

 1

JAVA DYNAMIC CLUSTERING PLATFORM

By

Muhammad Ali Khan

(2000-NUST-BIT-817)

A project report submitted in partial fulfillment of

the requirement for the degree of

Bachelors in Information Technology

In

NUST Institute of Information Technology

National University of Sciences and Technology

Rawalpindi, Pakistan

(2004)

 2

DEDICATED TO MY PARENTS

 3

CERTIFICATE

It is certified that the contents and form of the project report entitled “Java Dynamic

Clustering Platform” submitted by Muhammad Ali Khan has been found satisfactory

of the requirement of the Bachelors in IT Degree at NUST Institute of Information

Technology.

COMMITTEE

1. Advisor sign _________________________

 Mr. Saqib Mir

2. Co-Advisor sign _________________________

 Mr. Shahzad Khan

3. Committee Members

 Mr. Zaheer Abbas sign _________________________

Mr. Ahsan Ahmed sign _________________________

 4

ACKNOWLEDGEMENTS

Praise be to Allah the all powerful. We are mere creatures of Allah and act in

the capacity that he has given us. Our mind and our soul are a reflection of Allah.

I would like to thank my advisor, Mr. Saqib Mir who has guided me through

the course of the project. I was almost at a dead end with this project before I met him

and he has shown me many new dimensions to explore.

I would like to thank my family members especially my parents who have

given me the chance to be the man that I want to be and to pursue the paths that I have

chosen for myself. I have not done what they wanted me to but still they have always

supported me and have been with me in my ups and downs.

I would also like to thank my friends who have given me strength and

confidence in my abilities and have encouraged me to work on this project for such a

long time.

 5

Table of Contents

Topic # Title Page #

CAHPTER 1 PROJECT INTRODUCTION

(1-13)

1.1 Introduction 1

1.2 Project Significance 2

1.2.1 New Programming Model 2

1.2.2 Pure Java Implementation 3

1.2.3 Completely Object Oriented 4

1.2.4 Real-time Callbacks 4

1.2.5 Simple to Use 4

1.2.6 Security Restrictions on Code 5

1.3 Similar Technologies 5

1.3.1 Sun Grid Engine 5

1.3.2 Globus 6

1.3.3 XtremWeb 6

1.3.4 NetSolve 6

1.4 Technologies Used 7

1.4.1 JNI (Java Native Interface) 7

1.4.2 PDH Library 7

1.4.3 Linux OS Metrics 8

1.4.4 JCE (Bouncy Castle

Implementation)

8

1.5 Starting System 9

1.5.1 Deployment View 9

1.5.2 System Components 10

1.5.2.1 Distribution library 10

 6

1.5.2.2 Distribution server 10

1.5.2.3 Worker 10

1.5.3 Working of the Starting System 11

1.6 Features added during the project 12

CAHPTER 2 CLUSTER MONITORING

(14-24)

2.1 Introduction 14

2.2 Benefits 15

2.2.1 Input to Scheduling Process 15

2.2.2 Server Side GUI Allows Up-to-Date

Monitoring

15

2.2.3 Profiling is Possible 15

2.2.4 Better Fault Tolerance 16

2.3 Development 16

2.3.1 Worker state maintenance 16

2.3.2 Metrics to be collected 17

2.3.2.1 Worker side metrics 17

2.3.2.2 Server side metrics 17

2.4 Collection Mechanisms 18

2.4.1 CPU Speed 19

2.4.2 Percentage CPU Usage 20

2.4.3 Data Transfer Rate 22

2.4.4 Network Latency to Each Worker 22

2.4.5 Data Reception Rate 23

2.4.6 Other Metrics 23

CHAPTER 3 SCHEDULING (25-39)

3.1 Introduction 24

3.2 Benefits 25

3.2.1 Better Utilization of Cluster 25

 7

Resources

3.2.2 Better Control at the Utilization of

Cluster

26

3.2.3 Multiple Scheduling Policies 26

3.2.4 Dynamic Changing of Scheduler at

Runtime

26

3.3 JDCP Scheduling 27

3.3.1 The Scheduling Loop 27

3.3.2 Inputs to Scheduling Process 28

3.3.3 Scheduling Algorithm 29

3.3.3.1 Get input data 29

3.3.3.2 Normalize processing capacities of

workers

29

3.3.3.3 Generate the expected time table 29

3.3.3.4 Adjustments with current job load

on the workers

30

3.3.3.5 Divide percentage of total work to

workers

31

3.3.3.6 Biased approach 31

3.3.3.7 Unbiased approach 33

3.3.3.8 Normalizing load on workers 33

3.4 Comparison of processing

approaches

35

3.4.1 Round Robin 35

3.4.2 Unbiased Approach 36

3.4.3 Biased Approach 37

3.5 JDCP Schedulers 37

3.5.1 Round Robin Scheduler 37

3.5.2 Unbiased Maximum Throughput 38

 8

Scheduler

3.5.3 Biased Maximum Throughput

Scheduler

38

3.5.4 Unbiased Minimum Response Time

Scheduler

38

3.5.5 Biased Minimum Response Time

Scheduler

38

CHAPTER 4 INFORMATION SERVER

(40-42)

4.1 Introduction 39

4.2 Benefits 40

4.2.1 Discovery Service for Clients 40

4.2.2 Clients Can Choose the Server 40

4.3 Server Information 40

4.3.1 Connectivity Information 40

4.3.2 Resource Information 41

4.3.3 Services Information 41

4.4 Query Interface for Clients 41

CHAPTER 5 FAULT TOLERANCE (43-46)

5.1 Introduction 42

5.2 Development 43

5.2.1 Handling of Worker/Server

Disconnection

43

5.2.2 Controller Thread for Workers 43

5.2.3 Ability to Restart the Worker 44

5.2.4 Complete Server Crash Recovery 44

CHAPTER 6 SECURITY (47-50)

6.1 Introduction 46

 9

6.2 Benefits 47

6.2.1 Clients Authentication 47

6.2.2 Encryption of Data 47

6.2.3 Security Performance Tradeoff 47

6.3 Development 48

6.3.1 No Security 48

6.3.2 Password Based Authentication 48

6.3.3 Complete Security 49

CHAPTER 7 BATCH SUPPORT (51-52)

7.1 Introduction 50

7.2 Benefits 50

7.2.1 Batch Processing 50

7.2.2 Handling of Server/Client

Disconnection

51

7.2.3 Multiple Input Files 51

CHAPTER 8 JOB DEPENDENCY

OPTIMIZATIONS (53-66)

8.1 Introduction 52

8.2 Benefits 52

8.2.1 Reduced Transfers 52

8.2.2 Bundled Jobs 54

8.3 Development 54

8.3.1 Defining a Dependency 54

8.3.2 Job Submission 55

8.4 Processing Approaches 56

8.4.1 Turn by Turn Processing 56

8.4.2 Bundled Scheduling 56

8.4.2.1 Intermediate results 59

8.4.2.2 Addition of new method 59

 10

8.4.3 Combining the Two Approaches 59

8.5 Dependency Handling by the

Schedulers

60

8.5.1 Job Bundling 60

8.5.2 Necessary Modifications 61

8.5.3 Load Analysis 63

8.5.4 Normalization of Bundles 63

8.5.5 Analysis of Scheduler Handling of

Dependencies

64

8.6 Conclusion 65

CHAPTER 9 TESTING (67-72)

9.1 Introduction 66

9.2 Testing Environment 66

9.2.1 Single Workstation 66

9.2.2 NIIT Lab 67

9.3 Testing Software 67

9.3.1 Worker Performance Monitor 67

9.3.2 Data Performance Monitor 68

9.4 Testing Results 69

9.3.1 Worker Performance Monitor 69

9.3.2 Data Performance Monitor 70

CHAPTER 10 FUTURE ENHANCEMENTS 72

10.1 Database for Persistent Storage 72

10.2 Configuration GUIs 72

10.3 Advanced Job Dependency

Optimizations

72

CHAPTER 11 CONCLUSION 73

 REFERENCES 74

 11

 12

LIST of figures

No. Figure Page No.

Figure 1.1 Deployment view of the initial System 10

Figure 2.1 Periodic metrics collection by server 21

Figure 2.2 Getting CPU speed on Windows 21

Figure 2.3 Getting CPU speed on Linux 22

Figure 2.4 Getting CPU Usage on Windows 23

Figure 2.5 Getting CPU usage on Linux 23

Figure 2.6 Ring buffer 24

Figure 2.7 Calculating network latency 25

Figure 3.1 Scheduling loop 30

Figure 3.2 Un-normalized load on workers 37

Figure 3.3 Normalized load on workers 37

Figure 4.1 Deployment view with information server 43

Figure 6.1 Authentication at security level 1 52

Figure 6.2 Authentication and encryption at security level 2 53

Figure 8.1 Reduction in messages through job bundling 57

Figure 8.2 Advanced optimizations 65

Figure 9.1 Worker performance monitoring GUI 72

Figure 9.2 Data performance monitoring GUI 73

Figure 9.3 Worker performance monitor results 74

Figure 9.4 Data performance monitor results 75

 13

LIST OF TABLES

No. Table Page No.

1 Comparison of programming model 4

2 Client states at server 19

3 Expected time table 33

4 Expected times summed 35

5 Biases 35

 14

ABSTRACT

JDCP project aims at developing a platform for creating high performance

computing clusters. It aims at exploiting the existing hardware resources such as PCs

and normal networking and combines them to create a single larger virtual processing

machine. The initial distributed computing system was available before the start of the

project. This basic platform enabled simplest distributed computing. During the course

of the project new features were added to this existing system. The features added

include cluster monitoring, adaptive real-time scheduling, information services, fault

tolerance, batch job support and certain optimizations to reduce network data transfers.

Detailed discussion on these features constitutes a major part of this report.

Firstly the report gives a brief account of the initial system. Afterwards a

comparison study is given that compares the JDCP system to existing clustering

systems available and discusses how JDCP differs in many aspects of a distributed

computing system. Once the significance of JDCP is explained, the report discusses in

detail the features added into the system during the course of the project. This

discussion not only includes the work done but also includes the need and benefits of

these features. In the end of the report testing results and a brief discussion on them is

given and on the basis of these results a concluding discussion is done on the whole

project.

 15

Chapter 1

PROJECT DESCRIPTION

1.1 INTRODUCTION

The project aims at developing a platform for creating high performance

computing clusters. The platform can be used to create single-site and multi-site

clusters and will be capable of combining computing resources of heterogeneous

systems present on LANs and the Internet to create a larger processing machine

capable of providing real-time services to clients.

Servers act as a bridge between the worker and the client machines. The worker

machines run the worker software that connects to the server and lends its resources.

Clients to the clusters will also be programs rather than users and the programs will

send processing requests to the server during their execution. Hence the programs will

divide themselves to run in parallel on the worker machines of the cluster.

In addition to this simple distributed processing the system will also provide

features like cluster monitoring by the server, adaptive real time scheduling, security,

information services and fault tolerance. A very simple distributed computing system

is available before the start of the project and the features listed above will be added

during the course of the project.

The whole system is developed in Java from scratch using only the core Java

technologies like sockets, threads and JNI. Hence the system is portable to any

 16

platform of course with restricted features. Fully featured version is available to

Windows 2000 onwards and Linux 9.0.

1.2 SIGNIFICANCE

The platform will provide new opportunities of research in distributed

computing. The system differs from existing solutions mainly through a different

programming model and the use of Java technology. Currently all major high

performance clustering systems are for high performance C and other older languages

thus by leveraging the Java technology a new area of research can be opened which

has its benefits for example support for object orientation, simplicity of

installation/usage and security options. Platform independence also allows the system

to be deployed in any working environment with minimum effort and disturbance.

Existing solutions require operating systems of their choice and also a lot of

configuration which is not required by JDCP. The following discussion elaborates the

above mentioned points.

1.2.1 New Programming Model

The JDCP platform provides a new programming model in which the client

machine is constantly connected to the server and submits jobs, processes and gets the

results all through the API provided with the system. The clients in all major clustering

systems are users not programs. The user submits programs to be processed remotely

and gets the results through files produced by these programs but in JDCP the program

is the client and it submits processing requests and the gets the results back thus

 17

making asynchronous remote procedure calls. The following table (Table 1) compares

the two approaches.

Table 1 Comparison of JDCP and traditional programming models

Traditional Approach JDCP Approach

A single program runs at the speed of one

processing machine

A single program runs on all the cluster

thus running faster than it would on a

single machine

Programs submitted as jobs so its easy to

run existing application on the cluster

Procedures submitted as jobs. Existing

programs have to be modified to run on

the cluster

Parallelism is achieved through

submitting multiple programs

As single program runs in parallel on the

worker machines

Jobs have to be faceless because they are

separate programs and results are received

as files

Complete GUI based programs can run on

the cluster much faster than they would

on a single machine

Batch jobs may be processed late on the

cluster so once submitted a user should

forget about the job for sometime

Real time jobs are processed and returned

to the client program as soon as possible

so interactive programs run best on a

JDCP cluster.

1.2.2 Pure Java Implementation

The system is completely made in Java except for a few platform dependant

native implementations for collection system metrics. This makes it possible for the

 18

cluster made by this platform to have both Windows and Linux machines running at

the same time as workers for the cluster. The Java language allows exchange of objects

and other data across machines having different operating systems. This feature is

particularly useful when creating clusters from existing networked environments such

as a university LAN.

1.2.3 Completely Object Oriented

The system accepts complete object oriented jobs. This means that the

functions are called on objects; objects can be passed as arguments to the function and

also returned as results. Static methods can also be called. This is particularly useful

when converting existing applications to run on the new platform. This feature also

makes programming easier because programmers are usually more accustomed to

OOP nowadays.

1.2.4 Real-time Callbacks

The jobs submitted to the system are actually functions called remotely hence

the same methods can be called locally and remotely which makes it much easier to

convert existing application to run on the platform. This also allows the application to

execute both locally and remotely at the same time.

1.2.5 Simple to Use

The technology is very easy to use. There is no installation requirement any

component of the system. You simply copy the application in any folder, set the Java

virtual machine paths and it starts working. Additionally the programming model used

by the system is also very easy. The client API to access the system consists of no

more then 10 functions. An average programmer can learn and use the technology

 19

within an hour and start making programs that can fully exploit the resources of the

cluster.

1.2.6 Security Restrictions on Code

By leveraging the Java technology the system offers complete security. The

Java Sandbox technology allows the worker to run the client jobs inside security

restrictions. This means that any malicious client program will not be able to harm the

worker machine as it runs inside the Java Sandbox.

1.3 SIMILAR TECHNOLOGIES

1.3.1 Sun N1 Grid Engine

N1 Grid Engine 6 enables enterprises to build grids that make them more

productive. Enterprises can monitor and select the optimal usage of computer

resources on most commercial operating systems and platforms. It has a new feature

ARCo (Accounting and Reporting Console) that feeds accounting information into a

relational external database [1].

But the product is not free and has to be licensed from Sun Microsystems.

Moreover the system again differs from JDCP because the jobs are native and not

remote procedure calls as in JDCP. Security is also not addressed because the main

aim of N1 Grid Engine is to allow computers from a single organization to work in

collaboration hence only accounting is done while in JDCP complete security is

implemented because the clients are not considered a part of the cluster organization.

 20

1.3.2 Globus

The Globus software toolkit facilitates the creation of usable Grids, enabling

high-speed coupling of people, computers, databases, and instruments. With Globus,

you can run your gigabyte-per-time-step dataset job on two or more high-performance

machines at the same time, even though the machines might be located far apart and

owned by different organizations [2].

1.3.3 XtremWeb

Like the other Distributed System Platforms, an XW platform uses a) remote

resources (PCs, workstations, servers) connected to Internet or b) a pool of resources

(PCs, workstations, servers) inside a LAN. Participants of an XW platform cooperate

by providing their CPU idle time. XtremWeb belongs to the so called Cycle Stealing

Environment family [3].

XtremWeb differs from JDCP because the jobs submitted to XtremWeb are

batch jobs that have been written in native languages while jobs in JDCP are actually

remote procedure calls and are implemented in pure Java.

1.3.4 NetSolve

NetSolve/GridSolve is a project that aims to bring together disparate

computational resources connected by computer networks. It is a RPC based

client/agent/server system that allows one to remotely access both hardware and

software components. The purpose of GridSolve is to create the middleware necessary

to provide a seamless bridge between the simple, standard programming interfaces and

desktop Scientific Computing Environments (SCEs) that dominate the work of

computational scientists [4].

 21

Again NetSolve differs from JDCP because of the jobs submitted to the system.

NetSolve accepts jobs in C, FORTRAN and MATLAB while JDCP accepts jobs in

Java. Moreover NetSolve does not include security in its infrastructure while JDCP

does so because of the use of Java technology.

1.4 TECHNOLOGIES USED

1.4.1 JNI (Java Native Interface)

JNI is an integral part of the Java language. The JNI technology allows Java

applications to call functions implemented low level languages native to the platform

on which the Java application is running. This is essential for Java because the Java

application runs in a virtual machine and in order to access local resources such as files

etc native methods have to be called which contact the operating system and get the

resources. JNI works by loading dynamic link libraries from the local system and once

the library is loaded methods present in it can be called by the application that loaded

the library. Once a native method is called control is shifted to the native code and all

the restrictions put by the virtual machine are gone. The native method runs as any

other native implementation with full control of local resources.

1.4.2 PDH Library

Performance data helper library is provided by Microsoft. It helps developers

in extracting system metrics information. The library provides extensive information

about all aspects of a Windows machine including CPU usage, process information

cache commit charge etc. The PDH library provides a snap shot of information and it

does not calculate statistical information so for information collected over a period of

 22

time the application must take multiple snap shots through the PDH library and then

calculate the statistics. The PDH library also provides helper functions to calculate

these statistics but they have to be collected by the program and provided to the

library.

1.4.3 Linux OS Metrics

The Linux operating system collects, calculates and stores many system

information related metrics. These are collected for the use of the operating system and

also for applications. The /proc directory is a memory resident directory that contains

all these metrics in addition to all the process data. To access this data the files in the

/proc directory are opened by the programs and textual information in these files is

retrieved. The /proc/cpuinfo file contains the CPU related static information that is

processor speed.

The /proc/stat file contains information about the current usage of resources

including the CPU usage. Data from these files is extracted by the Java program by

opening these files.

1.4.4 JCE (Bouncy Castle Implementation)

The Java Cryptography Extension (JCE) is now a core part of Java SDK 1.4.

Basically, it's a set of packages that provide a framework and implementations for

encryption, key generation and agreement, and Message Authentication Code (MAC)

algorithms [5]. A provider is the underlying implementation of a particular security

mechanism. There are several providers, some of which are freely available and others

that are quite costly. Companies that offer providers include IBM, Bouncy Castle, and

 23

RSA. I have used Bouncy Castle provider for use in JDCP because it is freely

available.

1.5 STARTING SYSTEM

The project started with a simple distributed computing system already

working and this system was to be enhanced during the course of the project. Here I

present a brief description of the initial system because it is necessary for

understanding the features added during the project.

1.5.1 Deployment View

Figure 1.1 Deployment view of the initial System

User Computer

A P-I, PDA or

mobile phone

Distribution

Library

Server

A P-IV

Processor Pool

Of PIII’s

Workers

 24

1.5.2 System Components

Three major entities as shown in the deployment diagram work together to

enable the distributed computing system to function. A brief description of these

entities is as follows.

1.5.2.1 Distribution l ibrary

The distribution library is the only thing that interacts with the user. It is

through the library function calls that the user can submit a job and extract the results.

Then the user gives the required class to the library so that the library can transfer this

class to the server which in turn can pass it to the worker on which actual processing

will take place. After passing the class the user can call any function of that class

through the library. Now the library itself is responsible for communication between

the server and itself. One or more distribution handlers can run on each user machine.

1.5.2.2 Distribution server

The distribution server interacts with the distribution library as well as the

worker. It acts as the bridge between the two entities. The distribution logic and

command is concentrated in the distribution server. Running on a powerful machine

the server is the center of all data transfer. Only one distribution server runs on one

designated machine.

1.5.2.3 Worker

It performs the actual work. Executing functions on the processor of a machine

in the processor pool. It performs the tasks it is assigned and returns the results to the

distributions server which in turn passes these to the distribution library. The worker

must be provided with the class whose function it is supposed to execute. Once the

 25

worker has the class it can surely call the function of that class through the java virtual

machine. One worker runs on each machine in the processor pool.

1.5.3 Working of the Starting System

 The user imports our distribution library classes

 User initializes the distribution handlers in the distribution library so that they

can handle all the communication with the server including all the logic for

transferring the requests, getting the results back from the server, storing them

for future reference, handle failures in communication and any other means to

hide the complexities from the user program.

 User program calls a method in the distribution library to pass the class

information to the distribution handler which in turn transfers this information

to the server so that it can use this information to process the future user

requests.

 User program calls a method in the distribution library to execute a particular

function present in the class previously passed to the distribution handler.

 The library passes the information to the distribution server which adds the

request in its execution queue.

 When the turn of this request comes the distribution server will pass the order

of execution to a work horse and will also pass the class info required for

execution.

 The worker will actually execute the function and will return the result to the

distribution server.

 26

 The results returned will be stored in the result dump by the server and will be

passed to the library and hence to the distribution handler which called the

function.

 The Library stores the results in its result dump.

 The user can extract these results from the library’s result dump by calling the

appropriate method provided in the library through the distribution handler.

1.6 FEATURES ADDED DURING THE PROJECT

As mentioned in the introduction the project aims to add features to the existing

basic platform. Here is a list of the features that were added during the course of the

project. Detailed discussion on these features is done next in the report.

Cluster resource monitoring

 A total of 14 metrics as yet

 Input to the scheduling process

 Will improve fault tolerance

Adaptive real-time scheduling

 Support for a number of different scheduling policies

 Will adapt to changing number of workers

Information services

 Servers can advertise their resources to information servers

 Clients get server information and decide

Job dependency optimizations

 Pre-defined job dependencies using DAGs (Directed Acyclic Graphs)

 27

 Aimed at reducing number and size of network transfers

Security

 Authentication for clients and workers using passwords and digital signatures

 Encryption of network messages at various levels of security

 Code restrictions at workers using Java Sandbox

Fault Tolerance

 Worker crash recovery

 Server crash recovery

 Network problems (Timeouts, dropped connections, message corruption etc.)

Batch support

 Batch job creation and submission

 Batch job result storage and transfer on demand

 Resource bundling e.g. files needed by the batched jobs

Development of sample applications for the platform

 28

Chapter 2

CLUSTER MONITORING

2.1 INTRODUCTION

Cluster monitoring features aim at making the server more aware of the resources

connected to it that is the worker machines. Cluster monitoring includes server side

work which comprises of collecting and storing metrics which are mentioned later.

The worker side work includes collection of machine-specific data such as CPU speed

and usage at periodic intervals. This is done through the help of the operating system.

On a Linux platform a pure Java implementation works but this implementation is

dependant on the files produced by the Linux operating system so this implementation

also becomes platform dependant. On a windows platform the PDH library and win23

functions are used which of course are platform dependant. Hence the worker side on

both platforms is platform dependant.

Once these metrics have been collected the server stores them in data structures

so that they can be used in the future that is when creating scheduling information to

be passed to the schedulers. This information is necessary for the scheduling process

because unless the scheduler knows what resources are connected to it, it surely cannot

create good schedules that use these resources to the maximum.

 29

2.2 BENIFITS

2.2.1 Input to Scheduling Process

Unless the server knows what resources are connected to it certainly it cannot

create schedules that utilize these resources to the maximum. Hence the cluster

monitoring metrics go as input to the next step, the scheduler development. The

metrics are chosen especially to be the input to the schedulers but they are not

dependant on the scheduler currently working. The metrics are independent of the

scheduler and are maintained by the server even if the current scheduler does not want

the metrics. This is because the schedulers in the JDCP system are not pre-configured

and they can be changed at runtime so that system has to keep the metrics in case the

next scheduler would want these metrics.

2.2.2 Server Side GUI Allows Up-to-Date Monitoring

A GUI at the server side allows the cluster administrator to see all the

information about the workers currently connected and disconnected from the server.

This GUI allows the administrator to identify problems with worker machines.

2.2.3 Profiling is Possible

Profilers are not currently supported by the system but as all the information is

already at the server profiling of this information is very easy.

2.2.4 Better Fault Tolerance

Fault tolerance is improved not only the administrative information displayed

on the GUI but also because of periodic messages sent by the system in order to get the

 30

updated information. This helps in identifying the machines that have crashed as these

will not respond to the information update request.

2.3 DEVELOPMENT

2.3.1 Worker State Maintenance

The system maintains a state for each connected worker. The states maintained

are connecting, connected, disconnected and removed. Following table gives a

description of each of these states

Table 2 Client states at server

State Description

Connecting At this state the worker has started a connection to the server

but the connection is not complete. After the initial

connection messages are exchanged the worker changes into

a connected worker. At the connecting stage the worker is

given no jobs.

Connected At this stage the worker is fully connected to the server and

the server assigns it the jobs to be processed

Disconnected This is that state when the server/worker connection has

dropped but the server has yet not recovered the work

assigned to the worker. No jobs are assigned to the worker in

this state.

Removed This is the stage when the server has removed all the jobs

assigned to the worker and has rescheduled them to the

 31

remaining workers. This worker is not given any jobs at this

state

2.3.2 Metrics to be Collected

First task in cluster monitoring was to determine the metrics to be collected. As

the metrics go as input to the schedulers the scheduling algorithm dictates this

decision. Metrics collected at the worker side are transferred to the server so that the

server has all the metrics which it stores for future use by the schedulers.

2.3.2.1 Worker side metrics

The worker collects information according to the operating system it is running

on. So this part includes contacting the operating system to get the system resource

specific information.

 CPU speed

 CPU Usage

 Data transfer rate

2.3.2.2 Server side metrics

The server metrics are not dependant on the platform and all of these are collected

statistically or by other mechanisms explained later but not through any platform

dependant manner

 Data reception rate of each worker

 Average processing time of each job

 Average processing time of all jobs by each client

 32

 Average result size of each job

 Average result size of all jobs submitted by each client

 Network latency to each worker

 Expected processing time of jobs already assigned to workers

 Transfer size of each job that is to be scheduled

2.4 COLLECTION MECHANISMS

The server sends periodic messages to the workers to get their system

information and send it back to the server which in turn stores it in its data structures

for further use. The request to get the information is done by the server the worker

only replies back after getting the information from the system. The above mentioned

mechanism is explained in the following diagram.

Figure 2.1 Periodic metrics collection by server

Server Worker
System Information
Request

Updated system
Information

Talker

Listener

Ping Thread

Worker
Information
Storage

Listener

Talker

Worker Thread

Native
Code

 33

2.4.1 CPU Speed

CPU speed of the worker is of course collected by the worker and it sends it

back to the server. On windows platform the actual data comes from the worker’s

system registry.

Worker Thread

(JDCP)

System

information

classes

(JDCP)

Native dynamic

link library

(JDCP)

Win 32

Registry

Getting CPU speed on

Windows Platform

Figure 2.2 Getting CPU speed on Windows

On a Linux platform the data comes from /proc/cpuinfo file

Worker Thread

(JDCP)

Java System

information

classes

(JDCP)

/proc/cpuinfo

Getting CPU speed on Linux

Platform

Figure 2.3 Getting CPU speed on Linux

 34

2.4.2 Percentage CPU Usage

The CPU usage metrics is also collected by the worker and is sent to the server.

On a windows platform the CPU usage is found through the use of PDH library that

comes with the Windows platform. The PDH (Performance Data Helper) library is

provided by Microsoft to allow developers to get system metrics. The JDCP system

uses dynamic link library to connect to the PDH library and calls its functions to

collect the data. The PDH library does not provide statistical information. It provides

just a snapshot. This is why multiple snapshots are taken by the JDCP native library

and the statistical data collected is used to calculate the actual CPU utilization over a

period of time which in JDCP is 2 seconds.

Worker Thread

(JDCP)

Java System

Information

Classes

(JDCP)

Native dynamic

link library

(JDCP)

PDH Library

(Windows)

Win32

(Windows)

Getting CPU usage on

Windows Platform

Figure 2.4 Getting CPU Usage on Windows

 35

On a Linux platform the /proc/stat file contains information about the CPU

usage. The JDCP system opens this file and reads the information again over a period

of time to get the CPU usage. In this case the time is again 2 seconds.

Worker Thread

(JDCP)

System

information

classes

(JDCP)

/proc/stat

Getting CPU usage on Linux

Platform

Figure 2.5 Getting CPU usage on Linux

2.4.3 Data Transfer Rate

Data transfer rate is calculated by recording the time and size of messages

being transferred from the worker to the server. The worker has storage for size and

time taken to transfer messages. Over a period of time the data collected is processed

to find the average data transfer rate of the worker. The storage and calculation is done

using ring buffer techniques.

Insert Ring Buffer

Figure 2.6 Ring buffer

 36

2.4.4 Network Latency to Each Worker

Network latency is calculated as average of the time taken to transfer a

message and the time taken to receive it. The mechanism used to calculate this metric

is explained in the diagram below. The server puts a time stamp on the ping message

and sends it to the worker, the worker puts and timestamp on the reception of the

message. Once processed and returned to the server, the worker again puts another

timestamp on the message. The last timestamp is put by the server when it receives the

reply. Now the server calculates network latency as

Latency = [(Worker receive time – server send time) + (Server receive time – worker

send time)] / 2

Ping thread Worker listener

Worker thread

Worker talkerClient listener

Server Send time
Server send time +

Worker receive time

Server send time +

worker receive time

Server send time +

worker receive time +

Worker send time

Server send time +

worker receive time +

Worker send time +

server receive time

Client data

Calculating network latency

Figure 2.7 Calculating network latency

The above mentioned mechanism is used because it eliminates the errors that

could happen due to clock skews on either side that is the server and the worker

 37

machines. Hence this mechanism does not need the synchronization of server and

worker clocks.

2.4.5 Data Reception Rate

This metric is collected by the server separately for each worker. Just as the

worker stores the time and size of data transfers, the server does the same for each

worker separately. Thus creating ring buffers for each connected worker.

2.4.6 Other Metrics

The following metrics are collected using similar ring buffer techniques as

described above in cases of data transfer rate and data reception rate.

 Average processing time of each job

 Average processing time of all jobs by each client

 Average result size of each job

 Average result size of all jobs submitted by each client

 Expected processing time of jobs already assigned to workers

 38

Chapter 3

SCHEDULING

3.1 INTRODUCTION

The project aims at developing a platform for creating high performance

computing clusters. The platform can be used to create single-site and multi-site

clusters and will be capable of combining computing resources of heterogeneous

Scheduling process involves assigning available jobs to available worker machines.

This assignment of jobs is done is such a way that the performance that is processing

power extracted from the available resources is maximum.

In a clustering system such as JDCP in which jobs are real-time processing

requests and relatively small as compared to large batch jobs scheduling needs that are

a little different. First of all this real time assignment of jobs has to be done after small

periods of time. This makes the processing complexity of the scheduling process an

important issue. For example if the number of jobs and number of workers is both high

then a very complex scheduling process may put too much burden on the server and

hence despite having abundant resources the server may not perform as well. In such

situations simple schedulers may work better. But then there are also situations where

the resources connected to the server have a high variance. This means that the worker

machines may have different processing capacities. Moreover the jobs submitted by

the clients may also have a high variance that is one job may be of a much larger size

than the other. The third type of variance is however the most important, the network

 39

capacity. This includes data transfer and reception rate and network latency. In

distributed systems these factors play the most important role. If the cluster machines

have low network capacity this can hamper the performance of the cluster drastically.

Of course if the machines do not get the data to process fast enough no matter how fast

they process they will not be providing much power to the cluster. In situations where

the above mentioned three variances are high simple schedulers may create schedules

that utilize only a fraction of the total cluster power. For these situations more

advanced schedulers are needed. The JDCP system caters for both these situations

through having schedulers added as plug-ins into the system. This way the system

supports multiple schedulers at the same time. Five schedulers have been developed

for the JDCP system. These schedulers and the scheduling algorithm that they use are

mentioned in this section of the report.

3.2 BENIFITS

3.2.1 Better Utilization of Cluster Resources

The schedulers create schedules based on the information provided to them by

the system. By using this information the schedulers calculate various ways in which

the available jobs can be scheduled on the available worker machines. This way the

schedulers come up with the best schedule possible. This results in better utilization of

the cluster resources.

 40

3.2.2 Better Control at the Util ization of Cluster

Schedulers aim to optimize the resource usage of the cluster but this can be

done in a number of ways for example some schedulers may aim to provide the clients

with minimum response time while others may aim at increases the overall throughput

of the cluster. This way the cluster administrator can tune the cluster in order to control

the usage of the cluster resources.

3.2.3 Multiple Scheduling Policies

The JDCP system allows schedulers to be added as plug-ins into the system

rather then they being integral part of the system .The system provides a Java interface

to implement. Any class that implements this interface can act as a scheduler for the

system. This allows anyone other than the main developer to create extensions to the

system. The programmer making the new scheduler has to know nothing much about

the rest of the system either in order to create fully fledged schedulers.

Another benefit of this approach is that multiple schedulers can be added to the system

at the same time so that the administrator of the cluster can choose which scheduler to

use at any given time.

3.2.4 Dynamic Changing of Scheduler at Runtime

This feature allows runtime changing of the scheduler. Nothing other than a

function call has to be done in order to change the scheduler. This removes the need to

shut down the server then change the scheduler and then restart the server.

 41

3.3 JDCP SCHEDULING

3.3.1 The Scheduling Loop

The scheduling loop keeps on running until the server process is running. This

loop is responsible for the collection of scheduling information, passing this

information to the scheduler and getting the schedule back from the scheduler. Then

the jobs are dispatched to the workers according to the schedule. Once dispatched the

loop checks for the change of scheduler by the user. If the scheduler has been changed

the new scheduler is installed as the new system scheduler and the old scheduler is

discarded. Then the loop waits for a configured time so that more jobs accumulate in

the client queues and then the loop runs again.

Figure 3.1 Scheduling loop

 System

Scheduler

System

Check type of
scheduler

Get simple
scheduling info

Get advanced
scheduling info

Create
Schedule

Dispatch
schedule

Set
configured
scheduler

Wait for
configured

interval

 42

3.3.2 Inputs to Scheduling Process

 CPU Speed

 CPU Usage when not performing any job

 Network Delay

 Network Data Transfer Delay per Byte

 Network Data Reception Delay per Byte

 Expected Processing Time of Jobs Already at the Worker

 Average processing time of this method

 Average processing time of all methods called by this client

 Arguments size

 Average result size of this method

 Average result size of all methods called by this client

 Default expected processing time in system configuration

 Current jobs submitted by all the clients

 Current number of workers

 43

3.3.3 Scheduling Algorithm

3.3.3.1 Get input data

Five methods are called by the client. Average processing times of these

methods are

10 5 ? 5 10 5

? Means that this method has not been called before so it’s processing time is not

known.

On average all the methods called by this client took 7 processing time so we

assign this value to the unknown method.

Hence expected processing times are

10 5 7 5 10 5

There are three workers available with processing capacity as follows

500 1000 1500

3.3.3.2 Normalize processing capacities of workers

Average processing capacity = 3000/3 = 1000

Hence relative processing capacities of the three workers are

1 2 3

3.3.3.3 Generate the expected time table

To find the expected time a worker will take to process a certain method we

use the following formula

 44

E = (Expected Processing time of the method*Average CPU capacity/Worker CPU

capacity / CPU idle time %) + (2*Network delay) + (Argument size of method in

bytes * Reception rate of worker) + (Average result size of method in bytes * Transfer

rate of client)

Using this formula the scheduler will calculate the callback times of all the

methods on all the processors thus generating a table. We assume here that the table

generated by this formula is as follows:

Table 3 Expected time table

Processor 1 2 3 4 5 6 Sum

1 25 12 15 12 25 10 100

2 15 7 10 7 15 7 60

3 8 5 7 5 8 5 38

3.3.3.4 Adjustments with current job load on the workers

But here we have not considered the jobs already at a particular worker. We

assume here that the total expected processing time of all the jobs at the three workers

are

10 8 12

This processing will be done by the workers before they start working on the

next scheduled work and hence this must also be added to each workers working time.

Hence the new total working time of the workers becomes

110 68 50

 45

These are the times the workers will take if all the work is given to each single

worker. In other words processor 3 will complete all the work in 50 processing time.

While if all the work is given to worker 1 it will do the work in 110 processing time.

3.3.3.5 Divide percentage of total work to workers

Now we have to divide the actual total work amongst these workers such that

maximum throughput is achieved. Clearly worker 3 must get the highest share of the

work, then worker 2 and the least work will go to worker 1. This is how we achieve

that, take reciprocal of all the processing time and add them.

1/110 1/68 1/50

0.009 0.015 0.02

Sum = 0.009 + 0.015 + 0.02 = 0.044

To get the share of each processor calculate

0.009/0.044 0.015/0.044 0.02/0.044

20% 34% 46%

Here we present two approaches namely biased and unbiased. The

comparison on these two approaches is given later.

3.3.3.6 Biased approach

Biased approach says that we sort the jobs according processor whose job

assignment we are currently calculating. Here we calculate job bias according to

processor 3 because this is the first processor we assigning jobs to.

Bias formula is given below

Bias = (job time on processor / sum of job times on all the processors)

 46

Table 4 Expected times summed

Processor 1 2 3 4 5 6 Sum

1 25 12 15 12 25 10 100

2 15 7 10 7 15 7 60

3 8 5 7 5 8 5 38

Bias according to worker 3, the worker whose currently being assigned the work

Table 5 Biases

 8/(25+15+8) 5/(12+7+5) 7/(15+10+7) 5/(12+7+5) 8/(25+15+8) 5/(10+7+5)

 0.16 0.2 0.22 0.2 0.16 0.22

The less the value of the bias the better it is to schedule the job on that

particular processor. Now its time to assign actual jobs to the worker 3. The jobs are

10 5 7 5 10 5

At least 46% of the jobs will go to worker 3. We assign jobs sorted in ascending order

according to the bias. The new sorting results in job sequencing as

10 10 5 5 7 5

46% of the jobs is (10 + 10 + 5 + 5 +7 + 5) * 46/100 = 42 * 0.46 = 19.32 = 19

So at least 19 processing will go to worker 3. This limit is reached by assigning

the first 2 jobs to the processor as 10 + 10 = 20 >= 19.

So these two jobs will go to worker 3. Rest we have 4 jobs left

5 5 7 5

Again we will calculate the bias according to worker 2 using the remaining

methods. Here we assume that the sequence changes with the new bias and hence we

get the new sequence as

 47

5 5 5 7

34% processing must go to worker 2 so we calculate the processing time as

42 * 0.34 = 14.28 = 14

So at least 14 processing time will go to worker 2. This amounts to the first 3

jobs as 5+5+5=15 >=14. Hence first three jobs go to worker 2. The jobs left for the last

worker automatically go to worker 1. Hence last job goes to worker 1.

3.3.3.7 Unbiased

We do not calculate the bias and simply assign the jobs in sequence so that the

percentage that each worker should get is given to it. Here we do not sort the jobs and

simply assign

0.46 * 42 = 19 to worker 3

0.34 * 42 = 14 to worker 2

rest to worker 1.

Hence the jobs are as they were at the start

10 5 7 5 10 5

To complete at least 19 we must give 10+5+7 = 22 > 19 to worker 3.

5+10=15>14 to worker 2 and rest 5 to worker 1.

3.3.3.8 Normalizing load on workers

All the steps performed till now ensure the maximum throughput but the

response time may not be the best because of the existing load on the workers. For

example if any worker is congested already the algorithm will still most probably

assign it some job, which will translate into bad response time for the real time user.

 48

To minimize the response time for the user the jobs will again have to be re-organized.

Take the following example

Figure 3.2 Un-normalized load on workers

Here worker 3 is the best worker and hence is assigned the most jobs by the

above scheduling process, but as the current load on worker 2 was much less than

worker 3, the response time can be increased by shifting the last job of worker 3 to

worker 2. The new schedule becomes

Figure 3.3 Normalizing load on workers

The throughput has reduced as worker 2 is slower than worker 3 and the job

has expanded from 7 to 10 processing time but the response time has become better,

that is from 49 to 42.

Current load - 25 Job - 5 Worker 1

Current load - 15 Job - 7 Worker 2

Current load - 25 Job - 7 Worker 3

Job - 12

Job - 10

Job - 10

Current load - 25 Job - 5 Worker 1

Current load - 15 Job - 7 Worker 2

Current load - 25 Job - 7 Worker 3

Job - 12

Job - 10 Job - 7

 49

Here in this example a shift has been made but this can also be a swapping, if

shifting is not good. This would be in the case when shifting results in a longer

schedule then the original one.

The algorithm for this normalization is as follows

 Compare the highest loaded worker and the lowest loaded worker. Try to shift

the last job of the highest loaded worker to the lowest loaded worker. If the

shifting results in a shorter schedule then make the change permanent. Repeat

step 1.

 Else if the shift makes the schedule longer then try to swap the last jobs of the

two workers. If the new schedule is shorter than make change permanent. Go to

step 1.

 Else Perform step 1 but change lowest loaded worker to second lowest loaded

worker

 Else Perform step 2 but change lowest loaded worker to second lowest loaded

worker

 Else stop normalizing as the schedule is already normalized enough

3.4 COMPARISON OF SCHEDULING APPROACHES

Here we compare round robin, biased and unbiased approaches according to

the example taken above.

3.4.1 Round Robin

For round robin we assign jobs

10 5 to worker 1

 50

5 10 to worker 2

7 5 to worker 3

So expected callback times on these workers will be (refer to table of expected times)

Worker 1 25 + 12 = 37

Worker 2 7 + 15 = 22

Worker 3 7 + 5 = 12

So total time to process all the requests will be 37 as this is the highest time required

by any worker.

3.4.2 Unbiased Approach

As we have seen in unbiased approach we assigned following jobs to the workers

Worker 1 5

Worker 2 5 10

Worker 3 10 5 7

So expected callback times on these workers will be (refer to table of expected times)

Worker 1 10

Worker 2 7 + 15 = 22

Worker 3 8 + 5 + 7 = 20

So total schedule time will be 22

 51

3.4.3 Biased Approach

As we have seen in biased approach we assigned following jobs to the workers

Worker 1 7

Worker 2 5 5 5

Worker 3 10 10

So expected callback times on these workers will be (refer to table of expected times)

Worker 1 15

Worker 2 7 + 7 + 7 = 21

Worker 3 8 + 8 = 16

So expected total time will be 21

3.5 JDCP SCHEDULERS

As mentioned previously JDCP system comes with five schedulers already

implemented. A brief discussion on these schedulers follows which explains the need

for having multiple schedulers instead of just one.

3.5.1 Round Robin Scheduler

This is a simple scheduler and creates schedules that distribute available jobs to

workers in a round robin fashion. As explained earlier if the variance between

resources is minimum then a simple scheduler like this works good enough. As an

example if all the workers connected to the server are of the same CPU speed and have

the same network capacity then round robin scheduling performs best without putting

extra processing burden on the server machine.

 52

3.5.2 Unbiased Maximum Throughput Scheduler

This scheduler puts less burden on the server machine as processing is less but

it still creates schedules that handle variance of resources well. The schedules are

aimed at producing maximum throughput from the available resources.

3.5.3 Biased Maximum Throughput Scheduler

This scheduler puts extra processing burden on the server but as explained

earlier the schedules created by this scheduler are mostly better than the unbiased

version of this scheduler. This scheduler also aims at maximizing the throughput of the

cluster.

3.5.4 Unbiased Minimum Response Time Scheduler

This scheduler requires less processing due to unbiased approach so in cases of

large number of jobs etc this scheduler may perform better. Especially if the server

machine is a bit slow. This scheduler aims at reducing the response time for the clients.

This is a major requirement in real time systems.

3.5.5 Biased Minimum Response Time Scheduler

This is the extra processing version of the above mentioned scheduler. This

scheduler is supposed to perform the best in maximum types of job loads.

 53

Chapter 4

INFORMATION SERVER

4.1 INTRODUCTION

This server acts as a discovery service for the clients. It provides information

about currently available servers that have connected to the information server. Servers

connect to the information server and advertise their resources periodically. Clients

connect to get the server information and choose the server that best meets their needs

Server

Worker
Worker

Worker

Ethernet

Internet

Client

ClientInformation Server

Figure 4.1 Deployment view with information server

 54

4.2 BENEFITS

4.2.1 Discovery Service for Clients

As mentioned earlier the information servers act as a discovery service. The

client machine only needs to know the IP address of this information server. Once

connected to this information server the client can get information about available

servers, getting their connectivity information and resource information.

4.2.2 Clients Can Choose the Server that Best Suites Them

This is a major advantage of this server. The server provides information about

resources that each available server has which includes number of workers, average

CPU speed, load on the server, clients already connected to the server and network

latency of the worker connected. All this information can be used by the client

program to change the way it sends jobs to the server. If for example the number of

worker connected to the server is 20 then to achieve maximum parallelism the client

must send at least 20 jobs. More advanced clients can take advantage of the network

latency and other information.

4.3 SERVER INFORMATION

The information server receives server information from the connected servers

and transfers it on demand. The following information is received and transferred.

4.3.1 Connectivity Information

 Name of server

 Name of organization

 55

 IP address and socket for connection establishment

4.3.2 Resource Information

 Number of connected clients

 Number of connected workers

 Average CPU Speed

 Average CPU load

 Average network latency to workers

4.3.3 Services Information

 Security levels

 Job levels (Whether pre-defined job dependencies are supported or not)

 Scheduling policy

 Uptime

 Downtime

4.4 QUERY INTERFACE FOR CLIENTS

This is the API provided to the client to get the information about the servers

that have connected to the information server. ServerInfo object contains all the

information mentioned above.

String[] getAllServers();

ServerInfo getServerInfo(String name)

ServerInfo[] getAllServerInfo();

 56

 Chapter 5

FAULT TOLERANCE

5.1 INTRODUCTION

Fault tolerance is of great importance in a clustering system. Fault tolerance

includes hardware failure such as network disconnection and machine failures and also

software failures such as process crashes etc. Fault tolerance becomes important

because without it cluster management will be impossible. If a single machine stops

working the whole clusters may become useless because the server is expecting to get

a job back from the failed worker and it never returns the job thus the client never gets

all the results back. This is just one of the many cases that can result in bad quality of

service. JDCP system has an extensive fault tolerance framework which includes

handling machine failures, network failures and software failures. It is important to

mention here that the fault tolerance in JDCP platform does not cater for bad

networking etc. The system expects a uniform behavior from the underlying hardware

to function to its full capacity. The fault tolerance mechanisms cater for recovery from

failures not prevention of failures. As a result the performance may go down

significantly if the hardware and other failures occur but the system guarantees

recovery and thus completion of client jobs.

 57

5.2 DEVELOPMENT

5.2.1 Handling of Worker/Server Disconnection

Worker disconnection handling involved a number of additions to the system.

First was the detection of the disconnection. This is done through socket option keep

alive and also through the use of a ping thread. A disconnection is not detected only

when some data is transferred over the socket so this is periodically done by the ping

thread. Once the disconnection is found the next step JDCP does is to change the state

of the worker from connected to disconnected. This makes the worker unavailable for

schedulers so no new job is assigned. The next step is to recover the jobs already

transferred to the crashed worker. The worker will never return the jobs so these jobs

have to be rescheduled on the remaining worker. This is done through recovering the

work from the work cache and making the jobs available to the schedulers again.

On the worker side the handling for this disconnection is that the worker once

disconnected periodically tries to reconnect to the server. Once the network

connectivity is established again the worker automatically reconnects and becomes

available to the server. The jobs lost during this reconnection are not recoverable.

5.2.2 Controller Thread for Workers

In the initial system the server and worker had only one connection. Now the

server and worker have two connections, one control connection and one work

connection. All work requests and results are transferred through the work

connections. All the control messages are transferred and received through the control

 58

connection. This results in quick and more robust control messaging between the

server and the worker.

5.2.3 Ability to Restart the Worker From the Server

The JDCP server now has the ability to restart the worker thread on all the

worker machines. This feature was added in case the worker thread in stuck in an

infinite loop or is blocked on a failed IO operation. Now in such as case the server can

restart the worker thread thus getting the worker out of this situation.

5.2.4 Complete Server Crash Recovery

A major part of fault tolerance was focused on server crash recovery. This is

necessary because client submits jobs and disconnect from the system while their jobs

get processed. If a client submits a job and the server crashes and loses the client job

then this seriously degrades quality of service. Even more critical is the performance

issue. The results processed by the workers are transferred to the server once

completed and are stored at the server. These results are transferred to the client

automatically in case of real time jobs and on demand in case of batched jobs. If the

server machine crashed and loses all the results it has then of course once restarted the

jobs will have to be processed again. But now the JDCP server stores these results in

persistent storage and does not lose them. To achieve this task the server machine

takes two types of measures. First are the measures taken during the normal

processing. This includes storing scheduled jobs and results to persistent storage,

deleting the completed jobs, deleting results once transferred back to the client and in

case of batched jobs in case the client explicitly asks the server to delete the jobs.

 59

The second type of measure are the once taken when the server restarts after a

crash. Once restarted the server goes back to persistent storage and recovers the jobs

assigned to the workers and the results that were already at the server. Once recovered

the server also creates a list of disconnected client so that new clients are not

connected with already n use client IDs.

Currently all of this is being done through files. This is done keeping in mind

the real time processing. A database can be used instead but with all the jobs coming

and going through the server this may degrade the performance. But database

implementation of these mechanisms can also be tried in the future as this will result in

a more robust solution. The performance difference can only be analyzed once the

database implementation is ready so currently nothing can be said in comparison of

these two approaches.

 60

Chapter 6

SECURITY

6.1 INTRODUCTION

Security becomes very important when the clients of the cluster are not trusted

by the cluster administration and vice versa. This adds a need for authentication both

ways before clients are connected to the system. Plus it also adds a need for client code

restrictions. The client code is processed remotely on the cluster machines. Thus a

malicious client program can destroy the worker machines if the code is not restricted.

JDCP system leverages the Java Sandbox concept to provide complete worker safety

by restricting the client code completely from using local hardware resources directly.

JDCP system also features remote connection by the client that is over the Internet.

This adds a need for encryption because the client code, requests and results are

traveling through the public Internet.

Keeping all these requirement in mind the JDCP system has an extensive

security framework including Java Sandbox implementation on worker, password

based and digital signatures based authentication of clients and the server and

complete public/private key encryption and private session key encryption.

 61

6.2 BENEFITS

6.2.1 Client Authentication

Authentication varies according to the security level currently set by the server.

In no security option no authentication is done. In second level clients are

authenticated using passwords. At the third level the clients are authenticated using

digital signature mechanism.

6.2.2 Encryption of Data

Encryption is done only at the third level of security. The JDCP system

encrypts all messages transferred over the network between the client and the server.

No encryption is done on the worker side because they are assumed to be trusted

machines and encryption also hampers performance. The encryption of initial

connection establishment messages is done using RSA public/private key mechanism.

Once connection is established rest of the encryption is done using DES private key

cryptography. This is done because of performance reasons as DES is mush faster than

RSA.

6.2.3 Security Performance Tradeoff

The JDCP system comes with three security levels. First level is no security

which provides maximum performance. The second level is password based

authentication. The third level contains digital signature authentication and encryption.

These multiples levels are provided because security and performance are inversely

proportional. It is the choice of the cluster administration to decide the security level.

 62

6.3 DEVELOPMENT

6.3.1 No Security

This level provides no security. Users connect as default users thus connected

clients cannot be distinguished from each other by the server.

6.3.2 Password Based Authentication

Provides authentication of clients and worker but passwords can be spoofed

during network transmission.

Server Client

Send password

Password

Connect Security level 1

Authentication

Failed

successful

Connection Accepted

Connection Rejected

Authentication at security level 1

Figure 6.1 Authentication at security level 1

 63

6.3.3 Complete Security

Authentication will be through digital certificates. Session key will be used for

encryption of processing messages. Initial messages will be encrypted using

public/private keys and authentication will be through digital signatures. Once

connection is established and session key has been transferred all further

communication will be done using private key cryptography on the session key.

Server Client

Authentication at security level 2

Connect at security level 2

Random challenge R

Encrypted Signature of

Username + password + R

Connection accept +

Encrypted Signature of

(server name + R) + session key

Connection accept

Signature

authentication

Failed

Connection reject

Generate

digital

signature

Generate

digital

siganture

Signature

atuthentication

successful

Connection reject

Figure 6.2 Authentication and encryption at security level 2

 64

Chapter 7

BATCH SUPPORT

7.1 INTRODUCTION

JDCP system provides batch support. This means that the system accepts batch

jobs and the client can submit these jobs and then disconnect from the system. The

client can then reconnect at a later time and request its job results back. This does not

include supporting native binaries. Batched jobs are still Java method requests. The

batch jobs in JDCP are not treated separately during the scheduling process. The

difference lies in the transfer and deletion of jobs at the server side. Results for real

time jobs are automatically transferred back to the client machine but batched results

are not transferred automatically. The client has to send a request to get the results

back. Results for the batch jobs are also not deleted automatically by the server as they

are in case of real time jobs.

7.2 BENEFITS

7.2.1 Batch Processing

As client reconnection has been added as part of the batch support feature,

client can now submit all the jobs that they wish the server to process and then

disconnect. They connect at a later time and get the results of their jobs transferred to

them. In the initial system client had to remain connected to get their results back as

 65

the server did not have the feature to reconnect clients and it accepted every client

connection as a new client.

7.2.2 Handling of Server/Client Disconnection

The client reconnection feature was mainly added for the above mentioned

batch jobs but it also helps in cases when the client/server connection fails and the

client has submitted real time jobs. The client can now reconnect as the disconnected

client and the server will automatically transfer the results of its real time jobs back to

the client machine.

7.2.3 Multiple Input Files

Now the JDCP client can attach multiple files to each submitted job. This is a

necessity for jobs that require more than one class file and an option for jobs that wish

to process file data from files stored on their hard disks. Now video and image files

and any other type of file can be attached to a job and these files are transferred and

processed remotely by the JDCP system.

 66

Chapter 8

JOB DEPENDENCY OPTIMIZATIONS

8.1 INTRODUCTION

Invariably the results from one job go as input to the second job in a program

just as an object returned by one method is passed as argument to another method. But

to do this transfer in a distributed system like JDCP is not easy. As the processing calls

are asynchronous the client does not have any control over a submitted job. The server

processes each job separately. To implement this output as input function explained

above the JDCP system now provides job dependency optimization. The optimization

focuses on reducing the number of network transfers. This will lead to less time

required for sending and receiving the requests and results and also the idle time

wasted due to workers having no work to do and reading a particular request from the

server.

8.2 BENEFITS

8.2.1 Reduced Transfers

In the current systems all jobs submitted by the clients are separate in all

aspects for the JDCP system. The input, processing and output of a job is not

connected to any other job. But as we all know for the client these jobs are related

because they are part of the same applications and the results from all these jobs are

combined at the client. Jobs can be related to each other in the following ways

 67

 The output of one job goes as input to another job

 The object processed by one job can be used in another job as the base object

on which the method is called

In the current system this decision of providing output as input is done by the

client. First the result of the provider job is retuned to the client which inserts the result

of this jobs as input to the next job and then submits the new job to the server. This

result is less processing time and large network transfer time for this whole processing

sequence. If the server is able to handle these output as input functions this will lead to

lesser network transfers and hence an improved system performance. The reduction in

network transfers is shown in the following diagram.

Figure 8.1 Reduction in messages through job bundling

The numbers of network transfers have been reduced from 8 to 6 that is 25%

reduction of number network transfers. This might not seem a big optimization to the

Current System Optimized System

Client Worker Client Worker Server Server

 68

system but as the number of jobs increases the amount of optimization also increases

for example for 10 jobs the bundled together with dependencies makes a reduction of

80 to 42 that is a 47% reduction of number of network transfers. One aspect of this

reduction is worth mentioning that the optimization reduces the number of network

transfers not the amount of data transferred. So this is useful in cases when the client to

server network latency is of a large magnitude.

8.2.2 Bundled Jobs

This optimization also provides the client with an API to bundle multiple jobs

together hence the client can create a bundle at its own side and transfer this whole

bundle to the server for processing. After this job/dependency bundle has been

transferred to the server the client program can even disconnect from the server and

reconnect at a later time to get the results of all the submitted jobs.

8.3 DEVELOPMENT

8.3.1 Defining a Dependency

Dependencies will be defined by the client using four parameters

 Token of method request providing the input

 Token of the method request receiving the input

 Argument number of the receiving request that is to be provided

 Whether the result or the object from the provider request is the input

Hence if the dependency in normal code is like

Int x=Aclass.getInteger();

 69

Aclass.processInteger(x);

The translated code for JDCP will be

Int tokenProvider=executeRequest(“AClass”, “getInteger”);

Int tokenReciever=executeRequest(“Aclass”, “processInteger”);

addDependecy(toeknProvider,tokenReciever,1,”result”);

8.3.2 Job Submission

Client submits a bundle of jobs and the dependencies in them. The bundle

contains the requests and dependency objects

BundledRequest

{

 WorkRequest[] requests;

 Dependency[] dependencies;

}

The client requests will not be transferred immediately to the server instead

they will be added to the bundle. Once the bundle is ready the client will call a method

to transfer the whole bundle to the server.

 70

8.4 PROCESSING APPROACHES

The server now has to schedule the jobs while keeping the dependencies in

consideration. This job is best done by the scheduler because it can fully exploit the

information to create optimized schedules but if the processing of these dependencies

is done by the system instead of the scheduler then the there are two ways of handling

the dependencies

8.4.1 Turn by Turn Processing

The jobs that are dependant on other jobs will not be added to the schedulable

jobs list hence the scheduler will not schedule these jobs. Once the jobs that are acting

as the providers for the dependant jobs get processed and returned, the system will add

these dependant jobs to the schedulable queues also and hence the jobs get scheduled

turn by turn. In this case the scheduler will not be changed at all while the system

change will be of some magnitude. The drawback of this approach is that dependant

jobs are processed much later in the system which reduces response time and in certain

cases the throughput also.

8.4.2 Bundled Scheduling

Bundled jobs will be transferred to the workers as a unit and hence one bundle

gets executed only at one worker. The scheduler will have to change a little because

now it has to schedule not only simple requests but also bundled requests. The

complexity of the system is reduced in this option as handling of bundled jobs will

only be slightly different from simple jobs. The most obvious drawback of this

approach is reduced parallelism which in extreme cases becomes zero parallelism.

 71

One question may arise in this type of processing. What is the use of this

bundling as the client can perform the same thing without bundled jobs? To explain

the above question analyze the following code

//…………..

Object object=getObject();

Object=processObject(object);

//…………..

Object getObject()

{

 return new Object();

}

Object processObject(Object o)

{

 // Do the processing

 // return the object

}

Sample code that can benefit from job bundling

Here the job in JDCP will be scheduled in a bundle containing the two jobs and

one dependency. But the client can do the same thing without the dependency like this

//………

 72

Object object=getAndProcess();

//………

Object getObject()

{

 return new Object();

}

void processObject(Object o)

{

 // Do the processing

}

Void getAndProcess()

{

Object object=getObject();

processObject(object);

}

Implementing job bundling without JDCP bundling API

This shows that the client can itself implement the dependencies that are valid

for both local processing and also for JDCP processing. This means that the client gets

no benefit from JDCP bundling feature but this is not always the case because of the

following reasons

 73

8.4.2.1 Intermediate results

This means that the results from the providing method may have more use than

just be input to another method. The results may be used for maintaining a log and also

for further processing. To get both jobs done is not possible with the above mentioned

approach but it is possible using the JDCP system. The client just has to mention that

the result from the providing method is to be transferred back to the client and also

used as input to the receiving method request.

8.4.2.2 Addition of new methods

 The class that needs this additional method may not be have been written by

the client hence addition would not be possible unless source is available

 The methods called may be protected and the class may be final

 The class may be archived

 The class may be from rt.jar hence unchangeable

8.4.3 Combining the Two Approaches

The above mentioned approaches can be combined such that simple jobs and

bundled jobs both can be scheduled at the same time. The scheduler will have to be

capable of handling both types of jobs. Bundled jobs will be broken into simple jobs

by the system if any of the following condition is satisfied.

 A bundled job is too large to be scheduled on a single worker.

 The number of bundled jobs is less than the number of workers.

 74

The system will not add the dependant jobs to the schedulable job list. Hence the

scheduler will get only bundles and simple jobs that are schedulable that is are

independent entities

This approach leads to better utilization of worker resources as more jobs are

schedulable at a given time. Moreover performance increases because number of

network transfers is reduced. This approach can be taken as an increment to the turn by

turn scheduling so it will be better to leave this for the moment and first implement the

turn by turn scheduling then if time permits the second approach can be added.

8.5 DEPENDENCY HANDLING BY SCHEDULERS

The main motivation of behind allowing the scheduler to handle the

dependencies is that it can take benefit of these dependencies to create maximum

parallel schedules by bundling jobs together in such a way that the networks transfers

are reduced to a minimum and the worker processing time is made maximum. If the

above mentioned benefits are not exploited by the scheduler than there is no need to

allow it to handle the dependencies.

8.5.1 Job Bundling

If related jobs (jobs having dependencies between them) are sent together to

the worker by the server as they were sent by the client to the server then the number

of network transfers can be reduced even more as explained by the following diagram

 75

Figure 8.2 Advanced optimizations by dependency aware schedulers

Here as we see the network transfers have been reduced from 8 to 4, a

reduction of 50%. But the above example is very simple, the actual situations for the

scheduler will not be that easy for example if 50 jobs of different expected processing

times are to be scheduled on 7 workers then what jobs should be bundled together is a

complicated matter. The following discussion elaborates the efforts required to achieve

a good bundling solution. This solution becomes even more complicated because

schedulers can be added as plug-ins to the system and the system has to prepare the

information required for this scheduling irrelevant of the scheduler being used.

8.5.2 Necessary Modifications

The following changes will have to be made to the system to enable this feature

 Client has three queues instead of one

 Simple request Q already working

Current System Optimized System

Client Worker Client Worker Server Server

 76

 Bundled request Q new to the system

 Unschedulable jobs Q (These are the jobs that have as input results from jobs

that are already running on workers, hence these can neither be bundled or be

scheduled)

 Before scheduling From_Client_To_WHorse asks a new entity the

GraphManager to create dependency graphs of each client’s requests.

 GraphManager gets the requests from each client and creates bundled requests

depending on the job dependencies between the jobs. It will add unschedulable

jobs to the appropriate Q. Jobs from this Q will not be added to the simple and

advanced scheduling info objects.

 From_Client_To_WHorse creates the Simple or Advanced Scheduling Info

Objects including both simple jobs and bundled jobs. The inputs to jobs

coming as results from other jobs will also be put as arguments to the jobs.

 Scheduler has the options of scheduling solitary requests and bundled requests.

It also has the option of scheduling new bundles created by the scheduler and

also solitary jobs inside a bundle.

 The schedule will be transferred to the GraphManager which will analyze the

schedule and will modify the graph to incorporate the changes made by the

scheduler, to add newly created bundles, delete the old bundles and check for

the validity of the schedule in relation to the graph and its dependencies. It will

throw an Exception if any rules of graph dependencies are violated.

 77

 From_WHorse_To_Client will add the results received from the workers. It

will decide what to do with the result that is whether they have to be deleted

from the server or they are to be added to persistent storage for future

reference.

8.5.3 Load Analysis

The scheduler will first analyze the load and available resources so that better

bundles can be created which result in maximum throughput and response time for the

clients.

The characteristics to analyze are

 Capacity of workers

 Number of bundles

 Processing time of bundles on various workers

 Levels of job dependency

For an ideal situation we will have

 Number of bundles equal to ∑(i=0 to n) Worker CPU Speed

Lowest CPU Speed

 All bundles should have the same expected processing time.

 Only one level of dependency between the bundles

8.5.4 Normalization of Bundles

To get close to the above described ideal situation we have a simple algorithm

 78

 Add the expected processing time of all the jobs

 Divide this by the number of ideal jobs to get the ideal bundle

processing time

 Pick bundles one by one and check

o If the bundle’s expected processing time is more than 2 times the

ideal bundle processing time then break the bundle (Bundle

breaking algorithm is described later)

o If the bundle processing time is between 2 times the ideal time and

half the ideal time then accept the bundle

o If the bundle time is less than half the ideal time than merge with

most appropriate bundle (Most appropriate bundle algorithm is

described later)

8.5.5 Analysis of Scheduler Handling of D ependencies

The above mentioned algorithm is not very difficult to implement but the

following aspects should also be considered

 The two sub algorithms that is the bundle breaking algorithm and bundling

creating algorithm are not as easy because they involve heuristic analysis

 I will have to read a number of research papers that people have written on this

subject to get a better understanding of bundling algorithms

 I will also have to do my own research according to the JDCP system because

it differs from the existing solutions in a number of ways.

 79

 To have an effective algorithm for JDCP a lot of testing with different sample

jobs will also have to be done to test the effectiveness of the new optimizations

in varying situations.

8.6 CONCLUSION

 Turn by turn scheduling is the easiest to implement and provides a good

optimization especially for a large number of jobs. Turn by turn scheduling

also requires less processing and this also makes it a good candidate if the

number of jobs is large and the server machine is relatively slow

 Bundled scheduling reduces the number of transfers but it also reduces

parallelism. In fact in certain cases when all the jobs are dependant on each

other, this approach provides zero parallelism. Hence this approach is not good

in most situations. It is relatively easy to implement.

 Dependency handling by the schedulers provides the maximum optimization

but it is also the most difficult. The amount of work needed to implement this

approach is too large to be completed within the current time frame and can

delay the completion of the project so currently it is not feasible to take this

approach.

As a conclusion to the above discussion I chose to implement turn by turn

scheduling. Scheduler handling of dependencies provides the maximum optimization

so this must be kept as a possible future enhancement of the system

 80

Chapter 9

TESTING

9.1 INTRODUCTION

Testing is of course an integral part of the software development life cycle.

Testing a clustering system like JDCP is very different from testing a normal desktop

application because desktop applications should meet the requirements laid down at

the start of the project and conformance to these features is all that is to be checked. In

a high performance clustering system testing not only includes conformance to the

initially stated requirements but also includes performance testing under various loads

and various hardware environments. This makes JDCP testing a lot more difficult than

a normal system. As JDCP scheduling caters for large variances in hardware resources,

complete testing was not possible unless this wide range of hardware was actually

available. Hence only some features of JDCP are tested and most of the testing was

done for conformance to requirements rather then performance.

9.2 TESTING ENVIRONMENT

9.2.1 Single Workstation

Conformance testing was done only a single workstation. This included testing

features like cluster monitoring, scheduling, batch support, fault tolerance, security and

information services. Only the proper working of these features was checked and no

performance data was collected.

 81

9.2.2 NIIT Lab

Performance testing was done in the NIIT lab with a maximum of six worker

machines. Server, client and information services were run on the same workstation.

This was done only for simplicity of installation because otherwise the testing would

require eight workstations.

9.3 TESTING SOFTWARE

As the clients for JDCP are programs so it was best to use client programs was

testing purpose so that exact measures of performance received by the clients can be

calculated. For this reason the following client programs were made that check

different performance measures for any cluster created through JDCP system.

9.3.1 Worker Performance Monitor

This application first locally encrypts a given data and notes its processing

time, then encrypts the same data remotely on the cluster and measures the

performance advantage achieved through the use of the cluster. As it encrypts the data

it draws a graph dynamically that shows the performance achieved through the cluster

encryption as a percentage of the local encryption time. The following snapshot is

taken when the application has yet not encrypted any data on the cluster. The blue line

shows the ideal line which shows 500% performance increase if five workers are

connected. Of course the actual results will always be below this ideal line as the

network transfers of data reduces the performance.

 82

Figure 9.1 Worker performance monitor GUI

9.3.2 Data Performance Monitor

This application tests the performance of the cluster with same resources but

different data sets. The application basically determines how much the cluster

performance degrades as the data volume in the jobs increases. This measures the

efficiency of the system at varying loads. The application sends jobs with 1MB, 2MB

and 3MB and calculates bytes encrypted per second. This encryption is not related to

the JDCP security encryption, it is just the client application that encrypts remotely.

The graph line should a straight in ideal condition but this is not possible because as

more and more data is transferred over the network the more the performance degrades

as more time is spent in transferring data.

 83

Figure 9.2 Data performance monitor GUI

9.4 TESTING RESULTS

9.4.1 Worker Performance Monitor

Worker performance monitor was run in the NIIT lab and showed the expected

results. First the local encryption time was calculated and then the cluster with one

worker was given the same task. The result showed almost 100% performance. One by

one more workers were connected and the same jobs were given to the cluster. The

following snapshot displays the graph plotted by the client application. For four

workers the ideal performance was 400% and the actual performance achieved by the

cluster was almost 390%. The actual line was a curve which was expected as more

workers results in more data transfers and hence reduced performance.

 84

Figure 9.3 Worker performance monitor results

9.4.2 Data Performance Monitor

The results by data performance monitor were also found to be close to the

expected. The bytes encrypted per second for 1MB, 2MB and 3MB data sets shows

minimum variation. This means that data handling by the system does not vary with

different data sets. The initial performance of 1MB also includes remote code transfer

and registration. This shows that code registration also takes minimum time and may

not result in significant performance loss.

 85

Figure 9.4 Data performance monitor results

 86

Chapter 10

FUTURE ENHANCMENTS

10.1 DATABASE FOR PERSISTENT STORAGE

Currently all persistent data storage is done through files. The stored data

includes user information such as passwords and keys, client job requests and their

results. This job requests and results are added and deleted all the time as old jobs get

processed and returned and new jobs come into the system. After implementing this

storage through files I have realized that the same job can be done through use of a

database. The advantages of this approach include more reliability and efficiency.

Implementation will also be easier and more manageable if done through a database.

10.2 CONFIGURATION GUIs

Currently all the configuration of the system is hard coded and the files have to

be recompiled after every change. Configurable values in the whole system are more

than 50 at the moment and will increase if the system is further developed so a proper

GUI becomes even more important.

10.3 ADVANCED JOB DEPENDENCY OPTIMIZATIONS

As already explained the current system uses turn by turn scheduling to

implement the job dependency optimizations which results in reduction of network

message but further optimizations can be done. The basic mechanisms for

implementing these advanced optimizations have already been mentioned in the report.

 87

Chapter 11

CONCLUSION

Java dynamic clustering platform provides opportunities for research and

development of clustering systems that use technologies that are going to be widely

used in the near future. Java technology allows platform independence and control

over the resources which is essential in today’s heterogeneous environment. A new

programming model for client applications can also be explored and developed further

as a research project. The system also supports real-time jobs which are not supported

by many other clustering systems hence the platform can be used in specific situations

especially where GUI based applications have to run faster.

After the completion of the project JDCP system has evolved from a simple

distributed computing system to a complete clustering platform. Now the system

provides not only distributed computing but also allows management of resources,

fault tolerance, security and information services in addition to the programming

specific enhancements like job dependency optimizations and batch job support.

Schedulers have been added into the system as plug-ins. This allows future developers

to extend the system and test new scheduling algorithms.

Testing under various workloads and resources has to be done to properly

determine the efficiency of the system and scheduling algorithms designed during the

project. Database usage is necessary so convert the system into a stable environment.

Large data loads are not currently handled by the system which can be corrected by

changing the message passing architecture of the system.

 88

REFERRENCES

[1] URL: http://wwws.sun.com/software/gridware/

[2] URL: http://www.globus.org/

[3] URL: http://www.lri.fr/~fedak/XtremWeb/introduction.php3

[4] URL: http://icl.cs.utk.edu/netsolve/

[5] URL: http://java.sun.com/products/jce/

http://wwws.sun.com/software/gridware/
http://www.globus.org/
http://www.lri.fr/~fedak/XtremWeb/introduction.php3
http://icl.cs.utk.edu/netsolve/
http://java.sun.com/products/jce/

 89

APPENDIX A – USER MANUAL

INSTALLATION

The only software requirement is to have JRE 1.4 or later installed on the PC

running the JDCP system. The OS supported include Windows 2000 or later or Linux

9.0 or later. No installation needed for client and information server. During worker

installation change server IP in the file WorkerController.java (line 66) and

WorkerThread.java (line 208) from local host to actual server IP and recompile.

During server installation change information server IP in Advertiser.java and

recompile.

RUNNING THE SYSTEM

Put server folder at any location on the hard disk and run it through java.exe

with current directory included in the class path. Do the same with information server

and worker. Multiple workers can be connected to the server. The server screen will

now show the workers connected to the server and ready for processing. After this is

complete run any valid client program. Client program can be compiled and run with

the distribution handler folder included in the class path.

CLIENT API

The JDCP client programs have to use a library provided with the system in

order to connect to a server and get its jobs processed. The library includes all the

functionalities that a client programs needs to use the JDCP system. The library

 90

provides an API for the client programs. The following methods are present in the

client API

Method Description

void setServer(String sIP,int port) Sets server connectivity information

void connect(int timeout) throws

Exception

Called after the setServer method to actually

connect to the JDCP server

int getID() Returns the ID that the server assigned to this

client instance

void sendFile(String fileName,String

filePath)

Sends a file to the server. This includes class

files and other file.

int executeMethod(MethodRequest mr) Executes one job asynchronously

Object returnResult(int token) Returns the result of the job with this token

Object executeMethodBlocking

(MethodRequest mr) throws Exception

Executes a blocking job call

int[] executeMethods (MethodRequest[]

requests)

Executes multiple methods asynchronously

boolean executeMethodsBlocking

(Object[] tbr,MethodRequest[] requests)

throws Exception

Executes multiple methods. This method

blocks till all the results have been received

int executeMethodBatch (MethodRequest

mr)

Executes a batch job at the server

 91

void getBatchResult (int token) Gets the result of a batch job from the server

int[] executeBundle (JobRequestBundle

bundle)

Executes a bundle of jobs at the server

asynchronously

void setSecurityLevel (SecurityInfo si) Sets the security level that the user program

wants to connect at. The actual connection is

at the discretion of the server.

STEPS IN CREATING A SIMPLE CLIENT PROGRAM

Following steps have to be taken by the client program to call one method request

remotely on the JDCP server assuming that the system is running.

 Create a DistributionHandler() object

 Pass server info containing IP and port to the distribution handler by calling the

method setServer(String IP, int port)

 Connect to the JDCP server by calling the connect() method

 Send the class file of the class whose method you want to call remotely. This is

done through calling the distribution handler function void sendFile(String

fileName,String filePath).

 Create a MethodRequest object and pass the constructor with the required

information

 Call executeMethodBlocking(MethodRequest request) of the connected

distribution handler to pass the request to the server and get the result back as

an object returned by the method

 92

SAMPLE CLIENT PROGRAM

The following client program runs one method remotely on the JDCP server and

returns the result. All the components of the platform except the information server

have to ve3 running for this program to run correctly.

Class SimpleClient

{

 public static void main(String a[])

{

 DistriubutionHandler dh=new DistributionHandler();

 dh.setServer(“localhost”,5001);

 dh.connect(10000);

 dh.sendFile(“ABC.class”,”h:/Ali/ABC.class”);

MethodRequest mr=new

MethodRequest(1,“ABC”,”AMethod”,null,null);

 Object result=Dh.executeMethodBlocking(mr);

}

}

 93

USING INFORMATION SERVER

The client can connect to the information server and get information about

currently available server. This is done all through an object of the DiscoveryHandler

class. The following API can be used by the client to use the information server.

API Method Description

DiscoveryHandler() Creates a new discovery handler

void setInformationServer(String ip,int p) Sets the connectivity information to the

information server

boolean connect() Actually connects to the information

server

String[] getAvailableServers() Gets names of all the available servers

ServerInfo getServerInfo(String

serverName)

Gets complete information about the

server whose name is passed as argument

ServerInfo[] getAllServerInfo() Gets complete information about all

servers

 94

APPENDIX B – ARCHITECTURAL DIAGRAMS

JDCP System

User

Administrator

Job request

Security data

Results

Security data

Context DFD

File data

Confguration

 95

AdvertisementResults

Jobs

Server info request

Server information

Jobs & control

messages

Results &

system info

Diagram 0

Server process

Information

server process
Client process

Worker

User

Administrator

Job request

Results

File data

Security data

Security data

Confguration

Server

information

storage

Job

information

Server information

Server information

 Job data

Jobs data

 96

Client request

Q

Get

scheduling

information

Scheduling

information

Schedule

creation

Client job

Client job

Scheduling information

Dispatcher
Worker output

Q

Schedule

Scheduled job

Worker talker

Scheduled job

Work cache Scheduled job

Remove client job

Scheduling

loop
Scheduler type

Scheduling of client jobs

 97

Send file

process

Output Q

Talker

Receiver

Client class

storage

Local file link File data

File data

Class registration message

Class data

Sending file data from client to server

Client

program

Distribution

handler

Server

 98

Prepare

execution

request

Output Q

Talker

Receiver

Client request

Q

Client job
Execution request

Execution request

Execution request message

Execution request

Sending execution request from client to server

Client

program

Distribution

handler

Server

 99

Send job to

worker

Worker output

Q

Job listener

Job Q

Process job

Result Q

Result sender

Worker

listener

Worker input

Q

Scheduled job

Job processing request

Scheduled jobScheduled job

Scheduled job

Result

Result transfer message

Result transfer message

Result

Job execution and result transfer by the worker

 100

System info

ping process

Worker

information

Worker output

Q

Worker talker

Reciever

Input

message Q

Worker

system info

storage

Gathering

system info

Statistical

worker data

storage

Output

message Q

Talker

Worker

reciever

Worker info

Ping message

DataFlow3

System info request

System info request

System info request

Statistical worker data

System info

System info reply

System info reply

Worker system info

Getting system information from the worker

Server

Worker

 101

Automatic

result transfer

Get result

from server

Result

storage

Get result
Client

program
Result request

Result reply

Result

Result

Return of result message

Result

Automatic transfer of results from server to clients

Result

storage

 102

Start

Wait for

configured

time

All workers pinged

Ping next

worker

Set index to

next worker

Yes

No

Periodic pinging of workers

