
Information Hiding in DEFLATE
Compressed Files

By
Sidra Khan

2008-NUST-MSCCS-12

Supervisor
Dr Fauzan Mirza

Department of Computing

A thesis submitted in partial ful�llment of the requirements for the degree
of Masters in Computer and Communication Security (MS CCS)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(Feb 2012)



Approval

It is certi�ed that contents and form of the thesis entitled "Information
Hiding in DEFLATE Compressed Files" submitted by Sidra Khan
have been found satisfactory for the requirement of the degree.

Advisor: Dr Fauzan Mirza

Signature:
Date:

Committee Member 1: Dr Ha�z Farooq Ahmad

Signature:
Date:

Committee Member 2: Dr Zahid Anwar

Signature:
Date:

Committee Member 3: Mr Kamran H. Zaidi
Signature:

Date:

i



Abstract

Steganography has been used as a way of secret communication such that
no third party can suspect the presence of communication link. The media
for steganographic communication kept changing on with the advancement
in technology over the time. Compressed �les and archives can also serve
as a medium to carry hidden information. In this research, a popular com-
pression algorithm DEFLATE has been studied and analyzed for informa-
tion hiding purposes. DEFLATE is implemented with bu�ers and multiple
�ush modes have been provided to avoid bu�er latency issues. In this study
the �ush operation during compression has been exploited to embed addi-
tional information inside a �le and two schemes for information hiding in
DEFLATE compressed �les have been proposed. The proposed schemes em-
bed additional information during the compression process of DEFLATE and
produce a steganographic compressed cover �le with additional information
embedded inside it. The proposed information hiding schemes are secure and
provide good information hiding capacity. A ratio of size of the compressed
�le and embeddable data size has been calculated and a threshold value is
de�ned. The proposed scheme works well with single �le compression and
information hiding but can be adapted and implemented to communicate
secret information over the network using protocols that support DEFLATE
compression.

ii



Certi�cate of Originality

I hereby declare that this submission is my own work and to the best of
my knowledge it contains no materials previously published or written by
another person nor material which to a substantial extent has been accepted
for the award of any degree or diploma at SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at SEECS or elsewhere, is explicitly acknowledged in the thesis.
I also declare that the intellectual content of this thesis is the product of my
own work, except for the assistance from others in the project's design and
conception or in style, presentation and linguistics which has been acknowl-
edged.

Author Name: Sidra Khan

Signature:

iii



Acknowledgments

I would like to express my deepest gratitude to Allah Almighty who enabled
me to accomplish this hectic challenge in sound health, to my parents for
their support, and motivation. I am heartily thankful to my supervisor Dr
Fauzan Mirza for his support and guidance throughout the research period.
Lastly, I o�er my regards and blessings to all those who supported me in any
respect during the research. May Allah bless all of us! Amin

Sidra Khan

iv



Contents

1 Introduction and Motivation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Evolution of Steganography . . . . . . . . . . . . . . . . . . . 2
1.3 Steganography in Compressed Files . . . . . . . . . . . . . . . 2
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Challenges and Goals of Research . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Evolution of Steganography in Compressed Files . . . . . . . . 4
2.2 Overview of Existing Techniques . . . . . . . . . . . . . . . . 5
2.3 Critical Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 7

3 Introduction to DEFLATE 8
3.1 What is DEFLATE? . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Hu�man Coding . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 LZ77 Coding . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 DEFLATE: How it Works? . . . . . . . . . . . . . . . . . . . . 12
3.2.1 De�ate Block Format . . . . . . . . . . . . . . . . . . . 12

3.3 Details of Compression Algorithm . . . . . . . . . . . . . . . 15
3.4 Introduction to Zlib . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Zlib Stream Data Format . . . . . . . . . . . . . . . . 17
3.4.2 Implementation Details of DEFLATE in Zlib . . . . . . 18
3.4.3 Zlib Flush Modes . . . . . . . . . . . . . . . . . . . . . 20

3.5 Zlib Compression and Decompression . . . . . . . . . . . . . . 21

4 Proposed Methodology 23
4.1 Vulnerabilities discovered in DEFLATE . . . . . . . . . . . . . 23

4.1.1 DEFLATE Bu�er Latency Exploitation . . . . . . . . . 23
4.1.2 Adjusting DEFLATE Parameter Values . . . . . . . . . 24

4.2 Proposed Steganographic Schemes . . . . . . . . . . . . . . . . 25

v



CONTENTS vi

4.2.1 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation and Evaluation 31
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 31
5.2 Evaluation and Testing Results of the Proposed Schemes . . . 31

5.2.1 Number of Flushes . . . . . . . . . . . . . . . . . . . . 32
5.2.2 How much data can be embedded? . . . . . . . . . . . 32

5.3 Veri�cation of the Proposed Schemes . . . . . . . . . . . . . . 33
5.3.1 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Scheme I Vs Scheme II . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Steganographic Cover Files studied with Hex editor . . . . . . 37

6 Conclusion and Future Work 41
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



List of Figures

3.1 Hu�man code tree [6] . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Hu�man code values for Length parameter in De�ate [8] . . . 13
3.3 Fix Hu�man code values for Distance parameter in De�ate [8] 14
3.4 Fix Hu�man codes for Literal/ length values, [8] . . . . . . . . 14
3.5 Alphabet for code of Dynamic Hu�man code compression [8] 15
3.6 Format for the dynamic Hu�man compressed block [8] . . . . 16
3.7 Hex dump of a DEFLLATE compressed text �le . . . . . . . . 18

4.1 Type zero block format . . . . . . . . . . . . . . . . . . . . . 27

5.1 A direct relationship in amount of hidden data with no of
�ushes,info hidden using z_sync_�ush . . . . . . . . . . . . . 33

5.2 A direct relationship in no of �ushes with compressed �le
size,info hidden using z_sync_�ush . . . . . . . . . . . . . . . 34

5.3 Steganographic cover �le with info block hidden using z_sync_�ush
using scheme I, arrow pointing start of hidden data . . . . . . 38

5.4 Steganographic cover �le with info block hidden using z_partial_�ush
using scheme I, arrow pointing start of hidden data . . . . . . 39

5.5 Steganographic cover �le with info block hidden using z_sync_�ush
using scheme II, hidden data cannot be di�erentiated . . . . . 40

vii



List of Tables

3.1 Hu�man Codes for symbols [6] . . . . . . . . . . . . . . . . . 9

5.1 Scheme I statistics, Cover �le size: 934.5 KB, CHUNK: 8192B 35
5.2 Scheme II statistics, CHUNK (size of I/O bu�ers): 16384Bytes 36
5.3 Scheme I Vs Scheme II . . . . . . . . . . . . . . . . . . . . . . 37

viii



Chapter 1

Introduction and Motivation

1.1 Introduction

Steganography is not a new term; it has been used over the ages by both
criminals and law enforcement people for secret communication. It is de�ned
as follows:

�Steganography is the art and science of writing hidden mes-
sages in such a way that no one, apart from the sender and in-
tended recipient, suspects the existence of the message, a form of
security through obscurity. The word steganography is of Greek
origin and means concealed writing. � [1].

Steganographic communication model consists of a sender, Carrier medium,
a receiver and secret data to communicate. Steganography is all about hiding
the presence hidden message in way that any third party cannot suspect the
presence of secret data communication. Old methods used for steganographic
communication were invisible inks, character arrangements, tattooing in the
scalp of slaves, and microdots etc. In recent times steganographic commu-
nication has been done by using covert communication channels in which
data is hidden in some type of binary �les also known as cover �les or carrier
medium. After data embedding it is modi�ed to steganographic medium.
Presently, most commonly used steganographic media include images, audio,
video, executable �les, compressed �les etc. In an e�ective steganographic
communication sender and receiver has to agree upon the carrier medium
i.e. set of �les to transmit hidden data and the steganographic software us-
age. To enhance the security level mostly the secret data is encrypted with
special passwords so that the data remain unusable if the presence of data is
detected by forensics examiner or any third party.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

1.2 Evolution of Steganography

Over the history people have been using variant methods to hide informa-
tion e.g. Greeks used to write message on wax-covered Tablets and made it
appear blank to hide its presence, another method was to tattoo a message
or image on the shaved head of messenger. The message would remain un-
detected until the head was shaved again to reveal it. In early World War
II most of the secret communication was done through invisible inks. Null
cipher (unencrypted messages) was also a famous way to hide information
within text. In this method the actual message is concealed within an inno-
cent message to deceive the observer. Microdots technology was invented by
Germans to communicate large amount of data including photographs and
drawings. Microdots were micro�lm chips created at high magni�cation of
the printed period size with the clarity of standard sized type written pages.
As the technology grew with time old information hiding methods were given
new twists for better obscurity. Presently the focus of steganography has been
shifted to digital technologies such as images, text �les, audio �les, video �les
etc. Hidden messages can be embedded in images or in audio portions of the
broadcasts to be communicated safely. There are a lot of techniques or
algorithms to hide messages inside digital media most probably used for con-
�dential information exchange for both legal and illegal purposes. Software
watermarking is also an important application of steganography. Informa-
tion in the form of Watermark is embedded inside the software to impose
the intellectual property rights of the owner of speci�c software and to de-
tect piracy. Another form of watermarking namely Image watermarking can
be very helpful in detecting image tampering especially in Medical images.
Hence steganography has been used for both malicious and legitimate pur-
poses throughout the time.
There are a lot of tools and software developed up till today for hiding in-
formation within di�erent media. The strength of a steganographic tool
depends mainly on making information more and more obscure to make it
undetectable to steganalysis i.e. analysing �le for hidden information. The
steganalysis technique is applied on �le having hidden information as per
nature of information embedding method. The strength of a steganographic
approach is measured by its resistance to steganalysis.

1.3 Steganography in Compressed Files

Apart from traditional ways of steganography modern steganography paradigm
has been shifted to new approaches such as hiding information in compressed



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

�les i.e. Zip, cab, GZip etc , and in �le systems i.e. Stego File systems. Com-
pressed archives are a great source to hide large amounts of data having the
advantage that existing methods cannot do well to detect the presence of
hidden data in compressed �les [3]. There are a lot of data hiding schemes
but most of the existing ones are subjected to limitations in data hiding
capacity, security, and robustness.

1.4 Motivation

A variety of Information hiding methods for compressed �les exist but most
of the methods are based on altering the values of di�erent header �elds
present in �le format speci�cation and provide limited data hiding capability.
Additionally the changes made by these methods to compressed �les can
corrupt those and are easily detectable if �le is analyzed in detail with certain
hex editing tools. Hence there is need of an information hiding method
which cannot change or damage the compressed �le format, is secure, can
hide large amount of data without increasing size of compressed �le and do
not degrades compression speed. Therefore, the research problem comprises
of analysis of De�ate compression algorithm for �nding additional ways of
information hiding in compressed �les and to devise a reversible information
hiding scheme for de�ate compressed �les.

1.5 Challenges and Goals of Research

The challenges and aims of this research are explained in the following:

� To devise lossless secure information Hiding scheme i.e. only the in-
tended recipient can recover hidden data from the �le.

� To devise a scheme which does not change or damage the archive �le
format i.e. to keep hidden data undetectable.

� To ensure that the size of a compressed �le with hidden data should
not be greater than the original �le.

� To ensure that the process of information hiding does not degrade the
compression rate.



Chapter 2

Literature Review

This chapter discusses the evolution of steganography in compressed �les.
Information hiding schemes for compressed �les developed up till now are
mentioned and are critically analyzed.

2.1 Evolution of Steganography in Compressed

Files

File compression is a widely used process to reduce the size of a �le for the
purpose of fast and e�cient communication. There are many �le compres-
sion tools available employing variety of �le compression algorithms. These
compression algorithms are applied according to the nature of data present
inside �le i.e. certain algorithms can do well with image �les while text, audio
and video �les can be better compressed by di�erent techniques. Many com-
pressed �le formats have been designed up till now to represent compressed
data. Among those most commonly used formats are Zip, RAR, Cab, GZip
etc. These �le formats are used for �le compression and decompression as
well as archiving i.e. combining multiple �les into a single �le using compres-
sion.
Information hiding methods proposed up till now for compressed �les fall
into two categories. Few of the methods hide data in compressed �les by
exploiting the structure of �le format i.e. manipulating the values of various
�elds supported by �le format while others exploit compression technique
to hide user intended data into �le during the process of compression. This
hidden data is extracted from �le during or before decompression of the �le.
Steganography in zipped archives is achieved by exploiting zip �le structure
[3]. In zip �le structure di�erent �elds are used to store metadata in header of
the �le the value of these certain header �elds can be modi�ed to conceal the

4



CHAPTER 2. LITERATURE REVIEW 5

presence of hidden data e.g. utilization of �EXTRA �eld� to store data �le to
hide its presence from archivers but present in archive and extractable when
needed [3]. The purpose of EXTRA �eld is to store additional information
about �le such as encryption information etc. but it is rarely used. Other
ways used to hide data in archives by exploiting header structure includes
changing the value of central directory pointer to user given position to hide
the presence of certain �les. Every zipped �le inside a zip �le has an entry
to the central directory but another way to hide �le is to write zip entries of
�les without adding them to central directory [4]. Files hidden using these
methods are usually protected by self destruction mechanisms or by adding
certain malwares in archives so that hidden �les strip o� by antivirus pro-
gram if captured in wrong hands [3].
Popular data compression algorithms include Hu�man coding, LZ77, LZW,
DEFLATE etc There are methods which exploit the working of a compres-
sion algorithm to hide additional data inside compressed �le E.g. in Hu�man
coding a Hu�man tree is constructed representing the compressed code for
each symbol present in data. To hide additional data during the process of
tree construction each symbol is encoded with an additional secret bit of data
to be hidden. The compressed code constructed in this way has one secret
bit hidden for each symbol encoded during compression [5].

2.2 Overview of Existing Techniques

Few methods of information hiding in compressed �les proposed up till now
are discussed in the following.
In 2006 K yoshioka, K Sonoda, and O Takizawa presented a new method for
information hiding in compressed data. The proposed method hides certain
information in the compressed �le in a way that it can still be decompressed
in the same way as a compressed �le without hidden data is decompressed.
The secret key used to embed data can also be used to extract hidden data
from the compressed �le. There proposed scheme works on the principal of
lowering compression rate in order to increase information hiding capacity
of the compressed �le. The chosen compression scheme is LZSS a variant of
LZ77 algorithm. Since LZSS is a dictionary based algorithm so it compresses
data by �nding correlations and replacing these with their previous refer-
ences. The data to be hidden is embedded by �nding multiple matches or
correlations in dictionary and leverage them to hide information. In order to
increase information hiding capacity the authors have modi�ed LZSS com-
pression i.e. searching for shorter matches instead of long matches during
LZSS encoding to hide extra data. They also de�ned a threshold parameter



CHAPTER 2. LITERATURE REVIEW 6

to obtain a balance between embeddable data size and compression rate [12].
In 2009 another information hiding scheme for Hu�man coding compressed
�les was introduced by K N Chen, C.F. Lee, C. C. Chang, and H-C Lin. This
scheme works by exploiting the working of the Hu�man coding scheme. It
was introduced to hide information e.g. image, doc, video in Text �les. As
Hu�man compression algorithm works by constructing a Hu�man tree con-
taining variable length code for each symbol. During the encoding of symbols
each symbol carries one extra secret bit of information which contains the
hidden data. So each symbol carries one bit of information with it. During
the decoding process these secret bits are extracted from the symbols [5].
In 2010 Mario Vuksan, T Percin, Brian Karney published a detailed study
of popular archive formats including Zip, Gzip, CAB, and 7-Zip exploring
maximum possible options of hiding data inside and programmed a tool
named�NyxEngine� to analyze an archive for the hidden data. As per their
study the schemes for hiding information in archives usually exploit the �le
format speci�cations e.g. using rarely used �le �elds to hide data. So for
analysing an archive for compressed data the inspection test should identify
the �le format, validate it to know that any �eld is not misused, and check it
byte by byte to detect the presence of any hidden information. Information
can be hidden in a Zip �le by di�erent means e.g. by modifying compressed
�le name, using �le comment �eld, utilization of Extra �eld, making changes
to internal structure of a zip �le, Hiding the presence of a speci�c �le in
an archive, and injecting secret data in a �le. �Zipped steganography� by
Corinna John [4] and �ZJ Mask� by Vincent Chu [14] are two famous
steganography tools for zip �les. In case of RAR �les information can be
hidden by modifying header �ags i.e. By applying password for �rst �le only.
In CAB File format the �decompressed size� �eld can be modi�ed to make
�le an archive bomb. In GZip documented extra �elds can be added to store
and hide information. The 7-zip archive format can be exploited by tamper-
ing header CRC and modifying other header �elds etc. The �NyxEngine�
inspects a compressed archive for hidden data. It processes an archive ana-
lyze it for the presence of hidden data. It is capable of recovering broken or
hidden �les. NyxEngine starts working by identifying archive format, then
browse it for the packed content, validate the format of archive to detect any
tampering and search steganographic information from it [3].

2.3 Critical Review

All of the existing techniques for hiding information in compressed �les or
compressed archives have certain limitations in term of Information hiding



CHAPTER 2. LITERATURE REVIEW 7

capacity and methods. Most of the schemes work by exploiting �le format
structure which can damage the archive �le and make it vulnerable to doubt
the presence of hidden data in it. The Extra hidden information can some-
times raise the �le size to a bigger number. A ratio between compressed
�le size and information hiding capacity has to be measured to devise a safe
information hiding scheme. The information hiding method should ensure
the safe recovery of hidden from the compressed �le.

2.4 Problem Description

Steganography provides a way of communication in which two parties can
secretly communicate data in such a way that any third party cannot detect
or interpret the communication. Compressed �les can act as a medium to
hide information inside the �le in way that the compressed �le appears like
normal benign compressed �le in structure to the third party viewer but it
contains hidden data which can be detected and interpreted by the intended
recipient. The medium to embed data namely cover �le can be an image, au-
dio, video or text �le. A good information hiding scheme should be lossless,
secure, and e�cient in terms of compression ratio and speed.
In this research a new method is proposed for hiding information in com-
pressed �les. For this purpose the �DEFLATE compression Algorithm� is
analyzed. During study of DEFLATE compression algorithm certain vulner-
abilities are discovered which can be exploited to develop a novel information
hiding scheme for text �les. The working of DEFLATE compression algo-
rithm is discussed in chapter 3. Chapter 4 describes the proposed stegano-
graphic method.



Chapter 3

Introduction to DEFLATE

The compression scheme studied and analyzed in this study is DEFLATE
compression algorithm. This chapter gives a detail introduction to DE-
FLATE compression and working of a freely available source code library
for de�ate namely Zlib.

3.1 What is DEFLATE?

De�ate is a popular lossless data compression algorithm. It has been doc-
umented in RFC 1951 but was designed earlier by Phil Katz for his PkZip
archiving tool. It is supported by most of the compression utilities as com-
pression scheme for �le compression as well as compressed data transmission
over internet e.g. HTTP. De�ate compression scheme is the basic method
used in ZIP, GZip, PNG.
De�ate compression algorithm is a combination of LZ77 coding and Hu�man
coding applied in arbitrary order. De�ate process data bytes and the coded
data consist of blocks of arbitrary sizes including both compressed and un-
compressed blocks. To understand De�ate compression process completely
one must have an introduction to the working of Hu�man and LZ77 coding.

3.1.1 Hu�man Coding

It is a lossless data compression method also referred as entropy encoding
algorithm presented by David Hu�man in 1952. Hu�man coding process
produces variable length codes for each unique symbol from the source �le
depending upon its frequency of occurring in the input �le. Hu�man scheme
works well in scenario when the data set to be compressed is produced in
advance because it reads the source �le twice, �rstly to calculate symbol

8



CHAPTER 3. INTRODUCTION TO DEFLATE 9

Symbol Frequency Code Code length Total length

A 24 0 1 24
B 12 100 3 36
C 10 101 3 30
D 8 110 3 24
E 8 111 3 24

Table 3.1: Hu�man Codes for symbols [6]

frequencies, secondly to assign compressed codes to the data in source �le.
Hu�man method is preferred when the input �le has characters with random
probability otherwise for uniform probability data this scheme cannot per-
form well.
Hu�man compression works on the basis of idea that more frequently occur-
ring characters in an input �le can be encoded with fewer bit codes. The
compression process initially begins with reading the source �le and calcu-
lating frequency or probability values for each unique symbol present in the
�le. In next step the two symbols with the lowest frequencies are combined
to form a binary Hu�man tree with a parent node having frequency equal to
sum of the frequencies of the leaf symbols acting as leaves. The parent node
also becomes a part of the set of symbols with frequencies. Then further two
symbols with lowest frequency in the set are selected to join the Hu�man
tree. In this way all of the symbols in the set are joined to form a com-
plete binary Hu�man tree. During the tree construction process the variable
length codes for each symbol are also assigned. The code for a symbol can
be calculated by traversing the Hu�man tree from top to bottom in a way
that every left child node is given a zero value while every right node is given
a one value. An example of Hu�man coding is discussed in the following. In
table 3.1 there is a List of symbols with respective frequencies in increasing
order.The Hu�man tree for the above symbols can be constructed as shown
in �gure 3.1.Hu�man codes assigned to symbols are given in table 3.1.[6].

Symbol A B C D E

Frequency 24 12 10 8 8

Total bits transmitted using Hu�man encoding are 138 for the above
frequency distribution if static codes had been used then total bit length
would be larger for the data. Hu�man decoding can be done by reading the
Hu�man tree from top to bottom as per input stream i.e. for 0 move to



CHAPTER 3. INTRODUCTION TO DEFLATE 10

Figure 3.1: Hu�man code tree [6]

left side and for 1 move to right side of tree when a leaf is encountered one
character has been decoded. Hence frequently occurring symbols get shorter
code and less frequently occurring symbols will get larger code lengths. For
one set of data symbols multiple Hu�man trees can be constructed with slight
di�erence. So, for de�ate compression two simple rules has to be followed in
constructing Hu�man tree:

1. Elements having shorter codes are placed left of the elements with
longer code.

2. If multiple symbols have same code then symbols appearing �rst in the
data set would be stored left of the tree.

By applying these rules only one Hu�man tree is possible for one set of
symbols and for the process of decompression these code lengths have to be
transmitted to reconstruct the tree for decoding of data [7].
This is a very simple example of Hu�man coding process. It can be applied
to large data �les in same way. Many variants of Hu�man coding are also
available including n-array Hu�man coding, Adaptive Hu�man coding etc.
Adaptive Hu�man coding is an advanced form Hu�man coding based on
the same principle with a little variation. Since for Hu�man coding or static
Hu�man coding the compressor should know complete data to be compressed
in advance to calculate exact frequencies of the symbols so it is not applica-
ble to scenarios where data is produced at random intervals and compressed
simultaneously. Adaptive Hu�man coding determine symbol frequencies dy-
namically as input stream is produced and updates the Hu�man tree struc-



CHAPTER 3. INTRODUCTION TO DEFLATE 11

ture accordingly to match the new values. In de�ate both static and adaptive
or dynamic Hu�man coding is used as per requirement. Variants of Hu�man
coding are widely used in many applications to compress and transmit data
simultaneously.

3.1.2 LZ77 Coding

LZ77 is a lossless data compression algorithm published by Abraham Lem-
pel in 1977. It provides the base for many advanced compression algorithms
such as LZW, LZSS, and LZMA etc. LZ77 compression method comes un-
der the umbrella of dictionary coding schemes. Dictionary based compression
schemes works by �nding correlations or similar patterns in the data �le and
replacing there further occurrences with reference to a dictionary. Dictio-
nary can be created statically or adaptively. In LZ77 dictionary creation is
adaptive i.e. No need to transmit dictionary to receiver but can be created
at run time.
LZ77 compression is performed by �nding repeated occurrences of data and
replacing it with reference to its early occurrence in the input �le. A match
found is replaced with length-distance pair value. Length parameter refers
to the length of the matching pattern while distance or sometimes referred
as o�set value tells the distance of the pattern from its previous occurrence
in the data. To �nd out a match further the encoder has to keep track of the
previously read or recent data. For this purpose a bu�er or a sliding window
of data is maintained that is why LZ77 is also referred as sliding window
compression. This sliding window or bu�er has speci�c size value e.g. 4KB,
for DEFLATE 32KB window etc. A match is found within that speci�c range
of data. Encoder and decoder both have to maintain this sliding window.
Here is an example to illustrate the LZ77 compression more clearly.

Data: abcdefghijAabcdefBCDdefEFG
Output: abcdefghijA {distance: 11, Length: 6} BCD {distance: 6,

length:3} EFG

In above example the lZ77 encoder replaces the repeating pattern with dis-
tance value to its previous occurrence and length of the repeating pattern.
On the decoder side same size sliding window is maintained which replace
the length distance value of a match with its original value through moving
backward by a length of the distance value. In the same way LZ77 compresses
the data stream in DEFLATE compression used with Hu�man compression
arbitrarily.



CHAPTER 3. INTRODUCTION TO DEFLATE 12

3.2 DEFLATE: How it Works?

Data compressed by DEFLATE consist of series of blocks of arbitrary sizes
except uncompressed blocks which cannot exceed the size limit of 65,535
bytes. Each block is compressed by both LZ77 coding and Hu�man cod-
ing. The Hu�man tree is di�erent for each block and is not dependent on
the previous ones but in LZ77 coding matching patterns can exist within
the previous 32K values that may include previous blocks as well. Every
compressed data block consists of two parts mainly:

1. Compressed Hu�man code trees (compressed by Hu�man encoding)
representing compressed data.

2. Compressed data.

Since in LZ77 compression only the matches are replaced by references to
their previous occurrences and other characters are plainly written in the
output stream. Therefore, the DEFLATE compressed stream has three en-
tities:

1. Distances or o�sets of previous matches

2. Length of the match

3. Literals or uncompressed characters

The distance or o�set value can be up to 32K and length value can be of
258 bytes. Separate Hu�man code trees are constructed for distance, length
and literal values and are assigned variable codes from di�erent code tables.
These code trees are present before the respective data blocks [8].

3.2.1 De�ate Block Format

De�ate compressed data blocks have certain format. Each block has a header
and a data part. Header precedes the data part. Starting three bits of the
each block are header bits. In which �rst bit is �BFINAL� and last two bits
are of �BTYPE� i.e. Block type. BFINAL bit value is 1 for last block of data
otherwise 0. While BTYPE value as per [8]reveals how data is compressed
as described below:
BTYPE 00 � No compression
BTYPE 01 � Compressed with �xed Hu�man codes
BTYPE 10 � Compressed with dynamic Hu�man code
BTYPE 11� Unde�ned (error)
The Hu�man codes for lengths/literals or distance values di�er for two for-
mats of data compression. The format of di�erent blocks type is as follows:



CHAPTER 3. INTRODUCTION TO DEFLATE 13

Figure 3.2: Hu�man code values for Length parameter in De�ate
[8]

Uncompressed Blocks (BTYPE 00)

In the uncompressed blocks of BTYPE 00, length of the block with its one's
compliment is stored in start and after it the data part is stored.

Compressed Blocks

As mentioned above de�ate encoded data comprises of three distinct entities
i.e. literal bytes from the alphabet set of 0 to 255, or length-distance pair
values where length can be any value between 3 to 258 and distance can by
any value drawn from 1 to 32768 values. The literal and length values are
merged into a single alphabet range 0 to 285 in which �rst 0 to 255 indicate
literal bytes, 256 symbols is of End of block value, and 257 to 285 are for
length codes as shown in �gure 3.2.

� Fix Hu�man codes Compression (BTYPE 01)

For �xed or static Hu�man codes the literal/length alphabet codes are given
in �gure 3.4. The code bits given in �gure 3.4 are su�cient for code con-
struction for length and literal bytes while distance values are represented
by 5 bit �xed codes ranging from 0 to 31 in �gure 3.3. Literal/length value
286-287 and distance values 30-31 does not exist in data but take part in
code construction.



CHAPTER 3. INTRODUCTION TO DEFLATE 14

Figure 3.3: Fix Hu�man code values for Distance parameter in
De�ate [8]

Figure 3.4: Fix Hu�man codes for Literal/ length values, [8]



CHAPTER 3. INTRODUCTION TO DEFLATE 15

Figure 3.5: Alphabet for code of Dynamic Hu�man code compres-
sion [8]

� Dynamic Hu�man code Compression (BTYPE 10)

In Dynamic Hu�man coding the literal/length code and distance code occurs
right after the header bits the code is de�ned by sequence of code lengths
and the code lengths are again compressed with Hu�man coding for more
compactness. The alphabet for code sequence is shown in �gure 3.5.The
format for the dynamic Hu�man compressed block is represented in �gure
3.6.

3.3 Details of Compression Algorithm

During DEFLATE compression process the compressor can decide to termi-
nate the currently processing block and to start a new one when compressor
bu�er �lls or when it is useful. To �nd duplicated strings or repeated se-
quences the compressor uses hash chains. The algorithm discards old matches
from hash chains at regular intervals to avoid long matches and for greater
performance otherwise for improved compression the compressor searches for
longer match even after one match is found it is known as lazy matching.



CHAPTER 3. INTRODUCTION TO DEFLATE 16

Figure 3.6: Format for the dynamic Hu�man compressed block
[8]



CHAPTER 3. INTRODUCTION TO DEFLATE 17

In normal situation the compressor search for a longer match after �nding
a long match for better performance but if compression ratio is considered
then compressor keeps on �nding longer matches. In De�ate implementation
parameters can be adjusted to support or avoid lazy string matching [8]

3.4 Introduction to Zlib

Zlib is a general purpose library for data compression written by jean Loup
Gaily and Mark Adler. It is an abstraction of DEFLATE compression al-
gorithm used in GZip program. Zlib library is a by default component of
many software platforms e.g. Linux, Mac OS X, and the iOS. This library
was released in 1995 for public use till now many updated versions have
been released. The latest version of Zlib library only support DEFLATE as
compression algorithm though Zlib format header provides �exibility to add
other algorithms. Zlib library compressed data is enclosed by Zlib or GZip
wrapper to add Error correction and stream identi�cation features which are
not provided by raw de�ate compressed data.
To get source code for DEFLATE compression algorithm Zlib library is a
good resource as it provides the programmer with facility of �exible controls
in terms of adjusting DEFLATE compression parameters as per user require-
ment. The parameters which can be adjusted include memory usage, control
of processor, compression level to maintain a balanced trade o� between com-
pression ratio and speed, and optimized compression type for speci�c type
of data[9].

3.4.1 Zlib Stream Data Format

A �le compressed with DEFLATE using a Zlib wrapper have the following
data format. The compressed stream starts with Zlib header. Its �rst byte
indicates the compression method and �ags (CMF). In CMF �rst four bits
select compression method (CM) i.e. for DEFLATE compression CM=8,
the next four bits tell compression info i.e. CINFO for CM=8 the value
of CINFO is base 2 log of LZ77 window. The next byte in Zlib stream is
�ags byte (FLG). The �rst four bits of FLG are dependent on the CMF and
FLG in a way that for the combine value of CMF and FLG the value of the
following expression i.e. CMF*356+FLG is a multiple of 31. The next bit
of FLG is FDICT. If FDICT bit is on it means that a dictionary identi�er
(namely DICT i.e. ADLER-32 checksum of dictionary byte) is present after
the FLG byte. The last two bits of FLG reveal the value of FLEVEL which
is compression level.[9] For de�ate compression method the compression level



CHAPTER 3. INTRODUCTION TO DEFLATE 18

Figure 3.7: Hex dump of a DEFLLATE compressed text �le

values can be as follows:
0 - Fastest algorithm is used by compressor
1 - Fast algorithm is used by compressor
2 - Default algorithm is used by compressor
3 - Max. compression is used by compressor, Slowest Algorithm
The format of the compressed data is according to the compression method
i.e. DEFLATE compressed format. When decompresser starts decompress-
ing a �le it �rst ensures the values of the �elds above explained to ensure the
integrity and correctness of a compressed �le [9].

3.4.2 Implementation Details of DEFLATE in Zlib

The Zlib library provides in memory compression/Decompression functions
using DEFLATE Compression scheme. The compression can be performed
in single step or it can be performed in multiple steps using repeated calls



CHAPTER 3. INTRODUCTION TO DEFLATE 19

of the compression function. It depends mainly on the size of bu�er used for
compression. For large bu�er compression can be done in one step but for
small bu�ers repeated calls of the compression function are necessary. The
decompresser examines the integrity of data before decompression to ensure
that data is not corrupted. By default compressed data format used is Zlib
but optionally �les can be read and written as GZip streams also.
Zlib implements DEFLATE compression with di�erent functions. Two main
functions include de�ate() for compression and in�ate() for decompressing
data. The initial parameter values are initialized using de�ateinit() and
in�ateinit() functions for compression and decompression e.g. Compression
level, Flush mode to be used during compression if needed etc. As per [15]Zlib
implements DEFLATE with di�erent �ush modes given in the following:
#de�ne Z_NO_FLUSH 0
#de�ne Z_PARTIAL_FLUSH 1
#de�ne Z_SYNC_FLUSH 2
#de�ne Z_FULL_FLUSH 3
#de�ne Z_FINISH 4
#de�ne Z_BLOCK 5
#de�ne Z_TREES 6
De�ate() reads data from input �le into a bu�er and starts compressing it
until the output bu�er is �lled up with data or the input bu�er becomes
empty. It can create �output latency� in way that the compressor is reading
data but not producing any output.It can perform one or may be both of the
following functions:

� It can keep on compressing input data available in bu�er and constantly
updating and telling the value of the remaining data available in the
bu�er to avoid a situation in which output bu�er is already �ll and no
room for the newly produced output.

� It produces more output and keeps on updating the available output
bu�er space value. It can be done only if the value of �ush parameter
is non zero.

Flushing process is used less frequently and is preferred in web applications
only. It is mentioned above that DEFLATE compression algorithm can be
used with few streamed transport protocols e.g. TLS, SSH, PPP. These
protocols transmit data by dividing data into packets. By using DEFLATE
compression scheme these successive packets appear to be a part of single
continuous compressed data stream and since DEFLATE works by using
bu�ers so some kind of �ushing is needed when transmitting data to ensure



CHAPTER 3. INTRODUCTION TO DEFLATE 20

that every byte is received to peer without knowledge of any next data byte.
Flushing is used for this purpose [10].

3.4.3 Zlib Flush Modes

Zlib implements DEFLATE with �ush operations to avoid bu�er latency. It
provides four di�erent type of �ushing parameters described below:

Z_NO_FLUSH: It allows Zlib to accumulate large amount of input data
in the input bu�er for compression. The compression ratio is maximum
with Z_NO_FLUSH mode.

Z_PARTIAL_FLUSH: It is the standard �ush method in SSH protocol.
A partial �ush when applied, It processes any uncompressed input data
present in input bu�er in one or several byte blocks, sends an empty
type 1 block of data, possible sends another empty type 1 (BTYPE 01)
block.

Z_SYNC_FLUSH: It is most commonly used �ush method in Zlib. A
sync �ush processes any input data which is not compressed into one
or several blocks depending upon the size and nature of data and send
an empty type 0 (BTYPE 00) block. An empty type 0 block may have
3-bits block header, 0 to 7 bits equal to 0 for byte alignment and the
four byte seq. 00 00 FF FF.

Z_FULL_FLUSH: A full �ush is rarely applied as it can degrade com-
pression ratio badly. It is a variant form of sync �ush. During LZ77
compression in DEFLATE a dictionary is maintained containing pre-
vious 32KB of data for �nding correlations. This dictionary keeps on
updating by deleting old entries and adding new ones. A full �ush
once applied can empty the complete dictionary. Since it is a variant of
sync �ush, it also includes 00 00 FF FF, and restores byte alignment.
The decompression can be started from a full �ush point without any
knowledge of the previous bytes.

Z_BLOCK: Any data present in input bu�er is compressed and emitted
like sync �ush but output not aligned on byte boundary. Up to 7 bits
of the current block can be added to next byte after the completion of
next de�ate block. The compressor does not have complete data to de-
compress and has to wait for the next block to be emitted. Z_BLOCK
is mostly used in latest web applications which works by controlling
de�ate block emission.



CHAPTER 3. INTRODUCTION TO DEFLATE 21

Z_TREES: It works same as Z_BLOCK �ush mode. The Z_TRRES �ush
mode returns after end of header of each DEFLATE block to record
the header length for later use in random access within a DEFLATE
block.

3.5 Zlib Compression and Decompression

Zlib implements DEFLATE compression and decompression processes using
di�erent functions. The function provided for compression is de�ate() and
for decompression is in�ate(). The compression process starts by initializing
de�ate compression parameters e.g. compression level, strategy, �ush modes
etc by calling de�ateinit(). After initialization de�ate () is called for compres-
sion. De�ate compression is a bu�ered process. Both input and output data
is read into separate bu�ers of speci�c sizes. The bu�er size is de�ned in ad-
vance before initialization of compression parameters. Zlib provides special
return codes for compression and decompression functions. There positive
values indicate normal events and negative values indicate errors given below
as per [15]:
#de�ne Z_OK 0
#de�ne Z_STREAM_END 1
#de�ne Z_NEED_DICT 2
#de�ne Z_ERRNO (-1)
#de�ne Z_STREAM_ERROR (-2)
#de�ne Z_DATA_ERROR (-3)
#de�ne Z_MEM_ERROR (-4)
#de�ne Z_BUF_ERROR (-5)
#de�ne Z_VERSION_ERROR (-6)
In the start of compression process data is read into input bu�er from source
�le. Input bu�er data is compressed until output bu�er is not full. Data from
source �le is compressed until end of �le. There can be a point when compres-
sion stops because input bu�er becomes empty and output bu�er becomes
full. To avoid bu�er latency �ush is performed here e.g. Z_SYNC_FLUSH,
Z_PARTIAL_FLUSH etc. Flush mode can be set for both compression and
decompression functions. For successful compression of de�ate() it returns
Z_OK and if all input has been consumed it returns Z_STREAM_END.
At the end of compression process de�ateEnd() is called to free the allo-
cated space to data structures. Zlib provides special function to adjust the
de�ate compression parameters e.g. compression level and strategy during
compression namely de�atParams(). de�atesetdictionary() can be used to
set the dictionary before the compression process. Dictionary is useful when



CHAPTER 3. INTRODUCTION TO DEFLATE 22

data is short and predictable. Zlib supports gzip compression format as well.
Special functions are provided to write gzip header with compressed data.
DEFLATE decompression process starts with in�ateInit() which initializes
data structures for the decompression process. After initialization in�ate() is
called which reads the compressed �le into input bu�er and decompresses it.
Flush mode can also be set in decompression process to avoid bu�er latency.
Return codes for decompression functions are also provided to indicate the
return status of the processes. In�ateEnd() is used to free the allocated
space to data structures during decompression [15]. Zlib supports two check-
sum functions to maintain security and consistency of the compressed data
including crc32 and Adler32 checksum in which Adler32 checksum is much
faster.



Chapter 4

Proposed Methodology

After studying DEFLATE compression algorithm few of the vulnerabilities
have been discovered. The discovered vulnerabilities are exploited to devise
two new schemes for information hiding in de�ate compressed �les. This
chapter discusses DEFLATE vulnerabilities and the proposed information
hiding schemes.

4.1 Vulnerabilities discovered in DEFLATE

De�ate compresses data �les with a combination of dictionary based coding
i.e. LZ77 coding and entropy coding i.e. Hu�man coding. At the start of
compression it reads data from the input �le into a speci�c size bu�er and
then compresses this data. For large sized bu�ers the complete data �le can
be compressed in a single step but for small sized bu�ers the compression
step repeats as long as complete input �le is processed. The compression
process of DEFLATE has certain vulnerable features which can be exploited
in di�erent ways to hide information. These vulnerable features are discussed
in the following:

4.1.1 DEFLATE Bu�er Latency Exploitation

It is mentioned above that DEFLATE reads input data in a bu�er, com-
presses it, write to output bu�er and then to the output �le. During com-
pression it is a possibility that input bu�er becomes empty or the output
bu�er �lls up leaving no space for writing output until the output bu�er
becomes empty. It can cause bu�er latency i.e. reading input without pro-
ducing output. This kind of situation can be avoided by using �ush oper-
ations provided by the Zlib implementation of DEFLATE. Chapter 3 dis-

23



CHAPTER 4. PROPOSED METHODOLOGY 24

cusses the six �ush functions provided by Zlib in detail. Most commonly
used �ush operations are Z_SYNC_FLUSH, Z_PARTIAL_FLUSH, and
Z_FULL_FLUSH. These �ush operations can be exploited to hide informa-
tion inside a compressed �le. By analysing Zlib working it is revealed that
�ush operations are called repeatedly during the compression of a �le. These
�ush operations add few extra bytes in the compressed stream on every call
e.g. Z_SYNC_FLUSH adds an empty type 00 block containing 00 00 FF
FF value i.e. an empty type zero block.
According to the proposed exploit �ushing is forced to perform and during
�ush operation e.g. Z_SYNC_FLUSH call instead of adding an empty block
a block of secret information can be added here. A type zero block starts
with a 3-bit header followed by length of the block with its one's comple-
ment, and then the data. A secret data block can also be added at the place
where Z_PARTIAL_FLUSH is performed. Z_FULL_FLUSH is a variant
of Z_SYNC_FLUSH. It also adds four byte sequence (00 00 FF FF) to the
data plus empties the dictionary maintained for LZ77 matching. It is used
to avoid long matches or lazy matches. It degrades compression rate but
increases compression speed. A block of secret information can be hidden
at the place where full �ush is applied in the same way as it stored with
Z_SYNC_FLUSH.
At the start of compression the user has to specify which �ush mode to be
used during compression. Number of �ush operations performed during com-
pression varies with di�erent bu�er sizes. A �ush performed repeatedly will
embed more data inside the compressed �le.

4.1.2 Adjusting DEFLATE Parameter Values

According to Zlib 1.2.5 documentation [15]the values of certain DEFLATE
parameters can be adjusted to user speci�ed values as per requirement during
compression. Hence during information hiding process in case �ush opera-
tions compromise compression ratio these parameter values can be changed
to improve the compression ratio.

1. Memory Level: This parameter speci�es that how much internal
memory has to be used by internal compression state during compres-
sion process. Memory Level: 1 uses minimum memory but reduces
compression rate while memory level 8 while memory level: 9 is for
maximum speed. The default value is 8.

2. Compression Strategy: During compression process the compres-
sion strategy is selected as per nature of the data e.g. the data produced
by �lter or predictor can be best compressed with Hu�man coding.



CHAPTER 4. PROPOSED METHODOLOGY 25

Since user is least concerned about the compression strategy selected
by compressor. This option can be manipulated as per requirement
of information hiding. The available compression strategy options are
given below [15]:
0 #de�ne Z_DEFAULT_STRATEGY: used for normal data
1 #de�ne Z_FILTERED: For data produced by �lter or predictor
(More Hu�man & less string matching).
2#de�ne Z_HUFFMAN_ONLY: To force Hu�man coding only no
string matching
3#de�ne Z_RLE: To limit match distances to 1 (Run length encoding
better compression for PNG data).
4 #de�ne Z_FIXED: use of �xed Hu�man codes.

3. Compression Level: It can also be adjusted as per requirement [15].
#de�ne Z_NO_COMPRESSION 0
#de�ne Z_BEST_SPEED 1
#de�ne Z_BEST_COMPRESSION 9
#de�ne Z_DEFAULT_COMPRESSION (-1)
Z_NO_COMPRESSION does not compress data at all and simply
writes the input data to output �le in blocks. Level 1 can be used in
scenario where compression speed is important while level 9 provides
the highest compression ratio. Z_DEFAULT_COMPRESSION is used
mostly as it provides a default balance between compression ratio and
speed.

4.2 Proposed Steganographic Schemes

Based on the above discovered vulnerabilities two steganographic schemes
have been developed. The proposed schemes are mainly based on DEFLATE
bu�er latency issue. The proposed information hiding schemes embed addi-
tional data in a cover �le during the compression process. So the resultant
�le is compressed as well as contains additional data embedded in it. The
proposed schemes are explained below in detail:

Input: For both steganographic schemes two �les are provided as input to
the DEFLATE compression process explained below:

1. Carrier Medium: A cover �le also known as carrier �le to serve
as the medium to hide or store secret data e.g. A text �le in this
case.



CHAPTER 4. PROPOSED METHODOLOGY 26

2. stegano_data: An encrypted secret data �le to hide inside the
carrier medium.

Stegano_data is most of the time encrypted to provide extra security
in case intercepted by unintended recipient.

4.2.1 Scheme I

In the proposed information hiding scheme the DEFLATE compression func-
tion is forced to perform �ush every time to hide additional data during
compression. Z_SYNC_FLUSH mode is used here to add secret data. DE-
FLATE uses an input bu�er for reading input from input �le and an output
bu�er for writing output to the compressed �le of same sizes. An additional
bu�er is used which contains the stegano_data.

The Embedding Process

The embedding process �ow is mentioned below in steps:

1. De�ne the size of the input and output bu�er and initialise DEFLATE
compression parameters with an initialization function i.e. de�ateinit()
in this case.

2. The input bu�er reads a block of data from the cover �le into a �xed
size bu�er. The stegano_data is also read in an information hiding
bu�er.

3. DEFLATE calls compression function i.e. de�ate () for the data present
in input bu�er. The �ush mode provided in this case is Z_SYNC_FLUSH
instead of Z_NO_FLUSH.

4. During the call of de�ate () when Z_SYNC_FLUSH is performed a
type 0 block(explained in detail in section 3.2.1) of stegano_data is
emitted from information hiding bu�er and written to the compressed
output �le.

5. De�ate () is repeatedly called as long as all data from the input �le
is read and compressed. During each call of compression function an
additional block of stegano_data is embedded in the output �le at the
time of Z_SYNC_FLUSH.

At the end of input �le the �ush mode is set to Z_FINISH to successfully
end the compression function.



CHAPTER 4. PROPOSED METHODOLOGY 27

Figure 4.1: Type zero block format

Output: The output of the embedding process is a DEFLATE compressed
�le of Zlib format (as explained in section 3.4.1)with additional stegano_data
�le embedded in it.

The Extraction Process

The data embedded during compression process can be extracted before de-
compression of the output �le with a special function. Every type 0 block
embedded into the compressed �le has a speci�c format represented in �gure
4.1.

As the additionally embedded type 0 block of stegano_data is not compressed
during the DEFLATE compression process. The data can be extracted by
observing this speci�c format in the output compressed �le. The extraction
process �ows as follows:

1. The data embedded �le is opened into binary mode and is read byte
by byte into a bu�er completely.

2. The bu�er is searched for special patterns containing a 2-byte value
with next two bytes as its one's compliment. The above pattern when
found is assumed to be start of the embedded data block.

3. As the length of the embedded data block is known in advance, it is
extracted from the compressed �le starting ahead of the one's compli-
ment value to the length of the embedded block value and is written
to a new �le.

4. The extraction process searches the complete bu�er to �nd and extract
all blocks of embedded data.

The output of the extraction process consists of two �les as mentioned below:

1. A clean compressed cover �le which can be decompressed by using
DEFLATE decompression function.

2. The stegano_data �le, containing secret encrypted data.



CHAPTER 4. PROPOSED METHODOLOGY 28

Explanation

As it is already stated that scheme I embeds data in a �le during compres-
sion when �ush is performed. DEFLATE compression parameters and data
structures are initialized before the start of compression. The stegano_data
�le is read into a information hide bu�er which is embedded into cover �le
block by block during its compression. The compression function de�ate()
is provided with information hide bu�er and the block length to be hidden.
As the size of the output �le containing stegano_data must be less than the
original cover �le. The optimal length value of the each block to be embedded
is de�ned with reference to the input and output bu�er size as given below:

Hide_len = 20*CHUNK/100

Where
Hide_len : length of block to be embedded
CHUNK: size of the input/output bu�er
Blocks of the above length value are embedded in cover �le during each �ush
operation. During DEFLATE compression when �ush such as Z_SYNC
_FLUSH is performed.Instead of an empty type 0 block (00 00 FF FF) a
stegano_data block of speci�c length is emitted and written to the output
�le.The compression process resumes after �ush and continue as long as end
of �le not reached.After end of compression process the output �le produced
has uncompressed stegano_data embedded in it. Which can be extracted by
running the extraction procedure on the output �le. The extraction process
searches for the type 0 blocks of speci�c length embedded in the compressed
output �le and extracts them.

4.2.2 Scheme II

The scheme II is based on the same principle as the scheme I in a way that
secret data block is embedded at the time when �ush operation is performed
during �le compression. Since in scheme I the embedded data is not com-
pressed but only encrypted and is vulnerable to detection in case intercepted
by unintended recipient. This weakness is covered in scheme II. In scheme
II the additionally embedded data is also compressed with the cover �le to
make its presence invisible to the third party and it does not add any infor-
mation about the length of the stegano_data block added in the cover �le.
Instead the length of embedded block is pre shared among the communica-
tion parties. Here for convenience the embedded block length is taken same
as the size of input and output bu�er.



CHAPTER 4. PROPOSED METHODOLOGY 29

The Embedding Process

The �ow of embedding process is as follows:

1. De�ne the size of the input and output bu�er and initialise DEFLATE
compression parameters with an initialization function i.e. de�ateinit
() in this case.

2. The input bu�er reads a block of data from the cover �le into a �xed
size bu�er.

3. DEFLATE calls compression function i.e. de�ate () for the data present
in input bu�er. The �ush mode provided in this case is Z_SYNC_FLUSH
instead of Z_NO_FLUSH.

4. Since the �ush operation is performed at the end of each call of de�ate
(). So after Z_SYNC_FLUSH is performed the input bu�er reads data
block from the stegano_data �le instead of cover �le and compresses
it.

5. In this way the data from cover �le is compressed block by block and
during the process after every Z_SYNC_FLUSH call the data block
from stegano_data is read in input bu�er and compressed. This process
repeats till all the data from the cover �le is compressed.

Hence all the data from the cover �le and stegano_data �le is compressed in
alternative blocks in the output �le. The output of the embedding process is

1. A DEFLATE compressed �le of Zlib format (as explained in section
3.4.1)with additional stegano_data embedded in it i.e. steganographic
cover �le.

The Extraction Process

The stegano_data embedded by the above scheme can be extracted during
the process of decompression of the cover �le. The decompression function
of DEFLATE i.e. INFLATE is called to decompress the cover �le. Since
the data is embedded in alternative blocks of cover �le and stegano_data
�le so it is extracted in the same way. To correctly extract the embedded
stegano_data the input/output bu�er size or CHUNK value for extraction
process must be same as embedding process. So the I/O bu�er size can act
as a key to secure the embedded data block length. The extraction process
is discussed in detail below:



CHAPTER 4. PROPOSED METHODOLOGY 30

1. De�ne the size of the input and output bu�er and initialise DEFLATE
decompression parameters with an initialization function i.e. in�ateinit()
in this case.

2. The input bu�er reads a block of data from the compressed cover �le
into a �xed size bu�er.

3. DEFLATE calls decompression function i.e. In�ate () for the data
present in input bu�er. The decompressed data is written to the out-
put bu�er. Since the data from two sources was compressed together
in alternative blocks. The stegano_data can be separated from the
decompressed cover �le data.

In this way the data from cover �le is decompressed block by block. This
process repeats till all the data from the cover �le is decompressed. The
output of the extraction process consists of two �les as mentioned below:

1. A clean decompressed cover �le.

2. The stegano_data �le, containing secret encrypted data.

Explanation

Scheme I and II have similar basic information hiding principle but varies in
few parameters. In scheme II the stegano_data is also compressed with the
cover �le. The data to be compressed is read from cover �le into input bu�er
and passed to de�ate () for compression block by block. During compression
after �ush is performed in next call the data block is read from stegano_data
�le, compressed and written to the output �le. In this way data blocks are
alternatively read from cover �le and stegano_data �le into input bu�er and
are compressed in a single �le. Currently in this scheme the length value of
stegano_data block and cover �le data block is taken same. The resultant
compressed cover �le produced contains both stegano_data and cover �le
data. The stegano_data can be extracted by decompressing the output �le.
For correct decompression of steganographic cover �le the size value of the
input and output bu�er for compression and decompression processes should
be same otherwise the embedded data could not be retrieved correctly. Hence
the size value of input and output bu�er serves as a key to correctly extract
the embedded stegano_data.



Chapter 5

Implementation and Evaluation

This chapter includes the implementation or coding details of the stegano-
graphic schemes presented in chapter 4 and the results after veri�cation and
testing of the proposed schemes.

5.1 Implementation Details

DEFLATE is a popular compression algorithm used in many archive formats
and data communication protocols for data compression. Zlib is a free open
source lossless compression library available on internet. It is a primary
implementation of the DEFLATE compression scheme. It was developed
by Jean Loup Gailly (Compression) and Mark Adler (decompression). It
provides �exibility of using DEFLATE compression functions in terms of ad-
justing compression parameters as per requirement.
For coding the proposed information hiding schemes Zlib version 1.2.5 is
taken as a source for DEFLATE implementation. The Zlib code for DE-
FLATE compression and decompression functions is modi�ed by adding new
functions for the purpose of information embedding and extraction. Coding
is done using C source code of Zlib 1.2.5 with the compiler gcc in ubuntu
Environment.

5.2 Evaluation and Testing Results of the Pro-

posed Schemes

Since the proposed information hiding schemes are based on �ush opera-
tions. It is necessary to know that how much �ushes are performed during
compression and how number of �ush a�ects the size of embedded data. In

31



CHAPTER 5. IMPLEMENTATION AND EVALUATION 32

following pages the information embedding capacity of the proposed scheme
is explained and an optimal threshold value for the embeddable data size
with respect to compressed steganographic cover �le size is de�ned.

5.2.1 Number of Flushes

The amount of Data embedded using Scheme I and II entirely depends on the
number of �ushes performed during �le compression. For very large input and
output bu�ers the compression process is performed in one step and bu�er
latency is not an issue therefore, the �ush mode used here is Z_NO_FLUSH
i.e. no �ush. Since data hiding schemes embed data only when �ush is
performed so it is preferable to use small size input and output bu�ers. It
is noted that number of �ushes increase with small bu�er size. In this way
compression would be done in many steps of reading input data into input
bu�er and writing it to output bu�er after compression and thus increasing
the amount of data embedded. It is not possible to count the exact number of
�ushes performed during compression process but the amount of embedded
data can be controlled by using other parameters. A graph is presented
in �gure 5.1 showing a direct relationship between amount of hidden data
and number of �ushes. According to that with the increase of number of
�ushes the amount of data that can be embedded also increases. Since it is
observed through experiments with multiple �les that forcing a �ush during
compression process does not degrade compression ratio badly so compression
parameter adjustment can be avoided during information hiding.

5.2.2 How much data can be embedded?

A good information hiding scheme can embed data as long as the size of com-
pressed data �le having hidden data is less than the original uncompressed
cover �le so that a user can not suspect the hidden data inside. Scheme I and
Scheme II can embed large amount of data keeping the size of compressed
cover �le less than the original size. Figure 5.2 presents a graph showing
that the size of steganographic cover �le increases with increase in number
of �ushes during compression. The data embedding capacity for scheme II
is much greater than Scheme I. Since in both methods data is embedded in
blocks, after verifying the schemes the optimal value for the size of each block
embedded using scheme I is mentioned below:

Hide_len = 20*CHUNK/100



CHAPTER 5. IMPLEMENTATION AND EVALUATION 33

Figure 5.1: A direct relationship in amount of hidden data with
no of �ushes,info hidden using z_sync_�ush

Where
Hide_len: Length of block to be embedded
CHUNK: Size of the input/output bu�er
The value of Hide_len largely depends on the size of input/output bu�ers
namely CHUNK value. For small bu�er size value the Hide_len value up
to 45% of CHUNK size can keep the data hidden compressed cover �le size
small than the original uncompressed cover �le. On the other hand for large
bu�ers the safe Hide_len value can exceed to 55% of the CHUNK value still
keeping the data hidden compressed cover �le size small than the original
uncompressed cover �le as presented in table 5.1 in section 5.3.1. Even larger
values of the Hide_len can increase the size of the compressed cover �le than
the original uncompressed cover �le.

5.3 Veri�cation of the Proposed Schemes

The proposed schemes have been veri�ed by hiding data in several text and
doc �les during their compression. The proposed schemes work well for both
type of �les. The detail is described below:



CHAPTER 5. IMPLEMENTATION AND EVALUATION 34

Figure 5.2: A direct relationship in no of �ushes with compressed
�le size,info hidden using z_sync_�ush

5.3.1 Scheme I

Scheme I hides a block of data in a �le every time when �ush is performed dur-
ing compression. The �ush mode can be Z_SYNC_FLUSH and Z_PARTIAL
_FLUSH. Scheme I was used to embed data in di�erent doc and text �les.
Scheme I is veri�ed by embedding di�erent amount of information in a cover
�le in table 5.1. The original cover �le size is taken to be 934.5KB and
the input/output bu�er size to be used during compression is taken to be
8192bytes. Table 5.1 shows that how amount of hidden data increases with
number of �ushes and shows that for a bu�er of size 8192bytes the optimal
size for the data block to be embedded is 55% of the CHUNK. For larger
values of embedded data block the size of the steganographic cover �le in-
creases from original uncompressed cover �le. The table 5.1 shows that by
increasing number of �ushes more data can be hidden inside a compressed
�le thus increasing the size of compressed �le. The size of data to be hidden
should not increase the steganographic cover �le size than the uncompressed
cover �le size. Since an ordinary user is not concerned about the compression
ratio or unaware about it and considers a compressed �le correct as long as
compressed �le size is less than the original uncompressed cover �le size. It
is evident from scheme I statistics table that for a 934.5KB cover �le the



CHAPTER 5. IMPLEMENTATION AND EVALUATION 35

Amount of hidden data -
Embedded
Block size

Hidden Data
Size (Kb)

Size of Com-
pressed File
(KB)

No of �ushes

0 0 277.9 116
5% of CHUNK 46.8 324.7 117
10% of
CHUNK

93.6 371.5 117

15% of
CHUNK

141.5 429.4 118

20% of
CHUNK

192 469.4 120

25% of
CHUNK

242.1 520 121

30% of
CHUNK

292.8 570.7 122

35% of
CHUNK

347.2 625.1 124

40% of
CHUNK

403.2 681.1 126

45% of
CHUNK

468.1 746 130

50% of
CHUNK

528.1 806 132

55% of
CHUNK

607.3 885.2 138

60% of
CHUNK

696.2 974.1 145

Table 5.1: Scheme I statistics, Cover �le size: 934.5 KB, CHUNK:
8192B



CHAPTER 5. IMPLEMENTATION AND EVALUATION 36

Cover �le Size Compressed
�le size

steganographic
cover �le size

2.5 MB 17.6 KB 35.1 KB
3.9 MB 27.4 KB 55.9 KB
4.6 MB 32.2 KB 65.0 KB
7.5 MB 52.1 KB 105.7 KB
8.0 MB 55.6 KB 112.8 KB
8.5 MB 59.3 KB 120.3 KB

Table 5.2: Scheme II statistics, CHUNK (size of I/O bu�ers):
16384Bytes

amount of data that can be hidden safely is 607.3KB. So the data hiding
capacity for scheme I is more than half of the cover �le size. Files with em-
bedded data using scheme I are studied with hexeditor to have a �ner look
on how a compressed �le with additional data embedded looks like in �gure
5.3 and �gure 5.4 in section 5.5.

5.3.2 Scheme II

The information hiding capacity for scheme II is greater than scheme I. The
information hiding capacity has a direct relation with number of �ushes be-
cause data is hidden or embedded when a �ush is performed. Since data from
cover �le and stegano_data_�le is mixed and then compressed it increases
the information embedding capacity to much greater extent e.g. A cover �le
of size 68.5KB can hide another 68.5KB �le inside it during compression with
alternative �ushes still keeping the compressed information hidden output
�le's size less than the original uncompressed cover �le size. E.g. A cover
�le of size 68.5KB can be compressed to a size of 7.77KB with additional
compressed 68.5KB hidden in it. Table 5.2 presents information embedding
statistics for scheme II using Z_SYNC_FLUSH: Hence using scheme II data
from multiple �les can be mixed and embedded inside a cover �le and since
the embedded data is also compressed so it is not visibly di�erentiated by
any unintended recipient if the compressed �le is studied with any �le editor
i.e. hex editor as shown in �gure 5.5 in section 5.5.

5.4 Scheme I Vs Scheme II

Table 5.3 presents a comparison between scheme I and scheme II in terms
of security and information embedding capacity. It shows scheme II is more



CHAPTER 5. IMPLEMENTATION AND EVALUATION 37

SCHEME I SCHEME II
Hidden data not compressed. Hidden data is compressed with

cover �le data.
vulnerable to con�dentiality loss. steganographic cover �le Not vul-

nerable to con�dentiality loss
information embedding capacity is
less than the original cover �le size.

information embedding capacity
equal to the size of original cover
�le.

The cover �le can be retrieved half
or less but not full by decompres-
sion.

Cover �le is not damaged and can
be retrieved full by decompression.

Table 5.3: Scheme I Vs Scheme II

secure than scheme I and provides much greater information embedding ca-
pacity.

5.5 Steganographic Cover Files studied with Hex

editor

Hex dumps of di�erent steganographic cover �les compressed using scheme
I and scheme II are presented in this section. Figure 5.3 and 5.4 shows hex
dumps of the steganographic cover �les for scheme I. Since here embedded
data block is not encrypted for visibility. Figure 5.5 contains hex dump of
the steganographic cover �le compressed using scheme II.
In �gure 5.3 a steganographic cover �le compressed using scheme I is given.
Since it is already discussed that in scheme I the embedded data block is
not compressed with the cover �le data. So the hex dump of the �le clearly
shows the start of embedded data block inside the cover �le.In �gure 5.3
stegano_data is embedded using Z_SYNC_FLUSH. The starting two bytes
of the highlighted embedded data block in the �gure tells the length of the
data block and next two bytes are one's compliment of the length value.
After these four bytes the actual stegano_data block is stored.In this way
multiple stegano_data blocks are hidden inside the steganographic cover �le.
Figure 5.4 shows a text steganographic cover �le with data embedded using
Z_PARTIAL_FLUSH using scheme I.The length of embedded data block is
large so it is not covered in the �gure completely.For Z_PARTIAL_FLUSH
length of the data block is not stored inside the �le and only data part is
stored.



CHAPTER 5. IMPLEMENTATION AND EVALUATION 38

Figure 5.3: Steganographic cover �le with info block hidden using
z_sync_�ush using scheme I, arrow pointing start of hidden data

Figure 5.5 shows hex dump of a steganographic cover �le compressed using
scheme II. The original size of the �le is 7.5MB which can be compressed
to 52.1 KB and with hiding another �le of 7.5MB inside it the resultant
steganographic cover �le is produced of size 105KB. Since scheme II com-
presses stegano_data block with the cover �le data so hidden data can not
be visibly di�erentiated in the steganographic cover �le even if studied with
any hexeditor. It is said that steganography is basically security through
obscurity so it shows clearly that hidden data can not be di�erentiated from
the cover �le data.



CHAPTER 5. IMPLEMENTATION AND EVALUATION 39

Figure 5.4: Steganographic cover �le with info block hidden using
z_partial_�ush using scheme I, arrow pointing start of hidden
data



CHAPTER 5. IMPLEMENTATION AND EVALUATION 40

Figure 5.5: Steganographic cover �le with info block hidden using
z_sync_�ush using scheme II, hidden data cannot be di�erenti-
ated



Chapter 6

Conclusion and Future Work

This chapter concludes the whole document and explains the future research
intentions of the researcher.

6.1 Conclusion

Steganography is an ancient art used to hide information in di�erent commu-
nication media. Steganographic model includes a sender, carrier medium to
hide data, and a receiver. The most commonly used media for information
hiding include text and doc �les, images, sound,and zipped archives. Ex-
ploring steganography options in compressed archives is not very new. Algo-
rithms have been developed to hide additional data in zipped archives either
by exploiting �le format architecture or modifying the compression algorithm
to embed additional data inside a �le during compression but these schemes
limit in information embedding capacity and are vulnerable to detection.
Thus, new information hiding schemes are proposed which embed data by
exploiting the compression algorithm implementation. DEFLATE is a widely
used compression algorithm in compression tools and various communication
protocols. Its Zlib implementation is studied for the purpose of information
hiding options. On the basis of discovered vulnerabilities in DEFLATE two
schemes of information hiding are proposed. The basic principal is to embed
additional secret information inside a cover �le during compression when a
�ush operation is performed. DEFLATE uses di�erent �ush operations to
avoid bu�er latency during compression. These �ush modes write some extra
data to the compressed output �le. User can hide additional data on these
places where bytes are added by �ush operations during compression. The
proposed schemes are evaluated for hiding information in text and doc �les
and are proved to provide very good information hiding capacity and do not

41



CHAPTER 6. CONCLUSION AND FUTURE WORK 42

compromises the compression speed. Scheme II is proved to be better than
scheme I.

6.2 Future Work

DEFLATE is a widely used compression algorithm in most of the commu-
nication protocols for data compression. Most common protocols that use
DEFLATE compression are PPP, TLS, SSH, IP, and HTTP. In these proto-
cols IP compression does not use �ushing but in others compression is done
with �ushing e.g. In Point to Point protocol (PPP) data is communicated
in the form of packets. A packet can contain one or many DEFLATE blocks
and a packet ends at Z_SYNC_FLUSH (or Z_FULL_FLUSH) and at the
end of block a sequence of 00 00 FF FF is emitted. In this way TLS, SSH and
HTTP use some kind of �ushing too. Presently, the proposed schemes work
to hide information in a single �le using �ush modes during compression but
the information hiding process can be extended to embed and secretly com-
municate information using internet communication protocols between two
parties on web. Above mentioned protocols are documented using DEFLATE
for compression. The future research intentions include:

� Analysing PPP, TLS, SSH, HTTP for secretly information embedding
and transmission in interactive web applications.

� De�ning a model of secret information sharing between two parties
using DEFLATE compression in transmission protocols.



Bibliography

[1] Neil F.Johnson, Sushil Jajudia ,� Exploring steganography, Seeing the
unseen�, George Mason University,IEEE Computer, Feb. 1998.

[2] A. Kumar, K. M. Pooja, �steganography:A Data Hiding Technique�,
International journal of Computer Applications, Vol. 9, 2010.

[3] M. Voksan, T. pericin, B. Carney, �Hiding in the familiar: steganography
and vulnerabilities in popular archive formats�, Black Hat Europe 2010,
Barcelona.

[4] Steganography 16-Hiding additional �les in a ZIP archive.
http://www.codeproject.com/KB/security/steganodotnet16.aspx.
(last visited in November 2011).

[5] K N Chen, C.F. Lee, C-C Chang, H-C Lin, �Embedding Secret mes-
sage using modi�ed Hu�man Tree�, International Conf. on Intelligent
Information Hiding and Multimedia Signal Processing,2009.

[6] Hu�man Coding Example. http://www.binaryessence.com/dct/en000080.htm.
(last visited in December 2011)

[7] An explanation of the DEFLATE Algorithm.
http://zlib.net/feldspar.html. (Last visited in December 2011)

[8] De�ate compressed data format speci�cation version 1.3.
http://www.ipgz.org/zlib/rfc-de�ate.html. (last visited in Novem-
ber 2011).

[9] Zlib compressed data format speci�cation version 3.3.
http://www.gzip.org/zlib/rfc-zlib.html. (Last visited in January
2012).

[10] Zlib �ush modes. http://www.bolet.org/~pornin/de�ate-�ush-en.html.
(Last visited February 2012).

43



BIBLIOGRAPHY 44

[11] GZIP �le format speci�cation version 4.3. http://www.gzip.org/zlib/rfc-
gzip.html. (Last visited january 2011).

[12] K yoshioka, K Sonoda, O Takizawa, �Information Hiding on lossless data
compression�,International Conf. on Intelligent Information Hiding and
MultimediaSignal Processing, 2006.

[13] K N Chen, C.F. Lee, C-C Chang, H-C Lin, �Embedding Secret mes-
sage using modi�ed Hu�man Tree�, International Conf. on Intelligent
Information Hiding and Multimedia Signal Processing 2009.

[14] Zip/JPEGmask and encryption. http://www.sfu.ca/~vwchu/zjmask.html.
(Last visited in january 2011).

[15] Zlib 1.2.5 Manual. http://zlib.net/manual.html. (Last visited November
2011).

[16] Hypertext Transfer Protocol-HTTP/ 1.1.
http://tools.ietf.org/html/rfc2616. (Last visited in January 2012).

[17] PPP De�ate Protocol. http://www.ietf.org/rfc/rfc1979.txt. (Last vis-
ited in January 2012).

[18] Transport Layer Security Protocol Compression Methods.
http://www.ietf.org/rfc/rfc3749.txt. (Last visited in January 2012).

[19] The Secure Shell (SSH) Transport Layer Protocol.
http://www.ietf.org/rfc/rfc4253.txt. (Last visited in January 2012).

[20] IP Payload Compression Protocol (IPComp).
http://www.ietf.org/rfc/rfc2393.txt. (Last visited in January 2012).

[21] IP Payload Compression Using DEFLATE.
http://www.ietf.org/rfc/rfc2394.txt. (Last visited in January 2012).


	Introduction and Motivation
	Introduction
	Evolution of Steganography
	Steganography in Compressed Files
	Motivation
	Challenges and Goals of Research

	Literature Review
	Evolution of Steganography in Compressed Files
	Overview of Existing Techniques 
	Critical Review
	Problem Description

	Introduction to DEFLATE
	What is DEFLATE?
	Huffman Coding
	LZ77 Coding 

	DEFLATE: How it Works?
	Deflate Block Format

	Details of Compression Algorithm 
	Introduction to Zlib 
	Zlib Stream Data Format
	Implementation Details of DEFLATE in Zlib
	Zlib Flush Modes

	Zlib Compression and Decompression

	Proposed Methodology
	Vulnerabilities discovered in DEFLATE
	DEFLATE Buffer Latency Exploitation
	Adjusting DEFLATE Parameter Values

	Proposed Steganographic Schemes
	Scheme I
	Scheme II


	Implementation and Evaluation
	Implementation Details 
	Evaluation and Testing Results of the Proposed Schemes
	Number of Flushes 
	How much data can be embedded?

	Verification of the Proposed Schemes
	Scheme I
	Scheme II

	Scheme I Vs Scheme II
	Steganographic Cover Files studied with Hex editor

	Conclusion and Future Work
	Conclusion
	Future Work


