
FPGA IMPLEMENTATION OF HAND VEINS RECOGNITION SYSTEM

By:

AMMAR HASSAN

AHMAD RAZA KHAN

UMAR FAROOQ

PROJECT DS: MAJ DR ADIL MASOOD

Thesis Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals National University of Sciences and

Technology, Rawalpindi in partial fulfillment for the requirements of a B.E

Degree in Telecommunication Engineering

JUNE 2012

ABSTRACT

FPGA IMPLEMENTATION OF HAND VEINS RECOGNITION SYSTEM

The demand for a reliable and robust personal identification system arises as technology

advances and develops. A biometric system is the key to provide a more secure and

reliable personal identification system. A biometric system verifies user identity by

comparing the behavioral or physiological trait possessed by the user to a previously

stored sample of the trait. This biometric system prevents identity theft by providing

verification accurately. Among them, hand vein biometric system is gaining popularity

and has emerged as new technology in biometric system. This project proposed an design

of biometric hand vein authentication system that involves interface design and software

development. This hand vein system can be divided into two main parts; The Graphical

User Interface (GUI) on a host PC and the biometric hand vein hardware system . The

hand vein image that was captured earlier by specially designed camera that was

connected to the host computer is accessed by the GUI and displayed in GUI. The

Biometric Hand Vein System contains four stages; image acquisition, image processing,

feature extraction and matching stage. After image acquisition through camera, image

processing stage will enhance the hand vein image, the feature extraction stage will

extract the valid minutiae points in template based, and the matching stage will match the

minutiae template with a previously stored template. The results of this work shows the

proposed system with no doubt is functioning correctly.

DISSERTATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

iv

DEDICATED TO THE MARTYRS OF PAKISTAN ARMY

v

ACKNOWLEGMENTS

We are grateful to Dr Adil Masood for providing us an opportunity to perform our BE

final year project in his Image processing group. As supervisor, his support and guidance

has always been a valuable asset for our project. His keen interest and discussions over

the work always provided a ray of hope in difficult times. We are really thankful for his

guidance in our project work.

In the end we would like to thank Rector National University of Sciences & Technology

for funding this project. We are also grateful to the whole staff of the Department of

Electrical Engineering especially to Head of the department for their support in many

forms and enthusiasm

vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem Statement .. 4

1.3 Objective of the Project .. 5

1.5 Project Contribution .. 6

1.6 Thesis Organization .. 6

CHAPTER 2: LITERATURE REVIEW .. 7

2.1 Biometric... 7

2.1.1 Biometric Systems .. 8

2.1.2 Overview of Commonly Used Biometrics ... 10

2.1.3 Physiological and Behavioral Characteristics .. 17

2.1.4 Identification and Authentication: ... 18

2.1.5 Biometric Testing ... 19

2.2 Hand Vein ... 20

2.3 Comparison of Hand Vein and Other Biometric Features .. 21

2.4 Hand Vein Processing ... 23

2.4.1 Image Acquisition... 24

2.4.2 Image Pre-processing ... 24

2.4.3 Edge Detection ... 25

2.4.4 Image Matching .. 25

2.5 Running an Application .. 26

2.5.1 Command Line Interface .. 26

2.5.2 Graphic User Interface .. 26

CHAPTER 3: SYSTEM MODULES ... 27

3.1 Project Workflow .. 27

3.2 Program Planning.. 28

3.3 The Hardware: .. 29

3.3.1 The Setup: ... 29

3.3.2 Modifying the camera: .. 31

3.3.3 Infrared source .. 32

3.3.4 Diffusing the Light: .. 32

vii

3.4 The Techniques: .. 33

3.4.1 Canny edge detection .. 33

3.4.2 Stages of the Canny algorithm.. 34

3.4.3 FPGA Implementation .. 40

3.4.4 Image Matching ...43

CHAPTER 4: APPLICATION DEVELOPMENT AND WORKING 46

4.1 Main Menu .. 46

4.2 Add New User... 47

4.3 Identification ... 47

4.4 Matching ... 48

4.5 Results: .. 48

4.6 Future Improvments: ... 49

Refrences... 51

APPENDIX A ... 53

APPENDIX B ... 58

APPENDIX C ... 63

APPENDIX D ... 70

viii

LIST OF FIGURES

Figure No Page No

1.1 Overview of System .. 5

2.1 Biometric Systems .. 9

2.2 Gait Recognition ... 10

2.3 Keystroke Recognition.. 11

2.4 Face Recognition .. 14

2.5 DNA Recognition ... 17

2.6 FPGA Board.. 23

2.7 Initial Images .. 24

2.8 Overview of Image Pre-processing ... 25

3.1 Project Block Diagram .. 27

3.2 The Hardware.. 29

3.3 Setup ... 30

3.4 Modifying the Camera .. 31

3.5 Infrared Source.. 32

3.6 Diffusing Paper ... 32

3.7 Canny Edge Detection Model ... 33

3.8 Guassian Filter Model ..34

3.9 Sobel Filter Model .. 36

3.10 System Generator Model for Guassian Filter ... 42

3.11 Results ... 42

3.12 Hausdorff Transform Model ... 44

4.1 Main Menu .. 46

4.2 Add user .. 47

4.3 Identification ... 47

4.4 Matching ... 48

4.5 Sample from Database .. 48

4.6 Extracted Feature .. 49

ix

LIST OF TABLES

Table No Page No

2.1 Comparison of Biometric Systems .. 23

x

ABBREVATIONS

GUI - Graphical User Interface

CLI - Command Line Interface

HD - Hamming Distance

IR - Infrared

LED - Light Emitting Diode

USB - Universal Serial Bus

PC - Personal Computer

1

CHAPTER 1

INTRODUCTION

This thesis proposes the hand vein biometric system. The design incorporates a complete

system that can receive image from specially designed infrared webcam and perform

image processing, extraction of the biometric feature from the image and authenticate the

template stored in database.

1.1 Background

Nowadays, as technology is advancing very fast, public are getting more and more

conscious and aware towards information safety. Often we heard in news about bank

accounts are hacked into, credits cards are stolen and etc. In order to preserve information

safety, security access system has to be employed. Traditional security access systems

based on passwords, personal identification numbers (PINS), swipe-cards, keys, and so

on offers limited security and usually unreliable. These methods can be compromised and

breached very easily where these methods can be hacked, duplicated or forged. This

breaching of security happens when password is divulged to an unauthorized user or a

badge is stolen by an impostor. The key to overcome the disadvantages of traditional

methods is to use biometric system.

Biometrics are automated methods of recognizing a person based on a physiologicalor

behavioral characteristic. Among the features measured are; face, fingerprints,

handgeometry, handwriting, iris, retinal, vein, and voice. These features possess the

2

properties of universality, uniqueness, permanence, collectability, acceptability and

circumvention. Thus, a biometric technique has become a new face for authentication in

security access system. Biometric system provides more reliable feature because these

features cannot be forgotten. Biometric systems are superiorbecause they provide a

nontransferable means of identifying peoplenot just cards orbadges. Apart from that,

these features are difficult to duplicate and most importantly it requires the person to

present there for authentication.

The key point about an identification method that is ”nontransferable" means itcannot be

given or lent to another individual so nobody can get around the system -they personally

have to go through the control point.

In a practical biometric system (i.e., a system that employs biometrics for

personalrecognition), there are a number of other issues that should be considered,

including:Performance, which refers to the achievable recognition accuracy and speed,

theresources required to achieve the desired recognition accuracy and speed, as well asthe

operational and environmental factors that affect the accuracy and speed;Acceptability,

which indicates the extent to which people are willing to accept theuse of a particular

biometric identifier (characteristic) in their daily lives;Circumvention, which reflects how

easily the system can be fooled using fraudulentmethods.

A key advantage of biometric authentication is that biometric data is based onphysical

characteristics that stay constant throughout one’s lifetime and are difficult(some more

than others) to fake or change. Biometric identification can provideextremely accurate,

secured access to information; fingerprints, palm vein and iris scansproduce absolutely

unique data sets (when done properly). Automated biometricidentification can be done

3

rapidly and uniformly, without resorting to documents thatmay be stolen, lost or altered.

It is not easy to determine which method of biometricdata gathering and reading does the

"best" job of ensuring secure authentication. Each of the different methods has inherent

advantages and disadvantages. Some are less invasive than others; some can be done

without the knowledge of the subject; others are very difficult to fake.

Palm vein authentication has a high level of authentication accuracy due to the

uniqueness and complexity of vein patterns of the palm. Because the palm vein

patternsare internal to the body, this is a difficult method to forge. Also, the system is

contactless and hygienic for use in public areas. It is more powerful than otherbiometric

authentication such as face, iris, and retinal.

Palm vein authentication uses an infrared beam to penetrate the users hand as it is held

over the sensor; the veins within the palm of the user are returned as black lines. Palm

vein authentication has a high level of authentication accuracy due to the uniqueness and

complexity of vein patterns of the palm. Because the palm vein patterns are internal to the

body, this is a difficult method to forge. Also, the system is contactless and hygienic for

use in public areas.

Embedded systems have become increasingly popular as advances in IC-technology and

processor architecture allow for flexible computational parts and high-performance

modules integrated on a single carrier. Embedded system interacts with the physical

world. It executes on machines that are not computers. They are cars, airplanes,

telephones, audio equipment, robots, appliances, toys, security systems and so on. These

embedded systems perform functions that are carefully partitioned in software and

hardware to strike a fine balance between flexibility, reusability, performance and cost.

4

Embedded system provides a medium of secure communication, secure information

storage, and tamper resistance which protect from both physical and software attacks.

1.2 Problem Statement

It is important to have reliable personal identification due to growing importance of

information technology. Nowadays most of security applications are switching to

embedded system design due to the fact that it is easier to interact with the physical

world, low power consumption and can be treated as a stand-alone application. The hand

vein biometric also proves to be ease in embedded implementation and make way in

terms of prototyping for further research and integration with other components.

Some problem with existing biometric systems was identified. One of the problems with

existing biometric hand vein system is that it is more prone to data theft or information

theft. Specially designed camera was used to capture the hand vein image and this camera

is connected to a computer. Thus, the captured image is processed further

Apart from that, registration is also unavailable for this hand vein system. Registration

here means adding new user in the database, deleting unwanted user from database and

authenticating a user. With existing system, adding a new user into database is a

complicated work where images are renamed first and saved in respective folder to be

processed. Removing a user from database is even more complicated from adding user

into database. This is because the images of corresponding user have to be deleted from

the entire folders. The complexity of authenticating a user is the same as adding a user.

The captured image is saved in respective folder before the image can be successfully

authenticated.

5

1.3 Objective of the Project

The objective of this project is to design and implement a complete hand biometric

identification and authentication system which takes an image of hand by a modified

webcam illuminated by an infrared source and then it is further processed through

different techniques in image pre-processing, extracting the important features from it

and then in turn matching it for authentication, depicted in figure 1.1.

Figure 1.1 Overview of system

The second objective of this project is to design and create a graphical user interface to be

used as front end for hand vein system. The Graphical User Interface (GUI) will provide

means of communication between computer and the user. This GUI will be linked image

acquisition, image pre-processing, feature extraction and image matching. So, by creating

a simple and attractive GUI this system can be used by everyone as GUI provides a user

friendly platform. This GUI will be designed to provide a simple way to register a user

into the database, delete a user from database or authenticate a user from database.

6

1.5 Project Contribution

A prototype of the enhanced hand vein biometric system is implemented in a compact

and efficient design. The biometric system is able to receive image from the infrared

camera, enhance the image through image processing stages, extract the minutiae points

in template based and match the template stored in database with the image that need to

be authenticated. Besides, to make this hand vein system more user friendly graphical

user interface will be designed.

1.6 Thesis Organization

This thesis is organized into four chapters. The first chapter introduces the background,

motivation, research objectives, and scope of work and contribution of this project. The

second chapter describes the theory of hand vein image processing steps, feature

extraction.The third chapter presents the research methodology, system design

procedures and application tools and last chapter discusses the results obtained followed

by the discussions.

7

CHAPTER 2

LITERATURE REVIEW

This chapter embraces all the paper works and related research as well as the studies with

regards to this project. The chapter includes all the important studies which have been

done previously by other research work. The related works have been referred carefully

since some of the knowledge and suggestions from the previous work can be

implemented for this project.

Literature review was an ongoing process throughout the whole process of the project. It

is very essential to refer to the variety of sources in order to gain more knowledge and

skills to complete this project. These sources include reference books, thesis, journals and

also the materials obtained from internet.

2.1 Biometric

Biometrics technology is defined as an automated method of identifying or authenticating

the identity of a living person based on a physiological or behavioral characteristic.

The phrase "automated methods" refers to three basic methods connected with biometric

devices: A mechanism to scan and capture a digital or analog image of a living personal

characteristic, Compression, processing and comparison of the image to a database of

stored images, Interface with applications systems (Industry Information: Biometrics,

1996). These methods can be configured in a number of different topographies depending

upon the biometric device and application. For example, a common issue is whether the

8

stored images (reference templates) reside on a card, in the device or at a host or

database. (Industry Information: Biometrics, 1997)

The term "living person" may seem obvious, but it is an important component in defining

biometrics. One of the first questions newcomers to the field ask is, "What about a latex

finger, digital audio tape, plasters hand, or prosthetic eye.” The answer is that biometric

devices can incorporate specific algorithms that determine whether there is a live

characteristic being presented. The term "living" also separates the biometric industry

from the forensic identification field, although basic principles transcend both areas

(Industry Information: Biometrics, 1997).

Biometric security ensures user access to an embedded system through trait verification.

These traits have to be permanent, easy-to-obtain (minimally intrusive), universal (in the

sense that generally everyone possesses it) yet unique (in order to differentiate a certain

user’s trait from the others’).

2.1.1 Biometric Systems

A biometric system is essentially a pattern-recognition system that recognizes a person

basedon a feature vector derived from a specific physiological or behavioral

characteristic that theperson possesses as shown in figure 2.1.That feature vector is

usually stored in a database (or recorded on asmart card given to the individual) after

being extracted.

A biometric system based on physiological characteristics is generally more reliable than

one which adopts behavioralcharacteristics, even if the latter may be easier to integrate

within certain specificapplications. Biometric system can than operate in two modes:

9

verification or identification. While identification involves comparing the acquired

biometric information against templates corresponding to all users in the database,

verification involves comparison with only those templates corresponding to the claimed

identity. This implies that identification and verification are two problems that should be

dealt with separately.

A simple biometric system consists of four basic components. First is the sensor module

witch acquires the biometric data. Second is the feature extraction module where the

acquired data is processed to extract feature vectors. Third is the matching module where

feature vectors are compared against those in the template and the last one is decision-

making module in which the user's identity is established or a claimed identity is

accepted or rejected.

Figure 1.1 Biometric systems

10

2.1.2 Overview of Commonly Used Biometrics

Since there are number of biometric methods in use (some commercial, some "not yet"),

abrief overview of various biometric characteristics will be given, starting with newer

technologies and then progressing to older ones: Infrared thermogram (facial, hand or

hand vein).It is possible to capture the pattern ofheat radiated by the human body with an

infrared camera. That pattern is considered to beunique for each person. It is a

noninvasive method, but image acquisition is rather difficultwhere there are other heat

emanating surfaces near the body. The technology could be usedfor covert recognition. A

related technology using near infrared imaging is used to scan the back of a fist to

determine hand vein structure, also believed to be unique. Like face recognition, it must

deal with the extra issues of three-dimensional space and orientation of the hand. Set-

back is the price of infrared sensors.

2.1.2.1 Gait

This is one of the newer technologies and is yet to be researched in more detail.Basically,

gait is the peculiar way one walks and it is a complex spatio-temporal biometrics, figure

2.2.

Figure 2.2 Gait recognition

11

It is not supposed to be very distinctive but can be used in some low-security

applications. Gait is a behavioral biometric and may not remain the same over a long

period of time, due to change in body weight or serious brain damage. Acquisition of gait

is similar to acquiring a facial picture and may be an acceptable biometric. Since video-

sequence is used to measure several different movements this method is computationally

expensive.

2.1.2.2 Keystroke

 It is believed that each person types on a keyboard in a characteristic way, figure 2.3.

This is also not very distinctive but it offers sufficient discriminatory information to

permit identity verification. Keystroke dynamics is a behavioral biometric; for some

individuals, one could expect to observe large variations in typical typing patterns.

Advantage of this method is that keystrokes of a person using a system could be

monitored unobtrusively as that person is keying information. Another issue to think

about here is privacy.

Figure 2.3 Keystroke Recognition

12

2.1.2.3 Odor

Each object spreads around an odor that is characteristic of its chemical composition and

this could be used for distinguishing various objects. This would be done with an array of

chemical sensors, each sensitive to a certain group of compounds. Deodorants and

perfumes could lower the distinctiveness.

2.1.2.4 Ear

It has been suggested that the shape of the ear and the structure of the cartilaginous tissue

of the pinna are distinctive. Matching the distance of salient points on the pinna from a

landmark location of the ear is the suggested method of recognition in this case. This

method is not believed to be very distinctive.

2.1.2.5 Hand geometry

The essence of hand geometry is the comparative dimensions of fingers and the location

of joints, shape and size of palm. One of the earliest automated biometric systems was

installed during late 60s and it used hand geometry and stayed in production for almost

20 years. The technique is very simple, relatively easy to use and inexpensive. Dry

weather or individual anomalies such as dry skin do not appear to have any negative

effects on the verification accuracy. Since hand geometry is not very distinctive it cannot

be used for identification of an individual from a large population, but rather in a

verification mode.Further, hand geometry information may not be invariant during the

growth period of children. Limitations in dexterity (arthritis) or even jewelry may

influence extracting the correct hand geometry information. This method can find its

commercial use in laptops rather easy. There are even verification systems available that

13

are based on measurements of only a few fingers instead of the entire hand. These

devices are smaller than those used for hand geometry.

2.1.2.6 Fingerprint

A fingerprint is a pattern of ridges and furrows located on the tip of each

finger.Fingerprints were used for personal identification for many centuries and the

matching accuracy was very high. Patterns have been extracted by creating an inked

impression of the fingertip on paper. Today, compact sensors provide digital images of

these patterns. Fingerprint recognition for identification acquires the initial image through

live scan of the finger by direct contact with a reader device that can also check for

validating attributes such as temperature and pulse. Since the finger actually touches the

scanning device, the surface can become oily and cloudy after repeated use and reduce

the sensitivity and reliability ofoptical scanners. Solid state sensors overcome this and

other technical difficulties because thecoated silicon chip itself is the sensor. Solid state

devices use electrical capacitance to sense the ridges of the fingerprint and create a

compact digital image. Today, a fingerprint scanner costs about 20 USD and has become

affordable in a large number of applications (laptopcomputer). In real-time verification

systems, images acquired by sensors are used by the feature extraction module to

compute the feature values. The feature values typically correspond to the position and

orientation of certain critical points known as minutiae points. The matching process

involves comparing the two-dimensional minutiae patterns extracted from the user's print

with those in the template. One problem with the current fingerprint recognition systems

is that they require a large amount of computational resources.

14

2.1.2.7 Face

Facial images are the most common biometric characteristic used by humans to make a

personal recognition, hence the idea to use this biometric in technology. This is a

nonintrusive method and is suitable for covert recognition applications. The applications

of facial recognition range from static ("mug shots") to dynamic, uncontrolled face

identification in a cluttered background (subway, airport). Face verification involves

extracting a feature set from a two-dimensional image of the user's face and matching it

with the template stored in a database Figure 2.4. The most popular approaches to face

recognition are based on either: 1) the location and shape of facial attributes such as eyes,

eyebrows, nose, lips and chin, and their spatial relationships, or 2) the overall (global)

analysis of the face image that represents a face as aweighted combination of a number of

canonical faces. Although performance ofcommercially available systems is reasonable

there is still significant room for improvement since false reject rate (FRR) is about 10%

and false accept rate (FAR) is 1%. These systems also have difficulties in recognizing a

face from images captured from two differentangles and under different ambient

illumination conditions.

Figure 2.4 Face recognition

15

It is questionable if a face itself is a sufficient basis for recognizing a person from a large

number of identities with an extremely high level of confidence. Facial recognition

system should be able to automatically detect a face in an image, extract its features and

then recognize it from a general viewpoint (i.e., from any pose) which is a rather difficult

task. Another problem is the fact that the face is a changeable social organ displaying a

variety of expressions.

2.1.2.8 Retina

Retinal recognition creates an "eye signature" from the vascular configuration of the

retina which is supposed to be a characteristic of each individual and each eye,

respectively. Since it is protected in an eye itself, and since it is not easy to change or

replicate the retinal vasculature, this is one of the most secure biometric. Image

acquisition requires a person to look through a lens at an alignment target. Therefore it

implies cooperation of the subject. Also retinal scan can reveal some medical conditions

and as such public acceptance is questionable.

2.1.2.9 Iris

The iris begins to form in the third month of gestation and the structures creating its

pattern are largely complete by the eight month. Its complex pattern can contain many

distinctive features such as arching ligaments, furrows, ridges, crypts, rings, corona,

frecklesand a zigzag collarets. Iris scanning is less intrusive than retinal because the iris is

easilyvisible from several meters away. Responses of the iris to changes in light can

provide an important secondary verification that the iris presented belongs to a live

subject. Irises of identical twins are different, which is another advantage. Newer systems

16

have become more user-friendly and cost-effective. A careful balance of light, focus,

resolution and contrast is necessary to extract a feature vector from localized image.

While the iris seems to be consistent throughout adulthood, it varies somewhat up to

adolescence.

2.1.2.10 Palmprint

Like fingerprints, palms of the human hands contain unique pattern of ridges and valleys.

Since palm is larger than a finger, palmprint is expected to be even more reliable than

fingerprint. Palmprint scanners need to capture larger area with similar quality as

fingerprint scanners, so they are more expensive. A highly accurate biometric system

could be combined by using a high-resolution palmprint scanner that would collect all the

features of the palm such as hand geometry, ridge and valley features, principal lines, and

wrinkles.

2.1.2.11 Voice

The features of an individual's voice are based on physical characteristics such as vocal

tracts, mouth, nasal cavities and lips that are used in creating a sound. These

characteristics of human speech are invariant for an individual, but the behavioral part

changes over time due to age, medical conditions and emotional state.

2.1.2.12 Signature

Signature is a simple, concrete expression of the unique variations in human hand

geometry. The way a person signs his or her name is known to be characteristic of that

individual. Collecting samples for this biometric includes subject cooperation and

requires the writing instrument. Signatures are

period of time and are influenced by physical and emotional conditions o

addition to the general shape of the signed name, a signature recognition s

measure pressure and velocity of th

2.1.2.13 DNA

Deoxyribonucleic acid (DNA) is probably the most relia

dimensional code unique for each person

however, has some drawb

use it for an ulterior purpo

matching requires complex chemical methods in

use of DNA matching to forensic applications.

"ultimate" recognition tool and the choice depends

2.1.3 Physiological and Behavioral Characteristics

Biometric system is a pattern recognition system that confirms the authenticity of a user’s

specific physiological or behavioral characteristic.

relatively stable, as it is basically unchanging throughout one’s life (unless i

with significant force). Physiological characteristics include fingerprint, hand silhouette

and iris pattern.

17

writing instrument. Signatures are a behavioral biometric th

and are influenced by physical and emotional conditions o

general shape of the signed name, a signature recognition s

and velocity of the point of the stylus across the sensor pad.

Deoxyribonucleic acid (DNA) is probably the most reliable biometrics. It is in fact a

ique for each person. Exceptions are identical twins. This method

, has some drawbacks. It is easy to steal a piece of DNA from an individual and

use it for an ulterior purpose. Secondly no real-time application is possible because DNA

matching requires complex chemical methods involving expert's skills. All this li

use of DNA matching to forensic applications. It is obvious that no single biometric is the

ion tool and the choice depends on the application.

Figure 2.5 DNA recognition

Physiological and Behavioral Characteristics

metric system is a pattern recognition system that confirms the authenticity of a user’s

specific physiological or behavioral characteristic. A physiological characteristic is

relatively stable, as it is basically unchanging throughout one’s life (unless i

with significant force). Physiological characteristics include fingerprint, hand silhouette

a behavioral biometric that change over a

and are influenced by physical and emotional conditions of a subject. In

general shape of the signed name, a signature recognition system can also

e point of the stylus across the sensor pad.

ble biometrics. It is in fact aone-

identical twins. This method,

piece of DNA from an individual and

is possible because DNA

. All this limits the

It is obvious that no single biometric is the

metric system is a pattern recognition system that confirms the authenticity of a user’s

physiological characteristic is

relatively stable, as it is basically unchanging throughout one’s life (unless injured/altered

with significant force). Physiological characteristics include fingerprint, hand silhouette

18

Behavioral characteristics are a reflection of an individual’s psychological makeup, even

though general physical traits, like size and sex, play a huge role (Industry Information:

Biometrics, 1997). Examples of behavioral traits used to identify individuals include a

person's typing patterns at a keyboard, commonly referred to as keystroke dynamics, and

the unique characteristics of how one speaks or speech identification and/or verification.

2.1.4 Identification and Authentication:

Two main aspects of biometrics are:

2.1.4.1 Identification

Identification occurs when an individual's characteristic is being selected from a group of

stored images. Identification is the way the human brain performs most day-to-day

identifications (Industry Information: Biometrics, 1997). For example, if a person

encounters a familiar individual, the brain processes the information by comparing what

the person is seeing to what is stored in memory. Biometric devices that implement

identification techniques can be quite time consuming. Often anywhere from five to 15

seconds or more are required in identifying the appropriate individual.

2.1.4.2 Authentication

In many cases, verification is used to authenticate a user's identity. A biometric device

that uses verification requires that the individual make a claim of identity by presenting a

code or a card. The matching formula or algorithm then needs only to compare the live

and enrolled images of the user's characteristic. The question put to the machine is, "Are

you who you say you are?" instead of, "Do I know who you are?" (Industry Information:

Biometrics, 1997). Verification can be viewed as adding another level of security. A good

19

analogy is when a person goes to add a dead-bolt to a door. In this case, a dead-bolt is

usually added to increase the security of the door or entrance because generally a lock of

some sorts that was on the door beforehand.

There are other notable details to consider in addition to the terms used to define

biometrics. Other biometric performance factors that need to be thoroughly investigated

include accuracy, speed, reliability, acceptability, resistance to counterfeiting, enrollment

time, database storage requirements, intrusiveness, and cost.

2.1.5 Biometric Testing

The identifying power of a particular biometric encompasses two terms: False Rejection

Rate (FRR), or a Type I Error, and False Acceptance Rate (FAR), or a Type II Error.

False Rejection Rate and False Acceptance Rate are complementary in determining how

stringent a biometric device is in allowing access to individuals.

As a result, biometric devices commonly include features to allow for variable threshold

or sensitivity settings. For example, if the false acceptance rate threshold is increased to

make it more difficult for impostors to gain access, it also will become harder for

authorized people to gain access. As FAR goes down, FRR rises. On the other hand, if

the false acceptance threshold is lowered as to make it very easy for authorized users to

gain access, then it will be more likely that an impostor will slip through. Hence, as FRR

goes down, FAR rises. In understanding the impact of FRR and FAR rates consider an

automated teller machine (ATM) access system: a "False Acceptance" means you may

lose a few dollars, whereas a "False Rejection" means you may lose a valuable customer

(FAR POINT Consulting Inc., 1997). Another good example in understanding the inverse

20

relationship of FRR and FAR rates, involves a car alarm. When your car alarm is very

sensitive, the probability of the bad guys stealing it is low. Yet the chance of your

accidentally setting off the alarm is high. Reduce the sensitivity, and the number of false

alarms goes down, but the chance of someone stealing your car increases (Recognition

Systems, Inc. 1999).

While the terms "false reject" and "false accept" are still commonly used in quantifying a

biometrics' ability to rightfully identify an individual, the federal government has recently

adopted a new standard of error rate measurement. Dr. Jim Wayman, Director of the

United States National Biometric Test Center, has promoted the terms "false match" and

"false non-match" as the new de facto terminology in determining a biometrics

identifying power. According to Dr. Wayman, the problem with the terms "false accept"

and "false reject" and even more so with "Type I" and "Type II" errors is that their

meaning depends upon the claim of the user. For example, depending upon the biometric

application, users make either a positive or a negative claim to identity. In a positive

identification system, a rejection occurs if a person in not matched to a claimed record. In

a negative identification system, a rejection occurs if a person is matched to a non-

claimed record. Consequently, the words "false reject/accept" have opposite meanings,

depending upon whom you are speaking to (Wayman, J. 1999).

2.2 Hand Vein

The vein patterns are the vast network of blood vessels underneath a person’s skin. The

vein pattern in the back of the hand is unique for each individual. Every individual has

their own vein pattern and this also applies to identical twins as they also have different

21

vein patterns. Because of this uniqueness of vein pattern, it provides a good distinction

between individuals. In addition to that, vein patterns also differ for each hand. Right

hand and left hand has different vein patterns.

Vein patterns are large robust internal patterns where it does not change with time except

for the size of the hand. This causes the vein pattern in the back of the hand remains

stable over a long period of time. Apart from that; veins are hidden underneath the skin.

This makes the vein patterns not easily observed as it is invisible to human eyes. Hand

vein is not affected by situation of the outer skin (e.g. dirty hand) and less vulnerable to

attacks. Intruders will find it hard to forge, duplicate, replicate or reproduce the vein

patterns as compared to other biometric features.

Vein patterns are not easily observed, damaged, obscured or changed. The properties of

uniqueness, stability and strong immunity to criminal tampering, makes it a potentially

good biometric which offers secure and reliable features for authentication system.

2.3 Comparison of Hand Vein and Other Biometric Features

Existing biometric system such as fingerprint, iris, face and voice are confronted with

minor problem and are very much likely vulnerable to attacks. Fingerprint is the surface

character of a body. When someone touches a surface, his or her fingerprint is easily

accessible and this can cause the fingerprint pattern easily stolen or forged. Physical

contact is needed for fingerprint scanning and due to this direct contact with the finger

the sensor gets dirty. Thus, the possibility of successful matching is reduced. Success

ratio also decrease when the usable finger is too wet or dry which causes the fingerprint

22

image become blur or dilapidated. Sometimes, people may lose the useable finger; the

skin on the usable finger is cut.

As for iris, the eye pattern can be easily captured and forged by using high resolution

camera. In addition, people may find it is intrusive to align the eye with a camera to

capture the eye pattern. This often gives uncomfortable feeling and cause displeasure to

the eye. The iris is very small and it is very hard to scan from distance. In addition,

people who is blind and have cataract pose difficulty in reading the iris. The camera is

highly sensitive to natural body motion, as the camera view has to be narrow to capture

the resolution of the iris, it is.

The face is greatly affected by growth and time. Face features of an adult will be different

when compared to their teenage or childhood years. Face also affected by variable lights

and shadows. These uncertainties cause the system to confuse. Facial expression, facial

hairs do play part in face recognition.

As for voice, this biometric trait is easily affected by environment. This biometric is not

reliable in noisy environment like public places. Moreover, this type of system is

sensitive to hoarse throat condition when people are sick with colds. Voice can be easily

stolen with much more advanced technology which is available in the market.

Unlike fingerprint, iris, voice and face where the biological information is being scanned

on the exterior of the body, hand vein authentication scans information in the interior of

the body and therefore makes falsification extremely difficult. Thus, hand vein

authentication has emerged as a promising component of biometrics study. Table 1

compares the biometric systems.

2.4 Hand Vein Processing

Biometric hand vein system involves four

pre-processing, feature extraction and

modified webcam while image pre

matching are done at the FPGA board.

23

Table 2.1 Comparison of Biometric Systems

2.4 Hand Vein Processing

Biometric hand vein system involves four stages. The stages are image acquisition, image

processing, feature extraction and image matching. Image acquisition is done by the

cam while image pre-processing is done at PC. Canny edge detection and

matching are done at the FPGA board.

Figure 2.6 FPGA Board

are image acquisition, image

. Image acquisition is done by the

processing is done at PC. Canny edge detection and

24

A Field Programmable Gate Array (FPGA) as name suggests is a programmable device

in which the final logic structure can be directly configured by the end user for a variety

of applications. In its simplest form an FPGA consists of an array of uncommitted

elements that can be programmed or interconnected according to a user’s specification.

The ability to reprogram these devices over and over again of the flexibility of

interconnection resources makes FPGAs an ideal device for implementing & testing

ASIC prototypes. The Figure 2.6, portrays the architecture of a conceptual FPGA.

2.4.1 Image Acquisition

Hand vein image was captured by using specially designed camera which is connected to

a computer. This camera is a thermal camera modified from a webcam. By illuminating

infrared light beam at the back of the hand, figure 2.7, the vein patterns appeared darker

and shadowed as hemoglobin in the blood absorb the infrared light.

Figure 2.7 Initial images

2.4.2 Image Pre-processing

From this part, image processing is done. Captured image is transferred to PC so that the

captured image can be processed further. This stage is essential because in this stage the

captured image is enhanced and processed before feature extraction is done.

nine sub processes in this stage.

2.4.3 Edge Detection

Edge detection is a fundamental tool used inmost image processing applications to obtain

information from the frames as a precursor step

segmentation. This process detects outlines of an object and boundaries between objects

and the background in the image. An edge

appearance of blurred or anti

2.4.4 Image Matching

After the image has been processed and the required features are extracted, image

matching is done. Different algorithms can be followed for image matching depending

upon the nature of database and requirement .the most commonly

recognition are hamming and hausdroff distance.

25

captured image is enhanced and processed before feature extraction is done.

nine sub processes in this stage.

Figure 2.8 Overview of Image Pre-processing

Edge detection is a fundamental tool used inmost image processing applications to obtain

information from the frames as a precursor step tofeature extraction and object

segmentation. This process detects outlines of an object and boundaries between objects

and the background in the image. An edge-detection filter can also be used to improve the

appearance of blurred or anti-aliased video streams

After the image has been processed and the required features are extracted, image

matching is done. Different algorithms can be followed for image matching depending

upon the nature of database and requirement .the most commonly used for biometric

recognition are hamming and hausdroff distance.

captured image is enhanced and processed before feature extraction is done. There are

Edge detection is a fundamental tool used inmost image processing applications to obtain

tofeature extraction and object

segmentation. This process detects outlines of an object and boundaries between objects

detection filter can also be used to improve the

After the image has been processed and the required features are extracted, image

matching is done. Different algorithms can be followed for image matching depending

used for biometric

26

2.5 Running an Application

2.5.1 Command Line Interface

A command line interface or CLI is a method of interacting with a computer by giving it

lines of textual commands either from keyboard input or from a script. Command line

interface was originally developed for interfacing with computers over teletype machines

in the 1950s. It is occasionally also referred to as a CLUE, for Command Line User

Environment. Some argue that the CLI is not actually a user interface at all, but a

programming language, entered one line at a time, and has very little utility for users

compared to developers. Indeed, command lines are most often used in scientific or

engineering environments for programming.

2.5.2 Graphic User Interface

A graphical user interface (GUI) is a type of user interface which allows people to

interact with electronic devices such as computers, hand-held devices and etc. rather than

text based commands. GUI is a program interface that takes advantage of the computer's

graphics capabilities to make the program easier to use. A GUI uses a combination of

technologies and devices to provide a platform the user can interact with, for the tasks of

gathering and producing information. A GUI offers graphical icons, and visual indicators.

The actions are usually performed through direct manipulation of the graphical elements.

27

CHAPTER 3

SYSTEM MODULES

3.1 Project Workflow

This chapter will discuss about the method and alternatives that have been used to make

this project successful. This method includes the discussion of the project workflow,

followed by the system design procedure, techniques and tools utilized in this work.

This project involved the effort of embedded system design process, which involves

interface design and software development. Hence, it calls for software system design, in

which the software are designed and downloaded in an embedded system.

Figure 3.1– Project Block Diagram

28

3.2 Program Planning

The works continues with the literature reviews on state-of-the-art biometrics

technologies and hand vein authentication system. It is important to understand the

fundamental concept and operations carried out in the biometric hand vein system.

To design the system, several tools and techniques have to be familiarized and mastered.

These include familiarizing with IR band. This system is running on Microsoft windows,

thus its greater understanding were required to make this project successful. Matlab was

understood thoroughly to create and design the graphic user interface. For co-harware

simulation initially, block approach on xilinks system generator was understood and later

same was used to extract the code.

The project workflows continue with designing and creating the GUI, developing the

complete prototype. The process is repeated until the successful prototype is obtained.

Finally, the GUI running on host PC is interfaced with the modified webcam. This GUI is

used to get data from the hand vein infrared camera, image is captured in Matlab, then

sent to the FPGA board, processing is done on the board, and then data is sent back to

Matlab. At the end, output is displayed, both on Matlab, as well as character LCD of the

FPGA board.

29

3.3 The Hardware:

The hardware of the project shown in figure 3.2 was designed in such a way to ensure

that it is cost effective and fulfills all the requirements of the project.

3.3.1 The Setup:

The requirement of the project was that image acquisition should be done in a confined

environment. The reason for this was to make sure that the physical conditions like

temperature, light ,humidity etc are least altered during the course of database

compilation as these factors greatly affect the image acquisition.This results in different

alterations to observed in the image preprocessing phase.

Figure 3.2 The Hardware

30

The setup is made of wood with dimensions of 12*10*18 inches .The inner walls are

blackened as to ensure minimum reflection .A glass serves as a base to mount the

modified camera and also for the diffusion paper.

To ensure that the subject’s hand remains in the same place every time a bar has been

placed. The subject is instructed to hold the bar which is supported by a rest at the bottom

.Thus every time the hand is probably at the same place.

Figure 3.3 Setup

31

3.3.2 Modifying the camera:

One of the main aim of this project was to make it cost effective , for this reason the

camera which are available to come up to the requirement of the project were not suitable

so a simple low cost camera was modified. The objective of modification was to make

the camera IR sensitive .Generally the cameras have an infrared filter just before the lens,

which stops the IR rays from entering the lens of the camera .this filter is made of opaque

red glass and is simply aligned just in front of the lens.

The modification figure 3.4 is done by opening the camera carefully so that the lens is not

damaged. The filter is removed and the camera is closed again. Now this camera is

capable of detecting the IR rays.

 Figure 3.4 Modifying the Camera

32

3.3.3 Infrared source:

The infrared source used in the project is a circular array of concentric LED’s that

operates in near infrared .This source is attached at the top of the hand on the glass base

.The LED light falls on the diffusion paper and is diffused, the light that is reflected from

the walls also passes through the diffusion paper and then falls on the hand. The infrared

source is operating on 12 V and in near infrared region (750 nm)

Figure 3.5 Infrared Source

3.3.4 Diffusing the Light:

A diffusion paper, figure 3.6, is used to evenly distribute the light on the subject’s hand.

This paper is stretched across the complete surface of the glass.

Figure 3.6 Diffusing Paper

33

3.4 The Techniques:

Different techniques have been used. Each of them is described in detail.

3.4.1 Canny edge detection

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm

to detect a wide range of edges in images. It was developed by John F. Canny in 1986.

Canny's aim was to discover the optimal edge detection algorithm. In this situation, an

"optimal" edge detector means: Good detection means the algorithm should mark as

many real edges in the image as possible. Good localization means edges marked should

be as close as possible to the edge in the real image. Minimal response means a given

edge in the image should only be marked once, and where possible, image noise should

not create false edges.

Figure 3.7 – Canny Edge Detection Model

34

To satisfy these requirements Canny used the calculus of variations – a technique which

finds the function which optimizes a given functional. The optimal function in Canny's

detector is described by the sum of four exponential terms, but can be approximated by

the first derivative of a Gaussian.

3.4.2 Stages of the Canny algorithm

3.4.2.1 Gaussian filter for Noise reduction

The Canny edge detector uses a filter based on the first derivative of a Gaussian, because

it is susceptible to noise present on raw unprocessed image data, so to begin with, the raw

image is convolved with a Gaussian filter. The result is a slightly blurred version of the

original which is not affected by a single noisy pixel to any significant degree. The visual

effect of this blurring technique is a smooth blur resembling that of viewing the image

through a translucent screen. Mathematically, applying a Gaussian blur to an image is the

same as convolving the image with a Gaussian function; this is also known as a two-

dimensional Weierstrass transform. Since the Fourier transform of a Gaussian is another

Gaussian, applying a Gaussian blur has the effect of reducing the image's high-frequency

components; a Gaussian blur is thus a low pass filter. Using a Gaussian Blur filter before

edge detection aims to reduce the level of noise in the image, which improves the result

of the following edge-detection algorithm.

Figure 3.8 – Guassian Filter Model

An example of a 5x5 Gaussian filter

image with σ = 1.4.

3.4.2.2 Sobel Filtering (Finding the intensity gradient of the image)

Sobel filter computes an approximation of the gradient of the image intensity function. At

each point, its result is corresponding gradient vector.

In simple terms, the operator calculates the

giving the direction of the largest possible increase from light to dark and the rate of

change in that direction. The result therefore shows how "abruptly" or "smoothly" the

image changes at that point, and therefore how like

represents an edge, as well as how that edge is likely to be oriented.

An edge in an image may point in a variety of directions, so the Canny algorithm uses

four filters to detect horizontal, vertical and diagonal edges

edge detection operatorSobel

direction (Gx) and the vertical direction (Gy). From this the e

can be determined.

35

n example of a 5x5 Gaussian filter is shown in equation 1, that can be

 ……...

(Finding the intensity gradient of the image)

Sobel filter computes an approximation of the gradient of the image intensity function. At

each point, its result is corresponding gradient vector.

In simple terms, the operator calculates the gradient of the image intensity at each point,

giving the direction of the largest possible increase from light to dark and the rate of

change in that direction. The result therefore shows how "abruptly" or "smoothly" the

image changes at that point, and therefore how likely it is that that part of the image

, as well as how that edge is likely to be oriented.

An edge in an image may point in a variety of directions, so the Canny algorithm uses

four filters to detect horizontal, vertical and diagonal edges in the blurred image. The

Sobel returns a value for the first derivative in the horizontal

direction (Gx) and the vertical direction (Gy). From this the edge gradient

that can be used to filter the

……... Equation 1

Sobel filter computes an approximation of the gradient of the image intensity function. At

mage intensity at each point,

giving the direction of the largest possible increase from light to dark and the rate of

change in that direction. The result therefore shows how "abruptly" or "smoothly" the

ly it is that that part of the image

An edge in an image may point in a variety of directions, so the Canny algorithm uses

in the blurred image. The

returns a value for the first derivative in the horizontal

dge gradient and direction

36

The edge direction angle is rounded to one of four angles representing vertical, horizontal

and the two diagonals (0, 45, 90 and 135 degrees for example).

Mathematically, the gradient of a two-variable function (here the image intensity

function) is at each image point a 2D vector with the components given by the derivatives

in the horizontal and vertical directions. At each image point, the gradient vector points in

the direction of largest possible intensity increase, and the length of the gradient vector

corresponds to the rate of change in that direction. This implies that the result of the

Sobel operator at an image point which is in a region of constant image intensity is a zero

vector and at a point on an edge is a vector which points across the edge, from darker to

brighter values.

Figure 3.9 – Sobel Filter Model

Figure 3.9, shows a Sobel Filter Model. The operator uses two 3×3 kernels which are

convolved with the original image to calculate approximations of the derivatives - one for

horizontal changes, and one for vertical.

follows:

Equation 2

where * here denotes the 2

The x-coordinate is here defined as increasing in the "right"

coordinate is defined as increasing in the "down"

the resulting gradient approximations can be combined to give

using:

Using this information, we can also calculate the gradient's direction:

where, for example, Θ is 0 for a vertical edge which is darker on the right side.

37

horizontal changes, and one for vertical. For approximations, the computations are as

 Equation 3

here denotes the 2-dimensional convolution operation.

coordinate is here defined as increasing in the "right"-direction, and the

coordinate is defined as increasing in the "down"-direction. At each point in the image,

the resulting gradient approximations can be combined to give the gradient magnitude,

 Equation 4

Using this information, we can also calculate the gradient's direction:

 Equation 5

is 0 for a vertical edge which is darker on the right side.

approximations, the computations are as

direction, and the y-

direction. At each point in the image,

the gradient magnitude,

is 0 for a vertical edge which is darker on the right side.

38

3.4.2.3 Non-maximum suppression

To get rid of ridges, the edge strength of each candidate edge pixel is set to zero if its

edge strength is not larger than the edge strength of the two adjacent pixels in the gradient

direction.

Given estimates of the image gradients, a search is then carried out to determine if the

gradient magnitude assumes a local maximum in the gradient direction. So, for example,

if the rounded gradient angle is zero degrees (i.e. the edge is in the north-south direction)

the point will be considered to be on the edge if its gradient magnitude is greater than the

magnitudes in the west and east directions, if the rounded gradient angle is 90 degrees

(i.e. the edge is in the east-west direction) the point will be considered to be on the edge if

its gradient magnitude is greater than the magnitudes in the north and south directions.

Similarly, if the rounded gradient angle is 135 degrees (i.e. the edge is in the north east-

south west direction) the point will be considered to be on the edge if its gradient

magnitude is greater than the magnitudes in the north west and south east directions and

if the rounded gradient angle is 45 degrees (i.e. the edge is in the north west-south east

direction)the point will be considered to be on the edge if its gradient magnitude is

greater than the magnitudes in the north east and south west directions.

From this stage referred to as non-maximum suppression, a set of edge points, in the form

of a binary image, is obtained. These are sometimes referred to as "thin edges".

39

3.4.2.4 Tracing edges through the image and hysteresis thresholding

Large intensity gradients are more likely to correspond to edges than small intensity

gradients. It is in most cases impossible to specify a threshold at which a given intensity

gradient switches from corresponding to an edge into not doing so. Therefore Canny uses

thresholding with hysteresis.

Two thresholds are selected, high and low. If the any edge is above high, it is considered

a definite edge. If any edge is below low, it is not considered as an edge. If it is in

between high and low, it is considered as may be definite edge. This category is properly

analyzed to finally decide whether it is an edge or noisy pixel.

Making the assumption that important edges should be along continuous curves in the

image allows us to follow a faint section of a given line and to discard a few noisy pixels

that do not constitute a line but have produced large gradients. Therefore we begin by

applying a high threshold. This marks out the edges we can be fairly sure are genuine.

Starting from these, using the directional information derived earlier, edges can be traced

through the image. While tracing an edge, we apply the lower threshold, allowing us to

trace faint sections of edges as long as we find a starting point.

Once this process is complete, we have a binary image where each pixel is marked as

either an edge pixel or a non-edge pixel. From complementary output from the edge

tracing step, the binary edge map obtained in this way can also be treated as a set of edge

curves, which after further processing can be represented as polygons in the image

domain.

3.4.3 FPGA Implementation

Gaussian filter is used to reduce noise and minimize extra details of the image to perform

smooth edge detection with the help of 2D

important to modern image processing. The basic idea is that

size and shape is scanned over an image. The output pixel value is the weighted sum of

the input pixels within the window where the weights are the values of the filter assigned

to every pixel of the window. The window with its weig

mask. Mathematically, convolution on image can be represented by the following

equation.

where x is the distance from the origin in the horizontal axis,

origin in the vertical axis, and

When applied in two dimensions, this formula produces a surface whose contours are

concentric circles with a Gaussian distribution from the center point. Values from this

distribution are used to build a convolution matrix which is applied to the original image.

Each pixel's new value is set to a weighted average of that pixel's neighborhood. The

original pixel's value receives the heaviest weight (having the highest Gaussian va

and neighboring pixels receive smaller weights as their distance to the original pixel

increases. This results in a blur that preserves boundaries and edges better than other,

more uniform blurring filters.

An important aspect of convolution algorithm

of masks, each with its own feature. This flexibility allows many powerful applications.

40

Implementation

Gaussian filter is used to reduce noise and minimize extra details of the image to perform

smooth edge detection with the help of 2D-convolution. 2D-Convolution

important to modern image processing. The basic idea is that a window

size and shape is scanned over an image. The output pixel value is the weighted sum of

the input pixels within the window where the weights are the values of the filter assigned

to every pixel of the window. The window with its weights is called the

Mathematically, convolution on image can be represented by the following

……………………………………………………….Equation 5

is the distance from the origin in the horizontal axis, y is the distance from the

he vertical axis, and σ is the standard deviation of the Gaussian distribution.

When applied in two dimensions, this formula produces a surface whose contours are

concentric circles with a Gaussian distribution from the center point. Values from this

ibution are used to build a convolution matrix which is applied to the original image.

Each pixel's new value is set to a weighted average of that pixel's neighborhood. The

original pixel's value receives the heaviest weight (having the highest Gaussian va

and neighboring pixels receive smaller weights as their distance to the original pixel

increases. This results in a blur that preserves boundaries and edges better than other,

more uniform blurring filters.

An important aspect of convolution algorithm is that it supports a virtually infinite variety

of masks, each with its own feature. This flexibility allows many powerful applications.

Gaussian filter is used to reduce noise and minimize extra details of the image to perform

Convolution is most

a window of some finite

size and shape is scanned over an image. The output pixel value is the weighted sum of

the input pixels within the window where the weights are the values of the filter assigned

hts is called the convolution

Mathematically, convolution on image can be represented by the following

Equation 5

is the distance from the

is the standard deviation of the Gaussian distribution.

When applied in two dimensions, this formula produces a surface whose contours are

concentric circles with a Gaussian distribution from the center point. Values from this

ibution are used to build a convolution matrix which is applied to the original image.

Each pixel's new value is set to a weighted average of that pixel's neighborhood. The

original pixel's value receives the heaviest weight (having the highest Gaussian value)

and neighboring pixels receive smaller weights as their distance to the original pixel

increases. This results in a blur that preserves boundaries and edges better than other,

is that it supports a virtually infinite variety

of masks, each with its own feature. This flexibility allows many powerful applications.

41

The idea of Gaussian convolution is to use this 2-D distribution as a point spread

function, and this is achieved by convolution. Since the image is stored as a collection of

discrete pixels. A discrete approximation to the Gaussian function is required to perform

the convolution. In theory, the Gaussian distribution is non- zero everywhere, which

would require an infinitely large convolution kernel, but in practice it is effectively zero

more than about three standard deviations from the mean, and so convolution kernel is

truncated.

The 5x5convolution mask has been used by us to get better noise reduction

…..Equation 7

The system generator model created to get the results is shown

Figure

The images obtained after applying the

Since the convolution mask is fixed for the whole image a dedicated hardware can be

designed. Some of the window coefficients are contains multiple of 2. The multiplication

42

The system generator model created to get the results is shown in figure 3.10

Figure 3.10 – System Generator Model for Guassian Filter

The images obtained after applying the noise reduction are shown in figure

Figure 3.11 –Results

Since the convolution mask is fixed for the whole image a dedicated hardware can be

designed. Some of the window coefficients are contains multiple of 2. The multiplication

3.10.

noise reduction are shown in figure 3.11.

Since the convolution mask is fixed for the whole image a dedicated hardware can be

designed. Some of the window coefficients are contains multiple of 2. The multiplication

of these coefficients with the corresponding pixels in the window can be carried ou

left shift operations and the non powers of 2 digits can be implemented using multiplier

less multiplication.

 Division is also very expensive operation on FPGA, instead of using division operator it

is much simple to use right shift operator, so

divide by 115.

3.4.4 Image Matching

Matching technique used was hausdorff Distance transform.

the Hausdorff distance

distance,
[1]

 measures how far two

the set of non-empty compact

right. It is named after Felix Hausdorff

Informally, two sets are close in the Hausdorff distance if every point of either set is close

to some point of the other set. The Hausdorff distance is the longest

forced to travel by an adversary who chooses a point in one of the two sets, from where

you then must travel to the other set. In other words, it is the farthest point of a set that

you can be to the closest point of a different set.

It may be defined as: Let

define their Hausdorff distance

where sup represents the

43

of these coefficients with the corresponding pixels in the window can be carried ou

left shift operations and the non powers of 2 digits can be implemented using multiplier

Division is also very expensive operation on FPGA, instead of using division operator it

is much simple to use right shift operator, so a divide by 128 was implemented instead of

Matching technique used was hausdorff Distance transform.

Hausdorff distance, or Hausdorff metric, also called Pompeiu

measures how far two subsetsof a metric space are from each other. It turns

compact subsets of a metric space into a metric space in its own

Felix Hausdorff.

Informally, two sets are close in the Hausdorff distance if every point of either set is close

to some point of the other set. The Hausdorff distance is the longest distance you can be

forced to travel by an adversary who chooses a point in one of the two sets, from where

you then must travel to the other set. In other words, it is the farthest point of a set that

you can be to the closest point of a different set.

Let X and Y be two non-empty subsets of a metric space (

define their Hausdorff distance d H(X, Y) by

…..Equation 8

 supremum and inf the infimum.

of these coefficients with the corresponding pixels in the window can be carried out using

left shift operations and the non powers of 2 digits can be implemented using multiplier

Division is also very expensive operation on FPGA, instead of using division operator it

a divide by 128 was implemented instead of

Matching technique used was hausdorff Distance transform. In mathematics,

Pompeiu–Hausdorff

are from each other. It turns

subsets of a metric space into a metric space in its own

Informally, two sets are close in the Hausdorff distance if every point of either set is close

distance you can be

forced to travel by an adversary who chooses a point in one of the two sets, from where

you then must travel to the other set. In other words, it is the farthest point of a set that

empty subsets of a metric space (M, d). We

Equation 8

Equivalently

where

That is, the set of all points within

radius ε around X).

In computer vision, the Hausdorff distance can be used to find a given template in an

arbitrary target image. The template and image are

detector giving a binary image

template is treated as a point in a set, the "shape" of the template. Similarly, an area of the

binary target image is treated as a set of points.

44

, …………….Equation

 ,…………………………Equation 10

is, the set of all points within ε of the set X (sometimes called a generalized ball of

Figure 3.12 – Hausdorff Transform Model

, the Hausdorff distance can be used to find a given template in an

arbitrary target image. The template and image are often pre-processed via an

binary image. Next, each 1 (activated) point in the binary image of the

template is treated as a point in a set, the "shape" of the template. Similarly, an area of the

binary target image is treated as a set of points.

Equation 9

Equation 10

(sometimes called a generalized ball of

, the Hausdorff distance can be used to find a given template in an

processed via an edge

inary image of the

template is treated as a point in a set, the "shape" of the template. Similarly, an area of the

45

The algorithm then tries to minimize the Hausdorff distance between the template and

some area of the target image. The area in the target image with the minimal Hausdorff

distance to the template can be considered the best candidate for locating the template in

the target.In Computer Graphics the Hausdorff distance is used to measure the difference

between two different representations of the same 3D object particularly when

generating level of detail for efficient display of complex 3D models.

46

CHAPTER 4

APPLICATION DEVELOPMENT AND WORKING:

4.1 MAIN MENU

The figure 4.1 shows the main menu of the graphical user interface. It contains the

buttons for creating a new user, verifying an existing user, deleting an existing user and

closing the program.

Figure 4.1 Main menu

47

4.2 ADD NEW USER

Figure 4.2 Add user

4.3 IDENTIFICATION

Figure 4.3 Identification

48

4.4 MATCHING

Figure 4.4 Matching

4.5 RESULTS:

The database has been compiled .Among which asubject ischosen to show the following

development of software part:

Acquired image as shown in figure 4.5

Figure 4.5 Sample from data base

49

Extracted features are shown in figure 4.6.

Figure 4.6 Extracted Features

Recognition rates of up to 80% of correctly classified people out of 50 attempts were

achieved by the program, further adding to the notion that hand vein can be used

as a biometric. We are sure that with more advanced classification techniques, higher

rates of recognition could have been achieved.

4.6 FUTURE IMPROVMENTS:

A memory module can be directly interfaced with FPGA board to enhance the memory

and reduce the data transfer delays. Hardware language can be written to accelerate the

time taken for image to be processed. By doing so, time to process a hand vein image can

be reduced. A script file can be written in order to execute front end and back end. At the

moment, front end and back end are executed separately. And execution of front end and

50

back end separately is really troublesome sometimes. The best of results can be achieved

by interfacing a webcam directly with the fpga board so that the time delay for capturing

an image and sending it to fpga board can be minimized. The total processing time of

implementation of project on fpga can also be reduced by using a more powerful fpga

board but that will increase the cost. So a compromise between performance and cost has

to be made for effective implementation.

51

REFRENCES

1. P. C. Eng and M. K. Hani, “Hand Vein Biometric Authentication System," in IEEE

TENCON 2009, Singapore, 2009.

2. Zhang Yu, Han Xiao and Ma Si Liang, “ Feature Extraction of Hand- Vein Patterns

Based on Rigelet Transform and Local Interconnection Structure Neural Network”,

Springer-Verlag Berlin Heidelberg 2006

3. Wang Lingyu, Leedham Graham and David Cho Siu-Yeung, “ Minutiae Feature

Analysis for Infrared Hand Vein Pattern Biometrics”, Pattern Recognition Society,

Elsevier, July 2007

4. Chen Liukui, Zheng Hong, Li Li, XiePeng and Liu Shuo, “ Near-infrared Dorsal hand

Vein Image Segmentation by Local Thresholding Using Grayscale Morphology,”

IEEEXplore

5. SuleymanMalki and Spaaneburg Lambert, “Hand Veins Feature Extraction Using DT-

CNNS”, Lund University (Lund Sweeden)

6. Wang Kejun, Ding Yuhang and Zhuang Dayan, “A Study of Hand Vein Recognition

Method,” International Conference on Mechatronics and Automation, July 2205

7. http://www.hitachi-ics.co.jp/product/english/about_fv.htm

8. Penny Khaw, “Iris Technology For Improved Authentication”, SANS Security

Essentials (GSEC), 2002

9. Lu Xiaoguang, “Image Analysis for Face Recognition”, Michigan State University,

East Lansing

52

10.http://dsonline.computer.org/portal/cms_docs_dsonline/dsonline/topics/os/embedded

11. http://en.wikipedia.org/wiki/Universal_Serial_Bus

12. http://en.wikipedia.org/wiki/Real-time_operating_system

13. http://en.wikipedia.org/wiki/Command-line_interface

14. http://www.spiritus-temporis.com/command-line-interface/disadvantages-of-a-

command-line-interface.html

15. www.micahcarrick.com

53

APPENDIX A

-Source Code of the GUI for Main Menu-

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @Main_OpeningFcn, ...
'gui_OutputFcn', @Main_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Main is made visible.
function Main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Main (see VARARGIN)

% Choose default command line output for Main
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Main wait for user response (see UIRESUME)
% uiwait(handles.figure1);
[a,map]=imread('gui_button_frame_clip_art_9825.jpg');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/493);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.NewUser,'CData',g);

[a,map]=imread('gui_button_frame_clip_art_9825.jpg');

54

[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/493);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.Verify,'CData',g);

[a,map]=imread('gui_button_frame_clip_art_9825.jpg');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/493);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.DeleteAUser,'CData',g);

[a,map]=imread('orange.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/493);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.Close,'CData',g);

% --- Outputs from this function are returned to the command line.
function varargout = Main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in Close.
function Close_Callback(hObject, eventdata, handles)
% hObject handle to Close (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all
delete all
close(gcf)

% --- Executes on button press in NewUser.
function NewUser_Callback(hObject, eventdata, handles)
% hObject handle to NewUser (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

AddnewUser

55

% --- Executes on button press in Verify.
function Verify_Callback(hObject, eventdata, handles)
% hObject handle to Verify (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all
delete all
identification

% --- Executes on button press in DeleteAUser.
function DeleteAUser_Callback(hObject, eventdata, handles)
% hObject handle to DeleteAUser (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
prompt = {'Enter your name:','Enter your course:'};
dlg_title = 'Input for new entry database';
num_lines = 1;
def = {'name','course'};
answer = inputdlg(prompt,dlg_title,num_lines,def);
deleteuser(answer(1),answer(2))
%addnewpic(answer(1),answer(2),image)

% --- Executes during object creation, after setting all properties.

% --- Executes during object creation, after setting all properties.
function axes3_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
ax1=gcbo
axes(ax1)
figure_handle=gcf
set(figure_handle, 'Position', get(0,'ScreenSize'))
imshow('Blue hills.jpg')
% Hint: place code in OpeningFcn to populate axes3

% --- Executes during object creation, after setting all properties.
function axes5_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes5
ax1=gcbo
axes(ax1)
imshow('Blue hills.jpg')

% --- Executes during object creation, after setting all properties.
function axes6_CreateFcn(hObject, eventdata, handles)

56

% hObject handle to axes6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes6

% --- Executes during object creation, after setting all properties.
function sumthing_CreateFcn(hObject, eventdata, handles)
% hObject handle to sumthing (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate sumthing

ax2=gcbo
axes(ax2)
imshow('blue_001_001_1024x768.jpg')

% --- Executes during object creation, after setting all properties.
function logo_CreateFcn(hObject, eventdata, handles)
% hObject handle to logo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate logo
ax3=gcbo
axes(ax3)
imshow('logo.jpg')

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

57

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as
a double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all properties.
function army_CreateFcn(hObject, eventdata, handles)
% hObject handle to army (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate army
ax4=gcbo
axes(ax4)
imshow('army3.png')

58

APPENDIX B

-Source code for FPGA

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity accum is
 Port (clk,rst : in STD_LOGIC;
 din : in STD_LOGIC_VECTOR (14 downto 0);
 dout : out STD_LOGIC_VECTOR (14 downto 0));
end accum;

architecture Behavioral of accum is
signal reg_p,reg_n:std_logic_vector(14 downto 0):=(others=>'0');
begin
process(clk,rst)
begin
if rst='1' then
reg_p<=(others=>'0');
elsif rising_edge(clk) then
reg_p<=reg_n;
end if;
end process;
reg_n<="111111111111111" when reg_p="111111111111111" else
reg_p+din;
dout<=reg_p;

end Behavioral;

entity ander is
 Port (clk : in STD_LOGIC;
 a : in STD_LOGIC_VECTOR (13 downto 0);
 b : in STD_LOGIC_VECTOR (13 downto 0);
 c : out STD_LOGIC_VECTOR (13 downto 0));
end ander;

architecture Behavioral of ander is

59

begin
process(clk)
begin
if rising_edge(clk) then
c<=(a and b);
end if;
end process;

end Behavioral;

entity ASCII is
 Port (din : in STD_LOGIC_VECTOR (3 downto 0);
 dout : out STD_LOGIC_VECTOR (7 downto 0));
end ASCII;

architecture Behavioral of ASCII is

begin

dout<="0000" & din;
end Behavioral;

entity Baud_rate is
 Port (clk : in STD_LOGIC;
 tick : out STD_LOGIC);
end Baud_rate;

architecture Behavioral of Baud_rate is
signal count_p,count_n:std_logic_vector(7 downto 0):="00000000";
begin
process(clk)
begin
if rising_edge(clk) then
count_p<=count_n;
end if;
end process;
count_n<="00000000" when count_p="10100011"
else count_p+"00000001";

tick<='1' when count_p="10100011"
else '0';
end Behavioral;

ntity Bin2Ascii is
 Port (din : in STD_LOGIC_VECTOR (3 downto 0);
 dout : out STD_LOGIC_VECTOR (7 downto 0));
end Bin2Ascii;

architecture Behavioral of Bin2Ascii is

begin

60

end Behavioral;

entity calculator is
 Port (rst : in STD_LOGIC;
 clk : in STD_LOGIC;
 load_FHD : in STD_LOGIC;
 load_RHD : in STD_LOGIC;
 din : in STD_LOGIC_VECTOR (4 downto 0);
 load: out STD_LOGIC;
 HD : out STD_LOGIC_VECTOR (10 downto 0);
 FHD : out STD_LOGIC_VECTOR (10 downto 0);
 RHD : out STD_LOGIC_VECTOR (10 downto 0));
end calculator;

architecture Behavioral of calculator is
type state is (s0,s1,s2);
signal prsnt_state,nxt_state:state:=s0;
signal count_p,count_n:integer:=0;
signal load_p,load_n:std_logic:='0';
signal temp_p,temp_n:std_logic_vector(4 downto 0):=(others=>'1');
signal FHD_p,FHD_n,RHD_p,RHD_n,HD_p,HD_n:std_logic_vector(10
downto 0):=(others=>'0');
begin
process(clk,rst)
begin
if rst='1' then
prsnt_state<=s0;
count_p<=0;
temp_p<=(others=>'1');
FHD_p<=(others=>'0');
RHD_p<=(others=>'0');
elsif rising_edge(clk) then
prsnt_state<=nxt_state;
count_p<=count_n;
temp_p<=temp_n;
FHD_p<=FHD_n;
RHD_p<=RHD_n;
HD_p<=HD_n;
load_p<=load_n;
end if;
end process;

process(prsnt_state,din,count_p,temp_p,FHD_p,RHD_p,load_FHD,load_
RHD,HD_p)
begin
nxt_state<=prsnt_state;
count_n<=count_p;
temp_n<=temp_p;
FHD_n<=FHD_p;
RHD_n<=RHD_p;
HD_n<=HD_p;

61

load_n<='0';

case prsnt_state is

--calculate forward hd--
when s0=>
load_n<='0';
if count_p=120 then
count_n<=0;
temp_n<=(others=>'1');
nxt_state<=s1;
elsif load_FHD='1' then
temp_n<=(others=>'1');
FHD_n<=FHD_p+temp_p;
count_n<=count_p+1;
elsif din<temp_p then
temp_n<=din;
end if;

--calculate reverse hd--
when s1=>
if count_p=120 then
count_n<=0;
temp_n<=(others=>'1');
nxt_state<=s2;
elsif load_RHD='1' then
temp_n<=(others=>'1');
RHD_n<=RHD_p+temp_p;
count_n<=count_p+1;
elsif din<temp_p then
temp_n<=din;
end if;
--take maximume--
when s2=>
if RHD_p > FHD_p then
HD_n<=RHD_p;
else
HD_n<=FHD_p;
end if;
FHD_n<=(others=>'0');
RHD_n<=(others=>'0');
load_n<='1';
nxt_state<=s0;

end case;
end process;
FHD<=FHD_p;
RHD<=RHD_p;
HD<=HD_p;
load<=load_p;
end Behavioral;

62

entity clker is
 Port (clk : in STD_LOGIC;
 clkout : out STD_LOGIC);
end clker;

architecture Behavioral of clker is
signal reg_p,reg_n:std_logic:='0';
begin
process(clk)
begin
if rising_edge(clk)
then
reg_p<=reg_n;
end if;
end process;
reg_n<=not(reg_p);
clkout<=reg_p;
end Behavioral;

63

APPENDIX C

-Source Code for Identification Window -

function varargout = Identification(varargin)
% IDENTIFICATION M-file for Identification.fig
% IDENTIFICATION, by itself, creates a new IDENTIFICATION or
raises the existing
% singleton*.
%
% H = IDENTIFICATION returns the handle to a new IDENTIFICATION or
the handle to
% the existing singleton*.
%
% IDENTIFICATION('CALLBACK',hObject,eventData,handles,...) calls
the local
% function named CALLBACK in IDENTIFICATION.M with the given input
arguments.
%
% IDENTIFICATION('Property','Value',...) creates a new
IDENTIFICATION or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Identification_OpeningFcn gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Identification_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Identification

% Last Modified by GUIDE v2.5 03-Feb-2012 13:42:38

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @Identification_OpeningFcn, ...
'gui_OutputFcn', @Identification_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

64

else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Identification is made visible.
function Identification_OpeningFcn(hObject, eventdata, handles,
varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Identification (see VARARGIN)

% Choose default command line output for Identification
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Identification wait for user response (see UIRESUME)
% uiwait(handles.figure1);
global B1
setappdata(0,'IdentifyGUI',gcf);

[a,map]=imread('orange.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.Back,'CData',g);

[a,map]=imread('orange.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.Capture,'CData',g);

[a,map]=imread('orange.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.Identify,'CData',g);

[a,map]=imread('orange.png');
[r,c,d]=size(a);
x=ceil(r/57);

65

y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.ExtractFeature,'CData',g);

% --- Outputs from this function are returned to the command line.
function varargout = Identification_OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in StartAcq.
function StartAcq_Callback(hObject, eventdata, handles)

if get(hObject, 'userdata') == 0, % video is closed
 imaqreset;

 Obj= videoinput('winvideo', 2,'YUY2_640x480');
 preview(Obj);
 set(hObject, 'string', 'Stop Acquisition');
 set(hObject, 'userdata', 1);
 guidata(hObject, handles);
 IdentifyGUI=getappdata(0,'IdentifyGUI');
 setappdata(IdentifyGUI,'vid',Obj);
return
else
 IdentifyGUI=getappdata(0,'IdentifyGUI');
 video=getappdata(IdentifyGUI,'vid');
 delete(video);

 set(hObject, 'string', 'Start Acqusition');
 set(hObject, 'userdata', 0);
 guidata(hObject, handles);

return
end

% --- Executes on button press in Capture.
function Capture_Callback(hObject, eventdata, handles)
% hObject handle to Capture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global B1
axes(handles.CapturedImg)
IdentifyGUI=getappdata(0,'IdentifyGUI');
video=getappdata(IdentifyGUI,'vid');

66

%capturedimg=imread('C:\Users\GoldenEagles\Desktop\database\database\da
tabase\a.jpg')
capturedimg = getsnapshot(video);
capturedimg=YUY2toRGB(capturedimg);
capturedimg=rgb2gray(capturedimg);
imshow(capturedimg);
capturedimg=imresize(capturedimg,[120 160]);
setappdata(IdentifyGUI,'image',capturedimg);

% --- Executes on button press in ExtractFeature.
function ExtractFeature_Callback(hObject, eventdata, handles)
% hObject handle to ExtractFeature (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
IdentifyGUI=getappdata(0,'IdentifyGUI');
capturedimg=getappdata(IdentifyGUI,'image');
cropimg=capturedimg;

minutaepnts=im2serial(cropimg)

setappdata(IdentifyGUI,'crpimg',cropimg);
setappdata(IdentifyGUI,'minutaepoints',minutaepnts);

% --- Executes on button press in Identify.
function Identify_Callback(hObject, eventdata, handles)
% hObject handle to Identify (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
matching

% --- Executes on button press in Back.
function Back_Callback(hObject, eventdata, handles)
% hObject handle to Back (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
IdentifyGUI=getappdata(0,'IdentifyGUI');
video=getappdata(IdentifyGUI,'vid');
delete(video)
close(gcf)
Main

% --- Executes during object creation, after setting all properties.
function CapturedImg_CreateFcn(hObject, eventdata, handles)
% hObject handle to CapturedImg (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate CapturedImg

67

% --- Executes during object creation, after setting all properties.
function axes5_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes5

% --- Executes during object creation, after setting all properties.
function axes6_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes6
axes(hObject)
imshow('686817.jpg')

% --- Executes during object creation, after setting all properties.
function axes9_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes9
imshow('logo4.jpg')

% --- Executes during object creation, after setting all properties.
function input_CreateFcn(hObject, eventdata, handles)
% hObject handle to input (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate input

% --- Executes during object creation, after setting all properties.
function background_CreateFcn(hObject, eventdata, handles)
% hObject handle to background (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

68

% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate background

% --- Executes on button press in start.
function start_Callback(hObject, eventdata, handles)
% hObject handle to start (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Obj= videoinput('winvideo', 2);

 preview(Obj);
 IdentifyGUI=getappdata(0,'IdentifyGUI');
 setappdata(IdentifyGUI,'vid',Obj);

 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function axes11_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: place code in OpeningFcn to populate axes11
axes(hObject)
imshow('asdaf.jpg')

function ST6_Callback(hObject, eventdata, handles)
% hObject handle to ST6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ST6 as text
% str2double(get(hObject,'String')) returns contents of ST6 as a
double

% --- Executes during object creation, after setting all properties.
function ST6_CreateFcn(hObject, eventdata, handles)
% hObject handle to ST6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

69

 set(hObject,'BackgroundColor','white');
end

function ST7_Callback(hObject, eventdata, handles)
% hObject handle to ST7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ST7 as text
% str2double(get(hObject,'String')) returns contents of ST7 as a
double

% --- Executes during object creation, after setting all properties.
function ST7_CreateFcn(hObject, eventdata, handles)
% hObject handle to ST7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

70

APPENDIX D

-Source Code for Matching Window-

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @matching_OpeningFcn, ...
'gui_OutputFcn', @matching_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before matching is made visible.
function matching_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to matching (see VARARGIN)

% Choose default command line output for matching
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes matching wait for user response (see UIRESUME)
% uiwait(handles.figure1);
axes(handles.LoadedImage)
imshow('05.jpg')
axes(handles.MatchingImage)
imshow('06.jpg')

[a,map]=imread('blue.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.MinutaePointMatch,'CData',g);

[a,map]=imread('blue.png');
[r,c,d]=size(a);
x=ceil(r/57);

71

y=ceil(c/200);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.LoadImage,'CData',g);

[a,map]=imread('blue.png');
[r,c,d]=size(a);
x=ceil(r/57);
y=ceil(c/237);
g=a(1:x:end,1:y:end,:);
g(g==255)=5.5*255;
set(handles.HammingDistMatch,'CData',g);

% --- Outputs from this function are returned to the command line.
function varargout = matching_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in LoadImage.
function LoadImage_Callback(hObject, eventdata, handles)
% hObject handle to LoadImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.LoadedImage)
IdentifyGUI=getappdata(0,'IdentifyGUI');
capturedimg=getappdata(IdentifyGUI,'image');

imshow(capturedimg)

% IdentifyGUI=getappdata(0,'IdentifyGUI');
% capturedimg=getappdata(IdentifyGUI,'image');
% imshow(capturedimg)
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in MinutaePointMatch.
function MinutaePointMatch_Callback(hObject, eventdata, handles)
% hObject handle to MinutaePointMatch (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

72

axes(handles.MatchingImage);
IdentifyGUI=getappdata(0,'IdentifyGUI');
minutaepnts=getappdata(IdentifyGUI,'minutaepoints');
s=getappdata(IdentifyGUI,'s');

axes(handles.MatchingImage);
[s,b]=mtchminutae(minutaepnts)
stopasync(s);
fclose(s);
delete(s);
TF = isempty(b);
if TF==1
 b=b-1
end
display

% --- Executes on button press in HammingDistMatch.
function HammingDistMatch_Callback(hObject, eventdata, handles)
% hObject handle to HammingDistMatch (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%IdentifyGUI=getappdata(0,'IdentifyGUI');
%cropimg=getappdata(IdentifyGUI,'crpimg');

close all
delete all
closepreview
identification

