes (storage or computing) within a site [10]. 

The cost of the job placement can be calculated on each site with respect to 

the submission site. This will be a relative cost since it will always be 

measured with reference to the user’s location on the Grid. Next, a cost matrix 

can be populated with cost values against each site. In detail, the number of 

possible sites are investigated and the total cost calculated for each pair (site i 

– site j) and put that into cost matrix.  

 
Table 3.1 shows an example cost matrix giving the overall cost of job 

submission from one site to all four others in the Grid. Cij is the total cost of a 

particular site I from any other one j in the Grid. 
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Table 3.1 The cost matrix for five example sites 
 Italy Austria UK USA Japan 

Italy  50 45 60 90 

Austria 58  48 65 72 

UK 64 42  38 85 

USA 72 65 50  65 

Japan 70 72 85 65  

 

3.4 Conclusion  

These costs are the core elements of the DIANA Scheduler in selecting 

the optimal site for job execution. The network cost calculated in the algorithm 

is used to select the best replica of a dataset which will be used as input to 

the scheduler. 

 

 

 



 

27 
 

Chapter 4 

DIANA  SCHEDULING 

4.1 Introduction 

 In this section the scheduling strategy is discussed of moving data to 

jobs or both to a third location. Not only need the network characteristics are 

used while aligning data and computations, it is also need to optimize the task 

queues of the meta-scheduler on the basis of this correlation. As a 

consequence network characteristics can play an important role in the 

matchmaking process and on Grid scheduling optimization. Therefore a 

complex scheduling algorithm is required that should consider the job 

execution, the data transfer and their relation with various network parameters 

on multiple sites.  

4.2 Data intensive and network aware 

Data intensive applications often analyze large amounts of data which 

can be replicated over geographically distributed sites. If the data are not 

replicated to the site where the job is intended to be executed, the data will 

need to be fetched from remote sites. This data transfer from other sites can 

degrade the overall performance of job execution. If a computing job runs 

remotely, the output data produced needs to be transferred to the user for 

local analysis. To provide improvements in the overall job execution time and 

to maximize Grid throughput, it is need to align and co-schedule the 

computation and the data (the input as well as the output) in such a way that 

the overall computation and data transfer costs can be reduced. It may even 

be decided to send both the data and the executables to a third location 
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depending on the capabilities and characteristics of the available resources. It 

is not only need to use the network characteristics while aligning data and 

computations, but it is also needed to optimize the task queues of the Meta-

Scheduler on the basis of this correlation since network characteristics can 

play an important role in the matchmaking process and on Grid scheduling 

optimization. Thus, a more complex scheduling algorithm is required that 

should consider the job execution, data transfer and their correlation with 

various network parameters on multiple sites. There are three core elements 

of the scheduling problem which can influence scheduling decisions and 

which needs to be tackled: data location, network capacity/quality and 

available computation cycles.  

4.3 P2P Meta scheduler  

In DIANA, independent Meta-Schedulers are not used but instead use 

a set of Meta-Schedulers that work in a peer-to-peer (P2P) manner. As shown 

in Figure 4.1, each site has a Meta-Scheduler that can communicate with all 

other Meta-Schedulers on other sites.  

 
Figure 4.1 Communication between instances of Meta Schedulers 
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The Meta-Scheduler is able to discover other Schedulers with the help 

of a discovery mechanism [13]. DIANA Scheduler is a layer over each local 

scheduler so that these local schedulers can talk directly to each other instead 

of getting directions from a secondary central manager. In the DIANA 

architecture each local Scheduler has a local queue plus a global queue 

which is managed by the DIANA layer. This leads to a self organizing 

behavior which was missing in the client server architecture. 

4.4 RootGrid to RootGrid and RootGrid to Nodes Communication 

The nodes are divided into SubGrids, each SubGrid having its own 

RootGrid. Roughly each site has one RootGrid and may have one or more 

SubGrids. The Meta-Scheduler works at the RootGrid (Master node) level. 

The RootGrid to RootGrid communication is in essence a P2P communication 

between the Meta-schedulers. Each RootGrid maintains a table of entries 

about the status of the nodes which is updated in real time when a node joins 

or leaves the system. Local schedulers work at the SubGrid level. When a 

user submits a job, the Meta-Scheduler at the RootGrid communicates within 

the SubGrid to find suitable resources. If the required resources are not 

available within the SubGrid, it contacts the RootGrids of other SubGrids in 

the VO which have suitable resources. Therefore a single machine within a 

SubGrid communicates only with the Meta-scheduler, which itself 

communicates with the Meta-schedulers at other RootGrids. Consequently, 

this approach is not just all-to-all communication. This approach shown   in 

the Figure 4.2 
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Figure 4.2 Meta scheduler communication mechanism 
 

A RootGrid contains all information about the nodes in its SubGrid. In 

case a RootGrid crashes, a standby node in the SubGrid can take over as a 

RootGrid. The RootGrid replicates its information to this standby node to 

avoid information loss. The RootGrid should always be the machine with the 

largest availability within that SubGrid and will have a unique ID, which will be 

assigned at the time of its joining the Grid. After joining, a Peer will check for 

the existence of the RootGrid. If the RootGrid does not exist, it means this is 

the first Peer joining the system. That Peer will then create the RootGrid and 

will join it. If the RootGrid exists then the Peer will automatically join that 

RootGrid and will search for its SubGrids and will join the nearest SubGrid 

using the standard criteria. Whenever a site becomes part of the Grid, a 

separate SubGrid encompassing the site resources is created which joins the 
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nearest RootGrid. If the site is fairly small in terms of the resources, this site 

may also join some existing SubGrid. The size of the SubGrid and RootGrid 

and other policy decisions have to be taken by a VO administrator and may 

vary from one Grid deployment to another.  

4.5 General Architecture  

The overall architecture of the DIANA Scheduler is shown in Figure 

4.3. It includes a DIANA meta-scheduler with its internal matchmaker. The 

meta-scheduler uses network information to make optimal scheduling 

decisions.  

 
Figure 4.3 DIANA Scheduler and the Discovery Service 
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The Data Location Service makes use of the Data Location Interface 

[14] to find the list of the dataset replicas and then uses network statistics to 

find the “best” replica which is then used by the scheduler. The DIANA 

scheduling system is implemented as a peer to peer system as discussed in 

[15]. It should also be noted that an external job submission/execution system 

needs to be used since the DIANA meta-scheduler only provides scheduling 

information but does not take care of the actual dispatching/submission of the 

job to a local resource management system.  

The DIANA meta-scheduler mediates between data providers and data 

requesters. The first step, which is to discover the available resources, is 

defined as resource discovery in Chapter 3. A resource request consists of a 

function to be evaluated in the context of a resource. For example, the 

request “processing power > 2 GHz” will be evaluated by determining if a 

resource has an attribute called processing power and if so, if the value of this 

attribute satisfies the condition “Value(processing power) > 2 GHz”. If the 

request can be successfully satisfied, the matchmaker responds with a list of 

ranked resources. After this, the scheduling optimization algorithm is used to 

select the best resource and a job is subsequently scheduled to be executed 

on this resource. The DIANA meta-scheduler keeps track of the load on the 

sites and selects a site which has a minimum load and queue and has the 

desired data, processing capability and network stability. Network monitoring 

information is the central component of the system and all the information 

collected is stored in a database and is used to make scheduling decisions. 

The database collects the historical as well as real time information to obtain a 

current and previous view of the system state.  
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4.6 The Scheduling algorithm   

This Scheduler deals with both computational jobs as well as data 

intensive jobs. In the DIANA Scheduling scheme, the Scheduler consults its 

peers, collects information about the peers including network, computation 

and data transfer costs and selects the site having minimum cost. To 

schedule computational jobs, this algorithm selects resources which provide 

most computational capability. The same is the case with data intensive jobs. 

To schedule data intensive jobs, it is needed to determine those resources 

where data can be transferred cost effectively. Since the different costs are 

calculated, these costs can be brought together under a scheduling algorithm 

as described below. 

In the case of a computational job, more computational resources are 

required and the algorithm should schedule a job on the site where the 

computational cost is a minimum. At the same time, the job’s files need to be 

transferred so it is needed to be ensured that the job can be transferred as 

quickly as possible. Therefore, the Scheduler will select the site with minimum 

computational cost and minimum transfer cost. In the case of a data intensive 

job, the preferences will change. In this case the job has more data and less 

computation and it is needed to determine the site where data can be 

transferred more quickly and at the same time, where computational cost is 

also a minimum. The algorithm keeps on scheduling until all jobs are 

submitted. After every job the cost to submit the next job is calculated.  

4.6.1 Algorithm for a Compute Intensive Job 

If the job is compute intensive then the algorithm in Figure 4.4 depicts 

the scheduling behavior of DIANA. 
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computationCost[] = getAllSitesComputationCost(); 

NetworkCost []= getAllSitesNetworkCost(); 

arrageSites[] = SortSites(computationCost, NetworkCost); //it will 

sort array in ascending order 

for i=1 to arrangeSite.length 

site = arrangeSite[i] 

if ( site is Alive) 

send the job to this site 

end loop 

end if 

 
Figure 4.4 Algorithm for Compute Intensive Job 

4.6.2 Algorithm for a Data Intensive Job 

If the job is data intensive then the algorithm in Figure 4.4 depicts the 

scheduling behavior of DIANA. 

 
dataTransferCost[] = getAllSitesDataTransferCost(); 

NetworkCost []= getAllSitesNetworkCost(); 

arrageSites[] = SortSites ( dataTransferCost, NetworkCost ); //it 

will sort array in ascending order 

for i=1 to arrangeSite.length 

site = arrangeSite[i] 

if ( site is Alive) 

send the job to this site 

end loop 

end else-if 

Figure 4.5 Algorithm for Data Intensive Job 

4.6.3 Algorithm for a Compute and Data Intensive Job 

Algorithm in Figure 4.6 depicts the scheduling behavior of DIANA. 
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computationCost[] = getAllSitesComputationCost() 

dataTransferCost[] = getAllSitesDataTransferCost() 

NetworkCost []= getAllSitesNetworkCost(); 

// since length of computationCost and dataTransferCost array is 

same. So any of them can be used 

siteTotalCost [] = new Array[computationCost.length] 

for i = 1 to computationCost.length 

siteTotalCost [i] = computationCost[i] + dataTransferCost[i] + 

NetworkCost [i] 

end loop 

sites [] = SortSites(siteTotalCost) 

for j = 1 to sites.length 

site = sites[i] 

if ( site is alive) 

schedule the job to this site 

end loop 

 
Figure 4.6 Algorithm for a Data and Compute Intensive Job 

4.7 Priority based Scheduling 

The scheduling algorithm is a priority based algorithm. A priority is 

associated with each process and the CPU is allocated to the process with 

the highest priority. Equal priority processes are scheduled on a First Come 

First Served (FCFS) basis. Priorities can be defined either internally or 

externally. Internally defined priorities use some measurable quantities to 

compute the priority of a process. For example, time limits, memory 

requirements, the number of open files and the ratio of I/O to CPU time can 

be used in computing priorities [16]. External priorities are set by criteria that 

are external to the scheduling system such as the importance of the process. 

Priority scheduling can be either pre-emptive or non preemptive. The 
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scheduling algorithm described here is not a pre-emptive one; it simply places 

the new job at the head of the ready queue and does not abort the running 

job. Since most jobs are data intensive, this makes it increasingly important to 

consider the non pre-emptive mode as a primary approach. 

4.8 Job Migration Algorithm  

To illustrate job migration let us take an example scenario where a user 

submits a job to the Scheduler and the Scheduler puts this job into queue 

management. If the queue management algorithm of the Scheduler decides 

that this job should remain in the queue, it may have to wait a considerable 

time before it gets serviced or before it is migrated to some other site. In this 

case the queue management module will ask the scheduling module to 

migrate the job.  

4.8.1 Peer Selection Criteria 

The important point to note here is that the job must be scheduled at that 

site where it can be serviced earliest. Therefore the peer selection criteria are 

based on two things, which are minimum queue length and the minimum cost 

to place this job on the remote site. The Scheduler will communicate with its 

peers and ask about their current queue length and the number of jobs with 

priorities greater than the current job’s priority. The site with minimum queue 

length and minimum total cost is considered as the best site to where the job 

can be migrated. The algorithm will work as depicted by Figure 4.7. 
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Sites[] = GetPeerList( ) 

int count = Sites.length // total no of sites 

int queueLength [ ] = Sites.length 

int jobsAhead[]= new int[ count ] 

for ( i=1 to count ) 

jobsAhead [i] = getJobsAhead( site[i] ) 

end for 

find the peer with minimum jobsAhead 

if ( peer’s jobsAhead < localsite’s jobsAhead) then 

increase the job’s priority 

migrate the job to that site 

else 

keep the job on local site  

 Figure 4.7 Peer Selection Algorithm 

4.8.2 Communication for job migration  

First of all scheduler will get the information about the available peers 

from the discovery or information service. Then it will communicate with each 

peer and collect the peer’s queue length, total cost, and the number of jobs 

‘ahead’ of the current job’s priority. After this, it will find out the site with the 

minimum queue length and minimum jobs ahead. If the number of jobs and 

total cost of the remote site is more than the local cost, then this job is 

scheduled to the local site. In this case the other sites are already congested 

and there is no need to migrate the job. Therefore that job will remain in the 

local queue and will be served when it gets the execution slot on the local site. 

Otherwise the job is moved to a remote site subject to the cost mechanism. 

This decision is made on the principle that this job as a result will get quicker 
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execution since the targeted site has overall least cost and least queue as 

compared to other sites. 

4.9 Summary 

Considering all the costs data transfer cost, network cost and 

availability of resources the design of meta-scheduler is such that which 

perform the match making job and select the best peer for the submitted jobs. 

The meta-scheduler communication mechanism is also discussed which 

concludes that rootgrid communicate with its local nodes and meta-scheduler 

communicates with the meta-scheduler on the other sites. So in this 

mechanism not all the nodes are communicating with each other and it is not 

just all to all communication 
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Chapter 5 

CLUSTER  LEVEL  SCHEDULER 

5.1 Introduction 

This section is aimed to discuss the need for a ‘Decentralized Cluster 

Level Scheduler and its implementation. A cluster can be thought of as a 

group of homogeneous computers that are connected through a LAN. Two 

major architectures that exist for Schedulers are:  

5.1.1 Centralized architecture 

The historic architecture for Job scheduling software. The Job 

Scheduling software is installed on a single machine (Master) while on 

production machines only a very small component (Agent) is installed that 

awaits commands from the Master, executes them, and returns the exit code 

back to the Master.  

5.1.2 Cooperative architecture 

A decentralized model where each machine is capable of helping with 

scheduling and can offload local jobs to other cooperating machines. This 

enables dynamic workload balancing to maximize hardware resource 

utilization and high availability to ensure service delivery.  

5.2 Effect of Decentralized Schedulers 

Till now the execution of DIANA (Metascheduler) is discussed over a 

centralized cluster level scheduler i.e. Condor in this case. But imagine the 

speed at which the grid would process jobs if it is completely decentralized by 
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replacing the centralized cluster level scheduler with a decentralized one. This 

was the next milestone after  completing the designed and development of the 

meta-scheduler. This milestone in the project has also been successfully 

completed. 

Though it is not as complex as Condor, but for simple batch Jobs it is 

far more faster than Condor.  The few basic parameters to be parsed out of 

the Job Description File are just included; whereas the Condor Application 

supports many parameters. The Cluster Level Scheduler can so far execute 

simple batch files and java class files and can handle input files as well. In this 

chapter following aspects of the Decentralized Cluster Level Scheduler will be 

highlighted; Architectural Design, Class Diagrams, and Sequence Diagrams 

5.3 Architectural Design 
 

 
Figure 5.1 Architecture design of the Local scheduler 
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Job/Bulk of Jobs Submitted at Submission Host. Job transferred to the 

Daemon_Main to be scheduled remotely if its resource requirements exceed 

local resources. Daemon_Main calls Resource_Discovery_Svc. 

Rsrc_Discovery_Svc broadcasts requests for resource advertisements. 

Daemon_Main calls Resource_Advertisor. Rsrc_Advertisor of each node 

returns Resource Advertisements to Rsrc_Collector of Submission Host. 

Rsrc_Collector passes Resource Advertisements to Scheduler to map jobs to 

resources. Scheduler Calls Bulk_splitter on bulk job if it is to large to be 

mapped onto any available resources. Mapped Jobs sent to 

Job_Migration_Mgr. Job_Migration_Mgr dispatches jobs to appropriate Hosts. 

Received Job sent to Exec_Facililtator Exec_Facililtator executes job and 

returns temporary output periodically to Daemon_Chkpt. Daemon_Chkpt 

saves checkpoint information till final output has been received and calls 

Daemon_Main. Daemon_Main finalizes and performs house cleaning actions. 
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5.4 Class Diagram and Description of Classes 

Figure 5.2 shows a class diagram and their description of Cluster Level 

Scheduler. This easily illustrates the abstract implementation of the scheduler. 

 

 
Figure 5.2 Class Diagram and Description of Classes of local scheduler 
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5.5 Local Execution Sequence Diagram 

Figure 5.3 depicts the sequence of actions that the local scheduler 

would take when a job is scheduled locally for execution. Figure 5.3 further 

illustrates the situation where the Best Node for execution returned by the 

Match-Maker is the submission host itself. In that case the job would be 

submitted to the local scheduler queue and served on FCFS basis. 

 

 
Figure 5.3 Job submission and its local execution 
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5.6 Remote Execution Sequence Diagram 

Figure 5.4 is the sequence diagram that depicts the sequence of 

events if a Remote Node is returned by the matchmaker for execution. In that 

case a complex series of events occur. 

 

 
Figure 5.4 Job submission and its remote execution 
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5.7 DIANA Scheduler in Action 

First of all module DaemonMain is executed .It will further create 

instances of Scheduler, LocalSchedulerQueue, ResourceAdvertiser. After this 

their threads will be forked. 

5.7.1  LocalSchedulerQueue 

The object of this class keeps an instance of FCFS Queue.  Its  job  will  

be  to  continuously dequeue  the  job  from  the  queue  and  send it  for 

execution if any job exists in the queue. 

5.7.2  ResourceAdvertiser 

It will be continuously listening for any interrupt on the port and when 

found will send the resource advertisement in the response. 

5.7.3  Job Sumission 

The job is is submitted by a call to the submit_job () method of the 

Scheduler. This method will create an instance of the ResourceCollector and 

will fork its thread. The ResourceCollector thread will send a multicast 

message over the network to all other connected nodes and will listen to the 

responses while collecting them in the list. submit_job ()  will then collect the 

array containing the resource ads of all the connected nodes. This list will 

then be passed to the MatchMaker(). It will then perform the matchmaking 

process based on the list of resources and the resources required by the job. 

This will return the node that is most suitable for the job to execute on .Now 

there are actually two cases  
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5.7.4  Submission node chosen for execution 

When the best node is the same node on which the job has been 

submitted .In this case the job gets submitted in the local queue. 

5.7.5  Remote node chosen for execution 

The best node is some other node. In this case the job will be given to 

the  JobMigrationManager thread which will; Serialize the Job Contents, make 

a proxy server of the remote node and call its submitRemoteJob() method, 

start an OutputListener thread to listen for results. 

5.7.6  Job Execution and Output Return 

Now when the job is dequeued from the queue, jobExecutioner 

instance is created and its thread is forked. Now it’s the responsibility of the 

jobExecutioner to execute the job. It will run the job, check its output, error 

and log files, and fork an OutputSubmitter and thread. OutputSubmitter will 

open connection with the remote computer (i.e. the computer from which the 

job had been submitted) and send the output, error and log files (if any) to that 

remote host. On the other end OutputListener will collect the output and error 

files. 
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Chapter 6 

TEST RESULTS 

6.1 Introduction 

In this chapter, results of Iterative Job Submission, Bulk Job 

Submission and Job Clustering have been illustrated with practical 

experiments.  

6.2 Simulation Setup 

Two Clusters consisting of two nodes each were setup. Condor was 

used as the local node level scheduler on each node. Instance of DIANA 

metascheduler was running on the central manager of each cluster. 

6.3 First Simulation Setup  

Jobs were first submitted iteratively to the metascheduler through an 

automated job submission script. 

6.4 Second Simulation Setup 

Multiple Jobs were submitted as atomic bulks to the metascheduler 

which were scheduled and dispatched as atomic bulks 

6.5 Third Simulation Setup 

Multiple Jobs were submitted as atomic bulks to the metascheduler 

where these job bulks were clustered into smaller sub-bulks consisting of jobs 

proportional to the cluster rank.  
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Table 6.1 Iterative Vs. Bulk Vs. Clustered Approaches 

 
Figure 6.1 Effect of Job Clustering over execution speed 

 
 
No. of 
Jobs 

Time for 
Execution(Atomic 
Iterative 
Submission) 

Time for Execution(Bulk 
Submission without Job 
Clustering) 

Time for 
Execution(Bulk 
Submission with 
Job Clustering) 

10 127 118 74
20 244 228 132
30 368 354 192
40 491 473 246
50 611 591 324
60 727 693 368
70 813 789 408
80 937 892 473
90 1053 1009 536

100 1178 1098 592
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Chapter 7 

FUTURE WORK 

The current implementation of the DIANA Scheduler with job clustering 

is windows platform compatible. Due to limitations involved in obtaining 

system information in windows, it is highly intend to make the software Linux 

compatible to overcome these limitations and base the scheduling on a larger 

number of involved parameters. The software uses hard coded costs or 

randomly generated numbers for the time being. It is intended to retrieve the 

involved parameters in real time and base the scheduling decisions on 

realistic values.  

Discovery service for the software was simulated using multicasting for 

demonstration purposes in lab only. But this is not a realistic solution for 

discovery over the internet, since multicast addresses need to be bought 

exclusively. Multicast addresses are expensive and almost all the possible 

multicast addresses in the multicast address range have been bought. 

Another concern while considering multicasting as the solution for discovery 

over the internet is that ipv4 address range is not capable of fulfilling demands 

of the exponentially increasing number of internet users. Soon the ipv4 of 

addresses will be replaced to adjust the large number of internet users and 

the multicast addresses in use at the time being, will be rendered obsolete. 

The next solution to address the multicasting problem is still not known. So it 

is intend to use web services based discovery service implemented by 

another group of bese-10 with the name ARDIG ( Autonomous resource 

discovery infrastructure for grids). The integration process has already 

started. 
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The grid scheduler and the discovery service were developed as 

services for the project started with the name PhantomOS. The grid 

Scheduler inherently handles scheduling of batch applications i.e. unattended 

applications.  The final stage of the project will be integration of these services 

into PhantomOS and running final tests to ensure the services deliver what is 

required of them. 

With the successful integration of the component into PhantomOs, it is 

intended to write a research paper on “Optimizing throughput through Job 

clustering” and “two-tier grid scheduler architecture”. Update the PhantomOS 

website and upload the source at Sourceforge. 
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