
DRIVERLESS INTELLIGENT PARKING
SYSTEM

By

Capt Syed Irfan Tasneem (Group Leader)

Capt Muhammad Ehsan Ullah Khan

Capt Hussain Abdullah

Supervisor:

Asst Prof Athar Mohsin Zaidi

Submitted to the Faculty of Computer Science

National University of Sciences and Technology, Rawalpindi in partial fulfillment for the

requirements of a B.E Degree in Computer Software Engineering

May 2014

CERTIFICATE

Certified that the contents and form of project report entitled “DRIVERLESS

INTELLIGENT PARKING SYSTEM” submitted by 1) Capt Syed Irfan Tasneem,

2) Capt Muhammad Ehsan Ullah Khan, and 3) Capt Hussain Abdullah have been

found satisfactory for the requirement of the degree.

Supervisor: ____________________

Asst Prof Athar Mohsin Zaidi

ABSTRACT

Due to rapid increase in cars on the road, car parking is becoming a major issue in

congested areas. DIPS focuses on equipping cars with intelligent controllers which shall

enable automated parking without any driver’s assistance. This project involves

development of such embedded controller design for the cars along with an accompanying

mobile side application to communicate with the controller. Here is typical scenario:

A car is driven to the start of the car park area by the driver. The driver then leaves the

vehicle and instructs the car to park itself through the mobile application. The embedded

controller on the car receives this instruction and requests a free parking slot from the

central parking controller application. Upon receiving free parking slot, the vehicle

controller will then drive the car towards the parking slot automatically, avoiding any

obstacles encountered en route.

Similarly, once the driver wants his car back, he will do so by sending a command from

the mobile application to the car. The car will request permission from the central parking

controller and will then start to move towards the exit point of the parking area. The

embedded controller shall ensure safe and smooth ride avoiding any contacts with

pedestrians or other cars.

Due to budgetary constraints, the system is developed on low cost, small scale (1 / 10)

cars. However, the implemented system could be installed in all modern cars.

DECLARATION

No portion of the work presented in this dissertation has been submitted in support

of another award or qualification either at this institution or elsewhere.

DEDICATION

To Our Parents and Teachers for their continuous support

ACKNOWLEDGMENTS

We are grateful to our parents for their support and prayers. Their faith kept us

going.

We are extremely grateful to our project supervisor Asst Prof Athar Mohsin Zaidi

for his support and guidance without which we could not have moved on with the

research. We are thankful to our teachers and instructors here at Computer

science department, MCS, all of them have guided us have made it possible for us

to complete both this degree and the project.

Table of Contents
1. Introduction .. 9

a. Background ... 9

b. Problem Statement .. 10

c. Objectives ... 10

d. Deliverables ... 10

2. Literature Review .. 11

a. Previous Work ... 11

b. Shortcomings .. 11

c. Issues solved by this "Driverless Intelligent Parking System" 11

3. Design and Development .. 12

a. Introduction .. 12

b. Scope .. 12

c. Product Perspective .. 13

d. Product Functions ... 14

e. Assumptions and Dependencies ... 18

f. Quality Attributes .. 18

g. User Classes and Characteristics ... 19

h. Core Features and Stimulus Response Model 19

i. Use Case Diagram ... 29

j. Sequence Diagram ... 30

4. System Implementation Tools and Technologies .. 34

a. Microsoft Visual Studio 2013 ... 34

b. C# .. 34

c. Code Blocks Arduino IDE ... 35

d. Eclipse ADT Bundle... 35

5. Software Implementation ... 36

6. Project Analysis and Evaluation .. 61

a. Testing ... 61

b. Testing Levels ... 61

c. Results .. 85

d. Analysis ... 86

7. Conclusion and Future Work ... 87

1. Introduction

a. Background

Due to an ever increasing number of vehicles on road, congested parking areas

have become a major cause of concern for car owners. Busy car parks often result

in unnecessary delays in routine and scheduled tasks.

One of the first assistance systems for car parking used four jacks with wheels to

raise the car and then move it sideways into the available parking space. This

mechanical system was proposed in 1934, yet it was never offered on any

production model.One of the first experimental prototypes of automatic parallel

parking was developed at INRIA on a Ligier electric car in the mid-1990s. It was

extended to an automatic perpendicular parking in the early 2000s.

Automatic parking is an autonomous car maneuvering from a traffic lane into a

parking place to perform parallel parking, perpendicular or angle parking. The

automatic parking aims to enhance the comfort and safety of driving in constrained

environments where much attention and experience is required to steer the car.

The parking maneuver is achieved by means of coordinated control of the steering

angle and speed which takes into account the actual situation in the environment

to ensure collision-free motion within the available space

Automatic parking systems are being developed by several automobile

manufacturers. A commercial version of automatic parallel parking was introduced

by Toyota Motor Corporation in Toyota Prius in 2003. BMW recently demonstrated

its Remote Park Assist system on a 750i. This system initiates parking by keychain

remote. Lexus also debuted a car, the 2007 LS, with an Advanced Parking

Guidance System. As well in 2007 the Volkswagen Touran debuted with an

automatic parking system developed by Valeo, which by June 2009 is also offered

on the Passat, Passat CC, Golf, Tiguan, Sharan and Polo.

b. Problem Statement

There is a need for fully automated car parking solution where the driver leaves

the car at its own to be parked safely thus saving him/her precious time. Car

automation has always had few associated concerns and humans have been

reluctant to allow fully automated cars on road.

It consumes a lot of time in our daily life to safely park our vehicles. This time could

be saved if cars were intelligent enough to recognize empty parking spaces and

steer themselves towards that at their own.

c. Objectives

The objective is to develop an automated parking system that allow drivers to leave

the car in the parking area and proceed on doing their job without worrying about

parking the cars

d. Deliverables

(1) Project Synopsis

(2) Software Requirements Specification

(3) Mobile Application

(4) Desktop Application

(5) Vehicle Controller

(6) Scaled down model of a vehicle equipped with the vehicle controller

2. Literature Review

a. Previous Work

Modern cars are equipped with Drive By Wire system where the central computer

is responsible for controlling the movements of the car. For example, a common

car nowadays i.e Toyota Prius is equipped with this system where it can park itself

automatically without driver’s intervention just by activiting auto park mode.

 Semi-automatic parking is also practised nowadays where the driver is informed

about free parking slots at the start of parking area which allows him to directly

proceed to the desired parking slot without wasting time.

b. Shortcomings

The Existing parking systems got relatively high equipment and operating costs

(although usually less than building additional structured parking). They are only

suitable in parking structures with attendants. They increase time required to park

and retrieve vehicles and are unsuitable for many types of vehicles e.g vans.

c. Issues solved by this "Driverless Intelligent Parking System"

Our system is fully automatic and will be available for all type of vehicles installed

with our vehicle controller module.

It solves the following issues:

(1) Relieves operators present in traditional parking lots.

(2) There is no need of extra space for mechanical equipment installed in

traditional parking lots.

(3) No extra time is spent in queues for parking, instead our system saves

driver’s time.

3. Design and Development

a. Introduction

This part of the document provides a detailed description of the system. The main

idea of the project is to build an Intelligent Parking Space where cars can drive at

thier own to an allocated, empty parking space, without the driver. A central parking

controller will be responsible for all the necessary coordination and communiction

between the vehicles and the base station.

b. Scope

The idea of the project is to build a Driverless Intelligent Parking System enabling

cars to drive at their own to an empty parking space without any assistance from

the driver. A central parking controller will be responsible for all the necessary

coordination and communications between the vehicles and the base station.

Due to rapid increase in cars on the road, car parking is becoming a major issue

in congested areas. Almost all the modern cars are controlled by a computer

onboard. A very common feature nowadays is ‘Cruise control’ which allows the car

to cruise at a constant, fixed speed without involving the driver. Such control is

achieved thanks to the Drive by Wire (DBW) technology that allows a computer to

take control of the car.

This proposed system will be designed to take control of the car in a similar fashion

and enable it to park itself automatically. It will consist of three major components

i.e.

(1) Mobile Client Application

(2) Vehicle Controller

(3) Central Parking Space Controller

Due to budgetary constraints, we will develop the system on low cost, small scale

(1 / 10) cars.

However the implemented system could be installed in all modern cars supporting

drive by wire technology (DBW) with, of course, some minor changes.

c. Product Perspective

The DIPS is a self-contained software system intended for use on modern vehicles

along with a mobile device. While automated parking is the main focus of the

project, there is also a computer side application which will be responsible for

database and synchronization services. The scope of the project encompasses

both mobile and desktop applications as well as the vehicle controller itself so all

aspects are covered in detail within this document. Figure 1 shows an overall view

of the complete system and the interactions between different components.

d. Product Functions

A brief outline and description of the main features and functionalities expected

from DIPS are presented in this section. These features are essential to the

product operations and shall be implemented for correct functioning of the

complete system.

(1) MOBILE APPLICATION
(a) VEHICLE REGISTRATION

i. Shall allow the user to register their cars with the DIPS

ii. Shall add information about the drivers and their vehicles in the

database

iii. Shall allocate a unique user identity to the driver

Vehicle

Mobile

GS

WiFi

Desktop

Database Server

Camera

Figure 3.1: Overall View of the System

iv. VEHICLE DEREGISTRATION

v. Shall allow the user to deregister their cars

vi. The application shall allow removal of information about the

drivers and their vehicles from database

vii. Shall release the user identity upon deregistration

(b) INQUIRE PARKING STATUS

i. Shall allow querying information about free parking slots from

central parking controller

(c) PARK

i. Shall enable the car to park itself automatically and safely

(d) DEPART

i. Shall allow the car to depart from the parking area and reach

the exit point safely

(e) ENABLE / DISABLE AUTO MODE

i. Shall allow switching the driving mode of the car form

automatic to manual and vice versa

(2) VEHICLE CONTROLLER
(a) GO TO GOAL BEHAVIOR

i. The vehicle controller shall enable the car to reach any

parking slot in the parking area without driver’s intervention

(b) AVOID OBSTACLE BEHAVIOR

ii. Shall allow the car to avoid obstacles in the parking area

(people, other cars etc.) safely and without slamming into or

touching them

(c) POSITION SENSING

iii. Shall get accurate position from an onboard GPS sensor

(d) Shall be able to pass the positional information to parking controller

as well as the mobile application when requested

(e) RANGE SENSING

iv. Shall allow the vehicle to sense obstacles around it. This

includes obstacles in front as well on the sides and the back of

the vehicle

(f) INERTIAL MEASUREMENT UNIT

v. Shall obtain accurate heading data from onboard sensors

(g) OPTICAL ENCODING

vi. The vehicle controller shall be able to get reliable odometery

data for the vehicle from onboard optical encoders

(h) ACTUATORS

vii. Shall be able to control the actuators of the vehicle to drive it

(i) WIRELESS COMMUNICATION

viii. The vehicle shall be fitted with enough hardware to

communicate wirelessly with the PC application as well as the

Mobile Application

(j) ONBOARD DATA STORAGE

ix. The vehicle shall have enough data storage capacity on board

in order to hold data while the connectivity is not established or

is lost

(3) DESKTOP APPLICATION
(a) PARKING STATE INFORMATION

x. The application will keep track of free/ occupied parking slots

xi. This state will always be up to date

(b) DATABASE MANAGEMENT

xii. All the activities inside the parking area shall be recorded

xiii. Integrity of the database shall be ensured

(c) IMAGE PROCESSING

xiv. Application shall be able to process digital images in order to

find empty parking slots and monitoring the activities inside the

parking area

(d) WIRELESS COMMUNICATION

xv. Wireless link shall be established between this application and

the cars inside the parking area

xvi. Free slot data shall be sent to the vehicle along with the

coordinates allowing it to move towards the free parking slot

e. Assumptions and Dependencies

Following assumption are made for correct functioning of the complete system:

(1) Environmental abnormality e.g. fog and sand storms in the area are not

catered for

(2) All the hardware components are working flawlessly

(3) Mobile connectivity is available in the area

(4) Real time monitoring cameras are working correctly

(5) The vehicle is in perfect driving condition

(6) The parking area is free from pedestrian movement

f. Quality Attributes

(1) The system should support all cars having Drive By Wire (DBW)

technology

(2) The mobile application will support only Android platform in version 1

(3) The mobile application should support Microsoft Windows and Apple IOS

platform in version 2

(4) The system should be available from 5 am in the morning till 11 pm at

night. The remaining time will be reserved for maintenance

(5) The vehicle controller should be able to drive correctly without diverting

much from the given path. The diversion should be less than 10 inches.

(6) The system shall be maintained for first 6 months by the developer

organization

(7) Mean Time Between Failures (MTBF) should be greater than 2 weeks

(8) Mean Time To Repair (MTTR) should be less than 30 minutes

(9) Less than 1 minute shall be needed to restart the system after a failure

90% of the time

(10) The system must be able to handle at least 10 parking slots

(11) The system should switch to backup power supply without shutting down

or losing connection in case of a power failure

g. User Classes and Characteristics

As the project involves hardware interactions and is autonomous in nature, it’s

interaction with the users will be minimal. Nonetheless, there could be as little as

two User classes i.e. Drivers and Operators.

Drivers will be driving the cars till the entry point of the parking space. From there,

they will simply leave the car and shall ask it to park automatically in the parking

area. Similarly, on their way back from the office, they will simply ask the car to

depart from the parking slot and reach the exit point from where they can take

control of the car. This class is the most important class, therefore, in the system.

An operator can monitor the activities in the parking space through the Desktop

Application; however, this application will be designed to work autonomously i.e.

without any human intervention. An operator could simply disable the parking

space temporarily depending upon the nature of unforeseen circumstances.

h. Core Features and Stimulus Response Model

(1) Vehicle Registration
(a) DESCRIPTION AND PRIORITY

Whenever a new car asks for parking permission, it has to first

register itself with the system. The driver will use the mobile

application to register his car with his own name and identity. This

feature has got high priority.

(b) Stimulus/Response Sequences

Stimulus Response

DIPS application is launched from

Android Home screen

Mobile application launches

Driver presses register vehicle button

on the application

The application displays an input form to the

driver

Driver enters car number, security code

and his/her name and presses the

register button(The security code will

be provided by the parking operator)

(1) The application will forward the data

to parking controller application

running on the desktop computer

 The desktop application will check for any

already existing entries in the database for

this vehicle. If no such vehicle exists, it will

insert this new driver’s information to the

database only if the security key and vehicle

number are correctly entered and will reply

with a success message. If the vehicle already

exists in the database or the input data is not

verified, an error message will be shown to

the user

Driver presses ok button on the results

dialog. In case of error message, the

driver will close the application and will

contact parking operator

(c) Functional Requirements

i. One driver can register only a single car

ii. One car can be registered with only one driver

iii. Driver shall have a maximum of 3 retries in case of entering

invalid security key

iv. The mobile device shall have a working GSM connection

v. The vehicle shall have a working GSM connection

vi. The vehicle shall be connected to the Wi-Fi network of parking

area

vii. The desktop application shall have working data connection

with the vehicle

viii. The connection to the database server at the desktop computer

shall be alive

(2) Vehicle Registration
(a) Description and Priority

 A driver can deregister a car that has already been registered with his

name. The car will then be available for new registration by another driver.

This feature has got high priority.

(b) Stimulus/Response Sequences

Stimulus Response
DIPS application is launched from Android

Home screen

Mobile application launches

Driver presses Deregister vehicle button

on the application

The application displays an input form to the

driver

Driver enters car number, security code

and his/her name and presses the

Deregister button

The application will forward the data to

parking controller application running on the

desktop computer

The desktop application will check for any

already existing entries in the database for this

vehicle. If any such vehicle exists, it will delete

the driver’s information from the database

after verifying the entered details by the driver

and will reply with a success message. If the

vehicle doesn’t exist in the database or the

entered credentials are not valid, an error

message will be shown to the user

Driver presses ok button on the results

dialog. In case of error message, the driver

will close the application and will contact

parking operator

(c) Functional Requirements

i. Driver can have a maximum of 2 retries in case of entering

invalid security key

ii. Parking operator will be notified in case of 2 failed retries by the

mobile application

iii. The mobile device shall have a working GSM connection

iv. The vehicle shall have a working GSM connection

v. The vehicle shall be connected to the Wi-Fi network of parking

area

vi. The desktop application shall have working data connection

with the vehicle

vii. The connection to the database server at the desktop computer

shall be alive

(3) Park
(a) Description and Priority

 Driver can instruct a registered vehicle to park itself automatically. This is

the most important feature of the complete system. The car will check

for free parking slots in the parking area and will try to park itself in one

of those. This feature has got high priority.

(b) Stimulus/Response Sequences

Stimulus Response

DIPS application is launched from

Android Home screen

Mobile application launches

Driver presses Park vehicle button on

the application

The application forwards the request to the

vehicle controller

The vehicle controller will request free

parking slot from the desktop

application

The desktop application will pick one of the

free parking slots and will respond back with

the slot number and the route to that slot. In

case there is no free parking slot available, it

will return a message asking the driver to

park the vehicle manually

After receiving the free parking slot

message from the desktop application,

the vehicle will start to follow the

received route to reach the free parking

slot avoiding obstacles

After successfully following the route, it will

send a success message to the desktop

application. In case of any problem(s), the

car will send a message to the driver and the

desktop application indicating a failure

In case of a parking failure or non-

availability of free parking slot, the

driver can drive the car manually to park

it

After receiving the successful parking

message, the desktop application will

update its database with the new parking

area status

(c) Functional Requirements

i. All the hardware components attached with the vehicle should

be in working condition

ii. The route to the free parking slot should be the shortest one

without any obstacles in the way

iii. Vehicle shall be able to act upon path corrections from the

desktop application

iv. Driver shall not be involved during automatic parking

v. Vehicle shall park itself in only the allocated free slot

vi. The vehicle shall be connected to the Wi-Fi network of parking

area

vii. The desktop application shall have working data connection

with the vehicle

viii. The connection to the database server at the desktop computer

shall be alive

(4) Depart
(a) Description and Priority

 Driver can instruct a registered vehicle to depart itself automatically. This

is the also a very important feature of the complete system. The car will

drive away to the exit point of the parking area automatically. This

feature has got high priority.

(b) Stimulus/Response Sequences

Stimulus Response

DIPS application is launched from

Android Home screen

Mobile application launches

Driver presses Depart vehicle button on

the application

The application forwards the request to the

vehicle controller

The vehicle controller request

permission to leave from the desktop

application

The desktop application will check for any

movements in the parking area and in case

of no such movements, it will allow the car

to depart. If any other vehicle is entering or

leaving the parking area, it will ask the car to

wait till the time parking area is cleared

After receiving success message from

the desktop application, the vehicle will

start driving itself towards the exit point

of the parking area avoiding obstacles.

In case the desktop application asks the

car to wait, the car will wait till the time

it is allowed by the desktop application

After successfully reaching the exit point,

the vehicle will inform the desktop

application as well as the driver

(c) Functional Requirements

i. The route to the exit point should be the shortest one without

any obstacles in the way

ii. Vehicle shall be able to act upon path corrections from the

desktop application

iii. Driver shall not be involved

iv. Vehicle shall depart only when asked to do so from the central

parking controller

v. All the hardware components attached with the vehicle should

be in working condition

vi. No more than one vehicle can move in the parking area at one

time

vii. The vehicle shall be connected to the Wi-Fi network of parking

area

viii. The desktop application shall have working data connection

with the vehicle

ix. The connection to the database server at the desktop computer

shall be alive

(5) Enable/ disable auto park mode
(a) Description and Priority

 Driver can, at any time, enable or disable the auto parking mode of

the vehicle. This is an emergency avoiding feature where the driver

can stop the vehicle immediately if he/she feels that the vehicle is

going out of control. This feature has got medium priority.

(b) Stimulus/Response Sequences

Stimulus Response

DIPS application is launched from

Android Home screen

Mobile application launches

Driver presses Enable / disable auto

mode toggle button

The car stops immediately suspending all

ongoing operations if the driver has pressed

disable button. It resumes the suspended

operations if driver has pressed the enable

button. The status of the vehicle is also

forwarded to the desktop application

(c) Functional Requirements

i. Desktop application shall maintain a log of the mode of vehicle

ii. The mobile device shall have a working GSM connection

iii. The vehicle shall have a working GSM connection

iv. The vehicle shall be connected to the Wi-Fi network of parking

area

v. The desktop application shall have working data connection

with the vehicle

vi. The connection to the database server at the desktop computer

shall be alive

i. Use Case Diagram

Figure 2Use Case Diagram

j. Sequence Diagram

(1) Registring a Vehicle

Figure 3 Register a vehicle with Parking System

(2) De-Registring a Vehicle

Figure 4De-Register a vehicle

(3) Park Vehicle

Figure 5Park Vehicle

(4) Depart Vehicle

Figure 6Depart Vehicle

4. System Implementation Tools and Technologies

a. Microsoft Visual Studio 2013

1Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It is used to develop console and graphical user interface applications

along with Windows Forms applications, web sites, web applications, and web

services in both native code together with managed code for all platforms

supported by Microsoft Windows, Windows Mobile, Windows CE, .NET

Framework, .NET Compact Framework and Microsoft Silverlight.

b. C#

2C# (Pronounced: C Sharp) is a multi-paradigm programming language

encompassing strong typing, imperative, declarative, functional, procedural,

generic, object-oriented (class-based), and component-oriented programming

disciplines. It was developed by Microsoft within its .NET initiative and later

approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270:2006). C#

is one of the programming languages designed for the Common Language

Infrastructure.

1 https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
2 http://en.wikipedia.org/wiki/C_Sharp_(programming_language)

c. Code Blocks Arduino IDE

Code Blocks Arduino IDE is used to program the onbard 8bit,16MHz

microprocessor. It is a highly efficient and optimized IDE for writing code with

small footprints suitable for embedded controllers.

d. Eclipse ADT Bundle

 Eclipse Android Develoment tool was used to design and implement Mobile

application for Andorid 4.0.

5. Software Implementation

The system consists of 3 different applicaitons. Major functions are

presented here:

a. Vehicle Controller

#include <Arduino.h>

#include <Wire.h>

#include <Servo.h>

#include <include/L3G.h>

#include <include/LSM303.h>

#include <include/TimerThree.h>

//------------------ Utility Functions ----------------

#define ToRad(x) ((x)*0.01745329252) // *pi/180

#define ToDeg(x) ((x)*57.2957795131) // *180/pi

#define epsilon ToRad(5) // fat guard

struct navPoint { // this structure contains the navigation
information required to reach a goal

 float distance;

 float direction; // 0 means move straight in the direction where the
car is heading right now

};

//------------------ Global Variables ----------------

volatile double encoderTicks = 0; // counts the number of encoder
ticks from the drive motor

volatile double distanceToObstacle = 0; // just for testing, replace it
afterwards

//------------------ Custom Classes ----------------

#include <include/Vector.h>

//#include <include/AHRS.h>

#include <include/Sharp.h>

#include <include/Ultrasonic.h>

#include <include/Robot.h>

#include <include/Radar.h>

#include <include/Controller.h>

#include <include/Blended.h>

#include <include/GoToGoal.h>

#include <include/GoToAngle.h>

#include <include/AvoidObstacle.h>

#include <include/Supervisor.h>

//------------------ Global Program Objects ----------------

Robot car(9, 8, 45, 44, 6); // driving enable, driving reference,
driving forward, driving backward, steering servo

Supervisor kernel(car, 4); // supervisor object to control the
complete program, 4 = Blended mode as default controller

void updateEncoderTicks(); // ISR to update encoder ticks

void handleTimerInterrupt(); // this function will be called after
each timer interrupt

void setup()

{

 pinMode(13,OUTPUT); // LED

 attachInterrupt(0, updateEncoderTicks, RISING); // attaching the interrupt
handler to update the encoder ticks

 Serial.begin(19200);

 Serial.println("Starting Setup...");

 long start = millis(); // records the starting time of the program

 car.attachServo(); // attach the steering servo to the pre
specified pin, has to be done in Setup()

 Timer3.initialize(500000); // time period in microseconds

 Timer3.attachInterrupt(handleTimerInterrupt); // function to call after timer
interrupt

 // revolve the radar

 long end = millis() - start; // records the time taken by Setup

 Serial.println(end);

 Serial.println("Setup complete.");

 }

void loop()

{

 //ahrs.update(); // must be called once in a loop to update
DCM calculations for the AHRS

 kernel .execute(); // controls the program execution for the
car

}

void updateEncoderTicks(){

 encoderTicks++; // increment the encoder ticks

}

void handleTimerInterrupt(){ // this function will be called after
each timer interrupt

 // to update update encoder clicks

 digitalWrite(13,digitalRead(13)^1); // toggles the LED light

}

#ifndef SUPERVISOR_H

#define SUPERVISOR_H

#define maximumPoints 10 // maximum number of intermediate
points required to reach target

class Supervisor // central class to supervise all operations

{

 private:

 Robot *car; // robot object to associate with the supervisor

 Controller *currentController; // pointer to keep track of current
controller

 GoToGoal GTG; // GoToAngle controller object

 GoToAngle GTA; // GoToAngle controller object

 AvoidObstacle AO; // AvoidObstacle controller object

 Blended AOandGTG; // AvoidObstacle and GoToGoal object

 float dt; // loop frequency

 float safeDistance; // distance at which to stop the vechicle and
still consider the goal as achieved

 float loopStartTime; // used to calculate dt

 float goalAngle; // used for the GTA controller

 int currentPointIndex; // index to the current navigation point

 int addedNavPoints; // total number of navigation points added
in the list

 bool enableLogOutput; // flag to enable / disable data logging

 bool atTargetLocation; // flag to check whehter the robot is at
target location

 bool IPAdded; // flag to notify whether Intermediate point
was added or not

 bool state; // enable / disable automatic control

 String command; // command received over Serial Link

 Vector goal; // current goal vector

 Vector IP; // intermediate point

 Vector AOGTG;

 Vector pointsList[maximumPoints]; // list of all points that lead to a
target

 public:

 float staticDistance;

 Supervisor(Robot &r, int controller = 1) { // associates the robot object
and controller with the supervisor

 safeDistance = 3; // in mm

 loopStartTime = 0;

 car = &r;

 setController(controller); // default controller as the GoToAngle
if none specified

 currentPointIndex = 0; // no navigation points added right
now

 addedNavPoints = 0; // no navigation points added right
now

 atTargetLocation = true; // true because no target was given
till this point

 state = false; // automatic mode disabled

 command = "";

 IPAdded = false;

 enableLogOutput = false;

 }

 void updateOdometry(){ // approximates the location of the
robot

 float distance = encoderTicks * car->distanceMultiplier;

 encoderTicks = 0; // reset the ticks count to zero

 staticDistance = distance; // for the two udater functions below

//Serial.println("St"); //debug purpose

 Vector position = car->filteredPosition;

 Vector changeInPosition;

 float theta = car->filteredHeading;

 float dynamicHeading = car->getHeading();

 float phi = ToRad(car->getSteeringAngle() / 1.875); //30 degrees of
servo = 16 degrees on ground

 float gain = car->StoDFilterRatio;

 float thetaDt;

 float backwards = theta + phi + PI;

 backwards = atan2(sin(backwards),cos(backwards));

 float original = theta + phi;

 original = atan2(sin(original),cos(original));

//Serial.println("b4if"); //debug purpose

 if (car->getState() == 'b'){ // if the car is moving backwards, subtract
the change in position

 changeInPosition.x = -staticDistance * cos(backwards);

 changeInPosition.y = -staticDistance * sin(backwards);

 thetaDt = staticDistance / car->wheelBase * sin(-phi);

 position = position - changeInPosition;

 }

 else{

 changeInPosition.x = (((gain) * distance * cos(original)) + ((1.0 -
gain) * distance * cos(dynamicHeading)));

 changeInPosition.y = (((gain) * distance * sin(original)) + ((1.0 -
gain) * distance * sin(dynamicHeading)));

 thetaDt = staticDistance / car->wheelBase * sin(phi);

 position = position + changeInPosition;

 }

//Serial.println("afif"); //debug purpose

 float filteredHeading,staticHeading;

 staticHeading = theta + thetaDt;

 staticHeading = atan2(sin(staticHeading),cos(staticHeading));

 filteredHeading = (((gain) * staticHeading) + ((1.0 - gain) *
dynamicHeading));

 filteredHeading = atan2(sin(filteredHeading),cos(filteredHeading));

 car->filteredHeading = filteredHeading; // updated heading of the car

 car->filteredPosition = position; // updated position of the car

 }

 void updateDynamicOdometry(){ // approximates the location of
the robot

 // should be called in every iteration

 // the location of the robot is updated based
on the difference to the previous encoder

 // ticks. This is only an approximation.

 Vector position = car->getPosition();

 Vector changeInPosition;

 float theta = car->getHeading();

 changeInPosition.x = staticDistance * cos(theta);

 changeInPosition.y = staticDistance * sin(theta);

 if (car->getState() == 'b') // if the car is moving backwards, subtract
the change in position

 position = position- changeInPosition;

 else

 position = position+ changeInPosition;

 car->setPosition(position); // updated position of the car

 }

 void updateStaticOdometry(){

 Vector staticPosition = car->staticPosition;

 Vector changeInPosition;

 float theta = car->staticHeading;

 float phi = ToRad(car->getSteeringAngle() / 1.875); //30 degrees of
servo = 16 degrees on ground

 float backwards = theta + phi + PI;

 backwards = atan2(sin(backwards),cos(backwards));

 float original = theta + phi;

 original = atan2(sin(original),cos(original));

 changeInPosition.x = staticDistance * cos(original);

 changeInPosition.y = staticDistance * sin(original);

 float thetaDt = staticDistance / car->wheelBase * sin(phi);

 if (car->getState() == 'b'){ // if the car is moving backwards, subtract
the change in position

 changeInPosition.x = -staticDistance * cos(backwards);

 changeInPosition.y = -staticDistance * sin(backwards);

 thetaDt = staticDistance / car->wheelBase * sin(-phi);

 staticPosition = staticPosition - changeInPosition;

 }

 else{

 staticPosition = staticPosition + changeInPosition;

 }

 car->staticHeading += thetaDt;

 car->staticHeading = atan2(sin(car->staticHeading),cos(car-
>staticHeading));

 car->staticPosition=staticPosition; // updated position of the car

 }

 void execute(){ // selects and executes the current
controller

 //-------------- this code block is used to keep track of the time step ------

 if (loopStartTime == 0)

 dt = 1/50; // 50 Hz

 else

 dt = millis() - loopStartTime; // actual time step

 loopStartTime = millis();

 executeCommand(); // executes any command(s) received over the
serial port

 car->update(); // updates the heading of the car from the AHRS

 updateOdometry(); // updates the location of the car

 updateStaticOdometry();

 updateDynamicOdometry();

 if (state == false){ // the kernel is in manual state

 // do nothing, act on commands only

 }

 else if (atTargetLocation){ // at the target

 car->stop();

 car->setSteeringAngle(0);

 }

 else{

 Vector distanceToGoal;

 distanceToGoal = goal - car->filteredPosition ; //Encoder odometery

 float distance = distanceToGoal.getMagnitude();

 if (distance < safeDistance){ // quite close to the goal so
consider it as achieved

 achievedCurrentGoal(); // mark the current goal as
achieved and move the current goal pointer ahead

 }

 else{ // execute the controller to reach the goal

 float headingCorrection;

 headingCorrection = currentController->execute(*car, goal, dt);

 float error = currentController->getError(); // get the error
without applying PID parameters

 char state = car->getState();

 if (state == 'f'){

 if (abs(error) > (PI/2 + epsilon) && currentController-
>detectObstacle() == 0){ // activate reverse gear

 car->setSteeringAngle(-headingCorrection);

 car->moveBackward();

 }

 else{

 car->setSteeringAngle(headingCorrection);

 car->moveForward();

 }

 }

 else if (state == 'b'){

 if (abs(error) < (PI/6)){

 car->setSteeringAngle(headingCorrection);

 car->moveForward();

 }

 else{

 car->setSteeringAngle(-headingCorrection);

 car->moveBackward();

 }

 }

 }

 }

 if (enableLogOutput)

 printGraph();

 }

 void updateCurrentGoal(){

 if (currentPointIndex >= 0 && currentPointIndex < maximumPoints){

 goal.x = pointsList[currentPointIndex].x;

 goal.y = pointsList[currentPointIndex].y;

 }

 else

 atTargetLocation = true;

 }

 void achievedCurrentGoal(){ // mark the current goal as
achieved and move to the next goal

 Serial.print("Total Goals : ");

 Serial.println(addedNavPoints);

 Serial.print("Goal acheived : #");

 Serial.println(currentPointIndex);

 currentPointIndex++;

 if (currentPointIndex >= addedNavPoints)

 atTargetLocation = true; // no more goal points left to reach

 else

 updateCurrentGoal(); // load next goal

 }

 void printPointList(){

 for(int i =0; i<addedNavPoints; i++){

 Serial.print("X : ");

 Serial.print(pointsList[i].x);

 Serial.print(" Y : ");

 Serial.println(pointsList[i].y);

 }

 Serial.println(currentPointIndex);

 Serial.print(goal.x);

 Serial.print(":");

 Serial.println(goal.y);

 }

 void addGoal(navPoint pt){ // add a goal location to the goal
list

 if(addedNavPoints < maximumPoints - 1){

 Vector carPosition;

 carPosition = car->filteredPosition;

 float distance = pt.distance;

 float goalAngle = pt.direction;

 goalAngle = car->filteredHeading + goalAngle;

 goalAngle = atan2(sin(goalAngle), cos(goalAngle));

 goal.x = carPosition.x + distance * cos(goalAngle);

 goal.y = carPosition.y + distance * sin(goalAngle);

 pointsList[addedNavPoints].x = goal.x;

 pointsList[addedNavPoints].y = goal.y;

 addedNavPoints++;

 atTargetLocation = false; // have to reach this point before
setting this flag true

 updateCurrentGoal(); // update the goal variable with
current goal

 }

 }

 void addGoalPoint(Vector pt){ // add a goal location to the goal
list [x,y] form

 if(addedNavPoints < maximumPoints - 1){

 pointsList[addedNavPoints].x = pt.x;

 pointsList[addedNavPoints].y = pt.y;

 addedNavPoints++;

 atTargetLocation = false; // have to reach this point before
setting this flag true

 updateCurrentGoal(); // update the goal variable with
current goal

 }

 }

 void setController(int type){ // sets the controller for the robot

 if (type == 1){ // sets GoToAngle controller as the
current controller

 currentController = >A;

 }

 else if (type == 2){ // sets GoToGoal controller as the
current controller

 currentController = >G;

 }

 else if (type == 3){ // sets AvoidObstacle as the current
controller

 currentController = &AO;

 }

 else if (type == 4){ // sets AvoidObstacle and GoToGoal
as the current controller

 currentController = &AOandGTG;

 }

 }

 void printGraph(){

 Vector position = car->getPosition();

 Vector staticPosition = car->staticPosition;

 Vector filteredPosition = car->filteredPosition;

 float x=position.x;

 float y=position.y;

 Serial.print(filteredPosition.x);

 Serial.print(",");

 Serial.print(filteredPosition.y);

 Serial.print(",");

 Serial.print(car->getState(),DEC);

 Serial.print(",");

 Serial.print(goal.x);

 Serial.print(",");

 Serial.print(goal.y);

 Serial.print(",");

 Serial.print(ToDeg(car->filteredHeading));

 Serial.println();

 }

 void setGoalAngle(float angle){

 goalAngle = angle;

 }

 void setState(bool status){

 state = status;

 }

 bool getState(){

 return state;

 }

 void toggleLogOutput(){

 enableLogOutput = !enableLogOutput;

 }

 bool commandAvailable(){ // read a full line from serial input
as a single command

 if (Serial.available()){

 String cmd = "";

 delay(10); // give time to receive message

 while(Serial.available()){

 char inByte = Serial.read();

 cmd += inByte;

 }

 command = cmd;

 Serial.print(" Rx Command = : ");

 Serial.println(command);

 return true;

 }

 return false;

 }

 void executeCommand(){ // checks for any commands at
the serial input and executes it

 if (!commandAvailable()){

 return;

 }

 int startIndex = command.indexOf('*');

 String sDistance,sDirection,sX,sY;

 int angle,commandEnd,distance,direction,ptX,ptY;

 if (startIndex >= 0){

 char cmd = command[startIndex + 1];

 switch(cmd){

 case 'f':

 car->moveForward();

 break;

 case 'b':

 car->moveBackward();

 break;

 case 's':

 car->stop();

 break;

 case 'a': // set steering angle

 command = command.substring(startIndex + 2);

 angle = command.toInt();

 car->setSteeringAngle(angle);

 Serial.print("Setting Steering angle: ");

 Serial.println(angle);

 break;

 case 'c': // set central steering position

 command = command.substring(startIndex + 2);

 angle = command.toInt();

 car->setCenterPosition(angle);

 Serial.print("Setting central position : ");

 Serial.println(angle);

 break;

 case 'v': // set ALPHA bleding value

 command = command.substring(startIndex + 2);

 char val[5];

 command.toCharArray(val,5);

 AOandGTG.setAlpha(atof(val));

 Serial.print("Alpha Blender : ");

 Serial.println(atof(val));

 break;

 case 'k': // set Static to Dynamic Filter Ratio

 command = command.substring(startIndex + 2);

 char val2[5];

 command.toCharArray(val2,5);

 car->StoDFilterRatio = (atof(val2));

 Serial.print("Static to Dynamic Filter Ratio : ");

 Serial.println(atof(val2));

 break;

 case 'g': // enable automatic mode

 setState(true);

 car->setState('f');

 Serial.println("Automatic mode Enabled");

 break;

 case 'm':

 setState(false); // disable automatic mode

 Serial.println("Automatic mode Disabled");

 break;

 case 'l':

 toggleLogOutput(); // toggle log output

 break;

 case 'r':

 car->toggleRadarOutput(); // toggle radar output

 break;

 case 'p': // print all points

 printPointList();

 break;

 case 'n': // add navigation point

 commandEnd = command.lastIndexOf(',');

 sDistance = command.substring(startIndex+3 ,commandEnd);

 sDirection = command.substring(commandEnd+1);

 distance = sDistance.toInt();

 direction = sDirection.toInt();

 Serial.print("Added navigation point : ");

 Serial.println(distance);

 Serial.println(direction);

 navPoint pt;

 pt.direction = ToRad(direction);

 pt.distance = distance;

 addGoal(pt);

 break;

 case 'd': // add x,y point

 commandEnd = command.lastIndexOf(',');

 sX = command.substring(startIndex+3 ,commandEnd);

 sY = command.substring(commandEnd+1);

 ptX = sX.toInt();

 ptY = sY.toInt();

 Serial.print("Added point : ");

 Serial.println(ptX);

 Serial.println(ptY);

 Vector point(ptX,ptY);

 addGoalPoint(point);

 break;

 }

 }

 }

};

#endif // SUPERVISOR_H

6. Project Analysis and Evaluation

a. Testing

To ensure quality of the product, testing is conducted. Accuracy and efficiency of

tasks performed by our system had to be tested to analyze the system and verify

and validate it. Software testing techniques and results obtained are discussed in

the coming sections.

b. Testing Levels

Separate modules were developed to provide different functionalities of the

system. All of these modules were tested at different levels during development

and after integration. Different levels of testing and results have been described

here:

(1) Unit Testing
Each module was designed, developed and tested individually. Each

functionality was also tested separately. Detailed procedure of each

test alongwith the expected and recieved results are presented below:

Test Case ID 1

Unit to Test Mobile - Refresh status

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Drivers clicks send request button

2. Properly generated header is

generated and sent to Vehicle

Controller

3. Stub Vehicle Controller Replies the

dummy status to Mobile Application

4. Mobile Application updates parking

area graphical user interface

Expected Result Graphical user interface is updated

Actual Result As Expected

Pass/Fail Pass

Test Case ID 2

Unit to Test Mobile – Show Map

Assumptions 1. Internet connectivity is available to

Mobile Application

2. GPS coordinates successfully

received from Vehicle Controller

Test Data 1. Dummy GPS coordinates

Steps to be Executed 1. Drivers clicks Show Map Button

2. New Android OS avtivity is started

showing Google Maps

3. Location marker is placed at vehicl’s

location

Expected Result Marker is placed at exact location on

Google Maps

Actual Result As Expected

Pass/Fail Pass

Test Case ID 3

Unit to Test Mobile – Emergency Stop

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Drivers clicks emergency stop

button

2. Properly generated header is

generated and sent to stub Vehicle

Controller

3. Stub Vehicle Controller immediately

halts the car

Expected Result Vehicle is stopped

Actual Result As Expected

Pass/Fail Pass

Test Case ID 4

Unit to Test Mobile – Register vehicle

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Drivers clicks register vehicle button

2. Properly generated header is

generated and sent to stub Vehicle

Controller containing user name, car

registration and security pin

3. Stub Vehicle Controller returns

success message

Expected Result Success message is shown on screen

Actual Result As Expected

Pass/Fail Pass

Test Case ID 5

Unit to Test Mobile – De-register vehicle

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Drivers clicks de-register vehicle

button

2. Properly generated header is

generated and sent to stub Vehicle

Controller

3. Stub Vehicle Controller returns

success message

Expected Result Success message is shown on screen

Actual Result As Expected

Pass/Fail Pass

Test Case ID 6

Unit to Test Mobile – Park vehicle

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 4. Drivers clicks any free slot button

5. Properly generated header is

generated and sent to stub Vehicle

Controller containing slot number for

parking

6. Stub Vehicle Controller returns

success message

Expected Result Success message is shown on screen

Actual Result As Expected

Pass/Fail Pass

Test Case ID 7

Unit to Test Mobile – Depart vehicle

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 7. Drivers clicks own parked slot button

8. Properly generated header is

generated and sent to stub Vehicle

Controller containing slot number for

parking

9. Stub Vehicle Controller returns

success message

Expected Result Success message is shown on screen

Actual Result As Expected

Pass/Fail Pass

Test Case ID 8

Unit to Test Mobile – Depart vehicle

Assumptions 1. GSM Network is avaiable

2. Stub Vehicle Controller is running

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Drivers clicks parked slot button,

other than own slot

2. Properly generated header is

generated and sent to stub Vehicle

Controller containing slot number for

parking

3. Stub Vehicle Controller returns

failure message

Expected Result Failure message is shown on screen

Actual Result As Expected

Pass/Fail Pass

Test Case ID 9

Unit to Test Vehicle Controller – Refresh Request

Assumptions 1. GSM Network is avaiable

2. WiFi network is connected

3. Stub Desktop Application is working

4. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 1. Parking request is received from

stub Mobile Application

2. Request is forwared to stub Desktop

Application

3. Response received from stub

Desktop Application

4. Response forwarded to stub Mobile

Application

Expected Result Message sent and received

successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 10

Unit to Test Vehicle Controller – Halt request

Assumptions 5. GSM Network is avaiable

6. WiFi network is connected

7. Stub Desktop Application is working

8. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 5. Halt request is received from stub

Mobile Application

6. Vehicle is stopped immediately

Expected Result Vehicle stopped

Actual Result As Expected

Pass/Fail Pass

Test Case ID 11

Unit to Test Vehicle Controller – Park request

Assumptions 9. GSM Network is avaiable

10. WiFi network is connected

11. Stub Desktop Application is working

12. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 7. Parking request is received from

stub Mobile Application

8. Request is forwared to stub Desktop

Application

9. Response received from stub

Desktop Application

10. Response forwarded to stub Mobile

Application

Expected Result Vehicle starts parking procedure

Actual Result As Expected

Pass/Fail Pass

Test Case ID 12

Unit to Test Vehicle Controller – Depart request

Assumptions 13. GSM Network is avaiable

14. WiFi network is connected

15. Stub Desktop Application is working

16. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 11. Depart request is received from stub

Mobile Application

12. Request is forwared to stub Desktop

Application

13. Response received from stub

Desktop Application

14. Response forwarded to stub Mobile

Application

Expected Result Vehicle starts departing procedure

Actual Result As Expected

Pass/Fail Pass

Test Case ID 13

Unit to Test Vehicle Controller – Register request

Assumptions 17. GSM Network is avaiable

18. WiFi network is connected

19. Stub Desktop Application is working

20. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 15. Register request is received from

stub Mobile Application

16. Request is forwared to stub Desktop

Application

17. Response received from stub

Desktop Application

18. Response forwarded to stub Mobile

Application

Expected Result User is registered

Actual Result As Expected

Pass/Fail Pass

Test Case ID 14

Unit to Test Vehicle Controller – De-register request

Assumptions 21. GSM Network is avaiable

22. WiFi network is connected

23. Stub Desktop Application is working

24. Stub Mobile Application is working

Test Data 1. GSM Messaging protocol datagram

Steps to be Executed 19. De-register request is received from

stub Mobile Application

20. Request is forwared to stub Desktop

Application

21. Response received from stub

Desktop Application

22. Response forwarded to stub Mobile

Application

Expected Result User is de-registered

Actual Result As Expected

Pass/Fail Pass

Test Case ID 15

Unit to Test Vehicle Controller – Check modules

Assumptions 25. Battery is charged

26. Modules are turned on

27. Serial communication has been

established with car

Test Data 1. Check module command has been

given

Steps to be Executed 1. Vehicle Controller queries the

following modules

a. Global Positioning System

b. Ultra sonic sensor

c. Infrared sensor

d. Hall encoder

e. Steering servo

f. Ethernet controller

g. GSM Module

h. Innertial measurement unit

Expected Result All modules working flawlessly and no

error is reported

Actual Result As Expected

Pass/Fail Pass

Test Case ID 16

Unit to Test Vehicle Controller – Go to Goal

Assumptions 28. Battery is charged

29. Modules are turned on

30. Serial communication has been

established with car

Test Data 1. Goal has been given through serial

port

Steps to be Executed 2. Vehicle Controller calculates the

direction vector to the goal

3. Go to goal behaviour calculates

steering servo angle and speed to

reach the goal

4. Vehicles starts moving towards the

goal

Expected Result Vehicle stops at the goal location

Actual Result As Expected

Pass/Fail Pass

Test Case ID 17

Unit to Test Vehicle Controller – Go to Angle

Assumptions 31. Battery is charged

32. Modules are turned on

33. Serial communication has been

established with car

Test Data 1. Angle has been given through serial

port

Steps to be Executed 5. Go to angle behaviour calculates

steering servo angle for the given

input

6. Vehicles starts moving in the

direction of given angle

Expected Result Vehicle keeps moving in the given

direction

Actual Result As Expected

Pass/Fail Pass

Test Case ID 18

Unit to Test Vehicle Controller – Avoid obstacle

Assumptions 34. Battery is charged

35. Modules are turned on

36. Serial communication has been

established with car

Test Data 1. Move forward command is given

through serial port

Steps to be Executed 7. Vehicle starts moving foward

8. Vehicle avoid obstacles en route

Expected Result Vehicle doesn’t slam into objects

Actual Result As Expected

Pass/Fail Pass

Test Case ID 19

Unit to Test Desktop Application – Refresh request

received

Assumptions 37. Stub Vehicle Controller is

functioning

38. WiFi connection has been

established

Test Data 1. Properly formatted TCP / Ip

datagram is received over wifi

Steps to be Executed 9. Desktop Application queries the

updated status from database

10. Desktop Application returns the

updated status to Stub Vehicle

Controller

Expected Result Message sent successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 20

Unit to Test Desktop Application – Parking request

received

Assumptions 39. Stub Vehicle Controller is

functioning

40. WiFi connection has been

established

Test Data 2. Properly formatted TCP / Ip

datagram is received over wifi

Steps to be Executed 11. Approved message is sent to the

Vehicle Controller

12. Desktop Application updates the

parking slot status

Expected Result Approved message is sent and

database is updates successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 21

Unit to Test Desktop Application – Depart request

received

Assumptions 41. Stub Vehicle Controller is

functioning

42. WiFi connection has been

established

Test Data 3. Properly formatted TCP / Ip

datagram is received over wifi

Steps to be Executed 13. Approved message is sent to the

Vehicle Controller

14. Desktop Application updates the

parking slot status

Expected Result Approved message is sent and

database is updates successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 22

Unit to Test Desktop Application – Register request

received

Assumptions 43. Stub Vehicle Controller is

functioning

44. WiFi connection has been

established

Test Data 4. Properly formatted TCP / Ip

datagram is received over wifi

Steps to be Executed 15. Success message is sent to the

Vehicle Controller

16. Desktop Application updates the

user databse

Expected Result success message is sent and database

is updated successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 23

Unit to Test Desktop Application – De-register

request received

Assumptions 45. Stub Vehicle Controller is

functioning

46. WiFi connection has been

established

Test Data 5. Properly formatted TCP / Ip

datagram is received over wifi

Steps to be Executed 17. Success message is sent to the

Vehicle Controller

18. Desktop Application updates the

user databse

Expected Result success message is sent and database

is updated successfully

Actual Result As Expected

Pass/Fail Pass

Test Case ID 24

Unit to Test Desktop Application – Pause Button

Assumptions 47. Stub Vehicle Controller is

functioning

48. WiFi connection has been

established

Test Data 6. Pause button is clicked

Steps to be Executed 19. Pause message is sent to Stub

Vehicle Controller

20. All ongoing operations are paused

Expected Result Pause message is sent to Vehicle

Controller

Actual Result As Expected

Pass/Fail Pass

Test Case ID 25

Unit to Test Desktop Application – Disable Button

Assumptions 49. Stub Vehicle Controller is

functioning

50. WiFi connection has been

established

Test Data 7. Disable button is clicked

Steps to be Executed 21. Stop message is sent to Stub

Vehicle Controller

22. Driverless Intelligent Parking

System is disablled

Expected Result Stop message is sent to Vehicle

Controller

Actual Result As Expected

Pass/Fail Pass

Test Case ID 26

Unit to Test Desktop Application – Enable Button

Assumptions 51. Stub Vehicle Controller is

functioning

52. WiFi connection has been

established

Test Data 8. Enable button is clicked

Steps to be Executed 23. Enable message is sent to Stub

Vehicle Controller

24. Driverless Intelligent Parking

System is enabled

Expected Result Stop message is sent to Vehicle

Controller

Actual Result As Expected

Pass/Fail Pass

Test Case ID 27

Unit to Test Desktop Application – TCP / IP

Communication

Assumptions 53. Stub Vehicle Controller is

functioning

54. WiFi connection has been

established

Test Data 9. “Test” message is sent to Vehicle

Controller

Steps to be Executed 25. Vehicle Controller should echo sent

message

Expected Result Message successfully echoed

Actual Result As Expected

Pass/Fail Pass

(2) Integration Testing

(a) All the stub controllers created for unit testing were replaced with

actual applications and modules.

(b) All the expected results were confirmed with real testing and the

results were successful.

(c) In the first phase, mobile application was interfaced successfully

with the Vehicle controller

(d) In the next step, vehicle controller’s functionality was successfully

tested with desktop application

(3) System Testing

(a) System testing was performed at the end of development. All the

functional requirements were verified and whole system was

analyzed for performance and other attributes (failures, response

delays, connection losses etc).

c. Results

The results of the tests were in the acceptable range. Detailed data is provided

below.

Parking Requests

Number of

Requests

Response

Time (ms)

Time Limits

(ms)

Difference

(ms)

Inaccuracy

(m)

10 1987 5000 > 3000 0.1

De-Parting Requests

Number of

Requests

Response

Time (ms)

Time Limits

(ms)

Difference

(ms)

Inaccuracy

(m)

10 1750 5000 > 3000 0.08

d. Analysis

The results were very encouraging and reported errors were well within

acceptable range. DIPS is an idea under development therefore there is a room

for further improvements and updates to the system. As a whole, the system is

fully functional and reliable.

7. Conclusion and Future Work

 The goal of this project was to give a proof of concept which is revolutionary

in nature. Technology is advancing at a very rapid pace and robots are taking over

many of the laborious tasks which were once performed by human beings. Modern

cars are now controlled by computer i.e. Electronic Control Unit(ECU) and provide

great relief to drivers by taking over few of the control parameters for example

“Cruise Control” where the onboard controller maintains the car at a specific speed.

Semi automatic parking has been a hallmark of Toyota Prius model for quite a few

years now. It takes over the steering control from the driver as well as the

accelerator. It allows for parallel parking in congested areas. DIPS on the other

hand is a completely automatic process of parking cars. Google has been involved

in development of Autonomous Driverless Cars for past few years. They have

successfully demonstrated working of the cars on various occasions.

There is a strong need for sponsored funding for such research oriented projects

as the cost involved in working with real cars is very high. DIPS suffered from lack

of sufficient budget therefore it was developed on small scale cars. In future, such

sponsorships will provide a launchpad for development of DIPS on real cars which

require a high level of accuracy and reliability. We believe that Military College of

Signals will carry this project further in the coming years and it will be refined and

implemented on real cars.

Appendix A: Glossary

DIPS

 Driverless Intelligent Parking System

I2C

I²C (Inter-Integrated Circuit, referred to as I-squared-C, I-two-C, or IIC) is a

multimaster serial single-ended computer bus invented by Philips used for

attaching low-speed peripherals to a motherboard, embedded system, cellphone,

or other electronic device. Not to be confused with the term Two Wire Interface

which only describes a compatible hardware interface

UART

A Universal Asynchronous Receiver/Transmitter, abbreviated UART , is a piece of

computer hardware that translates data between parallel and serial forms. UARTs

are commonly used in conjunction with communication standards such as EIA, RS-

232, RS-422 or RS-485. The universal designation indicates that the data format

and transmission speeds are configurable. The electric signaling levels and

methods (such as differential signaling etc.) are handled by a driver circuit external

to the UART.

TTL

Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar

junction transistors (BJT) and resistors. It is called transistor–transistor logic

because both the logic gating function (e.g., AND) and the amplifying function are

performed by transistors (contrast with RTL and DTL).

ICSP

Micro-controllers are typically soldered directly to a printed circuit board and usually

do not have the circuitry or space for a large external programming cable to another

computer. A separate piece of hardware, called a programmer is required to connect

to an I/O port of a PC on one side and to the PIC on the other side. The type of

programmer, how it connects to the PC, and the various advantages and

disadvantages of each are not within the scope of this document. However, a short

list of the features for each major programming type is given here.

1. Parallel port - large bulky cable, most computers have only one port and it

may be inconvenient to swap the programming cable with an attached

printer. Most laptops newer than 2010 do not support this port. Parallel port

programming is very fast.

2. Serial port (COM port) - At one time the most popular method. Serial ports

usually lack adequate circuit programming supply voltage. Most computers

and laptops newer than 2010 lack support for this port.

3. Socket (in or out of circuit) - the CPU must be either removed from circuit

board, or a clamp must be attached to the chip making access an issue.

4. USB cable - Small and light weight, has support for voltage source and most

computers have extra ports available. The distance between the circuit to be

programmed and the computer is limited by the length of USB cable - it must

usually be less than 180 cm. This can make programming devices deep in

machinery or cabinets a problem.

ICSP programmers have many advantages, with size, computer port availability, and

power source being major features. Due to variations in the interconnect scheme and

the target circuit surrounding a micro-controller, there is no programmer that works

with all possible target circuits or interconnects.

DBW

Drive-by-wire, DBW, by-wire, or x-by-wire technology in the automotive industry

replaces the traditional mechanical control systems with electronic control

systems using electromechanical actuators and human-machine interfaces such

as pedal and steering feel emulators. Hence, the traditional components such as

the steering column, intermediate shafts, pumps, hoses, belts, coolers and

vacuum servos and master cylinders are eliminated from the vehicle. Examples

include electronic throttle control and brake-by-wire.

GPS

The Global Positioning System (GPS) is a space-based satellite navigation system

that provides location and time information in all weather conditions, anywhere

on or near the Earth where there is an unobstructed line of sight to four or more

GPS satellites. The system provides critical capabilities to military, civil and

commercial users around the world. It is maintained by the United States

government and is freely accessible to anyone with a GPS receiver.

GSM

GSM (Global System for Mobile Communications, originally Groupe Spécial

Mobile), is a standard set developed by the European Telecommunications

Standards Institute (ETSI) to describe protocols for second generation (2G) digital

cellular networks used by mobile phones. It became the de facto global standard

for mobile communications with over 80% market share.

IMU

An inertial measurement unit, or IMU, is an electronic device that measures and

reports on a craft's velocity, orientation, and gravitational forces, using a

combination of accelerometers and gyroscopes, sometimes also magnetometers.

IMUs are typically used to maneuver aircraft, including unmanned aerial vehicles

(UAVs), among many others, and spacecraft, including satellites and landers.

Recent developments allow for the production of IMU-enabled GPS devices. An

IMU allows a GPS to work when GPS-signals are unavailable, such as in tunnels,

inside buildings, or when electronic interference is present. A wireless IMU is

known as a WIMU.

TEA

In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher notable for

its simplicity of description and implementation, typically a few lines of code. It

was designed by David Wheeler and Roger Needham of the Cambridge Computer

Laboratory; it was first presented at the Fast Software Encryption workshop in

Leuven in 1994, and first published in the proceedings of that workshop.

Appendix B: References

• S.-Y. Cheung, S. Coleri Ergen and P. Varaiya. Traffic surveillance with
wireless magnetic sensors. In 12th ITS World Congress, Nov. 2005.

• "Four Wheels On Jacks Park Car", Popular Science, September 1934.
• http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-

devices/self-parking-car.htm
• Paromtchik, Igor; Laugier, Christian (1996). "Autonomous Parallel Parking

of a Nonholonomic Vehicle", Proceedings of the IEEE Intelligent Vehicles
Symposium, Tokyo, Japan, September 1996, pp. 13-18.

• Paromtchik, Igor; Laugier, Christian (1998). "Automatic Parallel Parking and
Returning to Traffic", Video Proceedings of the IEEE International
Conference on Robotics and Automation, Belgium, May 1998.

• Paromtchik, Igor (2004). "Steering and Velocity Commands for Parking
Assistance", Proceedings of the 10th IASTED Conference on Robotics and
Applications, USA, August 2004, pp. 178-183.

• http://web.archive.org/web/20070505060924/http://www.modbee.com/life/
wheels/story/8015603p-8880060c.html

• http://www.theautochannel.com/news/2006/07/12/014519.html?title=BMW
• http://www.valeo.com/en/home/the-group/business-groups/comfort-and-

driving-assistance-systems.html?0=
• http://www.mobility.siemens.com/mobility/global/en/urban-mobility/road-

solutions/parking-space-management/pages/parking-space-
management.aspx

• http://delcantechnologies.com/technologies/intelligent-parking/
• http://edition.cnn.com/2003/TECH/ptech/09/01/toyota.prius.reut/index.html

• http://news.bbc.co.uk/2/hi/technology/3198619.stm
• http://delcantechnologies.com/technologies/intelligent-parking/
• http://www.mobility.siemens.com/mobility/global/en/urban-mobility/road-

solutions/parking-space-management/pages/parking-space-
management.aspx

• http://www.ece.nus.edu.sg/research/achieve_list.html
• J. P. Lynch, K. Loh. A Summary Review of Wireless Sensors and Sensor

Networks for Structural Health Monitoring. Shock and Vibration Digest,
Sage Publications, 38(2):91-128, 2005.

	CERTIFICATE
	ABSTRACT
	DECLARATION
	DEDICATION
	ACKNOWLEDGMENTS
	1. Introduction
	a. Background
	b. Problem Statement
	c. Objectives
	d. Deliverables

	2. Literature Review
	a. Previous Work
	b. Shortcomings
	c. Issues solved by this "Driverless Intelligent Parking System"

	3. Design and Development
	a. Introduction
	b. Scope
	c. Product Perspective
	d. Product Functions
	e. Assumptions and Dependencies
	f. Quality Attributes
	g. User Classes and Characteristics
	h. Core Features and Stimulus Response Model
	i. Use Case Diagram
	j. Sequence Diagram

	4. System Implementation Tools and Technologies
	a. Microsoft Visual Studio 2013
	b. C#
	c. Code Blocks Arduino IDE
	d. Eclipse ADT Bundle

	5. Software Implementation
	6. Project Analysis and Evaluation
	a. Testing
	b. Testing Levels
	(a) All the stub controllers created for unit testing were replaced with actual applications and modules.
	(a) System testing was performed at the end of development. All the functional requirements were verified and whole system was analyzed for performance and other attributes (failures, response delays, connection losses etc).

	c. Results
	d. Analysis

	7. Conclusion and Future Work
	Appendix A: Glossary
	Appendix B: References

