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ABSTRACT

Aluminum alloys are widely used in automotive and aerospace industry due to their lower mass to
strength ratio than other metallic alloys. Apart from their inherent properties, aluminum alloys like
other metallic alloys shows significant change in their mechanical properties like fatigue, hardness
etc. according to the machining parameters like speed of cut, nose radius of tool, coolant, feed rate,
etc. that relates to the change in grain structure. Knowledge of optimized parametric selection is
very important in machining of aluminum alloys in context of their mechanical behavior. In this
research, the effect of different machining parameters on the subsurface of aerospace grade
aluminum alloy (Al-6082-T6) was observed. Feed rate, cutting speed and depth of cut were the
key machining parameters that were considered. The main result focused was the depth of
subsurface damage caused by these machining parameters. 1SO 3685 was followed for selecting
cutting parameters and their range was selected by tool manufacturer’s catalogue i.e. Sandvik
Coromant Catalogue 2011 and Corokey of the Sandvik Coromant Catalogue 2011. All of 27
samples, according to Design Expert software, were prepared on CNC machine with 3 of variable
values of cutting speed, feed rate and depth of cut. These samples were prepared for metallography
by mounting, grinding, polishing and etching. 1ISO 4287:1997 is followed for surface roughness
parametrical study. According to ASTM E384 and E92 micro hardness tests were carried out down
the edge of the cross section of sample. Results of surface roughness and micro hardness tests are
compared with fatigue life. Results are discussed along with recommendations for optimized
machining parameter to achieve desirable mechanical properties of material (surface roughness,

subsurface hardness and fatigue life).

Key Words: Surface roughness, subsurface damage, turning of aluminum, subsurface

hardening
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Chapter 1: Introduction

1.1 Introduction
Machining of material is a key process that control mechanical parameters along with the type
of material. Type of machining to be carried is directly associated with the fatigue life of the
manufactured part. Fatigue is due to plastic deformation due to cyclic loading. Localized crack
propagate due to plastic deformation usually from the upper layers of the part. Surface and
subsurface parameters are of key importance in the propagation of these cracks. Machining
parameters and their optimization is of extreme valued in this regard.
Aluminum Al-6082 is widely used in aerospace, automobiles and naval transport industry due
to its high strength to weight ratio. In context of its high usage in the industry where cyclic
loading is very common the study of its fatigue life is extremely important. Due to its good
machinability aluminum is favorite for every manufacturing industry. As its machinability is
concerned its effect on fatigue is considerable. In fatigue, crack develops from surface and
higher subsurface level so effect of machining on these two parameters and optimized
machining parameters™ selection is very important to observe and control this mechanical
property.
In this research, surface roughness and subsurface damage due to machining at different
parameters are compared with fatigue life of the aluminum. Optimized parameters are also
discussed. Machining parameters that are considered includes cutting speed, feed rate and
depth of cut. Response of these machining factors is separately studied on surface roughness,
subsurface damage and their effect on fatigue life.
Aluminum AI-6082-T6 material is used for sample preparation according to fatigue life
sample preparation standards. For rotating fatigue life testing, ISO 1143:2010 standard is used
that guide about the dimensions of specimen, machining procedure, handling, accuracy of test,
test procedure and representation of fatigue life test results. Loading on specimen is at four
points.[1]
Machining parameters are selected from the manufacturer's catalogue ‘Sandvik Coromant
Catalogue 2011 and Corokey of the Sandvik Coromant Catalogue 2011" and finalized by 1SO
3685 standard for tool life testing with single point turning tool. [1]



Design of experiment is selected on the basis of all possible combination of these parameters
(exhaustive testing). These combinations includes three values of feed rate, cutting speed and
depth of cut each.

Turning is carried on Al-6082-T6 pieces according to the standard and fatigue life results are
obtained. Separate samples are turned according to the DOE to investigate the effects of
surface roughness and subsurface damage by micro hardness method.

Surface roughness of turned surfaces are carried according to the standard 1SO 4287:1997.
Each result is validated with repetition of three times.

Micro hardness test is carried out radially in the depth of cross sectional part of the machined
specimen. These tests are carried out according to the standard ASTM E384 and E92 that
guide about the specimen preparation, measurement of indents, indent distances and reading
of the results. For sample preparation of subsurface hardness checking, specimens that turned
according to the DOE is cross-sectionaly sectioned. For surface finish and microscopy, these
samples are mounted, grinded and polished to a fine scratch less surface by carrying each
process into different stages. Six indents in a row is carried to observe the damage depth with
respect to the hardness of material with the repeatability of three times on each sample
perpendicular to the machined surface along the radial side. Temperature gradient effects the
microstructure of the material that results in change in mechanical properties.[2]

In addition to that, micro hardness is compared for hot mounting and cold mounting and
compared their results to study the effect their effects on material hardness. Scanning electron
microcopy and microstructure results for different etchants and methods carried out for sample
preperation.

Results are discussed with the help of graphs and plots of surface roughness and micro
hardness tests due to the effect of feed rate, cutting speed and depth of cut separately and also
the effect of surface roughness and micro hardness compared to the fatigue life of the specified
samples. Optimized parameters for surface roughness, micro hardness and fatigue life effects

are also discussed.



1.2 Aims

Aim is to study the effect of machining parameters on surface roughness and subsurface

hardness and their effect on the fatigue life of aerospace grade aluminum (Al-6082-T6)
1.3 Objectives

Objective of this research is to:

1.
2.
3.

9.

Carry out literature review on machining effect on aluminum alloys.

Carry out literature review for microstructure changes of metallic machining.
Carry out literature review on the effect of machining on surface roughness of
aluminum alloys.

Carry out literature review on the effect of machining on subsurface hardness of
metals.

Carry out literature review on micro hardness testing and sample preparation for
microscopy.

Carry out literature review on effect of surface roughness and subsurface damage
on fatigue life of metals.

Carry out design of experiment and selection of factors and responses for the
experiment.

Sample preparation of aluminum by different processes like turning, sectioning,
mounting, grinding, polishing and etching.

Perform surface roughness experiment.

10. Perform micro hardness experiment.

11. To study the effect of hot and cold mounting on micro hardness.

12. Analyze the tests data results.



Chapter 2: Literature Review
2.1 Mechanical Behavior of Al-6082-T6 alloy welds

S. Messori et al., investigated the rotating fatigue life and micro hardness at the welded
region and compared with the grain structure analyzed with the SEM. Six samples were prepared
depending on different parameters of Gas metallic Arc Welding (GMAW). That were proceeded

to mechanical tests like tensile test, vicker micro hardness test, fatigue rotating test and charpy V-
test.[3]
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Fig. 1 Vickers hardness test survey on welded region

Vickers micro hardness test shows the hardness decreases in WM to 60Hv average while in heat

affected zone (HAZ) it is 80 Hv and in base material its value is 100Hv. Fatigue test performed
that shows most of the samples failed from HAZ region.
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Fig. 2 Fatigue life test for welded and un welded samples.

Fatigue rupture stress for un welded samples are 130-280 MPa and for welded this value reduce
to 70 to 100 MPa.

It was concluded that welded material fracture earlier than un welded material. In HAZ, both
hardness and tensile strength reduce to its minimum value and SEM images shows that during
fatigue life testing most samples fails in HAZ.[3]

Mufti et al., studied the effect of micro hardness on machining of deposition in Gas Metal Arc
Welding (GMAW). Two samples were prepared i.e. deposition with intermediate machining

(GWIM) and deposition without machining (GWM) and hardness test was conducted. [2]
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Average hardness is in GWM is higher that is 202.98Hv whereas for GWIM samples this value is
194.1Hv due to removal of top layer. While interface layer of GWIM had higher hardness than

GWM samples.[2]

2.2 Surface roughness and subsurface damage relationship

Blaineau et al., studied the relation of surface roughness with subsurface damage of fused silica

using Abbot Firestone curve. Nine samples were prepared at different parameters load, grinding

speed, abrasive, abrasive size and slurry concentration. Surface roughness was measured by

surface profile meter and subsurface damage by etching of samples.
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It was concluded that fraction of valley roughness profile (100-Mr2), calculated by Abbot-

Firestone curve, is in linear relationship SSD and is more accurate indicator than maximum

peak to valley roughness (Rtmax).[4]

Dobrescu et al., studied the comparative study of subsurface damage and surface roughness

of silicon ceramics. Samples were prepared under different conditions and observed under

Scanning Electron Microscopy for subsurface damage and profile meter for surface damage.

Different grit grinders are used under different load conditions for silicon nitride and silicon

carbide.
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Fig. 5 Damage depth vs Grit depth of cut

Results showed that penetration depth of subsurface damage depends on ceramic type,

Brittleness and maximum grit of depth of cut.[5]
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2.3 Machining effect on mechanical parameters on titanium nickel alloys

Durul Uultan et al. studied the effects on machining on mechanical properties of Ti-Ni
alloys especially subsurface and microstructure disturbances. During machining processes,
material is exposed to thermal, mechanical and chemical energy. Due to strain aging process
material becomes harder and more brittle. Micro structure of material changes underneath the
surface of machining usually due to cutting speed and feed rate in turning. A white layer is formed
that is much harder than the base material. White layer is also most commonly supportive to the
crack propagation.[6]
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Fig. 8. Microstructural deformations of turned IN-718 at V=40-120 m/min, f=0.15-0.25 mm/rev, DoC=025 mm with (a) new tool and (b) worn tool [40].
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Another most common phenomenon is plastic deformation of material due to machining.
Significant parameters of are machining are feed rate, depth of cut and cutting speed. A work
hardening layer is formed due to the above mentioned parameters. Tool life is also specifically

remarked factor in the formation of these layers. [6]
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Fig. 11 The hardness profile of turned IN-718 at V=125-475 m/min, f=0.05-0.15mm/rev and

DOC =0.5-1mm

Studies showed that both milling and turning produce hardened layer in machine effected

zone as in fig.11. Hardened layer depend upon the machining parameters (feed rate, depth of

cut and cutting speed), tool nose condition and material properties (thermal resistance,

brittleness etc.).[6]

2.4 Cryogenic Machining effect on surface integrity

Pusaveca et al. studied the surface integrity in cryogenic machining of nickel alloys.

Machining experiments were performed on Inconel 718 alloy used for the jet engines in the

aerospace industry. Four samples were prepared: dry machining, minimum quantity lubrication,
cryogenic machining (0.6kg/min/nozzle) and mixed (cryogenic and MQL). The turning

experiments were conducted on the center less ground Inconel 718 round bars with a diameter of

32mm and length of 150mmin a CNClathe under constant cutting parameters: vc = 60m/min, f =

0.05 mm/rev, and ap = 0.63mm. Surface roughness was measured by non-contact interferometer

profiler. [7]
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Fig. 12 Surface roughness at different conditions
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Results showed that surface roughness of cryoMQL had minimum value means that gave the best
surface finishing. However the forces for cryogenic machining is maximum as material surface
frozen out before cutting that increased the hardness of material. Liquid nitrogen should be applied
on cutting edge at time of cut. Subsurface damage and microstructure of different conditions were
also studied.
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Fig. 13 SEM images of machine effected and non-effected by machining.
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Results showed that work hardened is found 40 microns but it had decreasing trend in cryogenic
machining. In SEM images, plastic deformation was also very low in depth about 1-2 microns in
case of cryogenic machining.[7]

lan S. Harisson et al. studied the effect of turning on different grades of steel. Three different
grades of steels: 1053, 1070 and 51200 were tested. These samples were heat treated then hard
turned on same conditions. Mounting, grinding, polishing and natal etching was carried out.

Residual stresses, microhardness and white layer was measured.

Taool life: 0% 14% 20% 43% 5% T1% B6% 100%
Workpiece material: 52100 Measurement 1 [HRC] 63 63.1 585 61.6 5396 LT 576 53.9
Cutting insert: KDOs0 Measurement 2 [HRC] 62.9 o83 S84 584 614 o6.9 541 589
Speed: 300 Measurement 3 [HRC] 3 594 62 60.3 61 59.1 61 604
Feed: 0.006

Standard deviation 0.78 251 1.88 1.61 095 1.14 325 340

Avg 634 60.3 598 60.1 60.7 tT:] 60.9 57.7

Fig. 14 Micro hardness at machining surfaces.

Results showed that hardness does not directly depends on the white layer formation and its
thickness while the residual stresses had direct relation to the increase in hardness due to thermal

gradient in machining process.[8]

2.5 Mechanical Parameters investigation of AISI 4340

Hassanpour et al. investigated the effect of milling parameters on the surface roughnes,
micro hardness and white layer thickness formation. AISI 4340 material was heat treated and
samples were prepared at different conditions. Portable roughness tester and V-test digital mciro
hardness tester was used for surface roughness and micro hardness testing. Axial depth of cut,
radial depth of cut, cutting speed and feed rate were the machining variables considered.
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Fig. 15 Surface roughness vs cutting parameters a) Axial depth b) Radial depth c) cutting speed
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Fig. 16 Micro hardness vs cutting parameters a) Axial depth b) Radial depth c) cutting speed d)
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Fig 15 and 16 shows the effect of each machining parameter on surface roughness and micro
hardness. The analysis of variance showed that quadratic polynomial models estimate the
surface roughness and micro hardness perfectly, while a linear model evaluate the variations
of white layer thickness, as well. Feed rate had maximum effect on the surface roughness and
micro hardness of hardened steel.[9]

2.6 Mechanical Characterization of friction stir welding of AA6061 and 6082

Imam Hejazi et al. studied the subsurface changes due to thermal stresses during friction
stir welding in different regions in correlation with strength. AA6061 sample is used for stir friction
welding. Sample was polished and etched with Keller's reagent.

Hardness (HV)
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Hardness (HV)

Il I I ' I

6 4 2 0 2 4 6

Distance from weld centen/mm

(c)
Fig. 17 Hardness map of FSW joint a) macro structure of welded samples b) its zones
c) Hardness profile line

Fig 17 shows the maximum hardness of HV 119 was obtained for the SZ, while the

boundary between the HAZ and the TMAZ on the advancing side (failure location in the tensile
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testing) exhibited the lowest hardness value of HV 81. It was shown that hardness mapping can be
alternative for macroscopic in different situations. The investigation showed that hardness map is
prediction of macroscopic and microscopic properties of FSW joints.[10]

Wan et al. studied the effect of friction stir welding on micro structure and micro hardness of Al-
6082-T6 joints. Aluminum plates were used for experimentation and samples were prepared
according to standard for macroscopic, microscopic and micro hardness inspection. Vickers
hardness test was used for micro hardness values. At macroscopic level, different zones were
identified.
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Different regions

Fig. 18 a) micro hardness profile b) micro hardness values

The average micro hardness in the Weld Nugget Zone near the TMAZ was the lowest because of
an over aging effect and the coarser second phase particles. The values of micro hardness of the
TMAZ were relatively high which reached 89.4 HV and 84.7 HV, respectively. Thermal Machine
Affected Zone had the most deformed structure while Heat Affected Zone had no prominent
change in micro structure as compared to base material however grain size decreases with increase
in distance from weld region.[11]

Sandeep Rathee et al. studied the optimized parameters for enhanced micro hardness of 6061/Sic
surface composite fabricated via stir welding. Nine composite samples were prepared by changing
the machining parameters; tool rotational speed, tool transverse speed and tilt angle. Micro

hardness was measured by portable digital hardness tester.
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Fig. 19 Main effect plot of mean hardness values

Optimized values for hardness was tool rotational speed 1400rpm, tool transverse speed 50
mm/min, tool tilt angle of 2.5 degree respectively. Maximum hardness of 116 Hv was found at
nugget zone as compared to base material hardness that was 94Hv average.[12]

2.7 Surface integrity of end milling

J. Sun et al. studied the effect of end milling on the surface and subsurface mechanical parameters
on Ti-6Al-4V alloy at different machining conditions. Five levels of cutting speed, depth of cut
and feed rate were selected. It was found that surface roughness had larger values in the direction

of the cutting rather than feed direction.

16



Roughness Ra (micron)

1.2

Cutting speed (m/min)

1.2

<

£ 2

g

o 08 __e—7

] e

g 1

E, I

2 0.6 1

o
0.4 — i e }
0.04 0.06 0.08 0.1 0.12 014 0.16

120 Feed (mmitooth)

|—0— Feed Direction —@— Cutting Direction

|—O—Feed Direction —®— Cutting Direction |

(b) Feed effect (I 63 m/min, a.: 4 mm, a,: 1.5 mm)

(a) Cutting speed effect (£ 0.08 mm/tooth, c.: 4 mm, a,: 1.5 mm)
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Results showed that milled

cutting and feed direction
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Distance below surface (micron)
—©—V 65 m/min

—H=-V 80 m/min V 110 m/min

ness distribution and variance in the subsurface (f=0.08mm/tooth,

ae=4mm, ap=1.5mm)

surface was of isotropic nature. Surface roughness value increases in

with increase in feed and depth of cut, while increases in cutting

direction at low speed and decreases at high speeds. Surface roughness decreases in feed direction

with cutting speed.[13]
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Jian Wang et al. evaluated the subsurface damage in optical glass. It was found that hardness
decreases with the distance from the edge of the glass. It was studied by different author and is

useful technique to analyze the sub surface damage.[14]

L.C. Lee et al. studied the subsurface damage of steel tools after EDM. Samples were prepared at
variable current and pulse time. Surface roughness was measured by taly surf stylus and subsurface
damage by Scanning Electron Microscope. Thickness of white layer was termed as subsurface
damage is directly proportional to the pulse energy. Surface roughness was greatly depends upon
the pulse current and pulse energy in a specified relation. Surface roughness and white layer
formation was independent of the type of steel used as thermal property of solidifying material is
not depend on these parameters.[15]

M-B. Mhamdia et al. studied the surface integrity of Ti-6Al-4V material at different milling
parameters. Material was milled at different angles and feed rates. Surface roughness was
measured by 3-D roughness tester and vicker micro hardness tester was used for micro hardness

and these results were compared with micro structural results by SEM.

5 5
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Fig. 22 The variation of Sa and Sq a) at tool position at N = 3000 rpm, Vf = 900 mm/min, ae =
0.5 mm, ap = 0.5 mm b) at feed speed Vfat N = 3000 rpm, ae = 0.5mm, ap = 0.5 mm.
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Fig 23 a) Microstructure micro hardness profile from machine distance b) micro structure
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Results showed that surface finish was effected by the position of the tool, at upward and
downward milling it gave best surface finish as compared to top concave surface. Plastically
deformed layer was formed shown by micro hardness neither by heat effected zone nor by white
layer thickness, it was also effected by tool position.[16]

Nancy M. McCurry et al. studied the temperature resistance coefficient relationship with the grain
boundaries. Aluminum samples were prepared at different temperatures and were studied under
SEM. Results showed that grain size increased with increase in temperature deposition. Change in
size of grains was more when heated up to 200°C than heated to 400°C. Although the size of grain
at 200°C was less than that at 400°C.[17]

2.8 Subsurface deformation in machining of Inconel 718

Jimmig Zhou et al. studied the subsurface damage in cutting of Inconel 718 at four different
feed rate, three cutting speed and single depth of cut conditions. Two type of tools, semi worn out

and worn our tools were used.
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Fig. 24 Morphology of subsurface damage under HRSEM

Fig. 24 showed that worn out tool at dry condition had maximum damage to the subsurface and

plastic deformation region is high as compared to semi-worm out dry and wet conditions.

Micro hardness test was carried out with the increment of 10 microns in depth. It reveals the micro
hardness values under different cut condition. The increase of micro hardness values in the dry cut
was found smaller than wet cut condition when the same cutting parameters were employed

although larger strain of grains were observed in the near surface region.
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Fig 25. Micro hardness on deformed layer

Fig. 25 showed that dry cut does not produce significant difference of micro hardness in the

subsurface layer, it has, however, profound reduction in tool life. Value of hardness was greater

near machine affected zone due to thermal and residual stresses.[18]

2.9 Subsurface and surface roughness comparison of ground optical materials

Li Sheng et al. studied the grinding effects on subsurface damage to surface roughness

ratio. Several BK7 glass samples were prepared in order to analyze the effect of grinding. Round

indenter was used to determine micro hardness under the surface. SSD depth of 80 grit and 120

grit BK7 glasses were 52.9um and 38.0um respectively.
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Results showed that SSD/SR ratio of ground optical materials can be effectively predicted by
material mechanical properties, geometrical properties and load of abrasive grains. The SSD/SR
ratio is directly proportional to load of abrasive grains, while inversely proportional to granularity
of abrasive grains, especially. Mechanical properties of material affect SSD/SR ratio severely.[19]
Meenu Gupta et al. studied the comparison of surface roughness and material removal rate in
turning of UD-GFRP. Samples were prepared on turning machine by changing tool parameters
(Tool nose radius and tool rake angle) and machining parameters (speed of cut, feed rate, coolant

ratio and depth of cut).
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Fig. 27 Response graphs of surface roughness

Results showed that feed rate was the most influential parameter as compared to other machining
parameters (depth of cut and speed of cut).[20]

2.10 Micro hardness comparison with strength of Al-7010

M. Tiryakioglo et al., studied the effect of strength by changing the micro hardness of
material having same chemical composition. Samples of Aluminum for tensile testing was
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prepared from forged material. These samples were heated and quenched at different condotions

to vary the hardness values. Equations that relates yield stress with hardness is as follows:

r Hv
N =pozic
and
oy = f1Hv + 5y

Where C=2.956, B1= 0.268~0.39, Bo= slope of the stress and hardness curve.
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Fig. 28 Yield stress vs vicker hardness for 7010 plate and forging studied.

It was concluded that vicker hardness-Yield stress relationship for 7010 was developed:

oy = 0.383Hy— 1823

That data from two independent studies using the aluminum alloy 7010 overlapped was quite
significant and indicated a fundamental relationship between hardness and strength. The same fit

to both data sets also provided a very respectable fit to a third independent study.[21]

2.11 Prediction of subsurface damage depth by surface profiling
Tsutomu ohta et al. related the surface roughness of brittle material (optical grade

germanium and silicon) after grinding at different parameters to the subsurface cracks growth.
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Germanium and silicon samples were grinded at four different grinding parameter (changing

abrasive size). Surface roughness was studied by contact stylus.
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Maximum surface roughness Ry (um)
o
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Fig. 29 Surface roughness measured by Talystep with the 0.1 x 2.5 um rectangular stylus
For silicon,

y=3.35Ln(x)—-06.89
For Germanium,
y=23.19Ln(x)—0.068

These relations showed that surface roughness was directly affected by abrasive diameter. For
subsurface crack detection, small polishing method and slanted polishing method was used in
small polishing method surface was polished finely then stylus was employed to measure the

shallowness of the crack.
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Fig. 30 Graph of crack depth by two different methods
Results showed that surface roughness had logarithmic relationship with abrasive diameter.
Small tool polishing with fine silica abrasives was much effective. Silicon and germanium

both had similar subsurface damage depth.[22]
2.12 Effect of temperature on subsurface microstructure of Al 7075

Omar Fergania et al. studied the effect of turning on microstructure and micro hardness of
aluminum 7075. Three samples of variable depth of cut were prepared for the analysis of micro
hardness using micro hardness tester. Grain size along the boundary and micro hardness was
studied.
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Fig. 31 Graph of hardness vs samples for sample A, d=0.1mm, for B, d=1mm, for C,
d=2.0mm
Predicted hardness was calculated from Hall-Petch Relation. Results showed that increasing
the depth of cut it resulted in increase in grain size that reduced the micro hardness values
beneath the surface.[23]

2.13 Effect of torsion on micro hardness of Al-6061 composite

Saleh N. Alhajeri et al. studied the micro structure and micro hardness of Al-6061 metallic
composite with 10% Al»Oz particles subjected to torsional loading. 60 GPa torsional load was
applied on the sample. Sample was prepared for metallography by mounting, grinding and
polishing. Sample was processed for 10 turns and effect of these turns were checked at several
points during processing.
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Fig. 32 Color coded graphs of micro hardness a)1/4, b)1/2, c)1, d)5 and e) 10 turns

Results showed that micro hardness increases linearly with the fraction of number of turns
(<1) from 62 Hv to ~140 Hv near edge. While at large number of turns N=10 hardness became
more saturated of ~170 at outer region.[24]
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Conclusion

Welded material fracture earlier than un
welded material. In HAZ, both hardness
and tensile strength reduce to its
minimum value and SEM images shows
that during fatigue life testing most
samples fails in HAZ

Fraction of valley roughness profile
(100-Mr2), calculated by Abbot-
Firestone curve, is in linear relationship
SSD and is more accurate indicator than
maximum peak to valley roughness (Rt
max)

Penetration depth of subsurface damage
depends on ceramic type, Brittleness and
maximum grit of depth of cut.

Both milling and turning produce
hardened layer in machine effected zone.
Hardened layer depend upon the
machining parameters (feed rate, depth
of cut and cutting speed), tool nose
condition and material properties
(thermal resistance, brittleness etc.)
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Surface roughness of cryo MQL had
minimum value means that gave the best
surface finishing. However the forces for

cryogenic machining is maximum as
material surface frozen out before cutting

that increased the hardness of material.

Liquid nitrogen should be applied on

cutting edge at time of cut.

Quadratic polynomial models estimate
the surface roughness and micro
hardness perfectly, while a linear model
evaluate the variations of white layer
thickness, as well. Feed rate had
maximum effect on the surface
roughness and micro hardness of
hardened steel

The maximum hardness of HV 119 was
obtained for the SZ, while the boundary
between the HAZ and the TMAZ on the
advancing side (failure location in the
tensile testing) exhibited the lowest
hardness value of HV 81. It was shown
that hardness mapping can be alternative
for macroscopic in different situations.
The investigation showed that hardness
map is prediction of macroscopic and
microscopic properties of FSW joints.

Thermal Machine Affected Zone had the
most deformed structure while Heat
Affected Zone had no prominent change
in micro structure as compared to base
material however grain size decreases
with increase in distance from weld
region.
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Dry cut does not produce significant
difference of micro hardness in the
subsurface layer, it has, however,
profound reduction in tool life. Value of
hardness was greater near machine
affected zone due to thermal and residual
stresses

Data from two independent studies using
the aluminum alloy 7010 overlapped was
quite significant and indicated a
fundamental relationship between
hardness and strength. The same fit to
both data sets also provided a very
respectable fit to a third independent
study.

Surface roughness had logarithmic
relationship with abrasive diameter.
Small tool polishing with fine silica
abrasives was much effective. Silicon
and germanium both had similar
subsurface damage depth

Predicted hardness was calculated from
Hall-Petch Relation. Results showed that
increasing the depth of cut it resulted in
increase in grain size that reduced the
micro hardness values beneath the
surface

Results showed that micro hardness
increases linearly with the fraction of
number of turns (<1) from 62 Hv to ~140
Hv near edge. While at large number of
turns N=10 hardness became more
saturated of ~170 at outer region.

Table 01 Summary of literature review
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Chapter 3: Design of Experiment, Sample Preparation and

Experimental Setup

3.1 Selection of Material

Material used for machining and studying the effect on surface roughness, subsurface damage and
fatigue life is aerospace grade aluminum 6082-T6 alloy. T6 indicates that it is artificially aged

aluminum alloy. Composition test was conducted having the composition as follows:

Element Composition (%)

Al Balance

Zn 0.37

Si 0.35

Mn 0.85

Mg 0.64

Fe 0.4

Cu 4.56

Ti -

Cr -

Table 02 Al-6082 Material composition
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3.2 Dimensions of specimen

Dimensions are selected as per 1SO 1143:2010 standard for fatigue testing. For turning for

comparison same dimensions are adopted as per fig given below.

60 mm 1

N

Fig. 28 Dimensions for turning specimen.

3.3 Selection of Insert and Shank

For the selected machining parameters and material, shank and insert was selected from
the Sandvik Coromat catalogue 2011 for the single point turning of Aluminum 6082-T6. The codes
for insert and shank were VCGX 16 04 04-AL H10 and SVVBN 2525M 16 resepectively.

3.4 Input and Response Variables

3.4.1 Input Variables:

Input variables are selected as prescribed by the catalogue of tool manufacturer that is Sandvik
Coromat catalogue 2011 and I1SO 3685 standard for the “Tool-life testing with single-point turning

tool”. Input variables for turning of material are:

e Feed rate (0.15, 0.2, 0.25 mm/rev)

e Cutting speed (1500rpm (44.77m/min), 2000rpm (59.69 m/min), 2500rpm (74.613
m/min))

e Depth of cut (1.25, 1.5, 1.75 mm)
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3.4.2 Responsible Variables:
Response variables selected for this research are:

e Surface Roughness
e Sub surface Damage

e Fatigue life comparison.
3.5 Design of Experiment

Sample preparation was conducted by changing the combination of different machining
parameters as specified by input parameters of all three parameters and their values. Full factorial
approach was used to test all possible combinations of parameters and their ranges. List of samples

prepared for analysis is as follows:

Sr. no. Feed rate Cutting Speed | Depth of cut
(mm/rev) (rpm) (mm)
1 0.15 1500 1.25
2 0.15 2000 1.25
3 0.15 2000 15
4 0.15 2000 1.75
S 0.15 2500 15
6 0.15 2500 1.75
7 0.2 1500 1.25
8 0.2 1500 15
9 0.2 2000 1.25
10 0.2 2000 1.75
11 0.2 2500 15
12 0.25 1500 15
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13 0.25 2000 1.5
14 0.25 2000 1.75
15 0.25 2500 1.5
16 0.25 2500 1.75
17 0.25 1500 1.25
18 0.2 2500 1.75
19 0.2 1500 1.75
20 0.15 2500 1.25
21 0.2 2500 1.25
22 0.25 2000 1.25
23 0.25 2500 1.25
24 0.15 1500 1.5
25 0.2 2000 1.5
26 0.15 1500 1.75
27 0.25 1500 1.75

Table.03 Design of experiment

3.6 Machining Procedure

Aluminum rods of 20 mm diameter and length of 1 meter in length are cut into length of above
mentioned length with the help of SiC water cooled cutter. Diameter of the samples are reduced
to 9.5mm as prescribed by 1SO 1143:2010 for fatigue testing specimen preparation at different
machining conditions as in above mentioned table for machining samples. Turning of samples
are carried on multiple tool turret CNC lathe machine model ML-300 having maximum spindle
speed of 3500rpm. Each insert is used for the machining of 3 samples while insert 6, 7 and 8 is

used for the machining of four samples.
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Fig. 29 CNC Lathe machine, sample preparation

3.7 Sample Preparation for Metallography
3.7.1 Sectioning of samples

Machined samples are sectioned for microscopic study from the long machined rods. 5mm sample
length sample is cut with the help of SiC 20 grit saw with continuous cooling of water to avoid
any deformation in grain structure and upper layer of the sample. 10-15 pum of space is to be spared

from both ends to compensate the effects of cutting.[25]
3.7.2 Mounting of Samples

Mounting of samples are necessary to hold them for grinding, polishing, stabilizing the foundation
of the sample and provide edge retention. For that purpose, 27 samples are hot mounted using
bakelite powder as the base. For comparison of change in mechanical properties of samples, 3
samples are cold mounted. For hot mounting, Hydropress automatic mounting machine is used.

For cold mounted samples, acrylic solution with fast hardener is used.
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Sr. No. Parameter Value

1. Temperature 114°C
2. Pressure 280 Bar
3. Settling Time 4 min

Table. 04 Parameters for hot mounting.

a) b)

Fig 35 a) hot mounted sample, b) hot mounting machine
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3.7.3 Grinding of Samples

Reflecting surface is needed for conducting hardness test, for that purpose grinding of samples for
fine surface finish is followed. This process is completed in five steps using different SiC sand
papers of different grit sizes. Metkon Gripo 2V grinder polisher machine is used at speed of 600-
800 rpm. Different grit size sand papers used are: 120, 320, 800, 1200 and 2000 to achieve the
finner surface. Direction of cut is changed to 90° for every step of the grinding. Water is constantly

splashed to avoid the increase in temperature. [26]

Fig.36 Metkon Gripo 2V grinding and polishing machine
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(@ (b)

Fig.37 Grinding images of sample at; FR=0.15mm/rev, CS=2000 and DoC= 1.5mm at
500X a) 120, b)320, ¢)800, d)1200, €)2000 grit
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3.7.4 Polishing of Samples

For fine mirror like surface after grinding to smooth surface polishing is required. Polishing is
carried out at different stages using diamond paste of different particle size at 6um, 3pum, 1um and
0.1um with diamond lubricant. Finest surface is achieved from 0.05pum alumina colloidal solution.
Sample is rotated through the paper. Sample surface gets finer with reducing the grain size of the

diamond paste.

u

50 um

u

50 um

[

50 um

(]

50 um

(©) (d)
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Fig.38 Polishing of sample at 500X a) 6um, b) 3pum ¢) 1pum, d) 0.1um, e) 0.05um
3.7.5 Scanning Electron Microscopy:

Scanning Electron Microscopy (SEM) is used to analyze the microstructure and changes at micro
level. Two major types of scanning electron microscopes are used: Field Emission and Thermal
emission microscopes. JEOL 5910-LV thermal emission with tungsten filament is used for the
analysis having magnifying power of 100000X. Conductive materials are used otherwise charging
phenomenon may occur that causes blur images than actual. To make the bakelite mounting
conductive silver paste is used that touches the metallic specimen to the lower end of the

sample.[25]

a) (b)

Fig.39 (a) Sample with silver paste (b) thermal emission scanning electron microscopy
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3.7.6 Surface Roughness Testing

Surface Roughness is prime indicator of the machining quality. For checking the surface roughness
of machined rods, they are placed on a V-block with grinded upper surfaces. Times Tr-100 portable
surface roughness tester is used to check the surface integrity of the machined surface. Each
Sample is tested with the repeatability of three times at the angle of 120°. Average Ra values are

obtained to analyze the results. Specifications of surface toughness tester is given below:

Sr. No. Parameter Value
1 Measuring Ra=0.05-10
Range
2 Stylus Radius 10+2.5um
3 Stylus angle 90°

Table05 Specifications of surface roughness tester

Fig.40 TR-100 Surface roughness tester
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Different unit terminologies are used to measure the surface roughness values as under:

Ra: is arithmetic mean value of the deviation of the profile within sampling length.

] n
Ra—;Z\J’J

i=l1

Rq: is the root mean square of the deviation of profile within sampling length.

Rz: The sum of two averages five maximum profile peak averages and five maximum profile

valley averages within the sampling length.

Ry: The distance between profile peak lines to valley line within sampling length.
3.7.7 Micro hardness Testing:

Fine polished samples are used for calculating the micro hardness under the machined surface at
regular interval. Five indents in a row down the machined surface and final indent at the center of
the sample as base material hardness test. This experiment is repeated three times and average
values are calculated. QAV-1000DAT vicker micro hardness tester is used for this experiment.
25¢f load with 10s of dwell time is used. Each indent is marked at the distance of 30 um form the
first to the next according to the ASTM E384 that is distance between indents is atleast three times
the mean of diagonals. First indent is marked at the distance of 28.5 um from the edge. Fig. below

shows the schematic of experiment carried out and equipment used with the indent marks.[27]
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Fig41l Schematic of micro hardness testing

(@)
(b)
(©
Fig42 (a) Two indents shown and their difference (b) Indent (c) QV-1000DAT micro hardness
tester
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Micro hardness is calculated by measuring the diagonals and calculating the mean of it and using

the formula given below:
Hv = 1.854 F/d?
Where; F= Force exerted by the diamond indent
d= mean of diagonal indents[28]

Subsurface damage is calculated by half-life criterion by the formula given below:

(max. value — min. value)

Hl = ( > ) + min. value
In this case ,
115
Max. hardness= 114.8 i
Base hardness= 109.7 ”3J X: 59.49
= ‘ Y: 1122
T |

So HI=112.2 that lies on 59.49um

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Distance from Edge (microns)

Fig43. Subsurface damage for the machining parameters

For feed rate 0.15mm/rev, DOC 1.25mm and

Cutting speed 2000 rpm

In the same way all values are calculated by plotting the hardness values at different points of the
sample and damage depth is calculated by half-life method according to the obtained hardness
value of that sample. Higher values near the machined layer is observed in all samples than the

base value.
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Chapter 4: Results and Discussions

From the above experiments data was collected that is shown in table below; for all conditions and
response parameters values that are surface roughness, fatigue and micro hardness roughness
depth.

Cutting Depth of Surface Fatigue Subsurface
Sr. | Feed rate .
o | (e Speed cut Roughness Life[1] Da-mage

(rpm) (mm) Ra (um) (cycles) (microns)
1 0.15 1500 1.25 2.553333333 7838 49.66
2 0.15 2000 1.25 2.48 101143 59.49
3 0.15 2000 1.5 4.783333333 148278 73.41
4 0.15 2000 1.75 2.113333333 92930 104.2
5 0.15 2500 1.5 3.44 27982 78.28
6 0.15 2500 1.75 3.626666667 170640 50.2
7 0.2 1500 1.25 3.806666667 53892 52.1
8 0.2 1500 1.5 4.003333333 29384 52.39
9 0.2 2000 1.25 3.896666667 72940 47.69
10 0.2 2000 1.75 3.393333333 50852 114.2
11 0.2 2500 1.5 3.75 61065 76.87
12 0.25 1500 1.5 5.033333333 110240 73.19
13 0.25 2000 1.5 6.28 32508 54.01
14 0.25 2000 1.75 4.883333333 13288 78.27
15 0.25 2500 1.5 5.333333333 35426 55.57
16 0.25 2500 1.75 5.183333333 94971 95
17 0.25 1500 1.25 6.163333333 37402 75.07
18 0.2 2500 1.75 4.093333333 46376 89.8
19 0.2 1500 1.75 5.84 95349 116.3
20 0.15 2500 1.25 3.21 40450 48.8
21 0.2 2500 1.25 5.473333333 33261 79.33
22 0.25 2000 1.25 7.09 41525 62.36
23 0.25 2500 1.25 7.483333333 68785 46.7
24 0.15 1500 15 341 139168 81.7
25 0.2 2000 1.5 4.82 115360 126.7
26 0.15 1500 1.75 3.973333333 131658 58.03
27 0.25 1500 1.75 8.346666667 59314 63.07

Table Surface roughness, fatigue and subsurface damage measurements for samples
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By comparing the two variables to the responses (surface roughness and subsurface damage) we

get;
Line Plot of Mean( Surface Roughness ) Line Plot of Mean( Surface Roughness )
6.3 Depth Cutting
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Fig44 (a) plot of surface roughness against feed rate and depth of cut (b) plot of surface
roughness against feed rate and cutting speed (c) plot of surface roughness against depth of cut

and cutting speed

In fig44 (a) surface roughness marked behavior with respect to the feed rate and depth of cut, it
shows that the feed rate is directly affect the surface roughness value. Increase in feed rate from

0.15 mm/rev to 0.25 mm/rev increases the surface roughness value. Corresponding to the depth of
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cut surface roughness increases with increase in depth of cut and correspondently to the feed rate.
At feed rate=0.25 mm/rev, depth of cut shows inversely relation to the surface roughness as

increase in DOC results in decrease in surface roughness.

In fig44 (b) feed rate and cutting speed is plotted against the surface roughness. Surface roughness
increases with increase in feed rate while surface roughness decreases with increase in cutting

speed. Cutting speed of 2000rpm is of lowest value.

In fig44 (c) DOC and cutting speed is plotted against the surface roughness. Random behavior is
observed as at cutting speed of 1500 rpm incremental trend of surface roughness is observed while

for cutting speed 2000 rpm surface roughness is maximum at 1.5mm DOC then decreases.

Line Plot of Mean( Damage layer ) Line Plot of Mean( Damage layer )
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Fig45 (a) plot of Subsurface damage against feed rate and depth of cut (b) plot of Subsurface
damage against feed rate and cutting speed (c) plot of Subsurface damage against depth of cut
and cutting speed
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In the fig, it is indicated that the maximum values of subsurface damage is at feed rate= 0.2 mm/rev
and cutting speed of 2000 rpm. Depth of cut shows relatively the direct relation with the surface

roughness as it increases with increase in DOC.
4.1 Optimized Parameters

Surface Roughness is key indicator for the surface quality. It is desirous in some designs but
usually it is avoided to increase the value of surface roughness from the specified limit. For that
case, machining parameters are selected that get the optimized value for the desired application.
Similarly hardening of layer is good in some case but in other side it cause worst effect on the

mechanical parameters of the specimen.

For Surface Roughness, minimum value is Ra=2.11 um at the condition of feed rate= 0.15mm/rev,
cutting speed= 2000rpm and depth of cut= 1.75 mm. While maximum surface roughness is
Ra=8.34 um at the condition of feed rate= 0.25 mm/rev, cutting speed= 1500 rpm and depth of
cut=1.75 mm. (ANNEX-A)

For subsurface damage, minimum damage thickness is 46.7 um at feed rate= 0.25mm/rev, cutting
speed= 2500rpm and depth of cut= 1.25 mm and maximum damage thickness is 126.7 um at feed
rate=0.2mm/rev, cutting speed= 2000rpm and depth of cut= 1.5 mm. (ANNEX=B)

For fatigue life, maximum life is 170640 cycles at feed rate= 0.15mm/rev, cutting speed=2500rpm
and depth of cut= 1.75 mm where surface roughness is Ra=3.62 pm and SSD= 50.2um. While
minimum fatigue life is 7838 cycles at feed rate= 0.15mm/rev, cutting speed= 1500rpm and depth

of cut= 1.25mm where surface roughness is 2.55um and SSD= 49.66um.[1]
4.2 Analysis of Variance

General Linear Model is selected for the analysis and percentage contribution of each

parameter.[29]
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Subsurface Damage
Source DF SS MS P PC%
Feed Rate 2 1708.6 854.3 0 12.64618
Cutting Speed 2 730.5 365.2 | 0.00074 | 5.406786
Depth of Cut 2 3467.2 1733.6 0 25.66243
FR*CS 4 773 193.2 | 0.00148 | 5.721349
. -
FR*DC 4 1496.3 374.1 | 0.00074 | 11:07484
DC*CS 4 546.9 136.7 | 0.00074 | 4.047873
FR*CS*DC 8 4788.3 598.5 | 0.00222 | 35.44054
Total 26 13510.8
TableO7 ANOVA and percentage contribution for subsurface damage
Fatigue
Source DF SS MS P %
Feed Rate 2 8504113943 | 4252056971 2'0006927E' 17.06156
Cutting Speed 2 569312525 | 284656263 '2'0:96 3B | 1142105
Depth of Cut 2 5580358810 | 2790179405 0 11.19571
FR*CS 4 5871802814 | 1467950703 4'0102954E' 11.78043
FR*DC 4 5430111403 | 1357527851 '2'°::3E' 10.89428
DC*CS 4 12291069149 | 3072767287 2'0006927E' 24.65922
FR*CS*DC 8 11596933877 | 1449616735 '6'0; : 8E- | 23.2666
Total 26 49843702521
Table08 ANOVA and percentage contribution for Fatigue Life. [1]
Surface Roughness
Source DF SS MS P PC%
Feed Rate 2 39.124 19.5619 0.000322 | 62.9413
Cutting Speed 2 0.6403 0.3202 -0.00016 | 1.030092
Depth of Cut 2 0.0946 0.0473 0 0.152189
FR*CS 4 0.3917 0.0979 0.000161 | 0.630153
FR*DC 4 4.7433 1.1858 0.000161 | 7.630853
DC*CS 4 14.791 3.6978 -0.00032 | 23.79524
FR*CS*DC 8 2.3747 0.2968 0.000483 | 3.820333
Total 26 62.1595
FR*CS*DC 8 11596933877 | 1449616735 '6'°;:8E' 23.2666
Total 26 49843702521

Table09 ANOVA and percentage contribution for Surface Roughness
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Machining parameter | Surface roughness (%) Fatigue life (%) | Subsurface damage
(%)

Feed Rate 62.94 17.06 12.64

Cutting Speed 1.03 1.14 5.4

Depth of Cut 0.15 11.19 25.66

FR*CS 0.63 11.78 5.72

FR*DC 7.63 10.89 11.07

DC*CS 23.79 24.65 4.04

FR*CS*DC 3.82 23.26 35.44

Table10 Contribution Ratio of response and variables

Table shows that the feed rate is of key importance in determining fatigue life and surface

roughness of machined sample. While in subsurface damage depth of cut is most important

variable than rest of others.

4.3 Main Effect Plots

Main effect plots of both responses and their variables helped to conclude the relation of each

variable with the surface roughness and subsurface damage respectively. These plots are compared

with the main effect plots of fatigue life.[1]
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Main Effects Plot for Means Main Effects Plot for Means
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Fig46 (a) Main effect plot of fatigue life (b) Main effect plot of surface roughness

Fig. shows that the feed rate (most effective parameter for both fatigue life and surface roughness)
increases fatigue life increases while in surface roughness increases with increase in feed rate.
Same is the case with cutting speed that is inversely proportional to surface roughness. DOC has
some contradictive behavior for fatigue life and surface roughness but it has minimum contribution
ratio as mentioned in table of contribution ratios. From all parameters, it can be concluded that
fatigue life and surface roughness are inversely proportional to each other as fatigue life increases

if the surface roughness is minimum for the desired machined surface.

Main Effects Plot for Means Main Effects Plot for Means
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Fig47 (a) Main effect plot of fatigue life (b) Main effect plot of Subsurface Damage
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In fig. feed rate and cutting speed does not show the same trend for fatigue life and subsurface
damage. Although depth of cut that is the main contributing machining parameter in subsurface
damage has the direct on the fatigue life which means that fatigue life increases as the subsurface
damage increases for the variable of depth of cut. No trend shows that the fatigue is not directly

depends upon the subsurface damage caused by the machining.
4.4 White Layer Formation

Increase in subsurface hardness near to the machined surface is mainly due to the work hardening,
plastic deformation and white layer formation.[6]Due to thermomechanical processes the
microstructural changes that formed a layer often appear brighter than the base material that is ghy
it is called white layer. It is sometimes desirable but due to safety concerns it is avoided to be

formed. Samples are observed to find same phenomenon under scanning electron microscope.[30]

Base Material

White layer

Mounting Material
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(b) (c)
Fig48 (a) & (b) Scanning electron microscope images for machined samples at 7000X (b)
Optical microscope image at 1000X

Fig48 shows that the damage caused by the machining of the material. Thermal changes caused
the white layer formation that increases the hardness at upper layer of the machined surface while

base material variation is much lower than the upper value.
Chapter 5: Conclusions and Recommendations

5.1 Conclusions

In this research, aluminum 6082-T6 samples are turned at different operating conditions and
analyzed for the response parameters like surface roughness and subsurface damage depth and
their relation with the fatigue life of the samples. Following conclusions are drawn from the whole

experimentations:

e Surface roughness is directly effects the fatigue life of specimen. As increase in surface
roughness decreases the fatigue life of the specimen that is mainly due to the crack
generates from the upper machined surface.

e From main effect plots, feed rate and cutting speed of surface roughness has inverse trend
to the feed rate and cutting speed of fatigue life which means increase in feed rate increases
the surface roughness and decreases the fatigue life. Similarly increase in cutting speed

decreases the surface roughness value and increases the fatigue life of the specimen. Depth
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of cut does not show any prominent role in comparing the surface roughness and fatigue

life although it gets least contributing ratio in both response parameters.

e Subsurface damage does not show any direct relation to the fatigue life of the specimen.

Main effect plots shows that the depth of cut of subsurface damage and fatigue life has
similar trend as increase in depth of cut subsurface damage increases that also results in

increase in fatigue life.

e Due to thermo-mechanical effect of the machining the upper surface of the specimen get

hardened due to white layer formation. Similar trend is observed in all samples that 15-

20% increase in hardness at lower than the base material of about (110Hv).

e For subsurface damage, depth of cut is the most contributing machining parameter.

Maximum subsurface damage is observed at feed rate of 0.2mm/rev and cutting speed of
2000 rpm.

e Least subsurface damage of 46.7um is caused at the condition of feed rate=0.25mm/rev,

cutting speed= 2500 rpm and depth of cut of 1.25mm. While maximum damaged layer
thickness of 126.7 um is observed at feed rate= 0.2 mm/rev, cutting speed=2000rpm and
depth of cut=1.5 mm.
For surface roughness most dominating machining parameter is feed rate that contribute up to
62.9% of total effect. Feed rate shows direct trend that surface roughness increase with
increase in feed rate and vice versa. For cutting speed this trend is opposite that cutting speed
increases and surface roughness decreases.
For Surface Roughness, minimum value is Ra=2.11 um at the condition of feed rate=
0.15mm/rev, cutting speed= 2000rpm and depth of cut= 1.75 mm. While maximum surface
roughness is Ra=8.34 um at the condition of feed rate= 0.25 mm/rev, cutting speed= 1500 rpm
and depth of cut=1.75 mm.
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5.2 Recommendations for future work

For the future work, following dimensions is recommended related to this work:
e Residual stresses generated by turning at different machining parameters by X-RD.
e Force induced by tool at different parameters.
e Change in natural frequency and damping coefficient due to change in outer hardened

layer.
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ANNEXURE-A: Detailed result of surface roughness experiment.

. Surface Surface Surface Surface
Cutting | Depth
Sr. no. Feed rate S || e Roughness | Roughness | Roughness | Roughness
(mm/rev) (rom) | (mm) (Ra) 1 (Ra) 2 (Ra) 3 avg.
(pm) (um) (um) Ra (um)

1 0.15 1500 1.25 2.4 2.74 2.52 2.553333333
2 0.15 2000 1.25 2.6 2.5 2.34 2.48
3 0.15 2000 1.5 5.03 4.6 4.72 4.783333333
4 0.15 2000 1.75 2.1 2.13 2.11 2.113333333
5 0.15 2500 1.5 3.43 3.57 3.32 3.44
6 0.15 2500 1.75 3.92 3.15 3.81 3.626666667
7 0.2 1500 1.25 3.84 3.68 3.9 3.806666667
8 0.2 1500 1.5 4.06 4.09 3.86 4.003333333
9 0.2 2000 1.25 3.81 3.78 4.1 3.896666667
10 0.2 2000 1.75 3.43 3.42 3.33 3.393333333
11 0.2 2500 1.5 3.76 3.69 3.8 3.75
12 0.25 1500 1.5 5.61 4.93 4.56 5.033333333
13 0.25 2000 1.5 6.3 6.15 6.39 6.28
14 0.25 2000 1.75 4.82 4.91 4.92 4.883333333
15 0.25 2500 1.5 5.34 5.26 5.4 5.333333333
16 0.25 2500 1.75 5.18 5.11 5.26 5.183333333
17 0.25 1500 1.25 6.53 6.07 5.89 6.163333333
18 0.2 2500 1.75 4.04 4.18 4.06 4.093333333
19 0.2 1500 1.75 5.9 5.93 5.69 5.84
20 0.15 2500 1.25 2.87 3.43 3.33 3.21
21 0.2 2500 1.25 5.66 5.49 5.27 5.473333333
22 0.25 2000 1.25 6.92 7.17 7.18 7.09
23 0.25 2500 1.25 8.13 7.2 7.12 7.483333333
24 0.15 1500 1.5 3.22 3.45 3.56 3.41
25 0.2 2000 1.5 4.66 4.92 4.88 4.82
26 0.15 1500 1.75 3.83 4.21 3.88 3.973333333
27 0.25 1500 1.75 8.48 7.9 8.66 8.346666667
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ANNEXURE-B: Detailed results of micro hardness test

Sample no. 1 Sample no. 2
Hv Hv (avg.) Hv Hv (avg.)
119 120
Indent 1 118.6 118.367 Indent 1 109 114.8
117.5 115.4
114.1 117
Indent 2 112.8 113.733 Indent 2 108.6 | 112.267
114.3 111.2
113.1 111.3
Indent 3 113.7 113.133 Indent 3 109 109.4
112.6 107.9
112.1 116
Indent 4 112 111.967 Indent 4 107 109.533
111.8 105.6
112.3 113.1
Indent 5 112.1 112.067 Indent 5 107 108.933
111.8 106.7
111.4 105.6
'(r:irt':g 112.4 111.9 '("ci‘:t'::; 109.5 | 109.7
114
Sample no. 3 Sample no. 4
Hv Hv (avg.) Hv Hv (avg.)
101.8 101
Indent 1 104.3 103.1 Indent 1 108.8 | 103.733
103.2 101.4
99.8 101.8
Indent 2 103 101.633 Indent 2 105 102.667
102.1 101.2
97.2 101.2
Indent 3 99.5 98.6667 Indent 3 107 103.067
99.3 101
94.3 104.3
Indent 4 101.8 97.8 Indent 4 101 101.833
97.3 100.2
95 103.5
Indent 5 94.8 95.7333 Indent 5 101.2 | 101.633
97.4 100.2
Indent 6 %7 Indent 6 100.2
- 97.9 97.45 (center) igi: 101.167
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Sample no. 5 Sample no. 6
Hv Hv (avg) Hv Hv (avg)
110.4 120
Indent 1 115 112.733 Indent 1 114.1 | 116.967
112.8 116.8
111.3 116
Indent 2 120 113.233 Indent 2 111 113.333
108.4 113
114.1 107.7
Indent 3 108 111.033 Indent 3 116 112
111 112.3
113.1 114.1
Indent 4 108.6 110.567 Indent 4 112 112.067
110 110.1
111 109.5
Indent 5 110.2 110.233 Indent 5 109.2 | 108.667
109.5 107.3
113 111
'("CZ‘:"::S 110.6 110.933 '("CZ‘:‘:::; 112 | 111.733
109.2 112.2
Sample no. 7 Sample no. 8
Hv Hv (avg) Hv Hv (avg)
125.5 158.8
Indent 1 128.2 125.767 Indent 1 160.1 | 161.667
123.6 166.1
124.3 151.5
Indent 2 123.4 124.167 Indent 2 147.7 | 150.533
124.8 152.4
123.1 141.4
Indent 3 123.6 123.3 Indent 3 146.5 144.9
123.2 146.8
123.5 138.8
Indent 4 123.2 123.267 Indent 4 146 141.767
123.1 140.5
123.8 138.2
Indent 5 123.2 123.067 Indent 5 144.6 142.6
122.2 145
122.2 138.2
Indent 6 123.9 Indent 6 140.2
(center) 123.233 — 140.067
123.6 141.8
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Sample no. 9 Sample no. 10
Hv Hv (avg) Hv Hv (avg)
125.3 117
Indent 1 122.6 124 Indent 1 110.4 | 113.467
124.1 113
115 118
Indent 2 116 115.6 Indent 2 114.1 115.1
115.8 113.2
120 126.4
Indent 3 101 110.367 Indent 3 110.4 | 116.633
110.1 113.1
113.1 117
Indent 4 109.5 110.433 Indent 4 109 112.767
108.7 112.3
112.2 116
Indent 5 111.3 111.3 Indent 5 107 111.333
110.4 111
113.1 110
'("CZ‘:"::S 113.1 113.233 '("CZ‘:‘:::; 1115 | 110.167
1135 109
Sample no. 11 Sample no. 12
Hv Hv (avg) Hv Hv (avg)
113.1 105
Indent 1 112.2 112.633 Indent 1 105.1 | 104.967
112.6 104.8
112.3 104.3
Indent 2 1113 111.767 Indent 2 104 103.867
111.7 103.3
108.6 99.2
Indent 3 109 108.3 Indent 3 102 100.733
107.3 101
109.5 101.8
Indent 4 107.1 107.7 Indent 4 103 101.333
106.5 99.2
108.6 102.7
Indent 5 107.8 107.4 Indent 5 99.9 100.7
105.8 99.5
105 103
'(“c‘:i't'::; 101.3 106.767 I(nc(l?:t‘::; 99 | 99.6333
114 96.9
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Sample no. 13 Sample no. 14
Hv Hv (avg) Hv Hv (avg)
114.1 102.6
Indent 1 119 116.467 Indent 1 115 108.7
116.3 108.5
112.2 101.8
Indent 2 112.2 112.067 Indent 2 113.1 | 107.467
111.8 107.5
108.1 99.2
Indent 3 110.5 109.367 Indent 3 112.9 | 106.033
109.5 106
106.8 98.9
Indent 4 109.5 108.2 Indent 4 108.5 | 103.833
108.3 104.1
106 98.5
Indent 5 109.3 107.8 Indent 5 106.8 | 103.033
108.1 103.8
109.5 104.8
'('11‘:‘::3 108.2 108.5 '("CZ‘:‘:::; 104.5 | 104.267
107.8 103.5
Sample no. 15 Sample no. 16
Hv Hv (avg) Hv Hv (avg)
119 110.4
Indent 1 119 118.9 Indent 1 1104 109.8
118.7 108.6
126.4 1104
Indent 2 106 116.367 Indent 2 116 111.2
116.7 107.2
119 109.5
Indent 3 109.5 114.267 Indent 3 106.8 | 107.867
114.3 107.3
116 117
Indent 4 116 115.9 Indent 4 102.6 106.9
115.7 101.1
115 121
Indent 5 115 114.767 Indent 5 101.8 108.4
114.3 102.4
115 101.8
'("c:i't'zg 114.2 114.367 '('lii't‘:g 105.1| 1043
113.9 106
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Sample no. 17 (55) Sample no. 18 (57)
Hv Hv (avg) Hv Hv (avg)
160.2 104.3
Indent 1 159.2 160.233 Indent 1 104 104.2
161.3 104.3
1594 103.5
Indent 2 158.8 159.433 Indent 2 104.3 | 103.867
160.1 103.8
144.8 101.8
Indent 3 145.2 145.033 Indent 3 101.8 101.9
145.1 102.1
142.2 100.3
Indent 4 143.1 142.6 Indent 4 99.3 99.8
142.5 99.8
142.9 97.9
Indent 5 144.2 142.4 Indent 5 100.3 98.8
140.1 98.2
142.6 99.5
'("CZ‘:":ZS 143 142.6 '("ci‘:"t‘::; 101.8 | 99.4667
142.2 97.1
Sample no. 19 (58) Sample no. 20 (59)
Hv Hv (avg) Hv Hv (avg)
158.8 134
Indent 1 156.4 160.933 Indent 1 129 131.333
167.6 131
156.7 135
Indent 2 156.2 155.933 Indent 2 132 133.333
154.9 133
155.5 122
Indent 3 161.8 157.4 Indent 3 129 127.033
154.9 130.1
154.3 124
Indent 4 156.9 154.5 Indent 4 125.6 124.5
152.3 1239
153.9 122
Indent 5 155.4 153.133 Indent 5 121.3 120.2
150.1 117.3
148.2 116
'(“c‘:i't'zg 148.8 148.5 '(’::i't‘:g 112 | 114333
145.7 115
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Sample no. 21 (60) Sample no. 22 (61)
Hv Hv (avg) Hv Hv (avg)
128 167.9
Indent 1 130.1 128.167 Indent 1 162.9 167.8
126.4 172.6
128.6 1554
Indent 2 120 124.2 Indent 2 158.4 | 160.567
124 167.9
120 154.6
Indent 3 109.5 114.9 Indent 3 159.1 156.5
115.2 155.8
116 152.3
Indent 4 100.7 109.233 Indent 4 154.4 1534
111 153.5
108 151.2
Indent 5 108 107.767 Indent 5 151.1 150.8
107.3 150.1
108 152
'("CZ‘:"::S 106.4 107.1 '("CZ‘:‘:::; 154.7 | 152.267
106.9 150.1
Sample no. 23 (62) Sample no. 24 (71)
Hv Hv (avg) Hv Hv (avg)
1333 160.8
Indent 1 122.1 128.033 Indent 1 155.7 | 157.833
128.7 157
118 159.5
Indent 2 116 117.267 Indent 2 149.8 154.5
117.8 154.2
116 144.8
Indent 3 112.2 114.233 Indent 3 150.4 147.6
114.5 147.6
114.6 1435
Indent 4 117 115.367 Indent 4 138.3 | 140.533
1145 139.8
114.1 139.2
Indent 5 116 115 Indent 5 142.2 140.1
114.9 138.9
115 137
'(“c‘:i't':g 113.1 115.033 '("cii't‘:g 146 | 140.733
117 139.2
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Sample no. 25 (72) Sample no. 26 (73)
Hv Hv (avg) Hv Hv (avg)
153.3 144.8
Indent 1 128 141.667 Indent 1 140.8 | 142.467
143.7 141.8
138.3 138.3
Indent 2 138.9 138.133 Indent 2 138.3 | 138.167
137.2 137.9
133.3 143.5
Indent 3 132.2 133.2 Indent 3 135.7 138.5
134.1 136.3
126.4 138.3
Indent 4 132.1 127.867 Indent 4 134.5 | 136.167
125.1 135.7
117 145
Indent 5 116.2 116.5 Indent 5 131 1354
116.3 130.2
Indent 6 106.8 Indent 6 Lo
(center) 106.8 108 — 132.1 134
110.4 130.9
Sample no. 27 (74)
Hv Hv (avg)
156.7
Indent 1 146.2 150.067
147.3
154.4
Indent 2 139.5 146.8
146.5
153.5
Indent 3 130.5 141.733
141.2
153.5
Indent 4 138.3 142.1
134.5
153.5
Indent 5 130 141.033
139.6
Indent 6 149.2
(center) 139.6 142
137.2
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