Optimization of Ammonia Recovery Unit at FFC Plant-1

By

Asad Masood

Abdul Moiz

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology (NUST)

2019

Optimization of Ammonia Recovery Unit at FFC Plant-1

Asad Masood	Reg.No: 00000124294
Abdul Moiz	Reg.No: 00000122966

This report is submitted as a Final Year Project (FYP) thesis in partial fulfillment of the requirement for the degree of

BE in Chemical Engineering

Supervisor Name: Dr. Muhammad Bilal Khan Niazi

School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) H-12 Islamabad, Pakistan

May, 2019

Certificate

This is to certify that work in this thesis has been carried out by **Mr. Asad Masood** and **Mr. Abdul Moiz,** completed under my supervision in School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Supervisor: _____

Dr. Muhammad Bilal Khan Niazi

Assistant Professor/Head of Department Chemical Engineering Department School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST), Islamabad

Submitted through:

•

HoD:_____

Dr. Muhammad Bilal Khan Niazi

Chemical Engineering Department

Principal: _____

Dr. Arshad Hussain

Principal/Dean SCME

Dedication

To our parents, to our teachers, to our friends, and to SCME^{\heartsuit}

Acknowledgements

We are forever grateful to the Almighty, for His countless blessings and rewards, Who gave us the strength and ability to complete this project successfully.

We would very much like to thank our supervisor, Dr. Muhammad Bilal Khan Niazi, for his support and guidance during our project. He has been very generous and supportive, and helped a lot to complete this project. His instruction and counsel are the major reasons for our motivation throughout the project. We are also indebted to the faculty of SCME who have supported us in times of need.

We would also like to thank our industrial supervisor, Miss Anum Shafique, for her recommendations and guidelines throughout the project, and Fauji Fertilizer Company (FFC) for giving us such an efficacious project and providing us all the data and details needed for completion of the project.

We are also thankful to our parents, without their support and encouragement, it would not have been possible to complete this degree successfully.

Lastly, we would like to thank our class fellows, who were always there in times of need and would offer assistance without a second thought.

Abstract

In the past 30 years, the chemical industry has been the subject of notable changes due to higher demands, and increasing production and operational costs. Now, there is great competition in product pricing and quality in local and global markets. As a result, it has become imperative for chemical industries to focus on optimization of industrial units and processes. Chemical processes have to be made as efficient as physically possible and within the reasonable constraints. Chemical engineers are determined to find better-operating strategies and processes controls. The current situation of Purge Gas Recovery Section at FFC Plant-1 offers an opportunity for energy optimization of the Ammonia Recovery Unit. The main idea behind the study is to reduce energy consumption for the plant and make a positive contribution towards its profitability.

Therefore, this study focused on the statistical determination of optimum operating parameters for a purge gas Ammonia separating unit at FFC-1. In order to reduce the overall energy requirement of the unit and reduce production cost of NH₃ required for Urea; ultimately increasing profitability for FFC.

List of	Figures
List of	Tablesviii
Nomer	ix
Chapter 1	: Introduction
1.1	Background1
1.2	Problem Statement
1.3	Purpose of the Study
1.4	Contributions of the Study
1.5	Brief Information about Product:
1.5.1	Ammonia
Chapter 2	2: Literature Review
2.1	Ammonia Separation
2.1.1	Gas purification
2.1.2	2 Solvent Recovery
2.2	Equipment7
2.2.1	Heat Exchanger
2.2.2	2 Reboiler
2.2.3	3 Condenser
2.2.4	4 Pumps
2.3	Optimization of Processes
2.3.	Determination of Optimum Operating Parameters:
2.3.2	2 Linear Programming 12
2.3.3	Advanced Calculus
2.3.4	4 Approximations
Chapter 3	3: Process Description
3.1	Process Flow Diagram:
3.2	Process Description of ARU 15
3.2.1	Purge Gas absorber
3.2.2	2 Off-Gas Absorber
3.2.3	B Distillation Column
3.2.4	4 Rich Solution Exchanger and LP Circulation Pump
3.2.5	5 Lean Solution Cooler

Chapter	r 4: Material Balance	. 17
4.1	Purge Gas Absorber	. 17
4.2	Off Gas Absorber	. 21
4.3	Mixer	. 25
4.4	Distillation Column	. 25
Chapter	5: Energy Balance	. 28
5.1	Purge Gas Absorber	. 28
5.2	Off Gas Absorber	. 29
5.3	Lean Solution Heat Exchanger	. 31
5.4	Lean Solution Cooler	. 32
5.5	Distillation Column	. 33
Chapter	6: Equipment Design	. 36
6.1	Purge Gas Absorber C-523:	. 36
6.2	Off Gas Absorber C-522	. 39
6.3	Distillation Column C-521:	. 40
6.4	Heat Exchanger E-523 (Rich-Lean Exchanger)	. 43
6.5	Lean Solution Cooler E-524:	. 49
6.6	Reboiler E-521:	. 50
6.7	Condenser E-522:	. 51
Chapter	7: Costing	. 52
Chapter	8: Simulation	. 61
8.1	Property Package	. 61
8.2	Absorber 1	. 62
8.3	Absorber 2	. 63
8.4	Distillation	. 63
8.5	Pumps	. 64
Chapter	9: Hazard and Operability (HAZOP) Study	. 66
Chapter	10: Instrumentation and Process Control	. 70
10.1	Absorbers	. 70
10.2	Cooler for lean solution	. 70
10.3	Distillation Column	. 70
10.4	Condenser	. 71
10.5	Reboiler	.71

Chapter 1	1: Energy Optimization	. 72
11.1	Design of Experiments:	. 72
11.2	Aspen HYSYS Simulation:	. 72
11.3	Response Surface Methodology:	. 74
11.4	Optimization Results	. 76
Conclusio	n	. 78
Reference	·S	. 79

List of Figures

14
37
38
44
52
53
54
61
62
62
63
63
64
64
65
73
73
76

List of Tables

Table 1 Inlet Gas Composition (Absorber 1)	17
Table 2 Inlet Water Composition (Absorber 1)	18
Table 3 Outlet Solution Composition (Absorber 1)	19
Table 4 Flowrates (Absorber 1)	20
Table 5 Gas Compositions (Absorber 1)	20
Table 6 Inlet Gas Composition (Absorber 2)	21
Table 7 Inlet Water Composition (Absorber 2)	22
Table 8 Outlet Solution Composition (Absorber 2)	23
Table 9 Flowrates (Absorber 2)	24
Table 10 Gas Compositions (Absorber 2)	24
Table 11 Flowrates (Distillation Column)	27
Table 12 Compositions (Distillation)	27
Table 13 Heat Exchanger Summary (E-523)	31
Table 14 Heat Exchanger Summary (E-524)	32
Table 15 Condenser Energy Balance	33
Table 16 Reboiler Energy Balance	34
Table 17 Column Packing Cost	54
Table 18 Other Equipment Cost Estimates	55
Table 19 RSM Factor Ranges	74
Table 20 RSM Run Results	74
Table 21 ARU Duties & Steam Requirements	77

Nomenclature

- ΔTm Log Mean Temperature Difference
- m Meter
- mm Millimeter
- cm Centimeter
- m2 Meter square
- m3 Meter cube
- cm2 Centimeter square
- cm3 Centimeter cube
- KJ Kilo Joule
- kg Kilogram
- h Hour
- Cv Heat Capacity of Vapor
- Cl Heat Capacity of Liquid
- gmol gram mole
- L Length
- do Outer diameter of tubes
- di Internal diameter of tubes G Mass Velocity
- α Selectivity
- μ Viscosity
- λ Latent heat
- v velocity
- A Area
- y1 Mole Fraction
- y2 Mole Fraction
- T Temperature

- N Number of tubes
- ΔT Temperature difference
- m mass flow rate
- Q Energy
- ρf fluid density
- °C Centigrade
- °K Kelvin
- P Pressure
- ρ Density
- KJ/kg Kilo Joule per kilogram
- U Overall Heat Transfer Coefficient
- Pt Tube Pitch
- Ds Shell Diameter
- Ib Baffle Spacing
- Gs Mean Velocity
- Ft Friction Factor
- W Watt
- H2 Hydrogen
- N2 Nitrogen
- Re Reynolds Number
- ΔP Pressure Difference
- PCE Purchase Cost of Equipment
- hi Internal Pipe Heat Transfer Coefficient
- O.D Outer diameter
- As Cross-Sectional Area
- Pr Prandtl Number

- Nu Nusselt Number
- de Equivalent diameter
- Np Number of Tube Passes
- ut Tube Side Velocity
- jh Heat Transfer Factor
- s Second
- do Tube Outside Diameter
- Dv Diffusivity of vapor
- Z Height of Column
- ARU Ammonia Recovery Unit
- MTPD Metric Tons Per Day
- NMC Normal Cubic Meter per hour
- MMSCFD Metric Million Standard Cubic Feet per day
- FFC Fauji Fertilizer Company Ltd.

Chapter 1: Introduction

1.1 Background

Modern Engineering and technological advancement have made processes very efficient. Processes with low yields are not preferred now a days and efforts are being made continuously to make a process more and more efficient. A convenient way for increasing efficiency of a process is to reduce waste emission and reuse the wastes still emitted. This not only increases the yield but also protects the environment from hazardous wastes of chemical processes.[4]

In chemical plants, some of the wastes are inevitable. One such example is Ammonia production in Fertilizer industry. Purge-gas is extracted from the ammonia synthesis loop to maintain the inert level in the loop and maximize conversion in the ammonia synthesis reactor. [2, 18] Purge gas contains Ammonia, Hydrogen and other trace gases. Ammonia can be recovered from purge gas to increase total Ammonia gain. In this way, the process can be made more efficient.

Ammonia Section of Plant-I, FFC Goth Machhi employs Ammonia recovery Unit (ARU) for treating purge gas. The Ammonia Recovery Unit (ARU) is installed to recover the ammonia present in purge and off gas from Ammonia Synthesis Loop. [20]

The recovery of Ammonia from Purge gases is essential to:

1. Keep the overall NOx emission of the plant within safe environmental regulations ranges (400mg/l) under Punjab Environmental Quality Standards [1]

2. It also results in small increase in production of ammonia (~14.8 MTPD)

1.2 Problem Statement

The ARU at Plant-1 is designed to handle 22,499 Nm³/h considering the future installation of an economically feasible Hydrogen Recovery Unit (HRU). But currently, due to the limitations of the gas burner nozzles, this number of Purges cannot be sent to the boilers. So, the ARU is being operated at a lower purge gas flow rate. Due to such conditions, it is required by FFC to optimize the unit for current purge gas flow rates. Therefore, the steam consumption for the ARU must be lowered keeping

in view of ammonia recovery and environmental constraints.

1.3 Purpose of the Study

The purpose of this project is to address the energy issues because of limited natural gas reserves and to favor ammonia production gain. The minimization of energy required to operate the plant along with better operating strategies was also the focus of study.

The purpose mentioned above was met by a simulations-based study involving chemical process design and optimization. The changes to the current design were not proposed and recalculations for the current case process design were done. After comparison with the installed unit it was suggested to perform a statistical study of operating parameters of the ARU to minimize the energy requirement.

1.4 Contributions of the Study

The processes described in this thesis report are a proposal to some of the problems faced by FFC in their Plant-I at Goth Machhi. Special considerations have been taken as to define all the processes in detail so that the industry can employ the advised techniques without many hindrances. The authors hope that the project will play a part, no matter how small, in resolving some of the issues identified in the report.

1.5 Brief Information about Product:

1.5.1 Ammonia

Ammonia is a chemical compound made up of Nitrogen (N₂) and Hydrogen (H₂). The chemical formula of Ammonia is (NH₃). It has no color and is characterized by its pungent smell. It is of significant importance in the fields of food and fertilizers. Liquid Ammonia boils at -33.3 °C and has a freezing point of -77.7 °C. Its density is about one half the density of air. [2]

Uses of Ammonia

Agricultural industries account for major use of Ammonia, utilizing almost80% of the Ammonia.

ii. Liquid fertilizer solutions are made from ammonia which consists of aqua ammonia, ammonium nitrate and urea etc.

iii. Nitric acid is widely manufactured using Ammonia.

iv. Alkalis and dyes production also account for major use of Ammonia.

v. Ammonia finds its use in petroleum industry for neutralizing the acid constituents of crude oil.

vi. Variety of pharmaceuticals are also prepared by using Ammonia as building block.

vii. Ammonia is used as a refrigerant on a large scale in food, beverages and Petro chemical industries.

Dilute solutions of Ammonia are extensively used as detergents and household cleaners.

Chapter 2: Literature Review

2.1 Ammonia Separation

2.1.1 Gas purification

There can be many possible ways to purify a gas but most commonly used method for gas purification is scrubbing or absorption. In absorption, gas is passed through a suitable solvent in an absorption column where the one or more components which needs to be separated are absorbed into the solvent depending upon their solubility. Basically, mass transfer takes place during absorption.

There are two types of absorption: (McCabe 1993) [5]

- Physical Absorption
- Chemical Absorption

Physical absorption is simply a unit operation in which solute only dissolves into the solvent and form a solution. No new products are formed. In case of water and hydrocarbon solvents, physical absorption takes place.

In chemical absorption, chemical reaction takes place when a solute is dissolved in a solvent and new product are formed. When absorption of acid gases in basic solvent occurs, mostly chemical absorption occurs. Chemical absorption is also called reactive absorption.

As suggested by Coulson 1977 for absorption, high pressure and low temperature conditions are required. [6] Absorption depends on the gas velocity. If the gas velocity is too high, it will not allow liquid to come down the column and liquid will accumulate on the trays. This phenomenon is called flooding. If the gas velocity is very low, more liquid will flow down the column, vapor- liquid contact time will be reduced and liquid accumulates at the bottom of column. This process is called weeping. Both these processes are undesirable and reduce the absorption efficiency. In case of packing, channeling occurs which is the phenomena in which liquid forms a particular path or channel and moves along that channel only.

Absorption column can be packed or tray type depending upon the column diameter

and the gas and liquid load. Packing can be random or structured. There are different types of packing available like Pall ring, Raschig Ring, Berl Saddle etc.

Similarly, there are different types of trays i.e. Sieve Trays, Bubble Cap Trays, Valve trays. In our process, two absorption columns are used. For purge gas, tray column is used where trays are sieve type. Sieve trays are simpler, cheaper, have high capacity and efficiency and needs low maintenance as compared to other trays. For off gas, packed column is used.

There are different solvents available for the absorption but we have chosen Water as solvent because it is easily available, cheap, universal solvent, Ammonia has high solubility in water as compared to other components in purge gas and only physical absorption takes place due to which aqueous solution of ammonia is formed. [2, 3]

2.1.2 Solvent Recovery

Water is used for ammonia absorption from Purge and Off Gas, as a result of which rich solution of ammonia and water is formed. Solvent should be recovered from the solution so that it can be recycled to make the process economical.

There are different ways to separate a solute and recover a solvent from it. Most common are:

- Stripping
- Distillation

Stripping:

Stripping [6] is also separation technique similar to absorption but in stripping gas is separated from solvent. A liquid solution (gas absorbed in solvent), is passed through a gas and as a result of this, gas from solution is absorbed by the gas used for separation. It is also mass transfer process. Gas and liquid moves in opposite direction. Gas is introduced from the bottom of stripper while the liquid solution and leaves the column from the top. Gas takes the desired component from the solution and leaves the column from the stop. High temperature and low pressure are required for stripping. The gas used for separation depends on the solubility of solute and its availability. Different fluids can be used which includes steam, hydrocarbons as well as other inert gases.

There are various design parameters for stripper. Amount of solute in exit gas, fluid used for separation and the operating conditions are few of them.

Stripping column can be packed or tray type depending upon the column diameter and the gas and liquid load. Packing can be random or structured. There are different types of packing available like Pall ring, Raschig Ring, Berl Saddle etc.

Similarly, there are different types of trays i.e. Sieve Trays, Bubble Cap Trays, Valve trays. (Richardson-1999) [7]

Distillation

Distillation is a process of separation of components from a mixture on the basis of volatility difference. The mixture is heated and then sent to a distillation column where lighter components move upward and heavier components move downwards. At each tray vapor – liquid equilibrium exits. Lighter components from the liquid are vaporized and heavier components from the vapor phase are condensed thus enriching the vapor phase with lighter components and liquid phase with the heavier components. Temperature decreases from bottom to top of column. At the top condenser is used for condensing the top product. Some amount of product is refluxed back to increase the product purity. At the bottom of column reboiler is used for heating the bottoms of column. Feed is entered at the plate into the column called feed plate. The section of the column above feed plate is called rectification section while the bottom section is called stripping section. [6]

There are different types of trays i.e. Sieve Trays, Bubble Cap Trays, Valve trays used in distillation column.

In our process, distillation is used for recovery of solute from the solution. We used sieve trays because they are cheap, simple, easy to maintain, have high capacity and high efficiency. As our system is binary, no complex separation occurs. Water and ammonia have distinguished boiling points so they are easily separated.

We have chosen distillation over stripping because both top and bottom products are desirable. If we use any third component to separate the mixture, then that stripping agent will form a mixture with the solute and we have to design another unit to recover solute from that otherwise we have to compromise for one product as it will be lost.

2.2 Equipment

2.2.1 Heat Exchanger

It is a device which is used to transfer heat between one or more than one fluid, which are either in direct contact or separated by a wall so that the liquids do not mix with each other. (Kern, 2002) Heat Exchangers are widely used in various fields like natural gas processing, petroleum industry etc.

There are different types of Heat Exchangers, but we will be discussing the shell and tube heat exchanger.

Shell and Tube Heat Exchangers:

The heat exchangers used in the project are the shell and tube heat exchangers. This is the most commonly used type of heat exchanger and is used for high pressure systems. This heat exchanger is composed of two main parts, the Shell and the Tube-Bundle. A fluid moves through the tube bundle while another fluid runs through the shell side, in turn providing a heat transfer between the two. Heat travels either from tubes to the shell side or from shell side fluid to the tube side fluid. The fluids used in the exchanger can be both liquid and gas. When operating a shell and tube heat exchanger, large heat transfer area must be used, because in this way, the waste heat can also be used up in the system.

Single phase and two-phase heat exchangers are also used, i.e. same phases on either side and different phase on either sided respectively. The two-phase exchanger can also be called a boiler as it is used to boil the liquid to its gas or vapor phase.

2.2.2 Reboiler

A reboiler is a type of heat exchanger used at the bottom of distillation column to produce vapors of the bottom product to improve separation. The exchanger is mostly of shell and tube type. The bottom liquid is partially vaporized and vapors are sent to column while remaining liquid is collected as a product. The stream used for heating is mostly steam but other fluids can also be used for heat exchange. [11]

There are different types of reboilers and is chosen on the basis of following factors:

Nature of the fluid e.g. viscosity, fouling tendency

- Operating conditions particularly operating pressure
- Layout of equipment

Types of Reboiler:

There are different types of reboilers depending upon the orientation and circulation type. [7] (Richardson, 1999)

1. Kettle Reboiler:

This type of reboiler is also called submerged bundle reboiler. Here tubes are immersed in the pool of liquid. Steam moves through the tube. These are used for the processes where heat exchange surface should be large, vapor quality should be high and high turndown ratio is required. Mostly they are used for vacuum applications and where high rate of vaporization is required.

2. Thermosiphon:

Thermosiphon is most common type of reboiler. These are mostly used in refining operations. The fluid to be vaporized is in the shell side while the heating fluid is kept in tube side. The boiling occurs in the shell side. A liquid vapor mixture is introduced into the column. It is of horizontal and vertical type. Maintenance of horizontal reboiler is simpler as compared to vertical but their fouling tendency is high. Vertical type is mostly found in chemical and petrochemical industries.

Density difference between vapor liquid mixture from reboiler and liquid from column to reboiler is the driving force for liquid circulation.

3. Forced-Circulation Reboilers:

In this type of reboiler, pump is used for circulating liquid. These are mostly used for highly viscous liquids and fluids with high fouling tendency. These are very expensive and uneconomical for common services.

2.2.3 Condenser

Condensation is a process where a gaseous state is converted into liquid state. It is of two types:

- Drop wise condensation
- Film wise condensation

Heat transfer coefficients are higher for dropwise condensation. In some condensers only phase change occurs while in some condensers, desuperheating and subcooling occurs as well. If the temperature of vapors is higher than the boiling point, firstly this super heat is removed to decrease its temperature till boiling point. Then phase change occurs at constant temperature. Sometimes the product is required at temperature below its boiling point, then after phase change cooling is done to remove its energy and decrease its temperature. This is called subcooling.

Condensers are similar to shell and tube heat exchangers where one fluid is inside the tubes and the other fluid is inside the shell. There can be different orientation of tubes. Either they can be horizontal or vertical.

Condensation can occur in following ways:

- I. Condensation outside horizontal tubes i.e. on shell side
- II. Condensation inside horizontal tubes
- III. Condensation inside or outside vertical tubes

Every type of condenser has different formulae for calculation of heat transfer coefficient. Condenser is chosen on the basis of type of fluid being condensed and the cooling fluid used for condensation.

In our process, condensation occurs outside the horizontal tubes. Coolant is water which is inside the tubes. Our process requirement is to sub cool the product, so firstly vapors are converted into liquid state and then extra heat is removed before collection of final products. [7]

2.2.4 Pumps

Multi-Stage Centrifugal Pumps:

Multi-stage Centrifugal pumps have essentially the same principal as all multi-stage machinery such as heat exchangers and crystallizers or distillation columns. The multiple stages amplify the effect of one and build on it to create a much more powerful compounded effect than a single stage. For instance, it is very expensive and tedious to design a pump that can account for a pressure drop of 150 psig, but a Multi-Stage pump can do the job for a lower price. For a Multi-Stage Centrifugal Pump, there is more than one impeller either mounted on one or on different shafts. If impellers are connected in series, a greater pressure will be registered at the outlet but a greater flowrate will result when the impellers are connected in parallel. Multi-Stage Centrifugal Pumps are very common for the propulsion of Boiler Feed Water (BFW).

Diaphragm Pumps:

Diaphragm pumps are positive displacement pumps that employ some sort of rubber, Teflon or thermoplastic diaphragm that is used to pump fluids.

Peristaltic Pumps:

Peristaltic pumps are positive displacement pumps that work with the help of a rotor fitted with 'shoes' or 'rollers' that enable a forward pushing motion. Basically, the fluid is housed inside tubes that are then rolled or pushed forward by rotary motion. These pumps are useful for chemical dosing and prevent backflow due to controlled flow action.

Hydraulic Pumps:

This is a kind of pump which converts mechanical energy into hydraulic energy to operate the hydraulic systems. The pump operates in a way that it creates a vacuum at the pump inlet so that the fluid is sucked into the inlet line of the pump, and then it is sent off towards hydraulic drive systems. They can further be divided into Hydrostatic and Hydrodynamic pumps which are positive displacement pumps and fixed displacement pumps respectively.

2.3 Optimization of Processes

We need to understand the concept and need for Optimization before we can proceed with it. It is the employment of certain tools or methods to arrive at the most efficient and cost-effective solution to a process problem or a design. A process can constitute of some experimental data or even represented by some mathematical relations. We chose a single performance variable such as maximum profitability or minimum resource requirement. The objective of the optimization is to find the numerical values of certain factors in the process that yield the best value of the performance variable. There's often times a compromise between capital costs and operations cost in process optimization. The process model, its factors and the performance variable constitute what we call an "optimization problem".[4]

Following are the 6 steps that are often followed to analyze, evaluate and solve an optimization problem as referred by Himmelblau (1998):

- 1. Define the process variables and specific characteristics; by making a list of all the variables involved we have analyzed the problem.
- 2. Determine clearly what needs to be optimized by specifying a function in terms of the variables enlisted in the first part. This process is called the model formulation.
- 3. Using mathematical expressions, structure a reasonable model for the design that relates our input output variables for the process. Use the basic principles of engineering (mass and energy balances, thermodynamics and transport). Perform degree of freedom analysis to check feasibility of problem solution.
- 4. If the size of the problem is too large or beyond scope:
 - a. Segmentalize it down to manageable parts
 - b. Re-define the objective function in a simpler way
- 5. Apply suitable techniques to the mathematical model of the problem.
- 6. Perform analysis and examine the results. Often, we have to check the sensitivity of the result to the changes in our assumptions and the coefficients present in the problem statement.

Using this 6-step approach, we can move towards better designs, operating procedures and control systems. We can add value to any product, operation or industry using optimization techniques. [4]

2.3.1 Determination of Optimum Operating Parameters:

Once an equipment or a unit is designed, we cannot make physical changes to it. For a column, its number of trays, diameter, tray spacing and height is fixed, and very few degrees of freedom can be manipulated to reduce the operating cost.[4, 6, 12] I these cases we have to determine the optimum operating parameters such as the temperature, pressures, concentrations and levels, which can be easily implemented at a unit to reduce its operating cost; while resulting in greater economic profitability.

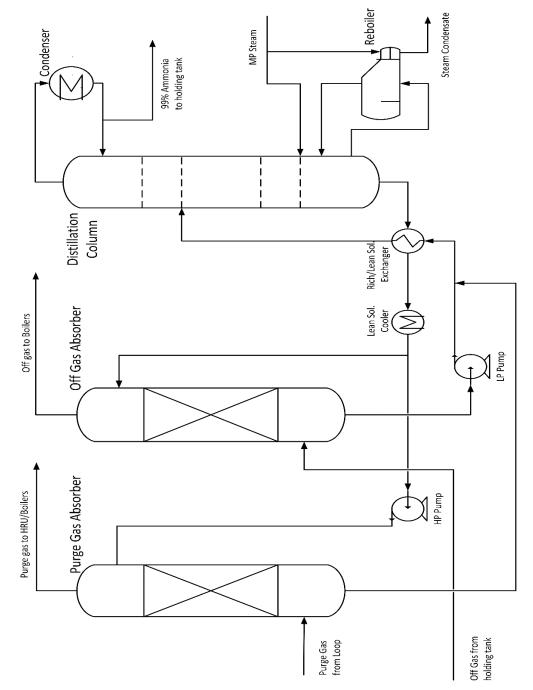
There are number of techniques available for the solution of optimization problems, ranging from programming, analytical methods, computational techniques and iterative approximations. But the choice of methods totally depends on the type of problem at hand. We will be discussing these techniques in detail before choosing one for our objective. [4]

2.3.2 Linear Programming

When the problem presents us linear relationships between different variables, we employ the methods of linear programming to that problem. It is easy and simple to comprehend and apply. An objective function and constraints are determined. Each constraint has a linear relation that can be displayed analytically using straight lines and a feasible region is determined. Various algorithms exist to solve the linear programming equations. Once we find out the critical points of the feasible region, we can find out the response of the performance parameter at these critical points. In this way we can determine the maximum or minimum response of the performance parameter at the respective conditions of the variables. Linear Programming is extremely useful in managing resources and inventories which have direct relations with each other and can be evaluated with ease.

2.3.3 Advanced Calculus

Solving optimization problems using calculus is also very renowned technique. The objective function needs to be specified on differential equations in terms of two or more variables. The differential equation is then optimized using critical point


techniques. The derivative of the equations can tell us more about the trends of the response over a range of the values of the variables. This technique is often employed and suitable for the case of design and dimensions of the equipment for a process where primary equations are variables are present and the performance parameters directly relate to economics of the project.

2.3.4 Approximations

Suitable in the case where both the objective function and variables cannot be described in linear or differential terms easily.[4] Approximations consist of numerical methods to evaluate a problem that cannot be solved by conventional techniques of differential or integrals. We ca also employ this technique when we only have the experimental data and need to find out trends and objective functions out of it. This type of analysis, lacking on fixed accurate values, yet is very powerful and can be used on almost all types of problems. [17]

Chapter 3: Process Description

The processes described in this thesis are based on recovery. Ammonia is recovered from purge and off gas, which are coming from the main synthesis loop. After recovering ammonia from these gases, the clean gases are sent to the boilers. The whole process is described in detail below:

3.1 Process Flow Diagram:

Figure 1 Process Flow Diagram (PFD)

3.2 Process Description of ARU

Ammonia Absorption:

3.2.1 Purge Gas absorber

Purge gas from the synthesis loop enters the purge gas absorber from bottom at 12 °C and 231 bar. Flow of purge gas is at maximum 11,000 Nm³/h. Water (the liquid phase for absorption) enter from the top of the column. This water contains little amount of ammonia. Ammonia gets absorbed into the water (because of its affinity for water) forming aqueous solution and it leaves from the bottom as rich solution. Rest of the gas mixture i.e. purified purge gas leaves from the top of the column boilers as fuel gas. In the future, the clean purge gases will be sent to the HRU for hydrogen recovery.

3.2.2 Off-Gas Absorber

Off gas from the letdown vessel (vessel in main process) enters the second absorber at 40 $^{\circ}$ C and 24.1 bar. Flow of off gas is 1066 Nm³/h. Water enters from top and off Gas from bottom and absorption takes place as explained above. Rich Solution of Ammonia leaves from the bottom while unabsorbed gas mixture go to boilers from the top of the column.

The bottom product i.e. rich solution of both absorbers, are combined. These are sent to distillation column so that water used can be recovered and recycled. Also, ammonia is the desired product so it is also collected and stored as product.

Before distillation column, this solution is heated by a series of shell and tube heat exchangers so that distillation temperature is achieved.

3.2.3 Distillation Column

Rich solutions from both the absorbers are entered as feed to the feed plate in distillation column. The temperature and pressure of both the streams are adjusted before both of these are mixed and entered as single feed to the column. The temperature of feed is 163 °C. Separation of ammonia and water occurs because of their difference in volatility. Ammonia vapors leave from the top of the column, some are refluxed while remaining vapors are taken out. Lean solution (which is almost pure water) leaves from the bottom and is used as solvent in both absorbers after cooling.

Ammonia vapors from the top of column are sent to condenser where condensation takes place outside the horizontal tubes and cooling water used for condensation is passed through the tubes. Ammonia vapors are its boiling point. In the condenser not only, condensation takes place but sub cooling is also done where its temperature is reduced below its condensation temperature. Some of liquid ammonia is refluxed back to column while remaining is collected as a product. About 600kg/h of 99% pure Ammonia is received at the distillate stream. Sent to the Ammonia Let down vessel and to storage.

3.2.4 Rich Solution Exchanger and LP Circulation Pump

For distillation of Rich solution, it must enter the column at high temperature (163 °C) and appropriate pressure. So rich solution from both the absorbers pass through heat exchanger for temperature gain. The hot fluid in exchanger is the high temperature lean solution (water) of distillation column. Pressure of rich solution coming out of purge gas absorber is enough, so it enters heat exchanger without pumping. Rich solution coming out of Off-gas absorber is at low pressure hence it is passed through LP circulation pump for bringing it up to feed plate pressure. The hot lean solution is in the shell side while the cold rich solution is passed through the tubes where heat transfer takes place.

3.2.5 Lean Solution Cooler

This is a heat exchanger which further cools the lean solution (water) coming out from the bottom of the distillation column. Lean solution after transferring heat to rich solution in the two heat exchangers is still at high temperature. So further heat is removed by cooling with water. Temperature of exchanger is 380C at the exit of this heat exchanger. The recovered water is then used in both absorbers as a solvent.

Chapter 4: Material Balance

4.1 Purge Gas Absorber

Purge Gas = P_1

Lean Solution (Water) = W_1

Purified Purge Gas = G_1

Rich Solution (Water + Ammonia) = R_1

Purge Gas (P1):

Molar Flow $(P_1) = 11,000 \text{Nm}^3/\text{hr} = 490.76 \text{ kgmol/hr}$

Inlet Temperature = $12 \degree C$

Inlet Pressure = 231 kg/cm^2 g = 22.75 MPa

Components	Compositions	Flowrates (kgmol/hr)
H ₂	59.5%	292.00
N2	20.3%	99.62
Ar	2.0%	10.31
CH ₄	12.6%	61.84
NH3	5.6%	26.99

Table 1 Inlet Gas Composition (Absorber 1)

Lean Solution (W₁):

Molar Flow of lean solution= W_1 (kgmol/hr)

Inlet Temperature = $40 \degree C$

Inlet Pressure = 120 kg/cm^2 g = 11.87 MPa

Composition of lean solution is assumed as shown below:

Table 2 Inlet Water Composition (Absorber 1)

Components	Compositions
H ₂ O	99%
NH ₃	1%

 H_2 , N_2 , CH_4 and Ar act as inert and they don't dissolve in water. These components come in same amount in exit gas.

It is assumed that the exit gas contains 0.2% ammonia. Apply component balance on these inert

H2: $H_2 \text{ in } P_1 = H_2 \text{ in } G_1$

 $0.595 * (490.76 \text{ kgmol/hr}) = H_2 \text{ in } G_1 = 292.00 \text{ kgmol/ hr}$

N₂: N_2 in $P_1 = N_2$ in G_1

 $0.203 * (490.76 \text{ kgmol/hr}) = N_2 \text{ in } G_1 = 99.62 \text{ kgmol/ hr}$

 $Ar: Ar in P_1 = Ar in G_1$

 $0.021 * (490.76 \text{ kgmol/hr}) = \text{Ar in } G_1 = 10.31 \text{ kgmol/ hr}$

CH4: CH₄ in $P_1 = CH_4$ in G_1

 $0.126 * (490.76 \text{ kgmol/hr}) = CH_4 \text{ in } G_1 = 61.84 \text{ kgmol/ hr}$

Overall Balance on G1: $G_1 = N_2 + H_2 + Ar + CH_4 + NH_3$

 $G_1 = 292 + 99.62 + 10.31 + 61.84 + 0.002 G_1$

 $G_1 = 463.77 + 0.002G_1$

 $0.998G_1 = 463.77$

$G_1 = 464.70 \text{ kgmol/ hr}$

Rich Solution (**R**₁):

We are assuming rich solution compositions to be

Components	Compositions
H ₂ O	85%
NH ₃	15%

Table 3 Outlet Solution Composition (Absorber 1)

Apply ammonia balance,

NH3: Ammonia in P_1 + Ammonia in W_1 = Ammonia in G_1 + Ammonia in R_1

 $(0.055 * 490.76) + (0.01 * W_1) = (0.002 * G_1) + (0.15 * R1)$

 $26.99 + 0.01 W_1 = 0.929 + 0.15 R_1$

 $26.06\,{=}\,0.15\,R_1\,{-}\,0.01\,W_1$

Apply water balance,

H₂O: Water in Lean Solution = Water in Rich Solution

 $0.99 \ W_1 {=} \ 0.85 \ R_1$

$$W_i = 0.859 R_1$$

Solving the two balances

 $26.06 = 0.15 R_1 - 0.01 (0.859 R_1)$

 $26.06 \,{=}\, 0.15 \; R_1 \,{-}\, 0.00859 \; R_1$

 $26.06 = 0.14141 R_1$

$R_1 = 187.76$ kgmol/ hr

 $W_1 = 0.859 * 187.76$

$W_1 = \textbf{161.29 kgmol/hr}$

Also, by applying overall molar flow balance on the absorber,

 $P_1 + W_1 = R_1 \! + G_1$

 $W_1\!\!=\!\!187.76+464.29-490.76$

 $W_1 = \textbf{161.29 kgmol/hr}$

Flowrates (kgmole/hr)
490.76
464.29
161.29
187.76

Table 4 Flowrates (Absorber 1)

Table 5 Gas Compositions (Absorber 1)

Inlet Compositions	Outlet Compositions
59.5 %	63 %
20.3%	21.5%
2.1 %	2%
12.6 %	13.3 %
5.5 %	0.2 %
	59.5 % 20.3% 2.1 % 12.6 %

4.2 Off Gas Absorber

Off Gas = P_2

Lean Solution (Water) = W_2

Purified Off Gas = G_2

Rich Solution (Water + Ammonia) = R_2

Off Gas (P1):

Molar Flow (P₂) = 1066 Nm^3/hr = 48 kgmol/hr

Inlet Temperature = $40 \degree C$

Inlet Pressure = 24.1 kg/cm^2 g = 2.47 MPa

Components	Compositions	Flowrates (kgmole/hr)
H ₂	43 %	20.64
N2	17.6%	8.45
Ar	2.0%	0.96
CH4	20.2%	9.70
NH3	17.2%	8.26

Table 6 Inlet Gas Composition (Absorber 2)

Lean Solution (W₂):

Molar Flow of lean solution= W₂ (kgmol/hr)

Inlet Temperature = $38 \degree C$

Inlet Pressure =
$$20 \text{ kg/cm}^2$$
g = 1.96 MPa

Composition of lean solution is assumed as shown below:

Table 7 Inlet Water Composition (Absorber 2)

Components	Compositions
H ₂ O	99%
NH ₃	1%

H₂, N₂, CH₄ and Ar act as inert and they don't dissolve in water. These components come in same amount in exit gas.

It is assumed that the exit gas contains 0.1% ammonia. Apply component balance on these inert

H2: $H_2 \text{ in } P_2 = H_2 \text{ in } G_2$

 $0.43 * (48 \text{ kgmol/hr}) = H_2 \text{ in } G_2 = 20.64 \text{ kgmol/ hr}$

N₂: N_2 in $P_2 = N_2$ in G_2

 $0.176 * (48 \text{ kgmol/hr}) = N_2 \text{ in } G_2 = 8.45 \text{ kgmol/ hr}$

 $0.02 * (48 \text{ kgmol/hr}) = \text{Ar in } G_2 = 0.96 \text{ kgmol/ hr}$

CH4: CH4 in $P_2 = CH_4$ in G_2

 $0.202 * (48 \text{ kgmol/hr}) = CH_4 \text{ in } G_2 = 9.70 \text{ kgmol/ hr}$

Overall Balance on G₂: $G_2 = N_2 + H_2 + Ar + CH_4 + NH_3$ $G_2 = 20.64 + 8.448 + 0.96 + 9.696 + 0.001 G_2$ $0.999G_2 = 39.744$ $G_2 = 39.78 \text{ kgmol/ hr}$

Rich Solution (R₂):

We are assuming rich solution compositions to be

Components	Compositions
H ₂ O	90%
NH ₃	10%

Apply ammonia balance,

NH3: Ammonia in P_2 + Ammonia in W_2 = Ammonia in G_2 + Ammonia in R_2

 $(0.172 * 48) + (0.01 * W_2) = (0.001 * G_2) + (0.1 * R_2)$

 $8.256 \pm 0.01 \ W_2 = 0.039784 \pm 0.1 \ R_2$

 $8.216216\,{=}\,0.1\ R_2\,{-}\,0.01\ W_2$

Apply water balance,

H₂**O:** Water in Lean Solution = Water in Rich Solution

$$0.99 \text{ W}_2 = 0.9 \text{ R}_2$$

$$1.1 W_2 = R_2$$

Solving the two balances

 $8.216216 = 0.1 (1.1 W_2) - 0.01 W_2$

 $8.216216 = 0.11 \ W_2 - 0.01 \ W_2$

$W_2 = 82.16 \text{ kgmol/ hr}$

 $R_2 = 1.1 W_2$

$R_2 = 90.38$ kgmol/ hr

Also, by applying overall molar flow balance on the absorber,

 $P_2 + W_2 = R_2 + G_2$

 $R_2 = 82.16 + 48 - 39.78$

$W_2 = 90.38 \text{ kgmol/ hr}$

Flowrates (kgmol/hr)		
48.00		
39.78		
82.16		
90.38		

Table 9 Flowrates (Absorber 2)

Table 10 Gas Compositions (Absorber 2)

Components	Inlet Compositions	Outlet Compositions
H ₂	43 %	52.3 %
N ₂	17.6%	21.2%
Ar	2.0 %	2.3%
CH ₄	20.2 %	24.1 %
NH ₃	17.2 %	0.1 %

4.3 Mixer

Rich Solution from absorber 1 + Rich Solution from absorber 2 = Total Rich Solution

 $\mathbf{R}_1 + \mathbf{R}_2 = \mathbf{R}_3$

 $187.76 + 90.38216 = R_3$

R3 = **278.4 kgmol/ hr**

 H_2O in R3 = x

Apply water balance,

 $0.85 * R_1 + 0.9 * R_2 = x * R_3$

0.85 * 187.76 + 0.9 * 90.38 = x * 278.4

H₂**O:** x = 0.866

NH₃: 1 - x = 1 - 0.866 = 0.134

4.4 Distillation Column

Feed of distillation column = F

Top product = D

Bottom Product = B

Vapors coming from top of column = V

Reflux amount = R

Make-up steam = M

Now, Feed of Distillation:

$F = R_3 = 278.4 \text{ kgmol/hr}$

 $H_2O = 86.6\%, NH_3 = 13.4\%$

Assumption:

Ammonia achieved at top is 99.5% and lean solution at the bottom contains 99% water

and 1% ammonia.

Apply Ammonia balance,

NH₃: Ammonia in feed = Ammonia in top product + Ammonia in bottom product

0.134 * 278.4 = 0.995 * D + 0.01 * B

37.3 = 0.995D + 0.01B

Apply Water balance,

H₂O: Water in feed + Make up Steam = Water in top product + Water in bottom product

$$0.866 * 278.4 + M = 0.005 * D + 0.99 * B$$

As we know,

 $B = W_1 + W_2$ B = 161.29 + 82.16 = 243.45 kgmol/ hr

From ammonia balance

37.3 = 0.995D + (0.01 * 243.45)

D = 35.05 kgmol/ hr

By applying overall balance around distillation column,

Feed + Make up Steam = Top Product + Bottom Product

Overall: F+M=D+B

M = 35.05 + 243.45 - 278.4

M = 0.1 kgmol/ hr

Reflux ratio: (2.5)

R = reflux amount = (2.5) * D = (2.5) * 35.05 = 87.63 kgmol/hr

Vapors coming out from distillation column = Reflux + Top Product = D + R = 35.05 + 87.63

V = 122.68 kgmol/ hr

Streams	Flowrates (kgmole/hr)			
Feed (F)	278.4			
Top Product (D)	35.05			
Bottom Product (B)	243.45			
Reflux Amount (R)	87.63			
Vapors from top (V)	122.68			
Make up Steam (M)	0.1			

Table 11 Flowrates (Distillation Column)

Table 12 Compositions (Distillation)

Components	Feed	Top Product	Bottom Product
NH3	0.134	0.995	0.99
H2O	0.866	0.005	0.10

Chapter 5: Energy Balance

5.1 Purge Gas Absorber

The outlet streams are at higher temperatures than inlet; this is due to the exothermic nature of absorption of ammonia gas. Applying an energy balance over the system. The heat of solution can be considered to heat the system.

$$\Delta U + \Delta K. E. + \Delta P. E. + P \Delta V = Q + W$$
$$\Delta H = Q$$

 $Qabs = \Delta H_{gas} + \Delta H_l$

 $\Delta H = m C_p \Delta T$

For unabsorbed gas, only temperature is increasing, and the average Cp of the gases can be found out by individual Cp of components and compositions.

 $M_{gas} = 464.29 \text{ Kgmol/hr}$

Cp = 31.44 KJ/kgmol. °C

Inlet temperature of gas = $12 \degree C$

Outlet temperature of gas = $43.3 \text{ }^{\circ}\text{C}$

$$Q_g = m C_p \Delta T$$

= 464.29 × 31.44 × (43.3 - 12)
= 4.569 × 10⁵ KJ/hr

For Lean Solution, which is mostly water, we get the sensible change.

MLean= 161.29 Kgmol/hr

Cp=77.48 KJ/kgmol. °C

Inlet temperature of lean solution = $38.85 \ ^{\circ}C$

Outlet temperature of lean solution = $49 \degree C$

 $Q_L = m C_p \Delta T$

$$= 161.29 \times 77.48 \times (49 - 40)$$

$$= 1.125 \times 10^5 \text{ KJ/hr}$$

$$Q_{abs} = Q_g + Q_L$$

$$\begin{aligned} Q_{abs} &= 4.569 \times \ 10^5 \ + \ 1.125 \times \ 10^5 \ \text{KJ/hr} \\ &= 5.694 \times \ 10^5 \ \text{KJ/hr} \end{aligned}$$

NH₃ absorbed= 26.06 kgmol/hr

Heat of vaporization of NH3= 23,300 KJ/kgmol

 $Q_{NH3} = 26.06 * 23300 = 607,198 \text{ KJ/hr}$

5.2 Off Gas Absorber

 $Q_{abs} = Q_g + Q_L \\$

 $Q=m\;C_p\;\Delta T$

For gas,

 $M_{gas}=39.78 \ kgmol/hr$

Cp =31 kJ/kgmol. °C

Inlet temperature of gas = $40 \degree C$

Outlet temperature of $gas = 42^{\circ}C$

 $Q_{gas} = m \ C_p \ \Delta T$

$$= 39.78 \times 31 \times (42 - 40)$$

For Lean Solution

 $M_L=82.16$ kgmol/hr

 $C_p = 77.86 \text{ kJ/kgmol} \circ C$

Inlet temperature of lean solution = $38 \ ^{\circ}C$

Outlet temperature of lean solution = $73.7 \ ^{\circ}C$

$$Q_{L} = m C_{P} \Delta T$$

= 82.16 × 77.86 × (73.7 - 38)
= 2.283 × 10⁵ KJ/hr

Qabs = Qg + QL

Qabs = $2.283 \times 10^5 + 2466.36$

 $= 2.308 \times 10^9 \text{ kJ/hr}$

NH₃ absorbed= 9.04 kgmol/hr

Heat of ammonia solution = 23350 kJ/hr

Q_{NH3} = 211,084 KJ/hr

5.3 Lean Solution Heat Exchanger

Table 13 H	eat Exchanger	· Summarv	(E-523)
1 4010 10 11	out Entenanger	. Dannia j	(1 2 2 2 3)

	Shell Side	Tube Side
Fluid	Lean Solution	Rich Solution
Flow Rate	243.45 kgmol/hr	278.4 kgmol/hr
Ср	75 kJ/kgmol °C	79 kJ/kgmol °C
Inlet Temperature	$T_1 = 229 \ ^{\circ}C$	$t_1 = 60 \ ^\circ C$
Outlet Temperature	$T_2 =$	$t_2 = 163 \ ^\circ C$

 $Q_{tube} = m C_p \Delta T$

 $= 278.4 \times 79 \times (163 - 60)$

 $= 2.27 \times 10^{6} \text{ KJ/hr}$

Applying energy balance with no work or external heat transfer,

Energy given by shell side = Energy gained by tube side

 $Q_{shell} = - Q_{tube}$

 $Q_{shell} = m C_p \Delta T$

 $-2.27 \times 10^{6} = 243.45 \times 75 \times (T_{2} - 229)$

$$T_2 = 104.93 \ ^{\circ}C$$

5.4 Lean Solution Cooler

	Shell Side	Tube Side
Fluid	Lean Solution	Cooling Water
Flow Rate	405.8825 kgmol/hr	m _{cw}
CP	75 kJ/kgmol °C	77.5 kJ/kgmol °C
Inlet Temperature	$T_1 = 104.93 \ ^{\circ}C$	$t_1 = 30 \ ^{\circ}C$
Outlet Temperature	$T_2 = 38 \ ^\circ C$	$t_2 = 60 \ ^{\circ}C$

Table 14 Heat Exchanger Summary (E-524)

Consider we need to find out the flow rate of utility (cooling water) required.

 $Q_{shell} = m \ C_p \ \Delta T$

 $= 243.45 \times 75 \times (38-104.93)$

 $= -1.222 \times 10^5 \text{ kJ/hr}$

Applying energy balance,

Energy given by shell side = Energy gained by tube side

 $Q_{shell} = - Q_{tube}$

 $Q_{tube} = m_{cw} \, C_p \, \Delta T$

 $1.222 \times 10^6 = m_{cw} \times 77.5 \times (60-30)$

 $m_{cw} = 525.62 \text{ kgmol/hr}$

5.5 Distillation Column

Condenser Duty

Apply energy balance around condenser

Energy of the	+ Energy of the	+ Energy of the	=	Energy of the vapors
condenser	distillate	reflux		coming into condensers

$$Q_C + H_D + H_R = H_V$$

Table 15 Condenser Energy Balance

	Distillate	Reflux	Vapors
Specific Enthalpy	371.9 kJ/kg	371.9 kJ/kg	1595.78 kJ/kg
Temperature	40 °C	40 °C	82 °C
Flow rate	35.05 kgmol/hr	87.63 kgmol/hr	122.68 kgmol/hr

Energy of the distillate = $H_D = m * \hat{h} = (35.05 \times 17.03) \text{ kg} \times (371.9 \text{ kJ/kg})$

 $= 2.216 \times 10^5 \text{ kJ}$

Energy of the reflux = H_R = m * \hat{h} = (87.63 * 17.03) kg * (371.9 kJ/kg) = 5.55× 10⁵ KJ/hr Energy of vapors = H_v = m * \hat{h} = (122.68×17.03) kg ×(1595.78 kJ/kg)

$$= 3.334 \times 10^{6} \text{ kJ/hr}$$

Condenser Duty:

 $Qc = Hv - H_D - H_L$

 $Qc = (3.33 - 0.221 - 0.555) \times 10^6$

 $Qc = 2.557 \times 10^{6} \text{ kJ/hr}$

Water required for condensation and cooling of product is calculated as below:

Cp of water = 77.72 KJ/kgmol. °C

Temperature rise for cooling water is limited to 30 $^\circ\mathrm{C}$

 $Q=m\;C_p\,\Delta T$

 $Q = 2.557 \times 10^{6} \text{ kJ/hr}$

$$m_{cw} = \frac{(2.56 \times 10^6)}{77.72 * 30} = 1096.83 \text{ kgmol/hr}$$

Reboiler Duty

Reboiler energy is calculated by applying overall energy balance on the column

Energy given to	+Energy of the	=	Energy of	+	Energy of	+ Ene	ergy of
reboiler	feed		condenser		distillate	bottom	product

 $Q_B + H_B = Q_C + H_D + H_B$

	Distillate	Bottoms	Feed
Specific Enthalpy	371.9 kJ/kg	985 kJ/kg	kJ/kg
Temperature	40 °C	229 °C	163 °C
Flow rate	35.05 kgmol/hr	243.45 kgmol/hr	278.4 kgmol/hr

Energy of the distillate = $H_D = m \times \hat{h} = (35.05*17.03) \text{ kg} * (371.9 \text{ kJ/kg})$

 $= 2.216 \times 10^5 \text{ kJ}$

Energy of the bottoms = $H_B = m \times \hat{h} = (243.45 \times 18.00) \text{ kg} \times (985 \text{ kJ/kg})$

 $= 4.316 \times 10^{6} \text{ KJ/hr}$

Energy of the feed = H_F = m × \hat{h} = (278.4 × 17.88) kg × (645.15 kJ/kg) = 3.211× 10⁶ KJ/hr

 $\begin{array}{ll} Q_B & = Q_c + H_D + H_B - H_F \\ & = (2.56 + 0.22 + 4.32 - 3.21) \times 10^6 \\ & = 3.89 \times 10^6 \ \text{kJ/hr} \end{array}$

Amount of steam required for reboiler is calculated as below:

Steam is available at 248 °C,

Latent heat of steam = 31670 kJ/kgmol

Q_B = 3,890,000 kJ/hr

Steam required = 3.89×10^6 / 31670

Steam required = 122.83 kgmol/hr

Chapter 6: Equipment Design

6.1 Purge Gas Absorber C-523:

Liquid flowrate = $m_L = 161.29$ kgmol/h

Gas flowrate = $m_v = 490.76$ kgmol/h

Ammonia in gas feed = $y_2 = 5.5 \%$

Ammonia in liquid feed = $x_1 = 1 \%$

Ammonia in exit gas = $y_1 = 0.2$ %

Ammonia in liquid exit = $x_2 = 15 \%$

Molar mass of Lean solution: $M_L = 18 \text{ kg/kgmol}$

Avg. Molar Mass of gas: $M_v = 10.68 \text{ kg/kgmol}$

Density of gas: $\rho_v = 10.6 \text{ kg/m3}$

Density of Lean solution: $\rho_L = 55 \text{ kg/m3}$

 $m_L = 1.5 \ m_{Lm}$

Minimum liquid flowrate: $m_{Lm} = 107.52 \text{ kgmol/h}$

$$\frac{m_{L\,m}}{m_{V}'} = \frac{y_{2k}' - y_{1k}'}{\frac{y_{2k}'}{K_k} - X_{1k}'}$$

By putting values in above equation, we get

Equilibrium constant = $K_k = 0.214$

Absorption coefficient can be calculated through:

$$A_A = \frac{m_L}{K_K \times m_v} = 1.53$$

And the Number of Equilibrium stages through:

$$(A_{A})^{Ne} = \frac{y_{2k}' - K_{k} X_{1k}'}{y_{1k} - K_{k} X_{1k}'} * \left(1 - \frac{1}{A_{A}}\right) + \frac{1}{A_{A}}$$

Number of equilibrium stages $= N_e = 5.6$

Volumetric flowrate of gas = 11,000 N m³/h = 3.05 N m³/s = 0.0045 m³/s (ideal gas relation)

$$A = \frac{v_{v'}}{v_{v}}$$

$$A = \frac{\pi D^{2}}{4}$$

$$v_{v} = \kappa_{v} \left[\frac{(\rho_{L}' - \rho_{v'})}{\rho_{v'}} \right]^{1/2}$$

$$K_{v} = 0.75 \ k \left(\frac{\sigma}{20}\right)^{0.2}$$

Value of k is taken from Figure below with the help of tray spacing for high pressure and the flow parameter on which value of k depends.

Consider a stage spacing of 0.5m

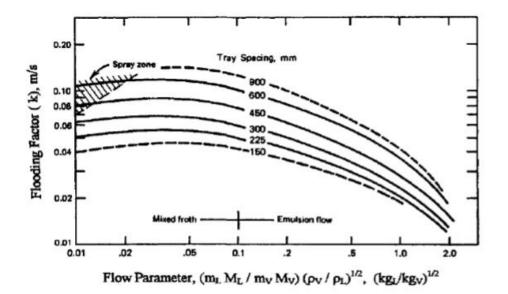


Figure 2 Absorber Flooding Factor Plot (Richardson Vol 6, 1999)

Surface tension = σ = 0.069 N/m, Flow parameter = 0.243

Value of K_v by using surface tension and k=0.055 m/s is :

 $K_v = 0.013 \text{ m/s}$

Gas velocity= $v_v = 0.027$ m/s

Now, $A = V_v / v_v = 0.166 \text{ m}^2$

From area, Diameter = D = 0.46 m = 1.5 ft

Height of column:

$$Z = HTU \times NTU = HTU \times \int_{x_2}^{x_1} \frac{dx}{x_e - x}$$

HTU= Height equivalent of one transfer unit = 0.5 (from table given in Richardson-Coulson)

NTU= Number of transfer units

 $x_e = Equilibrium NH_3$ concentration in liquid (from VLE plot)

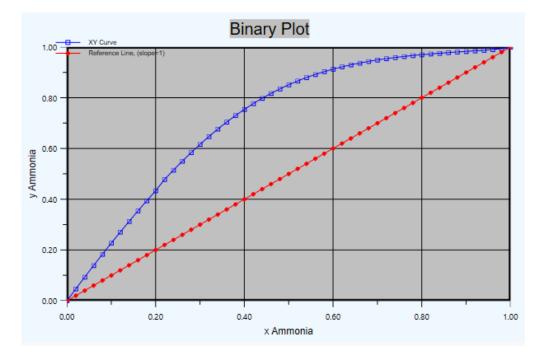


Figure 3 NH₃-H₂O VLE plot (@120bar) from HYSYS (AspenTech Eq Unit)

The equilibrium concentration for x=0.15 comes out to be 0.05

$$NTU = \int_{0.15}^{0.002} \frac{dx}{0.05 - x}$$
$$NTU = 18.56$$

Efficiency of Column =
$$\frac{Ne}{NTU} = \frac{5.6}{18.56} = 30.2\%$$

Height of the column = $18.56 \times 0.5 = 9.28$ m

Packing Type:

It is a packed column with a packing of SS-316 MellaPak Plus (a type of structured packing). The packing gives extremely controlled pressure drop against a high surface contact area for mass transfer.

The packing unit is 1inch, therefore a suggested HTU of 0.5m

6.2 Off Gas Absorber C-522

Specification:

Liquid flowrate = mL = 82.162 kgmol/hr Gas flowrate = mv = 48 kgmol/hr Ammonia in gas feed = $y_2 = 17.2$ % Ammonia in liquid feed = $x_1 = 1$ % Ammonia in exit gas = $y_1 = 0.1$ % Ammonia in liquid exit = $x_2 = 14$ % $M_L = 18$ kg/kgmol $M_v = 12.77$ kg/kgmol $\rho_v = 12.38$ kg/m3 $\rho_L = 55$ kg/m3 $m_L = 1.5$ mL_{min}

Packing Type:

It is a packed column with a packing of CS Pall Rings. The packing is ideal for absorption purposes because of versatility, wettability, and a high resistance to fouling. It can be adaptable to very high loads with low pressure drop and high mass transfer efficiency. Mechanical strength of Pall Rings is also very desirable in cases of high temperature applications.

The packing unit is 1inch, therefore a suggested HTU of 0.5m

Applying the same procedure for the Off-Gas Absorber:

No. of Equilibrium Stages	16.8
Packing Material	Carbon Steel (CS)
Packing Type	Pall Rings
Cross-Sectional Area	0.187m ²
Diameter	0.48m (1.6ft)
HTU	0.5
NTU	22.48
Height	11.24m
Efficiency	74.7%

6.3 Distillation Column C-521:

Fenske's Equation is used to calculate minimum number of plates.

$$N_{\min} = \frac{\ln[X_d(1-X_b)/X_b(1-X_d)]}{\ln(\sigma_{ab})}$$

Where

- X_d (Concentration of more volatile component at top) = 0.995 = 99.5%
- X_B (Concentration of more volatile component at bottom) = 0.01 = 1%
- X_{f} (Concentration of more volatile component in feed) = 0.14032 = 14.032%
- Y_f (Concentration of more volatile component in feed) = 0.85968 = 85.968%

Relative Volatility =
$$\alpha_{AB} = \frac{(Y_{ae}/X_{ae})}{(Y_{be}/X_{be})}$$

Where

 $Y_{ae} =$ Equilibrium Concentration of Component A in vapor phase = 0.999 $Y_{be} =$ Equilibrium Concentration of Component B in vapor phase = 0.001 $X_{ae} =$ Equilibrium Concentration of Component A in liquid phase = 0.995 $X_{be} =$ Equilibrium Concentration of Component B in liquid phase = 0.005 Putting above values in equation 1 gives:

$N_{min} = Minimum No of Plates \simeq 6$

For calculating actual/theoretical no of plates, Gilliand equation is used:

$$\frac{N-N_{min}}{N+1} = 0.75 \left[1 - \left(\frac{R-R_{min}}{R+1}\right)^{0.566}\right]$$

Where

N_{min} = Minimum No of Plates

N = Actual/Theoretical No of Plates

 $R_{min} = Minimum Reflux Ratio = (Xd - Yf)/(Yf - Xf) = 1.13$

R = Actual Reflux Ratio = L/D

= 87.63/35.05 = 2.5

Putting Values in Gilliand Equation:

N/Nth = Actual No of Plates $\simeq 10$

Effective number of plates or stages that are installed for operation are calculated as:

$$N_{eff} = N_{th} \cdot \left(\frac{S}{Eov}\right)$$

Where

 N_{eff} = Effective No of Stages/ No of stages to be actually installed

 N_{th} = Theoretical No of Stages = 10

S = Safety Co-efficient = 1.4

 $E_{ov} = Overall Efficiency = 70\% = 0.7$

Substituting above values in above equation gives

 $N_{eff} = No \text{ of stages/plates to be actually installed} = 20$

Height of Column:

Using the effective no of stages (Neff), Height of column can be calculated easily.

 $H = N_{eff} \cdot \Delta Z$

H = Height of column

 N_{eff} = Effective No of Stages/ No of stages to be actually installed = 20

 $\Delta Z =$ Spacing between the plates = 0.55m

Substituting the values above give:

H = Height of Column = 10.3 m

Total height is given by:

 $H_{tot} = H + H_{min} \label{eq:Htot}$

 $H_{tot} = Actual Height of column N_{gmax}$

 $H_{min} = Minimum Height (factor for calculating actual height) = 3.$

 $\Delta Z = 1.65 \text{ m}$

So

 $H_{tot} = Actual Height of Column = 11.34m$

Diameter of Column

Internal Diameter of column is given by the following equation:

$$D_i = 102.89 \sqrt{\frac{N_{gmax} \cdot T}{P \cdot W_{gzul}}}$$

Ngmax = Maximum vapor molar flow rate (kmol/s) = 122.68 kmol/hr

 $W_{g.zul}$ = Allowable vapor velocity referred to area = 0.909 m/s

T (K) = Column Operating Temperature = 493 K

P (Pa) = Column Operating Pressure = 3000000 Pa

For allowable vapor velocity, following equation is used:

$$W_{Gzul} = 0.7 * \frac{Aac}{AQ} * Kv * \sqrt{\frac{\rho L - \rho g}{\rho g}}$$

Where

 A_{ac} = active area of a tray $[m^2] = 4 m^2$

 A_Q = total column cross-sectional area [m²] = 5.51 m2

 K_v = capacity parameter of Souders/Brown [m/s] = 0.45 m/s

 ρ_L = Liquid Density (kg/m3) = 815 Kg/m3

 $\rho_g = Vapor \ Density \ (kg/m3) = 25.1 \ Kg/m3$

Substituting the values in above equation, gives:

 $W_{G zul} = 0.909 \text{ m/s}$

Substituting the above value and all other values in equation (6.5) gives,

 D_i = Internal Diameter of Column = 0.62m = 620mm

6.4 Heat Exchanger E-523 (Rich-Lean Exchanger)

	Shell Side	Tube Side
Fluid	Lean Solution	Rich Solution
Flow Rate	243.45 kgmol/hr	278.4 kgmol/hr
Ср	75 kJ/kgmol °C	79 kJ/kgmol °C
Inlet Temperature	$T_1 = 229 \ ^{\circ}C$	$t_1 = 60 \ ^{\circ}C$
Outlet Temperature	$T_2 = 104.93 \ ^{\circ}C$	$t_2 = 163 \ ^{\circ}C$

Heat exchanger employed are Shell and Tube Exchanger

 $Q_{shell} = m \ Cp \ \Delta T = \qquad Q_{tube} \qquad = m \ C_p \ \Delta T$

 $= 278.4 \times 79 \times (163 - 60)$ = 2.27× 10⁶ KJ/hr

 $Q = UA\Delta T_m$ $\Delta T_m = Ft * LMTD$

$$LMTD = \frac{[(T1 - t2) - (T2 - t1)]}{ln\left[\frac{T1 - t2}{T2 - t1}\right]}$$

Substituting value give result

LMTD = 54.79 °C

 $R = (T_1 - T_2)/(t_2 - t_1) = 1.20$

 $S=(t_2-t_1)/(T_1-t_1) = 0.61$

From figure, using values of S and R, we get F_t

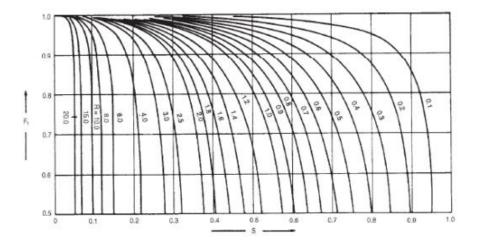


Figure 4 Correction Factor for S&T LMTD (Kern, 2002)

 $\Delta T_{m} = Ft * LMTD$ $\Delta T_{m} = 0.713 * 77.96 = 55.59 °C$

Assumptions:

Choose 20 mm outer diameter, 16 mm inner diameter and 5 m long tubes

Inner diameter of tube = di = 0.016 m

Outer Diameter of tube = do = 0.02 m

Length of tube = L = 5 m

Area of one tube = $\pi * L * d = \pi * 5 * 0.02 = 0.314 \text{ m}^2$

Number of tubes=N= Heat transfer area/Area of one tube= 18.77/0.23=82 tubes

 $Pitch = P_t = 1.25 \ * \ d_o = 1.25 \ * \ 0.02 = 0.025 \ m$

Number of Baffles = Length/Baffle spacing = 20

Tube Side Co-efficient:

Mean temperature = $\frac{t_1 + t_2}{2}$ = 85.75 °C Density of solution = $\rho = 888.2 \text{ kg/m}^3$ Viscosity of solution = $\mu = 0.0002723$ kg/m.sec Heat capacity of solution = $Cp = 4468 \text{ J/kg} \circ C$ Thermal conductivity of solution = K = 0.6182 W/m. °C Tube Cross-sectional area = $a = \pi \frac{d_i^2}{4} = (3.14 * 0.016 * 0.016) / 4 = 201 \text{ mm}^2 =$ 0.000201 m^2 Tubes per pass = total tubes /2 = 82/2 = 41Total flow area = Tube Cross-sectional area * Tubes per pass Total flow area = 0.000201 * 41Total flow area = 0.008 m^2 Mass velocity = Mass flowrate/Flow Area = $8355/3600 \ 0.008 = 279 \ \text{kg/sec.} \ \text{m}^2$ Linear velocity = u_t = (mass velocity / density) = 279 / 888.2 = 0.315 m/sec Reynolds Number in tubes = $Re_t = \rho \times di \times \frac{\mu_t}{\mu} = 888.2 \times 0.016 \times 0.315$ 0.0002723 = 16422.45From graph between Re and Jh factor, it is found that J_H = 0.0039 and Prandtl number = $C_p \frac{\mu}{k} = (4468 * 0.0002723) / 0.6182$

= 1.968

 $h_i = 3094.15 \text{ W/m}^{20}\text{C}$

Shell Side Coefficient:

Mean temperature = $\frac{T1+T2}{2}$ = 135.25 °C Density of solution = ρ = 912.5 kg/m³ Viscosity of solution = μ = 0.000158kg/m.sec Heat capacity of solution = Cp = 4511 J/kg oC Thermal conductivity of solution = K = 0.6851W/m. oC Cross flow area = As = $(P_t - d_o) \times Ds \times \frac{lB}{P_t} = (0.025 - 0.020) \times 0.3557 \times \frac{0.178}{0.025}$ As=0.01265 m² Equivalent diameter = de = $1.10 \frac{P_t^2 - 0.917 d_o^2}{d_o} = 14.2 \text{ mm} = 0.0142 \text{ m}$ Mass velocity = Mass flowrate/Flow Area = 7303/0.01265 = 160.34 kg/sec. m² Linear velocity = u = (mass velocity / density) = 160.34 / 912.5 = 0.175 m/sec Reynolds Number in tubes = $Re_s = \rho \times de \times \frac{\mu_t}{\mu} = 912.5 \times 0.0142 \times 0.175/0.000158$ = 14411.63

Prandtl number = $C_p \frac{\mu}{k} = (4511 * 0.000158) / 0.6851 = 1.0403$

$$\frac{h_i}{d_i k} = J_H R_e Pr \ 0.33 \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

By putting all values in above equation,

we get $h_s = 2676.701 \text{ W/m2 °C}$

$$\frac{1}{Uo} = \frac{1}{ho} + \frac{1}{hod} + \left[d_o \frac{\ln d_o}{d_{io}} 2 k_w \right] + \frac{d_o}{d_i} * \frac{1}{h_i d} + \frac{do}{di} * \frac{1}{h_i}$$

Fouling Factor for shell side = $h_0d = 5000 \text{ W/m2} \circ \text{C}$

Fouling Factor for tube side = $h_i d = 5000 \text{ W/m2} \circ \text{C}$

$K_w = 50 \text{ W/m2 }^{\circ}\text{C}$

Put all the values in above equation to get overall heat transfer coefficient.

$U = 786 \text{ W/m}^2.^{\circ}\text{C}$

The value of overall coefficient is almost equal to the assumed value so all assumptions regarding design are true.

Pressure Drop:

Tube side calculation:

Reynolds number = 16422.5From graph between Re and Jf, Friction factor = $J_f = 0.0039$

$$\Delta P_t = N_p \left[8 j_f \left(\frac{L}{d_i} \right) \left(\frac{\mu}{\mu_w} \right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2}$$

$$\Delta P_t = 2 \left[8 * 0.0039 \left(\frac{3.66}{0.016} \right) + 2.5 \right] \frac{888.2 * 0.315^2}{2}$$

 $\Delta P_t = 3847.54 \ N/m^2 = 3.847 \ KPa = 0.512 \ psi$

Shell side calculations:

Reynolds number = 14411.6

From graph between Re and J_f,

 $\label{eq:Friction} \textbf{Friction factor} = J_{\rm f} = 0.043$

$$\Delta P_{s} = \left[8 j_{f} \left(\frac{D_{s}}{d_{e}}\right) \left(\frac{L}{l_{B}}\right) \left(\frac{\mu}{\mu_{w}}\right)^{-0.14}\right] \frac{\rho u_{t}^{2}}{2}$$
$$\Delta P_{s} = \left[8 * 0.043 \left(\frac{0.3557}{0.0142}\right) \left(\frac{3.66}{0.178}\right)\right] \frac{912.5 * 0.175^{2}}{2}$$

 $\Delta P_s = 980 \ \text{N/m}^2 = 0.980 \ \text{KPa} = 0.142 \ \text{psi}$

Summary of E-523:

Inner Diameter of tube	16mm
Outer diameter of tube	20mm
Tube length	5m
Number of tubes	82
Shell diameter	0.3557m
Pitch	0.025m
Number of baffles	20
Baffle spacing	0.178m
Shell side coefficient	2676 W/m ² .ºC
Tube side coefficient	3094 W/m ² .ºC
Overall heat transfer coefficient	786 W/m ² .°C
Effective Heat Transfer Area	18.77 m ²
Tube side pressure drop	0.512 psi
Shell side pressure drop	0.142 psi

6.5 Lean Solution Cooler E-524:

	Shell Side	Tube Side
Fluid	Lean Solution	Cooling Water
Flow Rate	405.8825 kgmol/hr	525.62 kgmol/hr
СР	75 kJ/kgmol °C	77.5 kJ/kgmol °C
Inlet Temperature	$T_1 = 104.93 \ ^{\circ}C$	$t_1 = 30 \ ^{\circ}C$
Outlet Temperature	$T_2 = 38 \ ^\circ C$	$t_2 = 60 \ ^{\circ}C$

 $Q_{shell} = m \; C_p \; \Delta T$

 $= 243.45 \times 75 \times (38-104.93)$

 $= -1.222 \times 10^{5} \text{ kJ/hr}$

Summary of E-524:

For the following specifications we perform the same procedure as for exchanger I and obtain the results as in the table below:

Inner Diameter of tube	0.016 m
Outer diameter of tube	0.02 m
Tube length	5 m
Shell diameter	0.315 m
Number of tubes	58
Pitch	0.025 m
Number of baffles	23
Baffle spacing	0.157 m
Shell side coefficient	4197.6 W/m ² .°C
Tube side coefficient	5902.8 W/m ² .°C
Over all heat transfer coefficient	803 W/m ² . °C
Effective Heat Transfer Area	28.29 m ²
Shell side pressure drop	0.88 psi
Tube side pressure drop	3.84 psi

6.6 Reboiler E-521:

	Shell Side	Tube Side
Fluid	Ammonia Water	Steam
Flow Rate	300 kgmol/hr	122.83 kgmol/hr
C _p	84.43 KJ/kgmol K	66.46 KJ/kgmol K
Operating Temperature	229 °C	248 °C

Latent heat of steam = 31670 kJ/kgmol

 $Q_B = 3,890,000 \text{ kJ/hr}$

Steam required = 3.89×10^6 / 31670

Steam required = 122.83 kgmol/hr

Using the manuals of Kern, 2002[7] and Kolmetz, 2013[11], we can apply a similar approach to a double tube pass kettle type reboiler and find out an effective area and number of tubes required.

Summary for E-521

Inner Diameter of tube	0.016 m
Outer diameter of tube	0.02 m
Tube length	3 m
Number of tubes	97
Pitch	0.025 m
Over all heat transfer coefficient	4201 W/m ² . °C
Effective Heat Transfer Area	28.6 m ²
Shell side pressure drop	4.7 psi
Tube side pressure drop	0.45 psi

6.7 Condenser E-522:

	Shell Side	Tube Side
Fluid	Ammonia	Cooling Water
Flow Rate	122.68 kgmol/hr	1096.83 kgmol/hr
Cp	0.66 KJ/kgmol K	77 KJ/kgmol K
Operating Temperature	62-40 °C	32-43 °C

 $Q=m\;C_p\;\Delta T$

 $Q = 2.557 \times 10^{6} \text{ kJ/hr}$

$$m_{cw} = \frac{(2.56 \times 10^6)}{77.72 \times 30} = 1096.83 \text{ kgmol/hr}$$

Summary for E-521

Inner Diameter of tube	0.016 m
Outer diameter of tube	0.02 m
Tube length	5 m
Number of tubes	195
Pitch	0.025 m
Over all heat transfer coefficient	2514 W/m ² . °C
Effective Heat Transfer Area	20.2 m ²
Shell side pressure drop	2.2 psi
Tube side pressure drop	3.6 psi

Chapter 7: Costing

Cost Estimates for the Design

Costing was done with reference from Coulson Richardson's Chemical Engineering Design Volume 6th. Following are the graphs and figures used in cost estimation.

Graph 1

This graph is used for Heat exchangers cost estimation.

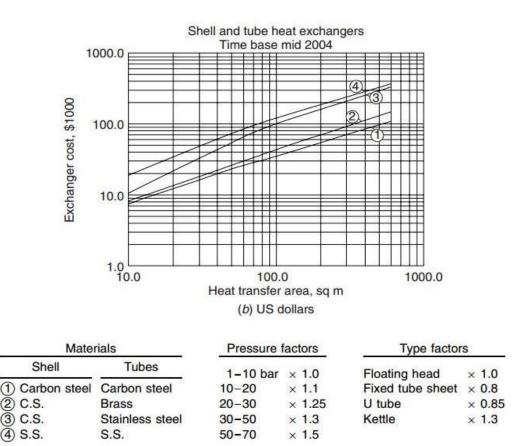


Figure 5 S&T Heat Exchanger Cost Graph (Coulson Vol 6, 1999)

Graph 2

Cost of columns is estimated using this graph.

Figure 6 Pressure Vessel Cost Graph (Coulson Vol 6, 1999)

Graph 3

Cost of plates is estimated using this graph.

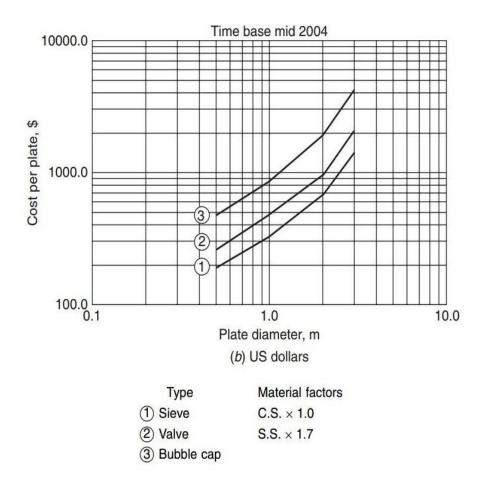


Figure 7 Column Plate Cost Graph (Coulson Vol 6, 1999)

	Cost	£/m3 (\$/m3)	
Size, mm	25	38	50
Saddles, stoneware	840 (1400)	620 (1020)	580 (960)
Pall rings, polypropylene	650 (1080)	400 (650)	250 (400)
Pall rings, stainless steel	1500 (2500)	1500 (2500)	830 (1360)

Table 17 Column Packing Cost (Coulson Vol 6, 1999)

This table helps in cost estimation of other equipment.

Equipment	Size unit, S	Size range	Constant		Index	Comment
			C,£	C,\$	n	
Agitators						2
Propeller	driver	5-75	1200	1900	0.5	
Turbine	power, kW		1800	3000	0.5	
Boilers						
Packaged	2010 C 10		-		11222	oil or gas fired
up to 10 bar	kg/h steam	$(5-50) \times 10^3$	70	120	0.8	
10 to 60 bar			60	100	0.8	
Centrifuges	Comparison real					
Horizontal basket	dia., m	0.5 - 1.0	35,000	58,000	1.3	carbon steel
Vertical basket			35,000	58,000	1.0	×1.7 for ss
Compressors						
Centrifugal	driver	20-500	1160	1920	0.8	electric,
n i i i i	power, kW		1000	2700	0.0	max. press.
Reciprocating			1600	2700	0.8	50 bar
Conveyors	The second second second	2 10				
Belt	length, m	2-40		1000	0.75	
0.5 m wide			1200	1900	0.75	
1.0 m wide			1800	2900	0.75	
Crushers		20. 200	2200	2000	0.05	
Cone	t/h	20-200	2300	3800	0.85	
Pulverisers	kg/h		2000	3400	0.35	
Dryers	2				The Parent	
Rotary	area, m ²	5-30	21,000	35,000	0.45	direct
Pan		2-10	4700	7700	0.35	gas fired
Evaporators						
Vertical tube	area, m ²	10-100	12,000	20,000	0.53	carbon steel
Falling film			6500	10,000	0.52	
Filters	24					
Plate and frame	area, m ²	5-50	5400	8800	0.6	cast iron
Vacuum drum		1-10	21,000	34,000	0.6	carbon steel
Furnaces						
Process						
Cylindrical	heat abs, kW	$10^3 - 10^4$	330	540	0.77	carbon steel
Box		$10^3 - 10^5$	340	560	0.77	×2.0 ss
Reactors						
Jacketed.	capacity, m3	3-30	9300	15,000	0.40	carbon steel
agitated			18,500	31,000	0.45	glass lined
Tanks						
Process	capacity, m3					
vertical	07 2233	1-50	1450	2400	0.6	atmos. press.
horizontal		10-100	1750	2900	0.6	carbon steel
Storage		44.07222000	10252844	SAX598	052791220	2010/19/201
floating roof		50-8000	2500	4350	0.55	×2 for
cone roof		50-8000	1400	2300	0.55	stainless

Table 18 Other Equipment Cost Estimates (Coulson Vol 6, 1999)

Rich Solution Exchanger (E-523)

Shell and tube heat exchanger of floating head

type. Heat Transfer Area = 18.77 m^2

Bare Equipment cost = \$ 12500 (Using Graph 1) Pressure

factor = 1.3

Type factor =

1.0

Cost = Bare equipment cost * Pressure factor *

Type Total Cost = 16250

Lean Solution Cooler (E-524)

Shell and tube heat exchanger of floating head type. Heat Transfer Area = 28.29

 m^2

Bare Equipment cost = \$ 16500 (Using Graph

1) Pressure factor = 1.25

Type factor = 1.0

Cost = Bare equipment cost * Pressure factor *

Type Total Cost = 20625

Condenser (E-522)

Shell and tube heat exchanger of floating head type. Heat Transfer Area =

20.2 m² Bare Equipment cost = \$ 13700 (Using Graph

1) Pressure factor = 1.25

Type factor = 1.0

Cost = Bare equipment cost * Pressure factor *

Type Total Cost = \$17125

Reboiler (E-521)

Shell and tube heat exchanger of

kettle type. Heat Transfer Area =

 28.6 m^2

Bare Equipment cost = \$ 16750 (Using Graph

1) Pressure factor = 1.25

Type factor = 1.3

Cost = Bare equipment cost * Pressure factor * Type factor Cost = \$ 34,125

Purge Gas Absorber (C-523)

Height of Column = 9.28 m Column's Diameter = 0.600 m

Bare Vessel Cost = \$ 14000 (Using Graph 2) Pressure Factor = 2.2

Material Factor = 1.0

Cost = Bare vessel cost * Pressure factor *

Material factor Cost of column = 30800

Cost of Packing = \$3620

Total cost of absorption column = 35,800

Off Gas Absorber (C-522)

Height of Column = 11.24 m Column's Diameter = 0.48 m

Bare Vessel Cost = \$4800 (Using Graph 2) Pressure Factor = 1.4

Material Factor = 1.0

Cost = Bare vessel cost * Pressure factor * Material factor Cost of column = \$6720

Cost of Packing = \$ 6180 Total cost of absorption column = \$ 12900

Distillation Column (C-521)

Height of Column = 11.34 m Column's Diameter = 0.62 m

Bare Vessel Cost = \$ 22175 (Using Graph 2) Pressure Factor = 1.4

Material Factor = 1.0

Cost = Bare vessel cost * Pressure factor * Material factor Cost of column = \$ 31045

No of plates in column = 20 Cost per plate = \$ 250 Cost of 19 plates = \$ 5000

Total cost of distillation column = 36295

Total purchase cost of major equipment items (PCE) = \$ 184,820 Estimation of fixed capital cost for fluids processing plant

f1	Equipment erection	0.40
f2	Piping	0.70
f3	Instrumentation	0.20
f4	Electrical	0.10
f5	Buildings	none required
f6	Utilities	not applicable
f7	Storages	provided in PCE
f8	Site development	not applicable
f9	Ancillary buildings	none required

Total physical plant cost (PPC) = 183271 * (1 + 0.4 + 0.7 + 0.2 + 0.1) = \$443,568

f10 Design and Engineering 0.30

f11 Contractor's Fee none (unlikely to be used)

f12 Contingencies 0.10

Fixed capital = 439850 (1 + 0.3 + 0.1) =\$ 620,995

Investment Needed for Plant (rounded) = \$ 620,000

Working capital (5% of fixed capital) = 31,050

Operating time allowing for attainment = 365*0.95 = 347 days

Total Investment Required = \$652,000

Variable Costs

1. Cooling water required = 3190 kgmol /hr = 57420

kg/hr = 57.42 t/hr Cooling water cost = 57.42t * 0.1 t =

5.742

Cooling water cost/year = 347 * 24 * 5.742 = \$ 47,819

2. Steam required = 71.5 kgmol/hr = 1287

kg/hr =1.287 t/hr Steam cost = 1.287t * 12\$/t =

\$22,857/hr

Variable cost = TVC = \$ 70,676

Fixed Costs

- 3. Maintenance (5% of fixed capital) = C5= \$ 30789.5
- 4. Operating labor, minimal required for operation, say \$3,000 /year
- 5. Supervision, no additional supervision would be needed

- 6. Plant overheads (50% of operating labor) = C8 =\$ 1500
- 7. Laboratory (take as 30% of operating labor) = C9 =\$ 900
- 8. Capital charges (6% of fixed capital) = C10 =\$36947
- 9. Insurance (1% of fixed capital) = C11 =\$ 6158
- 10. Local taxes are neglected
- 11. Royalties not applicable

Total fixed cost = C5 + C6 + C8 + C9 + C10 + C11 = TFC = \$79,294

- 12. Sales expense not applicable
- 13. General overheads not applicable
- 14. Research and development not applicable

Annual operating cost, rounded = TVC + TFC =\$ 150,000

Chapter 8: Simulation

Aspen Hysys is used for simulation of the project. Simulation was done for the verification of results of ARU (Ammonia Recovery Unit)

- Hydrogen
- Nitrogen
- Ammonia
- Methane
- Argon

•

Water	Source Databank: HYSYS		
	Component	Туре	Group
	Hydrogen	Pure Component	
	Nitrogen	Pure Component	
	Argon	Pure Component	
	Methane	Pure Component	
	Ammonia	Pure Component	
	H2O	Pure Component	

Figure 8 HYSYS Component List

8.1 Property Package

Property package is chosen according to the components and the operating conditions. The property package we used is *Peng Robinson*.

Type of Component System:

Chemical

Pressure:

High Pressure (>10 bar)

Property Packages Available for this system:

BWRS, GCEOS, Glycol Package, Kabadi-Danner, Lee-Kesler-Plocker, MBWR, **Peng- Robinson**, PR-Twu, PRSV, Sour SRK, Sour PR, SRK, SRK-Twu, or Zudkevitch-Joffee

roperty Package Selection	Options		Parameters
ci 10 1	Enthalpy	Property Packag	e EOS
Glycol Package	Density	C	ostald
Kabadi-Danner	Modify Tc, Pc for H2, He	Modify Tc, Pc for H	12, He
Lee-Kesler-Plocker	Indexed Viscosity	HYSYS Vis	cosity
Margules MBWR	Peng-Robinson Options	H	IYSYS
NBS Steam	EOS Solution Methods	Cubic EOS Analytical M	ethod
NRTL	Phase Identification	D	efault
OLI_Electrolyte	Surface Tension Method	HYSYS M	ethod
Peng-Robinson PR-Twu	Thermal Conductivity	API 12A3.2-1 M	ethod
PRSV			
Sour SRK			
Sour PR			
SRK SRK-Twu			
Twu-Sim-Tassone			
	-		

Figure 9 HYSYS Property Package

8.2 Absorber 1

Design Paramet	ers Side Ops	Rating W	orksheet Perf	ormance	Flowsheet	Reactions	Dynamics				
Design	Column Name	T-100		Sub-Flo	wsheet Tag	COL1					
Connections Monitor Specs Specs Summary Subcooling Notes	Top Stage Inlet water1 Optional Inlet S Stream << Stream << Stream purge gas Stage Numbe @ Top Down	itreams Inlet nlet	Stage tottom Up	Sta n =	10 Pn	187e+004 k		p onal Side Draw itream << Stream >>	Туре	e gas 🔹	

Figure 10 Simulation of Absorber 1

8.3 Absorber 2

Ð			Column	: T-101 / CO	L2 Fluid Pl	kg: Basis-1	I / Peng-Robinso	on		- 🗆 🗙
Design Paramet	ers Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics			
Design	Column Name	T-1	01	Sub-Fl	owsheet Tag	COL2				
Connections Monitor Specs Summary Subcooling Notes	Top Stage Inle water 2 Optional Inlet Stream << Stream off gas Stage Numb @ Top Down	Streams In m >> Inlet ering	ellet Stage ellet Stage b Bottom Up //s	N 54	tages 10 Pn	572 kPa	Optional Side Stream << Strea	Type	s	
Delete	Colum	n Environ	ment	Run	Rese	t	Converged	V	pdate Outlets	Ignored

Figure 11 Simulation of Absorber 2

8.4 Distillation

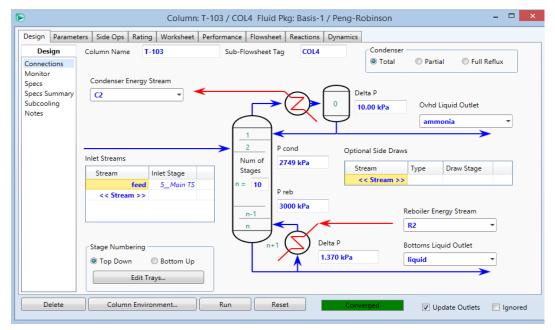


Figure 12 Simulation of Distillation Column

8.5 Pumps

Power of pumps used in ARU are taken from the Hysys. All operating conditions (temperature and pressure), flow rates of streams and change in pressure required are entered into hysys and it calculated the power required for the pumps as shown below:

🜔 Pump: P	-100						_		\times
Design Ra	ating	Worksheet	Performance	Dynamics					
Design									
Connection	ns	Delta P							
Parameters	5	1471 k	(Pa			Adiabatic Effici	ency		
Curves Links		Pressur	e Ratio			85.00 %			
User Variat	oles	1.936 Duty 0.848316)	→	•	
Dele	ete				OK				v 0

Figure 13 Simulation of Pump 1

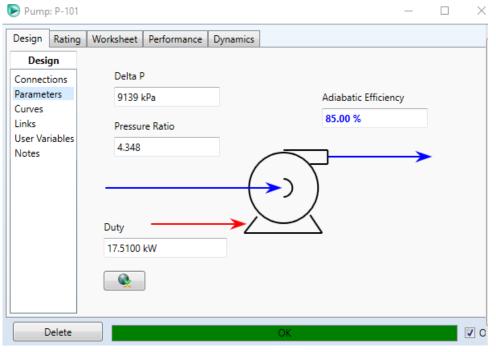


Figure 14 Simulation of Pump 2

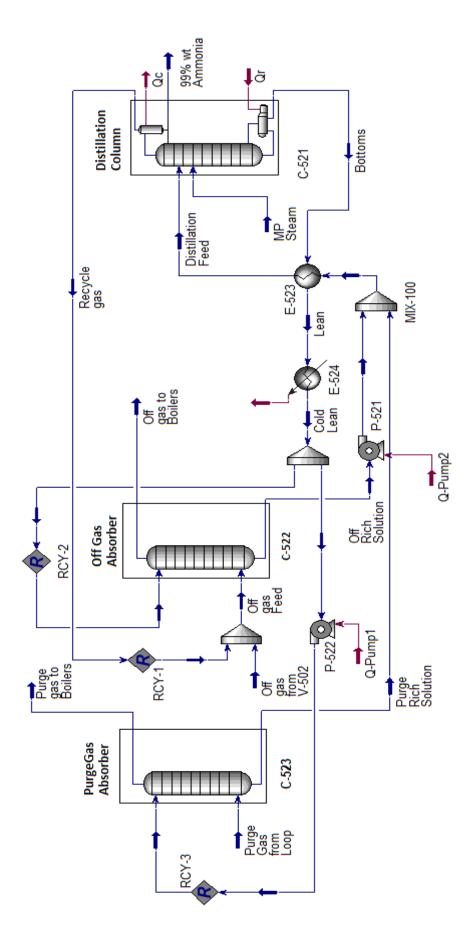


Figure 15 Aspen HYSYS Simulation Model

Chapter 9: Hazard and Operability (HAZOP) Study

Equipment: Absorber

Guide Word	Deviation	Cause	Consequence &
			Action
Line 1: Intention	s to provide water	r for ammonia absorpt	ion from purge gas
No	Flow	Pump failure or	No ammonia
		power loss	absorption will take
			place. Liquid Level
			sensor is needed.
More	Flow	Failure of flow	Weeping occurs in
		control valve	absorption column.
			Level sensor is
			needed. Liquid flow
			should be decreased
Less	Flow	Failure of flow	Flooding occurs in
		control valve	absorption column.
			Level sensor is
			needed. Liquid flow
			should be
			increased.

Guide	Deviation	Cause	Consequence &
Word			Action
Line 2 – Int	tention: Getting ammo	nia free purge gas from a	absorber.
No	Concentration	Water pump	No ammonia
		failure or purge	absorption will take
		gas control valve	place. Ammonia
		failure.	comes out along
			with gas from top.
			Level sensor and
			alarm for gas flow
			failure is needed.
Less	Concentration	Failure of liquid	Little amount of
		flow control valve	ammonia is
		or purge gas	absorbed. Level
		control valve.	sensor and alarm
			for gas flow failure
			is needed.

Guide Word	Deviation	Cause	Consequence &
Guiue woru	Deviation	Cause	Action
T ' ' '			
	h: To keep the pre	ssure high (optimum) i	in the absorption
column.	1		
No	Pressure	High pressure	Inefficient
		drop, high liquid	absorption of
		loading	ammonia and
			weeping occurs.
			Pressure controller
			is required at the
			upstream of
			absorption column.
			Gas flow controller
			is also needed for
			the exit gas stream.
			Good packing
			material should be
			used.
More	Pressure	Pressure drop is	Efficient absorption
		low	takes place.
			Pressure controller
			is required at the
			upstream of
			absorption column.
			Gas flow controller
			is also needed for
			the exit gas stream.

Equipment: Distillation Column

Intention: To recover Ammonia with maximum purity

Guide Word	Deviation	Cause	Consequence & Action
Line 4– Intentio column.	on: To provide feed	l of rich ammonia solut	tion to the distillation
No	Flow	Pump failure or Power Loss	No separation takes place. Level sensor is required for distillation column
More	Flow	Failure of Flow control Valve	Temperature falls and inefficient separation of ammonia. Level sensor is required for distillation column.
Less	Flow	Failure of Flow control Valve	Temperature rises inside column,

	inefficient use of
	large size column
	for separation.
	Level sensor is
	required for
	distillation column.

Guide Word	Deviation	Cause	Consequence &					
			Action					
Line 5- Intention	Line 5- Intention: To send the reflux back to the Column							
Less	Flow	Reflux Control	Ammonia product					
		Valve Failure	is not purified and					
			contains water as					
			well. Composition					
			analyzer must be					
			used for product.					
More	Flow	Reflux Control	Required product					
		Valve Failure	purification is not					
			achieved.					
			Composition					
			analyzer must be					
			used for product.					
No	Flow	Reflux Control	Distillate obtained					
		Valve Failure	will be less.					
			Purification is more					
			than					
			required.					
			Composition					
			analyzer must be					
			used for product.					

Guide Word	Deviation	Cause	Consequence &
			Action
Line 6– Intention	: To provide the ste	eam for heating to the re	eboiler
More	Flow	Steam Flow	Temperature of
		Control Valve	reboiler will
		Failure	increase and may
			become
			uncontrolled. More
			heat would be
			wasted.
			Temperature sensor
			for bottom stream
			should be used.
Less	Flow	Steam Flow	Temperature will
		Control Valve	decrease and the
		Failure	heat required for re
			boiling would not

	be sufficient
	enough which will
	cause inefficient
	separation in the
	column.

Guide Word	Deviation	Cause	Consequence &	
			Action	
Line 7 – Intent	Line 7 – Intention: To move the NH3 produced towards the Hydrogen			
Recovery Unit				
More	Flow	The downstream pumping increases	The level in the reflux drum falls, and more feed to the column and hence higher flowrates would be required.	
Less	Flow	The Flow control valve or the pump downstream fails	The level in the reflux drum increases to dangerous levels serious damage to the equipment.	

Chapter 10: Instrumentation and Process Control

10.1 Absorbers

The liquid and vapor flow rates are kept optimum to get maximum absorption of ammonia from purge gas. Absorption occurs at high pressure and low temperature. Pressure sensor is placed at the gas exit of absorber. If the pressure is too low, the inlet gas flow rate and exit gas flowrates are controlled by using flow control valve.[20] A specific amount of liquid is also required for absorption and to avoid the problems of weeping and flooding, a level sensor is used for measuring liquid level inside column. This liquid level is maintained by controlling the water flow using flow controller valve. A composition analyzer is also placed at the top of absorber for finding exit gas compositions and checking the ammonia recovery from the purge gas. If enough ammonia is not removed, then gas velocity and pressure conditions are changed by using flow control valves.

10.2 Cooler for lean solution

The lean solution from the bottom of distillation column after passing through series of heat exchangers, is cooled in a water cooler. Cooling water removes its energy and decreases its temperature to that required for absorption. A temperature sensor is used for measuring the outlet temperature of the lean solution. A flow control valve for cooling water is used to achieve the required temperature of lean solution.[20]

If the outlet temperature of stream is less than desired temperature, signal is sent to the cooling water flow control valve and flowrate of cooling water is decreased. If the outlet temperature of stream is more than desired temperature, signal is sent to the cooling water flow control valve and flowrate of cooling water is increased.

10.3 Distillation Column

The purpose of distillation is to separate ammonia from the water as ammonia is the desired product and water obtained could be recycled for absorption. Flow control valve is used for feed. Level sensor detects the liquid level in the column and helps

the feed control valve to operate accordingly. A reflux control valve is used after condenser for controlling reflux flow and distillate flow. Composition analyzer is used which check the purity of ammonia in the product stream. If it is less than the desired amount, reflux is increased by using reflux valve while in other case, reflux is decreased by using reflux flow control valve. (Nitsche, 2017) [12]

Make up steam is added in the distillation column as some water is lost along with distillate (ammonia product).[20] Flow control valve for this feed stream is used. The composition analyzer gives the amount of water lost and this signal is transmitted to the steam controller and its amount is controlled accordingly.

10.4 Condenser

In the condenser, top product of distillation column is condensed and cooled up to desired temperature. This temperature is achieved by cooling water. A temperature sensor is used for measuring the outlet temperature of the product. A flow control valve for cooling water is used to achieve the required product temperature.

If the outlet temperature of stream is less than desired temperature, signal is sent to the cooling water flow control valve and flowrate of cooling water is decreased. If the outlet temperature of stream is more than desired temperature, signal is sent to the cooling water flow control valve and flowrate of cooling water is increased.

10.5 Reboiler

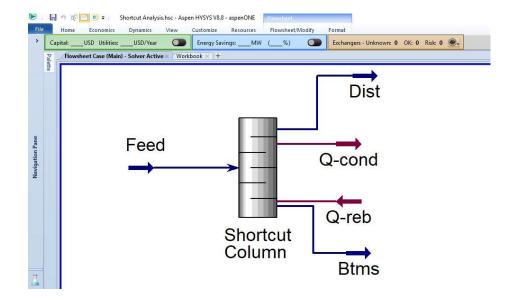
Bottom of distillation column enters reboiler. Some amount of liquid is collected as product while remaining vapors are sent back to distillation column. The reboiler ratio is controlled by control valve. It depends upon the purity of bottom product. Flow of vapors recycled and bottom product taken are changed by the flow controller depending upon the requirement.

This bottom liquid is heated by a steam. The temperature of bottom product is maintained by the steam flow. A temperature sensor is used for measuring the outlet temperature of the product. A flow control valve for steam is used to achieve the required product temperature.

Chapter 11: Energy Optimization

After obtaining complete design and operating parameters of the plant. We can work towards an optimized solution that could possibly optimize the reboiler duty for the Distillation Column C-523. The target was to achieve a compromise of ammonia production and steam requirement for maximized profitability and energy savings. There are many statistical techniques that could work on this situation but would require extensive multi-dimensional equations and solving derivative equations for functions of ammonia production and reboiler steam duty. For which we need to evaluate the various variables that comprise the numerical function of these responses. Another approach is the factorial optimization that is the essence of Response Surface Methodology (RSM). It is a statistical optimization technique that targets an experimental response with the simultaneous variation of multiple factors. RSM gives us an accurate approximation of optimum factor values that optimize a response.[4] We have employed the technique for the optimization of reboiler duty for the distillation column of ARU.

11.1 Design of Experiments:


Design of experiments, referred to as DOE, is a systematic approach to understanding how process and product parameters affect response variables. The experiments suggest which process variables are contribute to changes in the response variable. For DOE, we have used the software of Design Expert 11, in which we have to design a case where different process variables of the ARU are selected as independent factors.

11.2 Aspen HYSYS Simulation:

Rigorous column modelling and simulation using Aspen HYSYS were done after obtaining preliminary design and material balance. The Shortcut column Analysis was done to verify the results of the preliminary design and get an idea of the favorable parameters for the distillation column such as the minimum reflux ratio, minimum number of stages, optimum feed point entry and optimum reflux ratio.[14]

The feed is specified through the material balance calculations. The internals of the column are specified through the pressure temperature data. The key component

fractions at top and bottom calculated through material balance of outlet streams along with purity and recovery allowances.

We obtained the following results through the Shortcut Analysis.

Figure 16 Shortcut Column Simulation

The optimum Reflux ratio as suggested by Richardson Coulson for economic column erection and operation is at most 1.5 times the minimum Reflux ratio.

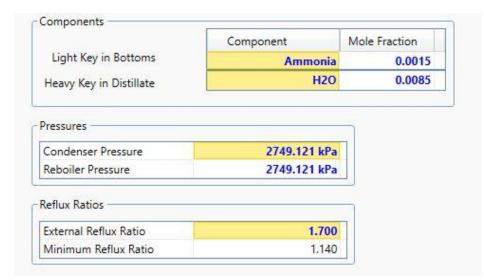


Figure 17 Shortcut Column Results

Based on these results we try to perform the rigorous simulation of the Column C-521 in HYSYS as observed in the Simulation Chapter. Reboiler duty at design case was evaluated which was to be optimized using a DOE and Simulation based approach.

11.3 Response Surface Methodology:

Using the DOE software Design Expert, a 3 factor RSM was performed against the reboiler duty as response of the experiments. The factors selected for the experiments were the following:

- 1. Reflux Ratio of Column (continuous)
- 2. Feed Composition NH₃ (continuous)
- 3. Feed Point plate from bottom (discrete)

Following were the ranges for the three factors:

Factor	Lower Limit	Upper Limit
Reflux Ratio	1.14	3.0
Feed Composition	0.10	0.40
Feed Point	7	13

Table 19 RSM Factor Ranges

According to the ranges defined into the software, optimization requires the responses on various experiments or runs of the factors. These factors are then run in Aspen HYSYS to evaluate the reboiler duty. The responses for 25 cases as required by Design Expert were recorded and fed to the software. The software analyzed the data and recommended the calculations mode for the RSM analysis. After complete analysis, we are provided with 3D graph for the multi factor optimization.

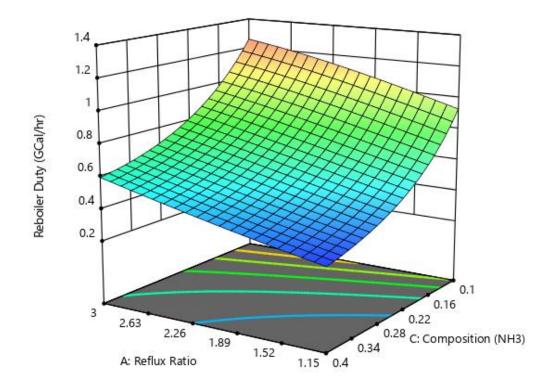

Experiments Summary from Design Expert:

Table 20 RSM Run Results

RUN	Factor 1: Reflux	Factor 2: Feed	Factor 3:	Response
	Ratio	Position	Composition	Reboiler Duty
			NH3	Gcal/h
1	3	7	0.4	0.5895
2	1.15	10	0.290267	0.4121
3	1.15	13	0.1	Unconverged
4	1.15	7	0.1	Unconverged
5	2.1675	10	0.1	1.132

6	1.779	13	0.4	0.3782
7	1.15	13	0.4	0.2718
8	2.334	10	0.292	0.6083
9	3	13	0.4	Unconverged
10	1.7975	13	0.2125	0.6402
11	3	7	0.175	0.9024
12	2.334	10	0.292	0.6083
13	1.15	10	0.290267	0.4112
14	1.15	9	0.2695	0.449
15	3	12	0.186208	0.8831
16	3	11	0.208802	0.8496
17	2.1675	10	0.1	1.132
18	1.65875	7	0.175	0.6736
19	1.6125	7	0.4	0.3503
20	2.001	11	0.4	0.4157
21	1.7975	13	0.2125	0.6402
22	3	13	0.1	1.323
23	1.7975	13	0.2125	0.6402
24	1.63822	7	0.4	0.3547
25	3	8	0.4	0.5838

11.4 Optimization Results

The results for the RSM analysis on Design Expert 11 represented in a 3D-plot

Figure 18 RSM 3D Surface Plot

It was possible to incur the following conclusions from the 3D response surface:

- Reboiler Duty is a direct function of the reflux ratio. Keeping the reflux as low as possible is required to lower the Steam consumption; while considering the same level of purity and capacity is achieved verified through simulations.
- 2. Keeping the NH₃ concentration in feed a maximum to achieve better separation and a lower value of reboiler duty for the same performance.
- 3. Introducing the feed at a higher plate to match the concentration of the tray.

The following conditions for the 3 factors was achieved at which the HYSYS simulation would give an optimum reboiler duty, while keeping the same level of production and purity and while keeping the exit purge gases containing essentially no Ammonia to result in NO_x

Factor	Optimized Solution
Reflux Ratio	1.7
Feed Composition	0.25
Feed Point	13

Through the analysis performed the ARU reboiler duty was statistically reduced to 40% of the designed case requirements. Which would result in a considerable amount of savings in terms of operating costs.

Table 21 ARU Duties & Steam Requirements

Purge Gas Flowrates	Reboiler Duty (Gcal/h)	Steam
		requirement (kg/h)
Design Case (22499 Nm ³ /h)	1.48	3650
Current Case (11000 Nm ³ /h)	0.95	2354
Optimized case	0.577	1418

Considering an industrial quoted rate of MP steam generation from natural gas at Rs. 2,550 per ton. We can calculate the savings as;

- Steam cost before: PKR 53.2 M / year
- Steam cost after: PKR 32.0 M / year
- Total Savings: PKR 21.2 Million/year

Conclusion

Using rigorous HYSYS simulations and 3-factor Response Surface Methodology, the ARU's steam requirement was optimized to 1.42t/h which is a 40% reduction in energy requirement. The optimized parameters recommended in this study neither require any investment nor requires any changes made to the design of the currently installed ARU at Plant-1. This would mean, that apart from the recovered Ammonia that is contributing towards the extra earnings, the savings in the form of lesser energy requirements are also contributing towards profitability. The project is completely suggestive of an economically beneficial, efficient, safe and absolutely sustainable solution to the underlying industrial problem; which is the essence of Chemical Engineering.

References

[1] Punjab Environmental Quality Standards for Industrial Gas Emissions (2016)

[2] Max Appl, Ammonia: Principles and Industrial Practices, 2007. 9-78-3527-9

[3] Crisalle, Oscar D. 2013. Ammonia Gas Absorption. 2013. 0-47-389839-0

[4] Edgar & Himmelblau, Optimization of Chemical Processes, 1998

[5] Warren L. McCabe, Julian C. Smith, Peter Harriott. Unit Operations of Chemical Engineering. 1993. 0-07-112738-0

[6] Coulson & Richardson, Chemical Engineering Vol 2: Separation Techniques, 1977

[7] Coulson & Richardson, Chemical Engineering Vol 6: Chemical Engineering Design, 1999

[8] Smith & Van Ness, Chemical Engineering Thermodynamics

[9] Perry, R.H., Perry's Chemical Engineers' Handbook, 1934

[10] Hu, Professor Xijun. Advanced Physico-Chemical Treatment Processes.

[11] Kolmetz, Karl. 2013. Reboiler Engineering Design. #03-12 Block Aronia,Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru : s.n., 2013

[12] Nitsche, M. & Gbadamosi, R. (2017). Practical Column Design Guide

[13] Mukherjee, Rajiv. 1998. Chemical Engineering Progress. s.l. : Engineers India Ltd, 1998.

[14] Luyben, W. L. (2006) Distillation Design and Control Using Aspen Simulation

[15] S.A. Taqvi et al. Optimization and Dynamics of Distillation Column using Aspen Plus® Procedia Engineering 148 (2016) 978 – 984

[16] Lars Erik Øi et al. Optimization of configurations for amine-based CO2 absorption using Aspen HYSYS Energy Procedia 51 (2014) 224 – 233

[17] Kazemi A. Using RSM for Modeling and Optimization of Separation Column Austin Chem Eng. - Volume 3 Issue 4 – (2016)

[18] Agnihotra, Narendra Kumar. 2016-14 Ammonia Production by Haldor Topsoe Conventional Technology

[19] Saipem Inc., The Snamprogetti Urea Technology, (1985)

[20] Industrial documentation from FFC