
Shim6 Assisted Mobility Scheme
(SAMS)

By

Muhammad Mudassir Feroz

2009-NUST-MS-CCS-05

Supervisor
Dr. Adnan Khalid Kiani

This thesis is submitted in partial fulfillment of the requirements
for the degree of Masters of Science

School of Electrical Engineering and Computer Science (SEECS)
National University of Sciences and Technology (NUST)

Islamabad, Pakistan.

December 2012

ii

APPROVAL

It is certified that the contents of thesis document titled, “Shim6 Assisted Mobility Scheme”

submitted by Mr. Muhammad Mudassir Feroz have been found satisfactory for the requirement

of degree.

Advisor: __Dr. Adnan Khalid Kiani_

Signature: ______________________

Date: __________________________

Committee member 1: Dr. Zawwar Hussain

Signature: _________________________

Date: __________________________

Committee member 1: Mr. Farooq Cheema

Signature: _________________________

Date: __________________________

Committee member 1: Mr. Ammar Karim

Signature: _________________________

Date: __________________________

iii

TO

MY LOVING FAMILY

iv

CERTIFICATE OF ORIGINALITY

I declare that the research work titled “Shim6 Assisted Mobility Scheme” is my own work and

to the best of my knowledge. It contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the award of any degree

or diploma at SEECS or any other education institute, except where due acknowledgment, is

made in the thesis. Any contribution made to the research by others, with whom I have worked at

SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except to

the extent that assistance from others in the project’s design and conception or in style,

presentation and linguistic is acknowledged. I also verified the originality of contents through

plagiarism software.

Author Name: Muhammad Mudassir Feroz

 Signature: _____________________

v

ACKNOWLEGMENTS

I am grateful to Almighty ALLAH who gave me strength, courage and determination to

complete this thesis. I owe my deepest gratitude to my thesis advisor, Dr. Adnan Khalid Kiani,

for his kind attention and guidance throughout my research work. I am, also thankful to my

worthy Committee members, Dr. Zawwar Hussain, Mr. Farooq Cheema and Mr. Ammar Karim

for their support and becoming a part this work. I am, also, thankful to professional members of

CERN lab and researchers of LinShim6 for their technical guidance and support.

vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS... x

ABSTRACT... xi

CHAPTER 1 .. 1

INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Thesis Contributions .. 2

1.3. Thesis Organization ... 3

CHAPTER 2 .. 4

LITERATURE SURVEY ... 4

2.1. Mobile Internet Protocol version 6 (MIPv6) ... 4

2.2. Site Multihoming by IPv6 Intermediation (Shim6) ... 6

2.3. Related work .. 8

CHAPTER 3 .. 12

SHIM6 ASSISTED MOBILITY SCHEME (SAMS) ... 12

3.1. Proposed Architecture ... 12

3.2. Algorithm .. 15

CHAPTER 4 .. 19

IMPLEMENTATION SETUP .. 19

4.1. Kernel configuration .. 19

4.1.1 Patching an additional module... 20

4.1.2 Compiling the kernel source ... 21

4.2. User space configuration ... 23

4.3. Test bed Setup .. 24

4.4. Running the Shim6 enabled hosts .. 26

4.5. Shim6 Context establishment ... 29

4.5.1 Shim6 context before switch .. 31

4.5.2 Shim6 context after switch ... 32

vii

CHAPTER 5 .. 36

RESULTS AND DISCUSSION ... 36

5.1. Single switching and multiple switching ... 36

5.2. Jitter ... 38

5.3. Bandwidth .. 39

5.4. Data Transferred .. 41

5.5. Packet loss .. 42

5.6. Switching delay .. 44

CHAPTER 6 .. 48

CONCLUSION & FUTURE WORK .. 48

viii

LIST OF TABLES

Table I: SAMS Testbed specifications .. 25

Table II: Shim6 console commands ... 28

Table III: Traffic used for experiments .. 37

Table IV: Switching delay comparison with existing techniques .. 45

Table V: Implementation results (traffic 1) .. 46

Table VI: Implementation results (traffic 2) ... 46

ix

LIST OF FIGURES

Figure 1: MIPv6 Signaling architecture ... 5

Figure 2: Shim6 context establishment ... 7

Figure 3: Shim6 layer architecture .. 7

Figure 4: Shim6 assisted intelligent switching mechanism ... 14

Figure 5: Signaling in REAP .. 17

Figure 6: Signaling in proposed mechanism ... 18

Figure 7: Experimental topology for SAMS ... 26

Figure 8: jperf-2.0.2, Network traffic generator and measurement tool 30

Figure 9: Shim6 console showing Shim6 context before switching .. 34

Figure 10: Shim6 console showing Shim6 context after switching .. 35

Figure 11: Jitter comparison of single switch between REAP and SAMS 38

Figure 12: Jitter comparison of multiple switches between REAP and SAMS 39

Figure 13: Throughput comparison in single switch between REAP and SAMS 40

Figure 14: Throughput comparison in multiple switches between REAP and SAMS 40

Figure 15: Data transferred comparison in single switch between REAP and SAMS 41

Figure 16: Data transferred comparison in multiple switches between REAP and SAMS 42

Figure 17: Packet loss comparison in single switch between REAP and SAMS 43

Figure 18: Packet loss comparison in multiple switches between REAP and SAMS 44

Figure 19: switching delay comparison .. 45

x

LIST OF ABBREVIATIONS

SHIM6 Site Multihoming by IPv6 intermediation

MIPv6 Mobile Internet Protocol version 6

FMIPv6 Fast Mobile Internet Protocol version 6

SEMO6 Seamless Mobility using Shim6

SAMS Shim6 Assisted Mobility Scheme

MN Mobile Node

IETF Internet Engineering Task Force

CGA Cryptographically Generated Addresses

DHCP Dynamic Host Configuration Protocol

HBA Hash Based Addresses

CN Correspondent Node

HoA Home Address

NAT Network Address Translation

REAP Reachablity Protocol

SEND Secure Neighbor Discovery

ULID Upper-Level Identifier

TCP Transmission Control Protocol

UDP User Datagram Protocol

RTT Round Trip Time

NAT Network Address Translation

RFC Request For Comments

xi

ABSTRACT

Devices with multiple interfaces are the future of mobile internet. Site Multi-homing by

IPv6 Intermediation-Shim6 is a proposal presented in IETF to provide multi-homing support in

IPv6 based networks. Although initially it was intended for static networks but recently it has

been tested to provide end host mobility. By default, Failure detection and recovery in Shim6 is

performed through REAchability (REAP) Protocol. When failures occur, REAP is activated and

the communication is switched from the failed path to a different active path. Existing protocol

for mobility management in IPv6 networks is the MIPv6. Due to the inherent flaws in MIPv6,

some new protocols/techniques have been tested which improve the overall mobility

performance in IPv6 networks. In this research work, we presented a mechanism for providing a

“make before break” switching service. We call our proposed mechanism “Shim6 Assisted

Mobility Scheme (SAMS)” as it provides both mobility and multi-homing support. We

implemented LinShim6 with our proposed intelligent switching in wireless environment and

presented the results. The proposed intelligent module anticipates the switch by continuously

monitoring the QoS parameters for specific period of time and helps in decision making. Further

we made the performance comparison between REAP based switching and the proposed

switching mechanism. The comparison was made in terms of switching delay, packet loss, jitter,

throughput and data transferred. Through experiments we have shown that the switching delay

reduced by 20% to 20.286 ms and packet loss during switching reduces from 24.71% to 1.72%.

1

CHAPTER 1

INTRODUCTION

1.1. Motivation

With the growth of internet the end users are rapidly increasing. This leads to a

tremendous increase in internet traffic over the deployed networks. There are more constraints

for real time traffic which should reach its destination without any unnecessary delay or

interruption. End users carry mobile devices which are installed with heavy and advanced

software applications. Those applications exchange data with other users continuously while on

the move. Devices used for such applications include laptops, palm devices, smart phones and

other gadgets which directly connect to internet through some interface. This connectivity is

continued even when the user is traveling and keeps changing its location as well as the network

to which it is attached. These devices usually are embedded with multiple interfaces. Each

interface can be utilized by a single connection.

As a mobile user travels to different locations, the connection to the network experiences

pauses and interruptions. In real time applications, these issues matter a lot. This is due to the

signal strength or in extreme cases, due to the shifting onto other networks. If this shifting is

seamless, the user does not feel any interruption in the service. But if this is long enough to be

noticed by the user then this is very unhealthy for the service provider. This phenomenon of

shifting onto other available networks is known as “Mobility”.

Mobility is the enabling of the services for a mobile device while moving from one

network to another. This process is known as handover. There are two types of handovers,

Horizontal and Vertical. Horizontal handover occurs when end user shifts to another subnet of

2

the same network access technology. Vertical handover occurs when end user shifts to another

network access technology. To tackle this issue of handovers in IP based networks, MIPv6 [1] is

the most popular protocol. However, MIPv6 still faces delays and the handover phase

experiences noticeable interruptions in the services. Recent research has shown that in MIPv6 a

single handover takes around 5 seconds to complete. This is too long if communication is

happening in real time. Main reason behind this is the availability of just one point of attachment

to the network. It follows the “Break before make” approach. Connection to the original network

is disconnected and then end user is connected to new network. To overcome this issue many

proposals such as FMIPv6 [4], HIP [5] etc are presented. But these protocols have inherent

flaws. For instance HIP requires an additional user space to be deployed and FMIPv6 does not

provide better results than MIPv6. Its handover delay is almost equivalent to that of MIPv6. So

considering the flaws inherited in the above mentioned solutions we need to overcome the

highlighted flaws and have more efficient and reliable solution in order to satisfy the intended

internet users.

1.2. Thesis Contributions

In this contribution, we have shown that efficient mobility in heterogeneous IPv6

environment can be provided by employing multi-homing techniques such as shim6.

Furthermore, default failure detection and recovery mechanism in shim6 known as REAP is too

slow to provide support for real time mobile applications. In this work, we have proposed a quick

failure detection and recovery mechanism in mobile multi-homed environment. It is called

Shim6 Assisted Mobility Scheme (SAMS). We have implemented a testbed in order to validate

the working of Shim6 and above that we have performed the implementation of our proposed

intelligent switching mechanism. SAMS significantly reduces the overall switching time through

3

use of triggers. In this contribution we have performed the comparison of both (REAP and

SAMS) techniques considering the QoS parameters.

1.3. Thesis Organization

There are five chapters in this thesis which are organized as follows:

In Chapter 2, literature survey based on the introduction of different solutions presented in the

field of wireless environment is presented. Apart from history, existing technologies are also

discussed, including the most important protocols under research these days, Shim6.

In Chapter 3, a better solution for Shim6 based mobility scheme is presented.

In Chapter 4, methodology to carry out this work is presented along with detailed and step by

step implementation of test bed.

In chapter 5, experimental results are presented and explained in detail. Also, comparison with

default failure detection and recovery mechanism in Shim6 is also discussed.

In Chapter 6, conclusion of our thesis is given with proposals of some possible extensions to this

work. In the end, references are given.

4

CHAPTER 2

LITERATURE SURVEY

In every research work, strong literature survey plays a key role to identify the real

problem and also to identify the tips and trick to tackle it. Different topologies present the results

that are specific to the implemented topology. We have focused on the topologies that are

relevant to our intended protocol and which can be implemented using our proposed mechanism.

The following is the literature survey which goes around wireless environments and protocols.

Starting with the official standards to recently proposed mechanisms are discussed. This

approach is adopted in order to follow the research as it has been done by researchers.

2.1. Mobile Internet Protocol version 6 (MIPv6)

Early deployments in internet infrastructure were based on fixed IP addresses. There was

no compatibility for devices which keep changing their locations. IPv6 had full support for fixed

users. Later when mobile devices and advanced mobile phones were produced in market, there

was a need of a protocol which could support the connectivity of users even when they are

traveling. Hence, it was Mobile Internet Protocol version-6 (MIPv6) which was deployed to

support such feature. The specifications are described in (RFC 3775).

In traditional IP routing, IP addresses represent a topology. Routing mechanisms rely on

the assumption that each network node will always have the same point of attachment to the

Internet, and that each node's IP address identifies the network link where it is connected. In this

routing scheme, if you disconnect a mobile device from the Internet and want to reconnect

through a different network, you have to configure the device with a new IP address, and the

appropriate net mask and default router. In this scheme, routing protocols have no clue for

5

delivering packets, because the device's network address doesn't contain the necessary

information about the node's current network point of attachment to the Internet. MIPv6 allows a

mobile node to transparently maintain connections while moving from one subnet to another.

Each device is identified by its home address although it may be connecting to through another

network. When connecting through a foreign network, a mobile device sends its location

information to a home agent, which intercepts packets, intended for the device and tunnels them

to the current location.

MIPv6 adds another entity to the existing network, which is the corresponding node

(CN). This node provides mobility operations and keeps record of the current location of mobile

node if it is away from its home network. A simple mobile scenario is shown in the following

diagram.

Figure 1: MIPv6 Signaling architecture

6

2.2. Site Multihoming by IPv6 Intermediation (Shim6)

IETF initiated an effort for providing Multihoming support to IPv6 network known as

shim6 protocol. It specifies a layer 3 shim approach and protocol for providing locator agility

below the transport protocols, so that Multihoming can be provided for IPv6. (RFC 5533)

describes all specifications in detail. Hosts in a site which has multiple provider allocated IPv6

address prefixes, will use the shim6 protocol to setup state with peer hosts, so that the state can

later be used to failover to a different locator pair, and should the original one stop working. This

approach was basically intended to facilitate the subnet operations. Originally this meant for

static networks. However, subsequently due to its efficient nature researchers have used it for the

mobility of mobile users. This protocol can be used for multi-homed sites (providing

Multihoming) as well as multiple interfaced end hosts (providing mobility).

In this approach, a mobile user initiates communication in a normal way. Then according to

some heuristics he can activate shim6 signaling. This heuristics can be a number of packets or

time stamp. To activate Shim6 context, both hosts should be shim6 enabled. This requires

implementation of shim6 on both hosts. Basically, shim6 context establishment is based on four

control messages, I1, R1, I2 and R2 respectively. All the information is exchanged in these

messages. If both hosts are not shim6 enabled, communication through shim6 context will not

take place. In this way initiator realizes that other end is not shim6 enabled. Shim6 allows a host

to change locator during an active communication. It is used to ensure redundancy when the

current path fails. To achieve this, two functions phases are defined: “Failure Detection” and

“Locator Pair exploration”. The “Failure Detection” function is used to detect disconnections in

the current path, while the “Locator Pair Exploration” is used to define new valid locator pairs

that could be used when the current one fails. The following diagram shows normal context

establishment of two Shim6 enabled hosts

Figure

 Following figure shows the location of shim6

Figure

 Shim6 sub layer within the network layer and differentiates the characteristics of identifiers

and locators. For the upper layers it is known by the identifier. While the layers down identify it

by locators. Locators are basically used to locate the current

7

enabled hosts.

Figure 2: Shim6 context establishment

shows the location of shim6 sub-layer within internet layer architecture.

Figure 3: Shim6 layer architecture

within the network layer and differentiates the characteristics of identifiers

and locators. For the upper layers it is known by the identifier. While the layers down identify it

ators. Locators are basically used to locate the current existence of mobile user. T

layer within internet layer architecture.

within the network layer and differentiates the characteristics of identifiers

and locators. For the upper layers it is known by the identifier. While the layers down identify it

existence of mobile user. The

8

identifier is used to identify the point of attachment to the upper layers. Having all these features,

deployment of shim6 does not require any additional things. It is based on IPv6 internet

infrastructure.

As packets are passed from the IP Endpoint sub-layer to the IP Routing sub-layer, the

endpoint identities are mapped to a current pair of locators. The reverse mapping is applied to

incoming packets, where the incoming locator pair is stripped off the packet, and the associated

endpoint identity pair is associated with the packet which is then passed to the IP Endpoint sub-

layer. De-multiplexing the IP packet to the appropriate transport session is based on the endpoint

identities. In this Shim6 approach the endpoint identities and the locators are both IP addresses.

The endpoint identities are the initial addresses used between the two hosts. The locators are the

set of IP addresses that are associated with endpoint. The intention of this approach is to

minimize the amount of change required to support dynamic locator agility in the protocol stack.

2.3. Related work

Mobile users like to stay connected on the go. Internet mobility has thus become a focal

point of research over the years. To provide internet mobility support, different protocols have

been designed. These protocols support handover between wireless networks. MIPv6 is the

standard protocol to provide mobility services in IPv6 networks. There are however some

problems when MIPv6 is adopted to support real-time communication. These include high

handover latency and packet loss. During handover, there is a period in which the mobile node is

unable to send or receive packets due to link-layer switching and IPv6 protocol layer operations.

This overall handover latency resulting from baseline MIPv6 procedures, namely movement

detection, new care-of address configuration, and binding updates with peer entities, is often

unacceptable for real-time application services e.g. video-conferencing, voice-over-IP etc.

9

MIPv6 movement detection is based on neighbour un-reachability detection and Router

discovery. Neighbor un-reachability detection observes the default router and upon receiving no

response, it decides to switch to another available router. This availability is based on Router

Discovery mechanism. These phases increase the overall switching delay. In addition to high

handover latency, MIPv6 doesn’t provide multi-homing support to end users, i.e. a user cannot

be simultaneously configured with multiple active interfaces and switch between them

seamlessly.

In view of the above-mentioned shortcomings associated with MIPv6, some solutions were

proposed to provide seamless mobility support. A new fast handover approach, based on Fast

Handovers for Mobile IPv6, was proposed in [4]. The work supported seamless movement in

between IPv6 domains using IEEE 802.11 network infrastructure. A new low latency handoff

method for IEEE 802.11 is proposed where access point beacons are utilized for carrying IPv6

prefix information without altering the Mobile IP or IEEE 802.11 specifications. A WLAN

service continuously monitors the radio signal quality of the attached access point and, if

necessary, switches to another access point in range. This feature and the elimination of

firmware-based active scanning during link-layer handovers reduce the overall link-layer

handover delay to about 10% of the previous value. Experiments showed that average handover

delay is between 2-4 seconds which is still not acceptable for many real-time applications.

In [12], MIPv6 handover evaluation is presented. Authors have checked each phase of the

process. Analysis has been carried out using OMNeT++ simulator. In this contribution the

authors have concluded that major reason large handover delay is the excess time spent during

movement detection. The authors have shown that movement detection phase makes up 87% of

the total handover time. The authors have proposed a Fast Detection Movement Layer 3

10

(FDML3) algorithm. With this new algorithm, the overall delay is improved by around 25%

which is again not acceptable for real-time communications.

In [12] authors have presented a survey on mobility and multi-homing in IPv6 based

networks. Traditionally the two have been considered as disjoints concepts. Authors have argued

that this has lead to the development of two protocol families separately. However, many new

IPv6 terminals are mobile and are equipped with multiple interfaces. Thus, there is a need to

adopt a new unified framework providing both multi-homing and mobility. In the paper, authors

have focused on shim6 protocol and have investigated its feasibility to be used as a mobility

solution. Shim6 is a multi-homing protocol proposed by the IETF which provides support for

end-host to manage multiple addresses but does not provide native support for mobility.

Experiments were carried out to gauge the impact of mobility before, during and after shim6

context establishment. The results showed that shim6 can manage mobility on its own without

the assistance of any other protocol during and after context establishment. In this Amine et al

proposed a mobility solution using SHIM6. Their approach is based on shim6 for a single

interfaced Mobile Host (MH). They have shown that handover latency is less than that of MIPv6

but still more than 2 seconds.

Shim6 is considered by many as an alternate solution to provide layer 3 mobility support

in IPv6 based networks. Shim6 also enables a mobile user to be multi-homed. Failure detection

and recovery of addresses in shim6 protocol is carried out through REAP sub-protocol. REAP

thus forms a backbone of mobility service through shim6. Shim6 was first introduced by

Bagnulo et al in IETF [3] [15]. It was purely a multi-homing solution. However, since then,

Bagnulo et al have extended their work to include mobility support through Shim6 protocol.

Rehman S. et al [10] presented a proposal SEamless MObility using SHIM6 (SEMO6), a multi-

11

homing based mobility protocol framework for host mobility. Tests were performed comparing

MIPv6 with SEMO6. Although SEMO6 gave a better handover performance than MIPv6, the

handover delays experienced by applications were still high (in seconds). They used shim6

protocol to perform mobility operations and have shown that SEMO6 can improve the

performance of applications in IP-based mobile networks.

In [14], authors have compared the performance of MIPv6 and a mobility scheme based

on shim6. They have performed the simulations of both protocols and have shown that the

handover delay is significantly reduced if shim6 is used. REAP is one of the essential parts of

shim6 mobility operations. It is used to detect and recover from failures in active communication

links.

An implemented of shim6 was carried out by Sebastian Bare et al. They have described

the implementation in detail in [17]. We have used their implementation for our analysis namely

linShim6. Authors have given detailed account of the implementation of shim6 kernel based

implementation in [18].

12

CHAPTER 3

SHIM6 ASSISTED MOBILITY SCHEME (SAMS)

3.1. Proposed Architecture

In Shim6, a mobile user initiates communication in a normal way. Then according to some

heuristics he can activate shim6 signaling. This heuristics can be a number of packets or time

stamp. According to LinShim6 authors the heuristic to activate Shim6 context can be

customized. To activate Shim6 context, both hosts should be shim6 enabled. This requires

implementation of shim6 on both hosts. Basically, shim6 context establishment is based on four

control messages, I1, R1, I2 and R2 respectively. All the information is exchanged in these

messages. If both hosts are not shim6 enabled, communication through shim6 context will not

take place. In this way initiator realizes that other end is not shim6 enabled. Shim6 allows a host

to change locator during an active communication. It is used to ensure redundancy when the

current path fails. The default locator switching mechanism in shim6 is defined as REAchability

Protocol (REAP). REAP is based on two parts: “failure detection” mechanism which detects

failures between two communicating hosts, and “recovery mechanism” which activates address-

pair exploration mechanism and finds another operational address pair to resume the

communication incase of failure. The failure detection mechanism uses two timers (Keepalive

Timer, Send Timer) and Keepalive message to detect the failures between two communicating

hosts. The concrete process in REAP is described as follows:

a) When host A sends data packets to host B, a “send timer” is initiated at the same time.

The suggested timeout value for this timer is 10s.

13

b) When host B receives same data packets sent from host A, a “Keepalive timer “is started

simultaneously. The suggested timeout value for this timer is 3s. If due to some reason

host B sends no packets to host A within the keepalive interval (less than Keepalive

timeout value) after receiving data packets from host A, host B sends a Keepalive

message to host A instead.

c) On the other hand, if host A receives no packets (including data packets and Keepalive

message packets) from host B before the send timer at host B is expired, it can be

determined that there is a failure of current locator path. At this stage the address

exploration mechanism is activated and finds another operational locator.

The proposed scheme SAMS is based on packets which include the detail of new locator

addresses. In real time applications user needs efficient and reliable communication source.

Based on the literature survey and the research work carried out so far, we believe that there is a

need for a better locator switching mechanism to provide support to real-time applications. This

solution should also be able to use existing infra structure. According to requirements it should

not include any additional namespace or additional network element to be deployed. Any such

solution must be easily deployable.

Hence, in this context we propose an intelligent trigger based switching mechanism

named as “Shim6 Assisted Mobility Scheme (SAMS)”. This name is given to differentiate this

mechanism with others (such as SEMO6). This mechanism is similar in working as REAP but

does not take a long time to re-establish the connection. It is not based on timers as in REAP.

The intention behind REAP was to facilitate the static networks. Here we intend to facilitate the

dynamic wireless networks. Subnets usually can tolerate some delay but when it comes to end

hosts (Mobile nodes) efficiency and reliability is a major concern. This mechanism significantly

14

reduces the handover delay such that on-going application session does not experience a break

during switching phase. It is a shim6 based switching mechanism which observes the QoS

parameters after context has been established between two communicating hosts. The intelligent

module decides whether to divert the traffic to other path or not, based on the status of active

path. The intelligent module acts like a control module for switching mechanism. The flow chart

of our proposed algorithm is shown in figure 4.

Figure 4: Shim6 assisted intelligent switching mechanism

15

3.2. Algorithm

The proposed algorithm is presented here. Two hosts have decided to contact each other. The

normal communication is started between both hosts. After the heuristic condition has met,

shim6 context establishment is activated. Our monitor module is also activated when two hosts

are communicating over shim6 context. After some time during session our monitor module

determines whether we already have Shim6 context established or not. This verifies that both

communicating hosts are Shim6 enabled. The next step is to observe the path conditions for

some period of time. At this step it is compared with the predefined threshold values of packet

delay and loss. If those values remain within limits then nothing is activated. If they are breached

our module triggers the switch_locator () function. This function further triggers

update_shim6_context () function which basically updates the kernel space and user space. The

purpose of I2 and R2 packets in REAP is the same as the purpose of this function. Figure 5 show

the REAP signaling in failure detection and recovery mechanism. As we can see that if any of

the timer send_timer or keep-alive timer expires on client or server side respectively, the other

host does not receive any kind of packet. With these two conditions the client side or server side

decides that there is a problem with the active link. In result multiple probe packets are sent to

peer on each locator. This determines that which locators are available. If any hosts receives

probe acknowledgement then it is considered to be the best available locator. At this point

receiver changes the current locator with the best available locator and updates its peer. After a

while communication resumes on the new locator. This methodology works on network layer. In

SAMS, application layer mechanism is implemented. The intelligent module monitors the QoS

parameters for a while and determines the deteriorating condition of current locator. If it remains

within the threshold values then nothing happens. Communication keeps going on in normal

16

way. If those values are breeched, monitor module signals the host to change the current locator

with the new one. All the locators are already saved and assigned to interfaces. Newer locator is

then assigned to current client link and activated. This procedure works transparent to network

layer. Another advantage of this approach is that the switching is performed transparent to

application running at that time. Since applications are only concerned with ULIDs, which in this

case remains same and locator to which it was mapped before switching is now mapped to

different locator. Figure 6 shows the signaling in proposed mechanism. Here we can see that

there is no timer implemented, thus reducing our switching delay. Following is the pseudo code

of proposed algorithm.

While (1)

{

If (shim6 context)

 then

 For (t= specific duration of time)

 if (Pkt loss & delay => threshold value)

 switch_locator{

 update shim6 context(new_locator);

 }

 else

 continue

 //end if

 //end for

else

continue

//end if

}

17

Figure 5: Signaling in REAP

Figure

18

Figure 6: Signaling in proposed mechanism

19

CHAPTER 4

IMPLEMENTATION SETUP

In this section we explain in detail the procedures from compiling the required kernel to

running the Shim6 enabled host. The chapter discusses all the steps and procedures which would

also be helpful for any new user who wants to build up the proposed scenario. First we discuss

the steps to configure the modules in kernel. After the modules have been loaded and enabled

into kernel configuration, we discuss the compilation procedure of Linux kernel. This is the most

time consuming and important phase of our implementation. All the mechanism is based on the

correct configuration of kernel modules. We compiled on earlier as well as newer kernel versions

(then 2.6.27) on almost all the versions of Ubuntu, Fedora and CentOS. We had errors and

problems in booting the newly compiled kernel in almost all the versions of above mentioned

flavors. Only CentOS-5.4 worked in our case, so we recommend using CentOS-5.4 in this

implementation. After the compilation step if the required kernel is booted successfully, we

move on to installing the user space code. This code is publically available using git

(git://scm.ucl.info.ac.be/LinShim6.git). Command for using git will be given in later section.

Once the user space code is installed, we implement the same on all the PCs required as per our

test bed. In our case we implemented two hosts, communicating within the same network. In

addition to this LinShim6 hosts require IPv6 settings and test bed devices should also be IPv6

compatible in order to successfully implement SAMS.

4.1. Kernel configuration

For the implementation of LinShim6, we require kernel configuration and user space

configuration. The required Linux kernel was 2.6.27. Linux kernel source can be downloaded

from publically available repository at (www.kernel.org). Kernel compilation is not an easy task

20

to do. It requires some knowledge of Linux terminal and package installation. It needs a lot of

patience since this process takes hours to build a new kernel. Depending on the machines it may

take lesser time. If a system has more than one processor, the time can be minimized using a

modified command which utilizes all the processors. The option is “-jx” where x is the number

of processors+1 in the system. (e.g. make –j3 install). Kernel compilation consists of two phases

if it requires any patch to be included.

a) Patching an additional module

b) Compiling the kernel source

4.1.1 Patching an additional module

This phase is required when Linux kernel does not support a required functionality. Additional

functionality is added to kernel source by patching a certain file. All steps can be done easily

using terminal. Open the source directory of kernel source in terminal. This step can be done by

the following command

• cd <space> <source directory path>

Before patching and going further, few dependencies are required to be installed in Linux host.

This depends on the operating system. As per out implementation we required following libraries

to be installed.

− gcc

− ncurses-devel

− glibc

The command format for installing each of the above packages is

• yum install <package name>

21

Now we patched the Shim6 module using the following command

• patch –p1 < (full path of file to be patched)

Note: After this command if you get any error saying that “Hulk failed at line etc”, then you

must remove that. Either the kernel version is not compatible or you must remove this error by

manually editing the source files.

4.1.2 Compiling the kernel source

Change the current location of control to the main directory of kernel source. Now all the

commands are implemented from this location. Using the following few commands will builds

the required kernel.

• make menuconfig

This command shows the configuration menu of kernel. Using this menu we can select the

modules which are required for our experiments, including the Shim6 module. Make sure that

following options are checked.

� General Options -- > Networking Support -- > Networking options -- >

IP protocol -- >

 - Shim6 support

- Shim6 debug messages

� General Options -- > Networking Support -- > Networking options -- >

- Uncheck DCCP protocol (unless really required)

22

� General Options -- >Device drivers

- Serial ATA and Parallel ATA

- Via PATA support

� General options -- > File system -- >

- EX4dev/EX3 extended fs support development

� General options -- > File system -- > DOS/FAT/NT File System-- >

- NTFS File system support

Now close the configuration menu and run the following commands one by one.

• make bzImage

This command creates the image of kernel based on the selected modules. This step is important

to be executed correctly. If this step is executed with no errors, terminal shows up with a

message of “bzIamge ready!” and prompts us to move forward. Here we can jump to “make

install” command but it is preferred to go step by step in order to fix any error if occurred.

• make modules

Use this command to make the modules, existing as well as the patched ones.

• make modules_install

This command installs the modules which are successfully built.

23

• make install

This command installs all the modules and prepares the kernel for boot up.

• make

This command is not required in CentOS and Fedora. The previous command does it all. CentOS

and Fedora automatically update the grub boot loader file otherwise it should be manually

updated. Make sure it is updated at the location “/boot/grub/menu.lst” (in CentOS-5.4). You can

also change the boot order and boot screen duration in this file. Save changes and reboot, you

will see the new compiled Linux kernel in the booting list.

4.2. User space configuration

To install the user space code we also need some dependencies. Again depends on the operating

system. In CentOS-5.4 we installed the following development package.

− readline-devel

− openssl.i386

− openssl-devel

− libtool

Now go to folder “LinShim6” which was downloaded using git. Using the following commands

install the code.

• automake

• libtoolize --force

• aclocal

• ./configure CPPFLAGS="-isystem /home/mudassir/Desktop/linux-2.6.27/include"

24

(Remember not to give spaces before and after the equal sign (=), otherwise it will give

error.)

• make

• sudo make install

During the installation process if the system is missing any dependencies for LinShim6 code, it

will prompt the user and user can manually install them using internet.

4.3. Test bed Setup

To analyze and compare the performance of REAP and our proposed SAMS algorithm we

established a live linShim6 test-bed. A communication link was manually broken and the two

protocols were analyzed in terms of packet loss, throughput and jitter. The proposed SAMS

algorithm intelligently detects that communication through the currently used path or locator is

suffering and that a switch should be made to another locator. More specifically when threshold

values (delay > 100 ms and packet loss > 1%) are breeched for short interval of time (5 sec in

our case), our module detects and triggers the switch_locator() function. This function updates

the current path with new locator available. Shim6 session was broken down at t=100 by the

client. It was a controlled script driven operation so that switch could take place between

multiple locators at defined time intervals (t=20 sec, 40 sec and 60 sec). Multiple locators are

sequentially selected from list. The test-bed setup is shown in figure 6. Virtual machines are

implemented on two physical systems (client & server). It is worth mentioning here that each

virtual machine was configured to have 3 network interfaces (eth0, eth1 and eth2), each assigned

with a separate IPv6 address. The rest of the test-bed is based on real network entities. To be able

to communicate directly on the internet, these addresses should be global. Both systems are

connected through wireless interfaces to the router, and router is then connected to a DSL

25

modem. The specifications of two systems are identical and are given in Table I. Both machines

are based on the same kernel and LinShim6 user-space code. This way both machines are

configured as shim6 enabled. They communicate through real network entities within the same

subnet. The IPv6 addresses are statistically assigned to interfaces. During the communication

they are picked automatically provided they are available. Shim6 based switching can be

analyzed using different types of topologies. Switching can be triggered in two cases. First when

the mobile node is moving from one network to another. Second when mobile node is not

moving and switching is triggered at end host due to some failure in network conditions, making

use of its multiple interfaces. This topology was chosen to specifically analyze the locator

switching mechanism at end host.

Table I: SAMS Testbed specifications

Host Processor Intel(R) Core(TM) i5 2410M @ 2.30 GHZ

Host RAM 2 GB

Host OS Windows 7 Professional

Virtualization

software
VMware Workstation

Guest OS CentOS 5.4 (compiled with 2.6.27 kernel)

Router Linksys Wireless Broadband Router-G

Traffic generator jperf-2.0.2

26

 Monitor

module
Monitor

module

4.4. Running the Shim6 enabled hosts

When both the kernel and user space configuration has been made, we are able to use the

Shim6 protocol on both hosts. In order to get started we need to familiarize ourselves with the

commands used in user space console. The following commands are used to start the Shim6 user

space console. These commands are specific to LinShim6 implementation by Sebastian. Baree.

More functionalities or features can be added to this console based on what user wants to

analyze. These commands basically invoke the corresponding functions written inside the code.

Figure 7: Experimental topology for SAMS

27

• modprobe shim6

This command activates the shim6 module which must be compiled and built

when the required kernel is compiled.

• modprobe shim6_pkt_listener

This command invokes a module called shim6 packet listener, which basically

monitors the shim6 packets exchange.

• cgad

Cryptographically generated addresses are generated by this module. If user wants

to analyze the security features then this module must be invoked.

• shim6d

Shim6 daemon is started by this command. It runs in the background and runs

unless it is stopped by host.

• shim6c localhost

Shim6 localhot basically connects the system with localhost.

After executing the last command, user should be able to see the user space control panel of

LinShim6 as shown below.

LinShim6-0.9.1>

Now from this point user can check the status of Shim6 context and current communication with

a peer host. In this console user provides the predefined commands and manipulates the

communication. This console also verifies that the host is configured properly and is now ready

to establish Shim6 context with other Shim6 enabled host. The following commands are useful

in user space.

28

Table II: Shim6 console commands

quit Quit the Shim6 console, Shim6 session ends after this command

exit Quit the Shim6 console

help Shows help for any command

dkc Dumps kernel contexts

dkp Dumps kernel policies

ls It show the list of current available context, by their context tags

cat

Displays details about the context, detail includes active locators, context

tag, peer locators and all the available locators for failure scenarios. When

REAP is used, this command also shows the no of probes sent or received

during failure recovery phase.

rm
Manually deletes the context with the given local context tag from kernel

and daemon

dcp Dumps all CGA parameters stored in the daemon

sla This command shows all the available local addresses

nbc Shows the total number of contexts which exist at current time

Set tsend
This command sets Tsend timer value, one of the counter used in REAP

failure detection phase

29

4.5. Shim6 Context establishment

We communicated both Shim6 enabled hosts using two types of traffic. Traffic generator

used in our experiments was jperf-2.0.2 which is the graphical version of iperf. It can generate

both UDP and TCP traffic with desired data rates and bandwidth settings. In addition to that this

tool provides the freedom to choose multiple parallel data streams between hosts. Based on our

options chosen for experiments it also shows the equivalent terminal command in the control

panel. There are different options available for generating required traffic, such as application

layer, transport layer options and IP layer operations. It requires an IP address of server if user is

connecting to other hosts, requesting something. All it needs is an IP address, port number and

number of parallel streams to generate. On the server side, user just needs to mention the port

number on which server is listening. When the session starts, server maintains a report and

present after the communication is stopped. This report is CSV format and corresponding graph

is also drawn. Figure 8 shows the screen shot of traffic generator jperf-2.0.2. This is the widely

used generator and also recommended by researchers in this field.

Figure 8: jperf-2.0.2

The following figure 9 shows the Shim6 context when client connects to server and both decide

to have the Shim6 context. It is clearly seen in the figure that before the switching takes place,

communication session is established between the locator 2706:f0d0:10

2706:f0d0:1002:11::5. The following is the output of

established, but before the switch has taken place

means the Shim6 context is established.

context tag and peer context tag. This is because each pair of locator (one from client and other

from server) is assigned two tags. One

from server to client. The next fields are the locator lists available at client and peer side. The list

of available locators at client side is the list that is used for switching mechanisms here. The next

two lines in this output show the current locators which are used in com

30

2.0.2, Network traffic generator and measurement tool

shows the Shim6 context when client connects to server and both decide

to have the Shim6 context. It is clearly seen in the figure that before the switching takes place,

communication session is established between the locator 2706:f0d0:10

The following is the output of cat* command after the context has been

, but before the switch has taken place. It shows the state of “established”, which

means the Shim6 context is established. Next we can see that there are two context tags, local

. This is because each pair of locator (one from client and other

from server) is assigned two tags. One is assigned to the path from client to server and other

The next fields are the locator lists available at client and peer side. The list

of available locators at client side is the list that is used for switching mechanisms here. The next

two lines in this output show the current locators which are used in communication. REAP state

, Network traffic generator and measurement tool

shows the Shim6 context when client connects to server and both decide

to have the Shim6 context. It is clearly seen in the figure that before the switching takes place,

communication session is established between the locator 2706:f0d0:1002:11::2 and

command after the context has been

. It shows the state of “established”, which

there are two context tags, local

. This is because each pair of locator (one from client and other

the path from client to server and other

The next fields are the locator lists available at client and peer side. The list

of available locators at client side is the list that is used for switching mechanisms here. The next

munication. REAP state

31

is then shown in the next field. Although REAP still works in parallel to SAMS but in our

mechanism we did not deal with REAP, instead we used our approach. REAP is also tested in

the same test bed against SAMS. Next few lines show the values of timers that are set. We did

not change any value in these fields. Last few lines show the paths available for communication.

At the start of communication path1 is chosen. As long as the switching is performed, paths

change accordingly.

4.5.1 Shim6 context before switch

LinShim6-0.9.1>cat *++++++++++++++++++++++++++++++

Information from user space daemon

Global state : established

local context tag : 35416c39321b

peer context tag : 55d1682feec7

Peer locator list :

 2607:f0d0:1002:11::5

Local locator list :

 2607:f0d0:1002:11::2 (User defined addresses, Not HBA nor CGA)

 2607:f0d0:1002:11::3 (User defined addresses, Not HBA nor CGA)

 2607:f0d0:1002:11::4 (User defined addresses, Not HBA nor CGA)

Current local locator : 2607:f0d0:1002:11::2

Current peer locator : 2607:f0d0:1002:11::5

REAP state : operational

Send timeout: 15.000000 seconds

32

Keepalive timeout: 15 seconds

nb probes sent : 0

nb probes recvd : 0

Path array :

 src : 2607:f0d0:1002:11::2

 dest : 2607:f0d0:1002:11::5

 src : 2607:f0d0:1002:11::3

 dest : 2607:f0d0:1002:11::5

 src : 2607:f0d0:1002:11::4

 dest : 2607:f0d0:1002:11::5

Now after the switch has been made. We can clearly see that our current locator at client side is

changed from 2607:f0d0:1002:11::2 to 2607:f0d0:1002:11::3. It is also clear that we did not use

any of the timers. If we did then no. of probes should be changed.

4.5.2 Shim6 context after switch

LinShim6-0.9.1>cat *++++++++++++++++++++++++++++++

Information from user space daemon

Global state : established

local context tag : 35416c39321b

peer context tag : 55d1682feec7

Peer locator list :

33

 2607:f0d0:1002:11::5

Local locator list :

 2607:f0d0:1002:11::2 (User defined addresses, Not HBA nor CGA)

 2607:f0d0:1002:11::3 (User defined addresses, Not HBA nor CGA)

 2607:f0d0:1002:11::4 (User defined addresses, Not HBA nor CGA)

Current local locator : 2607:f0d0:1002:11::3

Current peer locator : 2607:f0d0:1002:11::5

REAP state : operational

Send timeout: 15.000000 seconds

Keepalive timeout: 15 seconds

nb probes sent : 0

nb probes recvd : 0

Path array :

 src : 2607:f0d0:1002:11::3

 dest : 2607:f0d0:1002:11::5

 src : 2607:f0d0:1002:11::2

 dest : 2607:f0d0:1002:11::5

 src : 2607:f0d0:1002:11::4

 dest : 2607:f0d0:1002:11::5

The following screen shots also show the same phases during shim6 context communication. The

user console is implemented in c language which is controlled by terminal.

Figure 9: Shim6 console showing Shim6 context before switching

For the specific duration of time

packet loss and delay. If the communication experiences delay and packet loss above the

threshold values defined, switching takes place between the old locator and new locator.

make the switch more sensitive to QoS parameters, we can

parameters such as jitter and throughput

the Shim6 enabled host. The following figure shows the context after the switch has taken place.

It is clearly seen that current lo

2706:f0d0:1002:11::3.

34

: Shim6 console showing Shim6 context before switching

For the specific duration of time, the monitor module observes the QoS parameters such

packet loss and delay. If the communication experiences delay and packet loss above the

threshold values defined, switching takes place between the old locator and new locator.

make the switch more sensitive to QoS parameters, we can take into account more QoS

and throughput. Each locator is assigned to each wireless interface in

The following figure shows the context after the switch has taken place.

It is clearly seen that current local locator is changed from 2706:f0d0:1002:11::2 to

: Shim6 console showing Shim6 context before switching

parameters such as

packet loss and delay. If the communication experiences delay and packet loss above the

threshold values defined, switching takes place between the old locator and new locator. To

take into account more QoS

Each locator is assigned to each wireless interface in

The following figure shows the context after the switch has taken place.

cal locator is changed from 2706:f0d0:1002:11::2 to

Figure 10: Shim6 console showing Shim6 context after switching

35

: Shim6 console showing Shim6 context after switching

: Shim6 console showing Shim6 context after switching

36

CHAPTER 5

RESULTS AND DISCUSSION

5.1. Single switching and multiple switching

This research work is based on two stages of experiments. One is based on single switch

performed during the whole shim6 session. Script controlled experiments were performed to

trigger the switch at t=50. Other is based on multiple switches performed during the whole shim6

session. In the multiple switching stages a complete sequential cycle was performed starting with

the first locator to last and back to first again. Interval of 20 seconds between each switch was

considered. Both stages were performed for 100 seconds. In order to gain maximum accuracy, 50

iterations were performed for both stages. Every time threshold values (delay>100 ms and packet

loss >1%) were breeched, switch took place. In both stages shell script were written to carry out

automatic operations.

Communication was established between the two machines. When using REAP, after some

time the link was broken by manually turning off the interface. QoS factors i.e. bandwidth,

packet loss, throughput and jitter are observed using jperf-2.0. In the case of SAMS algorithm, a

locator change request is triggered just as delay and packet loss cross the threshold values

(delay>100 ms and packet loss >1%). Furthermore it was compared with “link failure” case

when REAP was used. Initially the communications link was established between eth0

(2607:f0d0:1002:11::2) at client end and eth0 (2607:f0d0:1002:11::5) at server end as shown in

figure 9. As the path switching conditions were met (at t=20), communication shifted from eth0

(2607:f0d0:1002:11::2) to eth1 (2607:f0d0:1002:11::3). Thus, the new path becomes

(2607:f0d0:1002:11::3) to (2607:f0d0:1002:11::5). This is again shown in figure 10. Similarly at

t=40 and t-60, script controlled automatic switching was performed. At t=40 communication

37

shifted from interface eth1 (2607:f0d0:1002:11::3) to eth2 (2607:f0d0:1002:11::4). In result of

this, the new path became (2607:f0d0:1002:11::4) to (2607:f0d0:1002:11::5). At t=60

communication shifted from interface eth2 (2607:f0d0:1002:11::4) to eth0

(2607:f0d0:1002:11::2). Thus, the new path became (2607:f0d0:1002:11::2) to

(2607:f0d0:1002:11::5), which was the initial path selected. We have used jperf-2.0 for the

required traffic generation and monitoring the QoS parameters (such as packet loss, jitter and

throughput). We have observed the behavior of both TCP and UDP using jperf-2.0. Our main

emphasis was on real-time applications so the analysis was performed on UDP traffic and

presented here. We configured jperf-2.0 to generate two types of UDP traffic. One with datagram

of 512Bytes, bandwidth 2 Mbps and buffer size of 64Kbits and other with datagram 256Bytes,

bandwidth 1 Mbps and buffer size of 32Kbits. This bandwidth is normally used in home

environments.

Both the traffics used in our experiments are suitable for VoIP and online gaming

respectively. Following is the discussion on different QoS parameters observed in our

experiments. Single and multiple switches figures are shown in each of the sections of QoS

parameters. Table II shows the types of traffics used in our experiments.

Table IIII: Traffic used for experiments

Parameter Traffic 1 Traffic 2

Bandwidth (Mbps) 2 1

Datagram (Bytes) 512 256

Buffer size (Kbits) 64 32

38

5.2. Jitter

Jitter is the sudden spikes observed in the channel when communication starts. The average

jitter experienced in single switch by the generated traffic is shown in the figure 11. Figure 12

shows the jitter experienced in multiple switches. Path conditions play a major role in

determining the jitter value. It is clear from the figure that communication does not experience

large jitter when there is no switch. However, there is a steep rise when communication is

switched to a different locator using REAP. On the other hand, it can be seen that when SAMS is

used to switch from one locator to another, jitter experienced by the traffic is very low as

compared to REAP. This behavior is even shown in multiple switches. Incase when there is a

large jitter value, data is corrupted and lost.

Figure 11: Jitter comparison of single switch between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Jitter comparison between REAP and SAMS

Time intervals (sec)

Ji
tt
er

 (
m

s)

REAP

SAMS

switching point

39

5.3. Bandwidth

Bandwidth performance during single switch is given in figure 13. While figure 14 shows the

throughput dropped during multiple switches. It can be seen that when the active locator fails in

case of REAP, failure detection and recovery mechanism is triggered and a new working locator

pair is found. It is clear from the figure that until new locator is found, the bandwidth keeps

dropping. The curve shows significant drop which was due to the time taken by REAP to detect

the failure, explore new locator, and update the shim6 context. The main reason behind this is the

timers used in REAP. In SAMS, packet loss and delay experienced by the traffic are

continuously monitored for a small period of time. As the values of delay and packet loss breach

the threshold values (delay>100 ms and packet loss >1%), update request is triggered. Unless the

Figure 12: Jitter comparison of multiple switches between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time intervals (sec)

Ji
tt
er

 (
m

s)

REAP

SAMS

switching points

40

conditions are met, the link is not broken. Second curve on graph shows the bandwidth

performance when SAMS is used. We can clearly see that there is significant difference in

throughput between the two cases. This is mainly due to the fact that in our approach a new

connection is made before the old connection is broken. In this way switching is done

transparently from upper layers.

Figure 13: Throughput comparison in single switch between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
1400

1500

1600

1700

1800

1900

2000

Time intervals (sec)

T
hr

ou
gh

pu
t
(K

bi
ts

/s
)

REAP

SAMSswitching point

Figure 14: Throughput comparison in multiple switches between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
1300

1400

1500

1600

1700

1800

1900

2000
Bandwitdh comparison between REAP and SAMS

Time intervals (sec)

T
hr

ou
gh

pu
t
(K

bi
ts

/s
)

REAP

SAMS

switching points

41

5.4. Data Transferred

 Figure 15 shows data transferred during a single switch experiment (the REAP case),

while figure 16 shows data transfer comparison during multiple switches (SAMS case). It can be

seen that there is a big drop during all switches performed when communication link is broken

down due to the link failure (which results in REAP activation). The drop is almost 65 Kbytes

for the duration of link failure. On the other hand when there is no break up, or when SAMS

algorithm is adopted, we do not experience large amount of drop. Only a small drop is witnessed.

Similar behavior was experienced during even in multiple switches cases.

Figure 15: Data transferred comparison in single switch between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
170

180

190

200

210

220

230

240

250
Data transfer comparison between REAP and SAMS

Time intervals (sec)

D
at

a
tr
an

sf
er

ed
 (
K
B
yt

es
)

REAP

SAMSswitching point

42

5.5. Packet loss

Figure 17 shows the comparison between REAP and SAMS in terms of packet loss. It can be

observed from the results that when there is link failure in REAP significant amount of packets

are lost. A total of 488 packets are sent on the average. Using REAP, during the switching phase

140 packets are lost on the average. This is a considerable amount when it comes to real-time

applications. All the packets that are transferred during the phases of failure detection and

recovery are lost. In figure 18, this phase is triggered at t=20, 40 and 60 seconds. When we look

at SAMS results during the same time interval i.e. at t=20, t=40 and t=60 the difference is clear.

There is a small amount of packet loss which is tolerable for most real time applications. If we

compare the QoS parameters, SAMS gives more favorable results than REAP. We analyzed

Figure 16: Data transferred comparison in multiple switches between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
170

180

190

200

210

220

230

240

250
Data transfer comparison between REAP and SAMS

Time intervals (sec)

D
at

a
tr
an

sf
er

ed
 (
K
B
yt

es
)

REAP

SAMS

switching points

43

percentage packet loss throughout the experiment. For the REAP based experiments the

percentage stayed below 2%, except for the time interval when switching took place where it

increased up to 24.71%. While in case of SAMS, it reaches 1.721% during switching. The packet

loss percentage over whole communication (100 seconds) was found to be 1.025% in case of

SAMS and 1.352% in case of REAP. Figure 18 shows the results produced during multiple

switches.

Figure 17: Packet loss comparison in single switch between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Time intervals (sec)

N
o.

 o
f
pa

ck
et

s

REAP

SAMS

switching point

44

5.6. Switching delay

Switching delay is the time duration when the host is shifting from one interface to

another and not receiving any kind of packets. It is the time interval which a mobile host takes to

shift from one network to another network. This duration of time is different in every mobility

protocol. MIPv6 takes 11.27 seconds to recover from failure and resume the communication.

FMIPv6 is better approach, taking a lot less time but still goes around 343.53 ms. Another

approach was SEMO6 by [10], which takes 25 ms for the handover delay. This was based on

Shim6 protocol. The recent switching delay found out by [10] is 25 msec. In our implementation

which is again shim6 based, we found out that if intelligent switching mechanism is adopted, we

can reduce the delay to 20.286 ms. The comparison of above mentioned techniques is given in

the following table.

Figure 18: Packet loss comparison in multiple switches between REAP and SAMS

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Time intervals (sec)

N
o.

 o
f
pa

ck
et

s

REAP

SAMS

switching points

45

Table IVIV: Switching delay comparison with existing techniques

Scheme Switching delay

MIPv6 11.27 sec

FMIPv6 343.53 ms

SEMO6 25 ms

SAMS 20.286 ms

In addition to switching delay results, improvements in other QoS parameters are also observed

in our experiments, such as jitter, throughput, data transferred and packet loss. These parameters

are important while analyzing and comparing different switching mechanisms.

The following graph shows a comparison between similar schemes.

Figure 19: switching delay comparison

25
20.286

SEMO6 SAMS

Switching delay (ms)

46

Tables V and VI give the comparison of both approaches (REAP and SAMS) for traffic 1 and

traffic 2 respectively.

Table V: Implementation results (traffic 1)

Table VII: Implementation results (traffic 2)
Jitter (ms)

Mechanism Min Mean Max

REAP 0.344 0.4114 0.6880
SAMS 0.1320 0..3966 0.6350

Bandwidth (Kbps)

Mechanism Min Mean Max

REAP 659 988.1 1135
SAMS 924.2 992.2 1014

Data transferred (Kbytes)

Mechanism Min Mean Max

REAP 80.50 120.7 138.0
SAMS 113 121.2 124

Jitter (ms)

Mechanism Min Mean Max

REAP 0.0510 0.123 0.673
SAMS 0.0350 0.0608 0.119

Bandwidth (Kbps)

Mechanism Min Mean Max

REAP 1352 1961 1996
SAMS 1963 1978 1994

Data transferred (Kbytes)

Mechanism Min Mean Max

REAP 174 239 244
SAMS 238 241 243

Packet loss (no. of packets)

Mechanism Min Mean Max

REAP 1.60 9.707 141.5
SAMS 1.4 4.485 11.10

47

Packet loss (no. of packets)

Mechanism Min Mean Max

REAP 0 0.28 21
SAMS 0 0.1 9

48

CHAPTER 6

CONCLUSION & FUTURE WORK

Shim6 is considered by many as an alternate solution to provide layer 3 mobility support

in IPv6 based networks. Failure detection and recovery of addresses in shim6 protocol is carried

out through REAP sub-protocol. REAP thus forms a backbone of mobility service through

shim6. We have compared the performance of REAP and SAMS on the experimental Linux

based testbed. This research work is based on two stages of experiments. One is based on single

switch performed during the whole shim6 session. Script controlled experiments were performed

to trigger the switch at t=50. Other is based on multiple switches performed during the whole

shim6 session. In the multiple switching stages a complete sequential cycle was performed

starting with the first locator to last and back to first again. Interval of 20 seconds between each

switch was considered. Both stages were performed for 100 seconds. In order to gain maximum

accuracy, 50 iterations were performed for both stages. In this contribution we have analyzed and

compared the performance of REAP and SAMS in terms of latency in failure detection and

recovery in mobile environments. In using REAP, after some time the link was broken by

manually turning off the interface. QoS factors i.e. bandwidth, packet loss, throughput and jitter

are observed using jperf-2.0. We used LinShim6 implementation on the test-bed. Both end hosts

communicate using specific type of traffic. During communication, at time t=20, 40 and 60 we

anticipate the switch by an intelligent module which continuously monitors the QoS parameters

for specific period of time and helps us in decision making. When the specified threshold for

parameters (delay>100 ms and packet loss >1%) are crossed, the communication switches from

currently used path to another available path. We have seen significant improvement when using

our proposed SAMS approach compared to REAP. If we compare switching delay of 25 ms

49

found in [10] with our proposed solution, it is found to be 20.286 ms, which is as efficient as

[10]. Furthermore, we experimentally validated and compared that if intelligent approach is

adopted, we can avoid significant packet loss during communication. This is significant

especially for real time applications. The overall average packet loss of 1.025% when intelligent

approach is adopted i.e. SAMS and 1.352% in the case when REAP is used. It means in our

implementation if 488 packets are sent, we only lose 5 packets, which is just a tolerable amount

for most real time applications. For the performance comparison between REAP and SAMS we

considered packet loss, jitter, throughput and data transferred. Through this work, we have

shown that efficient mobility in heterogeneous IPv6 environment can be provided by employing

multi-homing techniques such as shim6. Furthermore, failure detection and recovery mechanism

in shim6 called REAP is too slow to provide support for real time mobile applications. In this

work, we have proposed a quick failure detection and recovery mechanism in mobile multi-

homed environment. SAMS significantly reduces the overall switching time through use of

triggers. For the future work, we intend to expand our work and define triggers for better

mobility management support. Also we intend to build a complete real time test bed which

would help us in finding more accurate results.

50

REFERENCES

[1]. Johnson, D., Perkins, C., Arkko, J., “Mobile IPv6 (MIPv6)”, RFC 3775, June 2004

[2]. Bagnulo, M., "Hash-Based Addresses (HBA)", RFC 5535, June 2009

[3]. Nordmark, E., Bagnulo, M., “Site Multihoming by IPv6 Intermediation (Shim6)”, RFC

5533, June 2009

[4]. Koodli, G. “Fast Handovers for Mobile IPv6 (FMIPv6)”, RFC 4068, July 2005

[5]. Moskowitz, R. Ed., Jokela, P., Henderson, T., Heer, T., “Host Identity Protocol (HIP)”,

July 2010

[6]. J. Arkko and I. van Beijnum, “Failure Detection and Locator Pair Exploration Protocol

for IPv6 Multihoming,” IETF RFC 5534, June 2009

[7]. Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, March 2005

[8]. S. Pack, Y. Choi, “Performance Analysis of Fast Handover in Mobile IPv6 Networks”,

2003.

[9]. E. Ivov, T. Noel, “An Experimental Performance Evaluation of the. IETF FMIPv6

Protocol over IEEE 802.11 WLANs”, IEEE WCNC. 2006, April 2006

[10]. Rehman, S. Md , Atiquzzama, M. “SEMO6 - A Multihoming-based seamless mobility

management framework,” IEEE MILCOM 2008, San Diego, CA, pp 1–7 November

2008

[11]. Carmona-Murillo, J., Gonzalez-Sanchez, JL., Guerrero-Robledo, I., “Handover

Performance Analysis in MIPv6, A contribution to Fast Detection Movement”,

International Conference on Wireless Information Networks and Systems, WINSYS

2008, pp78-81, July 2008

51

[12]. Dhraief, A.; Montavont, N. “Toward Mobility and Multihoming Unification, The

SHIM6 Protocol: A Case Study” Wireless Communications and Networking Conference,

WCNC 2008, pp2840-2845, April 2008

[13]. Nada, Fayza. “Performance Analysis of MIPv4 and MIPv6” International Arab Journal

of Information Technology, Vol4, No. 2, pp 153-10, April 2007

[14]. Rehman, S. Md, Atiquzzama, M., Wesley, E., William, I., “Performance comparison

between MIPv6 and SEMO6,” IEEE GLOBECOM 2010, Miami, FL, pp 1–5, Dec. 2010

[15]. Nordmark, E., and Bagnulo, M., “SHIM6: Level 3 Multihoming Shim Protocol for

IPv6,” Internet draft, June 2009

[16]. García-Martínez, A. Bagnulo, M. Van Beijnum, I. “The Shim6 architecture for IPv6

Multihoming,” Communication Magazine, IEEE, Issue 9, pp 152-157, September 2010

[17]. UCL implementation of LinShim6

[Online available]: http://inl.info.ucl.ac.be/LinShim6

[18]. Barre, S., “LinShim6-Implementation of the Shim6 Protocols,” Technical report,

February 2008

[19]. VOIP specifications [Online available] http://www.voip-info.org/wiki/view/QoS

[20]. QoS for recommendations for VOIP

[21]. Wireshark, open source packet analyzer [Online available]: http://www.wireshark.org/

[22]. jperf-2.0.2, Network Traffic Generator and Measuring tool

[Online available]: http://iperf.sourceforge.net/

[23]. Shim6 [Online available]: http://www.shim6.org

[24]. S. J. Vaughan-Nichols, “Mobile IPv6 and the future of Wireless Internet Access,” IEEE

Comp., vol. 36, no 2, Feb. 2003, pp. 18–20.

52

[25]. C. Launois and M. Bagnulo, “The paths toward IPv6 multihoming,” IEEE

Communications Surveys &Tutorials, vol. 8, no. 2, pp. 38–51, Second Quarter 2006.

[26]. J. Ronan, S. Balasubramaniam, A. Kiani, and W. Yao, “On the use of SHIM6 for

mobility support in IMS networks,” in 4th International Conference on Testbeds and

research infrastructures for the development of networks and communities, Innsbruck,

Austria, March 18-20, 2008, pp. 1–6.

[27]. A. Kiani, S. Khan, and Y. Wenbing, “A novel mechanism to support session

survivability in heterogeneous MIPv6 environment,” in International Conference on

Emerging Technologies, Peshawar, Pakistan, November 13-14, 2006, pp. 38–43.

[28]. V. Vaassiliou, Z. Zinonos, “An Analysis of the Handover Latency Components in

Mobile IPv6”, Journal of Internet Engineering, December 2009, vol. 3, no.1.

[29]. Americas Headquarters: “Implementing Mobile IPv6”, Cisco Systems Inc, March 2005.

[30]. J. Arkko, “Using IPsec to Protect Mobile IPv6 Signaling between Mobile Nodes and

Home Agents”, IETF RFC 3776, 2004.

[31]. Dhraief, A., Belghith, A.“Mobility impact on session survivability under the SHIM6

protocol and enhancement of its re-homing procedure”, Journal of Networks, November

2011, vol. 6, no. 11.

[32]. Draves, R. “Default Address Selection for Internet Protocol version 6 (IPv6)”, February

2003.

[33]. Ahrenholz, J., Henderson, T. OpenHIP

 [Online available] http://www.openhip.org/docs/shim6.pdf

