UTILIZATION OF WASTE CARBON DIOXIDE FOR THE PRODUCTION OF DIFFERENT USEFUL CHEMICALS

A Thesis Submitted to the Department of Chemical Engineering, School of Chemical and Materials Engineering(SCME),NUST, Islamabad, in the partial fulfillment of the requirements for the degree of

Masters of Science (MS)

In

Energetic Materials Engineering

Submitted by

Hizba Waheed

Supervisor Dr. Arshad Hussain

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology (NUST)

H-12 Campus Islamabad

2012

Declaration

I Hizba Waheed, hereby declare that I have produced the work presented in this thesis, during the scheduled period of study. I also declare that I have not taken any material from any source except referred to wherever due. If a violation of HEC rules on research has occurred in this thesis, I shall be liable to punishable action under the plagiarism rules of the HEC.

Date: _____

Signature of the student

(Hizba Waheed)

(2010-NUST-MS PhD-EM-E-14)

Certificate

It is certified that Hizba Waheed has carried out all the work related to this thesis under my supervision at the School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST).

Supervisor

Prof. Dr. Arshad Hussain

SCME (NUST)

In the name of Allah, The most Gracious, Most Compassionate

Our Lord!

Grant us good in this world and good in the life to come and keep us safe from the torment of fire. (2:201) Dedicated to,

My dearest family; respected Grandfather (Late), loving parents, and my siblings

Abstract:

In the modern world, the major dilemma that the world is facing is of Global warming. This concern is because of constantly increasing concentrations of green house gases in the environment. CO_2 is the main constituent of green house gases and is being emitted continuously from industries. Its emission through various sources including power plants and industrial sources like cement industries is contributing excessively in increasing the CO_2 atmospheric loading. This is resulting in gradual increase of average earth's temperature. According to latest research reports, it is forecasted that in developing countries the emission of CO_2 is expected to grow rapidly in next 15 years and would surpass emission of industrialized countries near 2018. Now such methods and techniques are needed that will contribute positively to either reduce the CO_2 atmospheric loading or utilize the produced CO_2 for some reproductive purpose. The CO_2 after formation in different industries and other sources should not be released into the atmosphere rather it can be captured and can be used for other constructive applications.

Here, in this work the captured CO_2 from different sources including power plant, cement industry etc is converted into useful chemicals that are being used in different industries and house hold activities. The gaseous CO_2 is made to react with freshly prepared CH_3MgBr (methyl magnesium bromide) to form acetic acid (CH_3COOH) at ambient temperature and pressure conditions. Iodine crystals were used as catalyst as well as it improves the activation of magnesium turnings. Next, the produced acetic acid is reduced by using reducing characteristics of NaBH₄ in combination with other chemical compounds like iodine (I_2) and hafnium tetrachloride ($HfCI_4$). There are other reducing agents with better reducing abilities like Lithium aluminum hydride (LiAlH₄) but NaBH₄ is easily available, cheap and has effective reducing qualities. The produced acetic acid and ethanol can separately be used as beneficial chemical compounds.

Acknowledgements:

All praise and thanks to almighty Allah who gives us the sagacity, consciousness and power to analyze and resolve the tribulations. I owe great many thanks to him for providing me the courage and skill to accomplish this daunting and promising goal.

I salute my parents who made their best to make us understand the meanings of moral value and difference between right and wrong in this materialistic world.

It is an honor for me to work under the incredible supervision of Dr. Arshad Hussain. I really oblige and recognize the involvement and sincere efforts made by him for this project. During this work his valuable and worthy guidelines and support always help a lot to tackle the problems. His continual encouragement was the source of immense confidence for me to overcome the difficulties and proceed further.

I owe my deepest gratitude to Dr Habib Nasir for his knowledge and support throughout this project work. Without any doubt, this thesis was made possible due to the masterly guidance of him.

Last but not the least I would like to pay my gratitude to my family, friends and staff of SCME, especially Laboratory Assistant sir Noor-ul-Afsar for his support and cooperation during my research period.

Hizba Waheed

Contents

Abbreviation

List of Tables

List of Figures

Abstract

Acknowledgment

Chapter 1

Introduction	1
1.1 Background	2
1.2 Carbon Dioxide Emission	2
1.3 The Accumulation of CO_2 in the Atmosphere and	
the Effects that We Fear	4
1.4 Green House Effect	5
1.5 Green House Gases	6
1.6 Carbon dioxide Capturing Technologies	7
1.6.1 Pre-combustion capture	8
1.6.2 Oxy-fuel combustion capture	10
1.6.3 Post combustion capture	11
1.7 Utilization of Carbon dioxide	12

Chapter 2

Literature review

2.1 Synthesis of fuels, intermediates and different fine chemicals		17
2.2 Synthesis of various chemical compounds using CO ₂		18
2.2.1 Synthesis of Methanol	18	
2.2.2 Formic acid synthesis from CO ₂ hydrogenation		21
2.3 Conversion of Carbon dioxide to valuable petrochemicals		21
2.3.1 Steam electrolyser for the joint electro-reduction of CO_2 and CO		
For the production of hydrocarbons		22
2.4 Photo electrochemical approach for the chemical recycling of CO_2		
to fuels		22
2.4.1 Structure		23
2.4.2 Working		23
2.5 Grignard's Reaction		24
2.5.1 Grignard's Reagent		24
2.5.2 Reaction mechanism		24
2.5.3 Preparation of Grignard's Reagent		24
2.5.4 Reaction Conditions		25
2.5.5 The organic halides		25
2.5.6 Magnesium		25
2.5.7 Solvent		26
2.6 Applications of Grignard's Reagent		26
2.6.1 General Applications		27
2.7 Reduction of Carboxylic Acids		27
2.7.1 Reduction Reaction		27
2.7.2 Carboxylic Acids		27
2.7.3 Reduction of Carboxylic acids		28

16

2.7.4 Mechanism of Reduction Reaction	28
2.7.5 Reducing Agents	2
Chapter 3	33
Experimentation	
3.1 Grignard's Reagent (RMgX) Preparation	34
3.1.1 Dry/Anhydrous Diethyl ether preparation	34
3.1.2 Mechanical activation of Magnesium turnings	36
3.1.3 Preparation of Grignard's Reagent	38
3.2 Utilization of gaseous Carbon dioxide for the	
Production of Acetic acid	40
3.3 Working up for the final product	41
3.4 Reduction of Acetic acid to produce Ethanol	42
3.4.1 Reduction of acetic acid using Sodium Borohydride	
(NaBH ₄) with an electrophile I ₂	42
3.4.2 Reduction of acetic acid using Sodium Borohydride	
(NaBH ₄) and Hafnium tetrachloride (HfCl ₄) under	
Mild conditions	43
Chapter 4	46
Analytical Techniques	
4.1 High Performance Liquid Chromatography (HPLC)	47
4.1.1 Principle of HPLC	48
4.1.2 Types of HPLC	49
4.1.3 Construction and working of HPLC	50
4.1.4 Mobile phases for HPLC	52

4.1.5 Stationary phases for HPLC	53
4.1.6 Detectors for HPLC	54
4.1.7 Experimental Analysis	55
4.1.8 Parameters Utilized	55
4.2 Fourier Transform Infra-Red Spectroscopy (FT-IR)	55
4.2.1 Sample Analysis Process	56
4.2.2 Experimental Analysis	58

Chapter 560Results and Discussions615.1 High Performance Liquid Chromatography (HPLC) Analysis615.2 Fourier Transform Infra-red Spectroscopy, FT-IR635.2.1 Acetic acid645.2.2 Ethanol66Conclusion70

Abbreviations

THF:	Tetra Hydrofuran
HPLC:	High Performance Liquid Chromatography
FT-IR:	Fourier Transform Infrared Spectroscopy
R':	Alkyl Radical
C:	Carbon
Mg:	Magnesium
RMgX:	Alkyl Magnesium Halide
CO ₂ :	Carbon dioxide
ppm:	Part per million
pH:	Power of hydrogen ion dissociation

List of Tables

Table 1.1 Table showing the contribution of main Green House Gases	7
Table 4.1 Example of some HPLC column types and their	
Operational interactions	48
Table 4.2 List of some mobile phases for HPLC	53
Table 4.3 Stationary phases for HPLC and their applications	53
Table 4.4 HPLC detectors	54
Table 5.1 Parameters of acetic acid analysis by HPLC	62
Table 5.2 Table showing the absorption frequencies of identifying	
bands for acetic acid	65
Table 5.3 Identifying frequencies for Ethanol	67

List of Figures

Figure 1.1 The steady increase in CO ₂ concentration in recent years	3
Figure 1.2 Carbon dioxide's emission through fossil fuel and other	3
resources	
Figure 1.3 The origin of emission of CO ₂	4
Figure 1.4 Variation of temperature of earth during last millennium	5
Figure 1.5 Green House Effect	6
Figure 1.6 Pre-combustion capturing of Carbon dioxide	9
Figure 1.7 Oxy-fuel combustion capturing of Carbon dioxide	10
Figure 1.8 Post-combustion capturing of Carbon dioxide	12
Figure 1.9 Different pathways for utilizing CO ₂	14
Figure 2.1 Production of Hydrocarbons using CO ₂	19
Figure 2.2 Uses of Methanol	20
Figure 2.3 Steam Electrolyser	22
Figure 2.4 Photo-electrochemical recycling of CO ₂	23
Figure 2.5 Tamoxifen Production	26
Figure 2.6 Reaction of Grignard's reagent with different carbonyls	27
Figure 2.7 Probable mechanism of reduction	28
Figure 3.1 Typical vapor pressure chart foe various liquids	35
Figure 3.2 Distillation setup for the production of dry ether	36
Figure 3.3 Activated magnesium turnings	37
Figure 3.4 Magnesium turnings placed in the reaction tube	39
Figure 3.5 Mg turnings covered with anhydrous ether and piece of iodine	39
Figure 3.6 Addition of Methyl Bromide solution	40

40
41
41
48
50
52
54
58
62
63
65
66
67
68
68