

FINAL YEAR PROJECT UG 2015

By

n
1

NUST Institute of Civil Engineering School of Civil and Environmental Engineering National University of Sciences and Technology, Islamabad, Pakistan

2019

This is to certify that the

Final Year Project Titled

GEOTECHNICAL CENTRIFUGE INSTRUMENTATION AND MODELLING

Submitted by

NUST BE-CE-15-137380
NUST BE-CE-15-145966
NUST BE-CE-15-135466
NUST BE-CE-15-120719

Hamza Nadeem Kaynat Akmal Faran Asif Muhammad Salman

has been accepted towards the requirements for the undergraduate degree

in

CIVIL ENGINEERING

Dr. S. Muhammad Jamil- Dean SCEE Designation (Professor) NUST Institute of Civil Engineering School of Civil and Environmental Engineering National University of Sciences and Technology, Islamabad, Pakistan

ABSTRACT

Centrifuge machines are being used widely worldwide for different purposes including geotechnical testing, Earthquake simulation and testing, Soil Structure Interaction etc. While in our country there isn't much work being done on the concept of centrifuge machine and there existed a research gap in the working in our country as compared to other countries. To fill this void, we had undertaken this project to develop a custom centrifuge and use it for the geotechnical testing of soil samples. Our project is divided into two phases. First one is the machine development and modelling is mainly the mechanical and electrical component of the project and doesn't have much to do with the soil testing. While the second phase is related to the soil testing part where we had tested the soil samples to obtain the geotechnical properties of respective soils and have also validated our results and the developed centrifuge by the comparison of results obtained from this centrifuge with those obtained from already existing Triaxial and Direct Shear Testing Machine.

In the first phase we have designed our machine and validated it on a software called Solid works and we have also carried out a detailed stability study of our machine, its constituent parts and its foundation to check foe any necessity of a damping system. We have also worked on providing the maximum possible Stability in our apparatus in terms of Vibration control so that our results don't get affected by these factors.

In the second phase we have carried out the soil testing on our centrifuge and we have carried out the testing in three stages i.e. Densification, Saturation, Shearing. At the same time, we have also performed the Triaxial and Direct Shear Test on the same soil samples and at the end we have compared the results from all these three testing machines to validate and verify our machine's credibility.

Identifying the differences in the results obtained from our machine with those obtained from the already existing procedures of Triaxial and Direct Shear Test we have proposed a future working on the machine and certain correction factors related to the machine to achieve maximum accuracy in the results.

COPYRIGHT NOTICE

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review.

@ 2019 ALL RIGHTS RESERVED

DEDICATION

We dedicate our work to our beloved parents and teachers who enabled us to achieve education and meet our objectives with such dignity and respect.

ACKNOWLEDMENT

I am deeply obliged to acknowledge and thank those people who put their ever best contribution into our thesis. First of all thanks to Almighty Allah for blessing us with everything that he has provided us.

We would like to thank our project advisor **Dr. S. Muhammad Jamil, Dean SCEE** who inspired us through his advice and helped us at each step whenever required. He kept on giving his best efforts by showing patience, encouragement, wisdom and honesty. We would also like to extend our gratitude to our co-advisors **Sir Muhammad Asim** and **Sir Ameer Hamza** for their constant support and help.

In the end we appreciate the support and encouragement provided by our families and friends throughout our academic career.

TABLE OF CONTENTS

CHAPTER 1 1
INTRODUCTION1
CHAPTER 2
LITERATURE REVIEW
2.1 Shear Strength of Soil
2.1.1 Importance of Shear Strength of Soil
2.1.2 Components of Shear Strength of Soil
2.1.3 Mohr Circle of Stresses
2.1.4 Mohr Coulomb Failure Criterion
2.2 Conventional Testing Procedures Available
2.2.1 Direct Shear Testing
2.2.2 Unconfined Compression Test
2.2.3 Tri-Axial Test
2.3 Centrifuge as a Testing Equipment
2.3.1 Centrifuge
2.3.2 Geotechnical Centrifuge
CHAPTER 3
RESEARCH GAP
3.1 The NEES Geotechnical Centrifuge at UC Davis:
3.2 Geotechnical Centrifuge from Nueva Granada Military University:
3.3.1 Features
3.3.2 Selected application areas
CHAPTER 4
SELF-DESIGNED CENTRIFUGE MACHINE
4.1 Specifications:
4.2 Shortcomings:
CHAPTER 5
MACHINE STABILITY USING STRUCTURAL DYNAMICS
5.1 Background:
5.2 Type of foundation required:

5.3 Design Standard:	
5.3.1 Dimensional Criterion:	
5.3.2 Displacement Criteria:	
5.3.3 Vibration Criteria:	
5.4 Foundation Design using Tschebotarioff's Method:	
CHAPTER 6	
SIMULATION OF IN-SITU CONDITIONS	
CHAPTER 7	
METHODOLOGY	
7.1 Lab Testing	
7.1.1 Material Procurement	
7.1.1.1 Sieve Analysis	
7.1.1.2 Specific Gravity Test	
7.1.1.3 Proctor Test	
7.1.2 Preparation and Testing	
7.1.2.1 Tri-Axial Test	
7.1.2.1 Unconfined Compression Test	
7.1.3 Results and Analysis	
7.1.3.1 Tri-Axial Test Results	
7.1.3.2 Unconfined Compression Test Results	
7.2 Centrifuge Testing	
7.2.1 Preparation of the Sample at OMC	
7.2.2 Densification	66
7.2.2.1 Sample Placement	66
7.2.2.2 Initial Density	
7.2.2.3 Densification Process	
7.2.2.4 Final Density	
7.2.3 Saturation	
7.2.3.1 Provision of Holes	
7.2.3.2 Water Injection	
7.2.3.3 Saturation Process	
7.2.3.4 Tensiometer Application	
7.2.4 Shearing	

7.2.4.1 Manual Loading Mechanism	
7.2.4.2 Sample Extraction	
7.2.4.3 Sample Shearing Process	
7.2.4.4 Sample Failure	
CHAPTER 8	
DISCUSSION ON RESULTS	
CHAPTER 9	
CONCLUSIONS & RECOMMENDATIONS	
9.1 Conclusions	
9.2 Recommendations	100
APPENDIX	101
REFERENCES	

LIST OF FIGURES

Fig 1: Mohr Circle of Stresses	4
Fig 2: Mohr Coulomb Sign Convention	5
Fig 3: Mohr-Coulomb Failure Envelope	6
Fig 4: Direct Shear Apparatus	6
Fig 5: Trimming the Sample to a Height Less Than That of the Trimming Ring	7
Fig 6: Assembly Drawing of Direct Shear Box	9
Fig 7: Unconfined Compression Test Apparatus	. 11
Fig 8: Effect of Disturbance on the Stress-Strain Behavior	. 14
Fig 9: Effect of Length to Diameter Ratio on Unconfined Compressive Strength of Soi	115
Fig 10: Tri-Axial Test Apparatus	. 16
Fig 11: Typical Layout of Tri-Axial Test Apparatus (After Bishop and Bjerrum, 1960. With permission from ASCE.)	. 17
Fig 12: Consolidated-drained tri-axial test: (a) specimen under chamber confining pressure; (b) deviator stress application	. 19
Fig 13a: Consolidated un-drained test: (a) specimen under chamber confining pressure	20
Fig 13c: Consolidated un-drained test: (c) deviator stress application	. 21
Fig 14: Total stress Mohr's circles and failure envelope ($\phi=0$) obtained from unconsolidated un-drained tri-axial tests on fully saturated cohesive soil	. 22
Fig 15: Geotechnical Centrifuge	. 24
Fig 16: Beam Centrifuge	. 25
Fig 17: Drum Centrifuge	. 25
Fig 18: The NEES Geotechnical Centrifuge at UC Davis	. 26
Fig 19: Geotechnical Centrifuge from Nueva Granada Military University	. 28
Fig 20: The National Geotechnical Centrifuge facility at IIT Bombay	. 29
Fig 21: Self-Designed Centrifuge Machine	. 31
Fig 22: Degrees of Freedom for Machine Foundations	. 34
Fig 23: Proposed arrangement for recording vibrations	. 35
Fig 24: Actual arrangement for recording vibrations	. 35
Fig 25: External Frequency 1	. 36
Fig 26: External frequency 2	. 36
Fig 27: Natural Frequency	. 36

Fig 28: Externally Applied Frequency, Fig 29: Natural Frequency	37
Fig 30: Typical DMF vs r (red), Centrifuge DMF vs r (blue)	38
Fig 31: Machine operates in mass controlled zone (green)	38
Fig 32: Dimensions of the foundation block	39
Fig 33: Grain Size Distribution Curve for NUST Clay	45
Fig 34: Grain Size Distribution of Jhelum Sand	46
Fig 35: Sample Preparation for the Tri-Axial Test	48
Fig 36: Sample Placement	48
Fig 37: Sample Shearing	49
Fig 38: Sheared Sample	49
Fig 39: Sample Preparation	50
Fig 40: Sample Testing	51
Fig 41: Sample Shearing	51
Fig 42: Failure Envelope (Tri-Axial Test trial 1)	53
Fig 43: Failure Envelope (Tri-Axial Test trial 2)	54
Fig 44: Plot of Stress VS Deformation (Trial 1)	59
Fig 45: Plot of Stress VS Deformation (Trial 2)	60
Fig 46: Plot of Stress VS Deformation (Trial 3)	60
Fig 47: Plot of Stress VS Deformation (Trial 4)	61
Fig 48: Plot of Stress VS Deformation (Trial 5)	61
Fig 49: Plot of Stress VS Deformation (Trial 6)	62
Fig 50: Plot of Stress VS Deformation (Trial 7)	62
Fig 51: Plot of Stress VS Deformation (Trial 8)	63
Fig 52: Plot of Stress VS Deformation (Trial 9)	63
Fig 53: Plot of Stress VS Deformation (Trial 10)	64
Fig 54: Bar Chart presenting the combined results	64
Fig 55: Sample Preparation at OMC	65
Fig 56: Sample Placement	66
Fig 57: Initial Density Measurement	67
Fig 58: Densification Process	68
Fig 59: %age Densification after 15 seconds	69
Fig 60: %age Densification after 30 seconds	70
Fig 61: %age Densification after 45 seconds	70

Fig 62: %age Densification after 60 seconds	71
Fig 63: %age Densification after 15 seconds	71
Fig 64: %age Densification after 30 seconds	72
Fig 65: %age Densification after 45 seconds	72
Fig 66: %age Densification after 60 seconds	73
Fig 67: Density Increment for NUST Clay	74
Fig 68: Density Increment for Jhelum Sand	74
Fig 69: Provision of holes	75
Fig 70: Water Injection	76
Fig 71: Saturation Process	77
Fig 72: Tensiometer Application	78
Fig 73: Devised Manual Loading Mechanism	79
Fig 74: Sample Extraction using Shelby Tube	80
Fig 75: Sample Shearing in UCS Apparatus	81
Fig 76: Sheared Sample	81
Fig 77: Plot of Stress VS Deformation (Trial 1)	92
Fig 78: Plot of Stress VS Deformation (Trial 2)	92
Fig 79: Plot of Stress VS Deformation (Trial 3)	93
Fig 80: Plot of Stress VS Deformation (Trial 4)	93
Fig 81: Plot of Stress VS Deformation (Trial 5)	94
Fig 82: Plot of Stress VS Deformation (Trial 6)	94
Fig 83: Plot of Stress VS Deformation (Trial 7)	95
Fig 84: Plot of Stress VS Deformation (Trial 8)	95
Fig 85: Plot of Stress VS Deformation (Trial 9)	96
Fig 86: Plot of Stress VS Deformation (Trial 10)	96

LIST OF TABLES

Table 1: Summary of Standard Types of Tri-axial test	. 23
Table 2: Summary of conventional testing procedures	. 23
Table 3: Sieve Analysis on NUST Clay	. 44
Table 4: Sieve Analysis Results for Jhelum Sand	. 45
Table 5: Specific Gravity Test Results for NUST Clay	. 46
Table 6: Results for MDD (Proctors Test)	. 47
Table 7: Results for OMC (Proctors Test)	. 47
Table 8: Tri-Axial Test Results (Trial 1)	. 52
Table 9: Tri-Axial Test Results (Trial 2)	. 53
Table 10: Unconfined Compression Test Results (Trial 1)	. 54
Table 11: Unconfined Compression Test Results (Trial 2)	. 55
Table 12: Unconfined Compression Test Results (Trial 3)	. 55
Table 13: Unconfined Compression Test Results (Trial 4)	. 56
Table 14: Unconfined Compression Test Results (Trial 5)	. 56
Table 15: Unconfined Compression Test Results (Trial 6)	. 57
Table 16: Unconfined Compression Test Results (Trial 7)	. 57
Table 17: Unconfined Compression Test Results (Trial 8)	. 58
Table 18: Unconfined Compression Test Results (Trial 9)	. 58
Table 19: Unconfined Compression Test Results (Trial 10)	. 59
Table 20: Results for Degree of Saturation (Joseph E. Bowles)	. 78
Table 21: Unconfined Compression Test Results (Trial 1)	. 82
Table 22: Unconfined Compression Test Results (Trial 2)	. 83
Table 23: Unconfined Compression Test Results (Trial 3)	. 84
Table 24: Unconfined Compression Test Results (Trial 4)	. 85
Table 25: Unconfined Compression Test Results (Trial 5)	. 86
Table 26: Unconfined Compression Test Results (Trial 6)	. 87
Table 27: Unconfined Compression Test Results (Trial 7)	. 88
Table 28: Unconfined Compression Test Results (Trial 8)	. 89
Table 29: Unconfined Compression Test Results (Trial 9)	. 90
Table 30: Unconfined Compression Test Results (Trial 10)	91

CHAPTER 1

INTRODUCTION

The civil engineering structures like building, bridge, highway, tunnel, dam, tower, etc. are founded below or on the surface of the earth. For their stability, suitable foundation soil is required. To check the suitability of soil to be used as foundation or as construction materials, its properties are required to be assessed. As per different researchers, assessment of geotechnical properties of subsoil at project site is necessary for generating relevant input data for design and construction of foundations for the proposed structures. Researchers have stated that proper design and construction of civil engineering structures prevent an adverse environmental impact or structural failure or post construction problems.

Information about the surface and sub-surface features is essential for the design of structures and for planning construction techniques. When buildings impose very heavy loads and the zone of influence is very deep, it would be desirable to invest some amount on sub-surface exploration than to overdesign the building and make it costlier. For complex projects involving heavy structures, such as bridges, dams, multi-storey buildings, it is essential to have detail exploration. The purpose of detailed explorations is to determine the engineering properties of the soils for different strata.

Different researchers explained that the capability of a soil to support a loading from a structure, or to support its overburden, or to sustain a slope in equilibrium is governed by its shear strength. The shear strength of a soil is of prime importance for foundation design, earth and rock fill dam design, highway and airfield design, stability of slopes and cuts, and lateral earth pressure problems. It is highly complex because of various factors involved in it such as the heterogeneous nature of the soil, the water table location, the drainage facility, the type and nature of construction, the stress history, time, chemical action, or environmental conditions.

To determine the relevant geotechnical parameters in a design situation, laboratory tests that simulate the in-situ loading conditions as closely as possible should be performed. A

consensus was developed during the late 1930's that the tri axial device is superior to the other existing test equipment and that view tends to persist today as the first modern equipment of tri axial was developed apparently under the direction of Karl Terzaghi.

The geotechnical centrifuge is a special facility capable of replicating on reduced scale models the same stress field existing in-situ increasing the gravity field by rotation. This condition is fundamental in geo-technics because the mechanical behavior of soils is strongly dependent on the stress-field. On observing the extreme emerging worldwide importance of geo-technical centrifuges, our aimed to develop a custom centrifuge capable of replicating the field stresses on soil samples and give a reasonable idea of the shear strength.

We further worked on the co-relations development of the custom self- designed centrifuge and the most reliable standard tri-axial test by testing a number of soil samples on both the apparatuses and developed a standard for the machine operation.

CHAPTER 2

LITERATURE REVIEW

Geotechnical properties of soils influence the stability of civil engineering structures. One must understand the nature of shearing resistance in order to analyze soil stability problems such as bearing capacity, slope stability, and lateral pressure on earth retaining structures.

2.1 Shear Strength of Soil

Soils consist of individual particles that can slide and roll relative to one another. Shear strength of a soil is equal to the maximum value of shear stress that can be mobilized within a soil mass without failure taking place.

The shear strength of a soil is a function of the stresses applied to it as well as the manner in which these stresses are applied.

2.1.1 Importance of Shear Strength of Soil

The knowledge of shear strength is very important some of the uses are provided below:

- In the design of foundations the evaluation of bearing capacity is dependent on the shear strength.
- For the design of embankments for dams, roads, pavements, excavations, levees etc. The analysis of the stability of the slope is done using shear strength.
- In the design of earth retaining structures like retaining walls, sheet pile coffer dams, bulks heads, and other underground structures etc.

2.1.2 Components of Shear Strength of Soil

The shear strength of a soil mass is essentially made up of:

• Due to the interlocking of the grains the structural resistance of the movement of the soil is very essential.

- Another important component is the frictional resistance between the individual soil grains at their contact point on sliding.
- The resistance due to the forces which hold the particles together or the cohesion.

2.1.3 Mohr Circle of Stresses

In soil testing, cylindrical samples are commonly used in which radial and axial stresses act on principal planes. The vertical plane is usually the minor principal plane whereas the horizontal plane is the major principal plane. The radial stress (σ_r) is the minor principal stress (σ_3), and the axial stress (σ_a) is the major principal stress (σ_1).

Fig 1: Mohr Circle of Stresses

To visualize the normal and shear stresses acting on any plane within the soil sample, a graphical representation of stresses called the Mohr circle is obtained by plotting the principal stresses. The sign convention in the construction is to consider compressive stresses as positive and angles measured counter-clockwise also positive.

Fig 2: Mohr Coulomb Sign Convention

2.1.4 Mohr Coulomb Failure Criterion

When the soil sample has failed, the shear stress on the failure plane defines the shear strength of the soil. Thus, it is necessary to identify the failure plane.

For the present, it can be assumed that a failure plane exists and it is possible to apply principal stresses and measure them in the laboratory by conducting a triaxial test. Then, the Mohr circle of stress at failure for the sample can be drawn using the known values of the principal stresses.

If data from several tests, carried out on different samples up to failure is available, a series of Mohr circles can be plotted. It is convenient to show only the upper half of the Mohr circle. A line tangential to the Mohr circles can be drawn, and is called the Mohr-Coulomb failure envelope.

Fig 3: Mohr-Coulomb Failure Envelope

2.2 Conventional Testing Procedures Available

2.2.1 Direct Shear Testing

> The direct shear device is used to determine failure envelopes for soils. The device is not suitable for determination of stress-strain properties of soils.

Direct shear testing is covered in ASTM standard D-3080, "Standard Method for Direct Shear Test on Soils under Consolidated Drained Conditions".

Fig 4: Direct Shear Apparatus

Overall Review of Testing Procedure

• Introduction

It is assumed that the test is to be fully drained and the sample is undisturbed and cohesive, and is in a sampling tube. Minor modifications cover other cases.

• Trimming the Sample

The soil sample is extruded from the sampling tube. The extruded sample must typically be trimmed to fit into the shear box. The soil cannot conveniently be trimmed directly into most direct shear devices because the shear box is typically too large and heavy to be handled conveniently. Instead, a special trimming ring is used. The trimming ring has a height that is standard for that laboratory. If a thinner sample is desired, then after the soil has been trimmed into the ring and one face has been trimmed, a spacer plate is used on the surface just trimmed, to push the soil up into the ring an appropriate distance, and then the other face is trimmed.

The trimmings can be used to obtain initial water content but they tend to dry out so fast that such water contents usually turn out to be significantly too low. It is better to weigh the soil in the trimming ring, subtract out the known weight of the ring, and then dry the sample after the test, being sure not to lose any sample.

Fig 5: Trimming the Sample to a Height Less Than That of the Trimming Ring

Apparatus Assembly

The shear box is then assembled with the top and the bottom halves of the box screwed (or rigidly attached) together. The inside of the shear box is typically lightly greased to minimize side friction, just as for consolidation tests. The lower porous stone is placed in the shear box. Sometimes spacer disks are placed below this stone to adjust the elevation of its top to accommodate soil samples of different thicknesses. The trimming ring is then carefully aligned with the top of the shear box. Sometimes the trimming ring and top shear box have been machined so the ring fits into the shallow slot in the top of the shear box, to provide proper alignment. The sample is then slowly extruded into the shear box by pressing on its top surface, typically using the top porous stone or a suitable disk. The upper porous stone and loading cap are placed in the shear box, and the system to apply the normal-toad is brought into place and a small normal load (seating load) is applied.

Consolidation Stage

A dial indicator, or other suitable device for measuring the change in thickness of the sample, is quickly mounted and a zero reading taken. A consolidation pressure is then added to the top of the sample using the load-application system of the apparatus (typically a lever arm or a pneumatic system). The consolidation stage proceeds as for a standard incremental one dimensional consolidation test. Loads are typically applied with a load increment ratio of one, to minimize problems with soil extrusion. Readings of settlement or expansion are taken as a function of time to allow appropriate calculation of consolidation coefficients and to ensure that the sample has come to equilibrium prior to the start of shear.

• Preparation for the Shearing Stage

During the consolidation stage, the upper and lower halves of the shear box have been tightly screwed together to prevent the soil from extruding out from between the boxes. Typically, only two locking screws are used. Prior to shearing the sample, the upper half of the box is typically raised to provide a small separation between the boxes and ensure that the shearing and normal stresses are actually transmitted through the soil rather than from box to box. The boxes are usually separated before the final shearing stage by removing the locking screws, and then using screws that are threaded through the top box but not the bottom box, to lift the upper box.

For normally consolidated samples, of the order of 5-8% of the applied load has been transferred into side shear in the, upper half of the box so lifting the box momentarily reverses the side shear and causes a small amount of sample disturbance, thus causing a small amount of additional time-dependent consolidation. Prior to starting the shearing stage, the screws used to lift the top box must be withdrawn so the full applied stress plus the weight of the upper half of the shear box, acts on the soil in the potential failure zone, and another stage of a small amount of consolidation begins. If the top half of the shear box is heavy, and not counterbalanced, and the sample is soft, a significant amount of additional consolidation may result. To minimize the time during this stage of the test, the top half of the box is usually raised and then it is released at once; and then readings of sample thickness are continued until the sample has come back to equilibrium.

Fig 6: Assembly Drawing of Direct Shear Box

• Shearing Stage

The shearing stage is usually performed at a constant rate of deformation. Methods of selecting the deformation rate will be discussed subsequently. A rate is selected and the shearing stage begins. Readings are taken of horizontal displacement, vertical movement of the top cap, and shearing force, as a function of time. Stress conditions in the sample become increasingly uncertain as deformation continues so the test is usually stopped at a horizontal deflection of about 0.25 inch even if the shearing stress has not reached a peak value.

• Dismantling Stage

When the test is over, the shearing stress is reduced to zero. Equipment for measuring deformations is removed. The normal load is then reduced to zero as quickly as possible and the apparatus dismantled. The soil sample starts to rebound as soon as the normal load begins to decrease so the dismantling stage must be quite rapid if there is any desire to measure the water content at the failure stage. Once the apparatus has been dismantled, the two halves of the shear box are separated. Often, a water content sample is taken from the shear zone, and then the water content sample and the rest of the specimen are dried to obtain a final dry weight (and thus initial water content).

Data Reduction

The data are reduced by calculating the normal and shearing stresses, plotting a curve of shearing force vs. horizontal movement, and perhaps plotting change in sample thickness vs. horizontal movement. The failure condition is plotted in a Coulomb diagram.

There are numerous options in the above procedure, e.g., it may be desired to determine the residual strength as well as, or in place of, the peak strength.

2.2.2 Unconfined Compression Test

The purpose of this laboratory is to determine the unconfined compressive strength of a cohesive soil sample.

Fig 7: Unconfined Compression Test Apparatus

Overall Review of Testing Procedure

• Introduction

The unconfined compression test is by far the most popular method of soil shear testing because it is one of the fastest and cheapest methods of measuring shear strength. The method is used primarily for saturated, cohesive soils recovered from thin-walled sampling tubes. The unconfined compression test is inappropriate for dry sands or crumbly clays because the materials would fall apart without some land of lateral confinement.

To perform an unconfined compression test, the sample is extruded from the sampling tube. A cylindrical sample of soil is trimmed such that the ends are reasonably smooth and the length-to-diameter ratio is on the order of two. The soil sample is placed in a loading frame on a metal plate; by turning a crank, the operator raises the level of the bottom plate. The top of the soil sample is restrained by the top plate, which is attached to a calibrated proving ring. As the bottom plate is raised, an axial load is applied to the sample. The operator turns the crank at a specified rate so that there is constant strain rate. The load is gradually increased to shear the sample, and readings are taken periodically of the force applied to the sample and the resulting deformation. The loading is continued until the soil develops an obvious shearing plane or the deformations become excessive. The measured data are used to determine the strength of the soil specimen and the stress-strain characteristics. Finally, the sample is oven dried to determine its water content. The maximum load per unit area is defined as the unconfined compressive strength, qu.

In the unconfined compression test, we assume that no pore water is lost from the sample during set-up or during the shearing process. A saturated sample will thus remain saturated during the test with no change in the sample volume, water content, or void ratio. More significantly, the sample is held together by an effective confining stress that results from negative pore water pressures (generated by menisci forming between particles on the sample surface). Pore pressures are not measured in an unconfined compression test; consequently, the effective stress is unknown. Hence, the un-drained shear strength measured in an unconfined test is expressed in terms of the total stress.

Apparatus

The loading frame consists of two metal plates. The top plate is stationary and is attached to the load-measuring device. The bottom plate is raised and lowered by means of a crank on the front of the loading frame. After the soil sample has been placed between the plates, the bottom plate is gradually raised; the resistance provided by the stationary top plate applies an axial force to the sample. Although the loading frames in our laboratory are hand operated, electric motor-driven and hydraulic load frames are common. Loads are measured with a calibrated proving ring or an electronic load cell. Vertical deformations are measured with a dial gauge; the dial gauge is attached to the top plate and measures the

relative movement between the top and bottom plates. We will be performing a straincontrolled test, in which the load is applied at a constant rate of strain or deformation.

• Procedure

The procedure for the test is as follows: -

- Extrude the soil sample from Shelby tube sampler. Cut a soil specimen so that the ratio (L/d) is approximately between 2 and 2.5, where L and d are the length and diameter of soil specimen, respectively.
- Measure the exact diameter of the top of the specimen at three locations 120° apart, and then make the same measurements on the bottom of the specimen. Average the measurements and record the average as the diameter on the data sheet.
- 3. Measure the exact length of the specimen at three locations 120° apart, and then average the measurements and record the average as the length on the data sheet.
- 4. Weigh the sample and record the mass on the data sheet.
- **5.** Calculate the deformation (A_l) corresponding to 15% strain (£).
- 6. Where L_o = Original specimen length (as measured in step 3).
- Carefully place the specimen in the compression device and center it on the bottom plate. Adjust the device so that the upper plate just makes contact with the specimen and set the load and deformation dials to zero.
- Apply the load so that the device produces an axial strain at a rate of 0.5% to 2.0% per minute, and then record the load and deformation dial readings on the data sheet at every 20 to 50 divisions on deformation the dial.
- **9.** Keep applying the load until (1) the load (load dial) decreases on the specimen significantly, (2) the load holds constant for at least four deformation dial readings, or (3) the deformation is significantly past the 15% strain that was determined in step 5.
- **10.** Draw a sketch to depict the sample failure.
- **11.** Remove the sample from the compression device and obtain a sample for water content determination.

• Sources of Errors in the Unconfined Compression Test

There are a number of sources of error in the unconfined compression test. One of the largest sources is the use of an unrepresentative sample of soil. The soil may be unrepresentative because it is not the same as, or perhaps even similar to the bulk of the soil found in the ground. The sample can also be unrepresentative if it has been disturbed or changed from its original slate. A common cause for disturbance is the soil sampling process. Disturbance usually has the effect of lowering the strength of the soil and reducing the slope of the stress-strain curve Fig 8.

Fig 8: Effect of Disturbance on the Stress-Strain Behavior

If the sample is too short there will be significant end effects. End effects are caused by the top and bottom loading plates that grip the sample. They can increase the strength of a soil sample by preventing the formation of the weakest failure plane. If the sample is too long, we find that it tends to buckle. A length-to-width ratio of two to three is recommended to avoid this problem. The effect of length-to-width ratio on the unconfined compressive strength is shown in Figure 9.

Fig 9: Effect of Length to Diameter Ratio on Unconfined Compressive Strength of Soil

Another source of error is that the soil is not confined during shear but will be confined in the field if the soil is located at a depth of a few feet or more. The problem is most severe with fissured soils (soils that contain cracks). In the ground, the cracks are held closed by the confining pressure due to the weight of soil above it. The soil is much stronger in this state than it is with no confining pressure in an unconfined compression test.

2.2.3 Tri-Axial Test

The tri-axial shear test is one of the most reliable methods available for determining shear strength parameters. It is used widely for research and conventional testing.

Fig 10: Tri-Axial Test Apparatus

Typical Layout of Tri-Axial Test Apparatus

A diagram of the tri-axial test layout is shown in Figure 11.

In this test, a soil specimen about 36 mm (1.4 in.) in diameter and 76 mm (3 in.) long generally is used. The specimen is encased by a thin rubber membrane and placed inside a plastic cylindrical chamber that usually is filled with water or glycerine. The specimen is subjected to a confining pressure by compression of the fluid in the chamber. Air is sometimes used as a compression medium. To cause shear failure in the specimen, one must apply axial stress through a vertical loading ram sometimes called *deviator stress*.

This stress can be applied in one of two ways:

- 1. Application of dead weights or hydraulic pressure in equal increments until the specimen fails. (Axial deformation of the specimen resulting from the load applied through the ram is measured by a dial gauge.)
- **2.** Application of axial deformation at a constant rate by means of a geared or hydraulic loading press. This is a strain-controlled test.

The axial load applied by the loading ram corresponding to a given axial deformation is measured by a proving ring or load cell attached to the ram.

Fig 11: Typical Layout of Tri-Axial Test Apparatus (After Bishop and Bjerrum, 1960. With permission from ASCE.)

Connections to measure drainage into or out of the specimen, or to measure pressure in the pore water (as per the test conditions), also are provided. The following three standard types of tri-axial tests generally are conducted:

- 1. Consolidated-drained test or drained test (CD test)
- 2. Consolidated-undrained test (CU test)
- **3.** Unconsolidated-undrained test or undrained test (UU test)

The general procedures and implications for each of the tests in *saturated soils* are described in the following sections.

2.2.3.1 Consolidated-Drained Tri-Axial Test

In the CD test, the saturated specimen first is subjected to an all - around confining pressure σ **3**, by compression of the chamber fluid (Figure 12). As confining pressure is applied, the pore water pressure of the specimen increases by *Uc* (if drainage is prevented). This increase in the pore water pressure can be expressed as a non-dimensional parameter in the form:

$$B = Uc \div 63$$

where

B = Skempton's Pore Pressure Parameter (Skempton, 1954).

For saturated soft soils, B is approximately equal to 1; however, for saturated stiff soils, the magnitude of B can be less than 1. Black and Lee (1973) gave the theoretical values of B for various soils at complete saturation.

Now, if the connection to drainage is opened, dissipation of the excess pore water pressure, and thus consolidation, will occur. With time, Uc will become equal to 0. In saturated soil, the change in the volume of the specimen (Vc) that takes place during consolidation can be obtained from the volume of pore water drained (Figure 12 a). Next, the deviator stress σd ,

on the specimen is increased very slowly (Figure 12 b). The drainage connection is kept open, and the slow rate of deviator stress application allows complete dissipation of any pore water pressure that developed as a result (Ud = 0).

Fig 12: Consolidated-drained tri-axial test: (a) specimen under chamber confining pressure; (b) deviator stress application

2.2.3.2 Consolidated-Undrained Tri-Axial Test

The consolidated-undrained test is the most common type of tri-axial test. In this test, the saturated soil specimen is first consolidated by an all-around chamber fluid pressures σ 3, that results in drainage (Figures 13a and 13b). After the pore water pressure generated by the application of confining pressure is dissipated, the deviator stress σ *d*, on the specimen is increased to cause shear failure (Figure 13c). During this phase of the test, the drainage line from the specimen is kept closed. Because drainage is not permitted, the pore water pressure *Ud*, will increase. During the test, simultaneous measurements of σ *d* and *Ud* are made.

Fig 13a: Consolidated un-drained test: (a) specimen under chamber confining pressure

Fig 13b: Consolidated un-drained test: (b) volume change in specimen caused by confining pressure

Fig 13c: Consolidated un-drained test: (c) deviator stress application

2.2.3.3 Unconsolidated-Undrained Tri-Axial Test

In unconsolidated-undrained tests, drainage from the soil specimen is not permitted during the application of chamber pressure $\mathbf{63}$. The test specimen is sheared to failure by the application of deviator stress, $\mathbf{6d}$ and drainage is prevented. Because drainage is not allowed at any stage, the test can be performed quickly. Because of the application of chamber confining pressures $\mathbf{63}$, the pore water pressure in the soil specimen will increase by Uc. A further increase in the pore water pressure (Ud) will occur because of the deviator stress application. Hence, the total pore water pressure U in the specimen at any stage of deviator stress application can be given as:

$$\mathbf{U} = \mathbf{U}\mathbf{c} + \Delta \mathbf{U}\mathbf{d}$$

This test usually is conducted on clay specimens and depends on a very important strength concept for cohesive soils if the soil is fully saturated. The added axial stress at failure $(\sigma d)f$ is practically the same regardless of the chamber confining pressure.

The failure envelope for the total stress Mohr's circles becomes a horizontal line and hence is called a $\phi=0$ condition. For $\phi=0$ condition,

$$T_f = c = c_u$$

where *cu* is the un-drained shear strength and is equal to the radius of the Mohr's circles. The $\phi = 0$ concept is applicable to only saturated clays and silts.

Fig 14: Total stress Mohr's circles and failure envelope ($\phi=0$) obtained from unconsolidated un-drained tri-axial tests on fully saturated cohesive soil

Sr. No.	Туре	Attribute	Procedure
1	Consolidated Drained (CD)	S-test (Slow)	 Drainage permitted during consolidation as well as shearing Slow shearing rate to ensure complete pore water pressure dissipation
2	Consolidated Undrained (CU)	R-test (Rapid)	 Drainage permitted during consolidation but not during shearing. Relatively faster shearing rate Pore pressures are also measured
3	Unconsolidated Undrained (UU)	Q-test (Quick)	• Sample is sheared directly after saturation without consolidation

Summary of the standard types of Tri-Axial Test is given in Table 1 as follows:

Table 1: Summary of Standard Types of Tri-axial test

Summary of the conventional testing procedures as explained in above sections is provided in Table 2 as:

Sr. No.	Procedure	Standard	Purpose	Shortcomings
1	Direct Shear Test	ASTM Standard D-3080 "Standard Method for Direct Shear Test on soils under Consolidated Drained Conditions"	• CD shear strength	failure plane definedstress conditions unknown
2	Tri-axial Test	 ASTM Standard D-2850 "UU compressive strength of cohesive soils in tri-axial compression" D-4767 "CU compression test on cohesive soils" 	• Shear strength parameters for CD, CU, UU conditions	 Leakage through membranes
3	Unconfined Compression test	ASTM Standard D-2166 "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil"	 To determine undrained shear strength of cohesive soils 	 Inappropriate for dry sands or crumbly clays

Table 2: Summary of conventional testing procedures
2.3 Centrifuge as a Testing Equipment

2.3.1 Centrifuge

A machine using *centrifugal* force for separating substances of different densities, for removing moisture, or for simulating gravitational effects.

2.3.2 Geotechnical Centrifuge

A geotechnical centrifuge is used to conduct model tests to study geotechnical problems.

Fig 15: Geotechnical Centrifuge

There are two main types of geotechnical centrifuges:

- Beam centrifuges that are composed by beam as an arm, which in the end has an assembled swing where the model is located.
- Drum centrifuges that are composed by a simple drum that inside of it the model took place.

Both of them have size, maximum acceleration, model mass defined by user.

Fig 16: Beam Centrifuge

Fig 17: Drum Centrifuge

CHAPTER 3

RESEARCH GAP

3.1 The NEES Geotechnical Centrifuge at UC Davis:

The UC Davis centrifuge has the largest radius and largest platform area of any geotechnical centrifuge in the US. It is one of the top few in these categories in the world. The 9-m radius centrifuge at UC Davis can carry five-ton payloads to accelerations of 75g.

An earthquake simulator, mounted on the end of the centrifuge, is designed to operate in either a biaxial (horizontal-vertical) or uniaxial (horizontal) shaking mode. The servo-hydraulic shaking tables are capable of simulating broad-spectrum earthquake events as well as step- and sinusoidal-wave type motions, and can vary intensity from micro-tremors to extreme shaking events.

Fig 18: The NEES Geotechnical Centrifuge at UC Davis

The large centrifuge has been used for many earthquake engineering research projects in the past ten years. Research projects have included soil-pile interaction in liquefying sands, liquefaction and ground improvement, dynamic response of tire shreds and void redistribution in liquefying sands.

With NEES, the Center for Geotechnical Modeling is working to implement advanced instrumentation, digital video, robotics, and geophysical testing to increase the quality and quantity of data that can be collected; to increase the capacity of the centrifuge; and to develop a biaxial shaking capability. These improvements will allow us to extract more detailed and more accurate information from experiments and simulations, maximizing the information and knowledge that can be gained.

3.2 Geotechnical Centrifuge from Nueva Granada Military University:

The Geotechnical group of Nueva Granada Military University designed a project whose main objective is design, modelling and building a geotechnical centrifuge with a specification as effective spin radius, mass and volume of specimen over the swing, maximum acceleration, par and others. The Geotechnical Group at the Nueva Granada Military University designed, modelled and it is building a Geotechnical centrifuge type beam, with a central spindle supporting a pair of parallel arms with 2.4 meters radio, maximum acceleration 200 Earth gravity and 500 Kg mass of the model.

Fig 19: Geotechnical Centrifuge from Nueva Granada Military University

To design the geotechnical centrifuge of Geotechnical group from Military University the main design parameters are as follows:

- Maximum acceleration 200g
- Effective diameter 2.4 m
- Maximum load specimen 500Kg

Beam geotechnical centrifuge is composed by: two arms of pipe, a shaft of 4341 steel, two swing A572 steel of 1 m x 1 m x 90, a structure steel base to avoid vibration from movement, besides a box of aluminum to keep instrumentation and data logger on the top. Lastly the bunker where the machine will be installed is around 8 meter diameter and 4 meter high.

3.3 The National Geotechnical Centrifuge facility at IIT Bombay:

Sponsored jointly by the Department of Science and Technology, Defence Research and Development Organization and the Ministry of Human Resources Development, the centrifuge has been indigenously fabricated and commissioned at IIT Bombay. NGCF is a true MADE IN INDIA indigenous equipment.

Fig 20: The National Geotechnical Centrifuge facility at IIT Bombay

3.3.1 Features

- Configuration: Beam type
- Platform radius: 4.5 m
- Model area: 1.0 m x 1.2 m (up to 0.66 m height)
- 0.7 m x 1.2 m (up to 1.2 m height)
- Acceleration range: 10 g to 200 g
- Payload: 2.5 tons at 100g
- Capacity: 250 g-tons
- Run-up time to 200g: 6 minutes
- In-flight balancing range: $0 \text{ to } \pm 100 \text{ kN}$

- In-flight balancing time: 60 seconds
- Cost-effective cooling system
- Good swing-out at g-level
- Low power consumption
- Indigenously built

3.3.2 Selected application areas

- Slope stabilization techniques
- Reinforced soil structures
- Landslides
- Ground improvement techniques
- Environmental geotechnics
- Deep excavations and retention systems
- Geotechnical structures subjected to earthquake (under development)
- Subsidence
- Tunnels/Tunnel lining
- Foundations/Anchors

Going through the literature, we came to know that there exists a research gap in working on centrifuge in our country as compared to other countries. To play our part as an effort to fill this void we had undertaken this project and developed our problem statement.

CHAPTER 4

SELF-DESIGNED CENTRIFUGE MACHINE

A self-designed centrifuge machine was developed by our seniors of batch 2014. This self-designed centrifuge machine was capable of:

- Simulating the depth through confinement produced by rotating the cylinder at an RPM.
- Simulation of ground temperature at different depths by inclusion of temperature sensors inside the cylinder.

Fig 21: Self-Designed Centrifuge Machine

4.1 Specifications:

- Cylinder (Height = 14", Diameter = 7")
- Capacity = 14kg
- Electric Motor (0.75Hp, 1400RPM, 150G's)
- Moment Arm = 6"

4.2 Shortcomings:

As we started working on our project, we found out that there were certain shortcomings in the apparatus that were being a hindrance to our project.

The main issue with this self-designed machine was the presence of instability. The factors that we figured out that were causing the instability were eccentricity and vibrations:

- Eccentricity was present due to the mis-alignment of the center of rotation i.e. the motor and the center of mass i.e. the cylinder being rotated by the motor.
- Moreover, there were uncontrolled vibrations caused as result of this eccentricity which restricted the continuous rotation of the centrifuge.

CHAPTER 5

MACHINE STABILITY USING STRUCTURAL DYNAMICS

5.1 Background:

Man has been designing machines since beginning of civilization. Those machines grew complex with passing time and automation resulted in machines that had inherent motion that was initiated by power supply to internal components of the machine and not by an external force. These machines grew powerful producing stronger vibrations and hence necessitated well-designed foundations to keep them stable.

5.2 Type of foundation required:

There are three types of machines for which foundations are required:

- 1. Reciprocating
- 2. Impact
- 3. Rotating

Our centrifuge is the third type, rotating machine, that rotates at 1350 rpm. The foundation generally provided for rotating machines is block foundation that is also provided below this centrifuge machine.

5.3 Design Standard:

The IS:2974 (Part-1)-1969 standard was used to design the foundation, using which 3 criteria had to be fulfilled to stabilize the machine against the translational and rotational vibrations as shown in figure 22.

Fig 22: Degrees of Freedom for Machine Foundations

5.3.1 Dimensional Criterion:

The foundation is larger than the base of the machine with 150mm clearance and placed on a good bearing strata. Combined center of gravity of machine and its foundation is below the top of the foundation.

5.3.2 Displacement Criteria:

The vibration of the machine are not so large as to cause disturbances to the operator and other people in the surroundings and does not produce intolerable noise.

5.3.3 Vibration Criteria:

Vibrations of the frame were recorded against time using the setup shown in figure 23 with a dial gauge and stopwatch. The data was plotted to obtain a sine function for the harmonic vibrations of the frame induced by the harmonic loading due to rotations.

Fig 23: Proposed arrangement for recording vibrations

Fig 24: Actual arrangement for recording vibrations

Figure 24 shows how the investigation was actually carried out to obtain graphs in figure 25, 26 and 27.

Fig 27: Natural Frequency

Motor was used to provide the external force for obtaining two of the externally applied frequencies as shown in figure 28. By removing the belt and allowing the cylinder to rotate freely, natural time period was determined. This is shown in figure 29.

Fig 28: Externally Applied FrequencyFig 2

Fig 29: Natural Frequency

The time periods determined using the graphs were used to calculate frequencies which were then subsequently used for calculation of the DMF ratio for the machine.

By plotting these calculated values (Figure 30 and Figure 31), it was figured out that our machine operates in the mass-controlled zone. This means that a massive foundation is sufficient to cause damping and no additional damping system is required.

Fig 30: Typical DMF vs r (red), Centrifuge DMF vs r (blue)

Fig 31: Machine operates in mass controlled zone (green)

5.4 Foundation Design using Tschebotarioff's Method:

The procedure for required depth of foundation is below. The depth provided was 5 inches. Other dimensions of the foundation block are shown in figure 32.

Tschebotarioff's Method

rpm	= 1350
depth of foundation	= 5"
area of foundation	= 20.25 ft ²
mass of machine and foundation	= 50 kg + 1266 kg
	= 1316 kg
bearing pressure , <u>g</u>	= 0.065 tons/ft ²

Fig 32: Dimensions of the foundation block

This concludes the stability study of this centrifuge machine and ensures that the vibrations caused by rotating parts will cause no stability problem in the long run.

CHAPTER 6

SIMULATION OF IN-SITU CONDITIONS

For any geotechnical investigation on any soil sample, the best and the most accurate results could only be obtained if the provision of in situ soil conditions like the stresses, densities etc. is done as close as possible. As mentioned already the determination of all the index and engineering properties of any soil sample is a must to determine its geotechnical properties and behaviour precisely and for that we need to provide the in-situ stress conditions of soil in the lab as well. Now to provide the in-situ soil conditions in lab we firstly must know the ins itu soil conditions so that they could be accurately simulated in lab and in our case in the centrifuge as well. For the determination of in situ stresses we have considered our centrifuge as a model and the actual field conditions where the soil sample has been taken from as prototype. To determine those field stresses, we have used the following mathematical expressions:

$$\sigma_{vp} = \rho \cdot g \cdot h_p$$

In the above equation we have to determine the field depth of our soil sample from which we have taken the sample in the field. And using the value of gravitational acceleration we find out the stress and this stress is the stress that a soil experiences at a particular depth.

Now the next important thing we have to do is to simulate the field stresses we have calculated using the above mathematical expression in our centrifuge so we could be able to determine the geotechnical properties of soil precisely and accurately. The only thing we could variate and control in our centrifuge is its revolutions per minute and variating these rpms we can simulate different field stresses in the centrifuge . Using the following mathematical expression we firstly determine the angular velocity of our centrifuge that we could provide at a certain value of rpms.

$$\omega \ (= 2\pi \cdot RPM/60)$$

The only variable we have to put in the above mathematical expression is the value of rpm of our centrifuge machine and putting that we get the angular velocity of our machine which we later use to simulate the in situ stresses in the centrifuge and also to simulate the field depth at which we obtained the soil sample. Now to simulate the field stresses we use following mathematical expressions

$$Ng = \omega^2 R_a$$

$$\sigma_{vm} = \rho \cdot N \cdot g \cdot h_m = \rho \cdot \omega^2 \cdot R_a \cdot h_m$$

Once the simulation of In-situ stresses has been done we needed to verify whether our centrifuge is capable enough for geotechnical testings. Since it was a custom made centrifuge thus no machine standards were available readily but reviewing the literature and relating it with the most closely related available centrifuge we found out that if we satisfy certain conditions for our centrifuge we would be very sure about its validity. The conditions we must have to satisfy include the following:

 The exact scaling relationship between the filed and the centrifuge must be satisfied. The developed strains in both the centrifuge and the field must be same if the same material with identical mechanical properties is used. This could be written mathematically as:

$$\frac{h_p}{h_m} = N$$

- 2. When N times the earth's gravity is applied on the centrifuge it behaves exactly like the field conditions at 1g because the material properties do not change at higher g values
- **3.** The centrifuge machine must continue to provide N times the Earth's gravity during the tests.

As our centrifuge satisfied all these three conditions so we had verified its use for the determination of geotechnical properties of soil samples.

CHAPTER 7

METHODOLOGY

The project methodology comprises of two phases (a) Lab Testing Phase, involving the conventional testing procedures and (b) The Centrifuge Testing Phase, involving tests carried out on the custom self- designed centrifuge apparatus.

7.1 Lab Testing

Lab Testing was conducted in 3 stages (a) Material Procurement, (b) Preparation and Testing and (c) Results and Analysis

7.1.1 Material Procurement

Easily available NUST Clay and a sample of Sand for the newly proposed construction of 132kV Grid Station at Sangor, Jhelum was procured.

7.1.1.1 Sieve Analysis

Sieve Analysis was carried out on the procured materials as per the specifications and respective grain size distribution curves were generated.

Given below in Fig is the grain size distribution curve of NUST Clay. As obvious from the curve distribution the sample contained around 69% gravel, 15.5% sand and 77.6% fines and was classified as a clay of low plasticity or lean clay as per the Unified Soil Classification System.

Similarly, in Fig the grain size distribution curve of Jhelum Sand is shown. Curve Analysis showed that the sample contained no gravel, around 95.89 % sand and 4.11% fines as per the Unified Soil Classification System.

Sieve No	Sieve Dia	Mass of Soil Retained	Cumulative Mass Retained	Cummulative %age Retained	%age Passing	Remarks	
	(mm)	gm					
		gm					
2.5"	63.5	0	0	0.00	100.00		
2"	50.8		0	0.00	100.00		
1.5"	38.1		0	0.00	100.00		
1"	25.4		0	0.00	100.00		
3/4"	19.05		0	0.00	100.00		
1/2"	12.7		0	0.00	100.00		
3/8"	9.52		0	0.00	100.00		
4	4.75	34.5	34.5	6.90	93.10	6.90	GRAVEL %
10	2	21.4	55.9	11.18	88.82		
16	1.18	6.3	62.2	12.44	87.56		
30	0.6	0	62.2	12.44	87.56		
40	0.425	0	62.2	12.44	87.56		
50	0.3	0	62.2	12.44	87.56		
100	0.15	22.5	84.7	16.94	83.06	15.50	SAND %
200	0.074	27.3	112	22.40	77.60		
pan		388	500	100.00	0.00	77.60	FINES %

Specific Gravity Test was carried out on both the samples i.e the NUST Clay and the Jhelum Sand as per the specifications the results of which are shown in the listed tables.

Table 3: Sieve Analysis on NUST Clay

Fig 33: Grain Size Distribution Curve for NUST Clay

Sieve No	Sieve Dia	Mass of Soil Retained	Cumulative Mass Retained	Cummulative %age Retained	%age Passing	Remarks	
	(mm)	gm					
		gm					
2.5"	63.5		0	0.00	100.00		
2"	50.8		0	0.00	100.00		
1.5"	38.1		0	0.00	100.00		
1"	25.4		0	0.00	100.00		
3/4"	19.05		0	0.00	100.00		
1/2"	12.7		0	0.00	100.00		
3/8"	9.52		0	0.00	100.00		
4	4.75		0	0.00	100.00	0.00	GRAVEL %
10	2		0	0.00	100.00		
16	1.18		0	0.00	100.00		
30	0.6	0.3	0.3	0.07	99.93		
40	0.425	6.4	6.7	1.65	98.35		
50	0.3	18.5	25.2	6.21	93.79		
100	0.15	316.3	341.5	84.11	15.89	95.89	SAND %
200	0.074	47.8	389.3	95.89	4.11		
pan		16.7	406	100.00	0.00	4.11	FINES %

Table 4: Sieve Analysis Results for Jhelum Sand

Fig 34: Grain Size Distribution of Jhelum Sand

7.1.1.2 Specific Gravity Test

Mass of flask	W1	89	gm
Mass of flask + dry soil	W2	130	gm
Mass of flask+soil+water	W3	303	gm
Mass of flask+water	W4	291	gm
Specific Gravity	Gs	2.71	

Table 5: Specific Gravity Test Results for NUST Clay

7.1.1.3 Proctor Test

Proctor Test was performed on the NUST Clay in order to get an idea of the Optimum Moisture Content (OMC) and Maximum Dry Density of the Clayey Sample. For Sand, there's no proctor application thus the moisture content was estimated by taking into consideration the bulk density and the ratio of voids.

Denity			Trial No			
Observation		1	2	3	4	5
Wt of mould+Compacted soil (gm)	W1	3272	3500	3676	3558	3516
Wt of mould (gm)	W2	1442	1442	1442	1442	1442
Wt of compacted soil (gm)	W3	1830	2058	2234	2116	2074
Voulme of mould (cm^3)	V	943	943	943	943	943
Wet density of soil, ywet (gm/Cc)	W3/V	1.94	2.18	2.37	2.24	2.2
Wet density of soil, ydry (gm/Cc)	ywet/(1+mc/100)	1.83	2.05	2.19	1.99	1.88

 Table 6: Results for MDD (Proctors Test)

Moisture Content							
Observatio	on		1	2	3	4	5
Wt of container+we	et soil (gm)	W1	3272	3500	3676	3558	3516
Wt of container+dr	y soil (gm)	W2	1442	1442	1442	1442	1442
Wt of containe	r(gm)	W3	1830	2058	2234	2116	2074
Wt of water (gm)	Ww	943	943	943	943	943
Wt of dry soil	(gm)	Ws	1.94	2.18	2.37	2.24	2.2
Moisture Content	t (M.C)%	(Ww/Ws)*100	1.83	2.05	2.19	1.99	1.88

 Table 7: Results for OMC (Proctors Test)

7.1.2 Preparation and Testing

Samples were prepared as per the specifications for the Unconfined Compression Test and The Tri-Axial Test was carried out.

7.1.2.1 Tri-Axial Test

Unconsolidated Undrained Tri- Axial Test was performed on NUST Clay. The samples were prepared as per the specifications in the Tri-Axial Apparatus mold with height to Diameter Ratio (H/D) = 2 and was encased by a thin rubber membrane.

Sample prepared for the Tri-Axial Test can be seen in Fig.

Fig 35: Sample Preparation for the Tri-Axial Test

After preparing the sample as per the specifications, it was placed in the Tri-Axial Test Apparatus and after filling the cylindrical chamber with water the test was started.

Fig 36: Sample Placement

After having the sample placed, carried out by saturation the sample shearing was also done.

Following figures clearly indicate the shearing process and the sheared sample.

Fig 37: Sample Shearing

Fig 38: Sheared Sample

7.1.2.1 Unconfined Compression Test

A number of trials for the Unconfined Compression Test were carried out on the NUST Clay.

For Unconfined Compression Test, the samples were again prepared as per the specifications of the test at OMC and then placed in UCS Apparatus.

Test was carried out and sample was sheared by load application. Several trials were carried out in order to develop co-relations for the "**c**" values.

These stages can be clearly seen in the subsequent figures.

Fig 39: Sample Preparation

Fig 40: Sample Testing

Fig 41: Sample Shearing 51

7.1.3 Results and Analysis

Results for both the testing procedures were compiled and respective graphs were formed.

7.1.3.1 Tri-Axial Test Results

The results of the Unconsolidated Un-drained Tri-Axial Test trials are provided in following tables and the failure envelopes for the respective trials have also been attached.

D=70mm	L=140mm	Area=	3848.45 mm^2	0.00384845	m^2							
	L=0.14m			٦	RI AXIAL	EST RESULT	S TRIAL # 01					
Deforma	tion De	formation ∆L	Strain	Corrected Area	P.R.R	Load P	Deviatoric Stress	Pore Pressure	Cell Pressure	Effective Cell Pressure	б1=б3+∆б	б1'=б3'+∆б
D.R	D.	R*0.01 (mm)	e	C.A=A/(1-€) (mm^2)		(KN)	Δ6	u (kPa)	63	б'З (kPa)		
0		0	0	3848.45	(0 0	0	0	120	120	120	120
100		1	0.007142857	3876.136691	2	0.1025	26.63409944	0	120	120	146.6340994	146.6340994
200		2	0.014285714	3904.224638	29	0.1189	30.89555535	3	120	117	150.8955554	147.8955554
300		3	0.021428571	3932.722628	29	0.1189	30.89555535	4	120	116	150.8955554	146.8955554
400		4	0.028571429	3961.639706	30	0.123	31.96091933	5	120	115	151.9609193	146.9609193
500		5	0.035714286	3990.985185	3:	0.1271	33.02628331	5	120	115	153.0262833	148.0262833
600		6	0.042857143	4020.768657	32	0.1312	34.09164729	5	120	115	154.0916473	149.0916473
700		7	0.05	4051	34	0.1394	36.22237524	6	120	114	156.2223752	150.2223752
800		8	0.057142857	4081.689394	34	0.1394	36.22237524	7	120	113	156.2223752	149.2223752
900		9	0.064285714	4112,847328	3	0.1435	37,28773922	10	120	110	157,2877392	147,2877392
1000)	10	0.071428571	4144.484615	3	0.1435	37,28773922	10	120	110	157,2877392	147,2877392
1100)	11	0.078571429	4176.612403	3	0.1435	37,28773922	12	120	108	157,2877392	145,2877392
1200	1	12	0.085714286	4209 242188	3	0 1517	39 41846718	12	120	108	159 4184672	147 4184672
1300	1	13	0.092857143	4203.242100	4	0.1763	45 81065104	14	120	106	165 810651	151 810651
1400	1	14	0.052057145	4276.055556	4	0.1763	45.81065104	14	120	106	165 810651	151 810651
1500	,	15	0.107142857	4270.0555550	4	0.1763	45.81065104	14	120	106	165 810651	151 810651
1500	,	10	0.10/14283/	4310.204	4.	0.1703	45.81005104	14	120	100	105.810051	147.010031
1700	,	10	0.114265714	4345.024194	4	0.1/03	45.81005104	10	120	102	167.041270	147.810051
1900	,	19	0.121428371	4360.349393	4.	0.1045	47.541375	10	120	101	160,006742	148.541373
1000	, ,	10	0.126371425	4410.234058		0.1000	49.00074297	19	120	101	109.000743	150.000743
1900		19	0.133714280	4452.752000	4	0.1000	49.00074297	19	120	100	109.000743	140.000743
2000	,	20	0.14265/145	4469.656555	4	0.1000	49.00074297	20	120	100	109.000743	149.000745
2100	,	21	0.15	4527.588235	4.	0.1927	50.07210695	21	120	99	1/0.0/210/	149.072107
2200)	22	0.15/14285/	4565.957627	42	0.1968	51.13/4/093	21	120	99	1/1.13/4/09	150.13/4/09
2300)	23	0.164285714	4604.982906	4	0.1968	51.13747093	24	120	96	171.1374709	147.1374709
2400)	24	0.171428571	4644.681034	49	0.2009	52.20283491	24	120	96	172.2028349	148.2028349
2500)	25	0.178571429	4685.069565	49	0.2009	52.20283491	26	120	94	172.2028349	146.2028349
2600)	26	0.185714286	4726.166667	49	0.2009	52.20283491	26	120	94	172.2028349	146.2028349
2700)	27	0.192857143	4767.99115	49	0.2009	52.20283491	27	120	93	172.2028349	145.2028349
2800)	28	0.2	4810.5625	49	0.2009	52.20283491	28	120	92	172.2028349	144.2028349
2900)	29	0.207142857	4853.900901	49	0.2009	52.20283491	28	120	92	172.2028349	144.2028349
3000)	30	0.214285714	4898.027273	50	0.205	53.26819889	31	120	89	173.2681989	142.2681989
3100)	31	0.221428571	4942.963303	50	0.205	53.26819889	31	120	89	173.2681989	142.2681989
3200)	32	0.228571429	4988.731481	50	0.205	53.26819889	33	120	87	173.2681989	140.2681989
3300)	33	0.235714286	5035.35514	50	0.205	53.26819889	35	120	85	173.2681989	138.2681989
3400)	34	0.242857143	5082.858491	50	0.205	53.26819889	35	120	85	173.2681989	138.2681989
3500)	35	0.25	5131.266667	50	0.205	53.26819889	36	120	84	173.2681989	137.2681989
3600)	36	0.257142857	5180.605769	53	0.2173	56.46429082	38	120	82	176.4642908	138.4642908
3700)	37	0.264285714	5230.902913	54	0.2214	57.5296548	38	120	82	177.5296548	139.5296548
3800)	38	0.271428571	5282.186275	56	0.2296	59.66038275	39	120	81	179.6603828	140.6603828
3900)	39	0.278571429	5334.485149	59	0.2419	62.85647468	42	120	78	182.8564747	140.8564747
4000)	40	0.285714286	5387.83	6:	0.2501	64.98720264	42	120	78	184.9872026	142.9872026
4100)	41	0.292857143	5442.252525	64	0.2624	68.18329457	44	120	76	188.1832946	144.1832946
4200)	42	0.3	5497.785714	6	0.2747	71.37938651	44	120	76	191.3793865	147.3793865
4300)	43	0.307142857	5554.463918	70	0.287	74.57547844	44	120	76	194.5754784	150.5754784
4400)	44	0.314285714	5612.322917	7:	0.2911	75.64084242	48	120	72	195.6408424	147.6408424
4500)	45	0.321428571	5671.4	75	0.3075	79.90229833	48	120	72	199.9022983	151.9022983
4600)	46	0.328571429	5731.734043	7	0.3157	82.03302628	48	120	72	202.0330263	154.0330263
4700)	47	0.335714286	5793.365591	80	0.328	85.22911822	51	120	69	205.2291182	154.2291182
4800)	48	0.342857143	5856.336957	8	0.3362	87.35984617	51	120	69	207.3598462	156.3598462
4900)	49	0.35	5920.692308	84	0.3444	89.49057413	51	120	69	209.4905741	158.4905741
5000)	50	0.357142857	5986.477778	8	0.3526	91.62130208	54	120	66	211.6213021	157.6213021
5100)	51	0.364285714	6053.741573	8	0.3649	94.81739402	55	120	65	214.817394	159.817394
		-							1			

 Table 8: Tri-Axial Test Results (Trial 1)

				TRI AX	IAL TRIAL 02						
Deformation	Deformation ΔL	Strain	Corrected Area	P.R.R	Load P	Deviatoric Stress	Pore Pressure	Cell Pressure	Effective Cell Pressure	b1=b3+∆b	b1'=b3'+Δb
D.R	D.R*0.01 (mm)	e	C.A=A/(1-e) (mm^2)		(KN)	Δb	u (kPa)	63	6'3 (kPa)	100	400
0	0	0	3848.45		0 0	0	0	120	120	120	120
100	1	0.007142857	3876.136691		28 0.1148	29.83019138	0	120	120	149.8301914	149.8301914
200	2	0.014285714	3904.224638		29 0.1189	30.89555535	1	120	119	150.8955554	149.8955554
300	3	0.021428571	3932.722628		40 0.164	42.61455911	2	120	118	162.6145591	160.6145591
400	4	0.028571429	3961.639706		44 0.1804	46.87601502	4	120	116	166.876015	162.876015
500	5	0.035714286	3990.985185		46 0.1886	49.00674297	5	120	115	169.006743	164.006743
600	6	0.042857143	4020.768657		47 0.1927	50.07210695	6	120	114	170.072107	164.072107
700	7	0.05	4051		50 0.205	53.26819889	6	120	114	173.2681989	167.2681989
800	8	0.057142857	4081.689394		51 0.2091	54.33356286	6	120	114	174.3335629	168.3335629
900	9	0.064285714	4112.847328		52 0.2132	55.39892684	6	120	114	175.3989268	169.3989268
1000	10	0.071428571	4144.484615		55 0.2255	58.59501877	8	120	112	178.5950188	170.5950188
1100	11	0.078571429	4176.612403		55 0.2255	58.59501877	9	120	111	178.5950188	169.5950188
1200	12	0.085714286	4209.242188		56 0.2296	59.66038275	9	120	111	179.6603828	170.6603828
1300	13	0.092857143	4242.385827		57 0.2337	60.72574673	9	120	111	180.7257467	171.7257467
1400	14	0.1	4276.055556		58 0.2378	61.79111071	11	120	109	181.7911107	170.7911107
1500	15	0.107142857	4310.264		59 0.2419	62.85647468	11	120	109	182.8564747	171.8564747
1600	16	0.114285714	4345.024194		61 0.2501	64.98720264	11	120	109	184.9872026	173.9872026
1700	17	0.121428571	4380.349593		62 0.2542	66.05256662	13	120	107	186.0525666	173.0525666
1800	18	0.128571429	4416.254098		63 0.2583	67.1179306	15	120	105	187.1179306	172.1179306
1900	19	0.135714286	4452.752066		64 0.2624	68.18329457	15	120	105	188.1832946	173.1832946
2000	20	0.142857143	4489.858333		65 0.2665	69.24865855	17	120	103	189.2486586	172.2486586
2100	21	0.15	4527.588235		65 0.2665	69.24865855	20	120	100	189.2486586	169.2486586
2200	22	0.157142857	4565.957627		68 0.2788	72.44475048	22	120	98	192,4447505	170.4447505
2300	23	0.164285714	4604.982906		69 0.2829	73.51011446	25	120	95	193.5101145	168.5101145
2400	24	0.171428571	4644.681034		70 0.287	74.57547844	27	120	93	194.5754784	167.5754784
2500	25	0.178571429	4685.069565		71 0.2911	75,64084242	29	120	91	195.6408424	166.6408424
2600	26	0.185714286	4726.166667		72 0.2952	76,70620639	29	120	91	196.7062064	167,7062064
2700	27	0.192857143	4767.99115		73 0.2993	77.77157037	32	120	88	197.7715704	165.7715704
2800	28	0.2	4810.5625		75 0.3075	79.90229833	34	120	86	199.9022983	165.9022983
2900	29	0.207142857	4853.900901		75 0.3075	79.90229833	36	120	84	199.9022983	163.9022983
3000	30	0.214285714	4898.027273		76 0.3116	80.96766231	38	120	82	200.9676623	162.9676623
3100	31	0 221428571	4942 963303		77 0 3157	82 03302628	41	120	79	202 0330263	161 0330263
3200	32	0.228571429	4988 731481		78 0 3198	83.09839026	43	120	77	203.0983903	160.0983903
3300	33	0.235714286	5035 35514		79 0 3239	84 16375424	45	120	75	204 1637542	159 1637542
3400	34	0.242957143	5092 959401		80 0.328	85 22011822	45	120	75	205 2201192	160 2201182
3500	35	0.242057145	5121 266667		81 0 2221	96 20//9210	45	120	73	205.2251102	150 20//922
3600	35	0.257142957	E190 60E760		0.3321	99 42521015	47	120	69	200.23440222	155.2544022
3000	30	0.23/14283/	5100.003703		0.3403	80.42321013	52	120	67	200.4232101	156,4005741
3700	37	0.204203714	5250.502515		0.3444	80.40057413	55	120	67	209.4903741	150.4903741
3000	30	0.271428371	5202.1002/3		0.3444	00 5550301	54	120	63	209.4903741	153.4503741
3500	35	0.2/63/1429	5334.463145		0.3463	00.0000000	50	120	65	210.3335561	155.5555561
4000	40	0.285/14286	5387.83		8/ 0.356/	92.0800000	59	120	61	212.0800001	153.0806061
4100	41	0.29285/143	5442.252525		00 0.3008	55.75205004	01	120	23	213./5203	152.75203
4200	42	0.3	5497.785714		89 U.3649	94.81/39402	63	120	5/	214.81/394	151.81/394
4300	43	0.30/142857	5554.463918		90 0.369	95.88275799	65	120	55	215.882758	150.882758
4400	44	0.314285/14	5612.322917		91 0.3/31	96.94812197	68	120	52	216.948122	148.948122
4500	45	0.321428571	5671.4		93 0.3813	99.07884993	70	120	50	219.0788499	149.0788499
4600	46	0.328571429	5731.734043		96 0.3936	102.2749419	75	120	45	222.2749419	147.2749419
4700	47	0.335714286	5793.365591		99 0.4059	105.4710338	76	120	44	225.4710338	149.4710338

 Table 9: Tri-Axial Test Results (Trial 2)

Bore Hole No.= Bh-1 Sample No.= UU Depth= 8.000000M Type of Test= U.U.

Major Pricipal stress -- Set 1 1.220 Kg/Sq.cm.-- Sample 1

Minor Pricipal stress -- Set 1 2.670 Kg/Sq.cm.-- Sample 1

Fig 42: Failure Envelope (Tri-Axial Test trial 1)

Bore Hole No.= Bh-1 Sample No.= UU Depth= 8.000000M Type of Test= U.U. Major Pricipal stress -- Set 1 1.220 Kg/Sq.cm.-- Sample 1 Minor Pricipal stress -- Set 1 2.820 Kg/Sq.cm.-- Sample 1

Fig 43: Failure Envelope (Tri-Axial Test trial 2)

7.1.3.2 Unconfined Compression Test Results

The tabulated test results are given in following tables:

TRIAL #01			L=80mm	Area =	1256.637					
Deformatio	on ΔL (mm)	Strain	∈=ΔL/L	Corrected	d Area Ac=A/	(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0		0.001256637			0	0	0	
0.25		0.00	3125	(0.001260576	5	314	0.0314	24.90924	
0.5		0.00)625		0.00126454		3180	0.318	251.4748	
0.75		0.00	9375	(0.001268529)	3750	0.375	295.6179	
1		0.0	125	(0.001272544	1	3995	0.3995	313.9381	
1.25		0.01	5625	(0.001276584	1	4018	0.4018	314.7463	
1.5		0.01	L875	(0.001280649)	2624	0.2624	204.8961	
1.75		0.02	1875	0.001284741			2120	0.212	165.0138	
2		0.0)25	(0.001288858			0.157	121.8132	
2.25		0.02	8125	(0.001293003	3	1325	0.1325	102.4747	
2.5		0.03	3125	(0.001297174	1	1180	0.118	90.967	
2.75		0.034	4375	(0.001301372	2	1140	0.114	87.59988	
3		0.0	375	(0.001305597	7	970	0.097	74.29552	
3.25		0.040625		0.00130985			966	0.0966	73.74892	
3.5		0.04	1375		0.00131413		942	0.0942	71.6824	

Table 10: Unconfined Compression Test Results (Trial 1)

TRIAL #02		L=80mm	Area =	1256.637				
Deformatio	on ∆L (mm)	Strain ∈=∆L/L	Correcte	d Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0	(0.001256637	0	0	0	
0.25		0.003125		0.001260576	88	0.0088	6.980934	
0.5		0.00625		0.00126454	282	0.0282	22.30059	
0.75		0.009375		0.001268529	516	0.0516	40.67702	
1		0.0125	(0.001272544	854	0.0854	67.10967	
1.25		0.015625	(0.001276584	1224	0.1224	95.88091	
1.5		0.01875	(0.001280649	1422	0.1422	111.0374	
1.75		0.021875		0.001284741	1326	0.1326	103.2115	
2		0.025		0.001288858	1216	0.1216	94.34705	
2.25		0.028125		0.001293003	1150	0.115	88.94026	
2.5		0.03125	(0.001297174	1054	0.1054	81.25358	
2.75		0.034375	(0.001301372	998	0.0998	76.68832	
3		0.0375		0.001305597	924	0.0924	70.77223	
3.25		0.040625		0.00130985	866	0.0866	66.11446	

Table 11: Unconfined Compression Test Results (Trial 2)

TRIAL #03			L=80mm	Area =	1256.637					
Deformatio	on ΔL (mm)	Strain	€=ΔL/L	Corrected	d Area Ac=A/	(1-€) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0		0.001256637			0	0	0	
0.25		0.00	3125	(0.00126057	6	482	0.0482	38.23648	
0.5		0.00	0625		0.00126454	Ļ	925	0.0925	73.14911	
0.75		0.00	9375	(0.00126852	9	1543	0.1543	121.6369	
1		0.0	125	(0.00127254	4	2236	0.2236	175.711	
1.25		0.01	5625	(0.00127658	4	2895	0.2895	226.7772	
1.5		0.01	1875	(0.00128064	9	3465	0.3465	270.5659	
1.75		0.02	1875	(0.00128474	1	3814	0.3814	296.8692	
2		0.0	025	(0.00128885	8	3906	0.3906	303.0589	
2.25		0.02	8125	(0.00129300	3	3624	0.3624	280.2778	
2.5		0.03	3125	(0.00129717	4	3217	0.3217	248.0007	
2.75		0.03	4375	(0.00130137	2	2742	0.2742	210.7008	
3		0.0375		0.001305597			1828	0.1828	140.0126	
3.25		0.04	0625		0.00130985		1442	0.1442	110.089	

 Table 12: Unconfined Compression Test Results (Trial 3)

TRIAL #04			L=80mm	Area =	1256.637					
Deformati	on ΔL (mm)	Strain	€=ΔL/L	Correcte	d Area Ac=A/	(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0		0.001256637			0	0	0	
0.25		0.00	3125		0.00126057	6	260	0.026	20.62549	
0.5		0.00	0625		0.00126454		860	0.086	68.0089	
0.75		0.00	9375		0.00126852	9	1230	0.123	96.96267	
1		0.0)125		0.00127254	4	1830	0.183	143.8064	
1.25		0.01	.5625		0.00127658	4	2390	0.239	187.2184	
1.5		0.01	1875		0.00128064	9	2950	0.295	230.3519	
1.75		0.02	1875		0.00128474	1	3440	0.344	267.7583	
2		0.0	025		0.00128885	8	3640	0.364	282.4205	
2.25		0.02	8125		0.00129300	3	4170	0.417	322.5051	
2.5		0.03	3125		0.00129717	4	4310	0.431	332.2608	
2.75		0.03	4375		0.00130137	2	4360	0.436	335.0311	
3		0.0)375		0.00130559	7	4240	0.424	324.7557	
3.25		0.04	0625		0.00130985		3900	0.39	297.7441	
3.5		0.04	4375		0.00131413		3680	0.368	280.0331	
3.75		0.04	0.046875		0.001318439			0.357	270.7748	
4		0.	.05		0.00132277	6	3210	0.321	242.6715	

Table 13: Unconfined Compression Test Results (Trial 4)

TRIAL #05		L=80mm	Area =	1256.637				
Deformatio	on ΔL (mm)	Strain ∈=ΔL/L	Correcte	d Area Ac=A/(1- ϵ) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0		0.001256637	0	0	0	
0.25		0.003125		0.001260576	245	0.0245	19.43555	
0.5		0.00625		0.00126454	812	0.0812	64.21305	
0.75		0.009375		0.001268529		0.1212	95.5437	
1		0.0125		0.001272544	1789	0.1789	140.5846	
1.25		0.015625		0.001276584	2415	0.2415	189.1768	
1.5		0.01875		0.001280649	2850	0.285	222.5434	
1.75		0.021875		0.001284741		0.334	259.9746	
2		0.025	0.001288858		3510	0.351	272.334	
2.25		0.028125		0.001293003	4010	0.401	310.1308	
2.5		0.03125		0.001297174	4410	0.441	339.9699	
2.75		0.034375		0.001301372	4355	0.4355	334.6469	
3		0.0375		0.001305597	4210	0.421	322.4579	
3.25		0.040625		0.00130985	3945	0.3945	301.1796	
3.5		0.04375		0.00131413	3780	0.378	287.6427	
3.75		0.046875		0.001318439	3690	0.369	279.8765	
4		0.05		0.001322776	3450	0.345	260.8152	

Table 14: Unconfined Compression Test Results (Trial 5)

TRIAL #06			L=80mm	Area =	1256.637					
Deformatio	on ΔL (mm)	Strain	€=ΔL/L	Correcte	d Area Ac=A/	(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		(0	(0.00125663	7	0	0	0	
0.25		0.00	3125	(0.00126057	5	240	0.024	19.03891	
0.5		0.00	0625		0.00126454		820	0.082	64.8457	
0.75		0.00	9375	(0.00126852	Ð	1270	0.127	100.1159	
1		0.0	125	(0.00127254	4	1840	0.184	144.5923	
1.25		0.01	5625	(0.001276584	4	2400	0.24	188.0018	
1.5		0.01	1875	(0.00128064	Ð	2860	0.286	223.3242	
1.75		0.02	1875	(0.00128474	1	3450	0.345	268.5367	
2		0.0	025	(0.00128885	3	3750	0.375	290.9551	
2.25		0.02	8125	(0.001293003	3	4050	0.405	313.2244	
2.5		0.03	3125	(0.001297174	4	4425	0.4425	341.1263	
2.75		0.03	4375	(0.00130137	2	4270	0.427	328.1153	
3		0.0	375	(0.00130559	7	4100	0.41	314.0326	
3.25		0.04	0625		0.00130985		3800	0.38	290.1096	
3.5		0.04	4375		0.00131413		3695	0.3695	281.1746	
3.75		0.04	6875		0.00131843	Ð	3590	0.359	272.2917	
4		0.	05	(0.00132277	5	3200	0.32	241.9155	

Table 15: Unconfined Compression Test Results (Trial 6)

TRIAL #07		L=80mm	Area =	1256.637				
Deformati	on ΔL (mm)	Strain $\epsilon=\Delta L/L$	Corrected A	Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0	0.001256637		0	0	0	
0.25		0.003125	0.0	001260576	240	0.024	19.03891	
0.5		0.00625	0.	00126454	830	0.083	65.6365	
0.75		0.009375	0.0	001268529	1130	0.113	89.07952	
1		0.0125	0.0	001272544	1750	0.175	137.5198	
1.25		0.015625	0.0	0.001276584		0.2325	182.1267	
1.5		0.01875	0.0	001280649	2890	0.289	225.6668	
1.75		0.021875	0.0	001284741	3345	0.3345	260.3638	
2		0.025	0.0	001288858	3790	0.379	294.0587	
2.25		0.028125	0.001293003		4070	0.407	314.7712	
2.5		0.03125	0.0	001297174	4315	0.4315	332.6463	
2.75		0.034375	0.0	001301372	4420	0.442	339.6416	
3		0.0375	0.0	0.001305597		0.421	322.4579	
3.25		0.040625	0.	0.00130985		0.382	291.6365	
3.5		0.04375	0.	00131413	3430	0.343	261.0091	
3.75		0.046875	0.0	001318439	3215	0.3215	243.849	

 Table 16: Unconfined Compression Test Results (Trial 7)

TRIAL #08			L=80mm	Area =	1256.637					
Deformati	on ΔL (mm)	Strain	€=ΔL/L	Correcte	d Area Ac=A/	(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		(0	(0.00125663	7	0	0	0	
0.25		0.00	3125	(0.00126057	6	270	0.027	21.41877	
0.5		0.00	0625		0.00126454		840	0.084	66.4273	
0.75		0.00	9375	(0.00126852	9	1250	0.125	98.5393	
1		0.0125		0.001272544			1690	0.169	132.8049	
1.25		0.01	5625	(0.00127658	4	2160	0.216	169.2016	
1.5		0.01	1875	(0.00128064	9	2890	0.289	225.6668	
1.75		0.02	1875	(0.00128474	1	3230	0.323	251.4126	
2		0.0	025	(0.00128885	8	3650	0.365	283.1963	
2.25		0.02	8125	(0.00129300	3	4190	0.419	324.0519	
2.5		0.03	3125	(0.00129717	4	4420	0.442	340.7408	
2.75		0.03	4375	(0.00130137	2	4350	0.435	334.2627	
3		0.0	375	(0.00130559	7	4240	0.424	324.7557	
3.25		0.04	0625		0.00130985		3910	0.391	298.5075	
3.5		0.04	4375		0.00131413		3700	0.37	281.5551	
3.75		0.04	6875		0.00131843	9	3410	0.341	258.6392	

Table 17: Unconfined Compression Test Results (Trial 8)

TRIAL #09		L=80	Dmm	Area =	1256.637					
Deformatio	on ΔL (mm)	Strain ϵ=ΔL	./L	Correcte	Corrected Area Ac=A/(1- ϵ) m ²			Load P (kN)	Stress	б=Р/А
0		0			0.001256637		0	0	0	
0.25		0.003125			0.001260576		220	0.022	17.45234	
0.5		0.00625		0.00126454			760	0.076	60.10089	
0.75		0.009375		0.001268529			1130	0.113	89.07952	
1		0.0125			0.001272544		1740	0.174	136.734	
1.25		0.015625		0.001276584		2210	0.221	173.1183		
1.5		0.01875		0.001280649			2870	0.287	224.1051	
1.75		0.021875			0.001284741		3240	0.324	252.191	
2		0.025			0.001288858		3650	0.365	283.1963	
2.25		0.028125			0.001293003		4070	0.407	314.7712	
2.5		0.03125			0.001297174		4210	0.421	324.5518	
2.75		0.034375			0.001301372		4450	0.445	341.9469	
3		0.0375			0.001305597		4190	0.419	320.926	
3.25		0.040625			0.00130985		3870	0.387	295.4538	
3.5		0.04375			0.00131413		3520	0.352	267.8578	
3.75		0.046875			0.001318439		3210	0.321	243.4698	

 Table 18: Unconfined Compression Test Results (Trial 9)

TRIAL #10			L=80mm	Area =	1256.637					
Deformati	on ΔL (mm)	Strain	€=ΔL/L	Corrected	d Area Ac=A/	(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		(0	(0.00125663	7	0	0	0	
0.25		0.00	3125	(0.00126057	6	280	0.028	22.21206	
0.5		0.00	0625		0.00126454	Ļ	790	0.079	62.47329	
0.75		0.009375		(0.00126852	9	1240	0.124	97.75098	
1		0.0125		0.001272544			1885	0.1885	148.1285	
1.25		0.01	.5625	(0.00127658	4	2290	0.229	179.385	
1.5		0.01	1875	(0.00128064	9	3100	0.31	242.0647	
1.75		0.02	1875	(0.00128474	1	3560	0.356	277.0987	
2		0.025		(0.001288858		3895	0.3895	302.2054	
2.25		0.02	8125	(0.00129300	3	4210	0.421	325.5987	
2.5		0.03	3125	(0.00129717	4	4400	0.44	339.199	
2.75		0.03	4375	(0.00130137	2	4590	0.459	352.7048	
3		0.0	375	(0.00130559	7	4100	0.41	314.0326	
3.25		0.04	0625		0.00130985		3860	0.386	294.6903	
3.5		0.04	4375		0.00131413		3685	0.3685	280.4136	
3.75		0.04	6875	(0.00131843	9	3480	0.348	263.9485	
4		0.	05	(0.00132277	6	3140	0.314	237.3796	

 Table 19: Unconfined Compression Test Results (Trial 10)

The plots for the results are as follows:

Fig 44: Plot of Stress VS Deformation (Trial 1)

Fig 45: Plot of Stress VS Deformation (Trial 2)

Fig 47: Plot of Stress VS Deformation (Trial 4)

Fig 49: Plot of Stress VS Deformation (Trial 6)

Fig 50: Plot of Stress VS Deformation (Trial 7)

Fig 51: Plot of Stress VS Deformation (Trial 8)

Fig 52: Plot of Stress VS Deformation (Trial 9)

Fig 53: Plot of Stress VS Deformation (Trial 10)

The combined bar chart for the trials is given as follows to work out for the range of c obtained from the test results after discarding the abnormalities in the results.

Fig 54: Bar Chart presenting the combined results

7.2 Centrifuge Testing

The testing on the self-designed Centrifuge Apparatus comprises of 4 stages namely (a) Preparation of the Sample at OMC, (b) Densification, (c) Saturation, (c) Shearing. The description of these stages is given below.

7.2.1 Preparation of the Sample at OMC

Samples were prepared at Optimum Moisture Content of 8% as determined before by assuring proper uniformity in the mixing procedures for both the acquired samples in order to proceed with Densification Process.

The process of preparation is shown in the following figures.

Fig 55: Sample Preparation at OMC

7.2.2 Densification

Densification was performed on both the acquired soil samples for the development of corelations of increase in the percentage densification of the sample with revolutions per minute.

Densification that was carried out on both the soil samples comprised of 4 stages that are explained in the subsequently

7.2.2.1 Sample Placement

After mixing the samples with 8% water by weight of the samples they were properly placed in the detachable wire mesh cylindrical mold by means of a scoop in subsequent layers and weight of the samples were noted down. Sample Placement is shown in the following figure.

Fig 56: Sample Placement

7.2.2.2 Initial Density

Height from top was noted down to calculate the volume of the samples and to get an estimate of the initial density.

Following figure shows the initial density measurement.

Fig 57: Initial Density Measurement

7.2.2.3 Densification Process

After calculating the initial densities of both the soil samples, the detachable mold was placed in the Centrifuge Apparatus and the densification process was started by operating the centrifuge for 15, 30, 45 and 60 seconds to obtain a trend of the % Densification.

Densification Process is shown in the following figure.

Fig 58: Densification Process

7.2.2.4 Final Density

Height from the top was again noted down for both the soil samples after each trial for the respective time duration and the final density was calculated.

This procedure was carried out on both the soil samples to get an idea of trend of %age densification.

Here are the results of the %age densification for NUST Clay achieved after 15, 30, 45 and 60 seconds.

Fig 59: %age Densification after 15 seconds

Fig 60: %age Densification after 30 seconds

Fig 62: %age Densification after 60 seconds

Similarly here are the results for the Jhelum Sand for 15, 30, 45 and 60 seconds.

Fig 63: %age Densification after 15 seconds

Fig 64: %age Densification after 30 seconds

Fig 65: %age Densification after 45 seconds

Fig 66: %age Densification after 60 seconds

Here are the combined trends for the increase in density for the both the soil samples at 15. 30, 45 and 60 seconds clearly indicating the increase in the density after 1 minute of the densification process.

Fig 67: Density Increment for NUST Clay

It is pretty obvious from the trend of Clay that initially it densifies to a greater extent but then stabilizes.

But for Sandy Sample, the density keeps on increasing gradually.

7.2.3 Saturation

Time efficient saturation was obtained from the self-designed Centrifuge Apparatus. The Saturation Process carried out on the "Clayey Sample" comprised of 4 stages that listed below with relevant figures.

7.2.3.1 Provision of Holes

After densifying the Clayey Sample for 2 minutes, holes were provided in the confined soil sample by means of a steel rod up till the base of the cylinder.

Following figure clearly shows this stage.

Fig 69: Provision of holes

7.2.3.2 Water Injection

Water was then injected in the provided holes to achieve uniform saturation by means of rubber tubes.

Following figure clearly shows this stage.

Fig 70: Water Injection

7.2.3.3 Saturation Process

The cylinder was properly covered and rotated for 2 minutes to achieve effective saturation. Following figure clearly shows this stage.

Fig 71: Saturation Process

7.2.3.4 Tensiometer Application

Tensiometer was placed in the sample to get an idea of the soil saturation. When the dial reading approached near zero indicating that saturation has been achieved, some sample was acquired in a can to calculate the moisture content and ultimately the final degree of saturation from the calculated moisture content.

Following figure clearly shows this stage.

Fig 72: Tensiometer Application

The tabulated saturation results are provided in the table.

TRIAL #	MASS (g)	BULK DENSITY (g/cm3)	DRY DENSITY (g/cm3)	M.C %	SAT %
1	208.98	2.08	1.81	14.81	89.13
2	189.39	1.88	1.54	22.22	84.60
3	212.46	2.11	1.85	14.00	91.32
4	210.82	2.10	1.83	14.29	89.92
5	199.84	1.99	1.69	17.86	86.35
6	202.01	2.01	1.70	18.52	90.91
7	209.63	2.09	1.83	14.00	87.17
8	200.85	2.00	1.69	18.37	89.01
9	208.98	2.08	1.79	16.00	93.06
10	191.57	1.91	1.53	24.44	91.56

 Table 20: Results for Degree of Saturation (Joseph E. Bowles)

7.2.4 Shearing

The shearing stages further comprises of 4 stages that are described below with the pictorial presentation.

7.2.4.1 Manual Loading Mechanism

We did devise a manual loading mechanism to shear the sample in the Centrifuge Apparatus but to the unavailability of the failure identification mechanism we switched to the Unconfined Compression Test Apparatus to carry out the shearing of the Saturated Sample.

The devised loading mechanism is shown in the following figure.

Fig 73: Devised Manual Loading Mechanism

7.2.4.2 Sample Extraction

To carry out shearing of the saturated sample in the UCS apparatus, undisturbed saturated sample was extracted from the centrifuge apparatus by means of a Shelby Tube.

Following figure shows the sample extraction.

Fig 74: Sample Extraction using Shelby Tube

7.2.4.3 Sample Shearing Process

The extracted sample was then trimmed and placed in the UCS apparatus for the shearing process.

Sample was sheared by axial load application and the readings were noted down. Following figure shows the sheared sample.

Fig 75: Sample Shearing in UCS Apparatus

7.2.4.4 Sample Failure

Sample failed in a similar manner as it does so in the Tri-Axial Apparatus. The sample bulged sample is shown in the following figure.

Fig 76: Sheared Sample

The tabulated results and the plots for all the 10 trials performed are given below.

TRIAL #01	L=80mm	Area = 1256.637				
Deformation ΔL (mm)	Strain $\epsilon = \Delta L/L$	Corrected Area Ac=A/(1- ϵ) m ²	P.R.R	Load P (kN)	Stress	б=Р/А
0	0	0.001256637	0	0	0	
0.25	0.003125	0.001260576	64	0.0064	5.077043	
0.5	0.00625	0.00126454	130	0.013	10.28042	
0.75	0.009375	0.001268529	164	0.0164	12.92836	
1	0.0125	0.001272544	194	0.0194	15.24505	
1.25	0.015625	0.001276584	216	0.0216	16.92016	
1.5	0.01875	0.001280649	254	0.0254	19.83369	
1.75	0.021875	0.001284741	266	0.0266	20.70457	
2	0.025	0.001288858	296	0.0296	22.96606	
2.25	0.028125	0.001293003	328	0.0328	25.36731	
2.5	0.03125	0.001297174	358	0.0358	27.59846	
2.75	0.034375	0.001301372	384	0.0384	29.50733	
3	0.0375	0.001305597	412	0.0412	31.55645	
3.25	0.040625	0.00130985	436	0.0436	33.28626	
3.5	0.04375	0.00131413	468	0.0468	35.61291	
4	0.05	0.001322776	494	0.0494	37.34571	
4.5	0.05625	0.001331536	536	0.0536	40.25427	
5	0.0625	0.001340413	584	0.0584	43.56867	
5.5	0.06875	0.001349409	610	0.061	45.20498	
6	0.075	0.001358526	632	0.0632	46.52099	
6.5	0.08125	0.001367768	654	0.0654	47.81512	
7	0.0875	0.001377136	682	0.0682	49.52305	
7.5	0.09375	0.001386634	710	0.071	51.20313	
8	0.1	0.001396263	732	0.0732	52.42564	
8.5	0.10625	0.001406027	752	0.0752	53.48402	
9	0.1125	0.001415929	774	0.0774	54.66376	
9.5	0.11875	0.001425971	794	0.0794	55.68135	
10	0.125	0.001436157	822	0.0822	57.2361	
10.5	0.13125	0.001446489	846	0.0846	58.48646	
11	0.1375	0.00145697	874	0.0874	59.98749	
11.5	0.14375	0.001467605	902	0.0902	61.46067	
12	0.15	0.001478396	1304	0.1304	88.20367	
12.5	0.15625	0.001489348	1338	0.1338	89.838	
13	0.1625	0.001500462	1366	0.1366	91.03862	
13.5	0.16875	0.001511744	1385	0.1385	91.61606	
14	0.175	0.001523196	1390	0.139	91.25547	
14.5	0.18125	0.001534824	1276	0.1276	83.13658	
15	0.1875	0.00154663	1204	0.1204	77.84667	
15.5	0.19375	0.00155862	1172	0.1172	75.19475	

 Table 21: Unconfined Compression Test Results (Trial 1)

TRIAL #02	L=80mm	Area =	1256.637				
Deformation ΔL (mm)	Strain ∈=∆L/L	Correcte	d Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0	0		0.001256637	0	0	0	
0.25	0.003125		0.001260576	40	0.004	3.173152	
0.5	0.00625		0.00126454	254	0.0254	20.08635	
0.75	0.009375		0.001268529	490	0.049	38.6274	
1	0.0125		0.001272544	684	0.0684	53.75061	
1.25	0.015625		0.001276584	842	0.0842	65.95729	
1.5	0.01875		0.001280649	690	0.069	53.87892	
1.75	0.021875		0.001284741	1060	0.106	82.50692	
2	0.025		0.001288858	1160	0.116	90.00212	
2.25	0.028125		0.001293003	1222	0.1222	94.5087	
2.5	0.03125		0.001297174	1308	0.1308	100.8346	
2.75	0.034375		0.001301372	1376	0.1376	105.7346	
3	0.0375		0.001305597	1444	0.1444	110.6008	
3.25	0.040625		0.00130985	1510	0.151	115.2804	
3.5	0.04375		0.00131413	1566	0.1566	119.1663	
4	0.05		0.001322776	1616	0.1616	122.1673	
4.5	0.05625		0.001331536	1670	0.167	125.4191	
5	0.0625		0.001340413	1706	0.1706	127.2742	
5.5	0.06875		0.001349409	1724	0.1724	127.7596	
6	0.075		0.001358526	1738	0.1738	127.9327	
6.5	0.08125		0.001367768	1768	0.1768	129.2617	
7	0.0875		0.001377136	1540	0.154	111.8262	
7.5	0.09375		0.001386634	1510	0.151	108.8968	
8	0.1		0.001396263	1485	0.1485	106.3553	
8.5	0.10625		0.001406027	1468	0.1468	104.4076	
9	0.1125		0.001415929	1454	0.1454	102.6888	

Table 22: Unconfined Compression Test Results (Trial 2)

TRIAL #03			L=80mm	Area =	1256.637				
Deformatio	on ΔL (mm)	Strain	∈=ΔL/L	Correcte	d Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0			0		0.001256637	0	0	0	
0.25		0.00	3125		0.001260576	150	0.015	11.89932	
0.5		0.00	0625		0.00126454	186	0.0186	14.7089	
0.75		0.00	9375		0.001268529	220	0.022	17.34292	
1		0.0	125		0.001272544	260	0.026	20.43152	
1.25		0.01	5625		0.001276584	300	0.03	23.50022	
1.5		0.0	1875		0.001280649	332	0.0332	25.92435	
1.75		0.02	1875		0.001284741	368	0.0368	28.64391	
2		0.0	025		0.001288858	402	0.0402	31.19039	
2.25		0.02	8125		0.001293003	430	0.043	33.25592	
2.5		0.03	3125		0.001297174	456	0.0456	35.15335	
2.75		0.03	4375		0.001301372	486	0.0486	37.34521	
3		0.0	375		0.001305597	510	0.051	39.06259	
3.25		0.04	0625		0.00130985	540	0.054	41.22611	
3.5		0.04	4375		0.00131413	772	0.0772	58.74608	
4		0.	05		0.001322776	1472	0.1472	111.2811	
4.5		0.0	5625		0.001331536	2446	0.2446	183.6976	
5		0.0	625		0.001340413	3422	0.3422	255.2945	
5.5		0.0	6875		0.001349409	4353	0.4353	322.5857	
6		0.0	075		0.001358526	5348	0.5348	393.6618	
6.5		0.08	8125		0.001367768	6268	0.6268	458.2648	
7		0.0	875		0.001377136	6902	0.6902	501.1849	
7.5		0.0	9375		0.001386634	7498	0.7498	540.7339	
8		0).1		0.001396263	7716	0.7716	552.6178	
8.5		0.10	0625		0.001406027	7872	0.7872	559.8753	
9		0.1	.125		0.001415929	7992	0.7992	564.4351	
9.5		0.1	1875		0.001425971	7800	0.78	546.9957	
10		0.3	125		0.001436157	7736	0.7736	538.6599	
10.5		0.13	3125		0.001446489	7674	0.7674	530.5261	

 Table 23: Unconfined Compression Test Results (Trial 3)

TRIAL #04			L=80mm	Area =	1256.637				
Deformatio	on ΔL (mm)	Strain	€=ΔL/L	Correcte	d Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0			0		0.001256637	(0 0	0	
0.25		0.00	3125		0.001260576	160	0.016	12.69261	
0.5		0.00	0625		0.00126454	200	0.02	15.81602	
0.75		0.00	9375		0.001268529	260	0.026	20.49617	
1		0.0	125		0.001272544	310	0.031	24.36065	
1.25		0.01	.5625		0.001276584	360	0.036	28.20027	
1.5		0.0	1875		0.001280649	415	0.0415	32.40544	
1.75		0.02	1875		0.001284741	505	0.0505	39.30754	
2		0.0	025		0.001288858	576	0.0576	44.69071	
2.25		0.02	8125		0.001293003	612	0.0612	47.33169	
2.5		0.03	3125		0.001297174	669	0.0669	51.57366	
2.75		0.03	4375		0.001301372	730	0.073	56.09466	
3		0.0	375		0.001305597	812	0.0812	62.19378	
3.25		0.04	0625		0.00130985	878	0.0878	67.03059	
3.5		0.04	4375		0.00131413	934	0.0934	71.07363	
4		0.	05		0.001322776	1099	0.1099	83.08286	
4.5		0.0	5625		0.001331536	1234	0.1234	92.67493	
5		0.0	625		0.001340413	1678	0.1678	125.1853	
5.5		0.0	6875		0.001349409	2343	0.2343	173.6316	
6		0.0	075		0.001358526	3352	0.3352	246.7379	
6.5		0.08	8125		0.001367768	3989	0.3989	291.643	
7		0.0	875		0.001377136	4501	0.4501	326.8376	
7.5		0.0	9375		0.001386634	4991	0.4991	359.9364	
8		0).1		0.001396263	5548	0.5548	397.3463	
8.5		0.10	0625		0.001406027	6122	0.6122	435.4111	
9		0.1	.125		0.001415929	6924	0.6924	489.0076	
9.5		0.1	1875		0.001425971	7369	0.7369	516.7707	
10		0.3	125		0.001436157	7890	0.789	549.383	
10.5		0.13	3125		0.001446489	7548	0.7548	521.8154	
11		0.1	.375		0.00145697	7432	0.7432	510.0996	

Table 24: Unconfined Compression Test Results (Trial 4)

TRIAL #05	L=80mm	Area =	1256.637				
Deformation ΔL (mm)	Strain ∈=ΔL/L	Correct	ed Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0	0		0.001256637	0	0	0	
0.25	0.003125		0.001260576	69	0.0069	5.473687	
0.5	0.00625		0.00126454	120	0.012	9.489614	
0.75	0.009375		0.001268529	172	0.0172	13.55901	
1	0.0125		0.001272544	186	0.0186	14.61639	
1.25	0.015625		0.001276584	190	0.019	14.88347	
1.5	0.01875		0.001280649	240	0.024	18.7405	
1.75	0.021875		0.001284741	257	0.0257	20.00404	
2	0.025		0.001288858	277	0.0277	21.49189	
2.25	0.028125		0.001293003	300	0.03	23.20181	
2.5	0.03125		0.001297174	340	0.034	26.21083	
2.75	0.034375		0.001301372	375	0.0375	28.81575	
3	0.0375		0.001305597	396	0.0396	30.33095	
3.25	0.040625		0.00130985	433	0.0433	33.05723	
3.5	0.04375		0.00131413	457	0.0457	34.77585	
4	0.05		0.001322776	483	0.0483	36.51412	
4.5	0.05625		0.001331536	541	0.0541	40.62977	
5	0.0625		0.001340413	579	0.0579	43.19565	
5.5	0.06875		0.001349409	610	0.061	45.20498	
6	0.075		0.001358526	629	0.0629	46.30016	
6.5	0.08125		0.001367768	643	0.0643	47.01089	
7	0.0875		0.001377136	676	0.0676	49.08737	
7.5	0.09375		0.001386634	689	0.0689	49.68867	
8	0.1		0.001396263	728	0.0728	52.13916	
8.5	0.10625		0.001406027	743	0.0743	52.84392	
9	0.1125		0.001415929	765	0.0765	54.02813	
9.5	0.11875		0.001425971	786	0.0786	55.12033	
10	0.125		0.001436157	811	0.0811	56.47017	
10.5	0.13125		0.001446489	853	0.0853	58.97039	
11	0.1375		0.00145697	892	0.0892	61.22293	
11.5	0.14375		0.001467605	921	0.0921	62.75529	
12	0.15		0.001478396	1209	0.1209	81.77779	
12.5	0.15625		0.001489348	1298	0.1298	87.15226	
13	0.1625		0.001500462	1324	0.1324	88.23948	
13.5	0.16875		0.001511744	1367	0.1367	90.42538	
14	0.175		0.001523196	1387	0.1387	91.05852	
14.5	0.18125		0.001534824	1265	0.1265	82.41988	
15	0.1875		0.00154663	1212	0.1212	78.36392	
15.5	0.19375		0.00155862	1165	0.1165	74.74563	

Table 25: Unconfined Compression Test Results (Trial 5)

TRIAL #06		L=80mm	Area =	1256.637				
Deformation ΔL ((mm) Stra	in ∈=∆L/L	Correcte	ed Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		0		0.001256637	0	0	0	
0.25	0.0	003125		0.001260576	30	0.003	2.379864	
0.5	0.	.00625		0.00126454	102	0.0102	8.066172	
0.75	0.0	009375		0.001268529	325	0.0325	25.62022	
1	C	.0125		0.001272544	426	0.0426	33.47625	
1.25	0.0	015625		0.001276584	497	0.0497	38.93204	
1.5	0.	.01875		0.001280649	536	0.0536	41.85377	
1.75	0.0	021875		0.001284741	856	0.0856	66.62823	
2		0.025		0.001288858	982	0.0982	76.19145	
2.25	0.0	028125		0.001293003	1197	0.1197	92.57521	
2.5	0.	.03125		0.001297174	1254	0.1254	96.67171	
2.75	0.0	034375		0.001301372	1324	0.1324	101.7388	
3	C	.0375		0.001305597	1432	0.1432	109.6816	
3.25	0.0	040625		0.00130985	1522	0.1522	116.1965	
3.5	0.	.04375		0.00131413	1533	0.1533	116.6551	
4		0.05		0.001322776	1623	0.1623	122.6965	
4.5	0.	.05625		0.001331536	1654	0.1654	124.2175	
5	C	.0625		0.001340413	1723	0.1723	128.5425	
5.5	0.	.06875		0.001349409	1759	0.1759	130.3534	
6		0.075		0.001358526	1795	0.1795	132.1285	
6.5	0.	.08125		0.001367768	1754	0.1754	128.2381	
7	C	.0875		0.001377136	1523	0.1523	110.5918	
7.5	0.	.09375		0.001386634	1576	0.1576	113.6565	
8		0.1		0.001396263	1476	0.1476	105.7107	

 Table 26: Unconfined Compression Test Results (Trial 6)

TRIAL #07			L=80mm	Area =	1256.637				
Deformatio	on ΔL (mm)	Strain	∈=∆L/L	Correcte	d Area Ac=A/(1-∈) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0		(0		0.001256637	0	0	0	
0.25		0.00	3125		0.001260576	120	0.012	9.519455	
0.5		0.00	0625		0.00126454	143	0.0143	11.30846	
0.75		0.00	9375		0.001268529	187	0.0187	14.74148	
1		0.0	125		0.001272544	217	0.0217	17.05246	
1.25		0.01	5625		0.001276584	276	0.0276	21.62021	
1.5		0.01	1875		0.001280649	298	0.0298	23.26945	
1.75		0.02	1875		0.001284741	346	0.0346	26.9315	
2		0.0	025		0.001288858	398	0.0398	30.88004	
2.25		0.02	8125		0.001293003	427	0.0427	33.02391	
2.5		0.03	3125		0.001297174	478	0.0478	36.84934	
2.75		0.03	4375		0.001301372	512	0.0512	39.3431	
3		0.0	375		0.001305597	537	0.0537	41.13061	
3.25		0.04	0625		0.00130985	576	0.0576	43.97451	
3.5		0.04	4375		0.00131413	894	0.0894	68.02979	
4		0.	05		0.001322776	953	0.0953	72.04547	
4.5		0.05	5625		0.001331536	1657	0.1657	124.4428	
5		0.0	625		0.001340413	2643	0.2643	197.1781	
5.5		0.06	6875		0.001349409	3768	0.3768	279.2334	
6		0.0	075		0.001358526	4983	0.4983	366.7945	
6.5		0.08	8125		0.001367768	6024	0.6024	440.4255	
7		0.0	875		0.001377136	6907	0.6907	501.548	
7.5		0.09	9375		0.001386634	7323	0.7323	528.1134	
8		0	.1		0.001396263	7662	0.7662	548.7504	
8.5		0.10	0625		0.001406027	7862	0.7862	559.1641	
9		0.1	125		0.001415929	7942	0.7942	560.9038	
9.5		0.11	1875		0.001425971	7917	0.7917	555.2006	
10		0.1	125		0.001436157	7824	0.7824	544.7874	

 Table 27: Unconfined Compression Test Results (Trial 7)

TRIAL #08	L=80mm	Area = 1256.637				
Deformation ΔL (mm)	Strain ∈=∆L/L	Corrected Area Ac=A/(1- ϵ) m ²	P.R.R	Load P (kN)	Stress	б=Р/А
0	0	0.001256637	0	0	0	
0.25	0.003125	0.001260576	150	0.015	11.89932	
0.5	0.00625	0.00126454	198	0.0198	15.65786	
0.75	0.009375	0.001268529	254	0.0254	20.02318	
1	0.0125	0.001272544	298	0.0298	23.41766	
1.25	0.015625	0.001276584	354	0.0354	27.73026	
1.5	0.01875	0.001280649	412	0.0412	32.17118	
1.75	0.021875	0.001284741	564	0.0564	43.89991	
2	0.025	0.001288858	582	0.0582	45.15624	
2.25	0.028125	0.001293003	599	0.0599	46.32628	
2.5	0.03125	0.001297174	643	0.0643	49.56931	
2.75	0.034375	0.001301372	712	0.0712	54.7115	
3	0.0375	0.001305597	784	0.0784	60.04916	
3.25	0.040625	0.00130985	853	0.0853	65.12198	
3.5	0.04375	0.00131413	921	0.0921	70.08438	
4	0.05	0.001322776	1012	0.1012	76.50578	
4.5	0.05625	0.001331536	1267	0.1267	95.15327	
5	0.0625	0.001340413	1643	0.1643	122.5742	
5.5	0.06875	0.001349409	1987	0.1987	147.2497	
6	0.075	0.001358526	2765	0.2765	203.5293	
6.5	0.08125	0.001367768	3525	0.3525	257.7191	
7	0.0875	0.001377136	4258	0.4258	309.1923	
7.5	0.09375	0.001386634	4789	0.4789	345.3687	
8	0.1	0.001396263	5156	0.5156	369.2713	
8.5	0.10625	0.001406027	6842	0.6842	486.6192	
9	0.1125	0.001415929	7123	0.7123	503.0619	
9.5	0.11875	0.001425971	7205	0.7205	505.2697	
10	0.125	0.001436157	7927	0.7927	551.9593	
10.5	0.13125	0.001446489	7653	0.7653	529.0743	
11	0.1375	0.00145697	7421	0.7421	509.3446	
11.5	0.14375	0.001467605	7212	0.7212	491.4128	
12	0.15	0.001478396	7119	0.7119	481.5352	

 Table 28: Unconfined Compression Test Results (Trial 8)

TRIAL #09	L=80mm	Area =	1256.637				
Deformation ΔL (mm)	Strain ∈=ΔL/L	Correcte	d Area Ac=A/(1-∈) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0	0		0.001256637	0	0	0	
0.25	0.003125		0.001260576	145	0.0145	11.50268	
0.5	0.00625		0.00126454	212	0.0212	16.76498	
0.75	0.009375		0.001268529	270	0.027	21.28449	
1	0.0125		0.001272544	313	0.0313	24.5964	
1.25	0.015625		0.001276584	367	0.0367	28.74861	
1.5	0.01875		0.001280649	434	0.0434	33.88906	
1.75	0.021875		0.001284741	564	0.0564	43.89991	
2	0.025		0.001288858	590	0.059	45.77694	
2.25	0.028125		0.001293003	643	0.0643	49.72921	
2.5	0.03125		0.001297174	692	0.0692	53.34675	
2.75	0.034375		0.001301372	745	0.0745	57.24729	
3	0.0375		0.001305597	794	0.0794	60.8151	
3.25	0.040625		0.00130985	856	0.0856	65.35101	
3.5	0.04375		0.00131413	928	0.0928	70.61705	
4	0.05		0.001322776	1012	0.1012	76.50578	
4.5	0.05625		0.001331536	1269	0.1269	95.30348	
5	0.0625		0.001340413	1345	0.1345	100.3422	
5.5	0.06875		0.001349409	1512	0.1512	112.0491	
6	0.075		0.001358526	1789	0.1789	131.6868	
6.5	0.08125		0.001367768	2459	0.2459	179.7819	
7	0.0875		0.001377136	3589	0.3589	260.6132	
7.5	0.09375		0.001386634	4567	0.4567	329.3587	
8	0.1		0.001396263	5349	0.5349	383.0939	
8.5	0.10625		0.001406027	6290	0.629	447.3597	
9	0.1125		0.001415929	7156	0.7156	505.3926	
9.5	0.11875		0.001425971	7481	0.7481	524.625	
10	0.125		0.001436157	7934	0.7934	552.4467	
10.5	0.13125		0.001446489	7610	0.761	526.1016	
11	0.1375		0.00145697	7290	0.729	500.3533	
11.5	0.14375		0.001467605	6892	0.6892	469.6086	

 Table 29: Unconfined Compression Test Results (Trial 9)

TRIAL #10	L=80mm	Area =	1256.637				
Deformation ΔL (mm) Strain $\epsilon=\Delta L/L$	Correcte	ed Area Ac=A/(1-ε) m^2	P.R.R	Load P (kN)	Stress	б=Р/А
0	0		0.001256637	0	0	0	
0.25	0.003125		0.001260576	175	0.0175	13.88254	
0.5	0.00625		0.00126454	214	0.0214	16.92314	
0.75	0.009375		0.001268529	256	0.0256	20.18085	
1	0.0125		0.001272544	309	0.0309	24.28207	
1.25	0.015625		0.001276584	376	0.0376	29.45361	
1.5	0.01875		0.001280649	412	0.0412	32.17118	
1.75	0.021875		0.001284741	578	0.0578	44.98962	
2	0.025		0.001288858	606	0.0606	47.01835	
2.25	0.028125		0.001293003	647	0.0647	50.03857	
2.5	0.03125		0.001297174	710	0.071	54.73438	
2.75	0.034375		0.001301372	779	0.0779	59.85992	
3	0.0375		0.001305597	824	0.0824	63.1129	
3.25	0.040625		0.00130985	898	0.0898	68.55749	
3.5	0.04375		0.00131413	934	0.0934	71.07363	
4	0.05		0.001322776	1015	0.1015	76.73258	
4.5	0.05625		0.001331536	1190	0.119	89.37048	
5	0.0625		0.001340413	1379	0.1379	102.8788	
5.5	0.06875		0.001349409	1589	0.1589	117.7553	
6	0.075		0.001358526	1799	0.1799	132.4229	
6.5	0.08125		0.001367768	1989	0.1989	145.4194	
7	0.0875		0.001377136	2698	0.2698	195.9138	
7.5	0.09375		0.001386634	3570	0.357	257.458	
8	0.1		0.001396263	4589	0.4589	328.6629	
8.5	0.10625		0.001406027	5674	0.5674	403.5483	
9	0.1125		0.001415929	6870	0.687	485.1938	
9.5	0.11875		0.001425971	7304	0.7304	512.2124	
10	0.125		0.001436157	7814	0.7814	544.0911	
10.5	0.13125		0.001446489	7543	0.7543	521.4697	
11	0.1375		0.00145697	7256	0.7256	498.0197	
11.5	0.14375		0.001467605	6790	0.679	462.6585	

 Table 30: Unconfined Compression Test Results (Trial 10)

Fig 77: Plot of Stress VS Deformation (Trial 1)

Fig 78: Plot of Stress VS Deformation (Trial 2)

Fig 79: Plot of Stress VS Deformation (Trial 3)

Fig 80: Plot of Stress VS Deformation (Trial 4)

Fig 81: Plot of Stress VS Deformation (Trial 5)

Fig 82: Plot of Stress VS Deformation (Trial 6)

Fig 83: Plot of Stress VS Deformation (Trial 7)

Fig 84: Plot of Stress VS Deformation (Trial 8)

Fig 85: Plot of Stress VS Deformation (Trial 9)

Fig 86: Plot of Stress VS Deformation (Trial 10)

CHAPTER 8

DISCUSSION ON RESULTS

We carried out the testing on NUST clay and Jhelum sand sample. We compared the results obtained using our centrifuge machine with those of the triaxial testing machine and those from the Direct shear test machine.

We have obtained the results in the form of Cohesion coefficient and plotted a graphical comparison of the C values obtained from all these testing procedures. Following figure shows the comparison graph of the values obtained from all these tests.

In the above graph we have developed the ranges for the C values on the basis of the areas of the cluster formation by the values obtained by doing multiple trials of testing. Neglecting the anomalous values, we have plotted this graph.

Now the difference between the C values obtained from all these tests show quite a difference. The main reason for the difference between these values is the presence of variable testing conditions in all these tests, difference in the testing mechanisms, degrees of saturation of the samples, densities of the samples and certain other parameters.

CHAPTER 9

CONCLUSIONS & RECOMMENDATIONS

9.1 Conclusions

1. ELIMINATION OF ECCENTRICITY

Eccentricity was eliminated by aligning the center of rotation that is the motor that provides the rotational force with the center of gravity of mass that is the cylinder that is being rotated by the motor and that carries the soil sample in it.

2. MACHINE STABILITY STUDY

Machine stability study was carried out using the principles of Structural Dynamics and it showed that the foundation is sufficient for the stable operation and no damping system is required.

3. DESIRED SAMPLES

Geotechnical Centrifuge can be used to acquire the soil samples of desired densities by varying the RPM's of the machine thus simulation of any field conditions has been made quite easily possible in the machine.

4. TIME EFFICIENCY

Observing the saturation process that we have carried out in the centrifuge and the time that it has taken we can clearly state that the centrifuge has enabled time efficient saturation and has made it quite easy to saturate the sample in very less time that takes a lot of time in the triaxial testing apparatus.

5. FAILURE IDENTIFICATION

We had devised an efficient loading mechanism in accordance with our centrifuge that had enabled us to change the loading conditions even during the fast-rotational motion of the machine but due to the unavailability of any failure identification mechanism we shifted the shearing stage of the centrifuge to the Direct Shear Test.

9.2 Recommendations

- The most important variable parameter in our centrifuge is the rotations of the motor that is the rotational force of our centrifuge. We can variate the RPMs of the motor to achieve more accurate results in terms of the density of the soil sample.
- Since we shifted to Direct Shear test to carry out the shearing phase of the centrifuge testing because of the absence of any failure identification method. Thus, working on a failure identification mechanism will enhance the capability of our centrifuge.
- To cope with the errors and uncertainties in the obtained results due to the presence of any vibrations, moisture content, saturation etc. correction factors must be worked out to make the results more accurate and eventually make the machine more accurate.
- Liquefaction potential of sand could also be modelled on this custom Centrifuge apparatus since the rotational motion provided by this machine is quite enough to produce earth quake like effects thus liquefaction potential of sand could easily be simulated on this machine.

APPENDIX

NOTATIONS

- C' Drained Cohesion of Sand
- Φ Angle of Friction of Soil
- Su Undrained Cohesion of Sand
- q_{u} Unconfined Compressive Strength of Soil
- k Hydraulic Conductivity of Soil
- e Void Ratio
- n Porosity
- γ Unit Weight of Soil
- Gs Specific Gravity

REFERENCES

Kimura, T., 1998. Development of geotechnical centrifuge in Japan. Proc. Centrifuge, Tokyo, Pre-print Volume, p.23-32

C. Ng, 'The state-of-the-art centrifuge modelling of geotechnical problems at HKUST', Journal of Zhejiang University SCIENCE A, vol. 15, no. 1, pp. 1-21, 2014

D. Kim, N. Kim, Y. Choo and G. Cho, 'A newly developed state-of- the-art geotechnical centrifuge in Korea', KSCE Journal of Civil Engineering, vol. 17, no. 1, pp. 77-84, 2012

13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2497

T. Kimura, Geotechnical centrifuge model testing. Japanese Society of Soil Mechanics and Foundation Engineering,1984

Ko, H.Y., 1988. Summary of the state-of-the-art in centrifuge model testing. Centrifuge in Soil Mechanics, p.11-28

Jung Joo Kim, 2017. Prediction of settlement trough due to TBM tunnelling with an emphasis on groundwater depression based on centrifuge model tests and numerical analysis