

DESIGN AND DEVELOPMENT OF DIGITAL

BASEBAND PROCESSING MODULE FOR SDR

By

Bakhtawar Hasan

Nabila Shahid

Rabeea Suhail

Submitted to the Faculty of Electrical Engineering, Military College of

Signals National University of Sciences and Technology, Rawalpindi in

partial fulfillment for the requirements of a B.E Degree in Telecom

Engineering

JUNE 2012

ABSTRACT

DESIGN AND DEVELOPMENT OF DIGITAL BASEBAND PROCESSING MODULE

FOR SDR

Design and development of a standalone Digital Baseband Processing Module has

been carried out according to IEEE 802.11a standard. We have considered utilizing

the existing resources for developing the Digital baseband module to provide

technology self-reliance and import substitution.

Implementation of Orthogonal Frequency Division Multiplexing (OFDM) which is a

multi carrier modulation technique has been performed that provides high bandwidth

efficiency as the carriers are orthogonal to each other and share data among

themselves. The complete Verilog code has been developed for the system

according to 802.11a standard. The kit that has been used for Hardware

Programming is Xilinx Virtex5-LX50T. Prior to downloading onto the Hardware, the

code has been thoroughly synthesized and checked using in Xilinx ISE suite v12.3

and the simulation results were validated by comparing with MATLAB simulation.

The performance of the baseband processing module has been tested by giving live

audio signals as input and recovering the same signal at the other end successfully.

iii

Dedicated to

Almighty Allah for His blessings,

Teachers and friends for their help

And Our Parents for their support and prayers

iv

ACKNOWLEDGEMENT

We would like to express our gratitude towards our advisor Dr Adnan Rashdi

for all his help, invaluable guidance, critics and generous support throughout

our final year project.

Special acknowledgements to all those teachers at NUST and other

Universities for helping us. Their interest in this project was very beneficial

and helped design many vital parts of the project.

We would also like to thank all our friends and all those, whoever has helped

us either directly or indirectly, in the completion of our final year project and

thesis.

v

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

1.1. Overview .. 1
1.2. Project Background.. 1
1.3. Project Objective .. 2
1.4. Digital Communication System .. 3
1.5. Orthogonal Frequency Division Multiplexing .. 4
1.6. Complete OFDM system .. 5

1.6.1. Scrambler / Descrambler .. 5
1.6.2. Convolutional Encoder / Decoder ... 6
1.6.3. Interleaving / De-Interleaving .. 6
1.6.4. Constellation Mapper / De-Mapper ... 7
1.6.5. Inverse Fast Fourier Transform / Fast Fourier Transform............... 7
1.6.6. Guard Insertion / Removal.. 7

1.7. FPGA Design Flow .. 8
1.8. Project Specifications... 9
1.9. Project Design Flow ... 10
1.10. Project Scope .. 11

Chapter 2: Literature Survey .. 12

2.1 Evolution of OFDM.. 12
2.2 The OFDM System ... 12
2.3 Advantages and Disadvantages of OFDM .. 13
2.4 Applications of OFDM ... 15
2.5 Verilog Hardware Description Language .. 15
2.6 Synthesis Process in Verilog HDL .. 16

Chapter 3: Transmitter Design and Implementation................................. 18

3.1 Introduction ... 18
3.2 OFDM Hardware Architecture ... 18
3.3 The Transmitter .. 20
3.4 FIFO.. 22
3.5 Scrambler ... 22

3.5.1 Design of Scrambler ... 23
3.6 Convolutional Encoder .. 25

3.6.1 Encoder Design .. 26
3.7 Interleaver ... 27

3.7.1 Interleaver Design .. 29
3.8 Constellation Mapper .. 32

3.8.1 Design of Constellation Mapper ... 33
3.9 Inverse Fast Fourier Transform .. 35

3.9.1 Radix-22 Algorithm .. 36
3.9.2 IFFT Design .. 38

vi

3.10 Cyclic Prefix Adder.. 41
3.10.1 Design of Cyclic Prefix Adder ... 42

Chapter 4: Receiver Design and Implementation 43

4.1 Introduction ... 43
4.2 The Receiver .. 43
4.3 Cyclic Prefix Remover... 46
4.4 Fast Fourier Transform ... 46
4.5 Constellation De-Mapper .. 47

4.5.1 Design of Constellation De-Mapper .. 47
4.6 De-Interleaver ... 49
4.7 Viterbi Decoder ... 49
4.8 Descrambler ... 49

4.8.1 Descrambler Design ... 50

Chapter 5: Analysis and Conclusion ... 51

5.1 Introduction .. 51
5.2 Simulation of OFDM Transmitter ... 52

5.2.1 Scrambler ... 52
5.2.2 Convolutional Encoder ... 52
5.2.3 Interleaver .. 53
5.2.4 Constellation Mapper.. 53
5.2.5 IFFT .. 53
5.2.6 Cyclic Prefix Adder ... 54

5.3 Synthesis of OFDM Transmitter .. 55
5.4 Simulation of OFDM Receiver .. 55

5.4.1 Constellation De-Mapper .. 55
5.4.2 De-Interleaver ... 56
5.4.3 De-Scrambler ... 56

5.5 Synthesis of OFDM Receiver .. 56
5.6 Conclusion .. 56

Appendix-A .. 58

Appendix-B .. 84

References ... 89

vii

LIST OF TABLES

Table No. ... Page No.

3.1 OFDM System Signal Description ... 20
3.2 Transmitter Signal Description ... 22
3.3 Scrambler Signals Description ... 23
3.4 Signals Description for the Convolutional Encoder 26
3.5 Signals Description for Interleaver ... 29
3.6 Mapping of Bits to Constellation Points ... 33
3.7 Contents of the ROM (In Constellation Mapper) 34
3.8 Signals Description for Interleaver ... 34
3.9 Signals Description for IFFT .. 39
3.10 Signals Description for Constellation Mapper .. 42
4.1 OFDM Receiver Signal Description ... 44
4.2 Data Points Mapped to Constellation Points.. 47
4.3 Signals Description for Constellation De-mapper 48
4.4 De-scrambler Signals Description ... 50
5.1 Device Utilization Summary for the OFDM Transmitter 55
5.2 Device Utilization Summary for the OFDM Receiver 56

viii

LIST OF FIGURES

Figure No. .. Page No.

1.1 A Typical Digital Communication System .. 3
1.2 System Overlap in OFDM .. 4
1.3 Block Diagram of OFDM System ... 5
1.4 Convolutional Encoder... 6
1.5 The FPGA Design Flow ... 9
1.6 Top Level Architecture of the Proposed OFDM System 10
1.7 Project Design Flow ... 11
2.1 Synthesis Process in Verilog Environment .. 16
3.1 Serial Communication Format (8 Bit Data + Start Bit + Stop Bit) 18
3.2 Complete Architecture of the Proposed OFDM Transmitter 19
3.3 I/O View of the OFDM System ... 20
3.4 I/O Diagram of the Transmitter .. 21
3.5 Scrambler I/O Diagram .. 23
3.6 Scrambler Logic Diagram .. 24
3.7 Circuit Diagram of Scrambler ... 25
3.8 Convolutional Encoder I/O Diagram .. 26
3.9 Convolutional Encoder Circuit Diagram ... 27
3.10 Interleaving Concept .. 28
3.11 Interleaver I/O Diagram (A Top Level Architecture) 29
3.12 Interleaver Circuit Diagram .. 31
3.13 QPSK Constellation Mapper .. 32
3.14 Constellation Mapper ... 34
3.15 Radix-4 FFT Butterfly... 37
3.16 Radix-2 FFT Butterfly... 38
3.17 IFFT I/O Diagram ... 39
3.18 Architecture of a 64-point-22 FFT... 40
3.19 Bf2i and Bf2ii Radix 2 Butterflies ... 40
3.20 Top Level Architecture of Cyclic Prefix Adder .. 42
4.1 I/O Diagram of the OFDM Receiver ... 44
4.2 Complete Architecture of the Proposed OFDM Receiver 45
4.3 FFT .. 46
4.4 QPSK Constellation Diagram .. 47
4.5 I/O Diagram of the Constellation Demapper .. 48
4.6 Verilog Code Showing Implementation of Constellation Demapper 48
4.7 De-Scrambler I/O Diagram .. 50
4.8 De-Scrambler Logic Diagram .. 50
5.1 MATLAB Model Used for Verification .. 51
5.2 Scrambler Simulation Results .. 52
5.3 Simulation Waveform of the Convolutional Encoder 52
5.4 Constellation Mapper Simulation Results .. 53
5.5 IFFT Simulation Results .. 53
5.6 Cyclic Prefix Adder Simulation Result ... 54
5.7 Constellation De-Mapper Simulation Results .. 55
5.8 Descrambler Simulation Results .. 56

ix

 KEY TO SYMBOLS

ADC Analog to Digital Converter

ADSL Asymmetric Digital Subscriber Line

ASIC Application-specific integrated circuit

AWGN Additive white Gaussian noise

BPSK Binary Phase Shift Keying

CPLD Complex Programmable Logic Device

DAC Digital to analog Converter

DAB Digital Audio Broadcast

DVB Digital Video Broadcast

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

HDL Hardware description Language

IOB Input Output Blocks

IFFT Inverse Fast Fourier Transform

ICI Carrier Interference

ISI Inter Symbol Interference

LUT Look up Tables

OFDM Orthogonal Frequency Division Multiplexing

QPSK Quadrature Phase Shift Keying

UCF User Constraints File

1

CHAPTER 1

INTRODUCTION

1.1. OVERVIEW

This chapter gives the basic information about the project. The chapter covers

the project background, objectives, scope and the thesis outline. The problem

statement of the project will also be carried out in this chapter.

1.2. PROJECT BACKGROUND

The design of the project has been carried according to IEEE 802.11a using

OFDM technique. Orthogonal Frequency Division Multiplexing (OFDM) is a

multi-carrier transmission technique, which divides the available spectrum into

many carriers, each one being modulated by a low rate data stream.

OFDM is similar to FDMA in that the multiple user access is achieved by

subdividing the available bandwidth into multiple channels that are then

allocated to users. However, OFDM uses the spectrum much more efficiently

by spacing the channels much closer together. This is achieved by making all

the carriers orthogonal to one another, preventing interference between the

closely spaced carriers.

There are various methods to implement such digital communication systems.

One of the methods to implement the system is using ASIC (Application

Specific Integrated Circuit) and another method is to use a general purpose

Microprocessor or Micro Controller. The main problem using ASICs is

inflexibility of design process involved and the longer time to market period for

2

the designed chip. The disadvantage of using Micro Controller is that it needs

memory and other peripheral chips to support the operation.

Due to the limitations of above mentioned equipments, Field-Programmable

Gate Array (FPGA) has been used as the hardware platform. We have

employed Xilinx Virtex-5 FPGA. FPGAs are chips, which are programmed by

the user to perform the desired functionality.

The chips may be programmed either Once: Antifuse technology, e.g. devices

manufactured by Quicklogic; Several times: Flash based, e.g. devices manufactured

by Actel; Dynamically: SRAM based, e.g. device manufactured by Actel, Altera,

Atmel, Cypress, Lucent, Xilinx.

The project implementation consists of an ADC module which takes analog

data as an input, and after digitizing, sends it to the Baseband Processing

module using USB port. The Baseband Processing Module processes it and

sends it to the DAC module, which converts the signal back into analog form

which can be interpreted easily.

1.3. PROJECT OBJECTIVE

The objective of this project is to cut dependence on foreign products and to

develop baseband processing module indigenously with no proprietary issues

and to carry out an efficient implementation of the OFDM system (i.e.

transmitter and receiver) by the implementation of baseband processing

using “Field Programmable Gate Array (FPGA)”. FPGA has been chosen as

the target platform because OFDM has large arithmetic processing

requirements which can become prohibitive if implemented in software on a

Digital Signal Processor (DSP).

3

1.4 DIGITAL COMMUNICATION SYSTEM

OFDM is a digital modulation technique; therefore an introduction to digital

communication systems is being provided. A digital communication system

involves the transmission of information in digital form from one point to

another. Figure 1.1 shows a typical digital communication system.

Figure 1.1 A Typical Digital Communication System

The three basic elements in a communication system are transmitter, channel

and receiver. The source of information is the messages that are to be

transmitted to the other end in the receiver. A transmitter can consist of

source encoder, channel coder and modulation. Source encoder provides an

efficient representation of the information through which the resources are

conserved. A channel coder may include error detection and correction code.

A modulation process then converts the base band signal into band pass

signal before transmission. The designed digital baseband processing module

consists of a scrambler, convolutional encoder, interleaver, ifft and guard

insertion at the transmitter end and reverse at the receiver end. All of these

modules are implemented, and the codes in Verilog are burnt on the kit for

baseband processing.

4

1.5 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

OFDM is a multi-carrier digital modulation technique that has been recognized

as an excellent method for high speed bi-directional wireless data

communication. OFDM effectively squeezes multiple modulated carriers

tightly together, reducing the required bandwidth but keeping the modulated

signals orthogonal so they do not interfere with each other. OFDM is similar to

FDM but much more spectrally efficient by spacing the sub-channels much

closer together (until they are actually overlapping). This is done by finding

frequencies that are orthogonal, which means that they are perpendicular in a

mathematical sense, allowing the spectrum of each sub-channel to overlap

another without interfering with it. In Figure 1.2 the effect of this is seen, as

the required bandwidth is greatly reduced by removing guard bands (which

are present in FDM) and allowing signals to overlap.

Figure 1.2 System Overlap in OFDM [2]

5

1.6 COMPLETE OFDM SYSTEM

The complete OFDM system Block diagram showing all the modules involved

can be seen in Figure 1.3.

Figure 1.3 Block Diagram of OFDM System

1.6.1 SCRAMBLER / DESCRAMBLER

Data bits are given to the transmitter as input which pass through a scrambler

that randomizes the bit sequence. It is done to make the input sequence

more disperse so that the dependence of input signal’s power spectrum on

the actual transmitted data can be eliminated. At the receiver end

descrambling is the last step.

There are two main reasons why scrambling is used; It facilitates the work of

a timing recovery circuit, an automatic gain control and other adaptive circuits

of the receiver (eliminating long sequences consisting of '0' or '1' only). It

eliminates the dependence of a signal's power spectrum upon the actual

transmitted data, making it more dispersed to meet maximum power spectral

density requirements (because if the power is concentrated in a narrow

frequency band, it can interfere with adjacent channels due to the cross

modulation and the inter-modulation caused by non-linearities of the receiving

tract).

6

1.6.2 CONVOLUTIONAL ENCODER /DECODER

Convolutional Encoder is implemented in the OFDM to provide forward error

correction. It provides redundant bits on channel to incorporate channel encoding. As

per the specifications of IEEE 802.11a, the generator polynomials used are

g0=x5+x4+x2+x and g1=x5+x2+x+1. The data rates are improved further by applying

puncturing. It is the procedure of omitting some of the encoded bits in the transmitter.

On the receiving side, the decoder inserts the dummy zeros in place of the omitted

bits. The convolutional encoding rate used in the project is according to the IEEE

Standard 802.11a which specifies the rate of ½.

Figure 1.4 Convolutional Encoder

1.6.3 INTERLEAVING / DEINTERLEAVING

Interleaving is done to protect the data from burst errors during transmission.

Conceptually, the in-coming bit stream is re-arranged so that adjacent bits are

no more adjacent to each other. The data is broken into blocks and the bits

within a block are rearranged. Talking in terms of OFDM, the bits within an

OFDM symbol are rearranged in such a fashion so that adjacent bits are

placed on non-adjacent sub-carriers. As far as De-Interleaving is concerned, it

again rearranges the bits into original form during reception.

7

1.6.4 CONSTELLATION MAPPER / DE-MAPPER

The Constellation Mapper basically maps the incoming (interleaved) bits onto

different sub-carriers. Different modulation techniques can be employed (such

as QPSK, BPSK, QAM etc.) for different sub-carriers. The De-Mapper simply

extracts bits from the modulated symbols at the receiver.

1.6.5 INVERSE FAST FOURIER TRANSFORM / FAST FOURIER

TRANSFORM

This is the most important block in the OFDM communication system. It is

IFFT that basically gives OFDM its orthogonality[2] . The IFFT transform a

spectrum (amplitude and phase of each component) into a time domain

signal. It converts a number of complex data points into the same number of

points in time domain. Similarly, FFT at the receiver side performs the reverse

task i.e. conversion from time domain back to frequency domain.

1.6.6 GUARD INSERTION / REMOVAL

In order to preserve the sub-carrier orthogonality and the independence of

subsequent OFDM symbols, a cyclic guard interval is introduced. The guard

period is specified in terms of the fraction of the number of samples that make

up an OFDM symbol. The cyclic prefix contains a copy of the end of the

forthcoming symbol. Addition of cyclic prefix results in circular convolution

between the transmitted signal and the channel impulse response. Frequency

domain equivalent of circular convolution is simply the multiplication of

transmitted signal’s frequency response and channel frequency response,

therefore received signal is only a scaled version of transmitted signal (in

8

frequency domain), hence distortions due to severe channel conditions are

eliminated[2]. Removal of cyclic prefix is then done at the receiver end and

the cyclic prefix–free signal is passed through the various blocks of the

receiver.

1.7 FPGA DESIGN FLOW

According to modern standards, a logic circuit with 20000 gates is common. In

order to implement large circuits, it is convenient to use a type of

programmable chip that has a large logic capacity. A field programmable gate

arrays (FPGA) is a programmable logic device that supports implementation

of relatively large logic circuits [2]. FPGA is different from other logic

technologies like complex programmable logic device (CPLD) and simple

programmable logic device (SPLD) because FPGA does not contain AND or

OR planes.

Instead, FPGA consists of logic blocks for implementing required functions.

An FPGA contains 3 main types of resources: logic blocks, I/O blocks for

connecting to the pins of the package, and interconnection wires and

switches. The logic blocks are arranged in a two-dimensional array, and the

interconnection wires are organized as horizontal and vertical routing

channels between rows and columns of the logic blocks [3].

The routing channels contain wires and programmable switches that allow the

logic blocks to be interconnected in many ways. FPGA can be used to

implement logic circuits of more than a few hundred thousand equivalent

gates in size [3]. Equivalent gates is a way to quantify a circuit’s size by

assuming that the circuit is to be built using only simple logic gate and then

9

estimating how many of these gates are needed. Figure 1.5 gives a clear

picture of the FPGA design flow.

Figure 1.5 The FPGA Design Flow

1.8 PROJECT SPECIFICATIONS

The complete OFDM system, comprising of the transmitter and the receiver, has

been implemented on a single FPGA board. The overall specification factors include

a FPGA board: Xilinx Virtex 5 FPGA; Data Input and output: FPGA kit’s USB ports;

Software model of the OFDM system created in MATLAB; Verilog used as the

hardware description language; ISim and ModelSim 6.1 used for simulation of the

design; Xilinx ISE Design Suite v12.3 used to map the design to targeted device

(Virtex 5).

10

Top level architecture of the proposed OFDM system is shown in Figure 1.6. It

is very challenging on how software algorithm may be mapped to hardware

logic. A variable may correspond to a wire or a register depending on its

application and sometimes an operator can be mapped to hardware like

adders, latches, multiplexers etc.

Figure 1.6 Top Level Architecture of the Proposed OFDM System

1.9 PROJECT DESIGN FLOW

The design procedure involves creation of a top level design of the complete

system; Determining the basic operation of each block and creating the

appropriate logic; I/O integration of the various logic blocks; Description of

design functionality using Verilog hardware description language; ISim and

Modelsim is used to simulate the design functionality and to report errors in

desired behavior of the design; FPGA bitstream file is fed to the hardware;

Input is given to the system after digitizing through the ADC and the desired

output is interpreted using DAC.

11

Figure 1.7 shows the complete project design flow sequentially in the form of

different stages alongwith the softwares and hardwares employed at these

stages.

Figure 1.7 Project Design Flow

1.10. PROJECT SCOPE

The work of the project is entirely focused on the design and development of

a baseband processing module. Coding is done in Verilog and OFDM blocks

are implemented on FPGA kit. Forward Error Correction and noise immunity

can well define the scope of this project. The results of programmed hardware

have been tested by comparing with simulation model of Matlab Similink.

12

CHAPTER 2

LITERATURE SURVEY

2.1 EVOLUTION OF OFDM

OFDM can be viewed as a collection of transmission techniques. When this

technique is applied in wireless environment, it is referred to as OFDM. In the

wired environment, such as asymmetric digital subscriber lines (ADSL), it is

referred as discrete multi tone (DMT). In OFDM, each carrier is orthogonal to

all other carriers. However, this condition is not always maintained in DMT

[11]. OFDM is an optimal version of multi carrier transmission schemes.

Frequency Division Multiplexing (FDM) is also a form of the multi-channel

transmission. The use of Frequency Division Multiplexing (FDM) goes back

over a long period of time, where more than one low rate signal, such as

telegraph, was carried over a relatively wide bandwidth channel using a

separate carrier frequency for each signal [2]. To facilitate separation of the

signals at the receiver, the carrier frequencies were spaced sufficiently far

apart so that the signal spectra did not overlap. Empty spectral regions

between the signals assured that they could be separated with readily

realizable filters. The resulting spectral efficiency was therefore quite low.

2.2 THE OFDM SYSTEM

A detailed explanation of the OFDM system was given in the previous

chapter, in which different building blocks of an OFDM communication system

were discussed. In 1971 Discrete Fourier Transform (DFT) was used in

baseband modulation/demodulation in order to achieve orthogonality. Since

DFT has heavy computational requirements, therefore, Fast Fourier

13

Transform (FFT) was utilized. For an N point discrete Fourier Transform the

required number of computations is N2, but that for FFT is Nlog (N), which is

much lesser than DFT. In this way the problem of bandwidth inefficiency due

to the placement of guard bands between sub-channels was solved and a

new technique “Orthogonal Frequency Division Multiplexing” came into being.

As OFDM is a multi-carrier modulation technique, therefore, the input data is

split and mapped onto different sub-carriers. Each carrier is modulated using

one of the single carrier modulation techniques discussed above.

The OFDM system successfully avoids any inter-channel interference (ICI)

because the carriers are kept orthogonal. In addition, a cyclic prefix (CP) is

added before the start of each transmitted symbol to act as a guard period

preventing inter-symbol interference (ISI), provided that the delay spread in

the channel is less than the guard period [5]. This guard period is specified in

terms of the fraction of the number of samples that make up a symbol.

2.3 ADVANTAGES AND DISADVANTAGES OF OFDM

Another advantage of OFDM is its resilience to Multipath, which is the effect

of multiple reflected signals hitting the receiver. This results in interference

and frequency-selective fading which OFDM is able to overcome by utilizing

its parallel, slower bandwidth nature. This makes OFDM ideal to handle the

harsh conditions of the mobile wireless environment. The introduction of cyclic

prefix made OFDM system resistant to time dispersion [6]. OFDM symbol rate

is low since a data stream is divided into several parallel streams before

transmission. This makes the fading slow enough for the channel to be

considered as constant during one OFDM symbol interval.

14

Cyclic prefix is a crucial feature of OFDM used to combat the inter-symbol

interference (ISI) and inter-channel-interference (ICI) introduced by the multi-

path channel through which the signal is propagated [2]. The basic idea is to

replicate part of the OFDM time domain waveform from the back to the front

to create a guard period. The duration of the guard period should be longer

than the worst-case delay spread of the target multi-path environment. The

use of a cyclic prefix instead of a plain guard interval, simplifies the channel

equalization in the demodulator.

In wire system, OFDM system can offer an efficient bit loading technique [2]. It

enables a system to allocate different number of bits to different sub channels

based on their individual SNR. Hence, an efficient transmission can be

achieved.

One of the major disadvantages of OFDM is its requirement for high peak-to

average power ratio (PAPR) [2]. This put high demand on linearity in

amplifiers.

Second, the synchronization error can destroy the orthogonality and cause

interference. Phase noise error and Doppler shift can cause degradation to

OFDM system [2]. A lot of effort is required to design accurate frequency

synchronizers for OFDM.

OFDM’s high spectral efficiency and resistance to Multipath make it an

extremely suitable technology to meet the demands of wireless data traffic.

This has made it not only ideal for such new technologies like WiMAX and Wi-

Fi but also currently one of the prime technologies being considered for use in

future fourth generation (4G) networks.

15

2.4 APPLICATIONS OF OFDM

Initially, OFDM applications are scarce because of their implementation

complexity. Now, OFDM has been adopted as the new European digital audio

broadcasting (DAB) standard and for terrestrial digital video broadcasting

(DVB) [7].

In fixed-wire applications, OFDM is employed in asynchronous digital

subscriber line (ADSL) and high bit-rate digital subscriber line (HDSL)

systems. It has been proposed for power line communications systems as

well due to its resilience to dispersive channel and narrow band interference.

It has been employed in WiMAX as well.

2.5 VERILOG HARDWARE DESCRIPTION LANGUAGE

Verilog HDL is one of the two most common Hardware Description

Languages (HDL) used by integrated circuit (IC) designers. The other one is

VHDL.

HDL allows the design to be simulated earlier in the design cycle in order to

correct errors or experiment with different architectures. Designs described in

HDL are technology-independent, easy to design and debug, and are usually

more readable than schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction [8];

Algorithmic level (much like c code with if, case and loop statements),

Register transfer level (RTL uses registers connected by Boolean equations),

Gate level (interconnected AND, NOR etc.), Switch level (the switches are

MOS transistors inside gates).

16

The language also defines constructs that can be used to control the input

and output of simulation. More recently Verilog is used as an input for

synthesis programs which will generate a gate-level description (a netlist) for

the circuit. Some Verilog constructs are not synthesizable. Also the way the

code is written will greatly affect the size and speed of the synthesized circuit.

2.6 SYNTHESIS PROCESS IN VERILOG HDL

Synthesis is to construct a gate-level net list from a model of a circuit

described in Verilog. The synthesis process is described in Figure 2.1.

Figure 2.1 Synthesis Process in Verilog Environment

A synthesis program may generate an RTL net list, which consists of register-

transfer level blocks such as flip-flops, arithmetic-logic-units and multiplexers

interconnected by wires. All these are performed by RTL module builder. This

17

builder is to build or acquire from a library predefined components, each of the

required RTL blocks in the user specified target technology.

The synthesis process may produce an unoptimized gate level net list. A logic

optimizer can use the produced net list and the constraint specified to produce

an optimized gate level net list. This net list can be programmed directly into a

FPGA chip.

18

CHAPTER 3

TRANSMITTER DESIGN AND IMPLEMENTATION

3.1 INTRODUCTION

The proposed OFDM system consists of an OFDM baseband transmitter and

an OFDM baseband receiver. This chapter gives details on the complete

architecture of the proposed design and elaborates further on the design and

implementation of the transmitter portion of the project.

The transmitter gets its input from the Adept USB2. An input stream is sent as

input to the transmitter that modulates the incoming stream by splitting it and

putting it onto separate sub-carriers (64 in our case). The modulated data

after passing through various blocks is given as input to the receiver and also

sent back to the DAC (via USB port) for demonstration purposes.

3.2 OFDM HARDWARE ARCHITECTURE

Implementation of the proposed system has been done on Xilinx Virtex 5

LX50T. The USB port receiving module takes the serial stream from ADC and

extracts the 8 bit payload by removing the start and stop bits. Figure 3.1

shows the format of data stream in serial communications.

Figure 3.1 Serial Communication Format (8 Bit Data + Start Bit + Stop Bit)

The 1-byte data from the USB receiver is stored in a FIFO register. Data from

the FIFO is given (bit by bit) to the transmitter module.

19

Figure 3.2 shows the various building blocks of the transmitter and depicts the

hardware architecture of the project highlighting only the transmitter portion.

Figure 3.2 Complete Architecture of the Proposed OFDM Transmitter

The modulated output from the transmitter is fed into another FIFO, and then

taken out into the transmitter (byte by byte) that prepares the data for serial

transmission over the USB interface by adding start and stop bits. The baud

rate on which the serial port is operating is 115.2 kbps.

20

There is a 50 MHz on-board clock source which in conjunction with the PLL

core (provided with the Xilinx ISE software) can be used to produce any clock

frequency. The output of the PLL then provides clock(s) to all the modules.

Figure 3.3 shows an I/O view of the proposed system and Table 3.1 gives a

description of the input and output signals of the OFDM system.

Figure 3.3 I/O View of the OFDM System

Table 3.1 shows the overall OFDM system’s input and output signals

including the description of each.

Table 3.1 OFDM System Signal Description

Signal name Type Width Description

in_data Input 1 Data input to the OFDM system

Clock Input 1 Clock signal (via 50 MHz on-board clock)

arst_n Input 1 Asynchronous reset (asserted at negative edge)

out_data Output 1 Demodulated output data

3.3 THE TRANSMITTER

Among the various components of the OFDM transmitter, the control unit

synchronizes the operation of all the blocks in order to avoid any timing

21

mismatches. Each one of these blocks will be discussed in detail in the

subsequent sections.

The transmitter gets its input from the FIFO register one bit per clock cycle.

This implies that the input to the transmitter is I bit wide. It is only when the

FIFO is full that the transmitter starts extracting data from it. Similarly when

the FIFO gets empty the transmitter stops taking data from it. Therefore, the

transmitter makes use of certain control and status signals provided by the

FIFO to determine when to ask the FIFO for data and when to stop taking

input data.

In a similar fashion, the output of the transmitter is also stored in a FIFO

register. In order for this FIFO to determine when to start storing output data

from the transmitter, the transmitter provides a status signal that tells this

FIFO that data is present on the output lines.

Figure 3.4 shows the I/O diagram for the transmitter and Table 3.2 gives the

description of the signals in and out of the transmitter.

Figure 3.4 I/O Diagram of the Transmitter

22

Table 3.2 shows the transmitter’s input and output signals alongwith their

width and description.

Table 3.2 Transmitter Signal Description

Signal name Type Width Description

in_data Input 1 Data input to the transmitter

Clock Input 1 Clock – 20 MHz (Output of PLL)

arst_n Input 1 Asynchronous reset (asserted at negative edge)

Wrfull Input 1 FIFO status signals - asserted when FIFO is full

Readempty Input 1 FIFO status signal – asserted when FIFO is empty

out_data Output 48 Modulated data coming out of the transmitter

Readreq Output 1
FIFO control signal – requests data from FIFO

(transmitter asserts this signal when the FIFO is full)

start_output Output 1
Asserted when there is data present on the out_data

lines

3.4 FIFO

First In First Out is a popular data structure (also known as queue) that is

used for buffering in order to provide flow control. The FIFO architecture has

been obtained from Xilinx’s IP Core Generator Wizard. This parameterized IP

Core Generator allows creating FIFOs of any width and depth with various

options of control and status signals. Using technology specific modules

allows for quick prototyping of the design. The appropriate parameters have

been provided and the IP Core has been interfaced with the design. The

hardware implementation details of all the blocks are discussed accordingly.

3.5 SCRAMBLER

A scrambler (often referred to as a randomizer) is a device that manipulates a

data stream before transmitting. The purpose of scrambling is to eliminate the

23

dependence of a signal’s power spectrum upon the actual transmitted data

and making it more disperse to meet maximum power spectral density

requirements, because if the power is concentrated in a narrow frequency

band, it can interfere with adjacent channels [10].

3.5.1 DESIGN OF SCRAMBLER

Figure 3.5 shows the input/output parameters of the Scrambler. Input bus is 1

bit wide and arst_n is the asynchronous reset input. A negative edge on the

arst_n input resets the Scrambler. A bit is latched in at the positive edge of the

clock. See Table 3.3 for a description of the signals.

Figure 3.5 Scrambler I/O Diagram

Table 3.3 Scrambler Signals Description

Signal name Type Width Description

in Input 1 Input data to the transmitter

clock Input 1 Positive edge clock

arst_n Input 1 Asynchronous reset (Negative edged)

enable Input 1 If high, input is present on the line in

out Output 1 Output scrambled data

Scramblers can be implemented using a Linear Feedback Shift Register

(LFSR) [10]. An LFSR is a simple register composed of memory elements

24

(flip-flops) and modulo-2 adders (i.e. XOR gates). Feedback is taken from two

or more memory elements, which are XOR-ed and fed back to the first stage

(memory element) of the Linear Feeback Shift Register (LFSR). In the

proposed design, a standard 7 bit scrambler has been used to randomize the

incoming bits. An initial seed value is stored in the LFSR when arst_n is

asserted; this value may be any random bit string except for all zeroes or all

ones. If the initial seed contains all zeroes or all ones then the LFSR is locked

in a state where every output value is same i.e. either one or zero.

Figure 3.6 shows the logic diagram of the scrambler showing its basic

construction. It comprises of a feedback output, which is actually the modulo-2

added result of the contents of memory elements 4 and 7, then it is XORed

with the input and the result obtained is designated as the output and is also

shifted into the first stage using LFSR. These memory elements are actually

flip-flops (D-flip flops are used here); with the output of each flip flop acting as

the input for the next flip flop.

Figure 3.6 Scrambler Logic Diagram

25

Figure 3.7 shows, in detail, the circuit diagram of the scrambler. We can see

that the reset (arst_n) is asserted on the negative edge, this is shown by the

bubble at the reset pins of the flip-flops.

Figure 3.7 Circuit Diagram of Scrambler

3.6 CONVOLUTIONAL ENCODER

Convolutional coding is part of the Forward Error Correction (FEC) done in

communication systems. The purpose of forward error correction (FEC) is to

improve the capacity of a channel by adding some carefully designed

redundant information to the data being transmitted through the channel [11].

The process of adding this redundant information is known as channel coding

[11]. Convolutional codes operate on serial data, one or a few bits at a time.

There are a variety of useful Convolutional codes, and a variety of algorithms

for decoding the received coded information sequences to recover the original

data. Convolutional codes are usually described using two parameters: the

code rate and the constraint length. The code rate, m/n, is expressed as a

ratio of the number of bits into the Convolutional encoder (m) to the number of

channel symbols output by the Convolutional encoder (n) in a given encoder

cycle. The constraint length parameter, K, denotes the "length" of the

Convolutional encoder, i.e. how many k-bit stages are available to feed the

26

combinatorial logic that produces the output symbols. Convolutional codes are

often used to improve the performance of digital radio, mobile phones, and

satellite links. In the proposed design a Convolutional encoder with a code

rate of ½ has been chosen i.e. m=1 and n=2. A constraint length of 7 is kept

because it is standard and its decoding can be efficiently done using the

popular “Viterbi Decoding Algorithm”.

3.6.1 ENCODER DESIGN

Figure 3.8 shows the I/O parameters of the Convolutional Encoder. Input bus

is 1 bit wide and arst_n is the asynchronous reset input. A negative edge on

the arst_n input resets the encoder. A bit is latched in at the positive edge of

the clock. For every input bit there is a two bit wide output designated by even

and odd. Table 3.4 gives description of the I/O signals of the Convolutional

Encoder.

Figure 3.8 Convolutional Encoder I/O Diagram

Table 3.4 Signals Description for the Convolutional Encoder

Signal name Type Width Description

in Input 1 Input data to the Convolutional Encoder

clock Input 1 Positive edge clock

arst_n Input 1 Asynchronous reset (Negative edged)

Enable Input 1 If high, input is present on the line in

even Output 1 Least significant bit of the output

odd Output 1 Most significant bit of the output

27

Convolutional Encoder can be implemented using either a shift register or by

using “Algorithmic State Machine” [16]. However, a shift register gives an

easy to implement and area efficient solution. For the configuration of m=1,

n=2 and k (constraint length) =7, Figure 3.9 shows how the Convolutional

encoder is implemented in the proposed design using a shift register. Initially

all zeroes are stored in the register. When the first input bit arrives it is shifted

into the register from left and the 2 bit output appears on the lines designated

as even and odd.

Figure 3.9 Convolutional Encoder Circuit Diagram

The even output is generated by adding the contents of 1st, 0, 3rd, 4th and 6th

stages of the shift register, whereas the odd output is generated by adding the

5th, 0, 3rd, 4th and 6th stages of the register. This addition is modulo-2 addition

carried out through XOR gates (modulo-2 addition is basically a XOR

operation). Just like the Scrambler the memory elements here are D-flip-flops

as well.

3.7 INTERLEAVER

Interleaving is mainly used in digital data transmission technology, to protect

the transmission against burst errors. These errors overwrite a lot of bits in a

28

row, but seldom occur. The device that performs interleaving is known as

Interleaver.

Conceptually, the in-coming bit stream is re-arranged so that adjacent bits are

no more adjacent to each other. Actually the data is broken into blocks and

the bits within a block are re-arranged. In the proposed design, a block

consists of 64 symbols (128 bits). Number of bits in each symbol depends

upon the corresponding single-carrier modulation technique to be applied to

produce that symbol.

Two memory elements (usually RAMs) are used. In the first RAM the

incoming block of bits is stored in sequential order. This data from the first

RAM is read out randomly (using an algorithm) so that the bits are re-

arranged and stored in the second RAM and then read out.

Figure 3.10 Interleaving Concept

As mentioned above that the incoming bit stream is broken into blocks, when

interleaving in the OFDM system the block size should be equal to the size of

an OFDM symbol. Since there are 64 sub-carriers and each sub-carrier is

modulated using QPSK, therefore in one OFDM symbol there would be 128

bits. Hence, the job of the interleaver would be to re-arrange the bits within

the OFDM symbol.

29

3.7.1 INTERLEAVER DESIGN

The function that the interleaver has to perform is to read 128 bits, re-arrange

them and read them out. This can be accomplished by using RAMs for

temporarily storing the bits and then the bits can be read out from the RAMs

in the desired order. Remember that the block before the interleaver is the

Convolutional Encoder that gives an output of two bits. Therefore the input

bus of the interleaver should be two bits wide. This can be seen in Figure 3.11

which shows the top level architecture of the interleaver.

Figure 3.11 Interleaver I/O Diagram (A Top Level Architecture)

Table 3.5 shows the input and output signals of the interleaver also describing

their function and width.

Table 3.5 Signals Description for Interleaver

Signal name Type Width Description

in Input 2 Input data to the Interleaver

clock Input 1 Positive edge clock

arst_n Input 1 Asynchronous reset (Negative edged)

enable Input 1 If high, input is present on the line in

out Output 2 Output of the Interleaver

30

Note that the input and output buses are two bits wide. The three building

blocks of the interleaver are; block memory, controller and address ROM. The

block memory contains the memory elements necessary to store the incoming

block of data. There are a total of four memory elements; each is a 64x1

RAM. Four RAMs are used in order to achieve pipelined operation. Two of

these RAMs are used for writing a block while another block is being read out

from the other two RAMs. In this way the RAMs are alternately switched

between reading and writing modes. Hence, reading and writing is done

simultaneously without any latency. The configuration of each of these RAMs

is such that two bits are written at a time in two memory locations and one bit

is read at a time. Recall that input to the interleaver is two bit wide, therefore

that takes care of it. Two memories each 64x1 is used instead of a single

memory 128x1 because two bits are to be read at a time. While writing a

block of data (i.e. 128 bits), 16 bits are alternately written into the 64x1 RAMs.

That is to say that first 16 bits are written to the first RAM, next 16 to the

second RAM, next 16 again to the first RAM and so on. This is done in order

to keep the two bits that have to be read (in desired order) in separate RAMs.

The job of the controller is to guide the incoming block of data to the correct

memory blocks, to switch the RAMs between reading and writing modes, and

to switch between the two RAMs for 16 alternate bits in writing mode. This is

done by using counters. The address ROM is basically a 64x6 ROM that

stores read addresses for the RAMs. Note that a single ROM is enough for

the four RAMs. This is because only two RAMs at a time are in the read mode

and the two bits that are read out of the two RAMs are in the same memory

31

locations as per the design. Each location of the ROM is 6 bits wide because

a 6-bit address is required to read from a RAM having 64 locations.

Figure 3.12 shows the circuit diagram of interleaver. Counter1 and Counter2

provide for the write addresses for the four RAMs 1A, 2A, 1B and 2B. Counter

C is a 3-bit counter that controls switching between either RAM 1A and RAM

2A or RAM 1B and RAM 2B depending upon which RAMs are in write mode.

Counter1 and Counter2 are 5-bit counters after every 8th count control

switches to either Counter1 or Counter2; this is controlled by Counter C.

Figure 3.12 Interleaver Circuit Diagram

The SYNC signal decides which RAMs must write and which should read.

When SYNC is 0 RAM 1A and RAM 2A are in write mode and RAM 1B and

RAM 2B in read mode, opposite is the case when SYNC is high. For the first

data block SYNC remains 0 and therefore the block is written to RAM 1A and

32

RAM 2A. When the last bit of the block is written SYNC goes high and RAM

1A and RAM 2A go in read mode, whereas RAM 1B and RAM 2B go in write

mode and the next block is written to these blocks. At the same time the

previous is read out of RAMs 1A and 2A in the desired order.

3.8 CONSTELLATION MAPPER

Constellation Mapper maps the incoming bits onto separate sub-carriers. In

the proposed design there are 64 sub-carriers and each of them is modulated

using QPSK, therefore the function of Constellation Mapper would be to map

every two bits on a single carrier, because in QPSK two bits make up one

symbol.

Figure 3.13 shows the constellation diagram of QPSK. Mapping of bits on

constellation points is done in accordance with gray code so that adjacent

constellation points may have just one bit different. Table 3.7 shows the data

bits and the corresponding constellation points.

Figure 3.13 QPSK Constellation Mapper

33

Table 3.6 shows the data bits and the corresponding constellation points to

which they are mapped.

Table 3.6 Mapping of Bits to Constellation Points

Data bits Constellation point

00 0.707 + j0.707

01 - 0.707 + j0.707

10 0.707 - j0.707

11 - 0.707 - j0.707

The block before Constellation Mapper is the Interleaver which gives an

output of two bits per clock cycle. Therefore, two bits are mapped to a

constellation point every clock cycle.

3.8.1 DESIGN OF CONSTELLATION MAPPER

A ROM is used to store the constellation points. Each constellation point is

represented by 48 bits in binary. In these 48 bits, the most significant 24 bits

represent the real part and the least significant 24 bits represent the imaginary

part. In both the real and imaginary parts the most significant 8 bits are the

integer part and the least significant 16 bits represent the fractional part. 2’s

complement notation has been used to represent negative numbers. The size

of ROM is 4x48.

The incoming input bits (2 bits) act as address for the ROM. Table 3.7 shows

the ROM contents at each address location. Each of these values in the ROM

is a constellation point corresponding to the data bits which here act as

addresses for the ROM.

34

Table 3.7 Contents of the ROM (In Constellation Mapper)

Address (Binary) Contents (HEX)

00 00B50400B504

01 FF4AFC00B504

10 00B504FF4AFC

11 FF4AFCFF4AFC

Figure 3.14 Constellation Mapper

Figure 3.14 shows the circuit of a constellation Mapper. It contains nothing but

a ROM. Note that the input is two bits wide and the output is 48 bits wide. For

a description of the I/O signals of the constellation mapper see Table 3.8.

Table 3.8 Signals Description for Interleaver

Signal name Type Width Description

in Input 2
Input data to the constellation mapper (acting as

address for the above shown ROM)

clock Input 1 Positive edge clock

out Output 48
Output of the constellation mapper (representing 48

bit complex number)

35

3.9 INVERSE FAST FOURIER TRANSFORM

In 1971 Discrete Fourier Transform (DFT) was used in baseband

modulation/demodulation in order to achieve orthogonality [14]. Since DFT

has heavy computational requirements, therefore, Fast Fourier Transform

(FFT) was utilized. For an N point discrete Fourier Transform the required

number of computations is N(N-1), but that for FFT/IFFT is Nlog (N), which is

much lesser than DFT.

The FFT/IFFT operates on finite sequences. Waveforms which are analog in

nature must be sampled at discrete points before the FFT/IFFT algorithm can

be applied.

The Discrete Fourier Transform (DFT) operates on sample time domain signal

which is periodic. The equation for DFT is:

𝑋 𝑘 = 𝑥(𝑛)𝑒−𝑗2𝜋𝑘 /𝑁𝑁−1
𝑛=0 3.11

X(k) represents the DFT frequency output at the k-the spectral point where k

ranges from 0 to N-1. The quantity N represents the number of sample points

in the DFT data frame. The quantity x(n) represents the nth time sample,

where n also ranges from 0 to N-1. In general equation, x(n) can be real or

complex.

The corresponding inverse discrete Fourier transform (IDFT) of the sequence

X(k) gives a sequence x(n) defined only on the interval from 0 to N-1 as

follows:

𝑥 𝑛 =
1

𝑁
 𝑥 𝑘 𝑒

𝑗2𝜋𝑘

𝑁𝑁−1
𝑘=0 3.12

36

The DFT equation can be re-written into:

𝑋 𝑘 = 𝑥 𝑛 𝑊𝑁
𝑛𝑘𝑁−1

𝑛=0 3.13

The quantity 𝑊𝑁
𝑛𝑘 can be defined as:

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗2𝜋𝑘 /𝑁 3.14

This quantity is called Twiddle Factor. It is the sine and cosine basis function

written in polar form [15]. Examination of the equations reveals that the

computation of each point of DFT requires the following: (N-1) complex

multiplication, (N-1) complex addition (first term in sum involves e j0 = 1). Thus,

to compute N points in DFT require N(N-1) complex multiplication and N(N-1)

complex addition.

As N increases, the number of multiplications and additions required is

significant because the multiplication function requires a relatively large

amount of processing time even using computer. Thus, many methods for

reducing the number of multiplications have been investigated over the last 50

years [16].

3.9.1 RADIX-22 ALGORITHM

When the number of data points N in the FFT/IFFT is a power of 4 (i.e., N =

4v), we can, of course, always use a radix-2 algorithm for the computation.

However, for this case, it is more efficient computationally to employ a radix-r

FFT algorithm. In the decimation-in-frequency algorithm, the outputs or the

frequency domain points are regrouped or subdivided. Consider the FFT

equation:

𝑋 𝑘 =
1

𝑁
 𝑥 𝑛 𝑒−𝑗2𝜋𝑘 /𝑁𝑁−1

𝑛=0 3.15

37

As an example we consider N=16. We split or decimate the N-point input

sequence into four subsequences, x(4n), x(4n+1), x(4n+2), x(4n+3), n = 0, 1,

... , N/4-1. Therefore, we get X(k), X(k+N/4), X(k+N/2) and X(k+3N/4). This

process is called decimation in frequency. This decimation continues until

each DFT becomes a 4 point DFT. Each 4 point DFT is known as a butterfly

when we represent it graphically. Figure 3.15 shows a radix-4 FFT butterfly.

Since in the proposed design there are 64 sub-carriers so the input to FFT

would be 64 complex numbers, hence a 64 point FFT would be required.

For a 4n point FFT n stages are required and N/4 4 point DFTs per stage.

Therefore in our case there would be 3 stages (64 = 43) and 16 4 point DFTs

per stage or we can say 16 butterflies pre stage.

Figure 3.15 Radix-4 FFT Butterfly

38

In the decimation-in-frequency FFT algorithm, the outputs are decimated;

therefore, inputs to the FFT are given in the actual order [17]. In this way we

get the output in a rearranged order.

In the proposed design radix-22 DIT FFT algorithm is targeted because its

butterfly is simple like that of radix 2 and no. of complex multiplications are

less like radix 4. Figure 3.16 shows a radix 2 butterfly, its simplicity speaks for

itself.

Figure 3.16 Radix-2 FFT Butterfly

In the radix-22 algorithm, a radix-4 butterfly is created using two radix-2

butterflies. The benefit of using the radix 2 algorithm is the ease of controlling

the butterfly due to its simplicity and the decreased number of stages and

complex multipliers.

3.9.2 IFFT DESIGN

From here on whenever I mention FFT, it will incorporate both IFFT and FFT.

Basically there are two ways to implement FFT in hardware, one is using

pipelined architecture and the other is using memory-based architecture. The

former requires less hardware resources and hence occupies less area, but

requires greater number of clock cycles. On the other hand in the memory-

based architecture more hardware resources are required but it takes less

39

number of clock cycles. In the proposed design pipelined architecture has

been chosen in order to make the FFT design area efficient.

Additionally, fixed point FFT implementation has been carried out to avoid any

overflows resulting from the complex multiplications.

Figure 3.17 shows the I/O diagram of IFFT and description of the I/O

parameters is given in Table 3.9.

Figure 3.17 IFFT I/O Diagram

Table 3.9 Signals Description for IFFT

Signal name Type Width Description

arst_n Input 1 Asynchronous reset (negative edged)

clock Input 1 Positive edged clock

enable Input 1 When high data is present on the realinput and

imginput lines

realinput Input 24 Real part of the input complex number

imginput Input 24 Imaginary part of the input complex number

realoutput Output 24 Real part of the output complex number

imgoutput Output 24 Imaginary part of the output complex number

Complex data is fed in one data-point per clock cycle. The enable signal is

asserted the clock cycle previous to presenting the first data-point.

40

Figure 3.18 is a block diagram of a 64-point Radix-22 fixed-point FFT

example. The module consists of six radix-2 butterflies, shift registers

associated with each butterfly, two complex multipliers, two twiddle factor

generators, and a controller that provides the control signals. The feedback

shift registers vary in length from 1 to 32-bits, and are labeled accordingly.

Figure 3.18 Architecture of a 64-Point-22 FFT

Each group of two butterflies, consisting of a bf2i and a bf2ii, together emulate

a radix-4 butterfly. Figure 3.19 shows the internals of each and how they are

connected together.

Figure 3.19 Bf2i and Bf2ii Radix 2 Butterflies

41

These modules operate on a principal known as Single-path Delay Feedback.

The FFT Radix-2 butterfly must have two inputs in order to produce the next

FFT intermediate value, but the data in our scenario is available only in a

serial mode. The SDF mechanism provides a solution where the first input is

delayed until the second input is presented, after which the calculation can

proceed. Both the bf2i and bf2ii modules accomplish this by multiplexing the

first input to a shift register of sufficient length so that that data-point is

present at the butterfly input when the second data-point appears. A counter

provides the control signals for these multiplexers, which are internal to the

butterfly modules.

The counter additionally provides signals to the bf2ii for switching the adder

operations, and swapping the real and complex input wires. These

mechanisms effect a multiplication of the input by j.

In order to avoid overflow, the data set is scaled down as it propagates

through the pipeline. The FFT operation consists of a long series of

summations, and thus either the dynamic range of the numerical presentation

must be large (floating-point of block floating-point), or the numerical data

must be scaled down. Since the module is fixed point, the latter strategy is

used.

3.10 CYCLIC PREFIX ADDER

Cyclic prefix is basically a replica of a fractional portion of the end of an

OFDM symbol that is placed at the beginning of the symbol. It completely

removes inter-symbol interference that can occur due to Multipath. Cyclic

prefix is effective only if its duration is greater than the delay spread.

42

3.10.1 DESIGN OF CYCLIC PREFIX ADDER

The architecture of cyclic prefix adder simply consists of an address ROM that

stores addresses, a RAM to store incoming data in sequential order and a

counter that provides read addresses to the RAM. Figure 3.20 shows the top-

level architecture of the cyclic prefix adder.

Figure 3.20 Top Level Architecture of Cyclic Prefix Adder

Refer to Table 3.10 for the I/O signal description for the Constellation mapper.

Table 3.10 Signals Description for Constellation Mapper

Signal name Type Width Description

arst_n Input 1 Asynchronous reset (negative edged)

clock Input 1 Positive edged clock

enable Input 1 Enable for Constellation Mapper

in Input 48 Input complex number

out Output 48 Output complex number

In the proposed design, the last eight symbols (complex numbers) of the

OFDM symbol are replicated at the beginning of the symbol, therefore a total

of 72 (64 + 8) symbols are actually transmitted.

43

CHAPTER 4

RECEIVER DESIGN AND IMPLEMENTATION

4.1 INTRODUCTION

This chapter gives detailed description about the implementation of the

receiver part of the project. The receiver has been implemented on the same

Virtex-5.

The OFDM receiving unit receives its input directly from the transmitter

whenever its output is available. The receiver follows an exact reverse

procedure of which was followed in the transmitter. It receives the complex

(modulated) output points and performs demodulation and recovers the

original bits sent to the transmitter. These bits are forwarded to the peripheral

device (which includes DAC) to produce the same audio signal that was given

at input for demonstration purpose.

4.2 THE RECEIVER

The receiver part consists of various blocks that perform the reverse operation

as compared to the transmitter so that the same information is received at the

output end as is given to the input end.

We can see that there are no control or status signals to or from a FIFO; the

reason is that the modulated data, from the transmitter, is directly fed to the

receiver as input.

44

I/O diagram of the receiver module showing the simplified flow is given in

Figure 4.1. Clock signal is there to provide synchronization between the

transmitter and receiver module.

Figure 4.1 I/O Diagram of the OFDM Receiver

Description of the input and output signals involved in OFDM Receiver and

their width is given in Table 4.1.

Table 4.1 OFDM Receiver Signal Description

Signal name Type Width Description

in_data Input 48 Data input to the Receiver

Clock Input 1 Clock – 20 MHz (output of PLL)

arst_n Input 1 Asynchronous reset (asserted at negative edge)

enable Input 1
When asserted data is present on the in_data

lines

out_data Output 1 Demodulated data coming out of the receiver

start_output Output
Asserted when there is data present on the

out_data lines

45

Figure 4.2 shows the hardware architecture of the complete OFDM system

highlighting the receiver part this time. The various blocks that constitute the

receiver are shown. The receiver, just like the transmitter, operates at a clock

frequency of 20 MHz provided by the on-board PLL.

Now the rest of the chapter is dedicated to the detailed description and design

of the blocks inside the OFDM receiver as shown in Figure 4.2.

Figure 4.2 Complete Architecture of the Proposed OFDM System Receiver

46

4.3 CYCLIC PREFIX REMOVER

The cyclic prefix was added at the transmitting end in order to avoid inter-

symbol interference, therefore during reception it must be eliminated for any

further processing of the received signal. This is done by simply skipping the

first eight sub-carriers in the received OFDM symbol. In hardware this is

implemented in the control unit. The control unit only enables the next block

(FFT) when the first eight bits of the received OFDM symbols have been

skipped.

4.4 FAST FOURIER TRANSFORM

Details on FFT/IFFT algorithm and hardware implementation were given in

the previous chapter. The only difference being that if it was given for IFFT

(although FFT was mentioned at some places). In order to implement FFT in

hardware the algorithm is same, only the difference is that the divider is

removed and the real and imaginary parts at the input are swapped i.e. real

becomes imaginary and imaginary becomes real. Same goes for the output

i.e. real and imaginary parts at the output are swapped as well. Figure 4.3

depicts the scenario.

Figure 4.3 FFT

47

4.5 CONSTELLATION DE-MAPPER

The function of the constellation demapper is to map the QPSK symbols

(complex numbers) coming from the output of FFT to the data points shown in

the constellation diagram shown in Figure 4.4. Basically it is the inverse

procedure of what was done in the constellation mapper at the transmitter.

Figure 4.4 QPSK Constellation Diagram

4.5.1 DESIGN OF CONSTELLATION DE-MAPPER

The mapping of data points to QPSK symbols (as done in the transmitter) is

shown in Table 4.2.

Table 4.2 Data Points Mapped to Constellation Points

Address (Binary) Constellation Points Constellation points (HEX)

00 0.707 + j0.707 00B50400B504

01 -0.707 + j0.707 FF4AFC00B504

10 0.707 – j0.707 00B504FF4AFC

11 -0.707 – j0.707 FF4AFCFF4AFC

48

Therefore, basically the incoming constellation points are mapped onto the

data points as shown in this Table. Figure 4.5 shows the I/O diagram of the

constellation demapper and Table 4.3 shows the description of the signals.

Figure 4.5 I/O Diagram of the Constellation Demapper

Table 4.3 Signals Description for Constellation De-Mapper

Signal name Type Width Description

in Input 48 Input constellation points

clock Input 1 Positive edge clock

out Output 2 Output data points corresponding to Table 4.2

arst_n Input 1 Asynchronous reset (Negative edged)

Instead of going into the hardware architecture, the design is shown using the

Verilog code in Figure4.6. A simple switch-case structure is used to construct

the design.

Figure 4.6 Verilog Code Showing the Implementation of Constellation Demapper

49

4.6 DE-INTERLEAVER

In the previous chapter interleaving was defined as a process in which bits,

within a block of 128 bits, are re-arranged in order to avoid burst errors. De-

interleaving performs the inverse task. It re-arranges the interleaved bits into

their original order.

Recall the row-column method of interleaving discussed in the previous

chapter. Deinterleaving is done the same way, the difference being that the

number of rows and the number of columns for de-interleaving are

interchanged. For example if we perform interleaving on a block of 16 bits

using a matrix with 8 rows and 2 columns, then the interleaved pattern can be

de-interleaved using a matrix with 2 rows and 8 columns.

Hence the only difference in the hardware architectures of interleaver and de-

interleaver is the contents of the address ROM, which actually provides the

read addresses to the RAM that stores the data to be de-interleaved.

4.7 VITERBI DECODER

The Viterbi Decoder decodes Convolutional codes. We have used the Xilinx’s

Viterbi Decoder IP core in our design. Xilinx’s Viterbi IP core is a

parameterized IP core that is synthesizable and allows for parallel as well as

hybrid implementation of the Viterbi decoder.

4.8 DESCRAMBLER

This block performs the reverse mechanism as compared to the scrambler.

The same logic has been implemented in reverse order and has been tested

in simulation as well as hardware.

50

4.8.1 DESCRAMBLER DESIGN

Figure 4.7 shows the input/output parameters of the Descrambler. A bit is

latched in at the positive edge of the clock.

Figure 4.7 De-Scrambler I/O Diagram

See Table 4.4 for a description of the signals in descrambler’s design.

Table 4.4 De-scrambler Signals Description

Signal name Type Width Description

in Input 1 Input data to the Descrambler

clock Input 1 Positive edge clock

arst_n Input 1 Asynchronous reset (Negative edged)

enable Input 1 If high, input is present on the line in

out Output 1 Output data

Figure 4.8 shows the logic diagram of the de-scrambler. Note that the

structure is quite similar to that of the scrambler but is reversed.

Figure 4.8 De-Scrambler Logic Diagram

51

CHAPTER 5

ANALYSIS AND CONCLUSION

5.1 INTRODUCTION

This chapter discusses the simulation results obtained from the Xilinx ISim

and ModelSim as Simulator with random input samples and also the important

synthesis results obtained from Xilinx ISE v12.3. The accuracy of the output of

the transmitter has been verified by comparing with the output from MATLAB

simulation shown in figure 5.1.

Figure 5.1 MATLAB Model Used for Verification

The result is divided into 2 different sections, for OFDM Transmitter and

OFDM Receiver. The output from each of the modules is shown and followed

by the overall output.

52

5.2 SIMULATION OF OFDM TRANSMITTER

5.2.1 SCRAMBLER

To verify proper functioning of the Scrambler was initially fed with a seed

value of 1110101. Figure 5.2 shows the simulation results of the scrambler.

Input : 0110101000

Output : 1101110001

Figure 5.2 Scrambler Simulation Results

5.2.2 CONVOLUTIONAL ENCODER

After simulation of the Verilog code for convolutional encoder block, the

following waveform was generated. It can be seen that first of all a low pulse

was given to the arst_n (reset) input in order to initialize the shift register with

all zeroes. For a 7 bit input a 14 bit output is generated. Figure 5.3 shows the

resultant waveforms after the simulation of the Convolutional Encoder.

Input : 1011101

Output : 11010001011100

Figure 5.3 Simulation Waveform of the Convolutional Encoder

53

5.2.3 INTERLEAVER

The waveform for the interleaver goes up to 128 clock cycles. Therefore, it is

not shown here. For an input block of data containing alternate 1s and 0s the

output was 0000000011111111000000001111111100000000….….so on.

This clearly shows how bit positions have been changed.

5.2.4 CONSTELLATION MAPPER

Figure 5.4 shows that when an input of 10 was given to the Constellation

Mapper the output was 00b504ff4afch which is found to be correct after

comparing with the corresponding table.

Figure 5.4 Constellation Mapper Simulation Results

5.2.5 IFFT

The IFFT was tested by giving the following 64 complex data points,

h00b504000000, h030000000000, h00b504000000,…, h00b504000000

which is equivalent to 0.707, 3, 0.707,…, 0.707. Figure 5.5 shows the

simulation results of the IFFT module.

Figure 5.5 IFFT Simulation Results

54

The outputs were, h2f8bc000000, h5db504000000, h0000005db504 and so

on. On verification with MATLAB the results turned out to be correct.

5.2.6 CYCLIC PREFIX ADDER

The inputs given to the cyclic prefix adder were

47'h000000100101, 47'h000010100001, 47'h001110100101,

7'h110010100101, 47'h000010100101, 47'h010101000101,

47'h011110100101, 47'h000011100101. . .47'h000011100101

The outputs turned out to be

47'h000011100101, 47'h000011100101, 47'h000011100101,

47'h000011100101, 47'h000011100101, 47'h000011100101,

47'h000011100101, 47'h000011100101, 47'h000000100101,

47'h000010100001, 47'h001110100101, 47'h110010100101,

47'h000010100101, 47'h010101000101, 47'h011110100101,

47'h000011100101. . . 47'h000011100101

Note that the first eight outputs are actually the last eight inputs and the rest of

the output points are same as the inputs. The waveform shown in Figure 5.6

confirms the result.

Figure 5.6 Cyclic Prefix Adder Simulation Result

55

5.3 SYNTHESIS OF OFDM TRANSMITTER

Table 5.1 shows the synthesis results for the OFDM transmitter using Xilinx

ISE v 12.3.

Table 5.1 Device Utilization Summary for the OFDM Transmitter

5.4 SIMULATION OF OFDM RECEIVER

The Cyclic Prefix Remover simply removes the cyclic portion added at the

transmitting end, and the simulation of the next block FFT is also similar to

IFFT so it is not shown.

5.4.1 CONSTELLATION DE-MAPPER

The constellation demapper maps the incoming QPSK constellation points to

actual data points. On giving the inputs as h00b50400b504 (which is 0.707 +

j0.707) and hFF4AFC00B504 (which is -0.707 + j 0.707), The outputs turned

out to be 00 and 01. As shown in Figure 5.7, the results are in accordance

with calculations.

Figure 5.7 Constellation De-Mapper Simulation Results

56

5.4.2 DE-INTERLEAVER

Similar to the interleaver the simulation waveform of de-interleaver extends to

128 cycles which has been verified through simulation.

5.4.3 DE-SCRAMBLER

The inverse of scrambling is done by the De-Scrambler. For the input

b111111111000000000, the output was b110111111111000010 which is

shown in figure 5.8. The output has been verified using MATLAB.

Figure 5.8 Descrambler Simulation Results

5.5 SYNTHESIS OF OFDM RECEIVER

Table 5.2 shows the device utilization summary for the OFDM receiver. It

gives the percentage of utilized resources on the hardware.

Table 5.2 Device Utilization Summary for the OFDM Receiver

5.6 CONCLUSION

The proposed system allows faster and more robust communication as

compared to older systems and the use of FPGA makes the real-time

57

implementation which results in lesser delay. The system was implemented

by Verilog HDL coding and the hardware used is the Xilinx Virtex 5 LX50T

FPGA. The ADC and DAC present in the overall system architecture were

used to test the system through voice communication.

As OFDM has been implemented as the modulation technique, Fast Fourier

Transform (FFT) and Inverse Fast Fourier Transform (FFT) have been chosen

to implement the design instead of the Discrete Fourier Transform and

Inverse Discrete Fourier Transform because they offer better speed with less

computational time.

In conclusion, the main objective of this project has been successfully

accomplished and the result obtained from this project is valid.

58

APPENDIX A

RTL CODE IN VERILOG FOR OFDM TRANSMITTER

//**
// OFDM System - OFDM Transmitter and
// Receiver
//**

module OFDMSystem (

input in,
input clock,
input arst_n,
output TxD,
output start_output
);

wire clock1, clock2;
wire out_fifo, readreq;
wire wrempty;
wire readfull, readempty;

wire [7:0] in_data;
wire wrfull;
wire [7:0] q;
wire [47:0] out_data;

wire idle, RxD_data_ready;

wire rdempty1, rdfull1, wrempty1, wrfull1;
wire [9:0] rdusedw;
wire [6:0] wrusedw;

wire TxD_busy, startserialtrans;

reg start_serialtrans, start_trans;
reg [2:0] skipbytecount;

//**
//PLL
//**

PLL pll(

clock,
clock1,
clock2
);

//***
//FIFO
//***

59

fifo input_data_fifo (

in_data,
clock1,
readreq,
clock2,
RxD_data_ready,
out_fifo,
readempty,
readfull,
wrempty,
wrfull
);

//***************************************
// OFDM Transmitter module
//***************************************

OFDM_transmitter transmitter (

clock1,
arst_n,
out_fifo,
out_data,
wrfull,
readreq,
readempty,
start_output
);

//**
// RS-232 Asyncronous Receiver
//**

async_receiver SerialReceiver(

clock2,
arst_n,
in,
RxD_data_ready,
in_data,
idle
);

//**
// RS-232 Asyncronous Transmitter
//**

async_transmitter serialtrans(

clock2,
arst_n,
start_trans,
q,

60

TxD,
TxD_busy
);

//***
// FIFO for storing transmitter's output
//***

trans_out_fifo fifo(

{out_data,16'd0},
clock2,
(start_serialtrans & ~TxD_busy & !start_trans),
clock1,
start_output,
q,
rdempty1,
rdfull1,
rdusedw,
wrempty1,
wrfull1,
wrusedw
);

//***

always @(posedge clock2 or negedge arst_n)
begin

if(!arst_n)
start_serialtrans <= 1'b0;

else if(wrusedw==71)
start_serialtrans <= 1'b1;

else if(rdempty1)
start_serialtrans <= 1'b0;

end

//***

always @(posedge clock2 or negedge arst_n)
begin

if(!arst_n)
start_trans <= 1'b0;

else if(start_serialtrans && !TxD_busy && skipbytecount!=0 &&
skipbytecount!=1)

start_trans <= 1'b1;
else if(TxD_busy)

start_trans <= 1'b0;
end

//***

always @(posedge clock2 or negedge arst_n)

61

begin
if(!arst_n)

skipbytecount <= 3'd0;
else if(start_serialtrans && !TxD_busy && !start_trans)

skipbytecount <= skipbytecount + 3'd1;
else if(!start_serialtrans)

skipbytecount <= 3'd0;
end

endmodule

//***
// OFDM Transmitter top-level module
//***

module OFDM_transmitter (

input clock,
input arst_n,
input in_data,
output [47:0] out_data,
input wrfull,
output readreq,
input readempty,
output start_output
);

//intermediate outputs of the various blocks

wire scrambler_out, rs_out, even_conv, odd_conv;
wire [1:0] interleaver_out;
wire [47:0] constmap_out, ifft_out, cyclic_out;

//The control word

wire [6:0] controlword;

//************************************
//Control Unit
//************************************

ControlUnit controlunit (

clock,
arst_n,
wrfull,
readempty,
readreq,
controlword
);

62

//*************************************
//Scrambler
//*************************************

Scrambler scrambler (

clock,
arst_n,
controlword[6],
in_data,
scrambler_out
);

//***************************************
//Reed Solomon [RS (15,9)] encoder
//***************************************

ReedSolomon_Encoder rs_enc (

clock,
scrambler_out,
controlword[5],
arst_n,
rs_out
);

//***************************************
//Convolution Encoder (k=7, m=1, n=2)
//***************************************

convolution conv_enc (

clock,
arst_n,
rs_out,
controlword[4],
even_conv,
odd_conv
);

//***********************************
//Interleaver
//***********************************

Interleaver interleaver (

clock,
arst_n,
{odd_conv, even_conv},
controlword[3],
interleaver_out
);

//**
//Constellation Mapper (QPSK)

63

//**

const_mapper constmapper (

clock,
arst_n,
interleaver_out,
constmap_out
);

//**
//IFFT (64-point)
//**

ifft IFFT (

clock,
arst_n,
controlword[2],
constmap_out[47:24],
constmap_out[23:0],
ifft_out[47:24],
ifft_out[23:0]
);

//***
//Cyclic Prefix Adder (1/8)
//***

cyclic_prefix CyclicPrefixAdder (

clock,
arst_n,
controlword[1],
ifft_out,
cyclic_out
);

//***
//End of blocks
//***

assign start_output = controlword[0];
assign out_data = cyclic_out;

endmodule

//***************************************
// Control Unit
//***************************************

module ControlUnit (

input clock,

64

input arst_n,
input readfull,
input readempty,
output reg readreq,
output reg [6:0]controlword
);

reg [5:0] counter_en_scrambler;
reg [5:0] counter_en_rs;
reg [5:0] counter_en_convencoder;
reg [7:0] counter_en_interleaver;
reg [7:0] counter_en_ifft, counter_en_cyclic;
reg [6:0] out_en_counter;

reg temp, temp1;
reg [7:0] dummy_counter;
reg [6:0] dummy_counter1;

//*************************************
//Control signal for Scrambler
//*************************************

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[6] <= 1'b0;

else if(counter_en_scrambler == 6'd35)
controlword[6] <= 1'b0;

else if(readreq)
controlword[6] <= 1'b1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_scrambler <= 6'b000000;

else if(counter_en_scrambler == 6'd35)
counter_en_scrambler <= 6'b000000;

else if(controlword[6])
counter_en_scrambler <= counter_en_scrambler + 6'd1;

end

//**
//Control signal for Reed Solomon Encoder
//**

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[5] <= 1'b0;

else if(counter_en_rs == 6'd60)

65

controlword[5] <= 1'b0;
else if(controlword[6])

controlword[5] <= 1'b1;
end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_rs <= 6'b000000;

else if(counter_en_rs == 6'd60)
counter_en_rs <= 6'b000000;

else if(controlword[5])
counter_en_rs <= counter_en_rs + 6'd1;

end

//***
//Control signal for convolutional encoder
//***

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[4] <= 1'b0;

else if(counter_en_convencoder == 6'd59)
controlword[4] <= 1'b0;

else if(controlword[5])
controlword[4] <= 1'b1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_convencoder <= 6'b000000;

else if(counter_en_convencoder == 6'd59)
counter_en_convencoder <= 6'b000000;

else if(controlword[4])
counter_en_convencoder <= counter_en_convencoder + 6'd1

end

//**************************************
//Control signal for the Interleaver
//**************************************

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[3] <= 1'b0;

else if(counter_en_interleaver == 8'd63)
controlword[3] <= 1'b0;

else if(controlword[4])
controlword[3] <= 1'b1;

66

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_interleaver <= 8'b00000000;

else if(counter_en_interleaver == 8'd63)
counter_en_interleaver <= 8'b00000000;

else if(controlword[3])
counter_en_interleaver <= counter_en_interleaver + 8'd1;

end

//***********************************
//Control signal for ifft
//***********************************

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
temp <= 1'b0;

else if(counter_en_ifft == 8'd80)
temp <= 1'b0;

else if(counter_en_interleaver == 8'd63)
temp <= 1'b1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[2] <= 1'b0;

else if(counter_en_ifft == 8'd67)
controlword[2] <= 1'b0;

else if(counter_en_ifft == 8'd4)
controlword[2] <= 1'b1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_ifft <= 8'b00000000;

else if(counter_en_ifft == 8'd80)
counter_en_ifft <= 8'b00000000;

else if(temp)
counter_en_ifft <= counter_en_ifft + 8'd1;

end

//***************************************
//Control signal for cyclic prefix
//***************************************

always @(posedge clock or negedge arst_n)

67

begin
if(!arst_n)

controlword[1] <= 1'b0;
else if(counter_en_ifft == 8'd80)

controlword[1] <= 1'b1;
else if(counter_en_cyclic == 8'd65)

controlword[1] <= 1'b0;
end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
counter_en_cyclic <= 8'b00000000;

else if(counter_en_cyclic == 8'd65)
counter_en_cyclic <= 8'b00000000;

else if(controlword[1])
counter_en_cyclic <= counter_en_cyclic + 8'd1;

end

//**
//Output control signal
//**

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
dummy_counter1 <= 7'b0000000;

else if(dummy_counter1 == 7'd66)
dummy_counter1 <= 7'b0000000;

else if(controlword[1])
dummy_counter1 <= dummy_counter1 + 7'd1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
controlword[0] <= 1'b0;

else if(dummy_counter1 == 8'd66)
controlword[0] <= 1'b1;

else if(out_en_counter == 7'd71)
controlword[0] <= 1'b0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
out_en_counter <= 7'b0000000;

else if(out_en_counter == 7'd71)
out_en_counter <= 7'b0000000;

else if(controlword[0])
out_en_counter <= out_en_counter + 7'd1;

68

end

//******************************
//Read request
//******************************

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
readreq <= 1'b0;

else if(readfull)
readreq <= 1'b1;

else if(readempty)
readreq <= 1'b0;

end

endmodule

//**
//Scrambler module
//**

module Scrambler (

input clock, //positive edged clock signal
input arst_n, //Asynchronous negitive edged reset
input enable,
input in, //Input to the Scrambler
output out //Output of the Scrambler
);

reg [6:0] LFSR; //the 7-bit Linear Feedback Shift

//Register

wire actual_in;

reg [5:0] count;
reg zero;

assign actual_in = (!zero) ? in:1'b0;

//**
//This always block shifts the LFSR register
//one position towards right and shifts the
//input XORed with the feedback in the left
//most position of LFSR. If arst_n is asserted
//then seed value is fed to the LFSR
//***

always @(negedge arst_n or posedge clock)
begin

69

if(!arst_n)
LFSR <= 7'b1110101;

else if(!enable)
LFSR <= 7'b1110101;

else if(enable)
LFSR <= {actual_in ^ LFSR[0] ^ LFSR[3], LFSR[6], LFSR[5], LFSR[4],
LFSR[3], LFSR[2], LFSR[1]};

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
count <= 6'd0;

else if(enable)
count <= count + 6'd1;

else if(!enable)
count <= 6'd0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
zero <= 1'b0;

else if(count==31)
zero <= 1;

else if(!enable)
zero <= 1'b0;

end

assign out = LFSR[6];

endmodule

//**
// Bit-Serial RS(15,9) Encoder
//**

module ReedSolomon_Encoder (

input clock,
input in_data,
input enable,
input arst_n,
output reg out
);

reg [3:0] Reg0, Reg1, Reg2, Reg3, Reg4;

wire [1:0] count_out;
wire R5out, out_data;
wire [3:0] GF_out;

70

wire red, clearA, reset;

assign reset = ~clearA & arst_n;

GF_multiply_sum multiply_sum (

clock,
(~(count_out[0] & count_out[1])) & arst_n,
{(R5out ^ (in_data & ~red)) & ~red,
Reg4[0],
Reg3[0],
Reg2[0],
Reg1[0],
Reg0[0]},
enable,
GF_out
);

COUNTER_2_BIT counter2bit (

clock,
arst_n,
enable,
count_out
);

Redundancy redundancy (

clock,
arst_n,
enable,
red,
clearA
);

s_reg_par_load_4 Reg5 (

~(count_out[0] & count_out[1]),
GF_out,
1'b0,
clock,
reset,
enable,
R5out
);

MUX_2_1 mux (

(in_data & ~red),
(R5out ^ (in_data & ~red)),
red,
out_data
);

always @(posedge clock or negedge reset)
begin

71

if(!reset)
Reg4 <= 4'b0000;

else if(enable)
Reg4 <= {(R5out ^ (in_data & ~red)) & ~red, Reg4[3:1]};

else if(!enable)
Reg4 <= 4'b0000;

end

always @(posedge clock or negedge reset)
begin

if(!reset)
Reg3 <= 4'b0000;

else if(enable)
Reg3 <= {Reg4[0], Reg3[3:1]};

else if(!enable)
Reg3 <= 4'b0000;

end

always @(posedge clock or negedge reset)
begin

if(!reset)
Reg2 <= 4'b0000;

else if(enable)
Reg2 <= {Reg3[0], Reg2[3:1]};

else if(!enable)
Reg2 <= 4'b0000;

end

always @(posedge clock or negedge reset)
begin

if(!reset)
Reg1 <= 4'b0000;

else if(enable)
Reg1 <= {Reg2[0], Reg1[3:1]};

else if(!enable)
Reg1 <= 4'b0000;

end

always @(posedge clock or negedge reset)
begin

if(!reset)
Reg0 <= 4'b0000;

else if(enable)
Reg0 <= {Reg1[0], Reg0[3:1]};

else if(!enable)
Reg0 <= 4'b0000;

end

//Registering the output

always @(posedge clock)

72

begin
out <= out_data;

end

endmodule

//***
//Convolutional Encoder module
//***

module convolution(

input clock,
input arst_n,
input in,
input enable,
output even,
output odd
);

reg [0:6] Reg;
wire actual_in;

assign actual_in = enable?in:1'b0;

always @(negedge arst_n or posedge clock)
begin

if(!arst_n)
Reg = 7'b0000000;

else if(!enable)
Reg = 7'b0000000;

else if(enable)
Reg ={Reg[1],Reg[2],Reg[3],Reg[4],Reg[5],Reg[6],actual_in};

end

assign even = Reg[6] ^ Reg[1] ^ Reg[3] ^ Reg[4] ^ Reg[0];
assign odd = Reg[6] ^ Reg[5] ^ Reg[3] ^ Reg[4] ^ Reg[0];

endmodule

//**
//Interleaver: Performs Interleaving within a block of 128 bits
//**

module Interleaver (

input clock,
input arst_n,
input [1:0] in,
input enable,
output [1:0] out

73

);

reg [4:0] Counter1;
reg [4:0] Counter2;
reg [2:0] C;
reg [5:0] add_counter;
reg [5:0] sync_counter;
reg SYNC, SYNC1;
reg en1, enable2, enable_1, addcounten;
reg [1:0] reg_in, reg_in1;

wire sig;
wire out1A, out2A, out1B, out2B;
wire [1:0] out1;
wire [1:0] out2;
wire [5:0] rd_address;

assign sig = C[0] & C[1] & C[2];
assign out1 = {out1A, out2A};
assign out2 = {out1B, out2B};
assign out = (SYNC1) ? out1 : out2;

sync_dpram_64x1_rrwrou RAM1A (

clock,
reg_in1,
rd_address,
Counter1,
!en1 & !SYNC,
out1A
);

sync_dpram_64x1_rrwrou RAM2A (

clock,
reg_in1,
rd_address,
Counter2,
en1 & !SYNC,
out2A
);

sync_dpram_64x1_rrwrou RAM1B (

clock,
reg_in1,
rd_address,
Counter1,
!en1 & SYNC,
out1B
);

sync_dpram_64x1_rrwrou RAM2B (

clock,

74

reg_in1,
rd_address,
Counter2,
en1 & SYNC,
out2B
);

ROM_64_6 ROM (

add_counter,
clock,
rd_address
);

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
Counter1 <= 5'b00000;

else if(!en1 & enable2)
Counter1 <= Counter1 + 5'd1;

else if(!enable2)
Counter1 <= 5'd0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
Counter2 <= 5'b00000;

else if(en1 & enable2)
Counter2 <= Counter2 + 5'd1;

else if(!enable2)
Counter2 <= 5'd0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
C <= 3'd0;

else if(enable2)
C <= C + 3'd1;

else if(!enable2)
C <= 3'd0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
add_counter <= 6'b000000;

else if(addcounten)
add_counter <= add_counter + 6'd1;

else if(!addcounten)
add_counter <= 6'b0;

75

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
en1 <= 0;

else if(sig)
en1 <= ~en1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
sync_counter <= 6'b000000;

else if(enable2)
sync_counter <= sync_counter + 6'd1;

else if(!enable2)
sync_counter <= 6'b000000;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
SYNC <= 1'b0;

else if(sync_counter == 6'b111111)
SYNC <= ~SYNC;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
SYNC1 <= 1'b0;

else
SYNC1 <= SYNC;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
enable_1 <= 1'b0;

else
enable_1 <= enable;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
enable2 <= 1'b0;

else
enable2 <= enable_1;

end

76

always @(posedge clock)
begin

reg_in <= in;
reg_in1 <= reg_in;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
addcounten <= 1'b0;

else if(sync_counter==61)
addcounten <= 1'b1;

else if(add_counter==63)
addcounten <= 1'b0;

end

endmodule

//**
//Constellation Mapper - Maps bits onto QPSK Symbols
//**

module const_mapper (

input clock,
input arst_n,
input [1:0] in,
output [47:0] data_out
);

ROM_48_4 ROM (

in,
clock,
data_out
);

endmodule

//************************************
//ifft
//************************************

module ifft (

input clock,
input arst_n,
input enable,
input [23:0] realinput,
input [23:0] imginput,
output [23:0] realoutput,

77

output [23:0] imgoutput
);

wire [23:0] swappedrealin, swappedimgin;
wire [23:0] temprealoutput, tempimgoutput;
wire [47:0] out1;
wire [6:0] rem1, rem2;

assign swappedrealin = imginput;
assign swappedimgin = realinput;

fft_processor fft (

clock,
arst_n,
enable,
swappedrealin,
swappedimgin,
out1[47:24],
out1[23:0]
);

//**************************************
//Instantiation of the dividers
//**************************************

divider_ifft divider1 (

clock,
7'd64,
temprealoutput,
realoutput,
rem1
);

divider_ifft divider2 (

clock,
7'd64,
tempimgoutput,
imgoutput,
rem2
);

assign temprealoutput = out1[23:0];
assign tempimgoutput = out1[47:24];

endmodule

//***
// Addition of cyclic prefic
//***

78

module cyclic_prefix (
input clock,
input arst_n,
input enable,
input [47:0] in,
output [47:0] out
);

reg [5:0] wraddcounter, rdadd;
reg [47:0] temp_in, temp_in1;
reg [6:0] temp_counter;
reg [5:0] sync_counter;
reg read_counter_enable;
reg sync, sync1, enable1, enable2;

wire [47:0] out1, out2;
wire [5:0] wradd;

assign out = sync1?out1:out2;

//ROM for write address

ROM_64x6_cyclicprefix rdaddROM (

wraddcounter,
clock,
wradd
);

//Instantiation of RAMs

RAM_64x48 RAM1 (

~arst_n,
clock,
temp_in1,
1'b1,
rdadd,
wradd,
~sync,
out1
);

RAM_64x48 RAM2 (

~arst_n,
clock,
temp_in1,
1'b1,
rdadd,
wradd,
sync,
out2
);

79

//Always blocks

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
wraddcounter <= 6'b000000;

else if(!enable)
wraddcounter <= 6'b000000;

else if(enable)
wraddcounter <= wraddcounter + 6'd1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
rdadd <= 6'd56;

else if(temp_counter == 7'd71)
rdadd <= 6'd56;

else if(read_counter_enable)
rdadd <= rdadd + 6'd1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
temp_counter <= 7'b0000000;

else if(read_counter_enable)
temp_counter <= temp_counter + 7'd1;

else if(temp_counter == 7'd71)
temp_counter <= 7'd0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
read_counter_enable <= 1'b0;

else if(sync_counter == 6'd62)
read_counter_enable <= 1'b1;

else if(temp_counter == 7'd70)
read_counter_enable <= 1'b0;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
sync_counter <= 6'b000000;

else if(enable2)
sync_counter <= sync_counter + 6'd1;

else if(!enable2)
sync_counter <= 6'b000000;

80

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
enable1 <= 1'b0;

else
enable1 <= enable;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
enable2 <= 1'b0;

else
enable2 <= enable1;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
sync <= 1'b0;

else if(sync_counter == 6'b111111)
sync <= ~sync;

end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
sync1 <= 1'b0;

else
sync1 <= sync;

end

always @(posedge clock)
begin

temp_in <= in;
temp_in1 <= temp_in;

end

endmodule

//*************************************
// RS-232 RX module
//*************************************

module async_receiver (

input clk,
input arst_n,
input RxD,

81

output reg RxD_data_ready,
output reg [7:0] RxD_data,
output RxD_idle
);

parameter Baud = 115200;

// We also detect if a gap occurs in the received stream of characters
// Baud generator (we use 8 times oversampling)

parameter Baud8 = Baud*8;
parameter Baud8GeneratorAccWidth = 16;
wire Baud8Tick;

reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;

always @(posedge clk or negedge arst_n)
begin

if(!arst_n)
Baud8GeneratorAcc <= 17'd0;

else
Baud8GeneratorAcc
<=Baud8GeneratorAcc[Baud8GeneratorAccWidth-1:0] + 16'd2416;

end

assign Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];

reg [1:0] RxD_sync_inv;

always @(posedge clk or negedge arst_n)
begin

if(!arst_n)
RxD_sync_inv <= 2'd0;

else if(Baud8Tick)
RxD_sync_inv <= {RxD_sync_inv[0], ~RxD};

end

reg [1:0] RxD_cnt_inv;
reg RxD_bit_inv;

//Filtering the data so that short spikes on
//RxD are not mistaken as start bits

always @(posedge clk or negedge arst_n)
begin

if(!arst_n)
RxD_cnt_inv <= 2'd0;

else if(Baud8Tick)
begin

if(RxD_sync_inv[1] && RxD_cnt_inv!=2'b11)
RxD_cnt_inv <= RxD_cnt_inv + 2'h1;

82

else if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00)
RxD_cnt_inv <= RxD_cnt_inv - 2'h1;

if(RxD_cnt_inv==2'b00)
RxD_bit_inv <= 1'b0;

else if(RxD_cnt_inv==2'b11)
RxD_bit_inv <= 1'b1;

end

end

reg [3:0] state;
reg [3:0] bit_spacing;

// "next_bit" controls when the data sampling occurs
// with a clean connection, values from 8 to 11 work

wire next_bit = (bit_spacing==4'd8);

always @(posedge clk)
begin

if(state==0)
bit_spacing <= 4'b0000;

else if(Baud8Tick)
bit_spacing <= {bit_spacing[2:0] + 4'b0001} |
{bit_spacing[3], 3'b000};

end

always @(posedge clk)
begin

if(Baud8Tick)
case(state)

4'b0000: if(RxD_bit_inv) state <= 4'b1000; // start bit found?
4'b1000: if(next_bit) state <= 4'b1001; // bit 0
4'b1001: if(next_bit) state <= 4'b1010; // bit 1
4'b1010: if(next_bit) state <= 4'b1011; // bit 2
4'b1011: if(next_bit) state <= 4'b1100; // bit 3
4'b1100: if(next_bit) state <= 4'b1101; // bit 4
4'b1101: if(next_bit) state <= 4'b1110; // bit 5
4'b1110: if(next_bit) state <= 4'b1111; // bit 6
4'b1111: if(next_bit) state <= 4'b0001; // bit 7
4'b0001: if(next_bit) state <= 4'b0000; // stop bit
default: state <= 4'b0000;

endcase
end

always @(posedge clk)
begin

if(Baud8Tick && next_bit && state[3])
RxD_data <= {~RxD_bit_inv, RxD_data[7:1]};

end

83

always @(posedge clk)
begin

RxD_data_ready <= (Baud8Tick && next_bit && state==4'b0001 &&
~RxD_bit_inv);

// ready only if the stop bit is received
end

reg [4:0] gap_count;

always @(posedge clk)
begin

if (state!=0)
gap_count<=5'h00;

else if(Baud8Tick & ~gap_count[4])
gap_count <= gap_count + 5'h01;

end

assign RxD_idle = gap_count[4];

endmodule

84

APPENDIX B

RTL CODE IN VERILOG FOR OFDM RECEIVER

//**
// OFDM Receiver module
//**

module OFDM_receiver (

input clock,
input arst_n,
input enable,
input [47:0] in_data,
output out_data
);

wire [5:0] controlword;
wire [47:0] fft_output;
wire [1:0] demap_output, deinterleaver_output;

reg source_rdy, sink_val;
reg eras_sym;

wire sink_rdy, source_val, decbit;
wire [7:0] normalizations;

reg rs_source_ena, rs_sink_val, rs_sink_eop, rs_sink_sop;
reg [3:0] rsin;

wire rs_decfail, rs_sink_ena, rs_source_val;
wire rs_source_sop, rs_source_eop;
wire [2:0] num_err_sym;
wire [3:0] rsout;

//***
// Control Unit
//***

Receiver_control_unit control_unit (

clock,
arst_n,
enable,
controlword
);

//***
// Fast Fourier Trasnform
//***

fft_processor fft (

clock,

85

arst_n,
controlword[5],
in_data[47:24],
in_data[23:0],
fft_output[47:24],
fft_output[23:0]
);

//***
// Constellation De-Mapper
//***

const_demapper constellation_demapper (

clock,
arst_n,
fft_output,
demap_output
);

//***
// De-interleaver
//***

DeInterleaver interleaver (

clock,
arst_n,
demap_output,
controlword[4],
deinterleaver_output
);

//***
// Viterbi Decoder
//***

viterbi viterbidecoder (

.clk(clock),

.decbit(decbit),

.eras_sym(eras_sym),

.normalizations(normalizations),

.reset(~arst_n),

.rr(deinterleaver_output),

.sink_rdy(sink_rdy),

.sink_val(sink_val),

.source_rdy(source_rdy),

.source_val(source_val)
);

//**
// Reed-Solomon Decoder
//**

86

rsdec rsdecoder (

.bypass(1'b0),

.clk(clock),

.decfail(decfail),

.num_err_sym(num_err_sym),

.reset(~arst_n),

.rsin(rsin),

.rsout(rsout),

.sink_ena(rs_sink_ena),

.sink_eop(rs_sink_eop),

.sink_sop(rs_sink_sop),

.sink_val(rs_sink_val),

.source_ena(rs_source_ena),

.source_eop(rs_source_eop),

.source_sop(rs_source_sop),

.source_val(rs_source_val)
);

//***
// Descrambler
//***

Descrambler descrambler(

clock,
arst_n,
enable,
in,
out
);

endmodule

//**
//Module - Descrambler
//**

module Descrambler (

input clock,
input arst_n,
input enable,
input in,
output reg out
);

reg [6:0] LFSR;

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)

87

LFSR <= 7'b1110101;
else if(!enable)

LFSR <= 7'b1110101;
else if(enable)

LFSR <= {in, LFSR[6], LFSR[5], LFSR[4], LFSR[3], LFSR[2], LFSR[1]};
end

always @(posedge clock or negedge arst_n)
begin

if(!arst_n)
out <= 1'b0;

else
out <= in ^ LFSR[0] ^ LFSR[3];

end

endmodule

88

REFERENCES

[1] Jeffrey G. Andrews and Rias Muhammad, Fundamentals of WIMAX.
Prentice Hall Communications Engineering, 2006.

[2] Ahmed R. S. Bahai and Burton R. Saltzberg, Multi Carrier Digital
Communications. Kluwer Academic Publishers, 2002.

[3] Aseem Pandey, Shyam Ratan Agrawalla & Shrikant Manivannan, “VLSI
Implementation of OFDM”, Wipro Technologies, September 2002.

[4] Dusan Matiae, “OFDM as a possible modulation technique for multimedia
applications in the range of mm waves”, TUD-TVS, 1998.

[5] “Orthogonal Frequency Division Multiplexing Tutorial”, Intuitive guide to
Principles of Communications, http://www.complextoreal.com

[6] Magis Networks White paper, “Orthogonal Frequency Division Multiplexing
(OFDM) Explained,” Inc. 2001

[7] “Orthogonal Frequency-Division Multiplexing (OFDM)”, the International
Union of Radio Science (URSI), Lulea University of Technology, 2002

[8] Michael D. Ciletti, Advanced Digital Design with the Verilog HD Xilinx
Design Series. Prentice Hall, 2002.

[9] Lattice Semiconductor white paper, “Implementing WiMAX OFDM Timing
and Frequency Offset Estimation in Lattice FPGAs,” 2005.

[10] J. L. Holsinger, “Digital communication over fixed time-continuous
channels with memory, with special application to telephone channels,” PhD
thesis, Massachusetts Institute of Technology, 1964.

[11] “A Tutorial on Convolutional Coding with Viterbi Decoding”, Spectrum
Applications, http://home.netcom.com/~chip.f/viterbi/tutorial.html.

[12] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division
multiplexing using the discrete Fourier transform”, IEEE Trans.
Communications, COM-19(5): 628-634, Oct. 1971.

[13] “Interleaver”, Wikipedia the free encyclopedia,
http://en.wikipedia.org/wiki/Interleaver

[14] “DFT”, Wikipedia the free Encyclopedia,
en.wikipedia.org/wiki/Discrete_Fourier_transform

http://www.complextoreal.com/
http://home.netcom.com/~chip.f/viterbi/tutorial.html
http://en.wikipedia.org/wiki/Interleaver

89

[15] L. J. Cimini “Analysis and simulation of a digital mobile channel using
orthogonal frequency division multiplexing.” IEEE Transactions on
Communications, 33(7):665–675, July 1985.

[16] S. Weinstein and P. Ebert “Data transmission by frequency-division
multiplexing using the discrete Fourier transform.” IEEE Transactions on
Communications, 19(5):628–634, October 1971.

[17] “Fast Fourier Transform”, Molfram MathWorld,
mathworld.wolfram.com/FastFourierTransform.html

