
REAL TIME GUN PROFILER FOR HIGH

SPEED OBJECTS

By

Amna Irum (Ldr)

Wajeeha Kanwal

Hafiz Asif Raza

Capt. Faisal Javeed

A thesis submitted to the faculty of Computer Science Department Military College of
Signals, National University of Sciences and Technology, Rawalpindi in partial

fulfillment of the requirements for the degree of B.E in Computer Software Engineering.

April 2006

 ii

Declaration

No portion of the work presented in this study has been submitted in support of another

award or qualification either at this institute or elsewhere.

 iii

Dedication

We would like to dedicate this project to our loving parents for their unwavering support

and to the talented, energetic faculty of our college for their guidance and assistance.

 iv

Abstract

We address the issue of tracking speedy objects such as aircrafts in a situation where the

target object and the camera tracking this target, are both in motion. Such a case would be

when an aircraft is being detected and tracked through a video stream obtained from a

camera mounted on an anti-aircraft machine. The target is tracked with respect to the

gunner aiming at the target from his machine. The path information of both, the target

movement and the gunner’s aim is compared to provide a complete tracking profile of the

gunner. Other motion parameters are analyzed to give hit or miss status of the target

when the gunner fires at the aircraft. The horizontal, vertical and radial deviation of the

target from the aim is used to assess the aiming stability of the gunner. The proposed

system is used to train personnel for real time aircraft shooting without wasting ammo. It

will help in evaluating the aiming capabilities of a gunner.

 v

Acknowledgements

We would like to acknowledge our advisors Lt. Col Naveed Khattak (NUST) and Dr.

Moeed Mufti (TELEMATIX) for their supervision and support and for keeping their faith

in our abilities. We would also like to thank our esteemed instructors who helped make us

who we are and nurtured our capabilities, giving us the skills and the confidence to take

on mountains and emerge victorious.

 vi

TABLE OF CONTENTS

List of Tables...x
List of Figures..x

Chapter 1 INTRODUCTION...1

1.1 Introduction..1
1.2 Aim..1
1.3 Background..2
1.4 Organization of the Study..3
1.5 Detailed Objectives..3
1.6 Long Term Objectives and Benefits..4

Chapter 2 LITRATURE REVIEW..5

2.1 Introduction..5
2.2 Microsoft Visual C++..5
2.3 The Component Object Model..6

2.3.1 Purpose...7
2.3.2 Application...7
2.3.3 Language Requirement..7

2.4 COM Objects..7
2.4.1 Interfaces..8
2.4.2 Interface Implementation …..…….10
2.4.3 Interface Pointers..10
2.4.4 IUnknown Interface..11
2.4.5 Reference Counting..12
2.4.6 QueryInterface..13
2.4.7 Marshalling...13
2.4.8 Aggregation...14

2.5 Microsoft DirectX 9.0..14
2.5.1 Components of DirectX..14

2.5.1.1 Direct3D Graphics...15
2.5.1.2 DirectDraw...15
2.5.1.3 DirectInput...15
2.5.1.4 DirectPlay..15
2.5.1.5 DirectSound...16
2.5.1.6 DirectMusic...16

2.6 Introduction to DirectShow...16
2.6.1 Header Files and Library Files...17
2.6.2 DirectShow Filters..17
2.6.3 IGraphBuilder Interface..19
2.6.4 ICaptureGraphBuilder2 Interface...19
2.6.5 IMediaControl Interface...19

 vii

2.6.6 IMediaEvent Interface..20
2.6.7 IVideoWindow Interface..20
2.6.8 ICreateDevEnum Interface...20
2.6.9 IBaseFilter Interface...20
2.6.10 ISampleGrabberCB Interface...21
2.6.11 Video Capturing...21
2.6.12 Pin Categories..21
2.6.13 Selecting a Capture Device..22
2.6.14 Previewing Video...22

2.7 ADO (ActiveX Data Object)...23
2.7.1 Purpose...23
2.7.2 Limitations..24
2.7.3 OLE DB..24
2.7.4 ADO Data Controls...24
2.7.5 Using Data Controls with Data-Bound Controls..............................25

Chapter 3 METHODOLOGY..26

3.1 Introduction..26
3.2 Existing System...26

3.2.1 Previously used techniques for Target Tracking..............................26
3.2.2 Drawbacks of Existing System...27

3.3 Proposed System..27
3.3.1 Target Tracking...28

3.4 Functional Requirements...28
3.5 Non- Functional Requirements..29

3.5.1 Challenges of Visually Guided Tracking..29
3.5.2 Challenges of Tracking High Speed Objects in Real Time..............30

3.6 Benefits..30

Chapter 4 SYSTEM MODEL..32

4.1 Introduction..32
4.1.1 Video Input...32
4.1.2 Image Acquisition...34
4.1.3 Noise Filtering..34
4.1.4 Target Identification..35
4.1.5 Target Deviation...35
4.1.6 Database..36
4.1.7 Graphical Representation..36

 4.2 Software System Attributes...37
4.2.1 Reliability..37
4.2.2 Availability...37
4.2.3 Maintainability..37
4.2.4 Usability..37
4.2.5 Economical...37

 viii

 Chapter 5 DESIGN...38

 5.1 Introduction..38

5.2 Software Design...38
5.3 Data Design..38

5.3.1 Actors..39
5.3.2 Use-Cases..39
5.3.3 Use-case Diagram...40
5.3.4 Uses-cases Description...41

5.4 Architectural Design..43
5.4.1 Activity Diagram..43

5.5 Interface Design...46
5.5.1 Data Flow Model..46

5.6 Component Level Design..47
5.6.1 Class Diagrams...47
5.6.2 Software Class Diagrams..48
5.6.3 Software Class Description...49
5.6.4 Gun Profiler Dlg Class..49
5.6.5 Tracking Dlg Class...50
5.6.6 Database Main Dlg...51
5.6.7 Record Class...52
5.6.8 Graphs Class...52

Chapter 6 IMPLEMENTATION...54

6.1 Introduction..54
6.2 Camera Calibration..54
6.3 Image Acquisition..55

6.3.1 Drawbacks of Video for Windows...55
6.3.2 DirectShow API..56

6.4 Noise Filtering...56
6.4.1 Image Enhancement Filters...57
6.4.2 Thresh-holding..58

6.5 Target Identification...60
6.5.1 Algorithm..60
6.5.2 Region Properties..61

6.6 Estimating Target Deviation from Aim...61
6.6.1 TARGET HIT/MISSED INFORMATION......................................63

6.7 Graphical Representation of aiming path..63

 Chapter 7 TESTING...65

7.1 Introduction...65
7.2 Accuracy..65
7.3 Limitations of the System..67

 ix

Chapter 8 FUTURE WORK AND CONCLUSION..68

8.1 Overview..68
8.2 Future Work...69

8.2.1 Distributed Tracking System..69
8.2.2 Accurate Shooting System..70
8.2.3 Night time operation...70

8.3 Conclusion...70

BIBLOGRAPHY...71

 x

List of Tables

Table 2.1 Header Files for Direct Show..17
Table 2.2 Library Files...17
Table 2.3 Categories of capture devices..22
Table 2.4 ADO Controls and Support files..25
Table 5.1 Gun Profiler Dlg Class...49
Table 5.2 Tracking Dlg Class..50
Table 5.3 Database Main Dlg..51
Table 5.4 Record Class..52
Table 5.5 Graphs Class..52

List of Figures

Figure 2.1 ICaptureGraphBuilder2 Interface...19
Figure 2.2 Previewing video..22
Figure 4.1 SYSTEM DETAILED BLOCK DIAGRAM………………………. 33
Figure 5.1 Actor icon in UML...40
Figure 5.2 Use case icon in UML..40
Figure 5.3 Use-Case Diagram..40
Figure 5.4 UML icons for Activity Diagram...43
Figure 5.5 Activity diagram for the Image Acquiring phase.................................44
Figure 5.6 Activity diagram for the Target Identification Phase...........................45
Figure 5.7 UML notations for Data Flow Model...46
Figure 5.8 Data Flow Diagram..47
Figure 5.9 Software Class Diagram...48
Figure 6.1 Block Diagram...54
Figure 6.2 Height levels after Thresholding..57
Figure 6.3 An Image Before and After Thresholding..58
Figure 6.4 An Image Before and after noise removal..59
Figure 6.5 Union Find Data Structure for two set of labels...................................61
Figure 6.6 Pythagorean distance between Aim and Target...................................62
Figure 6.7 Tracking Graph...63
Figure 6.8 Horizontal Deviation Graph...64
Figure 6.9 Vertical Deviation Graph...64
Figure 6.10 Radial Deviation Graph..64
Figure 7.1 Camera Mount..65
Figure 7.2 Camera Calibration...66

 xi

Chapter 1

INTRODUCTION

1.1 Introduction

This chapter introduces the Real Time Gun Profiler and the development of this project. It

includes both the brief and detailed objectives. The benefits of the project as well as the

background are also provided. This chapter gives a brief overview of the entire document.

1.2 Aim

The cost of training personnel for anti aircraft machines by using live testing with real

artillery is prohibitively handsome. There are many chances of human errors in such a

testing system which lead not only to a waste of ammunition but also provides a difficult

situation for evaluation of the gunner’s shooting ability. To reduce the reliance on human

expertise a need is felt to develop a system that provides a live anti aircraft machine

testing environment for the trainer; and allows real time field testing without requiring

real shells and bullets. The motive that drives this project is to create an aircraft shooting

system that does not involve wastage of ammunition. Moreover in case of fast moving

targets (aircrafts) it is impossible to determine the exact tracking path followed by a

human as he aims for the target; nor is it possible to calculate the accurate deviation of

the target from its aim when the target is shot. To avoid the cost and consumption of real

missiles and to avoid the limitations of a shooting system that relies on human expertise,

we offer an automated shooting system that allows real time or live shooting of aircrafts

without wasting shells. The system has been based on visual tracking seeing that this

field has emerged as an important component of defense systems and it has existed since

the first time aircrafts were used in battle. Previously designed systems which used

visually guided tracking as a tool to maintain gaze on moving objects with respect to the

eyes did not provide any information regarding the tracking skills of a human gunner and

for that reason they could not be used as a training tool. The aim of this project is to

 xii

address this specific issue of tracking speedy objects in a case where camera and target

both are in motion in the context of visual input to provide a complete shooting profile of

the trainer and help evaluate his stability and aiming aptitude for training purposes. The

system will help in estimating and improving the aiming capabilities of a trainee (the

gunner) without wasting ammo. This training tool can be used as the basic idea for

developing further simulators or trainer systems of advanced weaponry and guns.

1.3 Background

Target detection and tracking moving objects in sequential images is an essential task in a

number of applications, such as security, surveillance, vehicle navigation and robotics

etc. One such application is to train personnel in using anti-aircraft machines for aiming

and firing at high speed moving targets in the air; without wasting real ammunition. The

processing of a video stream for characterizing events of interest such as the aiming at an

object in the field view of a gunner relies on the detection, in each frame, of the objects

involved, and the temporal integration of this frame based information. This high level

description of a video stream relies on accurate detection and tracking of the moving

objects, and on the relationship of their trajectories to the scene.

Most of the techniques used for tracking moving objects deal with a stationary camera

[1],[2] or closed world representations [3],[4] which rely on a fixed background or a

specific knowledge on the type of actions taking place. We deal with a more challenging

type of video streams: the one obtained from a moving camera. Moreover the target

tracking algorithms developed for tracking targets based on sonar and radar

measurements could be used for tracking (also known as motion correspondence) but for

a system to operate at video frame-rate (possibly even higher rates) limits the use of these

well-established statistical and non-statistical tracking algorithms.

Therefore to meet the real time requirements, we propose to identify and track targets by

their measured positions and motion parameters derived from video stream processing.

 xiii

1.4 Organization of the Study

In the next chapter, there is a brief account of the block level overview of the system.

Next we present each module of the project in detail and the techniques used for

identifying and tracking target objects, along with the measuring of the target deviation

from the aim. Chapter 9 includes some screenshots and system menu details and in

chapter 10, we give the experimental results obtained by running the algorithm on actual

hardware. The main focus of this document is on describing a real-time gun profiler

system that tracks targets with respect to a human gunner and describing various

techniques needed to accomplish this. Finally, we present the limitations of the system

and the future work associated with it.

1.5 Detailed Objectives

The proposed system is a real time aircraft shooting system and the basic objective was to

create a live aircraft tracking system that does not involve wastage of ammunition for

training of personnel. It can be used as a training tool to teach personnel, the necessary

skills for shooting aircrafts and it can also evaluate the shooting ability of a person who is

tracking and aiming at a high speed moving object such as an aircraft. Other objectives

include the generation of a complete shooting profile of the trainer to help evaluate his

stability and aiming capabilities. The human gunner performs realistic aiming at the target

from his machine while the system generates a graphical representation of this aiming path

followed by the anti aircraft machine. The system not only determines the tracking path

followed by a human trainee as he aims for the aircraft and fires at it but also calculates the

deviation of the tracked aircraft from its aim when the target is shot.

This project presents a visual tracker which can keep track of the target with respect to

the gunner’s aim for the target. The system will help in estimating and improving the

aiming abilities of a trainee (the gunner) without wasting ammo. The trainee will track

the high speed target such as an aircraft with a camera mounted on his gun and press a

trigger to shoot it just like real time shooting but without a shell. Using the information of

 xiv

the camera a profile is made which includes deviation of the actual aircraft from the

tracking movements of the trainee and gives the hit or missed status information of the

target when it is shot. To accomplish this central challenge is to determine the image

position of an object, or target region of an object, as the target moves through a camera’s

field of view. Once the image position is determined the distance from the target relative

to its size is calculated. This information is used for realistic simulation of aircrafts. The

system allows field testing with real machines but without real ammunition.

The end-users of the system will be the personnel who will use this software as a training

tool to teach new gunners the art of aircraft aiming and firing. The trainee will be

evaluated by the software for his gunning capabilities.

1.6 Long Term Objectives and Benefits

The work done so far in the visual target tracking field is related to only a limited set of

applications such as surveillance [8],[9], autonomous vehicle navigation [9], robotic gaze

control [11],[12], visual reconstruction [13] and missile guidance. Target detection and

tracking moving objects in sequential images is an essential task in all such applications.

One other application is to train personnel in using anti-aircraft machines for aiming and

firing at high speed moving targets in the air; without wasting real ammunition. This

issue has been addressed by our project however many long term benefits root out from

this project such as the implementation of a similar visual tracking system for more

advanced and heavy artillery. The system can be extended to provide exact details of the

target object such as the percentage damage done to it when the aircraft is shot. As a

training and evaluation tool this gun profiler system can be used for the realistic training

of troops and for the evaluation of their target tracking and shooting skills. The wastage

of real ammunition is not required in any scenario, whether the system is used or training

or for evaluation.

 xv

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The Microsoft Visual C++ platform has been used for the development of the project as

many features have been built into this development environment to enable creation of

very advanced applications for the Windows and NT platforms. Microsoft Visual C++

development environment and its set of tools allow developers to create Windows based

applications with a great level of ease and speed. The DirectX support has been used for

acquiring video stream data from the camera. In the literature review section a brief

account of the Visual C++ development environment and the DirectX APIs is included.

The DirectX component DirectShow which has been integrated into the main application

to perform multimedia steaming is also discussed in this chapter.

2.2 Microsoft Visual C++

Microsoft Visual C++ provides the dynamic development environment for creating

Microsoft Windows–based and Microsoft .NET–based applications, dynamic Web

applications, and XML Web services using the C++ development language. Visual

C++ .NET includes the industry-standard Active Template Library (ATL) and Microsoft

Foundation Class (MFC) libraries, advanced language extensions, and powerful

integrated development environment (IDE) features that enable developers to edit and

debug source code efficiently.

It provides developers with a proven, object-oriented language for building powerful and

performance-conscious applications. With advanced template features, low-level

platform access, and an optimizing compiler, Visual C++ .NET delivers superior

functionality for generating robust applications and components. The product enables

developers to build a wide variety of solutions, including Web applications and Microsoft

Windows-based applications. C++ is the world's most popular systems-level language,

 xvi

and Visual C++ gives developers a world-class tool with which to build software. The

Microsoft Visual C++ Framework is designed to fulfill the following objectives

• To provide a consistent object-oriented programming environment.

• To provide a code-execution environment that minimizes software deployment

and versioning conflicts.

• To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based applications.

• To build all communication on industry standards to ensure that code based on the

C++ Framework can integrate with any other code.

2.3 The Component Object Model (COM)

COM is the architecture for defining interfaces and interaction among objects

implemented by widely varying software applications. A COM object instantiates one or

more interfaces, each of which exposes zero or more properties and zero or more

methods. All COM interfaces are derived from the base class IUnknown. Technologies

built on the COM foundation include ActiveX, MAPI, and OLE.

COM specifies an object model and programming requirements that enable COM objects

(also called COM components, or sometimes simply objects) to interact with other

objects. These objects can be within a single process, in other processes, and can even be

on remote machines. They can have been written in other languages, and they may be

structurally quite dissimilar, which is why COM is referred to as a binary standard—a

standard that applies after a program has been translated to binary machine code. COM

(and all COM-based technologies) are not object-oriented language and COM does not

specifying how an application should be structured; the language, structure, and

implementation details are left to the application programmer.

 xvii

2.3.1 Purpose

COM is a platform-independent, distributed, object-oriented system for creating binary

software components that can interact. COM is the foundation technology for Microsoft's

OLE (compound documents) and ActiveX® (Internet-enabled components) technologies,

as well as others. COM specifies the basic binary object standard and also defines certain

basic interfaces that provide functions common to all COM-based technologies, and it

provides a small number of API functions that all components require. COM also defines

how objects work together over a distributed environment and has added security features

to help provide system and component integrity.

2.3.2 Application

COM objects can be created with a variety of programming languages. Object-oriented

languages, such as C++, provide programming mechanisms that simplify the

implementation of COM objects. These objects can be within a single process, in other

processes, even on remote machines.

2.3.3 Language Requirement

COM is designed primarily for C++ and Microsoft Visual Basic® developers. The only

language requirement for COM is that code is generated in a language that can create

structures of pointers and, either explicitly or implicitly, call functions through pointers.

Object-oriented languages such as Microsoft® Visual C++® and Smalltalk provide

programming mechanisms that simplify the implementation of COM objects, but

languages such as C, Pascal, Ada, Java, and even BASIC programming environments can

create and use COM objects.

 xviii

2.4 COM Objects

COM defines the essential nature of a COM object. In general, a software object is made

up of a set of data and the functions that manipulate the data. A COM object is one in

which access to an object's data is achieved exclusively through one or more sets of

related functions. These function sets are called interfaces, and the functions of an

interface are called methods. Further, COM requires that the only way to gain access to

the methods of an interface is through a pointer to the interface. The fundamental

concepts of COM objects are,

• Interfaces — the mechanism through which an object exposes its functionality.

• Interface Implementation — the code a programmer supplies to carry out the

actions specified in an interface definition.

• Interface Pointers — an instance of an interface implementation is actually a

pointer to an array of pointers to methods.

• IUnknown Interface — the basic interface on which all others are based. It

implements the reference counting and interface querying mechanisms running

through COM.

• Reference counting — the technique by which an object (or, strictly, an

interface) decides when it is no longer being used and is therefore free to remove

itself.

• QueryInterface — the method used to query an object for a given interface.

• Marshaling — the mechanism that enables objects to be used across thread,

process, and network boundaries, allowing for location independence.

• Aggregation — a way in which one object can make use of another.

2.4.1 Interfaces

An interface is the way in which an object exposes its functionality to the outside world.

In COM, an interface is a table of pointers (like a C++ vtable) to functions implemented

 xix

by the object. The table represents the interface, and the functions to which it points are

the methods of that interface. An object can expose as many interfaces as it chooses.

COM uses the word interface in a sense different from that typically used in Visual C++

programming. A COM interface refers to a predefined group of related functions that a

COM class implements, but a specific interface does not necessarily represent all the

functions that the class supports. (Java defines interfaces in just the same way). Referring

to an object implementing an interface means that the object uses code that implements

each method of the interface and provides COM binary-compliant pointers to those

functions to the COM library.

COM makes a fundamental distinction between interface definitions and their

implementations. An interface is actually a contract that consists of a group of related

function prototypes whose usage is defined but whose implementation is not. These

function prototypes are equivalent to pure virtual base classes in C++ programming. An

interface definition specifies the interface's member functions, called methods, their

return types, the number and types of their parameters, and what they must do. There is

no implementation associated with an interface. The COM interface can be summarized

as,

• A COM interface is not the same as a C++ class — the pure virtual definition

carries no implementation. An instance of an object that implements an interface must be

created for the interface actually to exist.

• A COM interface is not an object — it is simply a related group of functions

and is the binary standard through which clients and objects communicate. As long as it

can provide pointers to interface methods, the object can be implemented in any language

with any internal state representation.

• COM interfaces are strongly typed — every interface has its own interface

identifier (a GUID), which eliminates the possibility of duplication that could occur with

any other naming scheme.

 xx

• COM interfaces are immutable — a new version of an old interface with the

same identifier cannot be defined. Adding or removing methods of an interface or

changing semantics creates a new interface, not a new version of an old interface.

Therefore, a new interface cannot conflict with an old interface. The interface ID (IID)

defines the interface contract explicitly and uniquely.

2.4.2 Interface Implementation

An interface implementation is the code a programmer supplies to carry out the actions

specified in an interface definition. Implementations of many of the interfaces a

programmer can use in an object-based application are included in the COM libraries.

However, programmers are free to ignore these implementations and write their own. An

interface implementation is to be associated with an object when an instance of that

object is created, and the implementation provides the services that the object offers.

Interfaces define a contract between an object and its clients. The contract specifies the

methods that must be associated with each interface and what the behavior of each of the

methods must be in terms of input and output. The contract generally does not define how

to implement the methods in an interface. Another important aspect of the contract is that

if an object supports an interface, it must support all of that interface's methods in some

way. Not all of the methods in an implementation need to do something if an object does

not support the function implied by a method, its implementation may be a simple return

or perhaps the return of a meaningful error message but the methods must exist.

2.4.3 Interface Pointers

An instance of an interface implementation is actually a pointer to an array of pointers to

methods—that is, a function table that refers to an implementation of all of the methods

specified in the interface. Objects with multiple interfaces can provide pointers to more

than one function table. Any code that has a pointer through which it can access the array

can call the methods in that interface. With appropriate compiler support (which is

 xxi

inherent in C and C++), a client can call an interface method through its name, not its

position in the array. Because an interface is a type, the compiler, given the names of

methods, can check the types of parameters and return values of each interface method

call.

Each interface the immutable contract of a functional group of methods—is referred to

at run time with a globally unique interface identifier (IID). This IID, which is a specific

instance of a globally unique identifier (GUID) supported by COM, allows a client to

ask an object precisely whether it supports the semantics of the interface, without

unnecessary overhead and without the confusion that could arise in a system from

having multiple versions of the same interface with the same name. However, objects

can support multiple interfaces simultaneously and can expose interfaces that are

successive revisions of an interface, with different identifiers.

2.4.4 IUnknown Interface

IUnknown is the base interface of every other COM interface. IUnknown defines three

methods:

• QueryInerface.

• AddRef.

• Release.

QueryInterface allows an interface user to ask the object for a pointer to another of its

interfaces. AddRef and Release implement reference counting on the interface. All COM

objects must implement the IUnknown interface because it provides the means, using

QueryInterface, to move freely between the different interfaces that an object supports as

well as the means to manage its lifetime by using AddRef and Release. The methods of

IUnknown allow navigation to other interfaces exposed by the object.

Interface inheritance does not mean code inheritance because no implementations are

associated with interfaces. It means only that the contract associated with an interface is

 xxii

inherited in a C++ pure-virtual base-class fashion and modified either by adding new

methods or by further qualifying the allowed usage of methods. There is no selective

inheritance in COM. If one interface inherits from another, it includes all the methods

that the other interface defines.

While there are a few interfaces that inherit their definitions from a second interface in

addition to IUnknown, the majority simply inherit the IUnknown interface methods along

with their own already defined methods. This makes most interfaces relatively compact

and easy to encapsulate.

Also, each interface is given a unique interface ID (IID). This uniqueness makes it easy

to support interface versioning. A new version of an interface is simply a new interface,

with a new IID. IIDs for the standard COM and OLE interfaces are predefined.

2.4.5 Reference Counting

COM itself does not automatically try to remove an object from memory when it thinks

the object is no longer being used. Instead, the object programmer must remove the

unused object. The programmer determines whether an object can be removed based on a

reference count. COM uses the IUnknown methods, AddRef and Release, to manage the

reference count of interfaces on an object. The general rules for calling these methods

are:

• Whenever a client receives an interface pointer, AddRef must be called on the

interface.

• Whenever the client has finished using the interface pointer, it must call Release.

In a simple implementation, each AddRef call increments and each Release call

decrements a counter variable inside the object. When the count returns to zero, the

interface no longer has any users and is free to remove itself from memory.

Reference counting can also be implemented so that each reference to the object (not to

an individual interface) is counted. In this case, each AddRef and Release call delegates

 xxiii

to a central implementation on the object, and Release frees the entire object when its

reference count reaches zero. When a CComObject-derived object is constructed using

the new operator, the reference count is 0. Therefore, a call to AddRef must be made after

successfully creating the CComObject-derived object.

2.4.6 QueryInterface

Although there are mechanisms by which an object can express the functionality it

provides statically (before it is instantiated), the fundamental COM mechanism is to use

the IUnknown method called QueryInterface.

Every interface is derived from IUnknown, so every interface has an implementation of

QueryInterface. Regardless of implementation, this method queries an object using the

IID of the interface to which the caller wants a pointer. If the object supports that

interface, QueryInterface retrieves a pointer to the interface, while also calling AddRef.

Otherwise, it returns the E_NOINTERFACE error code.

The Reference Counting rules must be obeyed at all times. If you call Release on an

interface pointer to decrement the reference count to zero, you should not use that pointer

again. Occasionally you may need to obtain a weak reference to an object (that is, you

may wish to obtain a pointer to one of its interfaces without incrementing the reference

count), but it is not acceptable to do this by calling QueryInterface followed by Release.

The pointer obtained in such a manner is invalid and should not be used. This more

readily becomes apparent when _ATL_DEBUG_INTERFACES is defined, so defining

this macro is a useful way of finding reference counting bugs.

2.4.7 Marshalling

The COM technique of marshaling allows interfaces exposed by an object in one process

to be used in another process. In marshaling, COM provides code (or uses code provided

by the interface implementor) both to pack a method's parameters into a format that can

be moved across processes (as well as, across the wire to processes running on other

 xxiv

machines) and to unpack those parameters at the other end. Likewise, COM must

perform these same steps on the return from the call.

Marshaling is typically not necessary when an interface provided by an object is being

used in the same process as the object. However, marshaling may be needed between

threads.

2.4.8 Aggregation

There are times when an object's implementer would like to take advantage of the

services offered by another, prebuilt object. Furthermore, it would like this second object

to appear as a natural part of the first. COM achieves both of these goals through

containment and aggregation.

Aggregation means that the containing (outer) object creates the contained (inner) object

as part of its creation process and the interfaces of the inner object are exposed by the

outer. An object allows itself to be aggregatable or not. If it is, then it must follow certain

rules for aggregation to work properly.

Primarily, all IUnknown method calls on the contained object must delegate to the

containing object.

In creating an object that supports aggregation, you would need to implement one set of

IUnknown functions for all interfaces as well as a stand-alone IUnknown interface. In

any case, any object implementor will implement IUnknown methods.

2.5 Microsoft DirectX 9.0

Microsoft® DirectX® is a set of low-level application programming interfaces

(APIs) for creating games and other high-performance multimedia applications. It

includes support for two-dimensional (2-D) and three-dimensional (3-D) graphics, sound

effects and music, input devices, and networked applications such as multiplayer games.

 xxv

2.5.1 Components of DirectX

DirectX has the following main components and each component has separate

Application interfaces to serve their purpose. These components are discussed briefly.

 Direct3D Graphics

 DirectDraw

 DirectInput

 DirectPlay

 DirectSound

 DirectMusic

 DirectShow

2.5.1.1 Direct3D Graphics

Microsoft® Direct3D® is a low-level graphics application programming
interface (API) that enables users to manipulate visual models of 3-dimensional
objects and take advantage of hardware acceleration, such as video graphics cards

2.5.1.2 DirectDraw

The DirectDraw application programming interface (API) enables users to
directly manipulate display memory, the hardware blitter, hardware overlay
support, and flipping surface support.

2.5.1.3 DirectInput

Microsoft® DirectInput® (API) is used to process data from a keyboard, mouse,

joystick, or other game controller.

2.5.1.4 DirectPlay

The DirectPlay application-programming interface (API) provides developers with

the tools to develop multiplayer applications such as games or chat clients. DirectPlay

provides many features that simplify the process of implementing many aspects of a

multiplayer application, including:

 xxvi

 Creating and managing both peer-to-peer and client/server sessions.

 Managing users and groups within a session.

 Enabling applications to interact with lobbies.

 Enabling users to communicate with each other by voice.

2.5.1.5 DirectSound

Microsoft® DirectSound® provides a system to capture sounds from input

devices and play sounds through various playback devices using advanced 3-

dimensional positioning effects, and filters for echo, distortion, reverberation, and other

effects.

2.5.1.6 DirectMusic

DirectMusic provides support for MIDI, downloadable sounds, and consistent

playback on the Microsoft Windows platform.

2.6 Introduction to DirectShow

Microsoft® DirectShow® is architecture for streaming media on the Microsoft

Windows® platform. DirectShow provides for high-quality capture and playback of

multimedia streams. It supports a wide variety of formats, including Advanced Systems

Format (ASF), Motion Picture Experts Group (MPEG), Audio-Video Interleaved (AVI),

MPEG Audio Layer-3 (MP3), and WAV sound files. It supports capture from digital and

analog devices based on the Windows Driver Model (WDM) or Video for Windows.

DirectShow is integrated with other DirectX technologies. It automatically detects and

uses video and audio acceleration hardware when available, but also supports systems

without acceleration hardware.

 xxvii

DirectShow simplifies media playback, format conversion, and capture tasks. At

the same time, it provides access to the underlying stream control architecture for

applications that require custom solutions.

DirectShow is based on the Component Object Model (COM). To write a

DirectShow application or component, it is necessary to understand COM client

programming.

2.6.1 Header Files and Library Files

All DirectShow applications use the header file shown in the following table. The

DirectShow also uses the library file shown in table 2.2.

Header File Required For

Dshow.h All DirectShow

applications.

 Table 2.1 Header Files for Direct Show

Library File Description

Strmiids.lib Exports class identifiers

(CLSIDs) and interface

identifiers (IIDs). All

DirectShow applications

require this library.

Table 2.2 Library Files

 xxviii

2.6.2 DirectShow Filters

DirectShow uses a modular architecture, where each stage of processing is done by a

COM object called a filter. DirectShow provides a set of standard filters for applications

to use, and developers can write their own custom filters that extend the functionality of

DirectShow.

For example, DirectShow filters can

• read files

• get video from a video capture device

• decode various stream formats, such as MPEG-1 video

• pass data to the graphics or sound card

Filters receive input and produce output. For example, if a filter decodes MPEG-1

video, the input is the MPEG-encoded stream and the output is a series of uncompressed

video frames.

In DirectShow, an application performs any task by connecting chains of filters

together, so that the output from one filter becomes the input for another. A set of

connected filters is called a filter graph.

Filters have three possible states: running, stopped, and paused. When a filter is

running, it processes media data. When it is stopped, it stops processing data.

Filters can be grouped into several broad categories:

• A source filter introduces data into the graph. The data might come from a file, a

network, a camera, or anywhere else. Each source filter handles a different type of

data source.

• A transform filter takes an input stream, processes the data, and creates an output

stream. Encoders and decoders are examples of transform filters.

• Renderer filters sit at the end of the chain. They receive data and present it to the

user. For example, a video renderer draws video frames on the display; an audio

 xxix

renderer sends audio data to the sound card; and a file-writer filter writes data to a

file.

• A splitter filter splits an input stream into two or more outputs, typically parsing

the input stream along the way. For example, the AVI Splitter parses a byte

stream into separate video and audio streams.

• A mux filter takes multiple inputs and combines them into a single stream. For

example, the AVI Mux performs the inverse operation of the AVI Splitter. It takes

audio and video streams and produces an AVI-formatted byte stream.

2.6.3 IGraphBuilder Interface

This interface provides methods that enable an application to build a filter graph.

IGraphBuilder provides basic operations, such as adding a filter to the graph or

connecting two pins. IGraphBuilder adds further methods that construct graphs from

partial information. For example, the IGraphBuilder::RenderFile method builds a graph

for file playback, given the name of the file. The IGraphBuilder::Render method renders

data from an output pin by connecting new filters to the pin.

2.6.4 ICaptureGraphBuilder2 Interface

The ICaptureGraphBuilder2 interface builds capture graphs and other custom

filter graphs. Since capture graph are often more complicated than file playback graphs,

ICaptureGraphBuilder2 make it easier to build a capture graph. To make it easier for

applications to build capture graphs, DirectShow provides a helper object called the

Capture Graph Builder. The ICaptureGraphBuilder2 interface contains methods for

building and controlling a capture graph.

 xxx

Figure 2.1 ICaptureGraphBuilder2 Interface

2.6.5 IMediaControl Interface

The IMediaControl interface provides methods for controlling the flow of data

through the filter graph. It includes methods for running, pausing, and stopping the graph.

2.6.6 IMediaEvent Interface

The IMediaEvent interface contains methods for retrieving event notifications and

for overriding the Filter Graph Manager's default handling of events. Applications can

use it to respond to events that occur in the filter graph, such as the end of a stream or a

rendering error.

2.6.7 IVideoWindow Interface

The IVideoWindow interface sets properties on the video window. Applications

can use it to set the window owner, the position and dimensions of the window, and other

properties. The Video Renderer filter and the Filter Graph Manager both expose this

interface. The Filter Graph Manager forwards all method calls to the Video Renderer.

 xxxi

2.6.8 ICreateDevEnum Interface

The ICreateDevEnum interface creates an enumerator for devices within a

particular category, such as video capture devices, audio capture devices, video

compressors, and so forth.

Applications can use this interface to enumerate devices and to create the

DirectShow filter that manages each device. The CreateClassEnumerator method returns

an enumerator object for a specific device category. The enumerator object supports the

IEnumMoniker interface and returns a list of monikers, where each moniker represents a

different device. In some cases, the same DirectShow filter manages an entire category of

devices.

2.6.9 IBaseFilter Interface

The IBaseFilter interface provides methods for controlling a filter. All

DirectShow filters expose this interface. The Filter Graph Manager uses this interface to

control filters. Applications can use this interface to enumerate pins and query for filter

information, but should not use it to change the state of a filter. Instead, use the

IMediaControl interface on the Filter Graph Manager.

2.6.10 ISampleGrabberCB Interface

The ISampleGrabberCB interface provides callback methods for the

ISampleGrabber::SetCallback method. The Sample Grabber filter provides a way to

retrieve samples as they pass through the filter graph. It is a transform filter with one

input pin and one output pin. It passes all samples downstream unchanged, so you can

insert it into a filter graph without altering the data stream. The application can then

retrieve individual samples from the filter by calling methods on the ISampleGrabber

interface.

2.6.11 Video Capturing

 xxxii

The term video capture describes any application where video is received from a

hardware device. Video capture devices include not only cameras, but also TV tuner

cards, video tape recorders (VTRs), and so forth. The captured video can be saved to disk

or previewed live.

2.6.12 Pin Categories

A capture filter often has two or more output pins that deliver the same kind of

data for example, a preview pin and a capture pin. Therefore, media types are not a good

way to distinguish the pins. Instead, the pins are distinguished by their functionality,

which is identified using a GUID, called the pin category.

 Preview Pins and Capture Pins

Some video capture devices have separate output pins for preview and capture. The

preview pin is used to render video to the screen, while the capture pin is used to write

video to a file. The pin category for preview pins is PIN_CATEGORY_PREVIEW. The

category for capture pins is PIN_CATEGORY_CAPTURE.

2.6.13 Selecting a Capture Device

To select a capture device, use the System Device Enumerator. This helper object

returns a collection of device monikers, selected by filter category. (A moniker is a COM

object that contains information about another object, which enables the application to

get information about the object without creating the object itself. Later, the application

can use the moniker to create the object)

For capture devices, the following categories are relevant.

Category GUID Description

CLSID_AudioInputDeviceCategory Audio capture devices

CLSID_VideoInputDeviceCategory Video capture devices

 xxxiii

Table 2.3 Categories of capture devices

2.6.14 Previewing Video

To build a video preview graph call the ICaptureGraphBuilder2::RenderStream

method. The following diagram shows the simplest possible graph for previewing video.

Figure 2.2 Previewing video

In this diagram, the capture filter has a preview pin, which connects directly to the video

renderer.If the capture filter has only a capture pin, the Capture Graph Builder inserts a

Smart Tee filter, which splits the stream into a capture stream and a preview stream. In

some cases, the video stream must go through the Overlay Mixer filter. If so, the

RenderStream method adds it to the graph automatically.

 xxxiv

2.7 ADO (ActiveX Data Objects)

ADO is a COM component that provides Automation compatible interfaces used by high

level programming languages to access data, normally using OLE DB providers. An OLE

DB is a set of COM interfaces that define abstract access to data stored in diverse

information sources. OLE DB providers provide implementations of the OLE DB

interfaces. ADO is an object model layered upon OLE DB to provide access to OLE DB

provides through oleautomation-compatible interfaces.

2.7.1 Purpose

ADO provides a COM-based application-level interface for OLE DB data providers.

ADO supports a variety of development needs, including the creation of front-end

database clients and middle-tier business objects using live connections to data in

relational databases and other stores. And, like ADO.NET, ADO can construct client-side

recordsets, use loosely coupled recordsets, and handle OLE DB's data shaping rowsets.

ADO also supports some behaviors such as scrollable, server-side cursors. However,

because server-side cursors require holding database resources, their use might have a

significant negative impact on the performance and scalability of the application

ADO's ease of use, speed, and low memory overhead make it ideal for server-side

scripting. In fact, ADO is the recommended technology for data access for ASP

applications. ADO can be called directly from server-side scripts or from business

components.

Unlike earlier data access methods, ADO does not require navigation through a hierarchy

to create objects; most ADO objects can be created independently, which allows greater

flexibility in reusing objects in different contexts and reduces memory consumption.

ADO also takes advantage of ODBC 3.0 connection pooling for ODBC data sources, and

session pooling for OLE DB providers. This eliminates the need to continuously create

new Connection objects for each user, which is very resource intensive.

 xxxv

2.7.2 Limitations

What ADO cannot do, however, is provide remote data to the client. Once the data has

been retrieved and sent to the browser, the user cannot easily manipulate it or make

changes to it within the client application. Data operations-including filtering and record

modifications-must take place on the server, where the actual data manipulation objects

reside.

2.7.3 OLE DB

OLE DB, the foundation of the Universal Data Access model, is a set of COM interfaces

that provides a standard way for programs to access data. OLE DB is the strategic

system-level programming interface for accessing data, and is the underlying technology

for ADO as well as a source of data for ADO.NET. The way applications use ADO

functionality is partially determined by whether or not there is an OLE DB provider for

the data.

OLE DB is an open standard for accessing all kinds of data — both relational and non-

relational data including: mainframe ISAM/VSAM and hierarchical databases; e-mail

and file system stores; text, graphical, and geographical data; and custom business

objects.

OLE DB provides consistent, high-performance access to data and supports a variety of

development needs, including the creation of front-end database clients and middle-tier

business objects using live connections to data in relational databases and other stores.

2.7.4 ADO Data Controls

A data control lets you define a query with which to access data. You then connect data-

bound controls to a data source. The ADO controls have been used to provide access to

the entire database records by specifying a single query. The following table shows the

require support files for ADO Controls.

 xxxvi

Control Support files

Microsoft ADO Data Control

(ADODC)

 Msadodc.oxc; help file is

Adodc98.chm.

Microsoft RemoteData Control

(MSRDC)

 Msrdc20.ocx; help file is

RDO98.chm.

Table 2.4 ADO Controls and Support files

2.7.5 Using Data Controls with Data-Bound Controls

Visual C++ 6.0 and later provides a new set of data-bound controls based on ADO, which

is a COM wrapper for OLE DB; it also provides a new data control (ADODC).

• Visual C++ 6.0 and later does not allow you to use the version 6.0 ADO data-

bound controls with the older remote data control (MSRDC). You must use RDO

data-bound controls with the remote data control (MSRDC).

• You also cannot use the older remote data-bound controls with the version 6.0

ADO data control (ADODC). You must use ADO data-bound controls with the

ADO data control (ADODC).

• The exception is for simple bound data controls, which may be used

interchangeably with the MSRDC and ADODC. The simple bound controls

include the MS Masked Edit control and the MS Rich Text control.

 xxxvii

Chapter 3

METHODOLOGY

3.1 Introduction

This chapter includes a brief account of the existing target tracking systems and the

techniques used in such system. It also describes the proposed system and its benefits

along with the functional and non functional requirements of the system. The

methodology used for the development of the system is based on those techniques and

procedures that may help to remove the problems and limitations faced by previous target

tracking system.

3.2 Existing System

The problem of target tracking has stymied engineers, mathematicians, and computer

scientists for years. During World War II American scientists tried, in the days before

computers, to develop mathematical algorithms that would help to track enemy aircraft

and automatically guide an anti-aircraft gun to shoot it down. The problem of tracking

high speed targets has existed since the first time aircraft were used in battle.

Improvements are constantly required in defense systems to make them impregnable and

give our forces a realistic chance of defending our boundaries.

3.2.1 Previously used techniques for Target Tracking

Most of the techniques used for tracking moving objects deal with a stationary camera or

closed world representations which rely on a fixed background or a specific knowledge

on the type of actions taking place. Different methods may be chosen to track targets.

“Radar based tracking” and “Visually guided tracking” are two such methods. Radar

based tracking is an alternative solution to visually guided tracking. Visually guided

 xxxviii

tracking of targets is a skill used in nearly all activities in order to maintain gaze on

objects moving with respect to the eyes. But it becomes slightly more complicated when

related to the battlefield.

 Moreover the target tracking algorithms developed for tracking targets based on sonar

and radar measurements could be used for tracking (also known as motion

correspondence) but for a system to operate at video frame-rate (possibly even higher

rates) limits the use of these well-established statistical and non-statistical tracking

algorithms.

3.2.2 Drawbacks of Existing System

• Previous target tracking systems did not provide any information regarding

the tracking skills of a human gunner.

• These systems cannot be used as a training tool for training personnel and for

evaluation of their shooting skills.

• Visually guided tracking uses analog signal to preview and capture video and

does not allow any processing on the video stream.

• None of these systems allow real time or live shooting of aircrafts without

wasting shells.

• The reliance on human expertise, cost and consumption of real missiles are

other drawbacks of such target tracking systems.

3.3 Proposed System

The proposed solution to the problems of existing system is to develop software to

identify and track targets by their measured positions and motion parameters derived

from video stream processing. The proposed system will break the video stream into

frames and then will calculate motion in them. In addition the proposed system will

generate tracking information and the distance of the target from the aim at all times.

 xxxix

Such a system can be used to provide the tracking information of the human gunner and

evaluate his shooting skills. It also removes the limitations of using target tracking as a

training tool. Real time and live shooting of aircrafts is allowed in this system since it

digitizes the analog signals obtained from the camera and allows for processing on this

data.

3.3.1 Target Tracking

The video input is acquired from a high speed camera mounted on the anti aircraft

machine and it is read through a TV tuner card. These frames are saved in the form of

gray scale images. Then noise is eliminated to obtain foreground objects. The target is

identified by using Union Find algorithm in each frame. This algorithm identifies the

target separately in each frame and does not rely on the information of location of the

target in the previous frames. Target tracking is performed in each frame independently.

The algorithm runs in two passes through the binary image to give the labeled image of

connected components and it populates two data structures in each pass. In first pass

union–find data structure is populated with values, it store a collection of disjoint sets to

efficiently implement the operation of union to merge two set into one and find which set

a particular element is in. This is accomplished with a vector array of PARENT. In

second pass using the information in PARENT, find operation is performed.

3.4 Functional Requirements

The Real Time Testing Environment should be capable of providing live image

acquisition area for generating user specific environment with real guns; the gun should

be calibrated with the aim of the camera. The Gun profiler should be capable of

Providing interface transparency for input (the input is fed by the Camera and the gun on

which the camera is mounted), Removing noise from the input, Extracting designated

target in each frame, Estimating the distance of the target from the aim and generating

output in aspect of tracking graph.

 xl

3.5 Non Functional Requirements

The system was originally targeted to perform according to these non functional

constraints: The generated system accepts frames at a rate of 30 FPS (Frames per

Second). This is to present a smooth live view of the real environment to the user. The

System should receive frames synchronously from the camera at a frame rate of 30 FPS.

Transmission of images between the modules should be in sequence and within

acceptable information loss (image should be clear enough for the target identification

step). The decisions taken regarding the design and development of the system are

elaborated below.

3.5.1 Challenges of Visually Guided Tracking

The first thing to keep in mind is that the computer can't see objects. It takes in video

information as a grid of pixels. It can tell you a pixel's position and its color (if you are

using a color camera). From these facts, other information can be determined; the

brightest pixel can be determined by seeing which pixel has the highest color values, a

"blob" of color can be determined by choosing a starting color, setting a range of

variation, and checking the neighboring pixels of a selected pixel to see if they are in the

range of variation, areas of change can be determined by comparing one frame of video

with a previous frame, and seeing which pixels have the most significantly different color

values, and areas of pattern can be followed by selecting an area to track, and continuing

to search for areas that match the pattern of pixels selected.

Colors to be tracked need consistent lighting. The computer can't tell if an object is red,

for example; it can tell that one pixel or a range of pixels contains the color value [255, 0,

0] perhaps, but if the lighting changes and the object appears gray because there is no red

light for it to reflect, the computer will no longer "see" it as red.

 xli

Objects to be tracked need to stay somewhat consistent in shape. The computer doesn't

have stereoscopic vision (two eyes that allow us to determine depth by comparing the

difference in image that our two eyes receive), so it sees everything as flat. If an object

turns sideways with respect to the camera, the pattern changes because the object appears

thinner. So the computer may no longer recognize it as the object it "saw" before.

One simple way of getting consistent tracking of light (or lit objects) is to reduce the

amount of information the computer has to track. For example, if the camera is equipped

with an infrared filter, it will see only infrared light. This is very useful, since

incandescent sources (light-bulbs with filaments) give off infrared, whereas fluorescent

sources don't. Furthermore, the human body doesn't give off infrared light either. This is

also useful for tracking in front of a projection, since the image from most LCD

projectors contains no infrared light.

3.5.2 Challenges of Tracking High Speed Objects in Real Time

The additional challenges posed by the tracking of high speed objects are derived from

the demand for increased sample rates, higher picture quality and better frame rates.

Real Time Tracking inevitably imposes a demand for increased computational power due

to the high amount of computing involved. The need for quick response implies a need

for employing efficient algorithms.

3.6 Benefits

The benefit of this project lies in many spheres, the first being the relatively less expense

at which it will help to train personnel for our anti-aircraft systems.

This engineering project provides a pioneering effort into the visual tracking field in

Pakistan, which other people can also build on. It ensures the real time training of

Pakistan’s anti-aircraft artillery (AAA) most of which is obsolete in its present forms and

is in serious need of upgrade and transformation. This project aims to achieve this

transformation at very low cost, by reducing operator errors and increasing accuracy and

 xlii

reliability of existing hardware (anti aircraft weapons). Not only does it reduce reliance

on human expertise, but is also cost-effective.

The testing tool developed during this period provides an opportunity for any developing

team to test their weapons and develop a similar tracker before taking it out into the field

since it performs roughly the same in all weather conditions and stress environments. The

cost benefits associated with this utility are immense. The exorbitant cost of live-testing

cannot be overemphasized. Another benefit arises from its hardware independence. It is

applicable across a wide variety of platforms.

To summarize: It gets automation into our anti aircraft systems most of which are

obsolete now. It reduces chances of operator (human) errors, increases accuracy and

reliability of existing hardware (anti aircraft weapons), reduces reliance on human

expertise, performs roughly the same in all weather conditions and stress environments,

and provides a pioneering effort into the visual tracking field in Pakistan which other

people can also build on. It is Hardware Independent and the technology is very versatile.

Most importantly it avoids the exorbitant cost of live-testing. The tracking skills of the

gunner can be evaluated efficiently. Digitized video data is made available for

processing. The consumption cost of shells and bullets can be saved. A real time training

tool is available to train personnel aircraft shooting without wasting shells

 xliii

Chapter 4

SYSTEM MODEL

4.1 Introduction

The proposed system is a five-stage process which is shown in block diagram of figure 1.

The first stage is to acquire the image from the camera that is mounted on an anti-aircraft

gun. Once the image is acquired it is processed further to detect the target and to track it

in following frames. The position of the target object with respect to the aim is estimated

so as to determine the deviation of the target from the aim in all frames. This information

is used to generate the graphical representation of the aiming path. Each of these modules

is discussed in detail.

4.1.1 Video Input

 The process is the basic requirement of the software getting the streaming video

from the video capturing device to user view.

Inputs: Video Stream

Processing: The process gets the stream of video from the video capturing device and

renders to the output stream. The video input is acquired from a high speed camera that is

mounted on the anti aircraft machine. A TV tuner card is used to read the input from the

camera and store the frames on the hard disk.

Output: If a video capturing device receives a stream the stream is fetched and rendered.

The rendered video frames are the output of this process.

 xliv

Figure 4.1 SYSTEM DETAILED BLOCK DIAGRAM

Video Frames Input

Image Acquisition Block using
DirectX Support

T.V tuner
Card

Video Frames

Noise Filtering using Salt and
Pepper Analysis

Binary Image Grayscale Image

THRESHOLDING

Estimate Target Deviation

Target Identification

Graphical Representation

 Database Output

Camera Input

Student Record Fields

Name, Course, ID, Hit
Rate, Stability, Trials,
Remarks,

 xlv

4.1.2 Image Acquisition

 The Block includes the capturing of the rendered frames for processing, it allows

the user to start, stop and preview the video image.

Inputs: Rendered Video Frames.

Processing: This is done by using the DirectX support for capturing multimedia streams.

The image sequences are being acquired from a camera however the camera is mounted

on a gun and the images are dependent upon the movement of the gun. While the gunner

aims for a moving target from his gun, the system has to rely on the field view of the

gunner to detect and track the moving target as the camera can not move independently to

locate the target.

Output: Acquired real video images which can be further processed.

4.1.3 Noise Filtering

 The next process is to eliminate noise from the image data obtained so that the

foreground objects can be distinguished from the background.

Inputs: Acquired Video Frames.

Processing: This process converts real images into gray scale then applies thresholding

on them to obtain binary images. Thresholding enables the selection of a range of pixel

values in grayscale and color images to separates the target blob object under

consideration from the background. The Salt and Pepper Analysis is used to remove noise

introduced by thresholding.

Output: Clear Binary Images.

 xlvi

 4.1.4 Target Identification

 Next stage is a process to identify the moving target which is an object that moves

independently of the observer.

Inputs: Thresholded Binary Image of the Current Frame.

Processing: The algorithm identifies this target as a blob by assuming that the

background contains no objects. It only considers the objects that are present in the

foreground. Since we are dealing with targets such as aircrafts in the air, our

assumption is quite close to reality because there is significant variance in the shape or

orientation of a high speed moving target as compared to any other object in the sky.

Output: Identified Target Object or Blob.

4.1.5 Target Deviation

 Once the target is identified and under tracking, the next step is to relate the

information of the target movement with the aim of the gunner.

Inputs: Identified Target Object, its Center, its Size and Distance of object from aim.

Processing: Once the gunner presses the trigger this information is used to capture the

location of the target when the trigger is pressed. At the exact moment of the trigger

pressing the location of the target with respect to the aim of the gunner and other

motion parameters are estimated to determine the hit or missed condition of the target

aircraft. The relative size of the target as it appears on the image is used as a motion

parameter to estimate the distance location of the target from the gun. To eliminate any

ambiguities in the size estimation of distance it is assumed that the aircraft is gliding

side ways horizontally in front of the camera when it is shot. The size and orientation of

the aircraft when moving towards or away from the gunner would violate the size

 xlvii

estimation that is based on the fact that distant objects appears smaller and closer

objects appear bigger in the image.

Output: Distance of the target from the aim in each Binary frame image.

4.1.6 Database

 The estimated distances from the aim are written down in a database for future

reference. This process includes the Add, Update and Delete operations on the

Database.

Inputs: Student Record fields as provided by the user and calculated target distance

from aim.

Processing: Add a new record or Update the existing record by the information

provided by user. It also allows for the deletion of previous records. The database can

be navigated to find different records as well.

Output: The record of each student along with his tracking efficiency.

4.1.7 Graphical Representation

 The final stage process is to generate a graphical representation of the tracking

path followed by the gunner while aiming for the moving target.

Inputs: Target Distance from aim of database or from the target deviation block.

Processing: Three graphical representations are used for this purpose that show the

horizontal, vertical and the radial deviation of the target from the aim.

Output: Horizontal, Vertical and Radial Deviation Graphs.

 xlviii

4.2 Software System Attributes

Software System Attributes discusses about the reliability, availability,

security and maintainability of the system.

4.2.1 Reliability

The system must be able to provide all the basic functionality to the user without any

delays. All the information must be available at the right time, when it is needed. System

must take care of selecting the default devices.

4.2.2 Availability
 Proposed system must be able to render the video from any of the

capturing devices and should be able to accept and enumerate any new

installed device.

4.2.3 Maintainability

Since the system can merge new devices into itself, so it is easier to maintain the system.

There is also a proper communication interface defined for each device, so entry of a new

device will not create any problems and system will upgrade itself.

4.2.4 Usability

System will fulfill all functional and non-functional requirements in efficient manner.

4.2.5 Economical

The system will be economical so that it may be easily affordable and must provide all its

services.

 xlix

CHAPTER 5

DESIGN

5.1 Introduction

This chapter discusses the design process of the software. Design is the process of

building a model or representation of an entity that will be built, the design expands what

was learned during analysis phase into a working implementation. Design is a series of

decisions on which implementation of the software is carried out. This chapter discusses

the four major area of concern for the system that is the data, architecture, interfaces, and

components.

Figure 7.2 Camera Calibration

5.2 Software Design

Software design is formulized using the Object Oriented Design methodology. The main

components of this are the following diagram,

• Use Case Diagram

• Data Flow Diagram

• Activity Diagram

• Class Diagram

5.3 Data Design

 l

The data design transforms the information domain into the data structures that will be

required to implement the software. The data objects and relationships defined in the

entity relationship diagram and the detailed use case diagrams provide the basis for the

data design activity.

A use case diagram illustrates a set of use cases for the software, the actors, and the

relation between the actors and use cases. The purpose of this diagram is to represent a

kind of context diagram by which one can quickly understand the external actors of

software and the key ways in which they use it. The following are the software use-case

diagram components which are actors, use cases and the relationship between them.

5.3.1 Actors

An actor is an entity who in some way participates in the story of use case. The actors

involved in the proposed system are

 Learner / Trainee: The person who is tracking and aiming at the target from his

gun.

 User / Evaluator: User is a person who is using the software.

 PC: Personal computer that is used to run the software.

 Camera: It’s the camera that is mounted on the trainee’s gun for previewing

video.

 Database: The database holds the records of students

5.3.2 Use-Cases

A use-case describes a process. A use-case is the action performed by actors.

Uses cases involved in the system are:

 Tracking Movement of the gun.

 Receive the video frames.

 Preview the video.

 Evaluate the gunner ability to track.

 Preview the graphical representation of the aiming path.

 Manage and update the database.

 li

Figure 5.1, 5.2 shows the UML icon for a use case actor and a use case.

 Figure 5.1 Actor icon in UML Figure 5.2 Use case icon in UML

5.3.3 Use-case Diagram

The following is the software use-case diagram, which shows actors, use cases and the

relationships between them.

Action

 lii

Figure 5.3 Use-Case Diagram

5.3.4 Uses-cases Description

UC-01: Tracking Movement of the Gun

Actors

Trainee, Camera

Assumptions The camera is mounted on the Gun.

Pre-conditions The center of camera is calibrated with the gun aim.

Use Case Description The user can record the tracking path of the gun with respect to the

 liii

target in its view.

Use Case Initialization This use case starts when camera starts capturing video data.

Use Case Termination
This use case terminates when the triggers is pressed or tracking time

expires.

Post-conditions Previewing of stream

UC-02: Receive the video Frames

Actors

Camera, PC

Assumptions No assumptions for this use case.

Pre-conditions Audio Video Type signal at the T.V tuner Capturing card

Use Case Description The capture device(camera) sends the video to PC

Use Case Initialization This use case starts on demand.

Use Case Termination
This use case terminates when triggers is pressed or tracking time

expires.

Post-conditions Upon successful the system will start analyzing the video information

UC-03: Preview the video

Actors User, PC

Assumptions No assumptions for this use case.

Pre-conditions Audio Video Type signal at the T.V tuner Capturing card

Use Case Description
The software takes the video from video capturing device as a camera

and previews it.

Use Case Initialization This use case starts when training or trial begins.

Use Case Termination This use case terminates when stop preview or trigger is pressed.

Post-conditions Upon successful the system will start previewing the video

 liv

UC-04,05: Gunner Tracking Evaluation and Graphical Representation

Actors
User, PC

Assumptions A video is being rendered and target is identified.

Pre-conditions The video stream is being saved on hard disk.

Use Case Description
This use case provides the user functionality of getting the tracking

evaluation of the gunner from the video data obtained.

Use Case Initialization This use case starts when user stops preview and selects stability.

Use Case Termination
This use case terminates when user exits the graphical representation

menu.

Post-conditions Video Preview

UC-06: Add, Update, Delete Records

Actors

User, PC, Database

Assumptions A video is being rendered, tracking evaluation performed

Pre-conditions The video stream is being rendered, student is training for evaluation

Use Case Description
If the user wants database management the specific student record is

managed by the software.

Use Case Initialization
This use case starts when user selects Training or database

management.

Use Case Termination This use case terminates when user exists database.

Post-conditions Upon successful the database will reflect the updates made to it.

5.4 Architectural Design

 lv

The architectural design represents the structure of data and the program components that

are required to build a computer-based system. It considers the architectural style that the

system will follow and defines the relationship between major structural elements of the

software that can be used to achieve the requirements that have been defined for the

system. The activity diagram shows the dynamic behavior of the system and the

relationships between system modules.

5.4.1 Activity Diagram

Activity diagram is an activity oriented diagram. An activity is a task that needs to be

done by a human or by a computer. From a specification perspective or an

implementation perspective, an activity is a method for a class. It represents a series of

activities that need to be completed to do a particular function. It shows behavior with

control structure, also shows many objects in single use case and implementation of

methods.

Figure shows the UML icons for an activity diagram. Activity diagram for the Image

Acquiring phase is shown in figure 5.5.

Figure 5.4 UML icons for Activity Diagram

 lvi

Initialize Video Driver

Initialize DirectX API

CRITICAL ERROR

Create Filter Graph

Get First Capture Device
that Exists

Add Capture Device to
Filter Graph

Create Frame Grabber

Build the Graph Render the Preview
and Capture pin

Configure the Video Device

Add Grabber to Filter
Graph

[Succeed]

[Cannot Create Graph] [Succeed]

[Succeed]

[Failed]

[START]

[Cannot Create Grabber]

[END]

Figure 5.5 Activity diagram for the Image Acquiring phase

 lvii

Activity diagram for the Target Identification module is given below.

Convert Image into Gray Scale

[Frames Stopped]

[START]

IMAGE ACQUISITION

Obtain Binary Image by
applying Threshold

Extract Region Properties of the
Target Object

Identify Target Object

Apply Salt and Pepper Noise
Removal

Calculate Object Size, Center
and Distance from the aim

[END]

[Frames not stopped]

Acquire Next Image

Figure 5.6 Activity diagram for the Target Identification Phase

 lviii

5.5 Interface Design

The interface design describes how the software communicates within itself, with

systems that interoperate with it, and with humans who use it. An interface implies a flow

of information and a specific type of behavior. Therefore data and control flow diagrams

provide much of the information required for interface design. The DFD provides an

indication of how data are transformed as they move through the system and depict the

functions that transform the data flow.

5.5.1 Data Flow Model

The data flow diagram model gives details such as the primary data objects to be

processed by the system, the composition of each data object and the attributes that

describe this object, the relationships between each object.

The UML notations for the Data Flow Diagram are shown below. Nodes are the data

objects and the links are the transformations that occur to translate one data object into

another.

Figure 5.7 UML notations for Data Flow Model

 lix

Figure 5.8 Data Flow Diagram

5.6 Component level Design

 The Component level design transforms structural elements of the software architecture

into a procedural description of software components. Class diagrams are used to show

the most basic design of the software.

5.6.1 Class Diagrams

In a class diagram we represent some main classes and there relationships. A class

diagram illustrates the specification for software classes and interfaces. Typical

information it includes is

Center of
Target

Write

Show Graphs on Screen

Deviation
and

Stability

Show Blocked
Target

Extract
Target

Set Values

View

Read Image
Data

Preview

Video Frames

Interact
with User

Camera

Monitor Display

Database

Video
Input

Process
Image

Identify
Target

Difficulty
level and
Threshold

Evaluate
Gunner

Calculate Target
Distance from

Aim

Extract
Region

Properties of
Target

Display
Graphs

Write

Write

 lx

 Classes.

 Attributes

 Methods

 Associations

5.6.2 Software Class Diagrams

The following is the class diagram for the software

Figure 5.9 Software class diagram

Gun Profiler Dlg

Gun Profiler App
MAIN Class

Tracking Dlg Database Main
Dlg

Member selection
Dlg

Record class Graphs

Frame Grabber

 lxi

5.6.3 Software Class Description

The software contains the following classes

• Gun Profiler Dlg

• Tracking Dlg

• Member selection Dlg

• Database Main Dlg

• Record class

• Graphs

5.6.4 Gun Profiler Dlg Class

This is the class that handles the main dialog of the application. Other dialogs such as the

database menu and the training dialog follow from this class.

Members Description

CGunProfilerDlg(CWnd* pParent) Standard constructor

DoDataExchange DDX/DDV support

OnInitDialog Generated message map functions

OnPaint

If you add a minimize button to your

dialog, you will need the code below to

draw the icon. For MFC applications

using the document/view model, this is

automatically done for you by the

framework.

OnQueryDragIcon

The system calls this function to obtain

the cursor to display while the user drags

the minimized window.

 lxii

m_hIcon Handle to icon

 OnExit() Exit the application

OnTraining() Call to Tracking Dlg class

OnMember() Call to Member Selection Dlg class

OnDataBase() Call to Database Dlg class

5.6.5 Tracking Dlg Class

This class handles the training and tracking menu for the user. It previews the video input

and handles the threshold along with other options such as the difficulty level. Once the

tracking is performed the show graphs method is used to invoke the graphs class.

Members Description

CTrackingDlg(CWnd* pParent) Standard constructor

DoDataExchange DDX/DDV support

OnInitDialog Generated message map functions

DestroyWindow() Call ClearGraphs() and exit

GetDefaultCapDevice(IBaseFilter

** ppCap)

Find first video capture device and

bind it to filter graph.

InitStillGraph()

Create a filter graph, add the capture

device and sample grabber to the

graph, then build the graph.

 StopGraphs() To stop the filter graph.

RunGraphs() To start the filter graph.

 lxiii

ClearGraphs()

Destroy capture graph and Remove

filter graph from the running object

table .

 OnShowGraph()

Call StopGraphs() and initiate

Graphs class.

OnRColor() Display Real Video input

OnRThreshold() Display Binary Image.

OnRAlgo() Display Algorithmic Image.

5.6.6 Database Main Dlg

This class is used to provide access to the database for viewing and for update and add

operations. The methods of this class are.

Members Description

DataBaseShow(CWnd* pParent) Standard constructor

DoDataExchange DDX/DDV support

OnInitDialog Generated message map functions

Connect() Connect to the Database

GenerateError(HRESULT hr,

PWSTR pwszDescription)

Format and Display the error

message

GetRec() return pointer to Record object

 RefreshBoundData() Take values from the database

OnAdd() Add new record to database

OnUpdate() Update existing record in database

 OnDelete() Delete existing record from database

OnFirst() Move to the first record of database

 lxiv

OnLast() Move to the last record of database

OnNext() Move to the next record in database

5.6.7 Record class

This class is used to bind the application variables to the database. Each property of the

records has a separate variable attached to it.

Members Description

BEGIN_ADO_BINDING(CRecord)
Begins binding the variables of C

Record to the database.

END_ADO_BINDING() End the binding of variables

ADO_VARIABLE_LENGTH_ENTRY2()
Function Call to bind a variable

given as function argument.

5.6.8 Graphs Class

This class is used to generate graphs of tracking path. It also shows the stability and other

tracking information of the gunner.

Members Description

 Graph(CWnd* pParent = NULL); Standard constructor

DoDataExchange DDX/DDV support

OnInitDialog Generated message map functions

AddOrUpdateChartData(int Adds and Updates the graphs.

 lxv

noOfRows)

PopulateChartData(CString output)
Read point data from file and plot

the graph accordingly

GetRec() return pointer to Record object

 UpdateBoundData() Search for specific record then

 update the record in database

idValue(int value,int flag,int diff) Copy the value of student ID

OnHorizantal() Show the horizontal deviation graph.

 OnVertical() Show the vertical deviation graph

OnRadial() Show the radial deviation graph

OnSize(UINT nType, int cx, int cy) For resizing the window

OnStabiility()
 Calculate the tracking efficiency of

 gunner

 lxvi

CHAPTER 6

IMPLEMENTATION

6.1 Introduction

Implementation is the next level of the design process. The Classes and code developed

for the implementation of each system module will be discussed in this chapter. As

mentioned in chapter 4 the Gun profiler system has six basic modules. The block diagram

shown is shown in figure below.

Figure 6.1 Block Diagram

6.2 Camera Calibration

Camera selection and calibration is of great importance as image grabbing and

manipulation of the image grabbed are the main components of the software. The

selection of a high resolution camera is a very sensitive issue. The software has to grab

 lxvii

the image, convert it into a binary image and then process the data available in this binary

image to track the object. Better the resolution of the camera good will be the picture of

the object and easier would be for the software to track the object; also since we are

tracking fast moving aircrafts and very short time is left to track it The normal camera

available in the market has a frame rate of 30 frames per second but for the project we

require a camera with high resolution..

The main achievement is finding the distance of the aircraft from camera with the help of

picture. Once the image is acquired and converted into binary image then the software

counts the number of pixels covered by the target and compare it with a reference whose

distance from the camera is known to us. If the pixels covered are less then the reference

image pixels then it shows that the object is out of range and if the pixels of the object

captured are more then the reference image then it means that the object is within range.

Calibration is one of the major process for setting the gun and camera at one point. The

term calibration means that the camera and aim of the gunner are at the same point. This

is done by placing a target with in the effective range of the gun and then making the

gunner aim at it. Once the gunner aims at it then we place and adjust the camera in such a

manner that the camera is also focused and aligned on the same point on which the gun is

aiming. This complete process involves the hardware adjustment which includes the

attachment of camera with the gun.

6.3 IMAGE ACQUISITION

Camera which is used to acquire images is taking thirty frames per second which is

compatible with the software tool used. The software tool used for acquiring image data

from a camera is the DirectX 9.0 SDK and the DirectShow API.

6.3.1 Drawbacks of Video for Windows

The simplest approach for acquiring Image data could have been the Video for Windows

API. Although it provides a very convenient interface for linking with the source device

however VFW falls short in some aspects.

 lxviii

• No Direct Video Buffer Access : The VFW API does not provide a

direct access mechanism to its video buffer. Thus even if a captured

frame is present in the video buffer it is not accessible. The only

method by which the captured data can be accessed is to get the

API to write the data onto the hard disk and then read it from there.

This obviously involves Disk IO which is extremely slow for real-time

applications.

• Support for only Bitmap Image format :VFW only supports saving of files in

Bitmap format. Thus if you want to save the captured frame as a JPEG then you

have to get it saved on the hard disk as a Bitmap image and then re-read it and

convert it to JPEG format. This involves four Disk IO’s which renders the

application impossible for real-time processing.

• Low Frame Rate : Due to the amount of Disk IO involved VFW doesn’t

generate more than 5 FPS on most computers. This leaves the application unable

to perform real-time computations.

6.3.2 DirectShow API

DirectShow is a component of DirectX that provides a set of low-level application

programming interfaces (APIs) for creating games and other high-performance

multimedia applications. It includes support for two-dimensional (2-D) and three-

dimensional (3-D) graphics, sound effects and music, input devices, and networked

applications such as multiplayer games. DirectShow is the architecture used for streaming

media on the Microsoft Windows platform and it provides for high-quality capture and

playback of multimedia streams.

6.4 NOISE FILTERING

 lxix

After acquiring video frames, they are converted into grayscale images. The grayscale

images include all shades of gray from black to white and it is obtained by approximating

the three primary color values red, green and blue of a pixel as shown in equation 1.

 Grayscale value = Red + Green + Blue (Equation 1)

 3

6.4.1 Image Enhancement Filters

The principal objective of enhancement is to process an image so that the result is more

suitable than the original image for a specific application. Image enhancement

approaches fall into two broad categories: spatial domain methods and frequency domain

methods. The term spatial domain refers to the image plane itself, and approaches in this

category are based on direct manipulation of pixels in an image. Frequency domain

processing techniques are based on modifying the Fourier transform of an image.

Gray-level transformation functions are among the simplest of all image-enhancement

techniques. The values of pixels, before and after processing, will be denoted by r and s,

respectively. As indicated in the previous section, these values are related by an

expression of the form s=T(r), where T is a transformation that maps a pixel value r into a

pixel value s. Since we are dealing with digital quantities, values of the transformation

function typically are stored in a one-dimensional array and the mappings from r to s are

implemented via table lookups. For an 8-bit environment, a lookup table containing the

values of T will have 256 entries. See Figure 4.7

 lxx

height levels before smoothing height levels after smoothing

Figure 6.2 Height levels after Thresholding

The effect of this transformation would be to produce an image of higher contrast than

the original by darkening the levels below m and brightening the levels above m in the

original image. A mapping of this form is called a threshold function. Some fairly simple,

yet powerful, processing approaches can be formulated with gray-level transformations.

6.4.2 Thresh-holding

Thresh-holding is the basis for any image processing technique. It is the fundamental

concept in image extraction and is used to track objects which differentiate a great deal

from their environment. This technique though usually very simple and easy to

implement fails in situations where the back ground is cluttered. Thresh-holding is

basically a process in which we usually determine the average color over a set of pixels

and compare it with already selected thresholds. Thresholding works by setting specific

values to pixels that fall within a certain range called the threshold interval. All other

pixel values in the image that do not fall in the threshold interval are set to 0. This helps

to extract the object of desired intensity of color from the actual background. Thresh-

holding always plays an important role in improving the efficiency of the system.

Thresholding is applied to the grayscale images to obtain binary images as it is fast and

easy to work with binary images. A thresholding operation chooses one of the pixels as

the foreground pixels that make up the object of interest and sets the rest as a

 lxxi

background. In present case threshold below operation is used which makes the value less

then or equal to threshold value as foreground. The difference in a grayscale and

thresholded image is shown in figure 2(i).

Figure 6.3 An Image Before and After Thresholding

Noise Filtering is required because the binary image contains the signal or the structure of

interest along with unwanted variations which have to be suppressed. It is useful to

remove these variations or very small regions from the current frame. One of these types

of regions is called the salt n pepper noise that occurs as a natural result of creating a

binary image via thresholding .Salt corresponds to pixels in the bright region that were

below threshold. These are the classification error resulting from variation in the surface

of material or illumination or noise in frame gabber. This is removed by checking the

neighbors of every pixel if all the neighboring pixels values of a pixel under

consideration are same, then that pixel is assign the same value as that of its neighbors.

Other small components are remove by knowing their size and deleting them from

reference frame. The result of noise filtering is a clear binary image as shown in figure

2(ii).

Figure 6.4 An Image Before and after noise removal

 lxxii

The following code has been used for the removal of noise

 void saltpepper_Removal()
 {
 int high=0,low=0;

 for(int i=1;i<239 ;i++)
 {
 for(int j=1;j<319;j++)
 {
 for(int k=i-1;k<=i+1 ;k++)
 {
 for(int m=j-1;m<=j+1;m++)
 {
 if(k!=i || m!=j)
 {
 if(pArray[m][k].r==255)
 ++high;
 if(pArray[m][k].r==0)
 ++low;
 }

 }//end of third for
 }

 if(pArray[j][i].r==255)
 {

if(low>high){pArray[j][i].r=0;pArray[j][i].g=0;pArray[j][i].b=0;}
 } //end of if

 else
 {

if(high>low){pArray[j][i].r=255;pArray[j][i].g=255;pArray[j][i].b=255;}

 } //end of else

 low=0;
 high=0;

 }//end of second for

 }//end of first for

 }//end of function

 lxxiii

6.5 TARGET IDENTIFICATION FROM VIDEO STREAM

6.5.1 Algorithm

 Target is identified by labeling all the objects which are present in foreground and the

object of interest is taken as the one which is relatively larger in size and close to the aim

than other objects. For identification purpose classical union-find algorithm is used. The

most effective characteristic of this algorithm is that it is very fast, and therefore it is

appropriate in real time situation .The connected components labeling of a binary image

generates a labeled image in which the value of each pixel is the label of its connected

components. The algorithm runs in two passes through the binary image to give the

labeled image of connected components. In first pass union–find data structure is

populated with values, this structure is used to store a collection of disjoint sets to

efficiently implement the operation of union (merging two set into one) and find

(determining which set a particular element is in). This is accomplished with a vector

array of PARENT whose subscripts are the set of possible labels and whose values are

label of parent node. In second pass using the information in PARENT, find operation is

performed to known the parent of each label as a result complete labeled image is

acquired.

Figure 6.5 Union Find Data Structure for two set of labels.

6.5.2 Region Properties

 lxxiv

Once a set of regions has been identified, the properties of the region become the input to

higher-level procedures that perform other tasks such as recognition or inspection of the

target object. These parameters are required in decision-making tasks to determine

whether the target is hit or missed after a fire and to determine the deviation of the target

from its aim to known tracking path form by the trainee. We have calculated the

following properties of a region

• Center of Object

• Size

• Distance of object from aim

6.6 ESTIMATING TARGET DEVIATION FROM AIM

The pixel information of the target location is determined by calculating the centre of the

target as describe in section 3.3.2 and centre of each frame is taken as the aim. The

Euclidian Distance Measure is used to find the distance between two centers as shown in

figure 4.

Figure 6.6 Pythagorean distance between Aim and Target.

Euclidian Distance Measure is the shortest distance between two points, and is basically

the same as Pythagorus' equation when considered in 2 dimensions. Pythagorus' equation

is given by Equation 2.

 lxxv

 (Equation 2)

To calculate the distance of the target objects centeroid from the aim the above distance

formula has been implemented as shown in the following code.

float distance_Formula(int x1,int y1,int x2,int y2)

{
 float x= float(x2-x1)* float(x2-x1);

 float y= float(y2-y1)* float(y2-y1);

 float d=x+y;
 return sqrtf(d);

}

 6.6.1 TARGET HIT/MISSED INFORMATION

Target will be indicated hit only if trainee presses the trigger at the right time that is when

the moving target object is exactly in front of the aim of the gun. The hit or missed

information is calculated by considering all parameters of the real time shooting such as

the inertia of gun, speed of bullet, speed of wind, parabolic motion of ammo and the

firing range of the gun.

6.7 GRAPHICAL REPRESENATION OF THE AIMING PATH

The deviation of the target from the aim is characterized by three graphical

representations, horizontal, vertical and the radial deviation graphs. The horizontal

deviation graph shown in figure 4 denotes the right and left movement of the target from

the center of frame (aim). The aim of the camera is taken as the mid point of the video

frame that is obtained from it and as the aim of the camera is calibrated with the aim of

the gun. Therefore both aims point to the same location. The deviation graphs are very

 lxxvi

helpful in determining the aiming ability of a gunner so if a target is hit the deviation

graphs can show clearly if it was tracked with concentration or if it was hit by chance.

Figure 6.7 Tracking Graph

The horizontal deviation graph gives a clear idea of the swiftness and quickness in

tracking of the target object.

Figure 6.8 Horizontal Deviation Graph

In figure 5 the vertical deviation is shown as the movement of the target above and below

the mean position (aim). The vertical deviation can be used to find the stability through

the aiming.

 lxxvii

Figure 6.9 Vertical Deviation Graph

The radial deviation is shown in figure 6 as the complete trail of the target around the

aim. The graph considers the moving target with respect to a stationary point that is the

mean position.

Figure 6.10 Radial Deviation Graph

CHAPTER 7
TESTING

7.1 Introduction

This chapter discusses the how testing is performed on this system. Different testing

techniques are applied to find the reliability of the software. The results of applying

different inputs to the gun profiler and the outputs are shown as screen shots. Different

system Dialog windows are also provided.

7.2 Accuracy

The most important stage in the operation of the system is the recognition of the object of

interest in the image and calculation of its region properties. If the object of interest is

properly identified then the deviation estimation algorithm will have a solid input to work

on. If the system fails to locate the correct object it will inherently fail to produce

accurate results.

The factors obscuring the target include Noise in the image, Blurred focus of the camera,

the Camera zoomed in too much or zoomed out too much, and non-uniform distribution

 lxxviii

of light on the object. The camera is calibrated with the gun as shown in the figure below.

A mount is created to hold the camera in line with the gun.

Figure 7.1 Camera Mount

For clear noiseless images generated in uniform brightness and light conditions for tests,

the system was found to perform successfully approximately 87% of the time. With noisy

images this success rate dropped with the increase in the original pixel to noise ratio.

Field testing of the tracker has been performed by using an ordinary gun for tracking

birds. The camera is calibrated with the gun aim by adjusting the camera mount until both

the aims point to same location. In real time situations where the sky is clear and

therefore the background does not have more than a single object of interest the accuracy

of this system is nearly 100%. The figure shows a side view of the camera mounted on

the testing gun.

 lxxix

Figure 7.2 Camera Calibration

The frame rates and target identification times depend on the Quality of the image, the

Hardware being used such as the quality of the camera, Noise, and the Frame sizes.

The system on which these tests were performed is a standard Pentium4 (1.7GHz) with

256MB of RAM. For various test environments generated the system performed in the

range of 20-24 Frames / second.

7.3 Limitations of the system

The idea of tracking motion on a computer using a video camera has been around for a

couple of years and is still not perfect, because the construction of vision is far more

complex than it would originally seem. The system has to operate in real time and

therefore it should spend minimum time in processing each video frame however areas`

of change need to be determined by comparing one frame of video with the previous

frame, and seeing each pixel’s value change, requires a lot of time for computation. In

real time situations this time has to be minimized as much as possible.

 lxxx

The target is identified using thresholding and the most common problem with this

technique is that it produces salt and pepper noise, the images taken under bright light

or in the present case as images would be captured in sunlight it is quite possible that

certain portions of the aircraft become a part of the background after thresholding.

Although the noise has been removed by using filtering but the shape of the aircraft

becomes distorted.

The system assumes that the target moves horizontally in front of the camera when the

target is shot however if the aircraft was moving towards the camera or away from the

camera at the time of trigger pressing then the result provided by our algorithm would

not be exact. The size of the aircraft provides a measure of its distance from the gun

and this assumption is violated when the object is not moving horizontally.

CHAPTER 8

FUTURE WORK AND CONCLUSION

8.1 Overview

The proposed system is a real time aircraft shooting system and the basic objective was to

create a live aircraft tracking system that does not involve wastage of ammunition for

 lxxxi

training of personnel. It can be used as a training tool to teach personnel, the necessary

skills for shooting aircrafts and it can also evaluate the shooting ability of a person who is

tracking and aiming at a high speed moving object such as an aircraft. Other objectives

include the generation of a complete shooting profile of the trainer to help evaluate his

stability and aiming capabilities. The human gunner performs realistic aiming at the

target from his machine while the system generates a graphical representation of this

aiming path followed by the anti aircraft machine. The system not only determines the

tracking path followed by a human trainee as he aims for the aircraft and fires at it but

also calculates the deviation of the tracked aircraft from its aim when the target is shot.

In real time scenario the aircraft is being tracked by a human gunner. A camera is

mounted on his gun to record the movement of the aircraft with respect to the aim. The

aim is considered at the center of the camera and is calibrated with the gun’s aim. The

video stream obtained from the camera is analyzed to detect and follow the moving

aircraft through a sequence of images.

When the trigger is pressed to shoot the target, the position of the target as derived from

the video stream are used to estimate the deviation of the aircraft from the actual aim of

the machine. The hit or missed status of the target is also provided along with the path

movement information of the target in reference to the aim.

The horizontal, vertical and radial deviation of the target from the aim is used to assess

the aiming stability of the gunner. The tracking information of each trainee is stored in a

database and the tracking efficiency of a gunner can be reviewed by accessing it.

The main objective of the project was to develop software that provides a better way to

train personnel for aiming and firing at aircrafts. The objectives defined initially have

been successfully achieved. This project provides the basis of DirectShow technology. A

detail description of DirectX SDK is provided. In the project DirectShow which is

component of DirectX is used. Many interfaces of DirectShow have been implemented to

accomplish many tasks like enumerated devices and render video. Many shortcomings of

the existing system have been removed by providing a better solution to save the

 lxxxii

ammunition cost of training personnel. The proposed system also generates a complete

shooting profile of the human gunner to help evaluate his shooting skills.

8.2 Future Work

Visual tracking is a complex field and there is always room for improvement in any

application that using visual reconstruction. The future work that directly roots out from

this project includes the extension of the system to by adding a module that identifies

the complete boundary of the target object and does not eliminate and brighter portions

of the object during thresholding. The limitation that a target should move only

horizontally in front of the camera can be removed by considering the complete

dimensions of the aircraft when estimating its relative distance from the gun, instead of

taking the size as the only estimate to find the distance.

8.2.1 Distributed Tracking System

A distributed vision-based tracking system is envisaged. The system acquires and

processes images through one or multiple Camera Units monitoring certain area(s) via a

Local Area Network (LAN) and is capable of combining information from multiple

Camera Units to obtain a consensus decision. The input from the camera should be

distributed among the various sub units of the distributed system each of which carries

out a specific task. Edge detection, segmentation & Template matching processes may be

added and performed on nodes dedicated for this purpose with the central server

synchronizing the activities and controlling the correction factors generated by the

system. The server would act as the interface to the system successively receiving the

inputs and generating the outputs. Nodes can be added to this system to boost its

computational power and the complexity of the object extraction and prediction

algorithms.

8.2.2 Accurate Shooting System

 lxxxiii

This project can be extended to implement an accurate ammo firing system. In such a

system the camera input may determine whether the target is inline with the gun aim or

not and depending upon this information the system may decide to either shoot the

aircraft or not. Such a system may not allow any missed targets and nor would it fire any

ammo that will not hit the target.

8.2.3 Night time operation

The current system has for its input true color cameras without night vision filters. Such a

system has its operation limited to only daytime operations. Incorporation of night vision

or thermal filters can increase the ability of the system to perform in night time

operations as well.

8.3 Conclusion

We have presented a practical, widely applicable and extensible project for real

time visual target detection, tracking and position estimation. This system can be used on

any single camera and for any target tracking machine. The system can help train

personnel for any artillery that requires efficient target tracking. Multimedia

programming and strong hardware concepts were required for making such a cost

effective and user friendly system. The project is very beneficial for all organizations

who want to train their men for target tracking is a cost effective manner.

 lxxxiv

BIBLIOGRAPHY

[1] W.E.L. Grimson, L. Lee, R. Romano, and C. Stauffer. Using adaptive
tracking to classify and monitor activi-ties in a site. In CVPR98, pages 22–31,
1998.

[2] I. Haritaoglu, D. Harwood, and L.S. Davis. W4S: A real-time system for
detecting and tracking people in 2 1/2-d. In ECCV98, 1998.

[3] M. Isard and A. Blake. A mixed-state condensation tracker with automatic
model-switching. In ICCV98.

[4] S.S. Intille, J.W. Davis, and A.F. Bobick. Real time closed world tracking. In
CVPR97, pages 697–703, 1997.

[5] R. Zabih and J. Woodfill. Non-parametric local transforms for computing
visual correspondence. In ECCV, Stockholm, Sweden, May 1994.

[6] S. Blackman and R. Popoli, “Design and Analysis of Modern Tracking
Systems”, Artech House, 1999.

 [7] S. Blackman and R. Popoli, “Design and Analysis of Modern Tracking
Systems”, Artech House, 1999.

[8] K. Sethi and R. Jain, “Finding trajectories of feature points in a monocular
image sequence”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
9., No. 1, pp.56-73, 1987.

[9] M. Irani, P. Anandan, and S. Hsu. Mosaic based representation of video
sequences and their applications. In ICCV, pages 605–611, Cambridge,
Massachusetts, June 1995. IEEE.

 lxxxv

 [11] R. Smith, M. Self, and P. Cheeseman. Estimating Uncertain Spatial
Relationships in Robotics. In Au-tonomous Robot Vehicles, I.J. Cox and G.T.
Wilfon, Eds, New York: Springer Verlag, 1990, pages 167–193.

 [12] P. Allen, B. Yoshimi, and A. Timcenko, “Hand-eye coordination for robotics
tracking and grasping,” in Visual Servoing (K. Hashimoto, ed.), pp. 33–70, World
Scientific, 1994.

 [13] D. Burschka and G. Hager. Dynamic composition of tracking primitives for
interactive vision-guided navigation. In Proc. of SPIE 2001, Mobile Robots XVI,
pages 114–125, November 2001.

