

WIRELESS MULTIMEDIA SENSOR NETWORK USING MICAz MOTES

By

Hamna Anwar

Hamza Tariq Khan

Submitted to the Faculty of Electrical Engineering, Military College of Signals,

National University of Science and Technology, Rawalpindi in partial

fulfillment for the requirements of a B.E. Degree in Telecommunication

Engineering

JUNE 2012

It is hereby certified that the project is duly completed by a group of EE

department under the supervision of Lecturer ObaidUllah Khalid.

Name: Lecturer ObaidUllah Khalid

 Date: ______________________________________

ABSTRACT

WIRELESS MULTIMEDIA SENSOR NETWORK USING MICAz MOTES

Wireless Multimedia Sensor Network (WMSN) employs multimedia gathering

devices connected to a low power, low bandwidth sensor network. These networks

are a step ahead of the WSNs, which only cater for scalar data.

A camera is integrated to a MICAz mote through the interfacing circuitry. The

microcontroller buffers the image and sequentially passes it to the attached mote.

This mote transmits the information to the base station mote via multi hopping

through a relay mote. The base station aggregates the data from the sensor network

and sends it on to a PC or computing device through the MIB600CA gateway. The

application accepts data from the TCP socket and processes it into the required

form. WMSNs can support a lot of diverse applications but for the project a

prototype is designed to support traffic monitoring and control. The methodology to

dynamically change the duration of the traffic signals is the intended solution for

regulating and managing traffic.

iv

DEDICATION

Allah, beginning with the Name of – The Most Gracious, The Most Merciful

To our parents

v

ACKNOWLEDGEMENTS

Praise be to Allah, who has showered more blessings than can be realized. The

group members are grateful to their parents whose support got them going in the

bleakest of hours and to their friends for their words of encouragement.

Due extension of gratitude to the project supervisor Lecturer Obaid-Ullah Khalid for

his continuous technical guidance and moral support throughout the project. His

calm nature ensured smooth work and his composed manner helped in working

around obstacles with perseverance.

Special thanks to Sir Fauzan Marwat who helped jump start the work in tinyOS. Maj.

Dr. Adnan Rashdi indebted the group members by his help and support and his

encouraging smile. The group members also thank Maj. Dr. Muhammad Faisal for

his proper guidance towards help. The Department of EE, especially Lt. Col. Umar

Khalid facilitated with flexible lab timings and the group owes him words of

gratitude. It would be cold to not appreciate the Lab Attendants of Broadband and

Networking Lab; Naveed-ur-Rahman and Shakir Mehmood for their patience for

working off the hours.

Special thanks to Professor Bruce Land and Under-Graduate Brian Harding for

addressing the queries on the image grabber over emails.

vi

DECLARATAION

No portion of the work presented in this dissertation has been submitted in support

of another award or qualification either at this institution or elsewhere.

vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi
LIST OF TALBES .. xii
ABBREVATIONS USED .. xiii
Chapter 1.……...…1
INTRODUCTION .. 1

1.1 Background .. 1
1.2 Project Overview ... 2
1.3 Objectives.. 3
1.4 Outline Of Tasks ... 3
1.5 Platforms Used ... 4
1.6 Organization Of The Document ... 4

CHAPTER 2…………………………………………………………………………………………………...…………….6
LITERATURE REVIEW .. 6

2.1 Introduction ... 6
2.2 Communication Protocols .. 6

2.2.1 IEEE 802.15.4.. 6
2.2.2 Serial Communication ... 10

2.2.2.1 UART .. 11
2.2.2.2 SPI ... 12
2.2.2.3 I2C ... 14

2.2.3 TCP/IP Communication .. 15
2.3 Camera Specifications .. 17

2.3.1 Progressive Scan Read Out Mode ... 17
2.3.2 CIF/QCIF Resolution .. 17

2.4 Memory .. 18
2.4.1 EEPROM .. 18
2.4.2 SRAM .. 18
2.4.3 Flash Memory ... 19

2.5 Composition Of Image ... 19
2.5.1 Gray Scale Image ... 20

2.6 Review Of The Studied Wireless Sensor Networks ... 20
2.6.1 Cyclops ... 20

viii

2.6.2 Wireless Smart Camera (WiCa) .. 21
2.6.3 MeshEye .. 21
2.6.4 Meerkats ... 21
2.6.5 Explorebots.. 22
2.6.6 SensEye ... 22
2.6.7 WSN At BWN Laboratory, Georgia Tech .. 22

Chapter 3……………………………………………………………………….…………………………………………24
NETWORK TOPOLOGY and DESIGN ... 24

3.1 Overview ... 24
3.2 Modules ... 25

3.2.1 CMOS Camera ... 25
3.2.2 Image Grabber .. 26
3.2.3 MDA100CB Data Acquisition Board .. 27
3.2.4 MPR2400CB IEEE802.15.4/ ZigBee Compliant MICAz Motes (2.4GHz) 28

3.2.4.1 Visual Sensor Node .. 29
3.2.4.2 Intermediate Mote ... 29
3.2.4.3 Base Station Mote ... 30

3.2.5 MIB600CA Ethernet Gateway .. 30
3.2.6 PC/ Other Computational Device ... 31
3.2.7 Traffic Controller Circuitry ... 32

3.3 System Design Block Diagram .. 33
3.4 Project Overview ... 34
3.5 Conclusion .. 35

Chapter 4……………………………………………………………...…………………………………………………..36
WIRELESS NETWORK OF MICAz MOTES... 36

4.1 Overview ... 36
4.2 Operating System For Programming MICAz Motes... 36
4.3 Installation Of TinyOS And nesC Compiler ... 37
4.4 Connection Specifications In Lantronix ... 39
4.5 MICAz Motes For Data Transmission .. 39

4.5.1 Visual Sensor Module .. 40
4.5.2 Intermediate Module ... 40
4.5.3 Base Station Module... 40

4.6 Listen Tool .. 41
4.7 Creating A TCP/IP Server ... 42
4.8 Packet Structure ... 43
4.9 Importing Data To The Application ... 44

ix

4.10 Data Rate Optimization .. 44
4.11 Conclusion.. 47

CHAPTER 5……………………………………………………………………………………………………...………..48
IMAGE ACQUISITION ... 48

5.1 Introduction ... 48
5.2 Programming The Microcontroller .. 48

5.2.1 Interfacing With Camera C3088 ... 48
5.2.2 Interfacing With Flash ... 49
5.2.3 Interfacing With The MICAz Mote .. 50
5.2.4 Schematic Diagram ... 51

5.3 Other Features .. 52
5.4 Conclusion .. 53

CHAPTER 6……………………………………………………………...………………………………………………..54
PROCESSING IN MATLAB ... 54

6.1 Introduction ... 54
6.2 Receiving Data’s Packet Structure .. 54
6.3 Application Development... 55

6.3.1 Background Subtraction Algorithm .. 57
6.3.2 Template Matching Algorithm ... 58
6.3.3 Difference Between The Algorithms ... 58
6.3.4 Results ... 59

6.4 GUI ... 60

 6.5 Conclusion………..…………………………………………………………………………………………………..61

CHAPTER 7…….62
FUTURE WORK AND CONCLUSION ... 62

7.1 Introduction ... 62
7.2 Project Limitations .. 62
7.3 WMSN Advantages And Applications.. 62

7.3.1 Surveillance ... 63
7.3.2 Environmental Monitoring ... 63
7.3.3 Advanced Healthcare Delivery .. 64
7.3.4 Industrial Process Control ... 64

7.4 Testing And Validation .. 64
7.5 Conclusion .. 65

APPENDIX A- nesC CODE FOR MICAz MOTE IN VISUAL SENSOR NODE 66
APPENDIX B- nesC CODE FOR RELAY MICAz MOTE .. 69
APPENDIX C- nesC CODE FOR BASE STATION MICAz MOTE .. 72

x

APPENDIX D- C CODE FOR MICROCONTROLLER ATmega644 in AVR Studio 5.0 77
APPENDIX E- MESSAGES FROM BASE STATION MOTE TO VISUAL SENSOR NODE 84
APPENDIX F- MATLAB GUI CODE .. 85
BIBLIOGRAPHY ... 102

xi

LIST OF FIGURES

2.1 DSSS ... 9
2.2 UART Bit Sequence .. 12
2.3 SPI Connections ... 13
2.4 SPI Communication ... 13
2.5 I2C Communication ... 15
3.1 CMOS C3088 Camera .. 25
3.2 ATmega644 ... 26
3.3 Flash Memory .. 26
3.4 MDA100CB .. 27
3.5 Pinout Table for MDA100CB .. 27
3.6 MICAz Mote ... 28
3.7 Connections For Visual Sensor Node ... 29
3.8 MIB600 ... 31
3.9 Application .. 32
3.10 Communication Protocols Used .. 33
3.11 System Block Diagram ... 34
4.1 Mote And MIB600 Connection .. 38
4.2 Lantronix Setup ... 38
4.3 Lantronix UART Settings ... 38
4.4 Ping To IP Of The MIB600 ... 39
4.5 Packets Received .. 42
4.6 SerialFowarder Window ... 43
4.7 Increased Packet Length In MATLAB ... 45
4.8 Dropped Packets, Counter Value Changes From EB To F1 ... 46
5.1 VSYNC And HREF Clock Signals .. 49
5.2 How The Microcontroller Writes To The Flash ... 50
5.3 Schematic Diagram .. 51
5.4 Control Message Structure From Base Station To Visual Sensor Node 52
6.1 Packet Structure.. 55
6.2 Array Of One Complete Image ... 55
6.3 Background Subtraction Results .. 59
6.4 Template Matching Results .. 60
6.5 GUI .. 61

Figure No. Page No.

xii

LIST OF TALBES

4.1 Packet Structure ... 43
E.1 Control Messages……………………………………………………………………………………………………..84

Table No. Page No.

xiii

ABBREVATIONS USED

DSSS Direct Sequence Spread Spectrum

GTS Guaranteed Time Slot

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

ISM Industrial Scientific Medical

PAN Personal Area Network

PC Personal Computer

POE Power Over Ethernet

QoS Quality of Service

RF Radio Frequency

RS232 Recommended Standard 232

TCP/IP Transmission Control Protocol/ Internet Protocol

UART Universally Asynchronous Receiver/ Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

WSN Wireless Sensor Network

WMSN Wireless Multimedia Sensor Network

1

Chapter 1

INTRODUCTION

1.1 Background

Wireless Sensor Networks are an evolving technology in the field of distributed

computing and sensor based networks. The network can consist of many nodes,

which can be equipped with any type of sensor to gather data and distribute control

commands. Traditionally, these networks had been restricted to gathering and

working with scalar data, such as temperature and humidity levels. This definition is

changing by using the sensor networks to gather multimedia information.

Multimedia information comprises of video, audio and still images.

The distinguishing characteristics of a wireless scalar sensor network which

challenged wireless multimedia sensor network are the low cost of hardware,

installation and setup of the network. It is a low power consuming, low bandwidth

system where high latency is acceptable with regards to scalar data, application

specific QoS (Quality of Service) is not required to be implemented and there is no

requirement of source coding techniques for scalar data transmission. Also, an

unreliable link can be used to transmit scalar data.

These and other such features present a challenge for enabling wireless multimedia

sensor network. A few of the challenges/requirements are that it requires

application specific QoS, multimedia information requires high bandwidth,

multimedia source encoding techniques are required, multimedia in-processing

system is required for reducing transmission of redundant information, power

2

consumption must be kept at a minimum when transmitting multimedia content

and that the network architecture must be flexible to support heterogeneous

applications and hardware.

These concepts were kept in mind while developing a wireless multimedia sensor

network. For the project, still images were selected as the type of multimedia

information.

1.2 Project Overview

The project demonstrates a Wireless Multimedia Sensor Networks using MICAz

motes. Still images were selected as the type of multimedia information. The sensor

network consists of the nodes, MICAz mote. Every edge mote is interfaced with a

CMOS (Complementary Metal-Oxide Semiconductor) camera through the data

acquisition board thus making a visual node. The camera captures images and the

visual sensor node transmits it to a base station. Motes can be made to relay the data

between the visual node and the base station. The multimedia data, after traversing

the network reaches the base station. The sink gets the data from a base station and

further process/saves it. The sink is a computer or any other computational device.

The sink acts as the central computational and monitoring platform. The application

running on the sink receives data from the TCP/IP (Transmission Control Protocol/

Internet Protocol) socket, processes and displays it accordingly. The application

enables viewing of the situation at the visual sensor node by displaying the image.

The images are also stored in the sink for future reference. Finally, the central/base

station mote can not only receive data form the sensor network but also send

3

commands from the user at the sink to the edge visual sensor node. Thus, the

network can be centrally controlled and configured.

To demonstrate application of this project, the architecture is used to monitor road

traffic at traffic signals. The visual sensor nodes are stationed at the traffic signal.

Images will be taken at the time of red traffic light, and sent to the PC (Personal

Computer). These images are processed to determine the duration of green traffic

signal. Higher the volume of traffic, longer will be the duration of the green traffic

signal and vice versa.

1.3 Objectives

Firstly, configure the wireless sensor nodes, MICAz motes, in their own operating

system, TinyOS, and programming language, nesC. Develop a sensor network using

MICAz motes, interface imaging device with the MICAz motes through the data

acquisition board, MDA100CB. Then, develop an application software to receive,

process and display the images and store them for a record. Develop a user friendly

GUI (Graphical User Interface), optimize the system in a way that it leads to as low

latency as possible. Finally, show the working of the whole architecture for a specific

application.

1.4 Outline Of Tasks

The project started with literature review, where IEEE (Institute of Electrical and

Electronics Engineers) research papers were studied to understand the

architecture, hardware, topologies and deployment strategies of Wireless

Multimedia Sensor Networks. Particular features of many sensor networks were

4

studied and the architecture of visual nodes used were analyzed. This enabled

selecting suitable network architecture and the hardware to meet the project

requirement. Further study was conducted on the selected hardware. Then the

hardware was appropriately coded and configured using hardware specific

operating systems and programming languages.

An application was developed in MATLAB to process the incoming multimedia data

from the sensor network. Finally, all the modules and hardware elements were

individually optimized and then integrated. Every stage of integration was tested

and thoroughly debugged. A user friendly GUI was developed for ease of operation

and to make the system more interactive. Finally, the sensor network system was

deployed for a model traffic signal, tested and optimized as a whole.

1.5 Platforms Used

 Platforms used are AVR Studio 5.0 for programming the image-grabbing

microcontroller. TinyOS, the operating system for the MICAz motes and nesC, the

programming language for MICAz motes are used for the motes. MATLAB is used for

processing the data gathered from the sensor node and Proteus for simulating the

microcontroller and the flash memory.

1.6 Organization Of The Document

Chapter 1 contains the introduction to the project. Chapter 2 highlights the

literature review while Chapter 3 entails the design of the project. Chapter 4 and 5

explain the wireless sensor network and the image acquisition process respectively.

Chapter 6 comprises of the image processing techniques used for the application.

5

Chapter 7 explains the future work, testing and validation and then concludes the

report.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review was carried out to further understand the technologies and

protocols being used by individual components of the project. This helps in

understanding how the components are to be controlled and applied. A literature

review is pivotal in understanding how different components of will be interfaced

and integrated together. Chapter 2 highlights various standards and protocols used

in this project.

2.2 Communication Protocols

The communication protocol used by the MICAz mote on their radio interface is the

IEEE 802.15.4. Therefore, it is essential that the principals and specifications of this

protocol be studied in detail. This helps understanding how the MICAz motes

transmit and receive messages and control information on their radio interface. The

protocol is described in the following section.

2.2.1 IEEE 802.15.4

This is the protocol used by the MICAz motes on the air interface. It is created by the

IEEE. It deals with the physical and medium access control layers of LR-PANs (low

rate personal area networks). IEEE 802.15.4 does not define the working of the

upper layers of the OSI model. It is used with the objective of low cost, low speed

7

ever present communication between nearby devices, which requires minimum

basic infrastructure. This helps in further reducing power consumption.

The features which distinguish the 802.15.4 protocol are low manufacturing cost,

low operation cost, it is technologically simple and flexible protocol. Power

consumption can be further reduced by decreasing the data rates and is used in

applications with low or no QoS requirement. It can supports large network nodes

(less than or equal to 65,000 nodes).

The implemented security levels can be selected form three options, Privacy

(encryption), Sender Authentication and Message Integrity. Handshaking is carried

out to ensure reliability of transfer, beaconless operation is also available. It

employs channel access technique, CSMA-CA (Carrier Sense Multiple Access-

Collision Avoidance). It guarantees time slots in star topology for low latency

devices and supports Star or Peer-to-Peer network topologies. It is capable of

extremely low duty-cycle (less than 10 ppm). IEEE 802.15.4 also implements

Channels Energy Scan (PLME-ED request). Also, sensor nodes can communicate

directly to each other and can be supported on batteries when operating on IEEE

802.15.4.

The frequencies for 802.15.4 are present in three bands which comprises of 27

different channels. Firstly, 16 channels in the 2.4 GHz ISM (Industrial Scientific

Medical) band (2.4 to 2.48GHz) Worldwide. It supports data rates of 250 kbps.

Secondly, 10 channels in the 915 MHz ISM band (902.0-928.0MHz) EEUU. It

supports data rates of 40/250 kbps. Lastly, 1 channel in the 868 MHz band (868.0 -

868.6MHz) Europe. It supports data rates of 20/100/250 kbps.

8

The basic structure considers a 10-meter range with a data rate of 250 kbps. At the

start, lower transfer rates of 20 and 40 kbps were defined. Presently, 100 kbps data

rate is also present. Important features are real-time suitability through GTS

(Guaranteed Time Slot), channel access using CSMA/CA and support for secure

communications.

The characteristics of the physical layer are that it provides the service of data

transmission; it provides an interface for management of physical layer which

provides access to management function of every layer and keeps information

database on the PAN (Personal Area Network). Also, it manages the physical RF

(Radio Frequency) transceiver, selects channels, and carries out energy and signal

management functions.

The characteristics of the medium access control layer are that it provides data

service, provides an interface for management and provides access to the physical

channel and a guarantee of time slots. Furthermore, it takes care of node

associations frame validation.

As mentioned earlier, 802.15.4 implements the Channel Energy Scan (PLME-ED

request). Through this, the energy available in one or several channels is found

before using the channel. The energy of the channel depicts the activity, interference

or noise. This enables saving energy while choosing free channels when setting the

network. There are three different behaviors when facing the energy detection

problem. Firstly, Energy Mode scans the channels and then report the energy which

is present on the channel. Secondly, CCA (Carrier Sense) Mode, scans the medium

instead and informs of the 802.15.4 transmissions. Lastly, CCA and Energy Mode,

9

scans the medium and informs if there are 802.15.4 transmissions above the set

energy threshold.

The 802.15.4 protocol can combat noise because it uses DSSS (Direct Sequence

Spread Spectrum) technique to modulate the information. Signal before and after

DSSS modulation is shown in Figure 1. Each information bit is modulated into four

different signals. This results in a greater bandwidth and lower power spectral

density per signal. Therefore there is lower interference in the frequency bands,

enabling easier detection as well as decoding of signal at the receiver thus

improving SNR (Signal to Noise Ratio).

Many DSSS techniques can be used, depending on the physical limitations of the

circuit and the number of symbols being processed at a time. Examples of DSSS

techniques are BPSK (Binary Phase Shift Keying), O-QPSK (Offset Quadrature Phase

Shift Keying) and PSSS (Parallel Sequence Spread Sequence).

Figure 2.1 DSSS

Along with that, 802.15.4 employs CSMA-CA or GTS technique, preventing all the

devices to start simultaneous transmission.

CSMA-CA is the most common technique. Every node listens to the medium before

transmitting. If the energy found on the transmission medium is higher than a

10

specific/threshold level then the node waits for some random amount of time before

trying again.

The GTS technique employs a central node, a PAN coordinator. This coordinator

hands out time slots out of 16 possible time slots to every node, so they know when

they have to transmit. In the first step, a node sends a GTS request message to the

PAN coordinator. In response, the coordinator sends a beacon message. This beacon

contains the information on allotted slot and the number of assigned slots [1].

The 802.15.4 protocol works with low duty cycles. The transceiver does not need to

be on and powered up all the time, as for most of the time the transceiver is idle

with no packets to transfer. So with low duty cycles, the transceiver can be sleeping

when it is idle, reducing power consumption. The percentage depends on the

communication model used.

2.2.2 Serial Communication

There are various serial protocols being used at different segments of the project.

The protocols used are UART (Universal Asynchronous Receiver/Transmitter), SPI

(Serial Peripheral Interface) and I2C (Inter-Integrated Circuit). A thorough

understanding of the protocols is required to understand the working of the

modules. It makes the implementation of the individual segments easier as well as

their integration. UART is being used between the microcontroller and the

MDA100CB Data Acquisition Board, and also between the MDA100CB Data

Acquisition Board and the MICAz mote. UART communication enabled transmission

and reception of packets to and from the camera and the MICAz mote. SPI is used by

11

the microcontroller and the Flash memory. I2C is used between the microcontroller

and the camera.

2.2.2.1 UART

 UART sends the data in a sequential bit by bit manner, the receiver USART re-

assembles the data back to complete bytes. Data can be transmitted without a clock

signal. Both, the transmitter and the receiver, decide the parameters before the

transmission and bits such as the start and stop bits are added to every set of bits.

These are used to synchronize the transmitter and the receiver.

The Start Bit is added to the start of every to be transmitted word. It alerts the

receiver that a word is going to be sent. It replaces the clocking signal because it

forces the clock of the receiver to be in sync with the clock of the transmitter. The

clocks must be precise and not have the frequency drift by more than 10% during

the transmission of the remaining bits in the word [2].

Then, individual data bits are transmitted. The LSB (Least Significant Bit) of the

word is sent first. The time period of each bit is the same. For each bit, the receiver

hears at the transmission wire for half of the time period of one bit to determine if it

is a 1 or a 0. The transmitter is unaware of this action of the receiver and begins

transmitting the next set of data when the clock says.

After the MSB (Most Significant Bit) is transmitted, the transmitter may add a Parity

Bit. Parity Bit enables receiver to compute simple error checking. Parity Bit may

follow one of the two methods, Even Parity or Odd Parity. This bit is optional and its

usage has to be decided by both, the transmitter and the receiver, before the start of

transmission.

12

The last bit sent is the Stop Bit, which tells the receiver that one transmission has

ended. Upon checking by the receiver, if the Stop Bit is not present where it should

have been then the receiver deems the whole transmission to be erroneous and will

report a Framing Error to the host processor. What most commonly leads to a

Framing Error is the non synchronized clocks of the receiver and the transmitter, or

interruption of the signal.

The UART removes the Start, Stop and the Parity bits. If UART at the transmitter and

receiver is set up correctly these bits are not passed as user data. As the

asynchronous data synchronizes itself, the transmission line remains idle if there is

no data to transmit. Figure 2 shows the UART bit sequence.

Figure 2.2 UART Bit Sequence

2.2.2.2 SPI

Serial Peripheral Interface is also called the ‘four’ wire serial bus. It is a synchronous

serial protocol. Multiple slave devices can be selected with individual slave select

(chip select) lines. The synchronization signal is provided by the master device. The

synchronization (clock) signal controls when the data can change and when it is

valid for reading. This do’s away with the need to accurately time the data for

transmission. A change in the clock signal does not disturb the data. The clock signal

signals the start and end of transmission of valid data. SPI connection between

master and slave is shown in Figure 3.

13

Figure 2.3 SPI Connections

SPI is a Master-Slave protocol. Master device yields the clock line, SCLK (Serial

Clock). The change in state on the clock line enables the data to be sent. All the

slaves are controlled by the master device. The SPI signal flow between master and

slave is shown in Figure 4.

There are four logical signals present for SPI communication, namely, SCLK or serial

clock (output from master), MOSI or master output, slave input (output from

master),MISO or master input, slave output (output from slave) and SS or slave

select (active low, output from master).

Figure 2.4 SPI Communication

SPI is a Data Exchange protocol. A device has to be both, transmitter and receiver,

and need to have two data lines, one for input and the other for output. With the

clocking out of data, new data clocks in. The data must be read after a transfer has

taken place [3].

Slave select signal tells when the master needs to communicate with a device and

access it. This signal is used for when multiple slaves exists in a system, but is

optional for a system with only a single slave. It is better to use the slave select

http://en.wikipedia.org/wiki/File:SPI_single_slave.svg
http://en.wikipedia.org/wiki/File:SPI_8-bit_circular_transfer.svg

14

signal. A low Slave select signal indicates the SPI is active and the slave listens for

SPI clock and data signals, while a high will signal inactivity. It retunes the SPI slave

for receiving the next byte.

In SPI, data changes during the rising or falling edge of SCK, synchronizing the data

and the clock signal. Logically, the point of reading and changing of the data is

opposite.

CKP selects the SPI clock polarity, it selects if the clock will be idle high or low. When

CKP is 1, SCK will idle high. Conversely, if CKP is 0, SCK will idle low.

2.2.2.3 I2C

I2C (Inter-Integrated Circuit) is also known as the two wire interface. It is a serial, 8

bits oriented, bi-directional data transfer protocol. Only two bus lines are required:

a SDA (Serial Data Line) and a SCL (Serial Clock Line). It was originally designed to

interact with small number of devices.

Master-slave relationship exists at all times. The master device is one which controls

the SCL, data transfer and device addressing. Masters can either operate as master-

transmitters or as master-receivers. Master-transmitter transmits data to slave-

receiver. Master-receiver receives data from the slave-transmitter. I2C can also

handle multi-masters, with the feature of collision detection and arbitration, if

multiple masters start simultaneous transmission. It has three modes, Standard

mode (100kbps), Fast mode (400kbps) and High speed mode(3.4Mbps).

Each device has a unique software address. There are two types of addressing

schemes supported by I2C, 7 bit addressing and 10 bit addressing. However, the

15

maximum number of devices to be supported is restricted by the maximum bus

capacitive loading, 400pF.

The start condition (S) occurs when SDA transitions from 1 to 0 when SCL is 1. The

stop condition (P) occurs when SDA transitions from 0 to 1 when SCL is 0. The bus is

free between a consecutive stop and start condition. The bus is busy after start

condition and before the next stop condition. Figure 5 shows how multiple slaves

are attached to a master through SPI.

I2C communication takes place when SDA and SCL are both high. The bus is free. A

start bit is placed to indicate the usage of the bus. Slave devices listen to the data bus

to see whether they are being addressed. Clock signal (SCL) is provided. It is used to

give the reference time at which each data bit on the SDA will be correct and

useable. The data must be valid when the SCL is valid. Then, address of the slave

device to start communication with it is put on the line.

Then a bit is put on the SDA telling whether the master wants to read or write data.

At this point the slave must send a one bit Acknowledgement. After the

Acknowledgement is OK, data can be transferred. Acknowledgement after every 8-

bit data is required by the sender. After end of transmission, the bus is freed up after

transmission of a Stop bit [4].

Figure 2.5 I2C Communication

16

2.2.3 TCP/IP Communication

TCP/IP is abbreviated for Transmission Control Protocol/Internet Protocol. It is set

of rules, for computers to communicate through the Internet. TCP/IP is TCP and IP

working together on two layers. The upper layer, TCP, assembles of a message into

smaller packets for transmission over the Internet. The TCP layer of the receiver

reassembles the packets to make the original message.

The lower layer, IP, is responsible for addressing of the packets for reaching the

correct destination. Despite the route, the packets will be reassembled correctly at

the receiving computer. For communication, TCP/IP employs client server model. It

is also point to point communication.

TCP/IP is stateless, as each client request is taken as a new one, a connection is only

maintained for the transmission of all the packets of one message, after which the

connection is freed for continuous use elsewhere in the network.

Application layer protocols which use TCP/IP are HTTP (Hypertext Transfer

Protocol), FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol) and

Telnet. Computers with Internet connection through the analog phone modem use

SLIP (Serial Line Internet Protocol) or PPP (Point-to-Point Protocol) to access the

Internet.

IP packets are encapsulated through these protocols, so that they can be transmitted

using a dial up phone. Protocols related to TCP/IP are UDP (User Datagram

Protocol) [5]. UDP is a standard of TCP/IP and defines unreliable communication

between TCP/IP hosts.

17

2.3 Camera Specifications

An understanding of the camera specifications was necessary to understand how

the camera functioned. Then a study of the camera protocol is necessary to

understand what protocol and format is to be used to communicate with it and to

understand the format and protocol of the output of the camera. This will help in

understanding how the camera can be operated and controlled. This will also help in

integrating the camera in the circuitry. A thorough review and understanding of the

data sheet of the camera is an absolute must to feed an appropriate input into the

camera and obtain an appropriate output.

2.3.1 Progressive Scan Read Out Mode

It is also called as noninterlaced scanning. It displays and transmits moving images

in which all the lines of each frame (or rows) are drawn in sequence from top to

bottom, and not in an alternate manner as had been done in interlaced scanning. It

results in a smoother, more detailed image, with all the fine details easily visible. It

yields good and precise results, especially with text, as the screen does not flicker.

2.3.2 CIF/QCIF Resolution

CIF stands for Common Intermediate Format. This is the format produced by low

resolution digital cameras for the horizontal and vertical resolution of pixels of

YCbCr video signals. It has a resolution of 352 pixels by 288 pixels.

QCIF, Quarter Common Intermediate Format, has one-fourth of the area of a CIF

frame. It has the resolution of 176 pixels by 144 pixels. It is smaller than CIF, QVGA

(Quarter Video Graphics Array), and VGA (Video Graphics Array) [6].

18

2.4 Memory

The memory required by the interfacing circuitry was first decided by first studying

the types of memory available, the characteristics of each of these types and the

requirements of the interfacing circuitry. Also, compatibility of the microcontroller

and the memory was first established and then the vendor was chosen so that no

issues of compatibility will arise.

2.4.1 EEPROM

It stands for Electrically Erasable Programmable Read-Only Memory. It is a

nonvolatile memory used in devices which holds variables and programs which

need to survive power off. It can only hold small amounts of data, for larger amount

of data Flash memory is used. EEPROM can be erased and reprogrammed by users

through application of higher than normal electrical voltage. The voltage can be

generated internally or externally. EEPROM can be programmed and erased in

circuit. Initially, they supported byte by byte operation, but then it moved onto

multi-byte operation. It can be reprogrammed by a certain number of times [7].

2.4.2 SRAM

Static Random Access Memory (SRAM) is a volatile memory that uses

bistablelatching circuitry to store each value of bit. Static RAM, unlike DRAM

(Dynamic RAM), does not need periodical refreshes. It is more expensive, faster and

has lower power consumption than DRAM. SRAM is less dense as compared to

DRAM, and is not used for low-cost, high-capacity workload. For this reason, it is not

used in personal computers.

19

SRAM can be in either one of the three states: standby, reading and writing. It is

used where low power consumption, bandwidth or both are prime factors for

consideration. It has two types, non-volatile SRAM and Asynchronous SRAM [8].

2.4.3 FLASH MEMORY

It is a nonvolatile memory which can be electrically erased and reprogrammed. It

has fast read access times, though not of the type presented by static RAM or ROM.

Flash memory needs to be erased in a specific manner before it can be rewritten.

Extra features include mechanical shock resistance, high durability, and ability to

endure high pressure and high temperature. Devices using Flash memory include

medical electronics, personal computers, mobile phones, industrial robotics, digital

audio players, video games, digital cameras, scientific instrumentation etcetera [9].

2.5 Composition Of Image

In order to receive, store, break down, packetize, transmit and rearrange an image

the composition of the image must be understood thoroughly. An image is an array

of data in a matrix form, consisting of values within a range defined by the type of

image. For a binary image, the value can either be 1 or a 0. For 8 bit representation,

256 shades of gray are present, therefore the values in the image matrix varies from

0 to 255. As the data in the project is an image, the composition and properties of

the image must be studied. Then, depending on the camera and the memory

limitations, the type of image for transmission is selected. This further affects the

delay in the transmission, buffering and reception of the image. The hardware of the

project is also affected.

20

2.5.1 Gray Scale Image

It is an image in which the pixel value contains only the information about the

luminescence of the received light signal. Unlike monochrome images, or binary

images, gray scale images consist of shades of gray, ranging from black where there

is least intensity to white where there is the most intensity. A pixel’s intensity is

given from 0 to 1, where 1 represents white. Such images are also referred to as 8-

bit gray scale. The binary representation denotes 0 as black and 255 as white or as

dependent on the output of a camera.

Nowadays, gray scale images represent 8 bits per pixel value, generating 256

different intensities, the shades of gray. Images required for technical use, such as

medical imaging require more number of bits to represent one pixel for accuracy

and counter the quantization error. Normally, 16 bits per pixel are used [10].

2.6 Review Of The Studied Wireless Sensor Networks

There are numerous wireless sensor network testbeds established in various

universities around the world. These testbeds are used to set up WSNs, research is

carried out on them and the results of various experiments and setups are then

published. These testbeds help in understanding the basic architecture of a WSN so

that a WMSN can be created appropriately.

2.6.1 Cyclops

The platform, Cyclops, is a collaboration between Agilent Technology Inc. and the

University of California. It consists of low-resolution imaging device which can be

integrated with any WSN technology, such as MICA and MICAz mote. Power

21

consumption of Cyclops is minimal, this means that it can be used for large scale

deployment and has an extended lifetime. This also results in harsh constraints in its

computational power and imaging size. Therefore, Cyclops can used for many types

of applications.

2.6.2 Wireless Smart Camera (WiCa)

This sensor node consists of two cameras and is based on the ZigBee protocol and

the 8051 microcontroller. It is compatible with the IEEE 802.15.4 communication

protocol. It has the capability to store two images of 256 by 256 pixels. This can

enable distributed applications to be supported. It can be attached with external

memory to further support numerous applications.

2.6.3 MeshEye

The MeshEye architecture has two layers, based on the ARM7. It is used for real time

object detection. It has a lower resolution system which determines the position,

range and size of the moving objects. The higher resolution color camera is used for

image processing [11]. It offers reduced complexity, response time, and power

consumption over conventional solutions.

2.6.4 Meerkats

The Department of Computer Engineering at University of California, Santa Cruz has

developed ‘Meerkats’, a testbed to research monitoring and surveillance of wide

areas. It consists of eight visual sensor nodes, each of which consists of a Stargate,

battery, power supply and IEEE 802.11.b wireless card with a laptop acting as

22

information sink [11]. The nodes in Meerkats are capable of sufficient

computational and storage facility.

2.6.5 Explorebots

The University of North Carolina-Charlotte has developed an experimental test bed

‘Explorebots’. It has mobile, wireless-controlled robots capable of moving around

and transmitting multimedia content at 320x240 at 15 fps. This enables a mobile

WMSN with multi-hop facility. Reliability on human mobility is eliminated in this

technology.

2.6.6 SensEye

SensEye by the University of Massachusetts is a powerful testbed consisting of four

different cameras, the Agilent Cyclops, the CMU cam Vision sensor, a Logitech

Quickcam Pro Webcam and a Sony PTZ (Pan Tilt Zoom) camera and three different

platforms; Crossbow Motes, Intel Stargates and mini-ITX embedded PC. These

different platforms are used at different tiers and test bed is organized in a

hierarchy. It is capable of object detection, recognition and tracking [12] [13].

2.6.7 WSN At BWN Laboratory, Georgia Tech

Broadband and Wireless Networking Laboratory at Georgia Tech has developed an

experimental test bed for multimedia wireless senor network and integrated with

scalar sensor network test bed. iMotes and MICAz are used for scalar sensing and

MICAZ from MEMSIC and Stargate platforms are used for low and high-end imaging

respectively. The high-end PTZ cameras are installed on a mobile robot. The testbed

23

also has storage and computational hubs, for performing computationally intensive

multimedia processing algorithms.

24

Chapter 3

NETWORK TOPOLOGY and DESIGN

3.1 Overview

A wireless sensor network has a few basic parts, wireless sensor nodes, base station

node(s) and a central, computational device to manage the incoming data from the

sensor network and send commands into the network. A database is often required

on the computational device to store the incoming sensor data for use. The

communication links between these separate entities is an important part of the

network as well. An individual senor node comprises of a sensor, a radio

transceiver, a small computing device such as a microcontroller and a power supply.

The type of sensor depends on the application of use the sensor network is catering

to. A few scalar sensors, such as humidity, light and temperature measurement

devices are already present on the add-on data acquisition board of the node. Other

sensors have to be separately interfaced with the node to enable it to gather the

required kind of data. Due to their small size, long life and ability to communicate

wirelessly with the other motes they are the popular choice for establishing setups

for gathering scalar and multimedia data.

A collection of such nodes make up the sensor network. Among these nodes, some

or all can be equipped with a sensor to gather data; some can be intermediate only

used for multi-hopping/relaying purposes. A central base station node is usually

required to aggregate the data from all the nodes and interface the sensor network

with the computational device. Various communication links have been used to

25

communicate data between the nodes, such as 802.15.4, Bluetooth, ZigBee and

ZigBee Beta. In this chapter the modules and design of the project will be explained.

3.2 Modules

The project is divided into seven modules. The modules in a sequential manner are

the camera, the image grabber, which consists of a microcontroller and a Flash

memory. Then the next modules are the MDA100CB Data Acquisition Board and

MICAz mote. They are followed by the MIB600 Ethernet Gateway and a

computational device such s a PC. The last module is the traffic controller circuitry.

The salient features of the modules and their functions are listed below:

3.2.1 CMOS Camera

The camera comprises of the OmniVision imager OV6620. The images are read in a

progressive scan read out mode, enabling it to be used for quality imaging. The

camera has a SCCB (Serial Camera Controller Bus) interface, which is a subcategory

of I2C interface. It supports CIF/QCIF Resolution and low power operation enables it

to be used with the sensor network. The camera produces up to 60 frames per

second. CMOS cameras consume less energy than their CCD (Charged-Coupled

Device) counterparts and hence are a popular choice in wireless sensor networks

[14]. The camera is shown in Figure 6.

Figure 3.1 CMOS C3088 Camera

26

3.2.2 Image Grabber

It comprises of microcontroller ATmega644 and External Memory 45DB321D-SU.

ATmega644 is an 8 bit microcontroller, it consists of 64 Kbytes of in-system

programmable Flash program memory. It has 2 Kbytes of EEPROM with 4Kbytes

worth of internal SRAM. It supports USART, SPI and I2C interfaces. It is in-system

programmable through JTAG (Joint Test Action Group). It requires 5 volts for

operation [15]. The microcontroller is shown in Figure 7.

Figure 3.2 ATmega644

The External Memory, 45DB321D-SU, requires 2.5 to 3.6 volts or 2.7 to 3.6 volts for

operation, supports SPI interface and provides 32 Mbit memory. It provides two

SRAM buffers, their sizes are 512 and 528 bytes. By using buffers, data can be

received even when the main memory is being reprogrammed. Also, data can be

written in a continuous manner. Its programming and erase cycles are self-timed

[16].The external memory is shown in Figure 8.

Figure 3.3 Flash Memory

The functionalities of the image grabber are that it enables the MICAz mote to

capture images and saves motes battery life by doing all the computations itself,

27

thereby shifting the storage and packetization workload from the mote’s memory

and processor to itself.

3.2.3 MDA100CB Data Acquisition Board

The MDA series sensor boards have a precision thermistor, a light sensor/photocell,

and a general prototyping area. It provides connections to USART, SPI, ADC (0-7)

amongst many others. The prototyping area on the MDA100 is used to interface the

MICAz mote and the image grabber on a UART link..The MDA100CB board is shown

in Figure 9.

Figure 3.4 MDA100CB

The diagram and table of the prototyping area layout is shown in Figure 10. The

prototyping area has 45 unconnected solder holes for breadboard connectivity, for

connecting external devices or sensors to the mote [17]. UART pins on the MICAz

mote are accessed through the MDA100CB board, the pins on the MDA100CB board

provide the connectivity as shown in Figure 10.

Figure 3.5 Pinout Table for MDA100CB

28

3.2.4 MPR2400CB IEEE802.15.4/ ZigBee Compliant MICAz

Motes (2.4GHz)

MICAz is a 2.4GHz wireless transceiver which empowers low power WSNs. It

operates on IEEE 802.15.4 compliant RF transceiver, in the ISM band (2.4 to 2.48

GHz). It employs DSSS radio and RF power of -24dBm to 0dBm. MICAz has a data

rate of up to 250kbps [18]. Figure 11 displays a MICAz mote.

Figure 3.6 MICAz Mote

MICAz mote is a low power and low bandwidth wireless transceiver widely used for

enabling many research oriented sensor networks. The MICAz mote consists of

Atmel ATmega 128L processor, an 8 bit microcontroller, operating at 4 megahertz.

It has 128 kilobytes of flash memory for storing the mote's program. It requires low

voltage for operation leading to consumption of mere 8 milliamps while it is

running, as compared to 15 micro amps in sleep mode.

This low power consumption allows a MICAz mote to run for more than a year with

two AA batteries. However, the programmers will typically write their code so that

the CPU is asleep majority of the time, allowing it to extend battery life considerably

[19].

29

MICAz motes have a 10-bit A/D converter to digitize sensor data. When receiving

data, it consumes 10 milliamps. When transmitting, it consumes 25 milliamps.

Conserving radio power is the key to long battery life [20].

The MICAz mote has been used in three ways in the project: as a node interfaced

with the camera to become a visual sensor node, as an intermediate mote and as a

base station mote. The functionality of each is explained below:

3.2.4.1 Visual Sensor Node

These motes are interfaced with the camera as shown in Figure 12.

Figure 3.7 Connections For Visual Sensor Node

This enables the mote to become a wireless, visual sensor capable of transmitting

multimedia information. These motes are placed at locations where visual

information of the surroundings is required. These motes transmit the multimedia

information to the nearest mote for multi hopping towards the base station mote.

3.2.4.2 Intermediate Mote

This mote is not equipped with a camera; rather it only relays the radio messages it

receives from the visual sensor node to the base station mote and vice versa. This

enables the extension of the network and allows working around the constraints of

LOS (Line Of Sight) and MICAz’s radio range. The addition of Intermediate mote

affects the delay in reception of an image. More number of intermediate motes

means a higher delay.

Camera Interfacing
Circuitry

MDA100CB MICAz
Mote

30

3.2.4.3 Base Station Mote

MICAz mote can be programmed as a base station. When connected to an Ethernet

gateway, MIB600, it aggregates data coming from multiple sensor-mote hybrid for

transmission onto the PC. It also transmits the user commands from the PC to the

sensor network.

For convenience and ease of understanding, the sensor networks are organized

hierarchically, with the base station serving as the central node to collect the data

from the sensor network. The base station mote, along with the MIB600 gateway,

collects and forwards data to and from the PC or any computational device. The base

station is typically resource-rich in terms of its computational ability, storage

capacity, and energy lifetime compared to individual sensor nodes [21].

The base station mote maintains wired and wireless connectivity. For the project,

the base station is situated near the laptop, but it can be placed on top of a command

van or may have limited mobility enough to be guided to a favorable location in the

sensor network topology.

3.2.5 MIB600CA Ethernet Gateway

The MIB provides Ethernet connectivity for communication and in-system

programming. Sensor network can be accessed by the MIB600 though the TCP/IP

socket. The MIB600 bridges wired and wireless segments of a network. The MIB600

offers two different ports. One is dedicated to in-system mote programming and a

second for routine data communication over the LAN (Local Area Network). The

built-in POE (Power Over Ethernet) feature removes the need for an external power

source, Figure 13 shows MIB600 Gateway.

31

Figure 3.8 MIB600

The gateway interfaces between the base station node of the wireless sensor

network and the PC where the data is aggregated and processed. An application

running on the PC appropriately processes the data. The gateway used is MIB600CA

which is an Ethernet based gateway. The functions of the MIB600 are to transfer

sensor data to the PC and transmit user commands and code updates to one or more

of the network’s motes. The MIB600CA serial server connects directly to a 10 Base-T

LAN like any other network device [22]. The MIB600 is only connected to the base

station mote through the 51 pin connector, using UART connectivity.

3.2.6 PC/ Other Computational Device

A PC is used to acquire and parse packets from the MIB600 as required. An

application is developed to acquire the data from the TCP/IP socket of the MIB600,

extract the data from the headers and process the data. The only incoming data in

the network are images from the visual node. The image is stored on the PC for

future reference. In this application, the visual sensor node is envisioned to be

placed on the traffic signal and will be interfaced with the traffic signal. This is

depicted in Figure 14. An image of the cars parked at the red traffic signal will be

sent to the PC using the aforementioned architecture. Image received at the PC will

32

be processed using two different algorithms: background subtraction and template

matching.

If more cars are present at the traffic signal the decision to turn the green traffic

signal on for a longer period of time is relayed back to the visual sensor node. The

visual node is interfaced with the traffic signal and will turn the green signal on for

the duration of time set by the PC. For lesser number of cars, the green signal will be

turned on for a shorter duration.

Figure 3.9 Application

For ease of access and user interactivity a GUI is created. It carries out the following

functionalities of opening and closing TCP/IP connections, receiving the raw data,

extract data from the packet and discard headers, displaying the image and network

parameters such as network efficiency, separating the coding from the

functionalities of the system, transmitting the calculated duration of the green signal

back to the visual node and allowing user to control camera parameters.

3.2.7 Traffic Controller Circuitry

This will be interfaced with the visual sensor node. It is primarily controlled by the

microcontroller, ATmega644, and consists of red and green LEDs (Light Emitting

33

Diode). Turning on of the red LEDs depict number of cars lesser than the set

threshold. Turning on of the green LEDs depict number of cars more than the set

threshold.

3.3 System Design Block Diagram

The communication protocols which enable one component to communicate and

integrate with another are highlighted in Figure 15. The communication protocols

have already been explained. The I2C bus is a 8 pin bus, meaning 8 bit will represent

one sample. Therefore a gray scale image will be received from the camera.

Figure 3.10 Communication Protocols Used

The system design is represented in a block diagram in Figure 16. The block

diagram shows the generic model for the WMSN. The end processing and the end

circuit which receives the result information depend on the application for which

the WMSN is being used for. The decision is relayed back to the visual sensor node,

which can be interfaced with the appropriate circuitry and can act according to the

received results.

34

Figure 3.11 System Block Diagram

3.4 Project Overview

The C3088 camera will snap an image and pass it onto the interfacing circuitry in a

progressive scan read mode. The microcontroller in the interfacing circuitry

receives the packets and transfers them to the external memory, 45DB321D-SU. The

flash first stores the entire image and sequentially passes it to the MICAz mote.

The MDA100CB acts as the data acquisition board for the MICAz motes. The

MDA100CB is attached with the MICAz mote to facilitate the access of the pins of the

mote’s microcontroller, ATmega128L. The pins accessed on the mote are the UART

transmit, UART receive and Ground. The interfacing circuitry is interfaced to the

mote through the MDA100CB board.

MICAz mote transmits data at 2.4 GHz in the ISM band. The mote transmits the

information to a relay mote. This intermediate mote transmits the information to

the base station mote. The base station mote aggregates the data from the sensor

35

network and sends it on to a PC or computing device through the MIB600CA

gateway.

The MIB600CA gateway collects data from the base station mote and delivers it to

the TCP socket of the PC. The application running on the PC accepts data from the

TCP socket and processes it into the required form.

3.5 Conclusion

The individual modules were studied, their datasheets were parsed. The modules

were coded, tested and developed individually. They were then individually

optimized before integrating them with the other modules to develop the project’s

model.

36

Chapter 4

WIRELESS NETWORK OF MICAz MOTES

4.1 Overview

This chapter describes the programming of the MICAz motes for their three roles in

the network. To recap, the MICAz motes are the only wireless nodes in the network

and are used for three purposes, as the wireless transceiver in the visual node, as

the wireless transceiver at the base station and as relays in the intermediate

network between the visual nodes and the base station.

 The motes are programmed inTinyOS, the operating system for enabling low

power, low bandwidth wireless sensor networks. They require to be programmed in

the nesC language. The code installed on the MICAz mote is written in nesC, the

compiler converts it into in the binary format prior to installation [23].

In this chapter the steps for installation of the TinyOS and compiling codes on the

MICAz motes are explained in detail. They include the code for transmission of data

from the visual sensor mote to the intermediate mote, from there to the base station

mote, to the Ethernet gateway and creating TCP server on the PC.

4.2 Operating System For Programming MICAz Motes

TinyOS is a compact, simple and lightweight operating system explicitly designed

for low-power wireless sensors. TinyOS focuses on extremely low power operation,

ideal for power consuming devices such as the MICAz motes. TinyOS is designed for

the small, low-power microcontrollers’ motes have. With TinyOS, applications for

37

motes can be made more easily. It provides a set of important services and

constructs, such as sensing, communication, storage, and timers.

It upholds a concurrent execution model, so programmers can construct

applications out of reusable interfaces and components without worrying about

unanticipated interactions. TinyOS runs over multiple platforms, most of which are

open to addition of new sensors and hardware. Furthermore, TinyOS’s structure

makes it easy to port to new platforms. nesC is a dialect of C with features to reduce

RAM and size of the code, to optimize and help prevent low-level bugs like

conditions [23].

4.3 Installation Of TinyOS And nesC Compiler

There are multiple options for installing TinyOS and nesC but for the project, TinyOS

has been installed in VMWare Workstation. TinyOS 2.1.0 was selected. The

procedure is to download XubunTOS 2.1 virtual machine from

http://sing.stanford.edu/TinyOS/dists/xubuntos-2.1-vm.tar.gz

Then run the XubunTOS iso file, open the VMware Player, open XubunTOS and

debug the terminal using the command

CLASSPATH=.:$CLASSPATH:/opt/TinyOS-2.1.0/support/sdk/java/TinyOS.jar

Then add serial port and Ethernet adapter in the virtual machine and update the

Java package called Java Development Kit or “JDK”. These packages are needed for

the java GUI for several applications and install “sun-java6-jdk” from synaptics

manager. Now, the system is ready to program the MIB600CA board. Firstly, power

off the MICAz mote and connect the MIB600CA programming board through the

Ethernet cable as shown in Figure 17.

38

Figure 4.1 Mote And MIB600 Connection

Then assign IP address to the MIB600CA programming board by using Lantronix

Device Installer software and assign parameters to the programming board through

the Internet Explorer on the host PC as shown in Figure 18 and 19.

Figure 4.2 Lantronix Setup

Figure 4.3 Lantronix UART Settings

39

The connection between XubunTOS and the MIB600CA can be checked by accessing

the device in Mozilla Firefox. Enter the IP of the programming board in the address

bar, if page similar to the above opens up with the same information, it means that

the programming board is successfully connected [23]. Also, by sending a ping

request at the MIB 600’s IP address was verified that a successful PC to Gateway

connection was established. A successful ping is shown in Figure 20.

Figure 4.4 Ping To IP Of The MIB600

4.4 Connection Specifications In Lantronix

The parameters assigned in Lantronix are the port number, the default baudrate, the

implemented baudrate, the character size and the number of stop bits. Port assigned

was USART0 of the ATmega128. The default baud rate was set as 115200 bps, the

implemented baud rate was set as 115200 bps. The character size is kept as 8 bits

and Stop bit was chosen as 1.

4.5 MICAz Motes For Data Transmission

TinyOS is an open source software, many programs have already been developed

which can be freely used. Basic applications, interfaces and configurations were

40

used and developed for creating the desired applications for the project. The motes

were coded on the basis of their usage, edge visual sensor node, intermediate node

and the base station mote. These TinyOS codes are attached in the appendix A to C.

4.5.1 Visual Sensor Module

A MICAz mote part of the visual sensor node receives control messages from the

central station and passes them on to the camera controller/image grabber and

receives image data from the image grabber and transmits them towards the base

station. Since the link between the image grabber and MICAz mote is a reliable serial

link, the mote is hard programmed to receive the exact number of bytes per image

(25920 bytes).

25920 bytes = (88 payload bytes + 2 synchronization bytes)/packet * 288 packets

 ---- Eq No (1)

4.5.2 Intermediate Module

Motes are used in between the visual sensor node and the base station to increase

the distance and work around LOS constraints. These motes are programmed to

receive packets, change their destination address to the next mote in their

destination and forward them.

4.5.3 Base Station Module

In the stage, the packets have to be transmitted to the computer. For this, the

program of BaseStation.nc was used which acts as a simple bridge between the

serial and radio links. It includes queues in both the serial and radio links, with a

guarantee that once a message enters a queue and it will eventually leave on the

41

other interface. It only acknowledges a message arriving over the serial link if that

message was successfully queued for delivery to the radio link. The program was

edited to include transmission of received UART bytes from the computer to enable

two-way communication throughout the network.

4.6 Listen Tool

TinyOS needs information about Network IP to be accessed and the Port number for

acquiring data from the sensor node. The base station mote is then connected to the

MIB 600. Listen Tool is a program which prints the raw data of each packet received

from the serial port. To receive data on the PC the following steps were taken, the

prerequisite being installation of Java and the javax.comm package are to firstly,

connect the basestation mote with the MIB600. Then cd to the following directory

/opt/TinyOS-2.1.0/support/sdk/java directory

There, type

make export MOTECOM=network@<IP address>:<port number>

The environment variable MOTECOM tells the java Listen tool which packets it

should listen to. Here “network@<IP address>:<port number>”says to listen to a

mote connected to a network with the mentioned socket address. The command

used was:

export MOTECOM=network@169.254.185.41:10002

Then set MOTECOM appropriately, then run

javanet.TinyOS.tools.Listen

Packets received will be displayed on the monitor, as shown in Figure 21.

42

Figure 4.5 Packets Received

4.7 Creating A TCP/IP Server

Serial forwarder is used to create a TCP server. The purpose of this server is to

access the data coming from MIB 600 board in raw form, and forward the data on

specified port of server. In this way, multiple clients can access that server and get

the data in any application.

The SerialForwarder program is used to read packet data from a serial port and

forward it over an Internet connection, so that other programs can be written to

communicate with the sensor network over the Internet.

SerialForwarder does not display the packet data itself, but rather updates the

packet counters in the lower-right hand corner of the window. Once running, the

serial forwarder listens for network client connections on a given TCP port, and

simply forwards TinyOS messages from the serial port to the network client

connection, and vice versa.[24]

The steps to establish a TCP server are to

cd to /opt/TinyOS-2.1.0/support/sdk/java

then type the following command

43

javanet.TinyOS.sf.SerialForwarder –port 9001 –comm network@169.254.185.41:10002

This opened up the GUI window shown in Figure 22.

Figure 4.6 SerialFowarder Window

The -comm argument specifies where the packets SerialForwarder should forward

come from. Unlike most other programs, the –port command specifies the incoming

TCP port. The rest of the command is similar to the command used to define the

MOTECOM in Listen tool [24].

4.8 Packet Structure

Each data packet that comes out of the mote contains several fields of data. The

description of a BlinkToRadio packet is given in Table 1:

Table 4.1 Packet Structure (Cont’d)

Packet Structure (Hex) Description

00 Indicates that it is an AM packet

44

FFFF

The destination address follows

the00 identifier, in this case it is the

broadcast address, (FFFF)hex

00 01 Source Address

04 Packet length (bytes)

00 Group ID

06 Defines the type of AM packet

0001 Node ID

4.9 Importing Data To The Application

The base station mote transmits the packets to MIB600 using its USART connection.

The MIB600 transmits the data packets to PC through Ethernet. On the PC, MATLAB

is used to receive the data packets.

A program was written in MATLAB, to carry out the tasks of creating a TCP client

which will access the MIB600 on the assigned port number and IP, acquiring the

packets received by the base station, removing escape/delimiter bytes in the

packets, extracting the pixel values and their position in the image from each packet,

detecting which (if any) of the packets are lost and which portion of the image it

corresponds to and finally arranging and showing/saving the image

4.10 Data Rate Optimization

The packet length specified in the dummy program originally used to test the

network was set at 17 bytes. The time taken for transmission of one packet was

specified as 250msec.

45

To increase the data rate, the packet length was increased. In the file, Opt/TinyOS-

2.1.0/tos/types/message.h, the packet length is defined by the variable

TOS_DATA_LENGTH. It was increased from 28 bytes to 110 bytes.

For TinyOS, 37 bytes is the optimum packet size, 9 bytes are reserved for header

and footer fields, 28 bytes are available for the message/payload. To increase the

packet length, the default parameters need to be changed.

The new packet length becomes 119 bytes, the time period is kept as 250msec.

These changes had to be implemented in both the programs, so the two motes were

burned again. The buffer length in the MATLAB code was increased to 119 bytes.

Maximum packet length the CC2420 radio on the MICAz mote can handle is 128

bytes. The new received packet in MATLAB is shown in Figure 23.

Figure 4.7 Increased Packet Length In MATLAB

To further enhance the data rate, the time taken to transmit a packet is decreased.

119 bytes are being transmitted in 250msec, the maximum data rate of the CC2420

46

radio is 250Kbps, so to reach the maximum data rate, the following calculation was

used:

New time interval = 119 bytes / (250,000/8)bytes per second = 3.808msec

--- Eq No 2

The new time interval is set in opt/TinyOS-2.1.0/tutorials/BlinkToRadio.h, as

4msec. TIMER_PERIOD_MILLI=4. The BlinkToRadio mote was burned with the

altered code. After using the new program, the Green LED on the base station mote

starts to toggle, but immediately the Yellow LED starts to toggle as well. This means

packets are being dropped. Packet dropping is shown in Figure 24.

Figure 4.8 Dropped Packets, Counter Value Changes From EB To F1

In the file, opt/TinyOS-2.1.0/apps/BaseStationP.nc

UART_QUEUE_LENGTH=12;

UART_QUEUE_LEN=12;

47

UART_QUEUE_LENGTH was increased to 24 to decrease packet dropping, but the

total number of packets of this length a MICAz can buffer is 24. So the

UART_QUEUE_LEN was changed to 0. This delays the packet dropping on the UART

interface.

In the file, opt/TinyOS-2.1.0/tos/platforms/micaz/hardware.h

PLATFROM_BAUDRATE was increased to 57600bps.

In the file, opt/TinyOS-2.1.0/tos/chips/Atm128UartP.c the following line was

added:

else if (PLATFORM_BAUDRATE == 115200UL)

m_byte_time = 34;

Maximum baudrate MIB600 can support is 115200 bits per second. Hence the

MICAz baudrate was set to this value. This makes the MIB600 the bottleneck of the

network. Baud rate of USART1 in Lantronix is also changed to 115200bps. The

TIMER_PERIOD_MILLI in the BlinkToRadio header file was changed to 17msec. The

data rate being received was around 8kBps.

4.11 Conclusion

By first deploying a sensor network and dummy edge sensor nodes which sent

dummy data, the network was ready to acquire images from an edge sensor node

and carry them to the sink.

48

CHAPTER 5

IMAGE ACQUISITION

5.1 Introduction

The C3088 camera works above 8MHz. The MICAz works at 8MHz. Therefore the

MICAz cannot be directly used to acquire images from the camera. ATMega644 was

used at 16MHz to grab images from the camera. An image with a 176 x 144

resolution is a QCIF image. A black and white QCIF image is 176 x 144 x 1 = 25344

bytes. The ATMega644 doesn’t have enough on-board memory to store even a

quarter of this image. Therefore an external memory is needed to buffer an image

during its reception.

5.2 Programming The Microcontroller

C language is used to program the microcontroller and AVR Studio 5.0 is used as the

programming tool. The program grabs the image from the camera, through I2C, and

transfers this data to Flash memory, through SPI. It then receives this data from the

Flash in a sequential manner, appends extra bytes to it and transfers it to the MICAz,

through UART, for transmission. The code is attached in appendix D.

5.2.1 Interfacing With Camera C3088

The registers on the C3088 camera are programmable through the SCCB interface.

This is a variant of the I2C serial protocol and can be implemented by the I2C

hardware on the ATMega644.Three signals from the camera signify the beginning of

49

an frame, a line and a pixel and are used to keep the camera and image grabber in

synchronization. The exact timing if the three signals is shown in Figure 25.

A high to low conversion of the VSYNC (Vertical Synchronization) signals the

beginning of a new frame. A low to high conversion of the HREF (Horizontal

Reference) signals the beginning of a new line of pixels. The PCLK or the Pixel Clock

goes high each time a valid pixel is sent by the camera. After the pixel is transmitted,

the PCLK goes low until a new pixel value is to be output.

Figure 5.1 VSYNC And HREF Clock Signals [25]

The C3088 camera has two busses for data output; Y and UV. Since the luminescence

data is output on the Y bus, only the Y bus is connected to the Atmega644 and this

gives a black and white image.

5.2.2 Interfacing With Flash

The microcontroller has 64KBytes of Flash memory, 2KBytes of EEPROM and

4Kbytes of SRAM. The RAM is insufficient to store a 25Kbyte image. The camera

outputs 144 lines of 176 pixels each. After every three lines of 176 pixels, there are

528 acquired bytes. In the time between 3rd and 4th line, the microcontroller sends

50

these 528 bytes to the flash buffer, this is shown in Figure 26, and this allows the

microcontroller to keep up with the camera timing.

Figure 5.2 How The Microcontroller Writes To The Flash [25]

5.2.3 Interfacing With The MICAz Mote

The radio hardware on the MICAz can only transmit packets of 128 bytes length.

This means the image needs to be fragmented before being fed to the MICAz mote

for wireless transmission. Also, since the packet is encapsulated in header and

footer fields before transmission, the payload has to be lesser than 120 bytes.

It was decided to comprise packets with 88 bytes of pixel values as the payload. Also

2 bytes were added to indicate the position of these pixel bytes in the image to allow

the receiving end to correctly process and arrange the image in case of packet loss

and out of order packet delivery.

51

5.2.4 Schematic Diagram

The schematic diagram illustrating the hardware connection of the microcontroller

with the camera, flash and MICAz mote is depicted in Figure 27. The pin connections

are then programmed on the microcontroller accordingly. The following circuit was

implemented on a Vero board.

Figure 5.3 Schematic Diagram

52

5.3 Other Features

The ATMega644 is programmed not only to grab, save and transmit images but also

to receive control packets from the base station computer and change camera

control registers according to them. The features which a user can control from the

base station computer are switching on/off of Automatic Gain Control and

Automatic Exposure Control, setting 8 different reference values for Automatic Gain

Control and Automatic Exposure Control, increase/decrease Contrast,

increase/decrease Brightness, increase/decrease Gain, increase/decrease Exposure,

switching on/off Automatic White Balance and resetting the camera.

The control messages between the base station and remote node are abstracted

from the user through the GUI. There are 23 different types of control messages for

the visual node from the Base Station. Any other format and length of message

received is discarded. The format is depicted in Figure 28. The source addresses

filtering is carried out at the data link layer of the MICAz mote on the visual node.

Synchronization byte is set to 0x61 and Reserved byte is set to 0x62 for no specific

reason. The description field describes the response of the visual node when the

message is received. The exact codes are attached in the Appendix E.

Figure 5.4 Control Message Structure From Base Station To Visual Sensor Node

53

5.4 Conclusion

The hardware was integrated together. Various communication protocols, UART,

SPI and I2C were coded for and implemented. The microcontroller was

appropriately coded. The control of the camera form the base station mote was an

extra feature which enabled the user to control the camera features. Initially,

dummy data was received from the microcontroller. Then after the integration of

the camera, images were received.

54

CHAPTER 6

PROCESSING IN MATLAB

6.1 Introduction

MATLAB receives the data from the network. For ease of use, a GUI is created. It

carries out the functionalities such as opening and closing TCP/IP connections,

receiving the raw data, extracting data from the packet and discarding headers,

displaying the image, displaying network parameters such as network efficiency,

separating the coding from the functionalities of the system, transmitting the

calculated duration of the green signal back to the visual node and allowing user to

control camera parameters.

The received data is displayed as images which can be processed according to the

application for which the Wireless Multimedia Sensor Network is used.

For the presented application, traffic monitoring, the images consist of cars standing

at the traffic signal. To count the number of cars in an image, the following methods

are used.

6.2 Receiving Data’s Packet Structure

Each QCIF image is fragmented into 288 packets of 88 pixel bytes each. The visual

node appends 2 bytes corresponding to 1-288 sequence number of the block of pixel

bytes. These 90 bytes form the payload of the messages sent by the MICAz mote to

the base station. The packet structure is depicted in Figure 29.

55

Figure 6.1 Packet Structure

A complete QCIF image is transferred in a burst of 88 such messages. The Sequence

Number field is added to each of the 88 messages which make up one image by the

MICAz mote prior to transmission of the packet. It allows rearranging of bytes

despite out-of-order delivery and packet drops at the PC side. A complete image is

depicted in Figure 30.

Figure 6.2 Array Of One Complete Image

6.3 Application Development

Over the last few years, there has been a tremendous increase in the road traffic

density. The upshot of this is a significant loss of human resources, significantly

increased inefficiencies, reduced quality of life, and a greater environmental impact

at a critical time. A significant amount of time is spent waiting in traffic. A

paramount amount of fuel is lost while waiting in traffic jams every day. The

56

monetary loss and the loss of man-hours affect individuals, families, companies and

the government.

The first approach used to tackle was the much needed expansion of the major

roads all over the country. However, with an economy like Pakistan’s, it is

impractical to expect to expand the whole road network. The second approach then

employed was to set up an entire task force to manage and monitor it. It has its own

drawbacks, latency and irregularity being the most complained about.

As these problems worsen, it is becoming clear that old solutions, such as increasing

the number of lanes, building new roadways and enforcing traffic laws cannot solve

the problem. Urban space is limited, and the resources needed to simply maintain

the traffic network as roads and bridges age exceeds the monetary resources

available at the local, regional and national level. A massive rebuilding of the traffic

network to alleviate current congestion is an unfeasible solution. Technology usage

to develop smart road traffic control however remains economical and employment

of wireless networks to monitor and control traffic is the preferred choice owing to

its convenient en masse deployment [26].

The traffic lights at road intersections are usually driven by timers. Each side of the

road intersection is conventionally allowed a fixed and equal period to pass through.

Such a scheme for traffic lights is inefficient whenever there are unequal number of

cars on the sides of an intersection. This is worsened during rush hours when a

particular road hosts much larger traffic but the traffic there is allowed to pass for

only as long as the other sides with lesser traffic. Manual regulation provides a little

57

relief as it suffers from mismanagement, is prone to human errors and comes to a

halt during harsh weather.

Also during periods of low traffic such as at night, experiences of waiting for the

traffic light to go green even when there are no other cars at the intersection are

common. Conventional traffic regulating systems cannot handle occasional

congestion caused by unforeseen circumstances such as incidents, work zones and

emergency rescue work, ambulances or weather conditions.

All this points to the need for a different scheme to operate traffic signals. This

scheme needs to be dependent upon the relative traffic on each side of the road.

Sensor Networks have been used only to monitor and measure road traffic. The aim

is to use visual sensors and use it to not only measure traffic intensity, but also

integrate it with a Wireless Sensor Network to gain a holistic view of the road

conditions and thus make continuous, informed decisions on the priority of passage

given to each road. To count the number of cars, two methods, of varying accuracy are

used.

6.3.1 Background Subtraction Algorithm

It requires two images, one for background and the other is the test image which

consists of the cars. A mask is applied onto the background image to eliminate the

unwanted areas, such as the other side of a two way road, to avoid false detection of

the cars or other objects in an unwanted region in the field of view of the camera.

 Images are acquired, the background is masked and they are subtracted. The

contrast of the resultant image is adjusted; it is binarized and thresholded to

highlight the objects present in the test image. In some cases, when the cars are

58

standing at a very close distance to one another, they can be wrongly merged with

one another in the binarized and thresholded image. To counter this, depending on

the size and the distance of the merger body from the camera, the merged body was

broken up into the appropriate number of cars. The other method used combats

theses problems in a different way.

6.3.2 Template Matching Algorithm

The windshields of the cars are chosen as the distinctive feature. Model images with

the cars at a varying distance from the camera and in varying grouping were taken.

From these images, the windshields of a few cars were chosen as templates. A mask

is applied onto the test images to eliminate the unwanted areas, such as the other

side of a two way road, to avoid false detection of the cars or other objects in an

unwanted region in the field of view of the camera. As before, the image is binarized

and thresholded.

The windshields of the cars were matched to identify the cars. This resulted in a

greater accuracy of the application. The templates of the larger windshields were

limited to matching with the cars nearer to the camera. In this way, the templates

were limited to their area of applicability. This prevented false detection of labeling

a merged body by single larger car.

6.3.3 Difference Between The Algorithms

The facts of the background subtraction which led to designing a new algorithm are

that it requires another image, as the background. The background needs to be

changed as the light intensity of the camera’s surrounding changes. Background

subtraction technique will detect everything present in the test image, even if it is

59

not a car as this technique mainly works due to the background subtraction method.

It will detect and count everything present in the test image. This hinders

deployment as the pedestrians and objects such as motorcycles and bicycles will be

counted as cars.

This led to development of the technique, template matching, which does not

require another image as the background. It only detects objects with which the

template of the windshields can be matched. This removes false detection of

pedestrians and other non car objects.

6.3.4 Results

The template matching method shows more accuracy. For background subtraction,

the following results are obtained. The background subtraction detected seven cars

out of the eight. Besides, the selection of the background and the task of keeping the

light intensities of the background and the test images is difficult. The background

images needs to be refreshed so very often. The results are shown in Figure 31.

Figure 6.3 Background Subtraction Results

60

The template matching algorithm detected eight out of eight cars, obtaining a higher

accuracy over the background subtraction method. The templates used and the

results of this algorithm is shown in Figure 32. Normalized cross correlation

between the test image and the templates are calculated in a sequential manner. If

there is a match that area is removed from the binarized test image and is run for

the same or another template until no match is found. A counter is incremented

every time a match is found; this depicts the number of detected cars.

Figure 6.4 Template Matching Results

6.4 GUI

A user friendly GUI created is for ease of use. The layout of the GUI is shown in

Figure 33. Separate buttons enable control of various functions for ease of

understanding. The codes sent to control the camera are attached in appendix E. The

code for the GUI and the processing being accomplished through GUI is attached in

the appendix F.

61

Figure 6.5 GUI

6.5 Conclusion

The data was received in MATLAB and consequently processed. The processing

done to retrieve the data and for supporting the desired application was written in

MATLAB. Two methods of processing the data for the application were developed,

both showed different accuracies. The results have been thoroughly discussed. GUI

was created for ease of use. Other applications can be developed in MATLAB

depending on how the received images are intended to be used.

62

CHAPTER 7

FUTURE WORK AND CONCLUSION

7.1 Introduction

The WMSN can be used for supporting many applications but first the project

limitations are discussed to give an idea of the improvements which can be made to

the architecture before deploying the system for other applications. Potential

applications are briefly discussed.

7.2 Project Limitations

Communication for mote to mote communication requires Line Of Sight (LOS) but

this problem can be worked around using relay motes. The camera exposure needs

to be adjusted according to the brightness level of the surroundings. The whole

process of image acquisition from the camera to the display of image on the PC

results in a delay of 8 seconds, which can be reduced by using different techniques.

The low resolution of the camera deteriorates number of successful detections per

image. CoTS batteries enable around an hour and a half of battery time of the visual

node.

7.3 WMSN Advantages And Applications

Advantages of WMSNs enable them to be used for such applications are mobility of

the MICAz motes, inconspicuous deployment, scalable network and easy

deployment. The sensor network is always-on, has low power consumption and

power saving modes of operation. It has low cost, small size and there is no need of

63

knowing the position of the mote prior to the start of the application, allowing

random deployment. Also, simple computations can be carried out in the mote’s

processor, instead of sending all the data to a remotely located central computing

device, and the necessary information can be transmitted

Apart from the application of traffic monitoring and control, WMSN can be used for

other applications as well, such as surveillance networks, advanced health care

delivery, environmental monitoring, industrial process control, managing inventory,

monitoring product quality and disaster areas. The application of WMSN is not

limited to just these.

7.3.1 Surveillance

Surveillance can be used for public places, events, private properties, parking lots,

remote areas, borders or battlefields [11]. It can locate and communicate the

available parking spaces near any required area. Audio sensors can be used to

further augment the system. WMSN can advance the surveillance technology by

extracting non redundant information on the visual sensor node, decreasing the

bulk of data required to be transmitted.

7.3.2 Environmental Monitoring

This can encompass monitoring of hazardous areas, animal habitats and monitoring

buildings [27]. These areas can be remote and inaccessible, the energy efficient

operations are mandatory to continue monitoring over a long period of time.

Sometimes, the other sensors are integrated with the WMSN, the camera only gets

activated when activity is detected by the other sensors. As an example, video

64

sensors are already being used by oceanographers to determine the evolution of

sandbars [13].

7.3.3 Advanced Healthcare Delivery

Telemedicine sensor networks can be incorporated with multimedia sensor

networks to provide health care [13]. Typical sensors include blood pressure, pulse

oximetry, breathing activity and ECG. Advanced health care for the elderly can be

incorporated by using motion sensors to monitor the activity of the patients.

7.3.4 Industrial Process Control

Information such as images, pressure or temperature can be gathered and

processed to support industrial manufacturing process such as automobiles, food

products and pharmaceuticals. Defects can be identified. This will make the visual

inspection of processes easier and much more flexible. Round the clock service can

be provided.

7.4 Testing And Validation

The testing for this setup was done in the lab to gain full control over the camera

parameters. The visual sensor node was tested by placing it at variable distances

from the base station mote in the lab. Once the pictures were successfully received

at the lab computer, the picture reception quality and network efficiency was tested

by placing the visual sensor node outside the lab. Relay mote was used in when the

distance between the visual sensor node and the base station node exceeded a

certain threshold. In such an arrangement, using the relay mote increased network

efficiency. Next, for the car detection algorithms, the detection algorithm was made

65

more accurate by using template matching. The images were masked with a binary

mask to decrease false detection. The set up was run for a model intersection with

cars standing at the traffic signal.

7.5 Conclusion

The field of WSN has a lot of potential to further develop and become stable enough

to support many applications. The purpose of the project was to establish

transmission of multimedia information over a wireless sensor network. Traffic

monitoring application was also presented to prove the potential of the project. All

the objectives of the project are achieved.

66

APPENDIX A- nesC CODE FOR MICAz MOTE IN VISUAL SENSOR
NODE

BlinkToRadio.h

#ifndef BLINKTORADIO_H
#define BLINKTORADIO_H
enum {
 AM_BLINKTORADIO = 6,
 TIMER_PERIOD_MILLI = 25,
};
typedef nx_struct BlinkToRadioMsg {
 nx_uint8_t buffer[90];
}
BlinkToRadioMsg;
#endif

BlinkToRadioC.nc
* Program edited to be used as an edge node at MCS, NUST for WMSN
 * @author Hamna Anwar and Hamza Tariq Khan
 * @date 28-05-2012
 */
#include <Timer.h>
#include "BlinkToRadio.h"

module BlinkToRadioC {
 uses interface Boot;
 uses interface Leds;
 uses interface Timer<TMilli> as Timer0;
 uses interface Packet;
 uses interface AMPacket;
 uses interface AMSend;
 uses interface SplitControl as AMControl;
 uses interface Receive;
 uses interface UartByte;
 uses interface StdControl;
 uses interface UartStream;
}
implementation {

 uint16_t length;
 uint8_t buffer[90];
 uint8_t temp[3];
 uint16_t counter;
 uint8_t i;
 message_t pkt;
 uint8_t alter = 0;
 char ack1[] = "abc";
 char str[] = "str\r\n";
 bool busy = FALSE;

 void setLeds(uint16_t val) {
 if (val & 0x01)

67

 call Leds.led0On();
 else
 call Leds.led0Off();
 if (val & 0x02)
 call Leds.led1On();
 else
 call Leds.led1Off();
 }

 event void Boot.booted() {
 length = 90;
 call AMControl.start();
 call StdControl.start();
 }

 event void AMControl.startDone(error_t err) {
 if (err == SUCCESS) { // call Timer0.startPeriodic(TIMER_PERIOD_MILLI); }
 else { call AMControl.start(); }
 }

 event void AMControl.stopDone(error_t err) { }

 event void Timer0.fired() { }

 event void AMSend.sendDone(message_t* msg, error_t err) {
 if (&pkt == msg) {busy = FALSE;}
 }

 async event void UartStream.sendDone(uint8_t *buf, uint16_t len,error_t err) {
 call UartStream.receive(buffer,length);
 }
 async event void UartStream.receiveDone(uint8_t *buf, uint16_t len, error_t err) {
 counter++;
 if (!busy) {
 BlinkToRadioMsg* btrpkt =
 (BlinkToRadioMsg*)(call Packet.getPayload(&pkt, sizeof(BlinkToRadioMsg)));
 if (btrpkt == NULL) {
 return;
 }
 for (i = 0; i<length ; i++)
 {
 btrpkt->buffer[i] = buffer[i];
 }
 if (call AMSend.send(0x0001,
&pkt, sizeof(BlinkToRadioMsg)) == SUCCESS) {
 busy = TRUE;
 }
 }
 call UartStream.receive(buffer,length);
 call Leds.led1Toggle();
 }

 async event void UartStream.receivedByte(uint8_t byte) {
 }

68

 event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len){
 call Leds.led0Toggle();
 if (len==3)
 call Leds.led2Toggle();
 call UartStream.send(payload,len);
 return msg;
 }

}

BlinkToRadioAppC.nc

#include <Timer.h>
#include "BlinkToRadio.h"
configuration BlinkToRadioAppC {
}
implementation {
 components MainC;
 components LedsC;
 components BlinkToRadioC as App;
 components new TimerMilliC() as Timer0;
 components ActiveMessageC;
 components new AMSenderC(AM_BLINKTORADIO);
 components new AMReceiverC(AM_BLINKTORADIO);
 components PlatformSerialC;

 App.Boot -> MainC;
 App.Leds -> LedsC;
 App.Timer0 -> Timer0;
 App.Packet -> AMSenderC;
 App.AMPacket -> AMSenderC;
 App.AMControl -> ActiveMessageC;
 App.AMSend -> AMSenderC;
 App.Receive -> AMReceiverC;
 App.UartByte -> PlatformSerialC;
 App.UartStream -> PlatformSerialC;
 App.StdControl -> PlatformSerialC;}

69

APPENDIX B- nesC CODE FOR RELAY MICAz MOTE

RelayStationP.nc

// Adapted fom basestationP by the University of California to be used as a radio relay
#include "AM.h"
#include "Serial.h"
module RelayStationP @safe() {
 uses {
 interface Boot;
 interface SplitControl as RadioControl;
 interface AMSend as RadioSend[am_id_t id];
 interface Receive as RadioReceive[am_id_t id];
 interface Receive as RadioSnoop[am_id_t id];
 interface Packet as RadioPacket;
 interface AMPacket as RadioAMPacket;
 interface Leds;
 }
}
implementation
{
 enum {
 RADIO_QUEUE_LEN = 23,
 };
 message_t radioQueueBufs[RADIO_QUEUE_LEN];
 message_t * ONE_NOK radioQueue[RADIO_QUEUE_LEN];
 uint8_t radioIn, radioOut;
 bool radioBusy, radioFull;
 task void radioSendTask();
 void dropBlink() {
 call Leds.led2Toggle();
 }
 void failBlink() {
 call Leds.led2Toggle();
 }
 event void Boot.booted() {
 uint8_t i;
 for (i = 0; i < RADIO_QUEUE_LEN; i++)
 radioQueue[i] = &radioQueueBufs[i];
 radioIn = radioOut = 0;
 radioBusy = FALSE;
 radioFull = TRUE;
 call RadioControl.start();
 }
 event void RadioControl.startDone(error_t error) {
 if (error == SUCCESS) {
 radioFull = FALSE;
 }
 }
 event void RadioControl.stopDone(error_t error) {}
 uint8_t count = 0;
 message_t* ONE receive(message_t* ONE msg, void* payload, uint8_t len);
 event message_t *RadioSnoop.receive[am_id_t id](message_t *msg, void *payload, uint8_t len) {

70

 // return receive(msg, payload, len);
 }
 event message_t *RadioReceive.receive[am_id_t id](message_t *msg, void *payload,uint8_t len) {
 message_t *ret = msg;
 bool reflectToken = FALSE;
 atomic
 if (!radioFull)
 {
 reflectToken = TRUE;
 ret = radioQueue[radioIn];
 radioQueue[radioIn] = msg;
 if (++radioIn >= RADIO_QUEUE_LEN)
 radioIn = 0;
 if (radioIn == radioOut)
 radioFull = TRUE;
 if (!radioBusy)
 { post radioSendTask();
 radioBusy = TRUE; }
 }
 else dropBlink();
 if (reflectToken) { //call UartTokenReceive.ReflectToken(Token);}
 return ret;
 }
 task void radioSendTask() {
 uint8_t len;
 am_id_t id;
 am_addr_t addr,source;
 message_t* msg;
 atomic
 if (radioIn == radioOut && !radioFull)
 { radioBusy = FALSE;
 return;}
 msg = radioQueue[radioOut];
 len = call RadioPacket.payloadLength(msg);
 addr = call RadioAMPacket.destination(msg);
 source = call RadioAMPacket.source(msg);
 if (source==1)
 addr = addr + 1;
 else
 addr = addr - 1;
 id = 0x06;
 call RadioPacket.clear(msg);
 call RadioAMPacket.setSource(msg, source);

 if (call RadioSend.send[id](addr, msg, len) == SUCCESS)
 call Leds.led0Toggle();
 else
 { failBlink();
post radioSendTask();}
}
 event void RadioSend.sendDone[am_id_t id](message_t* msg, error_t error) {
 if (error != SUCCESS)
 failBlink();
 else
 atomic

71

 if (msg == radioQueue[radioOut])
 {
 if (++radioOut >= RADIO_QUEUE_LEN)
 radioOut = 0;
 if (radioFull)
 radioFull = FALSE;
 }

 post radioSendTask();
 }
}

RelayStationC.nc

configuration RelayStationC {
}
implementation {
 components MainC, RelayStationP, LedsC;
 components ActiveMessageC as Radio;
 MainC.Boot <- RelayStationP;
 RelayStationP.RadioControl -> Radio;
 RelayStationP.RadioSend -> Radio;
 RelayStationP.RadioReceive -> Radio.Receive;
 RelayStationP.RadioSnoop -> Radio.Snoop;
 RelayStationP.RadioPacket -> Radio;
 RelayStationP.RadioAMPacket -> Radio;
 RelayStationP.Leds -> LedsC;
}

72

APPENDIX C- nesC CODE FOR BASE STATION MICAz MOTE

BaseStationP.nc

/*

 * BaseStationP bridges packets between a serial channel and the radio.

 * Messages moving from serial to radio will be tagged with the group

 * ID compiled into the TOSBase, and messages moving from radio to

 * serial will be filtered by that same group id.

 * Modified at MCS, NUST to accept payload bytes from the serial link rather than serial packets

 */

#include "AM.h"
#include "Serial.h"

module BaseStationP @safe() {
 uses {
 interface Boot;
 interface SplitControl as SerialControl;
 interface SplitControl as RadioControl;
 interface AMSend as UartSend[am_id_t id];
 interface Packet as UartPacket;
 interface AMPacket as UartAMPacket;
 interface AMSend as RadioSend[am_id_t id];
 interface Receive as RadioReceive[am_id_t id];
 interface Receive as RadioSnoop[am_id_t id];
 interface Packet as RadioPacket;
 interface AMPacket as RadioAMPacket;
 interface StdControl;
 interface UartStream;

 interface Leds;
 }
}

implementation
{
 enum {
 UART_QUEUE_LEN = 22,
 };

 message_t uartQueueBufs[UART_QUEUE_LEN];
 message_t * ONE_NOK uartQueue[UART_QUEUE_LEN];
 uint8_t uartIn, uartOut;
 bool uartBusy, uartFull;
 uint8_t radioIn, radioOut;
 uint8_t buffer[3];

73

 uint16_t length;
 task void uartSendTask();

 void dropBlink() {
 call Leds.led2Toggle();
 }

 void failBlink() {
 call Leds.led2Toggle();
 }

 event void Boot.booted() {
 uint8_t i;
 length = 3;

 for (i = 0; i < UART_QUEUE_LEN; i++)
 uartQueue[i] = &uartQueueBufs[i];
 uartIn = uartOut = 0;
 uartBusy = FALSE;
 uartFull = TRUE;

 call RadioControl.start();
 call SerialControl.start();
 call StdControl.start();
 }

 event void RadioControl.startDone(error_t error) {
 if (error != SUCCESS)
 call RadioControl.start();
 else
 call UartStream.receive(buffer,length);

 }

 event void SerialControl.startDone(error_t error) {
 if (error == SUCCESS) {
 uartFull = FALSE;
 }
 }

 event void SerialControl.stopDone(error_t error) {}
 event void RadioControl.stopDone(error_t error) {}

 uint8_t count = 0;

 message_t* ONE receive(message_t* ONE msg, void* payload, uint8_t len);

 event message_t *RadioSnoop.receive[am_id_t id](message_t *msg, void *payload,uint8_t len) {
 return receive(msg, payload, len);
 }

 event message_t *RadioReceive.receive[am_id_t id](message_t *msg, void *payload, uint8_t len) {
 return receive(msg, payload, len);
 }

74

 message_t* receive(message_t *msg, void *payload, uint8_t len) {
 message_t *ret = msg;

 atomic {
 if (!uartFull)
 {
 ret = uartQueue[uartIn];
 uartQueue[uartIn] = msg;
 uartIn = (uartIn + 1) % UART_QUEUE_LEN;
 if (uartIn == uartOut)
 uartFull = TRUE;

 if (!uartBusy)
 {
 post uartSendTask();
 uartBusy = TRUE;
 }
 }
 else
 dropBlink();
 }

 return ret;
 }

 uint8_t tmpLen;

 task void uartSendTask() {
 uint8_t len;
 am_id_t id;
 am_addr_t addr, src;
 message_t* msg;
 atomic
 if (uartIn == uartOut && !uartFull)
 {
 uartBusy = FALSE;
 return;
 }

 msg = uartQueue[uartOut];
 tmpLen = len = call RadioPacket.payloadLength(msg);
 id = call RadioAMPacket.type(msg);
 addr = call RadioAMPacket.destination(msg);
 src = call RadioAMPacket.source(msg);
 call UartPacket.clear(msg);
 call UartAMPacket.setSource(msg, src);

 if (call UartSend.send[id](addr, uartQueue[uartOut], len) == SUCCESS)
 call Leds.led1Toggle();
 else
 {
 failBlink();
 post uartSendTask();
 }

75

 }

 event void UartSend.sendDone[am_id_t id](message_t* msg, error_t error) {
 if (error != SUCCESS)
 failBlink();
 else
 atomic
 if (msg == uartQueue[uartOut])
 {
 if (++uartOut >= UART_QUEUE_LEN)
 uartOut = 0;
 if (uartFull)
 uartFull = FALSE;
 }
 post uartSendTask();
 }

 event void RadioSend.sendDone[am_id_t id](message_t* msg, error_t error) {
 if (error == SUCCESS)
 call Leds.led0Toggle();
 call UartStream.receive(buffer,length);
 }

 async event void UartStream.sendDone(uint8_t *buf, uint16_t len,error_t err) {
 }

 async event void UartStream.receiveDone(uint8_t *buf, uint16_t len, error_t err) {

 am_id_t ids;
 am_addr_t addr,source;
 message_t pkt;
 ids = 0x06;
 call RadioPacket.setPayloadLength(&pkt, len);
 memcpy(call RadioPacket.getPayload(&pkt, len), buf, len);
 addr = 0x0002;
 source = 0x0001;
 if (call RadioSend.send[ids](addr,&pkt, len) != SUCCESS)
 call Leds.led2Toggle();
 }

 async event void UartStream.receivedByte(uint8_t byte) {
 }
}

BaseStationC.nc

configuration BaseStationC {
}
implementation {
 components MainC, BaseStationP, LedsC;
 components ActiveMessageC as Radio, SerialActiveMessageC as Serial;
 components PlatformSerialC;

 MainC.Boot <- BaseStationP;
 BaseStationP.RadioControl -> Radio;

76

 BaseStationP.SerialControl -> Serial;
 BaseStationP.UartSend -> Serial;
 BaseStationP.UartPacket -> Serial;
 BaseStationP.UartAMPacket -> Serial;
 BaseStationP.RadioSend -> Radio;
 BaseStationP.RadioReceive -> Radio.Receive;
 BaseStationP.RadioSnoop -> Radio.Snoop;
 BaseStationP.RadioPacket -> Radio;
 BaseStationP.RadioAMPacket -> Radio;
 BaseStationP.UartStream -> PlatformSerialC;
 BaseStationP.StdControl -> PlatformSerialC;
 BaseStationP.Leds -> LedsC;
}

77

APPENDIX D- C CODE FOR MICROCONTROLLER ATmega644 in AVR
Studio 5.0

/*
Adapted from FaceAccess, final project for ECE 4760 under Professor Bruce Land at Cornell
University Electrical and Computer Engineering
*/

#define F_CPU 16000000UL

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <stdlib.h>
#include <util/delay.h>

volatile unsigned char PCLK;

#include "uart.h"
#include "uart.c"
#include "MatlabLib.h"
#include "MatlabLib.c"
#include "flashmem.h"
#include "flashmem.c"
#include "camlib.h"
#include "camlib.c"
#include "twimaster.c"

#define begin {
#define end }

//#define CNTS_FLOP 100

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

void initialize(void);

void transitionA(void);
void transitionB(void);

volatile unsigned int transCnt; //timer for debouncer
unsigned char led; //light states
unsigned char input;

// state machine constants

#define PageSize 528
#define FaceSize 64
#define ActualFace 48

char numFrames;

78

unsigned char curFace;
unsigned char* FrameRead;

//**
//timer 0 compare ISR
ISR (TIMER0_COMPA_vect){
 //Decrement the times if it is not already zero
 if (transCnt>0) transCnt--;
}

//**********************************
//Reads the desired number of pages at face
void sendFacetoMatlab(unsigned char face){
 uint16_t junk = 0;
 unsigned char coon;
 FrameRead = (unsigned char*) malloc(PageSize);
 for (int i=0; i<ActualFace; i++)
 {
 int pageNum = (face*FaceSize) + i;
 readFlash(FrameRead, PageSize, pageNum, 0);
 for (int tea = 0; tea < PageSize; tea++)
 {
 coon = FrameRead[tea];
 printf("%c",coon);
 //if (((tea+1)%66) == 0)
 if (((tea+1)%88) == 0)
 {
 printf("%c",junk>>8);
 printf("%c",junk);
 junk++;
 _delay_ms(9.2);
 }
 }
 //dumpFrame(FrameRead, PageSize);
 }
 free(FrameRead);
}

//**
//Transition to SEND items to MATLAB
void transitionB(){
 setUp(1, ActualFace);
 sendFacetoMatlab(curFace);
 CLRBIT(PORTA,5);
 curFace++;
}

//***
//Transition to take a picture
void transitionA(){

79

 takePicture(curFace);
 while(isBusy());
 CLRBIT(PORTA,4);

}

//**
//Set it all up
void initialize(void)
{

 //set up the ports
 DDRA=0xff; // PORT A are LEDS on 1,2,3 and 4
 DDRB=0xa8;
 DDRC=0x00;
 DDRD=0x80; //PORT D.7 is LED

 /*
 //set up timer 0 for 1 mSec ticks
 TIMSK0 = 2; //turn on timer 0 cmp match ISR
 OCR0A = 250; //set the compare reg to 250 time ticks
 TCCR0A = 0b00000010; // turn on clear-on-match
 TCCR0B = 0b00000011; // clock prescalar to 64

 //init the task timer
 //transCnt = CNTS_FLOP;
 */

 unsigned char f;
 f = 3;
 while(f != 0)
 {f = camera_init();}
 /*for (int ko = 0; ko<150; ko++)
 {_delay_ms(500);
 SETBIT(PORTA,7);
 _delay_ms(500);
 CLRBIT(PORTA,7);}

 camera_write(0x28,0x11); */

 spi_init();

 //init the UART -- uart_init() is in uart.c
 uart_init();
 stdout = stdin = stderr = &uart_str;

 //crank up the ISRs
 //sei();

 //printf("Starting");

 // Show initiation

80

 while(isBusy());
 chipErase();
 while(isBusy());

 // if (f==0)
 // CLRBIT(PORTA,0);
 curFace = 5;
}

/*int main(void){
 initialize();
 int8_t buffer[] = "abc/0";
 char junk1;
 while(1){
 for (int i = 0; i<3; i++)
 {
 loop_until_bit_is_set(UCSR0A, RXC0);
 if ((buffer[i] != UDR0))
 break;
 else
 if(i ==2)
 {

 SETBIT(PORTA,7);SETBIT(PORTA,6);SETBIT(PORTA,5);SETBIT(PORTA,4);
 while(isBusy());
 eraseFace(curFace);
 while(isBusy());
 takePicture(curFace);
 while(isBusy());
 sendFacetoMatlab(curFace);

 CLRBIT(PORTA,7);CLRBIT(PORTA,6);CLRBIT(PORTA,5);CLRBIT(PORTA,4);
 }
 }

 }

 } */

int main(void){
 initialize();
 unsigned char f;
 int8_t buffer[] = "abc/0";
 char junk1;
 while(1){
 for (int i = 0; i<3; i++)
 {
 loop_until_bit_is_set(UCSR0A, RXC0);
 if (i ==2)
 {

81

 switch (UDR0)
 {
 case 99: // take pictures
 SETBIT(PORTA,7);
 while(isBusy());
 eraseFace(curFace);
 while(isBusy());
 takePicture(curFace);
 while(isBusy());
 sendFacetoMatlab(curFace);
 CLRBIT(PORTA,7);
 break;
 case 101: // green off red on
 SETBIT(PORTA,1);SETBIT(PORTA,2);SETBIT(PORTA,4);
 CLRBIT(PORTA,0);CLRBIT(PORTA,3);CLRBIT(PORTA,5);
 break;
 case 102: // green on red off
 SETBIT(PORTA,0);SETBIT(PORTA,3);SETBIT(PORTA,5);
 CLRBIT(PORTA,1);CLRBIT(PORTA,2);CLRBIT(PORTA,4);
 break;
 case 103:
 camera_write(0x4E,0x00); //
 break;
 case 104:
 camera_write(0x4E,0x20); //
 break;
 case 105:
 camera_write(0x4E,0x40); //
 break;
 case 106:
 camera_write(0x4E,0x60); //
 break;
 case 107:
 camera_write(0x4E,0x80); //
 break;
 case 108:
 camera_write(0x4E,0xA0); //
 break;
 case 109:
 camera_write(0x4E,0xC0); //
 break;
 case 110:
 camera_write(0x4E,0xF0); //
 break;
 case 111:
 camera_write(0x28,0x01); //
 break;
 case 112:
 camera_write(0x28,0x11); //
 break;
 case 113:
 f = camera_write(0x12,0x80); // soft reset
 if (f) return f;
 _delay_ms(2);

82

 f = camera_write(0x14,0x20); // QCIF frame size
(176x144)
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x12,0x24); // (default setting) AGC
enable, YCrCb mode, no AWB
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x13,0x01); // (default setting) 16 bit
format (see datasheet)
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x11,(0x1C)<<1); // reduce fps
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x29,0x00); // set to camera master
mode
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x38,0x89); //89
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x4E,0x60); //
 if (f) return f;
 _delay_ms(2);
 f = camera_write(0x20,0x04); //
 if (f) return f;
 _delay_ms(2);
 break;
 case 114:
 junk1 = camera_read(0x05);
 junk1 = junk1 + 60;
 camera_write(0x05,junk1); //
 break;
 case 115:
 junk1 = camera_read(0x05);
 junk1 = junk1 - 60;
 camera_write(0x05,junk1); //
 break;
 case 116:
 junk1 = camera_read(0x06);
 junk1 = junk1 + 15;
 camera_write(0x06,junk1); //
 break;
 case 117:
 junk1 = camera_read(0x06);
 junk1 = junk1 - 15;
 camera_write(0x06,junk1); //
 break;
 case 118:
 junk1 = camera_read(0x00);
 junk1 = junk1 + 5;
 camera_write(0x00,junk1); //
 break;
 case 119:

83

 junk1 = camera_read(0x00);
 junk1 = junk1 - 5;
 camera_write(0x00,junk1); //
 break;
 case 120:
 junk1 = camera_read(0x10);
 junk1 = junk1 + 50;
 camera_write(0x10,junk1); //
 break;
 case 121:
 junk1 = camera_read(0x10);
 junk1 = junk1 - 50;
 camera_write(0x10,junk1); //
 break;
 case 122:
 camera_write(0x12,0x20); //
 break;

 default:
 break;
 }
 }
 if ((buffer[i] != UDR0) && i<2)
 break;
 }
 } }

84

APPENDIX E- MESSAGES FROM BASE STATION MOTE TO VISUAL
SENSOR NODE

Table E.1 Control Messages

Serial
Number

Message Byte
Value

Description

1 0x63 Initiates image capture and transfer
2 0x65 Switches on the green lights and shuts down

the red
3 0x66 Switches on the red lights and shuts down the

green
4 0x67 Sets AEC/AGC voltage reference value to 1.3v
5 0x68 Sets AEC/AGC voltage reference value to 1.5v
6 0x69 Sets AEC/AGC voltage reference value to 1.6v
7 0x6A Sets AEC/AGC voltage reference value to 1.7v
8 0x6B Sets AEC/AGC voltage reference value to 1.8v
9 0x6C Sets AEC/AGC voltage reference value to 1.9v
10 0x6D Sets AEC/AGC voltage reference value to 2.0v
11 0x6E Sets AEC/AGC voltage reference value to 2.1v
12 0x6F Stop AEC and AGC
13 0x70 Restart AEC and AGC
14 0x71 Reset the camera
15 0x72 Increase contrast
16 0x73 Decrease contrast
17 0x74 Increase Brightness
18 0x75 Decrease Brightness
19 0x76 Increase gain
20 0x77 Decrease gain
21 0x78 Increase exposure
22 0x79 Decrease Exposure
23 0x7A Stop Automatic White Balance

85

APPENDIX F- MATLAB GUI CODE

function varargout = WMSN_final(varargin)
%WMSN_FINAL M-file for WMSN_final.fig
% WMSN_FINAL, by itself, creates a new WMSN_FINAL or raises the existing
% singleton*.
%
% H = WMSN_FINAL returns the handle to a new WMSN_FINAL or the handle to
% the existing singleton*.
%
% WMSN_FINAL('Property','Value',...) creates a new WMSN_FINAL using the
% given property value pairs. Unrecognized properties are passed via
% varargin to WMSN_final_OpeningFcn. This calling syntax produces a
% warning when there is an existing singleton*.
%
% WMSN_FINAL('CALLBACK') and WMSN_FINAL('CALLBACK',hObject,...) call the
% local function named CALLBACK in WMSN_FINAL.M with the given input
% arguments.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help WMSN_final

% Last Modified by GUIDE v2.5 16-May-2012 08:57:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @WMSN_final_OpeningFcn, ...
 'gui_OutputFcn', @WMSN_final_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before WMSN_final is made visible.
function WMSN_final_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

86

% handles structure with handles and user data (see GUIDATA)
% varargin unrecognized PropertyName/PropertyValue pairs from the
% command line (see VARARGIN)
c=date;
set(handles.date,'String',c);
guidata(hObject, handles);
set(hObject, 'toolbar', 'figure');

% Choose default command line output for WMSN_final
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

ha=axes('units','normalized',...
 'position',[0 0 1 1]);
uistack(ha,'bottom');
I=imread('4.jpg');
hi=imagesc(I)
colormap hsv
set(ha,'handlevisibility','off',...
 'visible','off')
set(hi,'alphadata',0.5)

% UIWAIT makes WMSN_final wait for user response (see UIRESUME)
% uiwait(handles.figure1);
global folder;
global paclen;
global pixelbytes;
global relpix1;
global relpix2;
global relpos1;
global relpos2;
global ext;
global image1;
global data;
global r;
global imge;
global background;
folder = 'WMSN/';
ext='.bmp';
paclen = 103;
pixelbytes = 88;
relpix1 = 10;
relpix2 = 97;
relpos1 = 98;
relpos2 = 99;
image1 = zeros(1,25344,'uint8');

% --- Outputs from this function are returned to the command line.
function varargout = WMSN_final_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

87

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in exitbutton.
function exitbutton_Callback(hObject, eventdata, handles)
% hObject handle to exitbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in togglebutton1.
function togglebutton1_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of togglebutton1
button_state = get(hObject,'Value');
global data;
global r;
if (button_state == get(hObject,'Max'))
 data = tcpip('169.254.185.41','remoteport',10002,'localport',9090);
 set(data, 'InputBufferSize',33000,'Timeout',0.1,'OutputBufferSize',4)

 pause(.1)
 fopen(data)
 elseif (button_state == get(hObject,'Min'))

 fclose(data)
 delete(data)
 clear data

end

% --- Executes on button press in background_button.
function background_button_Callback(hObject, eventdata, handles)
% hObject handle to background_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global imge;
global background;
background=imge;

% --- Executes on button press in image_processing.
function image_processing_Callback(hObject, eventdata, handles)
% hObject handle to image_processing (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global background;

88

global imge;
global binaryImage;

set(handles.cars_background,'String',0);
%cla(handles.cars_background,'reset')
%cla(handles.golmol,'reset')
guidata(hObject,handles)
axes(handles.golmol);
grid off;
drawnow
imshow(imge,[16 240]);
axis off;
guidata(hObject, handles);
axis square;
binarymask = imread('mask_final.bmp');
b=imge;
b(~binarymask)=0;
originalImage=b;

background(~binarymask)=0;

binaryImage=imsubtract(originalImage,background);

binaryImage=imadjust(binaryImage);
binaryImage=medfilt2(binaryImage);

level=graythresh(binaryImage);
binaryImage = im2bw(binaryImage,0.39); %hamza changed it from 0.11
binaryImage = imfill(binaryImage,'holes');
binaryImage = bwareaopen(binaryImage,10);
binaryImage=imclose(binaryImage,strel('rectangle',[1 5]));
binaryImage=imerode(binaryImage,strel('rectangle',[2 9])); %hamza changed it from [2 7]
binaryImage=imdilate(binaryImage,strel('disk',1));
s=binaryImage;

a=regionprops(s,'BoundingBox');
box=cat(1,a.BoundingBox);
[m n]=size(box);
minimum=min(box(:,2));

 for i=1:1:m
 p(1,i)=box(i,3)*box(i,4);
 p(2,i)=((box(i,2) + (box(i,4)/2))^3.1)/10000;
 %p(2,i)=((box(i,2)-80)^2)/100;
 %p(2,i)=log(log(log(box(i,2)^2)));
 p(3,i)=p(1,i)/p(2,i);
 end
dent=[box p']
[len b]=size(dent);
for i=1:1:len

 if dent(i,b)<0.8
 [ab cd]=size(s(ceil(dent(i,2)) : ceil(dent(i,2))+ceil(dent(i,4)-1), ceil(dent(i,1)) :
ceil(dent(i,1))+ceil(dent(i,3)-1)));

89

 s(ceil(dent(i,2)) : ceil(dent(i,2))+ceil(dent(i,4)-1), ceil(dent(i,1)) : ceil(dent(i,1))+ceil(dent(i,3)-
1))=zeros(ab,cd);
 end
end

hold on;
labeledImage = bwlabel(s,4); % Label each blob so measurements can be made

% Get all the blob properties. Can only pass in originalImage in version R2008a and later.
blobMeasurements = regionprops(labeledImage, originalImage, 'all');
numberOfBlobs = size(blobMeasurements, 1);

% bwboundaries() returns a cell array, where each cell contains the row/column coordinates for an
object in the image.
% Plot the borders of all the coins on the original grayscale image using the coordinates returned by
bwboundaries.

hold on;

boundaries = bwboundaries(s);
numberOfBoundaries = size(boundaries);
for k = 1 : numberOfBoundaries
 thisBoundary = boundaries{k};
% plot(thisBoundary(:,2), thisBoundary(:,1),'g', 'LineWidth', 2);
end
guidata(hObject, handles.golmol);
fontSize = 14; % Used to control size of "blob number" labels put atop the image.
labelShiftX = -7; % Used to align the labels in the centers of the coins.
blobECD = zeros(1, numberOfBlobs);
hold off;
for k = 1 : numberOfBlobs % Loop through all blobs.
 % Find the mean of each blob. (R2008a has a better way where you can pass the original
image
 % directly into regionprops. The way below works for all versions including earlier
versions.)
 thisBlobsPixels = blobMeasurements(k).PixelIdxList; % Get list of pixels in current blob.
 meanGL = mean(originalImage(thisBlobsPixels)); % Find mean intensity (in original image!)
 meanGL2008a = blobMeasurements(k).MeanIntensity; % Mean again, but only for version
>= R2008a

 blobArea = blobMeasurements(k).Area; % Get area.
 blobPerimeter = blobMeasurements(k).Perimeter; % Get perimeter.
 blobCentroid = blobMeasurements(k).Centroid; % Get centroid.
 blobECD(k) = sqrt(4 * blobArea / pi); % Compute ECD
- Equivalent Circular Diameter.
% % Put the "blob number" labels on the "boundaries" grayscale image.
% text(blobCentroid(1) + labelShiftX -3, blobCentroid(2)-7, num2str(k), 'FontSize', fontSize,
'FontWeight', 'Bold', 'Color',[.6,.3,.4]);

end
hold off;
 set(handles.cars_background,'String',numberOfBlobs);
 guidata(hObject,handles);

% --- Executes on button press in receivedata.

90

function receivedata_Callback(hObject, eventdata, handles)
% hObject handle to receivedata (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global folder;
global paclen;
global ext;
global image1;
global pixelbytes;
global relpix1;
global relpix2;
global relpos1;
global relpos2;
global imge;
global background;
folder = 'WMSN/';
ext='.bmp';
paclen = 103;
pixelbytes = 88;
relpix1 = 10;
relpix2 = 97;
relpos1 = 98;
relpos2 = 99;
image1 = zeros(1,25344,'uint8');
data = instrfind;
p = [];
pos = 0;
count = 0;
countpack = 1;
relpix1;
%% receive packets
flushinput(data)
pause(0.1)
flushinput(data)
fprintf(data,'%s','abcd')
pause(.1)
fprintf(data,'%s','abcd')
pause(.1)
fprintf(data,'%s','abcd')
pause(.1)
pause(2.8)
while(get(data,'BytesAvailable')==0)
 fprintf(data,'%s','abcd')
 pause(.1)
 fprintf(data,'%s','abcd')
 pause(.1)
 fprintf(data,'%s','abcd')
 pause(.1)
 pause(2.8)
end
pause(5.1)
packet1 = fread(data)';
flushinput(data)
%% count number of escape/delimiter byte instances
for i = 1:length(packet1) - 1

91

 if (packet1(i)==125 && (packet1(i+1)==94 || packet1(i+1)==93))
 count = count + 1;
 end
end
%% remove escape and delimiter bytes and parse packets
packet = packet1;
for i = 1:length(packet) - count
 if (packet(i)==125 && packet(i+1)==94)
 packet(i) = 126;
 packet = [packet(1,1:i) packet(1,i+2:end)];
 elseif (packet(i)==125 && packet(i+1)==93)
 packet(i) = 125;
 packet = [packet(1,1:i) packet(1,i+2:end)];
 end
end

%% count number of packets
for i = 1:length(packet) - 6
 if (packet(i)==126 && packet(i+1)==126 && packet(i+2)==69 && packet(i+3)==0 &&
packet(i+4)==0)
 countpack = countpack + 1;
 end
end
packet2 = [packet 126];

%% remove any garbage/corrupted extra bytes within packets
 for i = paclen:paclen:(countpack*paclen)
 while (packet2(i)~=126 || packet2(i+1)~=126)
 packet2 = [packet2(1,1:i-1) packet2(1,i+1:end)];
 end
 end
 %packet3 = packet2(1,1:(countpack*paclen))
 packet3 = packet;
 %% extract data bytes from the packet structure

 for i = 1:paclen:(((countpack-1)*paclen)+1)
 pos = (packet3(i+relpos1)*256) + packet3(i+relpos2);
 if (pos<countpack)
 image1(1,(pos*pixelbytes)+1:(pos*pixelbytes)+pixelbytes) = packet3(1,i+relpix1:i+relpix2);
 p = [p pos];
 end
 end

 %% rearrange and save/display image
neteff = size(p,2)/288;
set(handles.efficiency,'String',neteff);
guidata(hObject, handles);
imge = reshape(image1,176,144)';
axes(handles.golmol);
grid off;
drawnow
imshow(imge,[16 240]);
axis square;
axis off;

92

guidata(hObject, handles);
axes(handles.imge2);
grid off;
drawnow
imshow(imge,[16 240]);
axis square;
axis off;
guidata(hObject, handles);

filename = datestr(now,'dd-mm-yyyy-HH-MM-SS');
filename = [folder filename ext];
imwrite(imge,filename,'bmp');

% --- Executes on button press in match_template.
function match_template_Callback(hObject, eventdata, handles)
% hObject handle to match_template (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global imge;
global sum;
data = instrfind;

set(handles.cars_template,'String',0);
%cla(handles.cars_template,'reset');
axes(handles.imge2);
%imshow(imge,[16 240]);
binarymask = imread('mask_final.bmp');
b = imge; %problem with n/8 and n/9 and pics/21 and pics/22 and pics/13 pics/16

b(~binarymask)=0;

c=b;
c = imadjust(c);
level = 1.4 * graythresh(b); %2.55 %5.55 for n/10
d = im2bw(c,0.68);
s=d;

cars_lam = 0;
hud = 0;
a = imread('templates_final/ulu4.bmp');

cc = normxcorr2(a,d);
[max_cc, imax] = max(cc(:));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
while ((max_cc > 0.5) && (hud < 50)) %0.52

 corr = [(ypeak-size(a,1)) (xpeak-size(a,2))];
 try
 e = c(corr(1)-8:corr(1)+size(a,1)+22,corr(2)-4:corr(2)+size(a,2)+6); %-8 +22 -13 +13
 %figure,imshow(e); %+8 +22 -4 +4

93

 d(corr(1)-8:corr(1)+size(a,1)+22,corr(2)-4:corr(2)+size(a,2)+6) = 0;
 cars_lam = cars_lam + 1;

 catch
 if (corr(1)<0 && corr(2)>0)
 d(1:size(a,1)-corr(1),corr(2)+3:corr(2)+size(a,2)) = 0;
 end
 if (corr(2)<0 && corr(1)>0)
 d(corr(1):corr(1)+size(a,1),1:size(a,2)-corr(2)) = 0;
 else
 d(1:-corr(1)+size(a,1),1:-corr(2)+size(a,2)) = 0;
 end
 hud = hud + 1;
 end
 %f = b(corr(1)+105:corr(1)+size(a,2)+105,corr(2):corr(2)+size(a,1));

 cc = normxcorr2(a,d);
 [max_cc, imax] = max(cc(:));
 [ypeak, xpeak] = ind2sub(size(cc),imax(1));
end

cars1 = 0;
hud = 0;
a = imread('templates_final/ulu1.bmp');

cc = normxcorr2(a,d);
[max_cc, imax] = max(cc(:));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
while ((max_cc > 0.36) && (hud < 50) && ypeak>75 && ypeak<144) %0.52

 corr = [(ypeak-size(a,1)) (xpeak-size(a,2))];
 try
 e = c(corr(1)-8:corr(1)+size(a,1)+22,corr(2)-13:corr(2)+size(a,2)+13); %-8 +22 -13 +13

 d(corr(1)-8:corr(1)+size(a,1)+22,corr(2)-13:corr(2)+size(a,2)+13) = 0;
 cars1 = cars1 + 1;

 catch
 if (corr(1)<0 && corr(2)>0)
 d(1:size(a,1)-corr(1),corr(2)+3:corr(2)+size(a,2)) = 0;
 end
 if (corr(2)<0 && corr(1)>0)
 d(corr(1):corr(1)+size(a,1),1:size(a,2)-corr(2)) = 0;
 else
 d(1:-corr(1)+size(a,1),1:-corr(2)+size(a,2)) = 0;
 end
 hud = hud + 1;
 end
 %f = b(corr(1)+105:corr(1)+size(a,2)+105,corr(2):corr(2)+size(a,1));

 cc = normxcorr2(a,d);
 [max_cc, imax] = max(cc(:));
 [ypeak, xpeak] = ind2sub(size(cc),imax(1));
end

94

hud = 0;
cars5 = 0;

a=imread('templates_final/ulu3.bmp');
cc = normxcorr2(a,d);
[max_cc, imax] = max(cc(:));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
while (max_cc > .55 && hud <5) %0.52 or 0.55 %0.62 for n/11 %% 0.57 IS THE STANDARD

 corr = [(ypeak-size(a,1)) (xpeak-size(a,2))];
 try
 e = c(corr(1)-3:corr(1)+size(a,1)+3,corr(2)-3:corr(2)+size(a,2)+3); %-6 +9 -2 +6
 %figure,imshow(e);
 d(corr(1)-3:corr(1)+size(a,1)+3,corr(2)-3:corr(2)+size(a,2)+3) = 0;
 cars5 = cars5 + 1;
 catch
 if (corr(1)<0 && corr(2)>0)
 d(1:size(a,1)-corr(1),corr(2)+3:corr(2)+size(a,2)) = 0;
 end
 if (corr(2)<0 && corr(1)>0)
 d(corr(1):corr(1)+size(a,1),1:size(a,2)-corr(2)) = 0;
 else
 d(1:-corr(1)+size(a,1),1:-corr(2)+size(a,2)) = 0;
 end
 hud = hud + 1;
 end
 %f = b(corr(1)+105:corr(1)+size(a,2)+105,corr(2):corr(2)+size(a,1));
 cc = normxcorr2(a,d);
 [max_cc, imax] = max(cc(:));
 [ypeak, xpeak] = ind2sub(size(cc),imax(1));
end

hud=0;
cars7=0;
a=imread('templates/misctemp.bmp');
cc = normxcorr2(a,d);
[max_cc, imax] = max(cc(:));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
while (max_cc > 0.65 && hud <5) %0.52 or 0.55 %0.62 for n/11 %% maybe: && ypeak>23 &&
ypeak<40

 corr = [(ypeak-size(a,1)) (xpeak-size(a,2))];
 try
 e = c(corr(1)-2:corr(1)+size(a,1)+3,corr(2)-5:corr(2)+size(a,2)+3); %-6 +9 -2 +6
 %figure,imshow(e);
 d(corr(1)-2:corr(1)+size(a,1)+3,corr(2)-5:corr(2)+size(a,2)+3) = 0;
 cars7 = cars7 + 1;
 catch
 if (corr(1)<0 && corr(2)>0)
 d(1:size(a,1)-corr(1),corr(2)+3:corr(2)+size(a,2)) = 0;
 end
 if (corr(2)<0 && corr(1)>0)
 d(corr(1):corr(1)+size(a,1),1:size(a,2)-corr(2)) = 0;

95

 else
 d(1:-corr(1)+size(a,1),1:-corr(2)+size(a,2)) = 0;
 end
 hud = hud + 1;
 end
 %f = b(corr(1)+105:corr(1)+size(a,2)+105,corr(2):corr(2)+size(a,1));
 cc = normxcorr2(a,d);
 [max_cc, imax] = max(cc(:));
 [ypeak, xpeak] = ind2sub(size(cc),imax(1));
end
%figure, imshow(d)

hud = 0;
randomcars = 0;
a=imread('templates_final/ulu2.bmp');
cc = normxcorr2(a,d);
[max_cc, imax] = max(cc(:));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
while (max_cc > 0.5 && hud <5 && ypeak>1 && ypeak<60) %0.62 or 0.7 %0.85 for n/11 %0.79 for
pics

 corr = [(ypeak-size(a,1)) (xpeak-size(a,2))];
 try
 e = c(corr(1)-4:corr(1)+size(a,1)+4,corr(2)-4:corr(2)+size(a,2)+4);
 %figure,imshow(e);
 d(corr(1)-4:corr(1)+size(a,1)+4,corr(2)-4:corr(2)+size(a,2)+4) = 0;
 %d(corr(1):corr(1)+size(a,1)-40,corr(2)+3:corr(2)+size(a,2)-40) = 0;
 randomcars = randomcars + 1;
 catch
 if (corr(1)<0 && corr(2)>0)
 d(1:size(a,1)-corr(1),corr(2)+3:corr(2)+size(a,2)) = 0;
 end
 if (corr(2)<0 && corr(1)>0)
 d(corr(1):corr(1)+size(a,1),1:size(a,2)-corr(2)) = 0;
 else
 d(1:-corr(1)+size(a,1),1:-corr(2)+size(a,2)) = 0;
 end
 hud = hud + 1;
 end
 %f = b(corr(1)+105:corr(1)+size(a,2)+105,corr(2):corr(2)+size(a,1));
 cc = normxcorr2(a,d);
 [max_cc, imax] = max(cc(:));
 [ypeak, xpeak] = ind2sub(size(cc),imax(1));
end

cars_lam
cars1
cars7
randomcars

axes(handles.imge2)
sum=cars_lam+cars1+cars5+randomcars+cars7;
grid off;
drawnow

96

imshow(imge,[16 240]);
axis square;
axis off;
 guidata(hObject, handles.imge2);
 set(handles.cars_template,'String',sum);
 guidata(hObject,handles);
 if (sum>=0 && sum<5)
 fprintf(data,'%s','abed')
 pause(.1)
 fprintf(data,'%s','abed')
 pause(.1)
 fprintf(data,'%s','abed')
 pause(.1)
end
if (sum>=4)
 fprintf(data,'%s','abfd')
 pause(.1)
 fprintf(data,'%s','abfd')
 pause(.1)
 fprintf(data,'%s','abfd')
 pause(.1)
end

% --- Executes on button press in transmit_data.
function transmit_data_Callback(hObject, eventdata, handles)
% hObject handle to transmit_data (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
data = instrfind;
global sum;
if (sum>=0 && sum<6)
 fprintf(data,'%s','abed')
 pause(.1)
 fprintf(data,'%s','abed')
 pause(.1)
 fprintf(data,'%s','abed')
 pause(.1)
end
if (sum>=6)
 fprintf(data,'%s','abfd')
 pause(.1)
 fprintf(data,'%s','abfd')
 pause(.1)
 fprintf(data,'%s','abfd')
 pause(.1)
end

% --- Executes on button press in ib.
function ib_Callback(hObject, eventdata, handles)
% hObject handle to ib (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abtd')

97

 pause(.1)
 fprintf(data,'%s','abtd')
 pause(.1)
 fprintf(data,'%s','abtd')
 pause(.1)

% --- Executes on button press in db.
function db_Callback(hObject, eventdata, handles)
% hObject handle to db (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abud')
 pause(.1)
 fprintf(data,'%s','abud')
 pause(.1)
 fprintf(data,'%s','abud')
 pause(.1)

% --- Executes on button press in ic.
function ic_Callback(hObject, eventdata, handles)
% hObject handle to ic (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abrd')
 pause(.1)
 fprintf(data,'%s','abrd')
 pause(.1)
 fprintf(data,'%s','abrd')
 pause(.1)

% --- Executes on button press in dc.
function dc_Callback(hObject, eventdata, handles)
% hObject handle to dc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','absd')
 pause(.1)
 fprintf(data,'%s','absd')
 pause(.1)
 fprintf(data,'%s','absd')
 pause(.1)

% --- Executes on button press in reset.
function reset_Callback(hObject, eventdata, handles)
% hObject handle to reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abqd')
 pause(.1)
 fprintf(data,'%s','abqd')
 pause(.1)

98

 fprintf(data,'%s','abqd')
 pause(.1)

% --- Executes on button press in noawb.
function noawb_Callback(hObject, eventdata, handles)
% hObject handle to noawb (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abzd')
 pause(.1)
 fprintf(data,'%s','abzd')
 pause(.1)
 fprintf(data,'%s','abzd')
 pause(.1)

% --- Executes on button press in ie.
function ie_Callback(hObject, eventdata, handles)
% hObject handle to ie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abxd')
 pause(.1)
 fprintf(data,'%s','abxd')
 pause(.1)
 fprintf(data,'%s','abxd')
 pause(.1)

% --- Executes on button press in de.
function de_Callback(hObject, eventdata, handles)
% hObject handle to de (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abyd')
 pause(.1)
 fprintf(data,'%s','abyd')
 pause(.1)
 fprintf(data,'%s','abyd')
 pause(.1)

% --- Executes on button press in ig.
function ig_Callback(hObject, eventdata, handles)
% hObject handle to ig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abvd')
 pause(.1)
 fprintf(data,'%s','abvd')
 pause(.1)
 fprintf(data,'%s','abvd')
 pause(.1)

99

% --- Executes on button press in dg.
function dg_Callback(hObject, eventdata, handles)
% hObject handle to dg (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abwd')
 pause(.1)
 fprintf(data,'%s','abwd')
 pause(.1)
 fprintf(data,'%s','abwd')
 pause(.1)

% --- Executes on button press in freeze.
function freeze_Callback(hObject, eventdata, handles)
% hObject handle to freeze (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abpd')
 pause(.1)
 fprintf(data,'%s','abpd')
 pause(.1)
 fprintf(data,'%s','abpd')
 pause(.1)

% --- Executes on button press in unfreeze.
function unfreeze_Callback(hObject, eventdata, handles)
% hObject handle to unfreeze (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abod')
 pause(.1)
 fprintf(data,'%s','abod')
 pause(.1)
 fprintf(data,'%s','abod')
 pause(.1)

% --- Executes on button press in v13.
function v13_Callback(hObject, eventdata, handles)
% hObject handle to v13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abgd')
 pause(.1)
 fprintf(data,'%s','abgd')
 pause(.1)
 fprintf(data,'%s','abgd')
 pause(.1)

% --- Executes on button press in v18.
function v18_Callback(hObject, eventdata, handles)
% hObject handle to v18 (see GCBO)

100

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abkd')
 pause(.1)
 fprintf(data,'%s','abkd')
 pause(.1)
 fprintf(data,'%s','abkd')
 pause(.1)

% --- Executes on button press in v19.
function v19_Callback(hObject, eventdata, handles)
% hObject handle to v19 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abld')
 pause(.1)
 fprintf(data,'%s','abld')
 pause(.1)
 fprintf(data,'%s','abld')
 pause(.1)

% --- Executes on button press in v16.
function v16_Callback(hObject, eventdata, handles)
% hObject handle to v16 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abid')
 pause(.1)
 fprintf(data,'%s','abid')
 pause(.1)
 fprintf(data,'%s','abid')
 pause(.1)

% --- Executes on button press in v17.
function v17_Callback(hObject, eventdata, handles)
% hObject handle to v17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abjd')
 pause(.1)
 fprintf(data,'%s','abjd')
 pause(.1)
 fprintf(data,'%s','abjd')
 pause(.1)

% --- Executes on button press in v15.
function v15_Callback(hObject, eventdata, handles)
% hObject handle to v15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;

101

 fprintf(data,'%s','abhd')
 pause(.1)
 fprintf(data,'%s','abhd')
 pause(.1)
 fprintf(data,'%s','abhd')
 pause(.1)

% --- Executes on button press in v21.
function v21_Callback(hObject, eventdata, handles)
% hObject handle to v21 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abnd')
 pause(.1)
 fprintf(data,'%s','abnd')
 pause(.1)
 fprintf(data,'%s','abnd')
 pause(.1)

% --- Executes on button press in v20.
function v20_Callback(hObject, eventdata, handles)
% hObject handle to v20 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 data = instrfind;
 fprintf(data,'%s','abmd')
 pause(.1)
 fprintf(data,'%s','abmd')
 pause(.1)
 fprintf(data,'%s','abmd')
 pause(.1)

102

BIBLIOGRAPHY

[1] David Gascón, “802.15.4 vs ZigBee”

http://www.sensor-networks.org/index.php?page=0823123150, November 17, 2008.

[2] www.xmos.com/published/uart-tutorial

[3] “Serial Pheripheral Interface Bus” Wikipedia, 30 June 2012

[4] AN10216-01 I2C Manual

[5] “TCP/IP” http://searchnetworking.techtarget.com/definition/TCP-IP, October 2008

[6] “Common Intermediate Format” Wikipedia, 21 May, 2012

[7] “EEPROM”, Wikipedia, 25 May, 2012

[8] “Static Random Access Memory”, Wikipedia, 26 June, 2012

[9] “Flash Memory”, Wikipedia, 3 July, 2012

[10] “Binary Image”, Wikipedia, 2 December, 2011

[11] Sven Zacharias and Thomas Newe , “Technologies and Architectures for Multimedia-
Support in Wireless Sensor Networks,” in Smart Wireless Sensor Networks. Hoang
Chinch and Yeh Tan, Ed. Rijeka: InTech, 2010.

103

[12] Purushottam Kulkarni, Deepak Ganesan, Prashant Shenoy and Qifeng Lu,“SensEye:A
Multitier Camera Sensor Network” in Proc. ACMMM, 2005, pp. 229-238.

[13] Ian Akyildiz, Tommaso Melodia, and Kaushik Chowdhury, “A survey on wireless
multimedia sensor networks.” Computer Networks: The International Journal of
Computer and Telecommunications Networking, vol. 51, pp. 921-960, Mar. 2007.

[14] C3088 CMOS Camera Datasheet

[15] ATmega644 Datasheet, AVR

[16] 45DB321D-SU Datasheet, AVR

[17] MDA100CB Datasheet, MEMSIC

[18] MICAz Mote Daasheet, MEMSIC

[19] Farshchi, Shahin, Nuyujukian, Paul H, Pesterev, Aleksey Mody, Istvan Judy and Jack
W, “A TinyOS-enabled MICA2-based wireless neural interface,” IEEE Trans. Biomed.
Eng. , vol. 53, pp. 1416-1424, Jul. 2006.

[20] Tia Gao, Dan Greenspan, Matt Welsh, Radford R. Juang, and Alex Alm , “Vital Signs
Monitoring and Patient Tracking Over a Wireless Network.” in Proc. ICICTH, 2005,
pp. 102-105

[21] Vijay Devabhaktuni and James Haslett, “Introduction to Theory and Applications of
Self Organizing Wireless Sensor Networks,” in Proc. International Conference on
Wireless Communications, 2004, pp. 74-78.

104

[22] MIB600 Ethernet Gateway Datasheet, MEMSIC

[23] “TINYOS Documentation Wiki ” http://docs.tinyos.net, 1 August, 2011

[24] “Mote-PC serial communication and SerialForwarder (pre-T2.1.1)”

http://docs.tinyos.net/tinywiki/index.php/Mote-
PC_serial_communication_and_SerialForwarder, 5 March 2012

[25] “Face Access”
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_

caj65/bjh78_caj65/index.htm,

[26] “Wireless Visual Sensor Networks for Urban Traffic Management,” white paper,
NIST Technology Innovation Program.

[27] Stanislava Soro and Wendi Heinzelman, “A Survey of Visual Sensor Networks,”
Advances in Multimedia, vol, 2009, pp. 1-22, 2009.

	LIST OF FIGURES
	LIST OF TALBES
	ABBREVATIONS USED
	Chapter 1
	INTRODUCTION
	1.1 Background
	1.2 Project Overview
	Objectives
	1.4 Outline Of Tasks
	Platforms Used
	1.6 Organization Of The Document

	CHAPTER 2
	LITERATURE REVIEW
	2.1 Introduction
	2.2 Communication Protocols
	2.2.1 IEEE 802.15.4
	2.2.2 Serial Communication
	There are various serial protocols being used at different segments of the project. The protocols used are UART (Universal Asynchronous Receiver/Transmitter), SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit). A thorough understandi...
	2.2.2.1 UART
	2.2.2.2 SPI
	2.2.2.3 I2C

	2.2.3 TCP/IP Communication

	2.3 Camera Specifications
	2.3.1 Progressive Scan Read Out Mode
	2.3.2 CIF/QCIF Resolution

	2.4 Memory
	2.4.1 EEPROM
	2.4.2 SRAM
	2.4.3 FLASH MEMORY

	2.5 Composition Of Image
	2.5.1 Gray Scale Image

	2.6 Review Of The Studied Wireless Sensor Networks
	2.6.1 Cyclops
	2.6.2 Wireless Smart Camera (WiCa)
	2.6.3 MeshEye
	2.6.4 Meerkats
	2.6.5 Explorebots
	2.6.6 SensEye
	2.6.7 WSN At BWN Laboratory, Georgia Tech

	Chapter 3
	NETWORK TOPOLOGY and DESIGN
	Overview
	3.2 Modules
	3.2.1 CMOS Camera
	Image Grabber
	MDA100CB Data Acquisition Board
	3.2.4 MPR2400CB IEEE802.15.4/ ZigBee Compliant MICAz Motes (2.4GHz)
	3.2.4.1 Visual Sensor Node
	3.2.4.2 Intermediate Mote
	3.2.4.3 Base Station Mote

	MIB600CA Ethernet Gateway
	3.2.6 PC/ Other Computational Device
	3.2.7 Traffic Controller Circuitry

	3.3 System Design Block Diagram
	3.4 Project Overview
	3.5 Conclusion

	Chapter 4
	WIRELESS NETWORK OF MICAz MOTES
	Overview
	4.2 Operating System For Programming MICAz Motes
	Installation Of TinyOS And nesC Compiler
	Connection Specifications In Lantronix
	4.5 MICAz Motes For Data Transmission
	4.5.1 Visual Sensor Module
	4.5.2 Intermediate Module
	4.5.3 Base Station Module

	4.6 Listen Tool
	4.7 Creating A TCP/IP Server
	4.8 Packet Structure
	4.9 Importing Data To The Application
	4.10 Data Rate Optimization
	4.11 Conclusion

	CHAPTER 5
	IMAGE ACQUISITION
	5.1 Introduction
	5.2 Programming The Microcontroller
	5.2.1 Interfacing With Camera C3088
	5.2.2 Interfacing With Flash
	5.2.3 Interfacing With The MICAz Mote
	5.2.4 Schematic Diagram

	5.3 Other Features
	5.4 Conclusion

	CHAPTER 6
	PROCESSING IN MATLAB
	Introduction
	6.2 Receiving Data’s Packet Structure
	6.3 Application Development
	6.3.1 Background Subtraction Algorithm
	6.3.2 Template Matching Algorithm
	Difference Between The Algorithms
	6.3.4 Results

	6.4 GUI
	6.5 Conclusion

	CHAPTER 7
	FUTURE WORK AND CONCLUSION
	7.1 Introduction
	Project Limitations
	WMSN Advantages And Applications
	7.3.1 Surveillance
	7.3.2 Environmental Monitoring
	7.3.3 Advanced Healthcare Delivery
	7.3.4 Industrial Process Control

	Testing And Validation
	7.5 Conclusion

	APPENDIX A- nesC CODE FOR MICAz MOTE IN VISUAL SENSOR NODE
	APPENDIX B- nesC CODE FOR RELAY MICAz MOTE
	APPENDIX C- nesC CODE FOR BASE STATION MICAz MOTE
	APPENDIX D- C CODE FOR MICROCONTROLLER ATmega644 in AVR Studio 5.0
	APPENDIX E- MESSAGES FROM BASE STATION MOTE TO VISUAL SENSOR NODE
	APPENDIX F- MATLAB GUI CODE
	BIBLIOGRAPHY

