

DISASTER MANAGEMENT SUPPORT SYSTEM

By

Ahsan Sadeque
Nofel Elahi

Shakeeb Ahmad

Submitted to the Faculty of Computer Software Engineering, National

University of Sciences and Technology, Islamabad in partial fulfillment for

the requirements of a B.E Degree in Computer Software Engineering

JULY 2011

ABSTRACT

DISASTER MANAGEMENT SUPPORT SYSTEM

The main purpose of the project is to set up an IT infrastructure to respond to

different disasters/emergencies. The IT infrastructure would constitute various

organizations providing their services (resources) to perform various post

management tasks.

The system is accessible through a Web interface. User authentication and access

management is controlled by a User Management Service. A role-based access

policy is used to provide access to different features of the system. Disaster

Management Service is the key component of the system which consists of

various subsystems including Workflow System. This system appoints tasks to

different organizations and also sets priorities and dependencies between

different tasks. A Capability Assessment Engine suggests resources of different

organization based on disaster specific parameters. Resource

Management Service has the responsibility to update status of resources.

Communication Service allows different organizations and officials involved

in a task to communicate with one another. Disaster Support Repository

is a normalized relational database managing the records of the entire system.

The above tasks have been accomplished by establishing Web Services

in Java language using JAX-WS API. JAX-WS makes use of annotations to

simplify the development and deployment process of Web service and its clients

that communicate using XML. JAX-WS uses SOAP as message protocol.

Specification of SOAP describes the envelope composition, its encoding

rules and the ways of expressing Web service request and response. Request

and response are used as SOAP messages over HTTP. The interface

consists of JSP pages, for dynamic data handling without reloading the page we

have also employed JQUERY, AJAX, JSON. Java Servlet enables us to separate

business logic from presentation. Methodologies have been used to prevent SQL

Injection attacks.

A comprehensive testing methodology including Prototype Testing, unit testing,

and integration testing is followed. Usability analysis is also carried

out by following different usability heuristics.

iii

CERTIFICATE OF CORRECTNESS AND APPROVAL

Certified that work contained in this thesis “Disaster Management Support

System” carried out by Ahsan Sadeque, Shakeeb Ahmad and Nofel Elahi

under the supervision of Asst. Prof. Dr. Awais Majeed for partial fulfillment

of Degree of Bachelor of Software Engineering is correct and approved.

Approved by

(Supervisor Name)

_____ Department

MCS

Dated: _______________

iv

DECLARATION

No portion of the work presented in this dissertation has been submitted in

support of another award or qualification either at this institution or

elsewhere.

v

DEDICATION

In the name of Allah, the Most Merciful, The Most Beneficent

To our teachers and parents, without whose unflinching support and

unstinting cooperation, a work of this magnitude would not have been

possible.

vi

ACKNOWLEDGEMENT

We are eternally grateful to Almighty Allah for bestowing us with the

strength and resolve to undertake and complete the project.

We gratefully recognize the continuous supervision and motivation

provided to us by our supervisor, Assistant Professor Dr Awais Majeed

and Madam Nausheen for their continuous and valuable suggestions,

guidance, and commitment towards provision for the undue support

throughout this project.

We will also like to thank other faculty members of the department of

Computer Software Engineering for their continuous support and help. It

was their help and guidance which helped us complete project in due time.

We would also like to thank our class mates and last but not the least our

family members for their support throughout the project in every way

possible.

vii

TABLE OF CONTENTS

Chapter 1 Introduction ... 1

1.1 Introduction ... 1

1.2 Background ... 1

1.3 Problem Statement ... 2

1.4 Goals and Objective ... 2

1.5 Deliverables .. 3

1.6 Document Organization .. 3

1.7 Summary ... 3

Chapter 2 Literature Review .. 3

2.1 Introduction ... 4

2.2 Disaster Management in Pakistan ... 4

2.3 IT based tools for Disaster Management ... 5

2.3.1 SAHANA FOSS Disaster Management System 5

2.3.2 Disaster Management Information System 5

2.3.3 Limitations ... 6

2.4 Enabling Technologies ... 6

2.4.1 Service Oriented Architecture .. 6

2.4.2 Web Services .. 7

2.4.3 Application Programmer Interface (API’s).. 8

2.5 Summary ... 9

Chapter 3 System Requirements .. 9

3.1 Introduction .. 9

3.2 Project Scope ... 10

3.3 Product Features ... 10

3.3.1 Competency/Resource repository of organizations 10

3.3.2 Competency Analysis Module ... 11

3.3.3 Team formation and Task management (Workflow Engine) 11

3.3.4 Peer Evaluation (Trust/Reputation Engine) 11

3.4 Assumptions and Dependencies ... 11

viii

3.4.1 Basic Assumptions ... 12

3.4.2 Operating System .. 12

3.4.3 Web Server .. 12

3.5 System Features .. 12

3.5.1 Team Selection .. 12

3.5.2 Workflow System ... 12

3.5.3 Appoint Tasks .. 13

3.5.4 Notification/Communication Channel .. 13

3.5.5 Status Check .. 13

3.5.6 Record Maintenance .. 13

3.5.7 Login/Access Rights .. 13

3.5.8 Establishing Services ... 14

3.6 External Requirements.. 14

3.6.1 User Interface ... 14

3.6.2 Hardware Requirements ... 14

3.6.3 Software Requirements .. 14

3.7 Other Non-Functional Requirements ... 14

3.8 Software Quality Attributes ... 15

3.8.1 Runtime System Qualities .. 15

3.8.2 Non-Runtime System Qualities .. 15

3.9 Other Requirements... 16

3.9 Summary ... 16

Chapter 4 System Design... 17

4.1 Introduction ... 17

4.2 System Overview .. 17

4.3 Assumptions and Dependencies .. 18

4.4 System Requirements .. 18

4.5 General constraints ... 18

4.6 Architectural Strategies .. 18

4.7 System Architecture .. 20

4.7.1 User Support Service .. 22

4.7.2 Disaster Manager Service .. 22

ix

4.7.3 Disaster Alert Service ... 22

4.7.4 Workflow Manager .. 22

4.7.5 Capability Assessment Engine ... 23

4.7.6 Resource Manager ... 23

4.7.7 Communication Manager ... 23

4.7.8 Grading Service .. 23

4.7.9 External Agency System .. 23

4.7.10 Support Repository ... 23

4.8 Use Case Diagram .. 24

4.8.1 Basic Flow of DMSS ... 24

4.8.2 Post Conditions ... 25

4.8.3 Alternate Scenarios .. 25

4.9 Class Diagram ... 25

4.10 Entity Relationship Diagram ... 29

4.11 Detailed Design ... 31

4.11.1 Activity Diagram: Task creation .. 31

4.11.2 Sequence Diagram: Adding resource to task 32

4.11.3 State Machine Diagram: Organization ... 33

4.12 Web Modeling ... 34

4.12.1 Presentation Model ... 34

4.12.2 Hypertext Structure Model .. 35

4.13 Summary: .. 36

Chapter 5 Implementation .. 37

5.1 Introduction ... 37

5.2 Tools and Technologies ... 37

5.2.1 Web Services ... 39

5.2.2 WSDL ... 39

5.2.3 XML BINDING .. 40

5.2.4 SOAP MESSAGE ... 41

x

5.2.5 JAX-WS .. 43

5.2.6 JAX-B ... 44

5.2.7 SAAJ ... 44

5.2.8 jQuery .. 45

5.2.9 JSON ... 45

5.2.10 AJAX .. 45

5.3 User Interface .. 46

5.4 User Management Module ... 47

5.5 Disaster Management Module ... 48

5.6 Disaster Support Repository .. 50

5.7 Grading Service .. 51

5.8 Disaster Alert Service ... 51

5.9 Summary ... 51

Chapter 6 Testing .. 52

6.1 Introduction ... 52

6.2 Testing Levels ... 52

6.2.1 Unit Testing ... 52

6.2.2 Integration Testing .. 53

6.2.3 System Testing ... 53

6.3 Box Approach ... 53

6.4.1 Test Case 1 .. 54

6.4.2 Test Case 2 ... 54

6.4.3 Test Case 3 ... 55

6.4.4 Test Case 4 ... 56

6.4.5 Test Case 5 ... 56

6.5 Summary ... 56

Chapter 7 Results and Ananlysis .. 56

7.1 Introduction ... 57

7.2 Results .. 57

7.3 Analysis ... 57

7.4 Summary ... 58

Chapter 8 Conclusion and Future Work .. 58

xi

8.1 Introduction ... 58

8.2 Concept ... 59

8.3 Future Work .. 59

8.4 Summary ... 60

Appendix A ... 60

Appendix B ... 70

References ... 80

xii

LIST OF FIGURES

Figure Figure Name Page Number

4.1 Client Server
Architecture

19

4.2 Component Diagram 20

4.3 Use Case Diagram 24

4.4 Class Diagram 27

4.5 ER Diagram 30

4.6 Activity Diagram 32

4.7 Sequence Diagram 33

4.8 State Machine Diagram 34

4.9 Navigation Model 36

4.10 Hypertext Model 37

5.1 Overall System Diagram 38

5.2 XML Binding Disaster
Support Service

40

5.3 Soap Message 43

5.4 JAX WS API
Architecture

44

5.5 WSDL Disaster Support
Service

47

5.6 WSDL Disaster
Management Service

49

5.7 Prepared Statement 51

6.1 Session Cookie 56

xiii

xiv

LIST OF TABLES

Table Table Name Page No

5-1 Java Servlets 46

1

Chapter 1

Introduction to Disaster Management Support System

1.1 Introduction

Natural and manmade disasters bring destruction, chaos and misery to

human life and society. Under such circumstance, need for effective and

timely communication, collaboration of different organizations and people

becomes very much important to carry our various activities of rescue,

relief and rehabilitation. Disaster Management Support System is a

resource management and collaboration platform to support such activities

specifically rescue and relief operations after a disaster. Disaster

Management Support System has been developed using open standards

like XML, SOAP and Web services for interoperability and cross platform

support to facilitate organizations in integrating their existing IT solutions.

1.2 Background

Disasters are mostly naturally occurring events that have a negative effect

on human life. Disasters can be of two types, due to geological activities

on surface of earth or human errors. Geological activities are occurring at

all times its only when it causes a significant damage to human life it’s

considered a disaster. Disasters that occur in low vulnerability areas such

as uninhabited areas are usually not called disasters. Natural disasters

can include floods, tsunamis, tornadoes, volcanic eruptions and so on.

While disasters due to human error can be like fire, oil spills, nuclear waste

and so forth. In the last decade hundreds of thousands of people have

died in these disasters and countless other have suffered their impacts

and are still suffering. Tsunami in 2004 and 2011, earthquake in Pakistan

in 2005 and floods in 2010 have made a huge impact on human life. Many

people died while still many became homeless. Disaster Management is

vast and critical subject in this scenario because if a disaster occurs and

post disaster activities are not managed properly it can not only expand

the impact of disaster but cause further disasters. However the impact of

2

disasters can be minimized by using disaster mitigation strategies. These

include implementation of disaster early warning systems, preparing

development plans to provide resilience for disasters, mobilizing resources

and expediting rehabilitation and post disaster activities.

 Unfortunately after suffering two of the biggest disasters in last decade

Pakistan still don’t have an IT infrastructure for management of post

disaster activities. To manage post disaster activities Pakistan needs an

effective IT solution and that is the reason of development of DMSS. Since

a large number of organizations are active in Pakistan, it is necessary that

the said solution should be easy to integrate and communicate with

existing and upcoming solution. That is why DMSS has been built using

web services.

1.3 Problem Statement

Natural calamities cannot be avoided. However efforts can be made to

minimize effects of disasters. Mismanagement can lead to more damage

especially more human casualties. In the recent years a number of

disasters have occurred in the world. Pakistan itself has faced two of the

biggest disasters in recent history in shape of earthquake in 2005 and

floods in 2010 which has triggered the need of developing a system to

gain control of disaster quickly and to effectively plan rescue and relief

operations and execute them.

DMSS addresses this problem by efficiently managing post disaster

activities to provide timely and effective help to the effected people.

1.4 Goals and Objective

DMSS has been developed to facilitate in post disaster activities. The

objectives of DMSS is locating and allocating resources and helping

organization to collaborate with each other in post disaster activities of

rescue and relief. The mandatory functions of DMSS are locating and

allocating resource, assigning tasks to different organizations and

developing a workflow for different rescue and relief activities. The goal of

the project is to create a new project once a disaster has occurred,

3

develop workflow(s) for different post disaster activities, assign activities

and resources to different organizations, monitor their performance and

finally grade how efficiently they performed a task. All of this happens in

real time once a disaster has occurred. Another goal of DMSS is easy

integration with I.T infrastructures of different organizations.

1.5 Deliverables

The deliverables for this project is software system/application that will

provide functionalities to help in post disaster activities.

1.6 Document Organization

This document provides basic knowledge about DMSS. Initially the

description of project has been given, the next chapter discusses related

software products and their functionalities and how DMSS is different from

them. Requirement specifications have been covered in chapter 3, Design

specifications are discussed in chapter 4. Implementation is described in

chapter 5 and further chapters explains analysis of the software , testing

techniques employed and suggestion about further work in enhancing the

functionalities and capabilities of the system.

1.7 Summary

DMSS is a resource management and collaboration tool to assist in post

disaster rescue and relief operations and comes under the umbrella of

web engineering. This chapter is an introduction to DMSS, goals and

objectives which have been defined in order to develop this software. A

brief introduction to document contents is also included.

Chapter 2

Literature Review

4

2.1 Introduction

Main objective of this project is to help and support the Pakistani

government in post-disaster activities. For this purpose, the disaster

National Disaster Management Authority (NDMA) has developed a

comprehensive disaster management framework. Salient features of this

framework and working of NDMA is discussed in this chapter. This

framework is the foundation of the proposed Disaster Management

Support System. Different existing systems to support the disaster

management are also discussed in this chapter. The limitations of these

systems are also discussed.

2.2 Disaster Management in Pakistan

Pakistan’s inability to deal with large disasters was highlighted during the

earthquake of 2005. It was after observing this deficiency National Disaster

Management Authority was formed. The framework for dealing with

disasters laid down by NDMA lays down SOPs for dealing with different

disasters. It also calls for establishment of a forum to increase

collaboration between armed forces and other governmental and non-

governmental organizations. The said framework also calls for

strengthening PDMAs and DDMAs as they are currently very weak. Under

this framework NDMA has also established Emergency Operations

Centers at national, provincial and district level.

Emergency Operations Centers at regional and district level are

responsible for continuously monitoring different risks, hazards and

vulnerable conditions. They also coordinate complete spectrum of

disasters in their regions and are responsible for spreading awareness and

education on disaster reduction and response.

NDMA has laid down the foundations for efficient post and pre disaster

activities in its framework. However, the support infrastructure has not yet

been provided by the concerned agencies. The core issues under such

conditions are of communications, information sharing, access to right and

correct information and collaboration between different agencies. An IT

infrastructure along with the relevant software systems can greatly help

5

these operations. However, in Pakistan, we still don’t have the central

repository that contains information about the capabilities and resources

available that can be used under such conditions. Therefore, the proposed

DMSS can help the NDMA and the concerned organizations in this

regards.

In the next sections we will discuss the available disaster management

systems that have been used by different relief and welfare organizations

worldwide for the post-disaster relief and rescue operations.

2.3 IT based tools for Disaster Management
The following section provides a brief description of tools already
developed for disaster management and the last section highlights the
limitation of these systems.

2.3.1 SAHANA FOSS Disaster Management System

SAHANA is a free and open source system built for disaster management
after 2004 Sri Lanka tsunami. The system was initially deployed by Sri
Lanka’s CNO (Center of National Operations) . The project has since
grown with deployment in Pakistan Earth Quake , Philippine Mudslide
(2006) and Indonesian Earthquake (2006) as examples. The system was
initially developed for missing person registry while as an open source
project rest of the modules have been developed by different communities
all over the world. While the issue of scalability has been recently identified
and people are working on exposing SAHANA FOSS functions as web
services.

Sahana provides the functionalities of missing person registry, shelter

registry, request management system, inventory management, and

volunteer coordination.

2.3.2 Disaster Management Information System

This is a web based tool developed by International Federation of Red

Cross and Red Crescent societies. The biggest disadvantage is that this

tool can only be used by members of Red Cross and Red Crescent

societies. The tool basically provides information to federation about

disaster trends, resource both internal and external and different tools for

information management [3].

6

2.3.3 Limitations

SAHANA FOSS’s limitation is that it was developed as a database for

missing person so the focus from the start wasn’t on disaster management

activities. Secondly SAHANA didn’t support scalability as such because it

is not based on web services . Though now a project has been started to

shift SAHANA FOSS to web services.

Disaster Management Information System can be only used by volunteers
of International Red Cross and Red Crescent Federation.

2.4 Enabling Technologies

Accessibility, interoperability and open standards can help the

organizations to develop systems that can be integrated together. In the

case of disaster management, the main monitoring agency has to work

with different organizations including health services, armed forces, civil

organizations, met office and NGOs. These organizations may have their

own systems which include the information related to their available

resources, held stock levels of goods, competencies and team/project

management system. Thus, the integration of these systems at National

level is a major challenge. Moreover, accessibility to a centralized system

is also a major concern. Therefore, appropriate tools and technologies are

required to develop an integrated solution that can help in various post-

disaster activities.

The following sections give a brief description of various tools and

technologies that can be helpful in developing an open, interoperable and

extendible disaster management support system.

2.4.1 Service Oriented Architecture

DMSS has been built on service oriented architecture, publishing

functionalities as web services.

Service oriented architecture is in essence design principles which are

used during computer system development and integration. A system

developed on SOA will have different functionalities offered as

interoperable services which can be used within multiple, separate

systems from several business domains [5].

7

SOA also generally provides a way for consumers of services, such as

web-based applications, to be aware of available SOA-based services. For

example, several disparate departments within a company may develop

and deploy SOA services in different implementation languages; their

respective clients will benefit from a well understood, well defined interface

to access them. XML is the most common method to access services. [5].

A service has three fundamental attributes: a description of service, this is

the interface of the service; a method to access the service by invoking its

interface and an implementation of the service.

2.4.2 Web Services

Web services provide a mean of interoperating between different software

applications that might or might not run on the same platform or web

service.[6] To access a web service a client has to subscribe to a web

service first and once authorized only then it can access its functionalities.

Web services can be implemented and used in three ways.

2.4.2.1 RPC Web Services

RPC (acronym for Remote Procedure Call) based web services are

basically accessed synchronously accessed by RPC through a specific

port and protocol. The simplest unit in a RPC based web service is an

operation. The web services are directly mapped to these operations

written in a specific programming language. This shows that RPC web

services are not loosely couple and even though the very first web

services tools were based on RPC and vendors are trying hard that Web

Services Interoperability Industry Consortium disallow RPC Web Services.

2.4.2.2 SOA Web Services

Service Oriented Architecture means that architecture based on web

services. This strategy means that web services can be used to implement

architecture, unlike RPC web services where an operation is the building

block, in SOA a message is the basic unit.

8

In SOA the biggest advantage is the use of protocols that work over HTTP

for example SOAP message. These web services are also known as

message oriented web services because a message is the method of

communication in a distributed environment. SOA web services are

focused on WSDL contract and how client and server communicate

instead of implementation details like in case of RPC hence more and

more vendors and software developers are shifting towards SOA web

services for web application development.

2.4.2.3 RESTful Web Services

REST stands for representational state. REST web services combine

principles of REST architecture and HTTP protocol , it uses standard

HTTP operations for example GET, POST , DELETE and so on. The

interaction is focused on stateful resources.

An architecture based on REST can use WSDL to describe SOAP

messaging over HTTP, can be implemented as an abstraction purely on

top of SOAP (e.g., WS-Transfer), or can be created without using SOAP at

all. [16]

WSDL version 2.0 offers support for binding to all the HTTP request

methods so it enables a better implementation of RESTful Web services.

However, support for this specification is still poor in software development

kits, which often offer tools only for WSDL 1.1 [16]

2.4.3 Application Programmer Interface (API’s)
Different programming languages provide APIs to support the
development of Web services. Java provides the following APIs to develop
Web Services.

2.4.3.1 JAX-WS

JAX-WS stands for Java API for XML based Web Services. JAX-WS API

is part of Java EE platform and it uses annotations for simplification in

development and deployment of web services.

9

2.4.3.2 AXIS 2
Apache Axis2 is a core engine for Web services. Though developed

specifically for web services it can also function as a standalone server.
Apache Axis2 not only supports SOAP 1.1 and SOAP 1.2, but it also has

integrated support for the widely popular REST style of Web services.

2.4.3.3 JAX-RPC
JAX-RPC stands for Java API for XML based RPC allow an application to

invoke Java based web services. It is now replaced by JAX-WS which

support SOAP message format and W3C (World Wide Web Consortium)

standards. JAX-RPC was the most used style of implementation of web

services but now it’s an obsolete practice.

2.5 Summary
This chapter introduces us to existing system for disaster management;

their features and limitations. The section of enabling technologies

provides an introduction to various technologies that can be used to

develop DMSS so that overcomes limitations of existing systems. The

comparison of different technologies also helps in choosing the technology

that is not obsolete and in future would be helpful in expanding DMSS.

Chapter 3

System Requirements

3.1 Introduction

System requirements for the proposed Disaster Management Support

System (DMSS) are gathered based on the framework proposed by the

National Disaster Management System (DMSS) and the general project

management principles. Moreover, these requirements are specified

10

based on the principles of Computer Supported Collaborative Work

(CSCW), collaborative networks and Virtual Organizations. The proposed

system helps in post disaster activities of rescue and relief. When a

disaster occurs the system helps in developing workflows for different post

disaster activities and assigns tasks based on the workflow to different

teams thus enabling teams to collaborate and share resources to perform

different rescue and relief tasks effectively and efficiently. This chapter

provides specifications that DMSS has to fulfill so it can perform in the best

possible manner.

3.2 Project Scope
The main objective of this project is to develop a Web based decision

support system to support various activities associated with rescue and

relief processes during a disaster/emergency situation. This system will

particularly help disaster management authorities and concerned agencies

to collaborate and cooperate with each other. Moreover, it will also help

authorities to efficiently locate and allocate required resources to a

particular rescue or relief operation. The scope of the project is restricted

to rescue and relief operations only.

3.3 Product Features
DMSS has specific features which have been designed by focusing on

how the rescue and relief operations take place. These features are the

main functionalities the system will provide and form the basis for the

system design and implementation. The required features are elaborated

in more detail in the following sections.

3.3.1 Competency/Resource repository of organizations

DMSS should allow the maintenance a complete database of

resources/competencies of different organizations. For this purpose DMSS

should allow the organization registration process. Moreover, the system

should support the features that allow the automatic updating of the central

repositories whenever a particular organization updates the status of its

resources in their own system. For this purpose, Web services can be

11

used to integrate the existing IT solutions of the registered organizations

and the central repository maintained by DMSS.

3.3.2 Competency Analysis Module

DMSS should support the competency analysis of the organizations. This

feature will be used whenever a new project is created, and a set of

required competencies or required resources need to be generated. Based

on the tasks involved in a particular operation, the system should help in

identifying the concerned organizations with relevant skills/competencies

as well as the available resources.

3.3.3 Team formation and Task management (Workflow Engine)

DMSS should help in developing a workflow to support the tasks

associated with a particular type of disaster. Initially, the system should

present a workflow based on some best practices in the form of a

template. This workflow should be customizable by the Manager

Operations (MO). Each task presented in the workflow should then be

allocated to the most suitable organization. This information will be

retrieved by the Competency Analysis Module. MO can give some special

instruction and request for the required resources from the chosen

organizations. The system should provide means for communication as

well as progress tracking for the tasks that will be performed in a particular

project (operation).

3.3.4 Peer Evaluation (Trust/Reputation Engine)

DMSS should support the evaluation of various participating organizations

for future reference and the overall performance measurement of a

particular operation. Time of completion, number of resources

available/provided can be used as criteria for the evaluation. MO or the

member organizations in a particular task can evaluate their peers.

3.4 Assumptions and Dependencies

Some basic assumptions have been made in the development of DMSS.

This section describes assumptions and dependencies based on which

DMSS has been developed.

12

3.4.1 Basic Assumptions

The system is robust and available 24/7 for the user. Because a disaster

can happen anytime the system should be always available. In case of

disaster the number of users using the system can increase drastically so

software should use computer resources optimally. Also it should be able

to serve a large number of requests. The user of the system should have

basic knowledge of web applications.

3.4.2 Operating System

DMSS has to be built using Java and JAX-WS (Java API for web

services). So the system is operating system independent and existing IT

infrastructures can integrate with it because it’s based on SOA.

3.4.3 Web Server

DMSS should be able to run on a J2EE compliant Web/Application Server.

However, GlassFish Server is recommended for this purpose.

3.5 System Features

System features based on the functional requirements extracted from

NDMA framework and Virtual Organization (VO) concepts are as follows:

3.5.1 Team Selection

This feature would allow user to select a team to undertake a task of

rescue or relief operation once a disaster has struck. The user would

create a new project once a disaster has occurred and for a given task

would select a team based on available resources, abilities and past

performance. The user will enter the nature and location of disaster based

on which system will display a workflow or plan to combat disaster. The

user would then assign the given list of tasks to appropriate teams.

3.5.2 Workflow System

After a disaster has struck, the user would create a new project giving

parameters about the type of disaster. The system would then generate a

workflow or a plan of rescue and relief activities. The system would also

13

set priority levels of different activities listed in the plan as well as the

interdependency between tasks if required.

3.5.3 Appoint Tasks

This feature would allow appointing tasks to different teams or team leads.

Once a workflow is generated based on disaster type, the different tasks

enlisted in the workflow are appointed to teams based on their area of

expertise.

3.5.4 Notification/Communication Channel

DMSS would have an effective communication channel so different

organizations can collaborate with each other as well as update central

command on the status of work they are performing/have performed. Also

it will help in effective resource utilization on different tasks and projects.

3.5.5 Status Check

Each organization that has subscribed to DMSS will be able to publish its

status on DMSS, so that a track of current activities can be kept. This

feature would also help in planning and executing future tasks.

3.5.6 Record Maintenance

This feature would allow user to maintain records of organizations

registered with the system. DMSS would have complete record of

resources available and tasks and services performed by different teams

during rescue and relief operations. DMSS will have its own record

separate from organizations. The records will also be useful in future

incidents as well as in studies of disaster management. Different users will

have different access level to database repository. The database would be

designed in such a way to protect data integrity and confidentiality.

3.5.7 Login/Access Rights

DMSS would allow users to login based on their hierarchy in the

organization. Different users will have different features visible to them

based on his role in the organization.

14

3.5.8 Establishing Services

This is a high priority feature and DMSS would export its features using

web services. This will help in cross platform support and allow existing IT

infrastructures to register with DMSS.

3.6 External Requirements

DMSS is a web application so it has some specific interface requirements

elaborated in this section.

3.6.1 User Interface

DMSS is a web application and will perform actions based on user input.

This requires that the interface of DMSS should have an easy learning

curve for the user. Most of the important features should be visible to the

user and no functionality should be hidden. It should be easy for user to

perform basic actions and data available to the user should be displayed in

a meaningful way.

3.6.2 Hardware Requirements

The hardware requirements for DMSS should be high enough so that the

system can perform optimally without any compromise in performance

under different levels of loads and stress.

3.6.3 Software Requirements

DMSS is operating system independent though the DMSS server on open

source Glass Fish server. So Glass Fish web server needs to be installed

on required machine. The database is developed using MySQL 5.0.

Though the CREATE database script can be used to create repository on

a different RDBMS.

3.7 Other Non-Functional Requirements

Certain other functionalities are required based on performance and

response of DMSS. DMSS has to be efficient in its response and

operation. The product domain requires that the software is optimized in

terms of performance. The data flow should happen in the most efficient

15

way. The system performance shouldn’t e affected when a new disaster

happens and a new project is created.

3.8 Software Quality Attributes

Quality attributes of DMSS are described in this section. By following these

attributes quality of DMSS has to be improved.

3.8.1 Runtime System Qualities

At run time DMSS has to provide its users functionalities so that they can

perform post disaster activities of rescue and relief efficiently and

effectively. Some of the runtime qualities that should be considered in

development of DMSS are described here.

3.8.1.1 Functionality

DMSS must provide functions to create project and track project status. It

should also provide functionalities to develop a work flow. DMSS must

provide functions of task and resource appointment, status of tasks and

resources.

3.8.1.2 Performance

DMSS performance shouldn’t be affected in case a new project is created

and different organizations login at the same time.

3.8.1.3 Availability

DMSS should be available 24x7 since a disaster can happen at any time.

3.8.1.4 Usability

Usability is an important criterion in development of DMSS. The system

should present all functionalities in such a way that nothing is missed by

user. DMSS will also provide a lot of data inputs and outputs to the end

user so the interface present data in a proper standard format.

3.8.2 Non-Runtime System Qualities

These are qualities of DMSS which are required to make this software

useful for further enhancements and future development as well as

extending system to different environments.

16

3.8.2.1 Modifiability

DMSS must support modifiability so any further improvements or features

are easy to incorporate

3.8.2.2 Portability

DMSS should be able to run in different computer environments. The

DMSS server should be platform independent and support interoperability.

3.8.2.3 Reusability

The different functionalities DMSS is providing should also be available as

a stand-alone project. So if another system is being developed which

needs functionalities of DMSS, the system (DMSS) should be easy to

understand to reuse it.

3.8.2.4 Integrate-ability

Different components of DMSS should work together in correct manner so

that DMSS can be used in the most useful manner. Also different IT

infrastructures should be able to integrate with DMSS.

 3.8.2.5 Testability

Different quality tests should be performed so that DMSS is free from

faults and perform according to requirements specified in this chapter.

3.9 Other Requirements

DMSS should be robust enough so that it can perform in the best manner

when the system is under different loads and stress. If during a disaster

the system fails, a backup server must be present. The database backup

timings should also be defined. System should also validate any data user

enters. DMSS database repository should also maintain data integrity and

confidentiality.

3.9 Summary

This chapter describes the requirements of the system as described by

Project Supervisor. It includes interface, functional and nonfunctional

17

requirements along with the main features system would provide to the

end user. These requirements have been set after checking the feasibility

of the system. These requirements have been considered as the

fundamental principles for testing and standardization of the product.

Chapter 4

System Design

4.1 Introduction

This chapter describes the design specifications of DMSS. The design

specifications have been developed using requirements described in

chapter 3. This chapter provides details about system structure and

architecture as well as database architecture.

4.2 System Overview

DMSS is a software system to facilitate in post disaster activities of rescue

and relief. DMSS provides certain functionalities to help organizations

carry out rescue and relief activities efficiently and effectively. Also it helps

to locate and allocate resources effectively during these activities and

develop an effective work plan to carry out these activities.

18

4.3 Assumptions and Dependencies

Basic assumption for development of DMSS is that system should be

available 24x7 since a disaster can happen at any time. The server should

be able to handle a large number of requests especially when a disaster

occurs.

4.4 System Requirements

The software is platform independent since programming language used

to build system is Java. But since it’s a web application browser version

greater than Internet Explorer 6 or Mozilla Firefox 3 or equivalent are

recommended.

4.5 General constraints

DMSS has to provide functionalities described in chapter 3 but in order to

enhance software usability few constraints are applied which are

described below.

The server machine must use J2EE based application server preferably

glass fish server. The web application has been designed for browsers

supporting CSS 3.0. The user must have basic knowledge of Web

applications and database repository is developed on MySQL 5.0 RDBMS.

4.6 Architectural Strategies

DMSS is a distributed application and is based on client server

architecture. Figure 4-1 shows an overall picture of DMSS server,

database server and different clients. The clients will interact with web

services through HTTP’s defined protocols. DMSS has two servers one for

the core system which provides services to client and the second is the

database repository which the core system communicates with using

JDBC driver.

Comment [AM1]: Mention about Client-Server
architecture. Then mention that Service Oriented
Architecture will be used and various functionalities
will be exposed as Web Services.

19

 Figure 4-1 Client Server Architecture

DMSS has also been built using service oriented architecture, publishing

functionalities as web services. Service oriented architecture is in essence

 NDMA

 GOVT

ORGANIZATION

NGO’S

INTERNET
CLOUD

 CORE SYSTEM

WEB SERVICES

 JAVA CLASSES

DATABASE

20

design principles which are used during computer system development

and integration. A system developed on SOA will have different

functionalities offered as interoperable services which can be used within

multiple, separate systems from several business domains [5].

The major modules of DMSS are designed as Web Services providing an

interface to the client to subscribe and then invoke the necessary service

and use the functionalities it provides. SOA being platform independent

and interoperable allows the clients to be language independent.

4.7 System Architecture

To manage a disaster through DMSS, a new project will be created. There

are certain details the system needs as an input to create a new project

and then develop a work flow for different rescue and relief activities.

DMSS functionality is exported to the interface by web services. These

web services use java packages to access java classes or classes. Which

further access database to insert or retrieve data.

The component diagram of DMSS is shown in figure 4-2.

21

Figure 4-2 Component Diagram

Once a disaster occurs the user enters parameters for the disaster to

setup a work flow/plan for rescue and relief efforts. The project is open till

the time the tasks given to various teams are not completed. When a

project is open it is constantly monitored and status of different teams and

tasks are updated regularly once all tasks are performed and are reported

as complete the project is closed. Then the tasks are reviewed whether a

team performed the task successfully or not or whether the results of the

tasks were satisfying. Based on these results the teams are graded. This

is helpful in future activities where task allotment could be made easy by

allotment of tasks on basis of team’s past record and task’s complexity

level.

Once a rescue or relief operation is completed Grading service is used to

grade organization on that particular task. This will not only help in

evaluation of tasks performed and performance of different organizations

but also help in future projects by giving complex tasks to more

22

competitive organizations. It will also help organization to learn and

improve their operations.

The classes within the components are further connected to database

repository through a single Java bean.

4.7.1 User Support Service

User Support Service aka Disaster Support Service is a web service

provides functionality for system login/access as well as for user

registration. When a user enters his name and password the web service

sends message to the respective class in core.disaster package

which checks the credentials with the database’s table. If the credentials

are correct user is logged in successfully and can access system functions

according to his/her roles.

4.7.2 Disaster Manager Service
This web service is the gateway between the classes that maintain the

disaster related information and the front end. It provides web methods for

all information on different disaster projects like creating a new project,

viewing existing projects, creating new tasks and viewing existing tasks,

resource management, updating status on different tasks and inbox for

viewing messages as well as creating messages.

4.7.3 Disaster Alert Service

This component is developed as a web service and it contains operations

related to providing alerts and notifications to clients which have

subscribed to DMSS.

4.7.4 Workflow Manager

This component contains classes which generate a workflow for a new

disaster management project. The workflow tasks are then assigned

resources and forwarded to respective teams.

23

4.7.5 Capability Assessment Engine

Capability Assessment Engine calculates capability of different teams

based on their performance on different rescue and relief activities and

how effectively they performed those activities.

4.7.6 Resource Manager

This component contains classes which are collectively used to manage

resource. This component’s classes are accessed by web methods

defined in Disaster Manager Service. The different methods allow DMSS

to manage resources it has acquired of different organizations and also

functions for organizations to update their resources and their status.

4.7.7 Communication Manager
This component contains classes which handles communication between

different organizations which are working on the same project. It provides

functions to send messages to different organizations as well as to post

information and updates on a message board.

4.7.8 Grading Service

Grading service is a web service consisting of functions defined in

capability assessment engine. It’s the interface between client and

capability assessment engine, exposing all function which are related to

grading an organization based on its performance in various activities.

4.7.9 External Agency System

This package contains classes which handles project related information.

This package’s classes are accessed by web methods defined in Disaster

Support Service. The different web methods accessing this package are

described in section 4.8.3.

4.7.10 Support Repository

This is the database of the whole software system. All the user,

organization and project related data is maintained. It has been designed

by keeping data integrity and confidentiality principles in mind. Also

24

database normalization principles were applied during database design.

The database design is further explained in an E-R Model in section.

4.8 Use Case Diagram

The use case diagram of DMSS has been given as Figure 4-3. This

diagram describes the interaction of user and the system.

4.8.1 Basic Flow of DMSS

The software has three types of users, admin, manager operations (MO)

and organizations. All the three types of users have different access level

to the system and its data and can perform functions assigned to their

respective roles.

The admin user can create new user or organizations or register

organization. It can also deem a user as active or inactive based on some

policy. The MO user is basically the project manager; he/she can also

manage more than one project at a time. It can perform all actions related

to a project like project creation, appoint tasks, check task status, send

receive messages and grade users/organizations based on their

performance on a given task.

 The organization user can view project and tasks it has been appointed

to, it can also update the organization resources whether new resources

are added or existing resources are occupied or busy. It can update MO

on task status and can send and receive messages to communicate with

others on the same project.

25

Figure 4-3 Use Case Diagram

4.8.2 Post Conditions

System has performed the action which was requested by user through

web interface.

4.8.3 Alternate Scenarios

No alternate scenarios are defined because the objective of the system is

described in chapter 1 and the software is being developed by following

the given requirements.

4.9 Class Diagram

Figure 4-4 shows the class diagram of DMSS. All the classes shown in the

class diagram are further described in the sub sections.

DisasterSupportService is the main service to provide system access to

users and allow them to access different system functions based on their

26

roles. This service acts as an interface between web application’s front

end and back end Java classes.

DisasterDBAccess is the main class to access database objects. All the

data operations are performed through this class. All other classes send or

retrieve data from database through this class. It acts as an interface

between all software classes and database system.

Login System class contains data and functions for users and

organizations to login. This class simply authenticates user information

and checks which role is assigned to user based on which user is given

access to different areas and functions of the software.

OrganizationSystem class shown in Figure 4-4 provides data related to an

organization. It also provides functions for MO to see list of organizations

and narrowing search by different parameter inputs. Also this class has the

important function for MO to register organizations. This class is inherited

from User base class.

27

Figure 4-4 Class Diagram of Disaster Management Support System

28

The System Rights class has information roles and responsibilities for

each user type. So all the roles and their details and functionalities offered

for different roles are in this class.

The User class has basic information about user and organization. This is

the base class which is extended by user system and organization system

classes which have details specific to a user or organization.

User System class is extended from user and adds additional detail which

is more specific to a user which in this case can be the Web application

administrator or manager operations.

Disaster Manager Service is the second web service providing various

Web methods which are used to provide functionality regarding a disaster.

All functionalities of the system related to disaster management are

exported as web methods by this service.

DisasterProject class contains data about a disaster project and functions

to view existing project or create a new one.

Task class has all the data about a task which is related to some disaster

project. It has functions to create new tasks and set up priorities or set up

a workflow of different tasks which may or may not be interrelated.

Message board class keeps track of all messages, it provides functions to

create new message, post message to desired authority and view

messages.

Organization Resource class keeps a record of organization’s resources.

Whether a new resource is added, a resource is busy or free all

information is maintained through this class. This class has a high

importance in project because efficient resource management will lead to

better performance in different tasks or activities on a project.

Task resource class keeps a track of resources which are currently

allocated to a task. This class is extended from organization resource

class to add the extra functionality if a task has acquired a resource.

29

Task Status class monitors status of an individual task and provides

functions to set status, update status, and view status to concerned users.

Grading class is used for grading different tasks so to track performance

level of different organizations and help shaping future decisions like task

appointment and resource appointment to improve overall disaster

management strategies.

Disaster Grading Service is the service which exposes grading service

functions to authorized users

4.10 Entity Relationship Diagram

DMSS has a database repository to maintain all the records. ER Diagram

shows how data is modeled and relationship between different data are

identified and stored in a database management system. ER Diagram is

shown in Figure4-5.

30

Figure 4-5 ER Diagram of Disaster Management Support System

31

Some important tables from DMSS database are described below.

The sr_login table contains all user information for logging into a system.

sr_organization table contains information about all organizations currently

registered with the system or organizations waiting to subscribe to our web

services.

disaster_project table contains all the basic information about the

disasters. All disasters related records are kept in this database.

message_board table helps to maintain a record of communication taking

place between organizations and manager operations. All the messages

posted are logged by this database table.

4.11 Detailed Design

In order to ensure that the correct software is being build according to

requirements defined in chapter 3; low level design of DMSS is build using

requirements, component diagram and class diagram. In this section a few

of these diagrams related to a particular system scenario are described.

The rest of system diagrams are attached as Appendix A.

4.11.1 Activity Diagram: Task creation

The Figure 4-6 shows how the activity of task creation is performed.

When a new project is created a list of tasks is created. Once a task is

created it can be assigned to an organization and multiple resources can

be assigned to it. After a task is appointed its progress is tracked. The exit

can be by two ways , task is compleleted or aborted.

32

 Figure 4-6 Activity Diagram of Creating Task Process

4.11.2 Sequence Diagram: Adding resource to task

Figure 4-7 shows the sequence of steps and timeline of different objects

involved in adding resource to a task. First resource selection method is

invoked that shows a list of available resources. Then the resources

selected and database is updated. Once a resource is selected its

assigned to a resource as shown in the timeline. Also the task creation

process is completed and the respective organization is notified.

33

 Figure 4-7 Sequence Diagram of adding resource to task

The above diagram shows the sequence of steps and timeline of different

objects involved in adding resource to a task.

4.11.3 State Machine Diagram: Organization

State machine diagram shows the states an object can move between

when it’s active in a software system. The diagram below shows the

different states an organization object can acquire in its lifetime.

34

 Figure 4-8 State Machine Diagram: Organization

4.12 Web Modeling

This section provides design details of web application interface. It
includes navigation model and presentation model.

4.12.1 Presentation Model

Below figure 4-9 shows the presentation of different objects and navigation

links on dashboard page of an admin.

35

 Figure 4-9 Presentation Model: Admin Dashboard

4.12.2 Hypertext Structure Model

Figure 4-10 explains the hypertext structure model for an organization

user. The figure shows different classes associated with an organization

user and organization user can navigate through in hypertext model. The

organization user can access only the projects its currently working on

through projects navigation class. The resource class basically keeps a

record of all the resources an organization has and allows an organization

to update resources while profile class allows it to change different

attributes of its profile like business address, telephone number and so on.

Comment [AM2]: What is org, projects etc.)

36

 Figure 4-10 Hypertext Model: Organization

4.13 Summary:

DMSS has to perform in real time environment and has to be available

24x7 to its users. This chapter described the design of the software taking

into consideration different assumptions and constraints that applied on

the system because of its goals and requirements. Component Diagram,

Class Diagram and Use case diagram have been added to explain system

functionalities. ER Diagram has been added to explain database design

and relationships between different database objects. A few low level

design diagrams are shown to elaborate how system behaves internally

and how objects change states when the system is put into operational

environment.

37

Chapter 5

Implementation Details

5.1 Introduction

Detailed design of the Disaster Management Support System (DMSS) are

discussed in the previous chapter. This design is transformed into an

application by using various technologies. The implementation details are

discussed in the following sections giving details of the system’s internal

working.

5.2 Tools and Technologies

Web applications can be implemented using various technologies. These

include server side technologies (JSP, Servlets, PHP, ASP.NET) and

different client side technologies (JavaScript). However, the selection of

these technologies depends on the system architecture and its detailed

design. Figure 5-1 shows an overview of different tools and technologies

used in the DMSS along with their interaction. JSP provides the user

interface of the application and handles the data exchange made by the

user to the application. This data exchange is in the form of parameters

passed to the system. The Servlet then initiates a call to a required

function of the Web Service. The call is handled by the Web Service End

Point. The core functionality of the system is handled by Java Classes at

the Service End Point. JAVA Classes then communicates with the

database to perform different transactions. The Web Service End Point

returns result to the Servlet. The Servlet returns dynamic content to the

JSP using JSON and jQuery.

 Client (Desktop
 Application/WebApplication)

38

 Figure 5-1 Overall System Diagram

The functionalities provided by the main system are exposed as Web

services. JAX-WS has been used to develop web services instead of RPC

web services. JAX-WS API provides more advantages as compared with

AXIS-2 and JAX RPC. JAX-WS provides better platform independence

and developer doesn’t have any concern with implementation details of

functions which are exposed in Web service. JAX-WS has support for

SOAP 2.1. JAX-WS also has support for most XML schema since its data

mapping model is based on JAXB [18].

DisasterManagerService DisasterSupportService

 JSP JAVA
SERVLET

JQuery/JSON

 Middle Ware WEB SERVICES

 CORE

 JAVA

 CLASSES

DATABASE

39

5.2.1 Web Services

Web services provide a standard means of interoperating between

different software applications, running on a variety of platforms and/or

frameworks [6]. Web services have an interface and a client can first

register with web service and then access the functionalities through its

interface.

5.2.2 WSDL

Web Service Directory Language (WSDL) is Web Service’s language

which contains information about a specific web service. WSDL contains

information like transport, protocol, service location, operations or

functions available and payloads transferring to and from web service.

A client program connecting to a Web service can read the WSDL file to

determine what operations are available on the server. Any special data

types used are embedded in the WSDL file in the form of XML Schema.

The client can then use SOAP to actually call one of the operations listed

in the WSDL file using XML or HTTP. A WSDL document uses the

following elements in the definition of network services:

Types– a container for data type definitions using some type system (such

as XSD).

Message– an abstract, typed definition of the data being communicated.

Operation– an abstract description of an action supported by the service.

Port Type–an abstract set of operations supported by one or more

endpoints.

Binding– a concrete protocol and data format specification for a particular

port type.

Port– a single endpoint defined as a combination of a binding and a

network address.

Service – a collection of related endpoints [7].

40

5.2.3 XML BINDING

XML data binding refers to a means of representing information in an XML

document as an object in computer memory. This allows applications to

access the data in the XML from the object [11].

XML Binding for Disaster Manger Service is given in figure 5-2 below.

<xs:schema version="1.0"
targetNamespace="http://DisasterManager.Core/">
<xs:element name="CreateNewTask" type="tns:CreateNewTask"/>
<xs:element name="CreateNewTaskResponse"
type="tns:CreateNewTaskResponse"/>
<xs:complexType name="CreateNewTask">
<xs:sequence>
<xs:element name="task" type="tns:disasterTask"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:sequence>
<xs:element name="return" type="tns:disasterTask"
minOccurs="0" maxOccurs="unbounded"/></xs:sequence>
</xs:complexType>
<xs:complexType name="disasterTask"><xs:sequence><xs:element
name="TaskID" type="xs:int"/><xs:element name="TaskDepID"
type="xs:int"/>
<xs:element name="DisasterID" type="xs:int"/>
<xs:element name="TaskPriority" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskName" type="xs:string" minOccurs="0"/>
<xs:element name="TaskDesc" type="xs:string" minOccurs="0"/>
<xs:element name="TaskCompType" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskInput" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskOutput" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskStatus" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskStartDate" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskEndDate" type="xs:string"
minOccurs="0"/>
<xs:element name="TaskType" type="xs:string" minOccurs="0"/>
<xs:element name="resourcelist" type="tns:taskResource"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence></xs:complexType></xs:schema>

 Figure 5-2 XML Binding Disaster Support Service

The Figure 5-2 is a schema that populates global element and attributes of

Core.DisasterManager namespace. The element CreateNewTask refers to

the function exposed in the Web Service. The element task refers to an

41

object of the class DisasterTask. e object task is sent as a parameter in

the method DisasterTask.CompleType is used when transferring user

dfined objects or multiple data type. Between the complex types tags are

defined the attributes of the object DisasterTask. Type refers to the data

type of the attribute.

XML Schema for remaining web services are given in Appendix B.

5.2.4 SOAP MESSAGE

Simple Object Access Protocol (SOAP) is a protocol specification for

exchanging structured information in the implementation of Web Services

in computer networks. It relies on Extensible Markup Language (XML) for

its message format, and usually relies on other Application Layer

protocols, most notably Remote Procedure Call (RPC) and Hypertext

Transfer Protocol (HTTP), for message negotiation and transmission.

SOAP can form the foundation layer of a web services protocol stack,

providing a basic messaging framework upon which web services can be

built. This XML based protocol consists of three parts: an envelope, which

defines what is in the message and how to process it, a set of encoding

rules for expressing instances of application-defined data types, and a

convention for representing procedure calls and responses [8].

It requires profuse attribute specification tags, namespaces, and other

complexities, to describe exactly what is being sent. This has its

advantages and disadvantages. SOAP involves significantly more

overhead but adds much more information about what is being sent. If you

require complex user defined data types and the ability to have each

message define how it should be processed then SOAP is a better

solution than XML-RPC.

42

5.2.4.1 HTTP GET AND POST MESSAGE

GET Requests a representation of the specified resource. Requests using

GET (and a few other HTTP methods) "SHOULD NOT have the

significance of taking an action other than retrieval". [9]

POST Submits data to be processed (e.g., from an HTML form) to the

identified resource. The data is included in the body of the request. This

may result in the creation of a new resource or the updates of existing

resources or both [10].

5.2.4.2 SOAP MESSAGE EXAMPLE

The following is an example of a soap message from DMSS.

Method parameter(s)

Type Value
java.lang.String null
java.lang.String null
int 2
java.lang.String MO

Method returned

java.util.List : "[core.disaster.UserSystem@147a765]"

 SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelopexmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>
<S:Body>
<ns2:lsituser xmlns:ns2="http://Disaster.Core/">
<province>null</province>
<district>null</district>
<parameter1>2</parameter1>
<usergroup>MO</usergroup>
</ns2:lsituser>
</S:Body>
</S:Envelope>

SOAP Response

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:lsituserResponse xmlns:ns2="http://Disaster.Core/">

43

 Figure 5-3 SOAP Message Example

The example in figure 5-3 has two parts SOAP Request and SOAP
Response. In soap request list user function is called with some
parameters. I t also send location of the resource i.e. Core.Disaster. In
soap response the requested data is returned it calls the lsituserResponse
function at client end it also initializes schema of array structure to return
complex data i.e. xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:type="ns2:userSystem">

5.2.5 JAX-WS

The Java API for XML Web Services (JAX-WS) is a Java programming

language API for creating web services. JAX-WS uses annotations to

simplify the development and deployment of web service clients and

endpoints [13]. Figure 5-2 shows how JAX-WS API implements Web

services. The communication between client and server takes place over

HTTP using SOAP message. JAX-B is used for data mapping. It

unmarshals the request of client and maps it to the appropriate function

<return xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:userSystem">
<UserName>rawalpindi</UserName>
<Phoneno>11111</Phoneno>
<PassWord>Ahwaz</PassWord>
<Email>abc@gm.com</Email>
<Address>rawalpindi</Address>
<Province>Punjab</Province>
<District>Faisalabad</District>
<UserID>2</UserID>
<FirstName>Ahwaz</FirstName>
<LastName>Sadeque</LastName>
<UserLevel>MO</UserLevel>
<OrgID>0</OrgID>
<UserType>NDMA</UserType>
<RolesID>0</RolesID>
<UserGroup>2</UserGroup>
<Status>11111</Status>
</return>
</ns2:lsituserResponse>
</S:Body>
</S:Envelope>

44

described in web service interface.

 Figure 5-4 JAX-WS API In Action

5.2.6 JAX-B

Java Architecture for XML Binding (JAX-B) allows Java developers to map

Java classes to XML representations. JAX-B provides two main features:

the ability to marshal Java objects into XML and the inverse, i.e. to

unmarshal XML back into Java objects. In other words, JAXB allows

storing and retrieving data in memory in any XML format, without the need

to implement a specific set of XML loading and saving routines for the

program's class structure. [14]

5.2.7 SAAJ

The SOAP with Attachments API for Java (SAAJ) provides a standard way

to send XML documents over the Internet from the Java platform. SOAP

messages require considerable processing power and memory. All parts

of a SOAP message must conform to XML rules for allowed characters

and character sequences so binary data cannot be included directly.

Furthermore, SOAP implementations typically parse the entire SOAP

message before deciding what to do with the contents, so large data fields

could easily exceed available memory. For all these reasons it was

recognized that SOAP requires some mechanism for carrying large

payloads and binary data as an attachment rather than inside the SOAP

message envelope.

45

5.2.8 jQuery

jQuery is a cross-browser JavaScript library designed to simplify the client-

side scripting of HTML. jQuery is free, open source software. jQuery's

syntax is designed to make it easier to navigate a document, select DOM

elements, create animations, handle events, and develop Ajax applications

[12].

5.2.9 JSON

JSON (an acronym for JavaScript Object Notation) is a lightweight text-

based open standard designed for human-readable data interchange. The

JSON format is often used for serializing and transmitting structured data

over a network connection. [4]

5.2.10 AJAX

Asynchronous JavaScript and XML (Ajax) is a group of interrelated web

development methods used on the client-side to create interactive web

applications. With Ajax, web applications can send data to, and retrieve

data from, a server asynchronously (in the background) without interfering

with the display and behavior of the existing page. [15]

5.2.11 Java Servlet

A Java Servlet is a class which is used to extend capabilities of servers

which are based on request response model. Servlets are used to extend

applications hosted on web servers. It can be compared to an Applet; the

only difference is that it runs on server instead of client machine. It is

usually used to separate presentation logic from business logic. The table

5-1 below shows some of the Java Servlets implemented in DMSS along

with their brief description.

 Table 5-1 Java Servlets

46

 Name Description

AddResouce This Servlet retrieves data from

the addResource.jsp and calls

the web service operation

getResouces.

PostGrade This Servlet retrieves data from

viewtask.jsp while grading the

users. The Servlet calls the web

service operation postgrading.

getResources This Servlet is automatically

called once AddTask page is

loaded.The sevlet calls the web

service operation

5.3 User Interface

Since DMSS is a web application so user interface is an important part of it

and it is treated as a separate module. The issues addressed in the user

interface design are that no functionality is hidden from user and data

should be presented in a clear way to end user so nothing is missed by

him.

The interface is developed using JSP, JQuery and AJAX. The interface is

kept separate from business layer by use of Java Servlet. The data is

parsed to the Java Servlet using JSON and servlet then communicates

with server and performs the desired functions. CSS 3.0 is used so that

most old browsers are compatible with the web application but still a few

features won’t show up correctly on browsers older than Internet Explorer

6.0.

47

JQuery is an open source JavaScript library used for client side scripting

(Writing the program of web application which will run on client side).

JQuery is used for form validation in user interface, so when a user is

creating a new project for a disaster, registering into the system or using

any other form for entering data he shouldn’t enter a wrong value or type.

This will ensure data is in its correct format.

Ajax standards for asynchronous JavaScript and XML. It is also used to

write client side code of a web application and main purpose is to make

web applications interactive. Ajax was used in development of user

interface for DMSS. The reason to use Ajax was it sends data to and

retrieves from server asynchronously without affecting the web page or

redirecting user to a new page.

In DMSS JSON (JavaScript Object Notation) is used in conjunction with

JavaScript to generate dynamic data. This data is then send or received

from sever using AJAX (POST and GET HTML methods) to avoid

redirection of user on other page.

5.4 User Management Module

This module covers all functionalities associated with a user. It provide

functionalities to create a new user , edit user , authorize user to login into

the system and display system features to a user based on his role in the

organization. The user management module essentially consists of a web

service which acts as an interface between client side code and server

side code. This web service methods than interacts with java classes

which further interact with database through a single database access

class to make up the whole hierarchy.

The web service directory language (WSDL) for DisasterSupportService,

the web service responsible for all functions related to a system user is

shown in Figure 5-5.

<definitions targetNamespace="http://Disaster.Core/"
name="DisasterSupportServiceService">
<types><xsd:schema><xsd:import namespace="http://Disaster.Core/"
schemaLocation="http://localhost:8080/DissasterSupportSystemServer/DisasterSupport

48

ServiceService?xsd=1"/></xsd:schema></types>
<message name="Reg_UserSys"><part name="parameters"
element="tns:Reg_UserSys"/></message>
<message name="Reg_UserSysResponse"><part name="parameters"
element="tns:Reg_UserSysResponse"/></message>
<portType name="DisasterSupportService">
<operation name="Reg_UserSys">
<input
wsam:Action="http://Disaster.Core/DisasterSupportService/Reg_UserSysRequest"
message="tns:Reg_UserSys"/>
<output
wsam:Action="http://Disaster.Core/DisasterSupportService/Reg_UserSysResponse"
message="tns:Reg_UserSysResponse"/>
</operation>

</portType>
<binding name="DisasterSupportServicePortBinding"
type="tns:DisasterSupportService"><soap:binding
transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<operation name="Reg_UserSys"><soap:operation soapAction=""/><input><soap:body
use="literal"/></input><output><soap:body use="literal"/></output></operation>
</binding><service name="DisasterSupportServiceService">
<port name="DisasterSupportServicePort"
binding="tns:DisasterSupportServicePortBinding"><soap:address
location="http://localhost:8080/DissasterSupportSystemServer/DisasterSupportServiceS
ervice"/>
</port>
</service></definitions>

 Figure 5-5 WSDL Disaster Support Service

As shown in Figure 5-5, the message “Reg_UserSys” refers to the

function name at the service endpoint, the port type disastersupportservice

refers to the unique pot in the wsdl document.Operation refers to the

actions being performed i.e.Reg_User, Action refers to the location of the

resource. The binding defines the message format and protocol details for

operation and messages defined by a particular portType

i.e.DisasterSupportService. Port name DisasterSupportServicePort is an

individual endpoint specifying a single address binding.

5.5 Disaster Management Module

This module provides all functionalities that will help user in disaster

management and manage different tasks and resources related to a

specific disaster. It provides functions to create a new disaster, define a

49

workflow for different tasks related to a disaster, and appoint tasks to

resources. Monitor project and task status and collaboration in form of a

messaging system are also a part of this module. Also a grading system

has been implemented to keep a track of performance of different

organizations on different tasks.

definitions targetNamespace="http://DisasterManager.Core/"
name="DisasterManagerServiceService">
<types><xsd:schema><xsd:import
namespace="http://DisasterManager.Core/"
schemaLocation="http://localhost:8080/DissasterSupportSystemServer
/DisasterManagerServiceService?xsd=1"/></xsd:schema>
</types>
<message name="getResourceList">
<part name="parameters" element="tns:getResourceList"/>
</message>
<message name="getResourceListResponse">
<part name="parameters" element="tns:getResourceListResponse"/>
</message>
<portType name="DisasterManagerService">
<operation name="getResourceList">
<input
wsam:Action="http://DisasterManager.Core/DisasterManagerService/ge
tResourceListRequest" message="tns:getResourceList"/><output
wsam:Action="http://DisasterManager.Core/DisasterManagerService/ge
tResourceListResponse" message="tns:getResourceListResponse"/>
</operation>
</portType>
<binding name="DisasterManagerServicePortBinding"
type="tns:DisasterManagerService"><soap:binding
transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="getResourceList">
<soap:operation soapAction=""/><input><soap:body
use="literal"/></input><output><soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="DisasterManagerServiceService">
<port name="DisasterManagerServicePort"
binding="tns:DisasterManagerServicePortBinding"><soap:address
location="http://localhost:8080/DissasterSupportSystemServer/Disas
terManagerServiceService"/>
</port>
</service>
</definitions>

 Figure 5-6 WSDLDisaster Manager Service

The wsdl snippet for this module’s web service, DisasterManagerService

is shown in figure 5-6 above.

As shown in Figure 5-6, the message “getResourceList” refers to the

function name at the service endpoint, the port type

50

disastermanagerservice refers to the unique pot in the wsdl

document.Operation refers to the actions being performed i.e.

getResourceList, Action refers to the location of the resource. The binding

defines the message format and protocol details for operation and

messages defined by a particular portType i.e.DisasterManagerService.

Port name DisasterManagerServicePort is an individual endpoint

specifying a single address binding.

5.6 Disaster Support Repository

This is the database system for DMSS which contains all the records

related to different users, user type, project, tasks, messages, task status.

The database has been designed focusing on data integrity and

confidentiality.

The database has been developed using MySQL version 5.0. The reason

for choosing MySQL RDBMS was that its available as a free standalone

version and DMSS has to be a free software whose functionality can be

enhanced by different open source communities. Prepared statement

objects and JDBC is used for SQL execution and result set object contains

the final object.

Prepared statement objects are used to compile SQL statement. These

statements then can be executed multiple times. Prepared statement help

in security by separating SQL from data. This separation helps to prevent

SQL Injection attacks. Figure 5-7 shows how a prepared statement works.

The query from prepared statement object is parsed to generate SQL

query which is then sent to JDBC driver which compiles and then sends

the query to MySQL server which executes the results. The results are

then stored in a ‘result set’ objects.

51

Figure 5-7 Prepared Statement Execution

5.7 Grading Service

This service basically provides an interface for trust engine which Is used

to grade how different organizations have performed rescue and relief

activities. (discuss parameters).

5.8 Disaster Alert Service

This service basically is a messaging service which provides alerts to

organizations that have subscribed to DMSS. The alerts include the

information about a new disaster along with the location and scale of the

disaster.

5.9 Summary

Implementation details of DMSS are discussed in this chapter. Different

functionalities and strategies to develop the system are also discussed. A

brief introduction to different tools and technologies employed is also

given.

52

Chapter 6
Testing

6.1 Introduction
To ensure quality of the product, testing is conducted. Accuracy of

functions performed by DMSS has to be tested and maintained to improve

quality of software. Software testing techniques and results obtained are

discussed in the coming sections.

6.2 Testing Levels

Separate modules are developed to provide different functionalities of

DMSS. All of these modules are tested at different levels in their

development and after integration. Different levels at which DMSS has

been tested and results obtained are described in this section.

6.2.1 Unit Testing

Each module is developed and tested individually. Different sets of sample

data are used to test all functionalities. The module for user login was

developed first. This module is tested for both user login and organization

login. Setting up different organizations and user’s and admin the login

module was tested to see if each type of system user gets has the correct

responsibilities assigned and each user type should only be able to view

system functionalities he has been assigned to. Also no user should be

able to view data on another user. All the tests confirmed that data

integrity and confidentiality is maintained and user(s) only see information

intended for them. Another aspect is that user shouldn’t be able to access

any page and session handling was done at all levels. Different tests

confirmed that accessing a restricted page without authentication is not

possible and user is redirected to login page.

Project creation is the second module developed which has sub modules

of workflow management; appoint tasks, communication system, resource

management. All these sub modules are developed and tested using

relevant sample data and then tested at integration level to complete the

whole project module. Regression testing is used so that at any level of

project creation no wrong data is fed into the system. The expected output

53

was that once all steps of project creation are followed, the system should

show all data related to a project and shouldn’t miss any relevant data.

Also system should be able to generate reports regarding a project by a

number of ways; for example if we want system to display resources it

should be able to do that by city, district or province level. All the tests

were successful showing that data entry and output from system was

correct in all fashion.

6.2.2 Integration Testing

DMSS’s different modules which were developed and tested

independently were also tested during integration to ensure system

stability. Integration testing helped in ensuring that different modules when

combined give complete functionality and nothing is missed or some

functionality doesn’t give error when integrated with other modules.

Integration testing gave us more than 90% results ensuring that most

modules were integrated with others as well as compatible. This shows

that errors were minimized during integration testing.

6.2.3 System Testing

System testing was performed at the end of development and integration

of DMSS. Complete system was tested using sample data. User

registration, user roles and responsibilities, creating new project and

monitoring project all sub modules were tested as a whole using sample

data. Almost 90% of test cases were successful ensuring that most of

errors and bugs in the system were removed and system was stable

enough to perform optimally.

6.3 Box Approach

To test whether DMSS functionality is in accordance with the code written

box approach testing was done. The two box testing approaches used to

test software were black box testing and white box testing. Black box

testing is done at various stages of testing by inserting sample data in

various components, checking outputs and removing errors. White box

testing is done when a separate module is developed (unit level),

integration of different modules and sub-modules and at system level.

54

Once the system is developed white box testing was the most performed

testing technique.

6.4 Test Cases

The system is thoroughly checked for consistency and for errors using

different test cases. Overall system is checked for the following attributes;

parameters and resources are displayed correctly in given scenarios, the

forms are validated correctly, session handling is done correctly, user

interface is easy to use and users get features and options defined by their

roles.

6.4.1 Test Case 1

Each form is checked to ensure that for a given a set of inputs the

expected output was received. The related test case is shown below:

Scenario: In the Create New MO page if a user selects a province then

the options in the district dropdown are loaded based on that.

Given Input: Punjab

Expected Output: All districts filed under Punjab come up in the districts

dropdown

Actual Output: All districts filed under Punjab come up in the districts

dropdown.

Test status: PASS

6.4.2 Test Case 2
Each form has been validated using the JQuery validation plugin. If a

required field is missed or a wrong input is filled in then the form is not

submitted and an appropriate error message is displayed. The related test

case for one of the scenarios is given below:

Scenario: In the Create New MO page if a field is missed or text is filled in

the phone number field which should be all digits an error message should

be displayed.

55

Given Input: Text input in phone number field and form submitted.

Expected Output: Error message is displayed and form is not submitted.

Actual Output: Error message displayed and form not submitted.

Test status: PASS.

6.4.3 Test Case 3

Whenever a user logs in a new session is created. If that session times out

or is corrupted the user is logged out of the system and has to sign in

again. Also without a valid session ID a user cannot access any page.

Given Input: Username and Password submitted.

Expected Output: Session ID and Cookie are created in browser’s

temporary file.

Actual Output: Cookie created with a session ID as shown in figure 6-1.

Figure 6-1 Session Cookie

Test status: PASS.

56

6.4.4 Test Case 4
Five students who had not used the system before were given different

scenarios and told to execute them. They successfully navigated the

system and were able to accomplish their tasks with little or no assistance.

6.4.5 Test Case 5

There are three different types of users who can log into the system:

Admin, MO and Organization. They each have their own roles and there

are different features which are accessible only to them. To ensure that no

user type got access to any page restricted for them rigorous testing was

done.

Scenario: While logged in as MO the system settings page was tried to be

accessed through the address bar.

Expected Output: Error displayed

Actual Output: Error displayed

Test status: PASS.

6.5 Summary

Testing not only maintains the software quality but also improves over all

usability of the project. At different stages of development suitable testing

techniques were used to ensure product works accurately and efficiently.

All errors detected during testing were removed.

Chapter 7

Results and Analysis

57

7.1 Introduction

DMSS has been developed to work in real time environment. Since

disaster can happen any second DMSS should always be available to help

organizations track disasters and plan rescue and relief operations

efficiently. The data integrity and confidentiality should be maintained at all

levels. Another aspect of DMSS is that should be platform independent

and support interoperability.

7.2 Results

DMSS has been developed to facilitate organizations in post disaster

activities or rescue or relief. The idea was to develop a web application

which is at the center of disaster management activities of rescue and

relief and helps organization to execute these activities efficiently and

effectively. DMSS performs all the functionalities defined in chapter 3

system requirements.

All the functionalities have been achieved using the most advanced tools

and technologies for development of Web services. Older web services

technology like xml-rpc and API like jax-rpc have been ignored for SOAP

message based communication. This will help in further extension of

existing functionalities easily and reusability of code. SOAP message can

be modified to include every communication details and protocols and is

more verbose than RPC; this will make improve communication with

different clients that have subscribed to DMSS.

7.3 Analysis

Since DMSS is a web application performance, robustness and usability

are important features.

DMSS code is optimized so that page loading time is minimum and has

been tested using multiple connections to server to test its load and stress

and how system will perform. The results are more than 90% accurate

showing it will perform fairly well with multiple client connections.

58

Usability is an important aspect of web application and in DMSS from the

design phase this issue was paid special attention by developing

navigation model for different web pages to show how information will be

displayed and how different pages will link to each other.

Another important part of analysis is how DMSS compares with existing

system. One of the existing systems that exist is SAHANA FOSS Disaster

Management System. The functionalities that DMSS has and SAHANA

doesn’t are a central database of resources for all organizations. SAHANA

also was developed for rehabilitation efforts and then extend to rescue and

relief activities.

SAHANA isn’t based on SOA, which means existing solutions of all

independent organizations won’t be able to fully integrate with it. With web

services DMSS will save crucial times of other organizations and they can

easily integrate with our system. DMSS also is focused on one single IT

infrastructure for collaboration between all organizations an objective on

which it was built and SAHANA wasn’t.

7.4 Summary
DMSS performs all the functionalities functional and nonfunctional

provided in the system requirements. All the important nonfunctional

requirements that are essential for a web application to perform effectively

are present in the system.

Other systems that are similar to DMSS are built on older web

technologies and do not use SOA. Also the scope or the disaster

management activities those systems perform are different from DMSS.

Chapter 8

Conclusion and Future Work

8.1 Introduction

This chapter introduces the achievements of DMSS. Suggestions have

been presented in further sections for improvement of features and adding

59

new features to DMSS. DMSS has been developed in such a way to make

it easy to expand and reuse code. This will help in extension of DMSS to

cover further disciplines of disaster management and also how web

services can be used to solve real life problems in an effective way.

8.2 Concept

DMSS concept was initiated by the large amount of disasters humanity

has faced in recent past and using web application for better management

of resources to tackle such conditions. The existing solutions as explained

in chapter 2 had limitations which were basically the technologies used for

solutions of disaster management weren’t compatible with each other.

Using web services to develop DMSS has helped to make different

technologies.

8.3 Future Work

DMSS is a start to a wide field of using disaster management DMSS can

achieve a lot of milestones that can help people manage post disaster

activities and resources effectively. Although Google Maps are already

integrated into the system but maps could be made interactive by tagging

resources and during disaster tagging which organization is located where

or doing operations in which area.

Workflow plans to organizations, thus allowing organizations to develop

their own plans for the tasks they have been assigned to. Implementing a

Mailing and SMS service for better communication between involved

parties. This can further include applications for mobile devices like tablets

and smart phones. The scope of system can be extended to include

rehabilitation tasks and maintaining a database of shelters. Live streaming

can be another future work so the possibilities to extend this system are

limitless and without doubt will help in better management of post disaster

activities of relief and rescue.

Dynamic team formation can also be included in the system where a

system can suggest on it own the best possible team for a particular

60

disaster. For this purpose rule based system can be developed to choose

appropriate teams for a particular disaster.

8.4 Summary

Web services can be used conveniently to help us in real life problems like

disaster management. There is a wide range of options in web services to

allow organizations to collaborate and work towards the common goal of

disaster management. This will not only help in better management of post

disaster activities but also prevent another disaster of mismanagement

which can lead to not only issues of wasting resource but the bigger

picture of losing more human lives.

Appendix A

Low Level Design

61

 Sequence Diagram

Figure 1 Add Resource

Figure 2 Add Task

Figure 3 Create Disaster Project

62

Figure 4 Edit User Profile

Figure 5 Grade Peers

Figure 6List Organizations

63

Figure 7 Register Organization

Figure 8 Resource Appointment

64

 Communication Diagram

Figure 9 Create New Project

65

Figure 10 Create New Task

66

Figure 11Edit Organization User Profile

67

Figure 12 Add Resource to Task

68

 State Machine Diagram

Figure 13 Manager Operation User

Figure 14 Resource

69

Figure 15 Task

70

Appendix B

User Manual

Overview of User Manual for Disaster Management Support System

This is the user manual for Disaster Management Support System. DMSS

is a web application having three different navigation pathways for three

different user types: Admin, Manager Operation (MO) and Organization.

B.1 Navigation Path for Admin

B.1.1 Login
Figure 1 shows the login page which is same for all three user types. It has

an additional link for organization to create a new user which is only active

after Admin verifies the request.

Figure 1 Main Login Page

71

B.1.2 Admin Dashboard

This is the dashboard for admin providing admin with different

functionalities that only he/she can access. Figure 2 shows main

dashboard for admin. Only admin can create new users and activate

organizations and change system changes.

Figure 2 Admin Dashboard

72

B.1.3 System Settings
This is system settings panel only admin can view this page and change

different system settings.

 Figure 3 Admin Dashboard

73

B.1.4 Create MO
Only admin can create a new MO user through this page shown in Figure

4. The fields with asterisk must be filled. After entering data press submit

to complete action.

 Figure 4 Create New Manager Operation

74

B.2 Navigation Path for Manager Operation (MO)
This sections shows navigation paths and different functions a manager

operation user can perform.

B.2.2 Manager Operation Profile
The Figure 5 shows the profile options and editing page for MO. The fields

with asterisk must be filled. After entering data press submit to complete

action.

Figure 5 MO Profile

75

B.2.3 Create New Project
Only a manager operation user type can create a new project. Selecting

the new project link will open a form to fill, the options help in developing a

workflow for a new disaster. The fields with asterisk must be filled. After

entering data press submit to complete action.

Figure 6 Create New Project

76

B.2.4 Contingency Plan (s)
After creating a new project for a disaster, the MO is directed to a new

page where he/she can make a contingency plan to be followed to perform

activities related to a disaster. The options can be selected from a

predefined list or can add tasks by it. This page is shown in figure 7.

 Figure 7 Contingency Plan

77

B.2.5 Add Task(s) Detail
The next navigation page is for adding details specific to a task(s). The

fields with asterisk must be filled. After entering data press submit to

complete action.

Figure 8 Add Task(s) Details

B.2.6 Add Resources to Tasks

78

Once MO has fed all details about all the tasks listed in contingency plan
the next step is to add resources to those tasks. This webpage is shown in
Figure 9. This is the last step of creating a task.

 Figure 9 Add Tasks

An MO after creating a task can see different projects and their respective
tasks and resources assigned to those tasks. To close a project he/she
first has to free resources from tasks and close all tasks to close a project.
Also an MO has option for status check to check status of different tasks
and a message board for collaboration between different organizations.

B.3 Navigation Path for Organization
This sections shows navigation paths and different functionalities provided

to an organization user type. The main dashboard is almost similar to

79

admin and MO while the different navigation links available are described

here

B.3.1 Current Projects

The Figure 10 shows the current project page visible to an organization ,

to help them see what project they are engaged on currently.

Figure 10 Current Projects for Organization

B.3.2 Add Resource
This web page adds resource shown in Figure 11 is used to update

resources for an organization. The fields with asterisk must be filled. After

entering data press submit to complete action.

80

Figure 11 Add Resource

The other navigation links for organization helps in organization to see

projects and tasks it’s engaged on. Resource list showing occupied and

free resources.

References

81

[1]W3C (2011), “Web Service architecture”, available from :
http://www.w3.org/TR/ws-arch/#whatis [Accessed: 05-01-2011]

[2]Wikipedia (2011), “SAHANA FOSS” available from:
http://en.wikipedia.org/wiki/Sahana_FOSS_Disaster_Management_Syste
m [Accessed: 07-01-2011]

[3] Secure-irfc (2011), “Disaster Management Information System”
Available from: www.secure-irfc.org\DMIS [Accessed: 07-01-2011]

[4] Wikipedia (2011), “Java Script Object Notation” available from:

http://en.wikipedia.org/wiki/JSON [Accessed: 10-02-2011]

[5] Wikipedia (2011), “Service Oriented Architecture” available from:

http://en.wikipedia.org/wiki/Service_oriented_architecture [Accessed: 04-

01-2011]

[6] W3C (2011), “Web Service” available from:

www.w3.org\TR\ws-arch\ [Accessed: 04-01-2011]

[7] W3C (2011), “Web Services Directory Language” available from:

www.w3.org\TR\ws-arch\ [Accessed: 13-02-2011]

[8] Wikipedia (2011), “SOAP Message” available from:

http://en.wikipedia.org/wiki/SOAP [Accessed: 16-02-2011]

[9] Wikipedia (2011), “GET Message” available from:

http://en.wikipedia.org/wiki/SOAP [Accessed: 16-02-2011]

[10] Wikipedia (2011), “POST Message” available from:

http://en.wikipedia.org/wiki/POST [Accessed: 16-02-2011]

[11] W3C (2011), “XML Binding” available from:

http://www.w3.org\TR\xbl [Accessed: 20-02-2011]

[12] Wikipedia (2011), “JQuery” available from:

http://en.wikipedia.org/wiki/JQuery [Accessed: 12-02-2011]

[13] Wikipedia (2011), “JAX-WS” available from:

http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Web_Services

[Accessed: 18-02-2011]

82

[14] Wikipedia (2011), “JAX-B” available from:

http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding

[Accessed: 18-02-2011]

[15] Wikipedia (2011), “AJAX” available from:

http://en.wikipedia.org/wiki/AJAX_(Programming) [Accessed: 22-02-2011]

[16] Wikipedia (2011), “RESTful Web Services” available from:

http://en.wikipedia.org/wiki/Representational_State_Transfer [Accessed:

10-02-2011]

	Chapter 1
	Introduction to Disaster Management Support System
	Introduction
	Background
	Problem Statement
	Goals and Objective
	Deliverables
	Document Organization
	Summary

	Chapter 2
	Introduction
	Disaster Management in Pakistan
	IT based tools for Disaster Management
	SAHANA FOSS Disaster Management System
	Disaster Management Information System
	Limitations
	SAHANA FOSS’s limitation is that it was developed as a database for missing person so the focus from the start wasn’t on disaster management activities. Secondly SAHANA didn’t support scalability as such because it is not based on web services . Thoug...
	Enabling Technologies
	Service Oriented Architecture
	Web Services
	2.4.2.1 RPC Web Services
	2.4.2.2 SOA Web Services
	2.4.2.3 RESTful Web Services

	2.4.3 Application Programmer Interface (API’s)
	2.4.3.1 JAX-WS
	2.4.3.2 AXIS 2
	Apache Axis2 is a core engine for Web services. Though developed specifically for web services it can also function as a standalone server.
	2.4.3.3 JAX-RPC

	Summary

	Chapter 3
	3.1 Introduction
	3.2 Project Scope
	3.3 Product Features
	3.3.1 Competency/Resource repository of organizations
	3.3.2 Competency Analysis Module
	3.3.3 Team formation and Task management (Workflow Engine)
	3.3.4 Peer Evaluation (Trust/Reputation Engine)

	3.4 Assumptions and Dependencies
	3.4.1 Basic Assumptions
	3.4.2 Operating System
	3.4.3 Web Server

	3.5 System Features
	3.5.1 Team Selection
	3.5.2 Workflow System
	3.5.3 Appoint Tasks
	3.5.4 Notification/Communication Channel
	3.5.5 Status Check
	3.5.6 Record Maintenance
	3.5.7 Login/Access Rights
	3.5.8 Establishing Services

	3.6 External Requirements
	User Interface
	Hardware Requirements
	Software Requirements
	Other Non-Functional Requirements
	Software Quality Attributes
	Runtime System Qualities
	3.8.1.1 Functionality
	3.8.1.2 Performance
	3.8.1.3 Availability
	3.8.1.4 Usability

	3.8.2 Non-Runtime System Qualities
	3.8.2.3 Reusability
	3.8.2.5 Testability

	3.9 Other Requirements
	Summary

	Chapter 4
	Introduction
	System Overview
	Assumptions and Dependencies
	System Requirements
	General constraints
	Architectural Strategies
	System Architecture
	4.7.1 User Support Service
	User Support Service aka Disaster Support Service is a web service provides functionality for system login/access as well as for user registration. When a user enters his name and password the web service sends message to the respective class in core....

	4.7.2 Disaster Manager Service
	4.7.3 Disaster Alert Service
	4.7.4 Workflow Manager
	This component contains classes which generate a workflow for a new disaster management project. The workflow tasks are then assigned resources and forwarded to respective teams.

	4.7.5 Capability Assessment Engine
	Capability Assessment Engine calculates capability of different teams based on their performance on different rescue and relief activities and how effectively they performed those activities.

	4.7.6 Resource Manager
	This component contains classes which are collectively used to manage resource. This component’s classes are accessed by web methods defined in Disaster Manager Service. The different methods allow DMSS to manage resources it has acquired of different...

	4.7.7 Communication Manager
	4.7.8 Grading Service
	4.7.9 External Agency System
	This package contains classes which handles project related information. This package’s classes are accessed by web methods defined in Disaster Support Service. The different web methods accessing this package are described in section 4.8.3.

	4.7.10 Support Repository
	This is the database of the whole software system. All the user, organization and project related data is maintained. It has been designed by keeping data integrity and confidentiality principles in mind. Also database normalization principles were ap...

	Use Case Diagram
	4.8.1 Basic Flow of DMSS
	4.8.2 Post Conditions
	4.8.3 Alternate Scenarios

	Class Diagram
	Entity Relationship Diagram
	Detailed Design
	Activity Diagram: Task creation
	Sequence Diagram: Adding resource to task
	State Machine Diagram: Organization

	4.12 Web Modeling
	Presentation Model
	Hypertext Structure Model

	Summary:

	Chapter 5
	Introduction
	5.2 Tools and Technologies
	Web Services
	WSDL
	XML BINDING
	XML data binding refers to a means of representing information in an XML document as an object in computer memory. This allows applications to access the data in the XML from the object [11].
	SOAP MESSAGE
	HTTP GET AND POST MESSAGE
	GET Requests a representation of the specified resource. Requests using GET (and a few other HTTP methods) "SHOULD NOT have the significance of taking an action other than retrieval". [9]
	POST Submits data to be processed (e.g., from an HTML form) to the identified resource. The data is included in the body of the request. This may result in the creation of a new resource or the updates of existing resources or both [10].
	5.2.4.2 SOAP MESSAGE EXAMPLE
	The following is an example of a soap message from DMSS.

	5.2.5 JAX-WS
	5.2.6 JAX-B
	5.2.7 SAAJ
	5.2.8 jQuery
	5.2.9 JSON
	5.2.10 AJAX

	User Interface
	User Management Module
	5.5 Disaster Management Module
	Disaster Support Repository
	Grading Service
	Disaster Alert Service
	Summary

	Chapter 6
	Introduction
	Testing Levels
	Unit Testing
	Integration Testing
	System Testing

	Box Approach
	6.4.1 Test Case 1
	6.4.2 Test Case 2
	6.4.3 Test Case 3
	6.4.4 Test Case 4
	6.4.5 Test Case 5
	Summary

	Chapter 7
	Introduction
	Results
	Analysis
	Summary

	Chapter 8
	Introduction
	Concept
	Future Work
	Summary

	Appendix A
	Sequence Diagram
	Communication Diagram
	State Machine Diagram

	Appendix B
	Overview of User Manual for Disaster Management Support System
	B.1.1 Login
	B.1.3 System Settings
	B.1.4 Create MO

	B.2 Navigation Path for Manager Operation (MO)
	B.2.2 Manager Operation Profile
	B.2.3 Create New Project
	B.2.4 Contingency Plan (s)
	B.2.5 Add Task(s) Detail
	B.2.6 Add Resources to Tasks

	B.3 Navigation Path for Organization
	B.3.1 Current Projects
	B.3.2 Add Resource

	References

