STRONGLY INTRUMENTAL GENERIC MOBILITY ARCHITECTURE

NC Misbah Mubarak

PC Sara Sultana

NC Zarrar khan

Submitted to the faculty of Computer Science Department Military College of Signals,
National University of Sciences and Technology, Rawalpindi in partial fulfillment of the
requirements of BE degree in Computer Software Engineering

April 2007

List of figures

1.1: Distributed Paradigm

1.2: Mobility Paradigm

2.1: Code on Demand

2.2: Remote Computation

2.3: Client Server

2.4: Mobile Agent

2.5: The classification of different states

4.1: Instructions handled at the byte code level
4.2: Transforming the byte code

4.3: Working of the rewriters

4.4: Basic Architecture functionality

4.5: Data Flow Diagram at the destination machine
4.6: Basic Component Diagram

4.7: Use Cases

4.8: Sequence Diagram of Strong Mobility
4.9: State Transition Diagram

5.1 Class Diagram of Analyzer

5.2 Translation Process

5.3 Class Diagram of Class File Package

5.4 State Capture

5.5 State Restoration

1 Introduction

10

10

11

11

19

31

33

34

35

37

38

39

40

41

43

44

46

48

50

With the growth of Internet as a primary environment for communication and development
of distributed applications, there is a strong need to change the old design paradigms and to
switch onto the new ones. A global network such as Internet must exploit different forms of
mobility in order to increase its usability and scalability requirements. Mobile agents can be
used to satisfy the scalability needs of the highly dynamic global network. Mobile agents are
autonomous software entities with the capability of dynamically changing their execution
environments in a network aware manner. Mobile agent technology is being promoted as an
emerging paradigm that helps in the design and implementation of more robust and flexible
agents. Mobile agents are preferable over other design paradigms due to certain features
that other paradigms do not provide. These features include disconnected operation,

reduced bandwidth, reduced latency, increased stability and increased sever flexibility.

In case of code mobility, distributed applications move mobile agents while they are
executing. When these mobile agents acquire the capability of resuming their execution
instead of restarting at the destination, they are called strongly mobile agents. Therefore,
Strong mobility is the movement of code, data and execution state of an agent whereas
weak mobility only moves the code and data of the agent. Code of a program consists of
programs whose methods are being executed by the thread. Data consists of the values of
local variables and registers. Thus in case of weak mobility, execution of the agent or the

object restarts on the destination.

Java has accelerated the use of transportable code over the internet. It provides many
impressive features for distributed computing like serialization, dynamic class loading

Appendix A

An approach to ontological interoperability

Misbah Mubarak®, Sara Sultand®, Zarrar Khan®

Hajra Batool Asghar’, H. Farooq Ahmad®, Fakhra Jabeen'

1Computer Science Department, MCS, National University of Sciences and Technology (NUST)

’Communication Technologies, 2-15-28 Omachi Aoba-ku, Sendai, Japan

hajra-mcs@nust.edu.pk, fakhra@niit.edu.pk

Abstract

(MAS) have gained
importance in recent years due to the numerous
advantages they provide for the field of
distributed computing. Agents in MAS have

Multiagent systems

specific collective goals to accomplish. In order
to achieve these goals agents need to have a
meaningful communication. This can be
achieved through the use of common shared
vocabulary. A more formal term used for this
vocabulary is ‘Ontology’. While using ontologies,
there are different problems that can be
encountered. For example, if an agent from one
domain having an ontology wants to
communicate with an agent in another domain
having a different ontology the problem of
interoperability arises. Our paper focuses on the
problem of interoperability among different

ontologies.

Key words: ontology, Knowledge Base, Multi

Agent system, First Order Logic, ontology
merging, ontology = mapping, ontology
integration.

1- INTRODUCTION

Ontologies define the vocabulary of a
specific domain in terms of its concepts,
For the
entities of a domain to have a shared

terms and their relationships.

understanding of certain concepts, a
common ontology is required. Ontology has
the added benefit of

semantics of a domain independent of its

capturing the

representation. [1, 12]

Today,
information sources are widely distributed.

heterogeneous and independent
With the advent of semantic web and other
services, there is a stringent need for
data
sources. Ontologies, being an explicit and

interoperability among various
formal specification of data, help in finding
correspondence between different data
sources [2]. Ontological interoperability
with

ontologies from different domains. When

problem arises when dealing
there are two domains having different
ontologies following two conflicts can

usually occur

e Homonym terms; i.e. terms having

same names but different
semantics/meaning.
AND
e Synonym terms; i.e. different

names for semantically same terms

Three possible solutions have been

presented to the problem [2]

1. Ontologies can be standardized.

2. Mediation between ontologies can
be done.

3. Ontologies can be merged.

Initially, the solution presented to the
problem was the standardization of
ontologies. However, it is very hard to
standardize ontologies. When talking about
standardization

a single organization,

requires a lot of changes within that
organization. It requires consensus among
the group of people within the organization.
Across organizations, the group of people
involved in the decision expands and they
reach thus

all need to consensus,

aggregating the problem still further.

A better solution to the problem is to
include a mediator or any third party agent
between the two ontologies. The role of
mediator is to bridge the differences
between the ontologies. This can be done
through the ‘mapping’ process. Mapping
is used to identify and eliminate the
differences between two source ontologies.
In the mapping process any conflicting term
in one ontology, is expressed using the
corresponding conflicting term in the other
ontology. The mediator must be able to
identify synonym and homonym terms. It
must then perform a mapping so that the

conflicts are resolved.

One form of ontological mapping is
merging. In merging a new ontology is
formed by combining the existing
ontologies. The old ontologies are then
replaced by the new ones. However this
produces the overhead of replacements.
Moreover it may create dangling references
to the old ontologies. In our paper we have
focused on the approach of mediation

between ontologies.

There are various ways in which ontology
can be represented. In our paper we have
chosen First Order Logic (FOL) as it is more
expressive and simple [5]. It is built on the
top of propositional logic which is a
declarative, compositional semantics that is
context independent and unambiguous.
FOL also borrows representational ideas
from natural languages while avoiding their
drawbacks of ambiguity. It is a powerful
tool for knowledge representation and
reasoning. Being mathematical and formal,
FOL notation presents the most suitable
means to

represent ontologies

unambiguously. Moreover, others
ontologies have an inherent self-learning
characteristic which enable them to grow
dynamically. They use axioms and reasoning
mechanism to infer new concepts from the

existing ones [3, 4].

The rest of the paper is organized as
follows. Section 2 describes the related
work. Section 3 presents our approach and
Section 4

explains an example to

demonstrate the application of our
approach. Conclusion and directions for

future work are given in Section 5.

2- RELATED WORK

There are various ways in which agents in
MultiAgent (MAS)
communicate with agents having different

a certain System

ontologies outside the MAS.

In [6, 13], a similar approach is proposed
which consists of an agent that can learn to
improve its ontology in two ways and thus
communicate with agents having different
ontologies. First, users can teach them by
supplying a list of words and the classifying
concepts for that list. Second, an agent can

learn through interactions with its neighbors
by applying K nearest neighbor algorithm.
As a result, each agent learns its own
concepts based on its experiences and
specialties. Whenever a new concept arrives,
the agent needs to incorporate it into its
dictionary. Learning can be incremental in
which concepts are refined on a new
submission, or it can be collaborative i.e.
refining translation table whenever there is a
query that prompts the agent seeks for help
from its neighbors. When an agent receives
a query, it checks it against its ontology
knowledge base. For relaying the messages
to the agents, a central controller may be
used. However, when all the agents want to
communicate with their neighbor, there is a
chance of bottle neck. Our approach
eliminates any chances of such performance
bottlenecks. Moreover, if an agent
encounters a synonym term it may not learn
it under the assumption that it already has
that concept. We provide a mechanism in
our proposal that ensures to provide correct
interpretations under naming conflicts.

In [2], for the integration of ontologies
three different approaches have been
analyzed. One of them is ontology mapping.

In case of ontology mapping,

e Similarities are found between the
two source ontologies that are to
be mapped. The Match operator
performs this functionality in many
systems.

e Once the similarities have been
found, the mappings between the
ontologies need to be specified.

For mapping ontologies there are two
options. First is of ‘one to one ontology
mapping’. In this case mappings are created
between any two ontologies. This approach
lacks efficiency since the complexity of this
approach is O (n%) where n is the number of
ontologies. The second option is to use a
similar to the

global ontology. It's

standardization of ontologies as mentioned

in previous section and has got the same
drawbacks. Our approach eliminates the
use of a central repository for storing
ontologies.

Another
proposes wrappers and mediators based

approach described in [7]

architecture. The mediator mediates

between the differences among the

individual data sources. A wrapper is
attached with every single data source to
resolve the representation differences.
There can be several mediators in case of
one to one mapping of ontologies.
However, this approach can be inefficient
as the large number of mappings that may
be stored in the mediator. Our approach
eliminates the problem of such a large
number of mappings as discussed in Section

3.

An approach for ontology merging is
presented in [8]. In this approach the
source ontologies are mapped onto single

target ontology. There can be two options

e The source ontologies disappear
and the target (merged) ontology
exists.

OR

e Source ontologies exist along with
mappings to the target or merged
ontology.

The approach of merging ontology creates

the overhead of replacement of the old
ontologies with the new one.

In [9] an architecture for mapping
distributed ontologies in semantic web has
been proposed. The architecture is called
MAFRA

distributed ontologies). It is divided into five

(MApping FRAmework for
modules. The first is ‘lift and normalization’
module which makes a single uniform
representation for ontologies. Second is
‘similarities’ module which calculates the

similarities between the ontologies. The
third module is ‘Semantic Bridging’. It
semantically relates source entities to
target entities. Then is the ‘Execution’
which

transformation from source ontology into

module actually carries out
target ontology using the information from
the previous modules. Last is the ‘post
processing’ module which analyzes the
results in order to improve its quality for
MAFRA

architecture, the intervention of an expert

subsequent versions. In the

during the ‘execution’ module is necessary.

In [11] the approach of enriched
conceptual mode is used. In order to use
the enriched conceptual model knowledge
engineers have to provide more details
about the concepts which requires a lot of
human intervention. By adding information
on the concepts it is able to measure better
the similarity between them (Synonym
terms), to disambiguate between concepts
that seem similar while they are not
(Homonym terms). The aim is not to build a
new knowledge model for ontologies but to
support a semantically enriched description
of attributes when defining concepts in
ontologies. A disadvantage of this
approach is that it cannot handle structural
problems. Our approach will solve the
problems related to structural conflicts as
well as the large number of facts that would
need to be resolved.

3- OUR APPROACH

Our approach focuses on distributed
ontology deployment in MAS where each
agent may have a separate ontology of its
own (totally

partitioned ontology

deployment).

3.1 Architecture

The major components of our

architecture are as follows.

e There is a separate ontology of
every agent that is stored in a
repository along with the agent.

e There is a shared and central
ontological repository, but unlike
other approaches its task is not to
store the complete ontologies of all
agents in it. Rather, it only stores
the mapping and merging axioms
between all the Ontologies of
different agents.

e A rational agent is attached with
this central repository [10]. The
properties of this rational agent are
given Table 1.The reason for
choosing a rational agent is its
ability to learn reason and acquire
concepts. These characteristics are
required in our architecture.

3.2 Working of the architecture

Our approach is divided into two phases.

e Handshaking phase
e Learning/integration phase
The handshaking phase starts with an agent

from another world (MAS) say the invoker
agent that starts the communication by
invoking the rational agent in our MAS to
inquire about the concept it wants. Once
the communication is initiated, our rational
agent performs two tasks.

1. It consults the global repository and
selects the agent whose ontology has the
concept required by the external invoker
agent.

2. It then directs the invoker agent to the
selected agent present in our MAS.

This completes the handshaking phase.

In the
integration both agents are allowed to

second phase of learning/
communicate with one another. The agents
learn the concepts that are different. This
can be done using the concept learning
algorithm of machine learning [6, 13]. In
this concept learning task, there is no
intermediate rational agent required.
Ontologies are then shared; the mapping is
acquired from the repository whenever
required in the concept learning process.
The agent who wants to learn may present
some examples that it thinks will fit in the
concept [6]. If it wants to confirm that the
concept is right, it may take help from the
other agents by voting. Since mapping of all
concepts is present, the semantic conflicts
will be avoided. Based on the mutual
classification of positive and negative
examples the learning agent will decide

about the classification of the concept.

Solution of homonym and synonym
terms

The rational agent solves the conflicting
concepts by taking homonym concepts and
applies automated reasoning [4] to these
concepts. It applies certain examples to the
their
implications are the same. If it is not the

concepts and determines if

same, then the rational agent constructs
the bridging axiom and saves it in the global

repository for the pair of conflicting
concepts.
Similarly, when the rational agent

encounters a synonym concept, it applies

the same inference procedure to the

concepts and determines if the implication
is the same despite of different names. If
yes, it maps the two concepts, makes the
bridging axiom, stores it in the global
repository and thus resolves the conflicts.

2. What is
concept *A'?

Figure 1: the design model

Performance of the system

If the number of concepts is very large,
then many agents may be deployed. The
social goals of a rational agent are
competition, cooperation and negotiation.
Therefore a small team of rational agents
can manage this task of mapping concepts.
The mapping of ontologies and the bridging
axioms are kept in the central repository.
For reliability purposes, and to avoid the
of the

Since the

bottle neck, replicated copies

repository can be created.
repository only holds mappings, therefore
the replication will not involve large amount
of memory. The existing ontologies are kept
up to date which resolves the issue of

inconsistency in the ontologies.

This approach solves many problems

highlighted in the previous approaches.
There is an automated reasoning system
which human

requires minimum

intervention. Bottle neck is not created as
there is no central heavy repository which is
being accessed by all agents. Replication is
also done which will not occupy much of
the memory space. The semantic conflicts
are also avoided. An intermediate rational
agent is required only in the initial phases.
Later on communication is carried out
without this intermediate agent.

The semantic conflicts are also avoided. An
intermediate rational agent is required only
in the phases.
communication is carried out without this

initial Later on

intermediate agent.

3.5 Evaluation against software quality
parameters

Reasons are

e The ontological mapping s
performed by a rational agent who
is faster than a mediator. A
mediator is only an object, whereas
the rational agent not only
performs the role of an object but it
has also got many additional
properties associated with it [10]

e The rational agent performs its
tasks in the initial phases of
communication whereas a mediator

4- EXAMPLE ILLUSTRATING OUR
APPROACH

To illustrate our approach we present an
example demonstrating the working of our
ontology. Initially the design model is as
given in the Figure2.

is required through out the
communication according to the
architecture proposed in [7]. The
overhead of indirect
communication which introduces
delay in the system is thus

eliminated.
[mitiste S
Costnanication -
l I
Contact the rational || Voker
agent apgent
! —
Consult the global || Rational
repos ¥ agemt
pository
L I e
Find A gent with . Rational
recuazred concept ¥l agent
Ferform mapping o
y tiomal
between invoker et I
agent and movoked ge!

agent’s ontology

y

Allow the agents o
coftEnrdeats
withonst any

Tevoked
intermediate agent agenl

Figure 2: Working of the architecture

The system is reliable as there can be
many copies of the same rational agent
without the need for heavy replication. A
single point of failure will not affect the
system.

Head

Bady

Lgent "B 1| Hair

Hurmans

Figure 3: ontology of two different Agents ‘A’ and ‘B’

First of all, we need to make a Knowledge
Base (KB) of agents.

The FOL
mentioned

above
different

expression for the
agents
ontologies will be as follows:

having

For Agent ‘A’, the
comprising of FOL expressions will become:

knowledge base

For all (X, vy, 2)

1- Man(x) ™ hands(y) »
belongsTo(y,x)~> Human(x)

2- Woman(x) ~ hands(y)
belongsTo(y,x)-> Human(x)

3- Man(x) ™ Legs(y)
belongTo(y,x)~> Human(x)

4- Woman(x) ~ Legs(y)
belongTo(y,x)~> Human(x)

5- Man(x) ™ Head(y)
belongTo(y,x)~> Human(x)

6- Woman(x) ™ Head(y) ™
belongTo(y,x)~> Human(x)

7- Man(x) ™ Body(y)
belongTo(y,x)~> Human(x)

8- Woman(x) ~ Body(y) ~
belongTo(y,x)~> Human(x)

9- Man(x) or Woman(x) =
Human (x)

10-Fingers (x) ™ total (Xx,5)
N palm(y) © attached(x,y)
~ belongsTo(y,z) - Hand(z)

11-Total (z,2)> Hands (2)

12-Fingers(x) ™ total (x, 5)
N palm(y) ™ attached(x, y) ©
belongsTo(y,z) = Leg(2)

13-Hands(x) ™ Legs(y) ©
attached(x,z) » attached(y,z)
- Body(z)

14-Body(x) ~ attached(x, z) ©
round (z) > Head (2)

The KB of Agent ‘B’ is
For all x, y, z

1- Hair(x)”belongsTo(x,z)"
round(z) - head(z)

2- Eyes(xX) ™ Total (x,2) ©
belongsTo (x,z) ™ round(z) -
head(z)

3- Nose(x) ™ Total (x,1) »
belongsTo (x,z) ™ round(z) -
head(z2)

4- (Straight(x) or curly(x))
~ (color(x, brown) or
color(x, golden) or color(x,
black)) ~ belongsTo (x,z) "~
round(z) -2 hair(x)

5- Spherical(xX) ™ Total(x,2)
- Eyes(x)

6- ColorOf(x, skin) ™ Long
(x) ™ belongsTo(x, face) -
Nose(x)

7- Fingers(x) ™ total (x, 5)
N palm(y) ™ attached(x, y) ©
belongsTo(x,z) "
belongsTo(y,z) 2> Leg(2)

10- Fingers (xX) ™ total (X%,5)
N palm(y) ~ attached(x,y) »
belongsTo(x,z) »
belongsTo(y,z) - Hand(z)

11- Total (z,2)> Hands (2)

12 — Long(x) ™ attached(x,
hands) 2> arms(x)

13- Has(x, head) - Human(x)

14- Has(x, body) -> Human(x)

The ontology has been defined. Now it

needs to be designed and implemented.

The deployment of ontologies is done
using a hybrid approach which is shown in

Figure 5.
e __‘_‘——-.____\H
Omtological BMapping
and Merging Axioms j)
_______\—_'___'_'_'_'_,_,.,-ﬂ'

VD
M - S/
i T

L

Figure 4: a hybrid ontology approach [8]

This approach is distributed; however there
is a central, replicated ontological mapping.

Now comes the next phase, where the
conflicts are resolved. Here, the ontologies
are merged using bridging axioms. Agent ‘A’
wants to learn about the concept ‘Arms’
which is not present in its ontology. It does

the following steps

e |t contacts the rational agent asking

for the concept ‘arms’.

e The rational agent checks the
global repository if any of the

mappings of this concept

present. It finds that Agent ‘B’ has

the required concept.

e Now the rational agent will check
the concepts and will create certain
bridging axioms. In this example,
there are three conflicting concepts
that need to be considered. These
concepts are ‘human’, ‘legs’ and
‘hands’.

Given below are the bridging axioms that

will be used to demonstrate how the agent
distinguishes between the hyponym
concepts.

Let the domain of Agent ‘A’ be domA and
let Agent B’s domain be domB.

For all w, x, y, z

1-(((Man(x) or woman(x))
domain (domA, x)) or (
Head (z) * Body (y) © Belongs
to(z,x) * BelongsTo (y, x)

) 2 Human (x)

2-(((Man(x) * BelongsTo (y,x)
* Long(y) © Total(y,2) *
attached(y,z) * feet(z)
domainOf (domZ, y)) or ((
Woman (x) * BelongsTo (y,x)
Long(y) * Total(y,2) *
attached(y,z) * feet(z)
domain (domA, y) or (
(Long (y) * Total (y,2)
attached(y,z) *
attached (y,w) * Body (w)

feet (z) * domainOf (domB, y))
2> Legs(y))

A
A
A

A

3- - ((Man(w) * Fingers (x)
* total (x,5) * palm(y) *

attached (x,vy)
belongsTo (x, w)
belongsTo(y,w)” domain (domA,

A

A

w) or (Fingers (x) total
(x,5) * palm(y)

attached (x,y) *
belongsTo(x,w) *
belongsTo(y,w) * domain

(domA, w)) or (Fingers (x)
* total (x,5) * palm(y) *

attached(x,y
belongsTo (x, w)
belongsTo (y,w))—> Hand (w)

)
) A

A

The term ‘human’ is interpreted as a
‘man’ or a ‘woman’ in domA whereas in
domB, it refers to ‘head’ and ‘body’. So
there is an axiom that tells that in domaA, if
there’s a ‘man’ or a ‘woman’, then it refers
to ‘human’ and in domB, if there is a ‘head’
and ‘body’, it is also ‘human’. Same is the
case for ‘hand’ and ‘legs’. In this way, the
rational agent resolves the conflicts.

Once the rational agent is done with the
mapping and merging, it stores the above
three axioms in the global ontological
repository. Now, the two agents (Agent ‘A’
and Agent ’'B’) can communicate directly
with each other without the help of rational
agent. Agent ‘B’ becomes the teaching
agent because its ontology contains the
desired concept and Agent ‘A’ is the
learning agent. Agent ‘B’ will present it
concept of the axiom ‘arm’ to Agent ‘A’
Agent ‘A’ will store that axiom in its local
repository of ontology so that it can use it

in the future.
|
‘h\‘bh_-"r\\'/ L
= Ratiomal =
,\k agent e
g, LA~ |'\\I"
—T Ty Ll B Y 1
A What is 2 =
'}:—— an arm? P

A

Figure 5: An example to illustrate our approach.

Agent ‘A’ will receive the concept of ‘arm’
as:

Long(x) A attached(x, hands) = arms(x)

5- CONCLUSION AND FUTURE
WORK

In this paper, we described our approach for
the development of a hybrid approach in order
to solve ontological problems in Multi-Agent
approach includes all the

processes involved in ontological development,

systems. This

deployment and learning. It solves ontological
problems like naming conflicts, and bottle neck.
It makes the system more efficient. It employs a
distributed as well as central approach for
ontologies storage and mapping. Each agent has
its own separate local ontology as well as a
mapping of its concepts in a central ontology.

As a further enhancement of this approach,
we intend to include the location awareness in
ontologies. This can be done by making all the
agents location aware where as their core
ontologies can be stored in the repository.
Moreover, as a continuation of our work, we
want to implement this proposed approach.

REFERENCES

[1] M Andrea Rodriguez Similarity based ontology
integration M Andrea Rodriguez. In Proceedings of the 1st
International Conference on Geographic Information
Science, October 2000

[2] Jos de Bruijn (DERI), Francisco Mart'in Recuerda (DERI),
Dimitar Manov (SIRMA),

Marc Ehrig (UKARL) : State of the art survey on ontology
merging and aligning. Semantically Enabled Knowledge
Technologies (SEKT) deliverables, July 2004

[3] Dejing Dou, Drew McDermott, and Peishen Qi: Ontology
Translation by Ontology Merging and Automated Reasoning,
Computer Science University at Yale, July 2003

[4] Peter Baumgartner, Fabian M. Suchanek

: Automated Reasoning Support for First-Order Ontologies.
National ICT Australia (NICTA), Institute for Computer
Science, Germany, 2004

[5] A Modern Approach to Artificial Intelligence, Stuart
Russel and Peter Norving. Prentice Hall Series in Artificial
Intelligence, 2" edition.

[6] Leen-Kiat Soh : Collaborative Understanding of
Distributed Ontologies in a Multi-Agent Framework: Design
and Experiments. In Proceedings of the 2nd International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, Mellbourne Australia, July 2003.

[7] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini,
and Domenico Beneventano.

Semantic integration of heterogeneous information sources.

Special

Issue on Intelligent Information Integration, Data &
Knowledge Engineering,36(1):215-249, 2001.

[8] Natalya F. Noy and Mark A. Musen. Prompt: Algorithm
and tool for automated

ontology merging and alignment. In Proc. 17th Natl. Conf.
On Artificial Intelligence (AAAI2000), Austin, Texas, USA,
July/August 2000.

[9] Alexander Maedche, Boris Motik, Nuno Silva, and
Raphael Volz. Mafra a

mapping framework for distributed ontologies. In
Proceedings of the 13th

European Conference on Knowledge Engineering and
Knowledge Management

EKAW-2002, Madrid, Spain, 2002.

[10] Multiagent Systems, A distributed approach

Edited by: Gerhard Weiss. The MIT Press, Cambridge,
Massachusetts. London, England.

[11V. Tamma, and T.J.M. Bench-Capon: An ontology model
to facilitate knowledge sharing in multi-agent systems. In
Knowledge Engineering Review, 17(1), 41-60, 2002

[12] B. Chandrasekaran and John R. Josephson: What are
ontologies and why do we need them? University of
Buffalow, Workshop on Ontologies 2

[13] Mohsen Afsharchi: Ontology Guided Collaborative
Concept Learning In Multi-Agent Systems. Aamas 2006
Doctoral Mentoring Program, May 2006.

A review of Mobility Techniques

Misbah Mubarak®, Sara Sultana®, Zarrar Khan®

Hiroki Suguri®, Hajra Batool Asghar’, H. Farooqg Ahmad?, Fakhra Jabeen®

'Computer Science Department, MCS, National University of Sciences and Technology (NUST)

2Communication Technologies, 2-15-28 Omachi Aoba-ku, Sendai, Japan

hajra-mcs@nust.edu.pk, fakhra@niit.edu.pk

Abstract

Strong mobility deals with the movement
of execution state of a program from one
computational unit to another where as
weak mobility only allows code and data to
be moved. Many languages due to security
reasons, do not allow accessing the
execution state of a program. Therefore,
implementing strong mobility in Multi-
Agent Systems (MAS) is one of the biggest
challenges these days. In this paper we

analyze weak mobility, provide a

classification for certain techniques that
implement strong mobility. Based on this
we categorize different MASs implementing
these techniques used for implementing
mobility.

Keywords: Strong Mobility, weak mobility,
Multi-Agent
instrumentation, Byte code

Systems, Source code

instrumentation, Java Platform Debugger
Architecture (JPDA).

1- Introduction:

Mobile agents are the upcoming wave in
the agent community. An agent is a piece of
software that can take an autonomous and
independent action on behalf of its owner
or user [1]. A mobile agent is an agent that
can move among various nodes of a
network and carry out its operations
depending upon its goals and available
resources. It accomplishes the operations
by the Mobility is
movement of code, data or execution state

use of mobility.

from one point to another. It is further
classified into two types i.e. weak mobility
and strong mobility. Weak mobility is the
movement of code and data to a remote
host whereas strong mobility is the
movement of code, data and execution
state from one computational unit to

another.

Many of the Multi-Agent Systems (MAS)
are programmed in Java. Java is very
popular in network programming because
of the following reasons

Serialization: This property enables objects
and data to be sent from source machine in
marshaled form into an output stream.
Later, upon reaching the destination
machine the code and data are deserialized

into their original form [2].

Dynamic Class loading: It allows class files
to be loaded at run time.

Machine Independence: Java is a portable
language as it supports virtual machine
technology. It can be executed on
heterogeneous platforms independent of

the underlying architecture.

Code and data can be easily transferred
using the above mechanisms of java
language. However, execution state can
only be transferred if one has got access to
the run time execution stack of threads.
However, Java does not allow access to run

time execution stack of threads due to
security reasons. Therefore, all systems that
have been built at the top of java, support
only weak mobility with the help of
serialization and dynamic class loading
mechanisms.

Multiagent Systems (MAS) in java are
mostly multi threaded. Achieving mobility
for these multi-threaded applications is an
uphill task. The execution state of a thread
consists of three main components [3]

Java Stack: A separate java stack is
associated with every thread. This stack
consists of a frame for every method that is
called. When a method returns, that frame

is popped from the stack.

Object heap: The object heap consists of all
those objects that are used during the life
cycle of a thread.

Method Area: The method area consists of
all the classes that are used during the life
cycle of a thread.

The object heap and method area are
entities that are shared by all the threads.

Mobility

- Woak
Mobility |1
|
| | |

Method Java I Object

Area Stack Heap

Figure 1: Different forms of Mobility

Since java does not allow dynamically
inspecting the execution states of threads,
therefore various techniques have been
introduced in achieving strong mobility.
These techniques are discussed in Section
2.

2- Mobile Code Techniques

The objective of this review is to analyze
the different techniques that are used to
achieve mobility. Based on these
techniques, we can classify different Multi-
Agent Systems and comment on their pros

and cons.

The evaluation criteria are based on the
form of mobility supported by different
MultiAgent Systems.

2.1 Weak Mobility in MultiAgent Systems

MultiAgent
mobility mandate the mobile agent to

Systems supporting weak
resume its execution at a pre-specified
check point. This loses all the execution of
the agent carried out on the source
machine [4]. In most of the cases, only the
data initialization constructs are carried
along. The programmer or the developer
has to deal with re-starting the agent at
that specified point upon reaching the
destination. Usually, this is done through
event based programming. This consists of
transferring the code and data in case of
some specified events. This results in
unnecessary overhead on part of the
programmer [5]. It leads to an entirely
different programming style that violates
software design rules. It is also difficult to
adapt by the programmers.

This approach of implementing weak
mobility has the advantage of efficiency
and portability. Weak mobility is efficient
as there is no over head of state capturing
and restoring. It is portable as it can
execute on any system since it does not
require any specific system requirements
for its execution. Designers of weak
mobility claim that it gives flexibility to the

programmer in case of synchronization

problems like dead locks. Moreover in case

of multithreaded applications, weak
mobility is claimed to be much more useful
than strong mobility. However, there are
many different forms of strong mobility
that do not create these problems and
claims. This is further

negate these

discussed in Section 3.

Figure 2 demonstrates the basic
architecture of a weakly mobile system. It
consists of code and data that is fetched
from the application layer. This code and
data is then serialized into an output
stream and sent through the network layer
to the destination machine where it is

deserialized to its original form.

Source Machine Destination Machine

Application Layer Application Layer

Code + Data Code + Data
Serialization into Deserialization from
java output stream java output stream

Il il

‘ Network Layer H Network Layer H

N \

Figure 2: Basic Architecture of Weak
mobility

Consider the scenario where an agent is
executing on a source machine where it
modifies certain global variables after
which, it migrates to the destination
machine. Since it cannot keep a track of its
execution, it will restart at a specified point
and re-modify the variables. Therefore,
weak mobility is highly unsuitable in case of

non-idempotent operations.

Source Machine Destination Machine
Modify Re-modify
Global Global
Variables Variables
Executin Restart
9 Executing
program
program
't\:]i]grae?gg Migration
99 successful
--- Mobile Agent

Figure 3: Problems with weak mobility

2.2 MultiAgent Systems Supporting Weak
Mobility

Following are the systems that provide
weak mobility support in Multi-Agent

systems

2.2.1- IBM Aglets: Aglets is a system that is
built on the top of Java and therefore
supports weak mobility. It uses an event
driven programming model. Agents are
represented by threads. Operations such as
dispatch are used to send code to the
destination. The system also supports an
operation namely ‘retract’ in which code is
brought from any specified aglet. As
mentioned previously, aglets in case of
migration have to continue their execution
from the beginning due to inaccessibility of
execution state in java. However, due to
serialization and class loading mechanisms,
the values of certain objects are preserved
[10].

2.2.2- Mole: mole was developed at the
University of Stuttgart. It also supports
weak mobility. Agents in mole are objects
threads.
differentiation between user agents and

which act as There is a

service agents.

2.2.3- Oblig: Oblig
providing a support for weak mobility. It

is another system

uses synchronous agent execution. Agents
are threads in Oblig. Whenever any agent is
transferred to the remote site, it is
suspended at the source site until the
entire code is executed at the destination.
In this way it supports synchronous weak

mobility.
2.2.4- TACOMA

It's an architecture that provides support
for weak mobility. The agents are
implemented as UNIX processes that can
move from one machine to another
without preserving the execution states.
The initialization data is preserved in a brief
case.

2.3 Multiagent Systems supporting Strong
Mobility

In order to incorporate strong mobility in
MultiAgent systems, there is a need to
change the compilation model or to modify
the Java Virtual Machine (JVM) [5].

2.3.1 Strong
modification

Systems

Mobility
approach _In

using JVM
MultiAgent

Since the JVM contains all the
execution information needed to achieve
strong mobility, one of the approaches to
implement strong mobility is the
modification of JVM. This change is made
so that all the execution information
(Thread

programmer via the JVM. It thus requires

state) is accessible to the

changing the security constraints
implemented by SUN. However, modifying
and redistributing the source code of the
JVM is against the licensing constraints of

Java [6].

In this case, the thread is required to be
captured at the source machine. At the
destination machine, a new thread is
created whose state is initialized as that of
the thread that was captured at the source
machine [3]

The benefit of this approach is increased
to the other
There is no

efficiency as compared

approaches. additional
overhead of code generation. Therefore the

system is highly efficient.

One of the major drawbacks of this
approach is lack of portability. Since the
JVM is modified, therefore strong mobility
is applicable for only those systems which
modified JVM.
Moreover, redistributing modified JVM is

support that particular

against the licensing constraints of Java.

Application Layer

Migration Triggered

Capture the complete execution £ |

1
state of the program
JVM Layer
Modified Java Virtual Machine ‘
Thread State Accessible —F

Original and Portable Java Virtual
Machine

Thread State Inaccessible

Figure 4: Basic Architecture of Strong
mobility using modified JVM

2.3.2 MultiAgent Systems Supporting JVM
modification approach

The Multiagent system supporting strong
mobility using modified JVM is

2.3.2.1- NOMADS

NOMADS is a java based system with
NOMADS
environment is composed of two parts. One

support of strong mobility.
is an agent execution environment called
Oasis and the other is a Java Compatible
Virtual
is another

virtual machine called Aroma
Machine (VM). Aroma VM
system that provides a support for strong
mobility. It provides this
modified Virtual
modification is not made in the Java virtual

by using a

Machine. Since this

machine, therefore the licensing

constraints do not matter. Whenever a host

goes offline, ‘forced migration’ s
implemented. It captures all the threads,

objects and classes in the VM [13].

2.3.3 Strong Mobility using source code

instrumentation approach In MultiAgent
Systems

Another approach that can be used for
implementing strong mobility is that of
Source code instrumentation. In this
approach, code statements comprising of
state saving or state resuming operations
are added to the source code of the
program. This preprocessed code is then
compiled to generate byte code. The byte
code then supports strong mobility. It
transmits the state of the program in the
form of java objects [8]. For this purpose
java RMI or any other mechanism (any
directory or discovery service according to
the requirements) can be used.

The major advantage of this approach is
portability. Since there is no modification at
the JVM level (underlying architecture), all
the changes are made at the source code
level which makes this approach portable.
Moreover at the source code level, variable
types are known which helps saving and
restoring them much more easily [7].

The disadvantages associated with the
approach are its lack of efficiency. Since
additional code is generated and compiled,
much more time is required as compared to
other approaches. Moreover, this approach
modifies the signatures of the methods.
Therefore it cannot be used with reflection
APl and call back methods (like
actionPerformed) in which
signatures are critical and should not be
changed [4].

method

2.3.4 Systems supporting strong mobility

using source code level instrumentation

Following are the systems that support

strong mobility using source code
instrumentation technique in Multi-Agent

systems.

2.3.4.1- ARA (Agents for Remote Access):
ARA is a multi-agent system supporting
strong mobility. In ARA, the agent is a
program which can move from one point to
another during its execution. In case of ARA
C/C++ is also compiled into byte codes for
RISC virtual machine. In this way, strong
mobility is easily accomplished.

Application Layer

Original Source Code in the
program

S
Program Executing

JC
Building a run time virtual
Stack

__
Migration Triggered

JC

Capturing the state using
the virtual execution state

J T
State capturing constructs
added

JC
Agent Migrated ‘

JVM Layer

Original Java Virtual Machine

Figure 5: Basic Architecture of Strong

mobility using source code level

instrumentation
2.3.4.2- D’Agents

D’Agents is an architecture that can support
multiple languages including Tcl, Java and
scheme. It provides a support for strong
mobility. It also supports a system of
policies under which mobility support is
provided.

2.3.4.3- Telescript

Telescript is an object oriented language
very much similar to Java and C++. There is
a major focus on strong mobility. Proactive
strong agent migration is provided using a
‘g0’ operation. Remote cloning is also
supported in telescript.

2.3.4.4- Sumatra

Sumatra is a system based on Java language
but it includes certain extensions to it.
These extensions help the Sumatra system
to support strong mobility. The extensions
are made in the Java Virtual Machine, the
approach mentioned in the previous
section. Agents in Sumatra are java threads.
It supports

proactive migration and

proactive remote cloning.

2.3.4 Strong Mobility using byte code

instrumentation approach In MultiAgent
Systems

Byte code instrumentation is one of the
other approaches used for implementing
strong_mobility. This approach is much
similar to that of source code
instrumentation technique. The
difference is that the

required in order to support state saving

major
modifications

and state resuming are made at the byte
code level instead of the source code layer.
In this case the stack frames are saved at
the source and then restored at the
destination. Goto statements can be used
for the
statements in case of byte code. This

implementation of compound

statement is very important in restoring the
instruction pointer state. It reduces the
additional code size due to its simple
implementation.

At the byte code level, in case of stack
frame, neither variable types nor their
scopes are known. Moreover, due to

security reasons, the instrumented byte
code has to pass through a byte code
verifier. Copying the byte code at the
destination can cause various security
problems [9].

Java programs are normally available in
their byte code format (class files). This
makes the byte code level instrumentation
technique very useful [4]. Moreover, the
additional code overhead is very small as
compared to that of the source code level
instrumentation.

Application Layer

Thread Executing

T

Migration Triggered

JVM layer

Java Virtual Machine

=

Byte Code generated

<>

Modified Byte Code

<L

Byte Code Verifier

<L

Data Structure of the complete Byte | 1 é
Code to be transmitted ——

Figure 6: Basic Architecture of Strong

mobility using byte code level

instrumentation

One of its major disadvantages is that the
byte code has to pass through a byte code
verifier. Moreover, as mentioned before, at
the byte code level, frame variables and
operand stack is available which does not
give any clue about the type of variables
being used. Therefore a separate type

system is required that recognizes the types
of variables statically [9].

2.3.6 Strong Mobility using Java Platform

Debugger Architecture approach In

MultiAgent Systems

The last approach for implementing
strong mobility is of accessing execution
state information from Java Platform
Debugger Architecture (JPDA) [4]. JPDAis a
part of JVM that’s used for debugging of
java programs. Since it is used for
debugging, it has got a large amount of
execution state information in it. The
problem is that the direct modifications of
the execution state variables are not
allowed. Therefore, separate technique
should be devised in which the execution
state information is allowed to be accessed.
One can access Program Counter (PC),
Thread information and stack from the

JPDA.

The major advantages of JPDA approach
is its portability and efficiency. The
approach is portable as JPDA is an integral
part of every JVM and therefore can be
used on every platform supporting Java.
Efficiency is achieved as there is almost no
code overhead in extracting the execution
information from JPDA (excluding the

modification overheads).

Application Layer

Code Executing at the Source

<L

Migration Triggered

<

Programming Constructs accessing <\|:
JPDA execution information added

<

Object containing the execution state
information ready for transportation

JVM Layer

Java Virtual Machine

JE

Java Platform Debugger Architecture
(Execution State Available)

Figure 7: Basic Architecture of Strong
mobility using Java Platform Debugger
Architecture (JPDA)

The major problem with this approach is
that the code has to be compiled with
debugging option turned on. Moreover,
complete strong mobility cannot be
achieved. This is because complete state
information is not available. Status of the
stacks

operand is one of the major

unavailable components. [4]

2.4 Resource Management in Mobility

Another variation in the case of strong
mobility is the management of resources. If
an object or an agent is executing by using
certain computer resources like files,
memory etc and it migrates to a remote
site, it will still need those resources in
order to continue its execution at the
destination. Therefore an important factor
in the implementation of strong mobility is
resource management. The options for

managing these resource bindings are

e The bindings are voided i.e.
removed or nullified before
migration.

e The bindings are re-established at
the destination.

e Some of the resources are moved
to the remote site for easy access.

e Resources can also be accessed
remotely by staying at the
destination site [10].

There are mainly three types of resource

bindings that need to be handled.

The first one is the most difficult to cater
with. It’s the binding by id or identifier [10,
4]. In this case the resource is bound to a
uniquely identified resource for which
there is no other substitute available. If one
has to handle with the migration of this
type of binding, then the exact resource
must be copied at the destination. There is

no other alternative available.

The second type of binding is by value. In
this case, the value of the resource is
important. One may not need to copy the
entire resource at the remote site. Instead,
the only thing required is to have the same
value of the required resource at the
remote site. This type of binding is a bit
easier to cater with.

The third type of binding is by type. In
this case, resource’s identity and value
don’t matter. The only thing that concerns
is the resource type. It should be the same
at the remote site. For example, in case the
agent is using printer at the source then at
the destination in may get bound to
another printer as a substitute since the
resource type is the same. [10]

2.5 Resource management in different
Multi-Agent Systems

The following systems provide the
of different

resource management

implementation types of

2.5.11BM Aglets

Aglets, supporting weak mobility model,
does not provide the support for resource
management. [10]

2.5.2 Mole

The system provides resource management
such that all references to the resource are
made void before migration.

2.5.3 Obliq

The data space management support is by
id. In this case the resources are bound to a
single agent. In case the agents move, the
resources also move along with the agents.

2.5.4 TACOMA

For data space management, there is a
binding for resource movement by ‘copy’.
In this case the resources are moved in data
structures. These data structures are called
‘cabinets’.

2.5.5ARA

Data space management is preserved in
ARA. Agents only share system resources
which removes the binding problems.

2.5.6 D’Agents

In order to support data space

management, a file manager is provided.
2.5.7 Telescript

Data space management is preserved by
connecting the resources only to their
owners. The associated resources are
moved along with the agent to the
Other

destination. bindings to the

resources at the source machine are
removed.

2.5.8 Sumatra

The data space management support is by
value or by move. Network references are
maintained to the resources at the source
machine

Chart showing the different characteristics of Multi-Agent Systems with respect to mobility

Name Weak Strong Data Language | Format of | Resource
Of the Multi- | Mobility Mobility Space s Support | Agents binding
Agent Managem supported
System ent
Support
Event No No Java Threads None
driven
IBM Aglets weak
Mobility
No Supports | Java Objects Void
Mole Supports acting as references to
Threads resources
Obliq Supports No Supports Oblig Thread Binding by
identifier
TACOMA Supports No Supports | TCL UNIX Binding by
Processes | copy
Source
ARA Supports code level Supports C/IC++ Any Void
instrumentatio Program references to
n resources
Support
Source TCL
D’Agents Supports code level Supports | Java Object References
instrumentatio Scheme maintained by
n file manager
Support
JVM References by
NOMADS Supports Modification | Supports Java Threads identifier
approach C++
Source
Telescript Supports code level Supports | Telescript | Object Management
instrumentatio by move
n
Support
Source
Sumatra Supports code level Supports | Java Thread Management
instrumentatio by move
n

Support

Conclusion

In this paper, we have classified mobility into two basic types i.e. strong and weak mobility.
Techniques for implementing strong mobility have been discussed in detail. We have provided a
comparison of all these techniques based on software quality issues like performance and
portability. Certain multi-Agent systems implementing mobility have been discussed. They have
been further classified based on the technique of mobility that they support. Their properties
have been discussed and compared.

References:

[1] Sarmad Sadik, H Faroog Ahmad, Arshad Ali, and Hiroki Suguri: Enhanced inter platform mobility in
SAGE Multiagent system

[2] Tim Walsh, Paddy Nixon, Simon Dobson: As strong as possible mobility: An Architecture for stateful
object migration on the Internet

Department of Computer Science, Trinty college Dublin

[3] Sara Bouchenak, Daniel Hagimont:

Picking thread states in the java system

[4] ChowkYuk Thesis

[5] Xiaojin Wang Jason Hallstrom Gerald : Reliability Through Strong Mobility
Baumgartner, Dept. of Computer and Information Science, the Ohio State University

[6] 1- Niranjan Suril, Jeffrey M. Bradshawl, 2, Maggie R. Breedy1, Paul T. Grothl, Gregory A. Hill1, and
Renia Jeffers2: Strong Mobility and Fine-Grained Resource Control in NOMADS

[7] Sara Bouchenak: Making Java applications mobile or persistent
SIRAC Laboratory (INPG-INRIA-UJF)

[8] Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa : A simple extension of java language
for controllable transparent migration and it’s portable implementation

[9] Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa :Bytecode Transformation for Portable
Thread Migration in Java

[10] Understanding Code Mobility
[11] Alfonso Fuggetta, Member, IEEE, Gian Pietro Picco, Member, IEEE,
and Giovanni Vigna, Member, IEEE : Mobile Agents in Distributed Computing

George Cybenko and Bob Gray

Thayer School of Engineering

Dartmouth College

{george.cybenko,robert.gray}@dartmouth.edu

[12] Mobile Agents

Edited by: William T Cockayne, Micheal Zyada

[13] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Kenneth M. Ford,

Paul T. Groth, Gregory A. Hill, and Raul Saavedra : State Capture and Resource Control for Java: The
Design and Implementation of the Aroma Virtual Machinel

[14] Niranjan Suril, Jeffrey M. Bradshawl, 2, Maggie R. Breedy1, Paul T. Grothl,

Gregory A. Hilll, and Renia Jeffers2 : Strong Mobility and Fine-Grained Resource Control in NOMADS1

Introducing Strong Mobility in Open Source SAGE MultiAgent System

Misbah Mubarakl, Sara Sultanal, Zarrar Khanl, Hajra Batool Asgharl, H Farooq Ahmadz, Fakhra Jabeen®

National University of Sciences and Technology (NUST)

’Communication Technologies, 2-15-28 Omachi Aoba-ku, Sendai, Japan

hajra-mcs@nust.edu.pk, fakhra@niit.edu.pk

Abstract

Implementing mobility in MultiAgent
systems is one of the major challenges these
days. True mobility consists of movement of
code, data and execution state. There are
various techniques through which true
mobility can be achieved in MultiAgent
systems. Certain mechanisms are present
that are used to capture the state of a
thread and re-establish it at the destination.
All these mechanisms have different aspects
of implementation. In this paper we analyze
these approaches for the implementation of
mobility and evaluate them based on
software quality parameters. We determine
their pros and cons. The ultimate goal is to
suggest the implementation of mobility for
SAGE MultiAgent system.

1- Introduction

Mobility is currently riding the rising wave
in the computing industry as it offers a large
amount of flexibility to users. It is the
movement of code, data or execution state
from one point to another. There are two
types of mobility i.e. weak mobility and
strong mobility. Weak mobility is the
movement of code and data to a remote
host whereas strong mobility is the
movement of code, data and execution

state from one computational unit to another.

An agent is a piece of software that can take an
autonomous and independent action on behalf of its
owner or user [1]. A mobile agent is an agent that
can move among various nodes of a network and
carry out its operations depending upon its goals and
available resources. It therefore uses mobility in its
operations [4].

A MultiAgent System (MAS) is a platform in which
agents communicate with each other in order to
accomplish certain combined goals [6]. Software
Fault Tolerant Agent Grooming Environment (SAGE)
is an open source MultiAgent system. Foundation for
Intelligent Physical Agents (FIPA) is an IEEE standard
for MultiAgent systems. SAGE is a MAS that is built in
accordance to FIPA specifications. Currently, it lacks
strong mobility. In the paper we discuss several
different approaches which can be used for the
implementation of Strong Mobility in SAGE.

Mobile agents are mostly implemented in java.
Java is a popular language in network programming
due to the properties of object serialization, dynamic
class loading and machine independence. Object
serialization helps capturing the object state
whereas dynamic class loading loads Java code [2].
These mechanisms of java language help the user to
achieve weak mobility (code and data movement
only). However, Java does not provide any service
for achieving strong mobility. In java, access to
execution state (Thread stack and Program Counter)
is denied due to security reasons.

Strong mobility in java can be achieved by either:
e Extending the java virtual machine

e Modifying the source code
e Modifying the byte code

e Using java

architecture

Strong Mobility in Java

platform debugger

Java Virtual

Source code

, Byte code level Java
Machine level instrumentation Platform
Modification instrumentation approach Debugger
Approach approach Architecture

Figure 1: Strong mobility in java

Among these approaches, the first three
approaches are most commonly used. In
this paper we will discuss these approaches
in detail. We will then provide a comparison
for all these approaches based on software
quality parameters.

Execution state in java consists of the
following basic parameters

Java Stack: A separate java stack is
associated with every thread. This stack
consists of a frame for every method that is
called. When a method returns, that frame
is popped from the stack.

Object heap: The object heap consists of all
those objects that are used during the life
cycle of a thread.

Method Area: The method area consists of
all the classes that are used during the life
cycle of a thread.

Object heap and method area are shared by
all objects [8].

2- Approaches for
Strong Mobility

implementing

Following are the approaches for

implementing Strong mobility.

2.1 Extending the Java Virtual Machine

Java language compiler translates the java source
code into intermediate byte code. This byte code
consists of specific instruction set for the Java Virtual
Machine (JVM). The byte code makes Java language
portable, since it can execute on heterogeneous
platforms. At the byte code level, it is easier to insert
malicious code. For this reason, JVM does not
provide any access to the run time execution stack of
the program.

In order to accomplish true mobility, the Virtual
Machine must be able to do the following

Complete Execution State Capture: The VM must be
able to capture the complete execution state of
threads, objects and classes that are present in the
heap.

Resource Management in Java: Whenever a process
starts, it has got specific permission rights. These
rights stay with the process through out its
execution till termination. Therefore, the amount of
resources doesn’t vary. The VM must grant change
in allocation of resources during its execution so as
to accomplish strong mobility. [11]

In order to modify the JVM, the C++ data
structures of the Virtual Machine are modified. We
now discuss how this can be accomplished at the VM
level.

The Java heap, data structure consists of Java
objects, threads and classes.

) Arrays
Objects Y
\ — \
R Objects Threads
data types

Figure 2: Components of Java Heap

Java Threads are instances of C++ class
‘JavaThread’. The Thread objects consist of
method stacks. The method stack contains
the frames of methods invoked by the
thread. These frames are called ‘Stack
frames’. The stack frame is usually
composed of

e Operand stack which consists of
the operands used in the life time
of the thread

e local Variables invoked in the
method

e Program counter that keeps track
of each instruction that is executed

e Pointer to the method

The java thread objects are based on
native threads. Native threads are
Operating System threads on which the
Java threads are based. Native thread
consists of a go () function which when
called, executes the java thread. However,
using native threads causes a lot of
problems in capturing the state of the
thread.

One of the key to extending JVM is to
decouple the execution of native threads
and Java threads. For this, the compilation
model needs to be changed. The native
thread has a stack that remains constant
through out the execution of the byte code
whereas a java thread consists of a stack
which changes during the execution of the
byte code. The coupling of native thread
with the Java thread makes it very difficult
to capture the execution state of a thread.
Therefore, its important to decouple the
native thread from the Java thread.

Thread in JVM

JENE) Native
Thread _Coupled
Object Thread
Thread in Extended
JVM
Thread
[1
Java 5
Natve
Object
{} Replace By
New Native
Thread

Figure 4: Extent of coupling in JVM and extended JVM

When the old native thread is replaced by a new
one, its only functionality is to call the go () function.

However, it's not easy to decouple the original
native thread from the Java thread. Whenever a
class is loaded or initialized, there is always a call to
the old native thread function instead of the Java
Thread. A solution to the problem is to replace the
native function calls with Finite State Machines
(FSMs) which can be placed in the VM stack frame of
the java thread. These FSMs retains their states and
thereby call java functions based on the new native
thread instead of calling old native thread functions.
In this way, the native threads can be completely
decoupled from the Java Thread. The state of the
Java Thread can then easily be accessed by
modifying it’s C++ data structure [3].

In order to enforce security in terms of resource
usage, a limit should be placed on it. Resource usage
like CPU usage, disk reads and writes should be kept
in proper check and control. These parameters are
usually expressed in terms of bytes executed per
milliseconds. Sometimes they are also expressed in

terms of percentage of CPU time.
Therefore, a limit should be placed on the
bytes read or written in the first case. In the
other case a limit can be placed on the CPU
usage in the parameters. This satisfies the
security demands of Java. In case any virus
attempts to infect the system through
excess CPU usage, it cannot succeed due to

the limit placed on its usage.

Java
Thread

operands and variables being used in the program.

Resource Usage

CPU consumption
Percentage

Byte executed per
millisecond

Stack

Local
Variables

Program
Counter

Frames
; ; Method Operand
Java Thread Stack Stack

Java Defined

Java Defined Class

Class
P———
Primitive Pool

Arrays

Java Object

ava Object

=

Defining
Class

Figure 3: Architecture of the JVM

Another issue that needs to be resolved
during the extension of JVM is that of type
checking. Java stack is only a C++ data
structure which doesn’t have the capability
of type recognition. Since the variables
types are represented in a different manner
on heterogeneous architectures, this
creates a strong need for type recognition.
The problem can be resolved by using ‘byte
code instructions’. The instructions at the
byte code level are typed. There are
different instructions for integers, double
and arrays. With the help of these byte
code instructions, a type stack can be built
in parallel to the Java stack. This type stack
consists of the type recognition of the

Limit Usage

Figure 5: Resource Consumption

One of the major advantages of this approach is its
added efficiency. Since the JVM is directly modified
and there are no code over heads, the approach is
highly efficient. The disadvantages of this approach
are lack of portability. Modification of JVM causes
lack of standardization which violates portability [4].

2.2 Changing the compilation model

We give a brief over view of the approaches that can
be utilized by changing the compilation model

2.2.1 Adding state saving constructs in the Source
code In this case modification is done at the source
code level instead of the JVM. Programming effort is
to design a separate virtual stack made of Java
programs. This virtual stack is kept up to date during
the entire execution of the program. Whenever
migration is triggered in a program, the source code
of the program is modified by adding the state
saving constructs of this virtual stack. This makes a
back up object which now consists of the complete
program along with the code, data and execution
state. The state saving information consists of the
methods that the program was executing when the
migration got triggered, state of the local variables
and the value of the program counter.

State Saving

Constructs

Program Methods Local Checkpoint in
Counter invoked Variables the method

Figure 6: State saving constructs used in
preprocessing the code

In this approach, the parameters related
to Java Defined Class are important. These
parameters can be used for state saving and
resuming.

At the destination site, whenever the
state of the program is to be restored, the
state saving constructs consisting of the
program’s execution state need to be
recompiled.

The advantage of the approach is its
portability. Since it runs on the same
standardized JVM, it can execute on any
machine that supports Java. Its
disadvantage is its increased code overhead
that is generated whenever the additional
state saving constructs are added.
Moreover, source code in java programs is
often unavailable.

2.2.2 Modifying the byte code In this
approach, state saving constructs are added
in the byte code. The thread then migrates
to the remote site along with its heap image
and stack. A new thread is then created at
the destination site whose state is initialized
with that of the migrated thread. However,
in transferring the heap image of a thread,
severe security threats are present. The
execution state of the program consists of
the similar constructs that are added in the
source code modification technique. These
constructs include program counter, local
frame variables and operand stack. These
constructs are now added at the byte code

level. The thread or any agent migrates between the
Java Virtual Machines (JVMs). Therefore the
underlying platform supported by the approach is
the JVM.

The approach has got several advantages. The
point at which migration is triggered can be a
compound statement. At the source code level, java
forbids dealing with the compound statements.
Therefore, if one has to deal with compound
statements at the source code level, an enormous
amount of programming capability is required. At
the byte code level, this programming effort is
reduced by the fact that we can use a ‘goto’
instruction. The ‘goto’ instruction allows transfer to
a compound statement. This instruction s
unavailable at the byte code level.

However, when modifications are done at the byte
code level, they must pass through a byte code
verifier. The byte code verifier does not allow
modified byte code to pass through it. Therefore, it
has to be redesigned to allow such modifications.
Moreover another disadvantage of the approach is
that the variables types are unknown at the byte
code level.

A comparison of Strong Mobility’s approaches

In terms of efficiency and performance, the JVM
level approach is better since it does not consist of
additional coding constructs that have to be added
in the case of source and byte code level
approaches. Whenever mobility is triggered the
execution state always moves along the mobile
agent.

In reliability of achieved mobility in terms of
failure, the JVM level approach is again better. It
does not require addition of any coding constructs
which reduces chances of failure. Once the JVM is
modified and works correctly, there are few chances
of failure.

The JVM modification approach is not
portable. Since changes are made at the
JVM level, therefore the modified JVM lacks
standardization. The source code and byte
code instrumentation techniques are
portable as there is no change in the VM.
Changes are only limited to the compilation
model.

The JVM level approach is difficult to
implement since it requires working at the
middle ware level. The byte code approach
is also difficult to implement as it requires
modification at byte code level which is
closely related to machine language.

JVM level approach has got restrictions in
modification of the VM as Sun puts
licensing constraints on it. Remaining
techniques are free from such restrictions
as they don’t require modifications at the
JVM level.

JVM approach achieves true mobility as it does not
has any problems as are mentioned in the
compilation techniques in the previous section.

In case of source code instrumentation technique,
source code is required on both source and the
destination sites. JVM modification and byte code
instrumentation do not require source code.

Table 1: A comparison of Strong Mobility approaches

Name of Efficiency | Reliability | Portability Difficulty of | Licensing Quality of | Source
the Level implementat | constraints Mobility code
Approach ion Achieved | require
ment
Source Low Moderate | Available Moderate None Moderate | Yes
code
modificatio
n
Byte code Moderate | Moderate | Available Difficult to None Moderatel | No
modificatio implement y High
n
JVM High High Not Difficult to Sun High No
modificatio available implement licensing
n approach constraints
system. The pre-requisite is to include all the
possible cases for example if the thread is in the
Conclusion

We have discussed several approaches for
implementing strong mobility in SAGE. Every
approach has got its positive and negative
aspects. Any of the approaches can be used for
implementing mobility in SAGE Multiagent

monitor, the case should be handled. In this way
strong mobility under any circumstances will be
achieved.

References

[1] Sarmad Sadik, H Farooq Ahmad, Arshad Ali, and
Hiroki Suguri: Enhanced inter platform mobility in
SAGE Multiagent system

[2] S. Bouchenakl, D. Hagimont2: Approaches to
capturing Java Thread States. Middleware'2000,
poster session, New York, USA, April 2000.

[3] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R.
Breedy, Kenneth M. Ford, Paul T. Groth,

Gregory A. Hill, and Raul Saavedra: State Capture and
Resource Control for Java:The Design and
Implementation of the Aroma Virtual Machine. In
proceedings to Java Virtual Machine and research
technology Symposium, Monterey, California

[4] Misbah Mubarak, Sara Sultana, Zarrar Khan, Hajra
Batool Asghar, H. Farooq Ahmad, Fakhra Jabeen: A
review of mobility techniques. In Proceedings of19th
Assurance Symposium, Tokyo Institute of Technology
Japan

[5] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R.
Breedy, Paul T. Groth, Gregory A. Hill, and Renia
Jeffers: Strong Mobility and Fine-Grained Resource

Control in NOMADS, Lecture notes in computer
science (Lect. notes comput. sci.) ISSN 0302-9743,
,Institute for Human and Machine Cognition,
University of West Florida, USA

[6] Misbah Mubarak, Sara Sultana, Zarrar Khan, Hajra
Batool Asghar, H. Farooq Ahmad, Fakhra Jabeen: An
approach to ontological interoperability. In
Proceedings of the 2™ International Conference for
Emerging technologies, 2006.

[7] Takahiro Sakamoto, Tatsurou Sekiguchi, and
Akinori Yonezawa: Bytecode Transformation for
Portable Thread Migration,/n Java._Proceedings of
the Second International Symposium on Agent
Systems and Applications and Fourth
International Symposium on Mobile Agents,
Department of Information Science, Faculty of
Science, University of Tokyo 7-3-1 Hongo, Bunkyo-ku,
Tokyo, Japan 113-0033.

[8] Sara Bouchenak, Daniel Hagimont:

Picking thread states in the java system, In
proceedings to the SIRAC project, Montbonnot Saint
Martin, France

[9] Chow Yuk thesis: Journal and author unknown

[10] FIPA Abstract Architecture Specification,
Standard 2002. www.fipa.org

A Dynamic Policy based Security Architecture for Mobile
Agents

Misbah Mubarak®, Zarrar Khan®, Sara Sultana’, Hajra Batool Asghar', H Farooq
Ahmad?,

Hiroki Suguri?, Fakhra Jabeen®
'National University of Sciences and Technology (NUST)
2Communication Technologies, 2-15-28 Omachi Aoba-ku, Sendai, Japan

hajra-mcs@nust.edu.pk, fakhra@niit.edu.pk

Abstract— Mobile agents are undoubtedly the upcoming trend in the agent community. As their use is
increasing, security problems are coming forth. A mobile agent must address several security issues. An agent
may be malicious, the platform on which it executes may carry on sinister activities on it or the agent may be
harmed by another malicious agent. Most of the security approaches do not provide any flexibility or dynamic
decision making. Therefore, security threats increase further. In our paper, we suggest an approach that uses
dynamic ontology based policies to enforce security in platforms as well as in mobile agents. The approach is a
hybrid one which utilizes other security measures as well. We have also evaluated the approach on software
quality parameters other than security like portability, flexibility and efficiency. The results have been
satisfactory.

Index Terms: Mobile agents, encryption, digital signatures, ontologies, reconfigurable policies.

I. INTRODUCTION

Distributed computing has undergone several fundamental changes in the past few
years. Initially, the resources of a system were bound to that particular system only.
Mobile agents [1] have changed the trend. They offer a lot of flexibility to the
distributed computing applications. In mobile agent system, the agent moves from
one host to another in order to utilize the services and resources that are available
locally at the systems. An agent is an autonomous active entity that acts on behalf of
its owner in order to accomplish a certain goal. It performs tasks that are favorable
for the users but on the other hand it may also perform malicious tasks depending on
its goals.

The advent of mobile agents was hailed as a solution to the ever increasing
demand for greater bandwidth requirement. However, technology of mobile agents
did not take off as it was foreseen in the beginning solely due to security issues.
Although mobile agents greatly increase the efficiency in a distributed system but the
risk of security threats becomes far too great. The mobile agent may over utilize
system resources, steal important information and use the system as a point of

attack to other systems. Security threats due to mobile agents are classified in three
basic types
e Confidential information retrieval
e Denial of service attacks
e Corruption of information
The problem specially becomes serious once mobile agents are used for mission
critical and real world applications [1]. Another issue that may possibly occur is that
the systems the mobile agent accesses may be malicious. It may be possible that the
system tries to take important information from the mobile agent or modify the agent
by adding or removing its code [2]. Therefore in general four categories of threats for
the mobile agents are possible
e Threats from a malicious agent that may harm the system
¢ A malicious system may attack the agent
¢ A malicious agent may attack a useful agent
e Any other entity may attack the system
There may be several solutions to the security issues in mobile agents.

e Cryptographic authentication of the owner on behalf of which the agent is
acting.
e Security in the execution environment of the languages.
e Poalicy decisions that are based on the owner’s identity by the software that
runs the agents.
A policy is a course of action, guiding principle, or procedure considered expedient,

prudent, or advantageous. In terms of MultiAgent systems they are declarative rules
governing choices in a system’s behavior. They are able to restrict system’s
behavior. They can be used for flexibility, adaptability and security of a system.
Policies may be expressed using formal policy languages, rule based policy notations
and attribute table representations [3]. They loosely couple the code so that the
runtime behavior of applications can be easily adapted according to the
requirements. A misconception about policies is that they impose certain constraints
on the execution of an application. Policies actually are rules that aid an agent in
achieving its social goals resolving security issues. Policies require strong support of
middleware. One such middleware is Java Virtual Machine (JVM) in which the high
level language policies are compiled into byte codes. In the paper we use Java as
the language to express policies and the underlying MultiAgent system.

An advanced variation of policies is dynamically reconfigurable policies. By the
use of such policies, an application can adapt according to the requirements at
runtime. However, in order to achieve this, the policies need to be semantically rich
which is only possible with the help of ontologies. These policies are able to perform
the operation without changing the source code of the application thus decreasing
security issues.

Mobility can be classified into two basic types i.e. weak mobility and strong mobility.
Weak mobility is the movement of code and data from one computational unit to
another. Strong mobility is the movement of code, data and execution state from one
point to another. Java due to its strong network programming capabilities, offers
strong support for achieving mobility. It provides the features of dynamic class
loading, serialization and machine independence which are very helpful in achieving
mobility [4]. However, due to security reasons, Java does not allow any access to its
run time execution state. The reason for this is that a malicious platform may harm

the agent severely by modifying the execution state. Therefore, security becomes a
big issue once strong mobility is implemented in the case of mobile agents.

With the help of mobility, dynamic customization and configuration of internet
applications is also possible. Mobile agents also have the ability to adapt functionality
according to user needs with the help of dynamically reconfigurable policies.
Therefore, it is vital to deal with the security aspect of mobile agents.

The paper first discusses different possible approaches for implementing security.
It then analyzes the draw backs of these approaches and argues how our proposed
approach is better than those discussed in Section 2. After that, it gives the basic
idea and concept of the proposed approach with the help of detailed modeling in
Section 3. It then proposes the implementation of the approach in a strongly mobile
FIPA compliant MultiAgent system. Conclusion and future work is given in Section 5

II. RELATED WORK
In this section we discuss different approaches for security and prove that these

approaches, when used along with policies provide a better and highly flexible
solution to the problem.

We first discuss some approaches that provide security to the platforms against
malicious mobile agents.

A. Sand boxing

This approach is used for the protection of the platform from malicious mobile agents.
In this case, local code has got access to the critical system resources. However, the
remote code or the mobile agent has got restricted access rights. The remote code
executes inside a restricted area called ‘Sand Box'. It may affect operations like

Interacting with local file systems
Creating a network connection
Accessing system properties on a local system
¢ Invoking programs in a local system
The approach is commonly implemented in Java since it has got a class loader,

verifier and security manager that enforce security. The problem is that if any of the
components fails, it leads to security violation. For instance a remote class may be
wrongly classified as a local class. Our system removes this deficiency since it has
got a dual authentication mechanism which leads to two pass verification procedure
[10].

B. Code Signing

This is another approach that is used to protect platforms against malicious mobile
agents. It uses digital signature which verifies that the code of the mobile agent has
not been modified since it has been signed by its creator. This method verifies the
identity of the owner by checking it against a list that is maintained on the system.
However, it only verifies the owner and does not guarantee the safety of the code.
Once the mobile agent is verified, it is given full privileges to system resources. The
drawbacks of the approach are

e The approach assumes that all the entities mentioned in the list are clean
e The mobile agent is granted complete access to the resources. It may then
change the trusted list and invite other malicious agents [11, 12].
Our architecture solves the problem by dynamically deciding about the nature of

the mobile agent based on certain parameters. After a close inspection, the
architecture allows a certain percentage of access to the system resources
depending upon the authenticity. Complete access to system resources is granted in
highly exceptional cases.

C. State Appraisal function

The state appraisal function is another approach that protects the platform. It keeps a
check on the execution state of the mobile agent. In this case, the author who
creates the mobile agent writes a state appraisal function in it. The function is
composed of the access rights that the agent has on the platform, depending upon
the current state of the agent. Therefore, the sender, instead of the platform, decides
the set of permissions that are to be requested. The approach solves the problem in
case the platform is malicious. However, if the mobile agent itself is malicious, it may
create serious security threats. Moreover, it's very difficult to write an appraisal
function every time one sends the mobile agent. Our architecture solves the problem
as the dynamic policies are already encoded which may be used by the agent at
runtime. Moreover, our architecture provides protection against malicious agents as
well [13].

We now discuss approaches that provide security to the mobile agent against
malicious platforms.

A. Execution tracing

This is an approach that provides protection to the mobile agent. In this case, the
mobile agent keeps a log of the action that it performs at each platform. The log
consists of an identifier that identifies all the statements that the agent has executed
on any platform. In case, any information is required from an external execution
environment, the platform’s digital signatures are mandatory. The messages that are
attached to the mobile agents consist of unique identifier of the message, identity of
the sender platform, time stamp, a finger print and the final state of the mobile agent.
If the owner of the agent processes the execution trace of the mobile agent and
suspects that a certain platform has been malicious with the mobile agent, he may
ask the platform to reproduce the trace. A comparison is made between the finger
prints of previous and reproduced trace. This helps in identifying any sinister activity.
Disadvantage of the approach is the heavy logs that the agent has to maintain while
traveling. Our proposed architecture solves the problem as the mobile agent carries
only policies along with it [14].

Since the use of mobile agents poses security threats as mentioned in Section 1,
encryption of mobile agents is an easy way to get protection against these threats.
The mobile agent along with its messages is transformed into cipher text by a
function that is parameterized using a public key. The cipher text is then transmitted
over the network via Java RMI in the form

C=Ex(M)

C refers to the cipher text of the mobile agent

K represents the public key that parameterizes the function
M is the mobile agent to be encrypted

E refers to encryption of the mobile agent

The enemy may copy the entire cipher text. He is, however, unaware of the key. In
some of the cases, the intruder may inject fake messages and later send them back
or they may break the ciphers by cryptanalysis [8]. Therefore, making an intelligent
choice for the key is mandatory. Nevertheless, if the encrypted key is found by the
enemy, he may inject malicious code in the mobile agent which can then cause a
serious damage to the platform. Therefore, a strong security mechanism is not
provided in this case. Our dual layer security architecture solves this problem by
enforcing policies on the use of system resources as mentioned in Section 3.
Moreover without introducing policies, the entire agent has to be encrypted which
requires a lot of computation thus lacking efficiency. Our approach solves the
problem by encrypting only the confidential parts of the agent [8].

B. Cooperating agents

It is an approach in which a critical task is carried out by two mobile agents. These
mobile agents carry out their operations in entirely separate platforms. There is a
secret and confidential communication channel between the two agents. With the

help of these channels, the agents transfer their confidential information to each
other like

e Agent itinerary
o List of messages sent,
e List of all the platforms that have been recently visited current one and the
ones that are still pending to be visited.
In this way if malicious platform changes the route of the agent, the cooperating

agent will immediately get to know. It will then notify its sender.

The approach assumes that there are very few platforms that are actually
malicious. Moreover, setting up a reliable communication channel between agents is
not cost effective. Our proposed architecture poses no such problem as it does not
require a separate communication channel. The security architecture software, once
installed, protects the platform and all the outgoing mobile agents from the platform.

Ill. PROPOSED ARCHITECTURE

We propose dual layer security architecture in the use of mobile agents. Policies
provide a most promising approach to control access to system resources. However,
one may question what guarantee do we have that the policies are correct? Simple
policies are enforced automatically without any reasoning. Therefore, if any incorrect
policy is enforced, it may lead to security violation. That is the reason due to which
we have used ‘Ontology based semantically rich policies’. Ontologies [15, 17],
formally specify a concept and the inter relationship between those concepts. They
can provide automated reasoning using certain inference procedures. This helps to
enforce a meaningful runtime policy after automated reasoning with the help of
ontologies. Ontologies also aid in resolving the heterogeneity of platforms. The
condition however is, that there should be a single shared ontological representation.
For an explanation see [15].

A. Policy Enforcement Architecture

The architecture for policy enforcement consists of the following main components

Policy Storage area: This is the storage area where all the policies and ontologies are
stored.

Policy Distributor: This is the module that distributes all the policies to the desired
agents.

Policy Implementer: This module maps the policies to its correct action. It uses
automated reasoning and inference procedure in order to size up the situation.

Monitor: It monitors the agent execution state and its environment.

Policy specifier: It helps to edit policies and ontologies. The module can only be used
by a system administrator.

Figure 1 demonstrates the lay out of security architecture.

Platform having the proposed
Security architecture

Interface for

Communication

Monitor

Administrator

Modify or add Mobile

licies

Policy Specifier

Condition
action

rules .

Policy Executor

Ontologies

Obligation
policies

Policy Repository *—-—-* Policy Distributor

A A
reasoning Control
rules policies

Figure 1: Proposed Security architecture

B. Policies enforced in the architecture

The categories of policies that have been dealt in our architecture are

e Authorization policies
¢ Obligation policies
e Refrain policies

Policies of the architecture

Obligation
Policies

Refrain
Policies

Authorization
Policies

Combine
provide

Strongly
Mobile Agents

bine to
provide

Figure 2: Policies of the architecture

In the end we discuss how all these policies give security to strongly mobile agents
as shown in Figure 2.

C. Authorization policies in the architecture

These are access control policies that control the access of the mobile agents to the
platform resources. Policies are added in the form of event condition rules in this
case. The policies of this category are further divided into

Encryption policies

Percentage of access to system resources

Monitoring the agent in case of complete access

Monitoring the behavior of the platform on which the agent is executing.
We discuss all the enforcement of the above mentioned policies in detail.

Encryption policies: In order to enforce encryption policies, the creator of the agent
identifies the part that he/she feels is sensitive. That sensitive part is encrypted using
a public key encryption algorithm. This saves a lot of computation effort that is
wasted in case the entire agent is encrypted. The creator specifies a certain
confidentiality level in integer format which if above a certain threshold (the threshold
is also in integer format) will encrypt the agent automatically as shown in Figure 3.

Encryption policy on
platform

Specify the

confidentiality level
for certain parts of
mobile agent

Level above a
certain

Threshold?

Apply public key
encryption algorithm
on that part

#

Figure 3: Encryption policy on specific part of the mobile agent

An example of encryption policy for a mobile agent is

domain a=/ OrganisationlD.”

inst authriz policyMame (

on {confid_level. 30)

subject s=E . sitef "complC

target t=a . siteB “complC

do

t.go{{deviceMame._ getSite()}) toStrin
g}, “ran(}7):
when{Creator.checkStatus{MAgent(
}==true)

¥

Example 3: Example of an encryption authorization policy

The above example represents an authorization policy which checks the
confidentiality level assigned by the creator of the mobile agent. If it is above 90 for
example, the subject that is the mobile agent is encrypted. After encryption, it is sent
to the destination by the ‘t.go()’ function.

Policies granting access to system resources: There are other policies in the systems that
check the characteristics of incoming mobile agents by using ontology based
automated reasoning techniques. In other words, the credibility of the mobile agent is
deduced based on certain factors like

e Sender identity
e Operation to be performed by the agent
e Check against the list of harmful threats in the code
After making all these checks using automated reasoning and inference procedures,

the system decides which percentage of access is to be granted to the mobile agent.

domain a=/0rganizationlD/

inst msrResource Percentage {

on applylnference(input);

subject s=a/sitel\/check_Percentage():
target t = a/siteA/grant_Percentage():
do t.grant(grant_Percentage()):

when Monitor check(grantAccess==true):

}

Example 4: Policy specifying percentage of resource usage for the mobile agent

The above policy is an example of one that grants access to system resources based
on the dynamic decision about the mobile agent. applylnference(input) is the name of
the function that applies the inference procedure using ontologies and automated

reasoning on the mobile agent. Check Percentage() is a function that is based on
the result of applylnference(input) function. It checks the level of resources that
should be granted to the mobile agent. GrantAccess (Boolean flag) is the function
that grants access to the system resources.

Policies monitoring agent execution in a platform: Monitoring policies are implemented by
the ‘Monitor module in the architecture. The purpose of these policies is to
dynamically monitor the actions of the agent. It keeps a track of whatever the agent
executes. If the agent performs any malicious activity on the resources, it has the
right to block the agent and suspend its execution at that very instant.

domain a=/0rganizationlD/

inst monitor M_Execution {

on tracebxecution(m_agent);

subject s=a/siteA/check_Execution():

target t = a/siteA/grant_suspendExecution();
do t.grant(check_Platform()):

when Monitor.check(executionMal==true);

}

Example 5: monitor policy

This policy keeps a track on the execution of the agent by a function
traceExecution(m_agent). The argument m_agent specifies the mobile agent. The
function check Execution() checks for malicious activity by comparing the agent
activities against a list of malicious activities. Whenever the condition is found to be
true, the execution of the agent is suspended using grant suspendExecution()
function.

Policies protecting the agent from malicious activities in the platform: There is another

policy that monitors the platform in case if there is some virus program hidden in the

system which may harm the execution of the mobile agent. Whenever there is some
malicious activity going on the platform, the execution of all the programs is

suspended until the malicious program is repaired or quarantined.

domain a=/OrganizationlD/

inst monitor P_Execution {

on traceExecution(platform);

subject s=a/sitel\/check _Execution():
target t = a/sited/grant_suspendExecution():
do tgrant(Stop_Functions(argl.argZ...argn));
when Monitor. check(executionMal==true);

}

Example 6: Policy catering with harmful platform

The function ‘traceExecution (platform)’ keeps a check on the executions that are
performed on it. If Monitor.check(Boolean flag) returns true which means there is
malicious activity going on the platform, the execution of all programs is suspended.

D. Obligation policies in the architecture

Obligation policies are event condition rules. They specify what actions are to be
performed as a result of an event. In the proposed architecture, these policies are
stored in the policy repository and whenever a condition meets, the policy is enforced
by the policy executor. For example, in case when the creator of the mobile agent
tries to access the agent results and execution state in case of strong mobility by
decrypting it, if he enters the wrong key, results are blocked.

inst oblig loginFailure {

on loginfail(key):

subject s = /Block;
target t = {userid}:

do tdisable((slog(userid));
}

Example 7: Login policy

The obligation policy ‘login failure’ blocks access to the mobile agent in case if wrong
decryption key is entered. Loginfail(key) is the function which checks if there has
been a login failure condition. The user id is blocked and disabled using the
functions t.disable((s.log(userid)).

E. Refrain policies in the architecture

Refrain policies allow specifying actions that the user must not perform under certain
conditions. These policies control the subject (a mobile agent in our case) to act even
if it has got full access to the target [16]. For example, a normal user of a platform
may not access the sensitive code, data and execution state information from the
mobile agents when refrain policies are enforced. However, the creator of the mobile
agent may be able to access it. The verification may be made using digital
signatures.

inst refrain NonDisclosure {
subject s = /normalllsers:
action HideProjectinformation():
target t = /people:

when t.signedNDA = false

}

Example 8: Disclosure of information policy

With the help of this policy, the information is not disclosed to local users as they
cannot verify the digital signature process. The function HideProjectinformation()
hides the project or the application information whenever the user does not confirm
the digital signatures. Test for digital signature verification is made by t.signedNDA
function [3].

F. Policies for Strongly mobile agents

In case of strong mobility, the agents carry their execution state along with them as
mentioned in Section 1. Though carrying the execution state of an agent increases
the efficiency as the overhead of restarting the mobile agent at the destination is
eliminated. However, it poses severe security threats since if the execution state of
the agent is modified maliciously, it may lead to severe damage to all the platforms
that the agent visits. Therefore, the Monitor component of the security architecture
monitors the agent execution all the time. Whenever the agent’s execution state is
tried to be modified by some external source, this module performs a check policy
and enforces blockage of that external source. Policies in Example 5 and 6 are
instances of strong mobility’s security policies. Therefore, the architecture solves the
security problems that are posed by strong mobility. See Figure 3. It shows whenever
a malicious program tries to access the execution state of an agent, it gets
terminated.

Platform with security architecture enforced

ried to Modify
the execution
state of the
mobile agent

! Malicious Program

Execution o

the malicious
program

terminated

Security Policies
architecture

Figure 3: Malicious program trying to execute in security architecture

G. Evaluation of the architecture against quality parameters

We evaluate the software against the following quality parameters

Reliability: The security architecture enforced is hybrid architecture. It employs a
manifold technique of security including policies, encryption and digital signature. It
deals with all issues which may harm the platform or the mobile agent. At present,
there is no security loop hole. However, we are working further on the architecture for
the identification of any other security problems.

Efficiency: The architecture imposes such policies which encrypt only the sensitive
portion of the agent. This requires less computation and makes the encryption
process efficient. The mobile agent does not carry logs along with it which require
more bandwidth and flood the network. The architecture is therefore efficient.

Portability: the policy enforcer is a pluggable component which may get plugged
into any system independent of the underlying architecture or MultiAgent system.

Security: As proved in the previous section, the architecture implements manifold
security mechanism.

IV. CONCLUSION AND FUTURE WORK

In the paper we have proposed a security framework for strongly mobile agents.
The security plug in once installed on any platform has the ability to protect all the
incoming and outgoing mobile agents. It also makes sure that no malicious activity is
carried out on the agent platform. Moreover, the architecture is a hybrid approach
which implements policies on the top of other security mechanisms like encryption,

digital signature etc. This adds flexibility in the system as the security mechanisms
can be utilized using dynamic and reconfigurable system policies. Without these
policies, the security mechanisms included a single pass security check. Moreover,
the system lacked flexibility as the mechanisms were hard coded. The dynamic
policies introduce the element of intelligence and runtime decision making in the
system by inference procedures. Currently, we are working on Strong mobility in any
FIPA compliant MultiAgent system. In the future we intend to plug in this security
architecture in the Strong mobility system.

REFERENCES

[1] “Mobile Agents White Paper”, General Magic, 1998.
<URL:http://www.genmagic.com/technology/techwhitepaper.html>

[2] Robert S. Gray and David Kotz and George Cybenko and Daniela Rus: “D'Agents: Security in a
multiple-language,mobile-agent system”

[3] Rebecca Montanari, Emil Lupu, Cesare
Stefanelli: “Policy based dynamic reconfiguration of mobile code”

[4] Misbah Mubarak, Sara Sultana, Zarrar Khan, Hajra Batool Asghar, H Farooq Ahmad, Fakhra Jabeen:
“A review of mobility techniques”. In proceedings of 19" Assurance Systems Symposium, Tokyo
Institute of Technology, Japan

[5] Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, and Charles C. Zhang: “Ontology-Based
Policy Specification and Management”, Research Center and University of Hannover, Germany

[6] Todd Papaioannou : “On the structuring of distributed systems, the argument for mobility”,
doctoral thesis

[7] Wayne Jansen, Tom Karygiannis

National Institute of Standards and Technology: NIST Special Publication 800-19 — “Mobile Agent
Security”

[8] Andrew S Tenanbaum: “Computer networks”, 4" edition, vrije universiteit Amsterdam,
Netherlands

[9] “Fast software encryption”: 4™ International workshop, FSE, Haifa, Israel

[10] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based
fault isolation,” In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 203--216, Dec. 1993.

[11] “Signed Code,” (n.d.). Retrieved December 15, 2003, from James Madison

University, IT Technical Services Web site: http://www.jmu.edu/computing/infosecurity/

engineering/issues/signedcode.shtml

[12] “Introduction to Code Signing,” (n.d.). Retrieved December 15, 2003, from Microsoft
Corporation, Microsoft Developer Network (MSDN) Web site: http://msdn.microsoft
.com/library/default.asp?url=/workshop/security/authcode/intro_authenticode.asp

[13] W. M. Farmer, J. D. Guttman, and V. Swarup, “Security for mobile agents: Authentication and
state appraisal,” In Proceedings of the European Symposium on Research in Computer Security
(ESORICS), pages 118--130, Sep. 1996.

[14] H. K. Tan and L. Moreau, “Extending Execution Tracing for Mobile Code Security,” In K. Fischer
and D. Hutter (Eds.), Proceedings of Second International Workshop on Security of Maobile
MultiAgent Systems (SEMAS'2002), pages 51-59, Bologna, Italy.2002.

[15] Misbah Mubarak, Sara Sultana, Zarrar Khan, Hajra Batool Asghar, H Farooq Ahmad, Fakhra
Jabeen: “An approach to ontological interoperability”, In proceedings of 2" IEEE international
conference on emerging technologies. (ICET 2006)

[16] John A. Knottenbelt: A report on Policies for Agent Systems, Imperial College of Science,
Technology and Medicine

[17] M Andrea Rodriguez : “Similarity based ontology integration”. In Proceedings of the 1st
International Conference on Geographic Information Science, October 2000

GeBTA: Architecture for Strongly Mobile

Agents

Misbah Mubarak®, Zarrar Khan, Sara Sultana, Hajra Batool Asgharl, H Farooq Ahmad?,

Hiroki Suguri®, Fakhra Jabeen®

'National University of Sciences and Technology (NUST)

2Communication Technologies, 2-15-28 Omachi Aoba-ku, Sendai, Japan

hajra-mcs@nust.edu.pk, fakhra@niit.edu.pk

Abstract — Strong mobility is the movement of code, data and
execution state of distributed entities from one computational
node to another. General issues related to strong mobility are
inefficiency and increased code overhead. Our main concern is the
optimization of strong mobility so that it can lead to improved
performance and reliability. In the paper we argue that separation
of concerns when applied to strong mobility leads to better results.
Contribution of this paper is an architecture named GeBTA

(Generic Byte Code Transformation Architecture) that provides
efficiency and thereby reduces code overheads. This helps in
achieving reliability and fault tolerance. We have
implemented the architecture using Java. Although java is a
strong network programming language, it does not allow
access to the execution state of a thread. Therefore, achieving
strong mobility in a way that software quality parameters like
portability, efficiency and reliability are also preserved
becomes a challenging task. The paper proposes a generic
plug-in system GeBTA for strong mobility that can be

integrated with any FIPA compliant MultiAgent system. The system
can also run independent of any MultiAgent system. We have
evaluated it by checking its performance in different scenarios. The
results have proved that it consumes less time and memory as
compared to many other available systems.

Index terms: Byte code transformation, Java Virtual Machine
(JVM), MultiAgent System (MAS), Strong Mobility.

V. INTRODUCTION

With the growth of Internet as a primary

environment for communication and development of
distributed applications, there is a strong need to change the
old design paradigms and to switch onto the new ones. A
global network such as Internet must exploit different forms
of mobility in order to increase its usability and scalability
requirements. Mobile agents [1] can be used to satisfy the
scalability needs of the highly dynamic global network.
Mobile agents are autonomous software entities with the
capability of dynamically changing their
environments in a network aware manner [2, 3]. Mobile
agent technology is being promoted as an emerging paradigm
that helps in the design and implementation of more robust
and flexible agents. Mobile agents are preferable over other
design paradigms due to certain features that other
paradigms do not provide. These features
disconnected operation, reduced bandwidth,
latency, increased stability and increased sever flexibility [4,
5].

execution

include
reduced

In case of code mobility, distributed applications move
mobile agents while they are executing. When these mobile
agents acquire the capability of resuming their execution
instead of restarting at the destination, they are called
strongly mobile agents [2]. Therefore, Strong mobility is the
movement of code, data and execution state of an agent
whereas weak mobility only moves the code and data of the
agent. Code of a program consists of programs whose
methods are being executed by the thread. Data consists of
the values of local variables and registers. Thus in case of
weak mobility, execution of the agent or the object restarts
on the destination.

Java has accelerated the use of transportable code over
the internet [6]. It provides many impressive features for
distributed computing like serialization, dynamic class loading

and machine independence which help in the movement
of code and data. Therefore, most of the mobile agent
systems are built using Java. Mobile agents that are built
on the top of java only provide weak mobility because
java does not allow access to the execution stack of a
program. Execution state of a program comprises of a
java stack which is organized in frames. Whenever a
method is invoked, a frame is pushed onto the stack and
is popped when the method returns. A frame may consist
of

e Local variables of the method
e Operand stack consisting partial results of the
method
e Program Counter (PC)
Although java is currently gaining popularity in

distributed application, it lacks many features which are a
major requirement in today’s distributed computing.
There are a large number of MultiAgent systems that
provide agent services of different quality and maturity.
Majority mobile agent systems are java based which do
not provide the support for strong mobility. Such systems
include IBM Aglets [7], Mole, Voyager [8], Software Fault
tolerant Agent Grooming Environment (SAGE) [9], Java
Agent Development Framework (JADE) [10] and many
other systems that are further discussed in Section 2.

In most of the above mentioned MultiAgent systems
(MASs), the mobility service that is provided to the agents
is specific to that particular MAS only. In some cases, the
mobility service is not available for heterogeneous
architectures. Separation of concerns therefore becomes
important in mobility services. In most of the cases, the
code for mobility is strongly coupled and entangled to an
extent that it is very difficult to utilize that code in some
other MAS [11]. The motivation for our byte code
transformation project was to design and implement a
system that is not dependent on any particular
MultiAgent system. We have designed generic byte code
transformation achieving Strong
Mobility. The architecture acts as a generic plug-in which
can be used with any MAS or independent of any MAS.
Guidance and help in the implementation of the
architecture has been taken from [12].

architecture for

Many of the systems that support strong mobility
cannot be used in time critical applications due to
performance issues. Due to the excessive delay in state
saving, their use is also difficult in load balancing. On
account of these issues we have designed an architecture
that can function in general and time critical applications.
At the same time, the architecture should provide
efficient load balancing. For that, it is necessary to reduce
the code overhead imposed by the transformation

processes. Efficiency is also an important parameter in this
regard. We have performed experiments to
determine the code overhead, efficiency and memory
consumption of the architecture given in Section 9. We have
then evaluated our architecture under specific scenarios in
order to check its usability in different situations as
mentioned in Section 10.

several

Rest of the paper is organized as follows: Section 2 gives the
related work. Section 3 explains the major features in our
architecture. Section 4 discusses general strong mobility
procedure and behaviors. Section 5 gives a general structure
of our architecture. Section 6 explains the rewriting process
in byte code transformation. Section 7 provides a description
of the state saving and resuming constructs. Section 8
demonstrates the architecture using an example. Section 11
concludes the work.

VI. RELATED WORK

In this section we discuss various approaches for

implementing strong mobility. We then analyze the
MultiAgent Systems (MASs) that implement mobility in

accordance to these approaches.

A. Weak Mobility

In weak mobility, all the execution state of the agent is lost
once it migrates to the destination node. The programmer
has to restart the agent at the destination. Weak mobility is
often achieved using event based programming i.e. the code
and data gets transferred when some specific event or
condition is satisfied [7,8]. Weakly mobile agents are efficient
as compared to strongly mobile ones because there is no
code overhead introduced due to state saving and
resumption. Moreover, the MASs that support weak mobility
are built on the top of java without modifying any of its
internal architecture. This preserves portability. Therefore
weak mobility has the added advantage of efficiency and

portability [2,7].

Systems that implement weak mobility consist of IBM
Aglets, Mole, Oblig and Tacoma to name a few. Agents are
represented as either threads or processes.

There are basically two approaches for implementing strong
mobility. First is to use a modified Virtual Machine (VM) and
the other is to change the compilation model.

B. Strong Mobility through VM modification

The JVM consists of all the execution state information
that is required to migrate a thread or a process.
Therefore strong mobility can be achieved if the JVM is
modified in a way that the execution state is accessible to
the user. In order to achieve this, security constraints
imposed by the JVM must be broken. Sun imposes
licensing constraints that forbid the distribution of
modified JVM [13]. The advantage of this approach is its
efficiency as no additional code is generated in achieving
mobility. However, the disadvantage is that in modifying
JVM, portability is compromised as modification violates
the standardization of JVM. Ara [14, 15] and Sumatra [16]
are MASs that use the modified JVM approach for
achieving strong mobility. Another problem associated
with these systems is that they use JDK 1.0.2 VM that
does not make use of native threads.

NOMADS [13] is a system that uses the modified VM
approach and resolves many of the problems that exist
with systems like Sumatra and Ara. It is composed of two
basic parts, an agent execution environment called Oasis
and a custom VM called Aroma. Using these two
components, NOMADS introduces features like strong
mobility and safe agent execution. Safe agent execution
is the ability of the agents to control resource usage and
to protect themselves against malicious attacks like
denial of service. However, the Aroma VM adopts the
strategy of mapping Java threads to native threads for
execution which has the draw back of complexity and
inefficiency. Since the feature for state capturing of
native threads is not available, the Aroma VM waits until
the java threads finish executing the native code and
starts state capturing after that. Another problem
associated with the approach is increased memory usage.
The Oasis runs each agent in a separate instance of the
Aroma VM which causes increased resource usage and
memory utilization.

C. Strong Mobility through changing the compilation
model

The compilation model approach can be further divided
into two parts i.e. Source code instrumentation technique
and byte code instrumentation technique.

In the source code modification scheme [17], state saving
and resuming constructs are added at the source code level.
This is called ‘preprocessing’ the code. The preprocessed
code is then compiled and as a result the generated byte
code supports strong mobility. Major disadvantage of the
source code instrumentation scheme is the code overhead
introduced due to the state saving constructs. This also
increases the bandwidth usage during migration. In this case,
migration can not take place when the object is in its
constructor since it is not possible to transfer an object that
has not been constructed yet. Moreover, in some of the
methods an additional state saving parameter is added to the
source code which modifies the method signature. Due to
this reason, methods like actionPerformed cannot use this
migration technique. Systems like WASP and JavaGo support
source code level instrumentation technique [18]. As we will
show in Sections 3 and 4, our architecture does not introduce
these migration constraints.

Another variation of the compilation model technique is
byte code modification [17,19].
state saving and resuming constructs at the byte code of the
program. This strategy does introduce some code overheads
but they are compared to
instrumentation scheme (as the compilation overhead is
eliminated). Another advantage of this scheme is that
instructions like ‘Goto’ that are quite useful in state saving
and resuming are only available at the byte code level. A
major issue that one faces while using the byte code
instrumentation technique is of type recognition. At the byte
code level it is quite difficult to know the variables types.
However, the problem gets resolved if the design and
implementation are thoroughly done.

This scheme inserts the

little as source code

VIl. MAIJOR FEATURES OF GeBTA

Some of the major features of our system are
e OQOur architecture performs state and
resumption at the byte code level.

e The subject of mobility in our system is a thread.
Thread migrates from one computational node to
another. In our system, we have captured the
execution state of a thread. Whenever ‘yield’
method is called with argument ‘true’, the
computation of the current thread stops. The state
of the current thread is then saved and other
threads start executing. The saved thread is then

saving

transported to the destination where it
continues execution from the same point where
it left at the source.

e The object or thread can be transported during
the call to the <init> method or the constructor
which is not possible in many other approaches.

e Complete instructions at the byte code level are
handled in a way that no exceptions are raised.

e The machine dependent types are converted
into a ‘Virtual Type’. Different machines and
operating systems have different byte
allocations for data types. This is done in for
covering up difference in type representations.

e We have used a byte code transformation
approach, therefore presence of source code at
either side (source or destination is not
necessary).

e Strong mobility is triggered dynamically during
the execution of the thread whenever the
argument of yield method becomes ‘true’.

VIIl. TRANSPARENT THREAD MIGRATION

Transparent thread migration occurs by adapting the
following sequence

At the source machine: At the source machine, whenever
the yield method is called, it in turn calls the transformer
which in turn calculates and saves the execution state of
the thread in the form of state saving byte code
instructions in a machine independent data structure
called ‘Instructions_List’. This data structure is then
into the class file of the thread by the
transformer.

written

On the network: The rewritten class file is then
transferred over the network via RMI to the destination

machine.

At the destination: At the destination, a new thread
object is created. The execution state of the new thread
‘Instructions_List" data

is then retrieved from the

structure.

IX. GENERAL STRUCTURE OF GeBTA

Our architecture provides transparent thread migration
using byte code transformation approach. It is divided
into two basic components. One is byte code analyzer
and the other is translator. First basic task of the byte
code analyzer is to extract byte code attributes like Line
number table, fields, methods, classes, inner classes,

exception table and other byte code attributes using
reflection. The second task is to convert byte code
instructions into portable java format in the ‘Instructions’
package. These portable instructions are then used by the
transformer during state saving and resumption. In this way
every executed instruction can be traced.

The problem of type recognition mentioned in Section 2 is
resolved by the byte code instructions. The instructions at the
byte code level are typed for example, ILOAD refers to
loading an integer from a local variable onto stack. Similarly
LLOAD refers to loading a long value from a local variable into
the operand stack [20]. Figure 2 gives some of the byte code
level instructions that we have handled.

ACONST_NU
LL CP

FCMPG Instruction
ICONST
Conversion

Array
Instruction

Array —
Length
Instruction || [Retum
Instruction
DCONST |

BIPUSH Branch Instruction

AU

1

Figure 2: Byte code level instructions

Whenever the yield method is called for a thread, a call
to the Transformer is made. Task of ‘transformer’ is to
suspend the execution of the current thread and to call
the rewriters that in turn instantiate objects that perform
stack saving using portable byte code instructions (that
have been mentioned in context of analyzer component).
The state saving (at the source) and resuming (at
destination) instructions for the stack are then written to
the byte code. The transformed byte code is then
transmitted via serialization to the destination. At the
destination, running the transformed byte code restores
the state of the program by executing the state restoring
instructions. It starts execution from exactly the same
point where it left execution at the source machine. In
this way strong mobility can be easily accomplished

Un Conditional GOTO_ W
A GOTO A Stack
Branch Instruction FCONST Instructions

If Instruction

ATHROW Push Instruction

Arithmetic
Instruction

Constant Push
Instruction

[oowe | Lcl’z::,zizz:le }ithout any additional compilation overheads. Thus the

component modifies the byte code of the class file and
inserts state saving and establishing constructs. With the
help of these constructs, the application can easily
resume its computation at the destination even at
difficult points (In between a loop or during the
construction of an object).

Another in the architecture is the
scheduler. Its task is to schedule the threads according to
their priorities. It accepts and determines computations
of the threads and embeds them in a runnable interface.
It then starts the threads one by one. It can also restart

the threads in case they get rescheduled. It also provides

component

special handling for monitor entry and exit.

Figure 3 explains the complete procedure of byte code
transformation.

Two basic methods isSwitching and isRestoring
determine the state of the thread. Whenever the
transformer is called, context of the thread is saved and
isSwitching becomes true. At the destination, while
restoring the state of the thread isRestoring becomes

true.

T

@?
o\

«
v

isSwitching

ds

Figure 3: Transforming the byte code

Varying type representation problem occurs while
dealing with different data types. Different systems
allocate different bytes to represent the data types. This
creates problems in migration between heterogeneous
architecture. In order to resolve the issue, the
architecture converts the data types (primitive data types
and reference types) into virtual types. The stack
therefore stores and transmits the data in the form of
virtual types. This eliminates the problem that occurs due
to varying size of data types in heterogeneous
architectures.

In our system, we have defined all the primitive types
and reference types. For the uninitialized values, our
architecture gives an automatic warning that the values
are not reliable. When state saving is triggered, these
primitive and reference data types are converted into
virtual types in a way that the type information is
preserved. The advantage associated with having a well

defined typed system is easy passage through the byte code
verifier. If the typed system is specific, the transformed byte
code passes easily through the byte code verifier.

The virtual java stack that is saved in our architecture
consists of an array of virtual types. It accepts operations like
push, pop, peek, merge, size, elements etc. With the help of
these operations, one can easily analyze the stack elements.

Our architecture provides a chain of three rewriters that
perform the rewriting process. Functions of these rewriters
are:

Stripper Rewriter: This rewriter removes the local variables
and line numbers of a particular method so that they can get
updated by the subsequent rewriters.

Aux-rewriter: This rewriter checks for methods that have
an ‘InvokeSpecial’ instruction. Invoke special instruction deals
with the invocation of instance methods. It provides a special
handling for super classes, private classes and instance
initialization methods [15]. This rewriter traverses through all
the instructions that are present in the ‘Instruction_List’ data
structure associated with every method. It keeps on updating
those instructions according to their execution. Whenever
the aux-rewriter encounters this ‘InvokeSpecial’ instruction, it
obtains the constant pool that consists of all the variables and
their type information. After getting the constant pool, it
updates all the variables of the method and inserts them in
the ‘Instructions_List’ data structure. This rewriter also
updates the targets of all Goto instructions.

Main rewriter: This rewriter basically deals with all types of
invoke instructions like ‘invoke static’, ‘invoke interface’ and
‘invoke virtual’. While dealing with these ‘invoke instructions’
in a method, the rewriter saves all the instructions that get
executed in context of these invoke instructions. It saves the
variables that are associated with execution of these
instructions. It keeps on updating the values on the stack. In
the end, it saves the stack, local variables and the program
counter in the machine independent data structure
‘Instructions_List’. For a structured working of the rewriters
and their operation see Figure 4.

-

modifies

Stripper

rewriter

modifies

@

modifies

modifies

Local

variables

Aux-
rewriter D

modifies

emmm——’ All invoke

) instructions
Main-

rewriter

modifies

Figure 4: Working of rewriters

X. STATE STORING CLASSES

The transformer is the component that triggers

mobility by invoking all the rewriters and saving context

of the methods.

In Figure 5, the transformer class takes every method
and rewrites the methods according to the procedure

explained in Section 6. Concept of transformer class and

its respective rewriters has been taken from [13].

try [
JClass class = new Parser(fle_name| parsel);
ConstantPaal ep = new CanstantPaalben(class.getConstantPaoll |
Rewriter 1l = new Stripperewriter{);
Rewriter 17 = new Ausialar Rewriter()
Rewriter 1 = new MainRewriter)
Lnalyzer a = new fnalyzar):
Method[] method = class.etMethads()
for {int j = [< methad length: j++) {
Methad methad = new Methodmethod(j] Class. getClassNamel], cpben);
tl.startRewriting(method, reg):
-/ startfewrtting method, reg):
ra.startRewriting(methad, req);
methad sethlaotack)
method.sethax Vars

Figure 5: Transformer function

There is a context class associated with every method. The
task of this context class is to store the values of the variables
that belong to different data types like long, double, float,
array etc. In this way, the types will be easily converted into
virtual types. See Figure 6 for the implementation of the
class.

public class Context implements java.io.Serializable {

private int[] intCon;
private float]] flaatCon;
private double[] doubleCan:
private long[] longCon;
private (hject(] arrayCon;
private (bject[] thisCon:

1

il

Figure 6: Context class for threads

XI. EVALUATION OF GeBTA

We here discuss an example that demonstrates the
working of the architecture explicitly. We have tested the
transformation process on several algorithms. Here we give
the original as well as the transformed code of a method in a
computational algorithm FindS. In the middle of the
computation of FindS, strong mobility is triggered. The state

is then stored in a machine independent data structure
‘Instructions_List’.

if attr=l) I pop attr
Transformer= new Transormert 2: imonnull {attr)
attr = attr + vl 3 push aftr
§: call Transformer
0 ave Lontert
B: Call migrate
Rewritten bBite code
Aetual code '

Figure 7: Actual and rewritten byte code

In Figure 7, the actual code checks if the value of the
variable ‘attr’ is not equal to zero. The byte code
corresponding to it is then called which first pops the
stack for the value ‘attr’ and then checks if it is equal to
null. The next instruction in the actual code is the
invocation of ‘Transformer’. When transformer is invoked
in the actual code, the rewritten byte code pushes the
attribute on the stack and then calls the method
After that
migration gets takes place. The format of byte code in

‘transformer’. The context is then saved.

Figure 7 is modified for clarity.

This state saving and resumption often leads to a
problem i.e. which method should be transformed? There
are two approaches that are usually adopted by the
programmers [19]. First approach uses programmer’s
choice in which the programmer specifies which methods
to transform. The second approach deals with the
construction of a complete call graph for method calls. In
this approach, every class that is directly or indirectly
related to migration is transformed. In our byte code
transformation approach, we are using the second
scheme in which every class related to migration get
transformed.

XIl. EXPERIMENTAL RESULTS

We have evaluated our architecture by performing
certain experiments. The major parameters for these
experiments are efficiency and memory consumption.
These parameters in turn determine the code overhead
imposed by the transformation process.

A. Total time consumed during transformation

Table 1 shows the time consumed by various computational
algorithms when tested on the architecture. The calculated

time is less as compared to [19]. The architecture given in
[19] gives a similar byte code transformation technique.

TABLE 1:

TIME CONSUMED BY VARIOUS ALGORITHMS

Algorithm | No. of Analyzer | Transformer | Total time

methods | time time (ms) consumed
(ms) (ms)

FindS 4 800 550 1350

Quick 1 287 112 399

Sort

Fibonacci | 1 227 99 326

series

Bubble 1 272 89 361

sort

B. Increase in size of code

For checking the

increase in

size of code in

our

transformation process, we have compared our architecture
with Java Go and the byte code transformation architecture
given in [19]. The results of the comparison are given in Table
2. The mathematical figures for Java Go and Byte code
transformation architecture are taken from [19].

TABLE 2

CODE OVERHEAD INTRODUCED BY GeBTA

Byte code size (bytes)

Ours Java Go | Byte code

Algorithm Original transformation
[14]

Quick Sort 383 1100 1177 1253 (3.2

(2.8 (3.2 times)

times) | times)
Fibonacci 276 850 884 (3.2 | 891 (3.2 times)
Series (3.1 times)

times)
FindS 780 1300 1326 1430 (1.8

(1.6 a7 times)

times) | times)

C. Comparison in terms of recursive methods

We have evaluated our system on Fibonacci series to
provide a comparison for time consumed during recursive
calls to methods. We have compared our system with
Java Go architecture. The results are shown in Figure 8.

State Capture Time

10 15 20 25 30 35

Fabonnaci

Figure 8: Comparison in terms of recursion calls

The above results help us achieve our aim i.e. to use
strong mobility in efficient load balancing and time
critical application. As shown in the results, the overhead
introduced by our architecture is quite small as compared
to other systems. We are currently in a process of
optimizing the code so that the elapsed time for mobility
also decreases.

D. Test for usability of GeBTA

The architecture can easily be integrated with any MAS. It
can also operate independently without any MAS due to
the separation of concerns in the code. It can be used as

a general purpose system since it does not have any specific
code dependencies (or any other dependencies). Therefore, it
acts as a generic plug-in. It is also very useful in load
balancing applications.
architecture can also be incorporated in time critical and fault
tolerant applications. Suppose a mission critical application is
running on a system and accidentally the power of the system
fails. The architecture can then transfer the complete
application along with the execution state to another system.
The application can then continue to run on another system
from the same point where it left execution on the source
machine. This

A further enhancement of the

increases fault tolerance. We have also
evaluated this aspect of the architecture by making it work in
such a scenario. The additional requirements are

a) To add a condition that detects power failure.

b) Give the destination IP address of the system to which the
application should get transferred via RMI.

Therefore, the architecture can be instrumented easily
according to user specific needs by adding certain conditions.

XlI. CONCLUSION AND FUTURE WORK

We have designed and implemented a generic architecture
for strong mobility with the intention that the code overhead
and efficiency issues are resolved. The architecture can be
used with or without MAS. We have evaluated our
architecture on several algorithms. We have also compared
our architecture with other architectures. The results have
been satisfactory. Apart from that, in order to demonstrate
the general usability of the architecture, we have evaluated it
in a scenario that involves power failure. We have used a byte
code instrumentation approach for implementing the
architecture. The architecture is based on pure java byte code
and it instruments them accordingly. It does not take help
from any existing software. In the future, we intend to further
optimize the architecture’s code in order to increase the
utilization of the architecture in time critical mobile agents or
applications. As far as security issues are concerned, our
architecture currently does deal with security but it can be
integrated with other security techniques. In this way it will
guarantee safe execution of agents, a feature that is also
present in NOMADS

References

[1] Takahiro Sakamoto, “Mobile Agents White Paper”,
NIST special Publication 800-19 Mobile Agents Security,
General Magic, 1998.

Available:
http://www.genmagic.com/technology/techwhitepaper.
html

[2] Misbah Mubarak: “A review of mobility techniques”,
In proceedings of 19" Assurance Systems Symposium,
Tokyo Institute of Technology, Japan, 2006

[3] Giacomo Cabri, Letizia Leonardi & Franco Zambonelli:
“Weak and Strong Mobility in Mobile Agent
Applications”, Universita di Modena e Reggio Emilia Via
Campi, Italy

<URL: http://polaris.ing.unimo.it/>

[4] Lorenzo Bettini: “linguistic constructs for Object-
oriented mobile code programming & their
implementations”, PhD thesis, Dip. di Matematica,
Universit a di Siena, 2003

Available:http://citeseer.ist.psu.edu/bettini03linguistic.ht
ml

[5] Todd Papaioannou : “On the structuring of distributed
systems, the argument for mobility”, PhD thesis,
Loughborough University, 2000

[6] Geoff A. Cohen, Jeffrey S. Chase, David L. Kaminsky:
“Automatic Program Transformation with JOIE”, USENIX
annual technical conference, 1998.

[7] “Lange, D. B., & Oshima”, M: Programming and
Deploying Java Mobile Agents withAglets. Reading, MA:
Addison-Wesley.

[8] ObjectSpace. ObjectSpace VVoyager

<URL http://www.objectspace.com/products/voyager>

[9] Misbah Mubarak, Sara Sultana, Zarrar Khan, Hajra
Batool Asghar, H Farooq Ahmad, Fakhra Jabeen: “Strong
Mobility in Open Source SAGE MultiAgent System”, In
proceedings of 1 International Conference on Open
Sources Technology, 2006

[10] “Fabio Bellifemine” (TILAB, formerly CSELT) : JADE
PROGRAMMER’S GUIDE, Giovanni Rimassa (University of
Parma), Last Updated: February 2003

[11]Noury M. N. Bouragadi-Sa“adani, Thomas Ledoux and
Mario S"udholt: “A Reflective Infrastructure for Coarse-
Grained Strong Mobility and its Tool-Based

Implementation”, International Workshop on Experiences
with reflective systems (held in conjunction with Reflection
2001, the ph™*3rd International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns'),
2001

[12] Geoff Cohen, Olaf Georlitz: An implementation of Strong
Mobility using byte code transformation (Help has been taken
in terms of architecture working and evaluation), Duke
University, 2003

[13] Niranjan Suri: “Strong Mobility and Fine-Grained
Resource Control in NOMADS”, In Proceedings of the
Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on
Mobile Agents, 2000

[14] “Peine, H., & Stolpmann, T™.: The architecture of the Ara
platform for mobile agents. In KRothernel & R. Popescu-
Zeletin (Ed.), Proceedings of the First International Workshop

on Mobile Agents, Springer-Verlag.

[15] Maurer, J. Porting: “The Java runtime system to the Ara
platform for mobile agents”.

Diploma Thesis, University of Kaiserslautern.

[16] Acharya, A., Ragnganathan, M., & Saltz, J. “Sumatra:
A language for resource-aware mobile programs”. In J.
Vitek & C. Tschudin (Ed.), Mobile Object Systems.
Springer-Verlag, 1997

[17] S. Bouchenak, D. Hagimont: “Approaches to
Capturing Java Threads State”, In proceedings of
Middleware 2000.

[18] Stefan F unfrocken “Transparent Migration of Java-
Based Mobile Agents.” In Mobile Agents,pages 26—-37,
1998.

[19] Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori
Yonezawa: “Bytecode Transformation for Portable Thread
Migration in Java”, Proceedings of the Second
International Symposium on Agent Systems and
Applications and Fourth International Symposium on
Mobile Agents, 2000

[20] Tim Lindholm & Frank Yellin, “VM Specifications”, 2
edition, Sun Microsystems, California, US

