Instant Messenger for Integrated
Messaging System

By

NC Taha Igbal
NC Sarah Azhar

GC Muhammad Saad Munir

Submitted to the Faculty of Computer Science, Military College of Signals

National University of Sciences and Technology, Rawalpindi in partial fulfillment for

the requirements of a B.E Degree in Computer Software Engineering

August 2009

ABSTRACT

Instant Messenger for Integrated Messaging

System

This product is intended to be delivered to Corp of Signals. The system currently
deployed by the Signals Centre is Integrated Messaging System (IMS) that
interconnects the Signals centre all over Pakistan. The current system uses electronic
mailing technology to send and receive messages and files. Major drawbacks of the
existing system (IMS) are that only text messages can be handled, no instant
messaging, no voice chat availability and no facility for online file sharing. The new
system should interconnect the Sigs. Centre all over Pakistan incorporating the

functionalities of text chat, file transfer, voice over IP and offline message.

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation, a
work of this magnitude would not have been possible

ACKNOWLEDGMENTS

We are eternally grateful to Almighty Allah for bestowing us with the strength and

resolve to undertake and complete the project.

We gratefully recognize the continuous supervision and motivation provided to us by
our Project Supervisor, Col Naveed Sarfraz Khattak. We are highly gratified to our co-
supervisor Mr. Nabeel Younis and Mr. Bashir Bilal for his continuous and valuable
suggestions, guidance, and commitment towards provision of undue support
throughout our thesis work. We are also grateful to our external supervisor Brig
Ashraf for his constant guidance throughout the project. We are highly thankful to all
of our professors whom had been guiding and supporting us throughout our course
and research work. Their knowledge, guidance and training enabled us to carry out

this research work.

We would like to offer our admiration to all our classmates, and our seniors who had
been supporting, helping and encouraging us throughout our thesis project. We are

also indebted to the MCS system administration for their help and support.

We deeply treasure the unparallel support and tolerance that we received from our

friends for their useful suggestions that helped us in completion of this project.

TABLE OF CONTENTS

LIST

TABLES. ...

LIST

FIGURES. ..ot enn e

INEFOAUCTION. ...t eee e e eee e

11

=] = Lol =TT PR

1.2 Project

RV T 10 o

1.3 Proposed

Yo] 184 [o) o DO

1.4 Aim of the

o 0 =T SRS

1.5 Organization of Project

2.1 Client

OF

OF

Literature

Server

2.11

DT ol o) f o] o 1SRRI 5
2.1.2 Comparison client-queue-client
architeCtUre.. e

2.1.3

AGVANTAGES. .. cuveuierierietiet ittt et e e stestestesteste st e es e e s e s et aes st et et erseasaneeneeatesteseeseensensnnnns 8
2.1.4

DiSAAVANTAZES. .. eeie e et ettt et sre et et et e e stesteste et e b aes e e tesbesaeerneetaesbenne e et ens 9
2.2 Voice over Internet
PrOtOCOL... .t e e e 9

221 Circuit
SWILCRING .ottt st st sr ettt e ste stesae e sanannans 11

2.2.2 Packet
SWILCRING et sttt s e st s s e b e 13

2.2.3 Advantages of using
VOIP oottt ettt et s s et ss e se et ses s sse ses e atenserssnsseesenas 14

2.2.4 Disadvantages of using
VOIP... ettt sttt st st bbb st e et 16

2.2.5

COTBCES. ..ttt ettt ettt e ettt st st e b e ae s ea et et ea e s bt ebe st st et et sesen et e b s 18
2.3 G.7-11

2.3.1 A-Law

AN Fqo g1 o] o o VOO OO OO 21

2.3.2 p-Law AlBOMIENM.c.eeitie et s
................................. 21

3. SYSTEM
ANALYSIS ..ottt e sttt ns e s 23

31

INEFOAUCTION...... ettt ettt et e s s st e bbb e eae s s sene e 23
3.2 Project
K Yol o 1SR 23

3.3 Requirement
SPECHICATION. ..ttt e st s st bt s 24

33.1 External Interface
REQUIrEMENTS....co et e e 24

33.1.1 User
LI ACE .ttt ettt et et st s et s et 24

3.3.1.2 Software
INEEITACES .ttt et st et et s s 25

3.3.2 Major Functional Requirements

3.33 Major Non-Functional

REQUITEMENTS...ocie ettt s e e sre e 27

3.4 Use Case
DT = = o T TSR 28

3.5 Sequence
=T = o OO ST SPR PRSPPI 30

3.6

CONCIUSTON ..ttt ettt st ettt bbbt s et ses e et eb et sttt se bt sen bt aben 32
4, SYSTEM
DESIGN ..ottt et sns s enssa e s 33

4.1

INEFOTUCTION. ...ttt st st st bt s b se e b s b st st ses b e eae st sansessees 33
4.2 Architectural
D= Y = [o OO TSRO PSR RO UPRRTUPPRPIN 33

4.3 High Level
DI F= =4 = o o ST O TSRO 35

4.4 Low Level
D TF- =4 = o TSR 36

44.1 Overall

(O 1T=T o) PR 36

4.4.2 Overall

SOV ettt ettt e et e e s et e e e 37

4.4.3 Voice Chat
MOAUIB ...ttt e sttt st st st st s ee b seeaens 38

444 File Transfer
ClIBNT ettt sttt st s s et ebe st sttt ene e e 39

445 File Transfer
SV ettt e e s e e e e enes 40

4.5 Class
DT =4 = o 4 TSRO RSP 41

4.6 Data Flow
D TF= =4 = o 4 TS RPN 42

4.7

CONCIUSION ..ttt sttt sttt st st et se b st e et sae st bebae e s st seabeseeesansaneesees 48
5.

IMPLEMENTATION.........oooooeie ettt sttt sns et e st enns 49
5.1

INEFOTUCTION ...ttt ettt st et st bbb se e et ebe seaeates 49
5.2 Implementation

I L oY= U =Y = U 49

5.3 Distribution of Classes with respect to
1Y/ oo LU] L= 50

5.3.1 IMIMS
(01 1T=T o) TR 50

5.3.1.1

[0} =4 1o DO OO SO PR OPR OSSN 51
5.3.1.2 Main
IVLENU ittt e eeeee et e e e ses e e sseasasaaaearesesesa sssabasesaeseesesannensenen 51

5.3.1.3 Text
(@ o =) RN 51

5.3.1.4 Voice
(@1 o 7=) PP 52

5.3.1.5 File
B I 11 (=] PR 52

5.3.1.6 Offline
MESSAZINE e cueirreenieirree st et ettt et st sttt se s et s e sreeae e e es e e e e nees 52

5.3.1.7 A-Law
[Yoo o [T TR 53

5.3.1.8 A-Law
[DT=T ol Yo (=] RS 53

5.3.2 IMIMS
Y= V=] TR 53

FOIMLe e et e st et et e e sreene e 53

5.4

CONCIUSION ...ttt ettt st b e s e et et st b et et s s et eae et semsenee 54

6.

TESTINGttt s ss st et s s e s st s b st s ss b st enns 5

5

6.1

INEFOTUCTION ...t e e e r e st bbb s e ebe s senee 55
6.2 Testing
PrOCESS ... et et e e e e e s e sre e 55

6.2.1 Client
IS 41V =TT 56

6.2.1.1 Text
MIESSAEINE . cueeeerrteieeterte et ettt et st e st e e et b e e st e e sae et e e e s e et see e e e e ene 56

6.2.1.2 File
TEANS @I ettt st st st b e s st s e s b e s 57

6.2.1.3 Offline
VIESSAZINE .. e et ieeeeieecte et eirte st e e e s te st e ste st e es e s ste st beestesrneesnne s s eunaesseestesnsasnnnenns 58

6.2.1.4 Voice

6.2.1.5 Online
NS et ettt et st eb e s bt e e et e n e ene 59

6.2.2 Server
LIS €L = RS 60

6.2.3 Static Analysis of
OBttt ettt st s et st s bbb s b se e st et 61

6.2.3.1 Control Flow
ANAIYSIS ottt ettt e ete st sttt sa e e e a s e aaeraenes 61

6.2.3.2 Data
ANAIYSIS ..ttt ettt et st et tesheeae e e et et eesbenae e et eaeas 61

6.2.3.3 Interface
ANIYSIS ..ttt ettt s e e teeaesseeraesbenaeanes 62

6.4

CONCIUSION ..ttt ettt sttt st e b e e e bbb se s et ereebe sasses st eneesaeabenereeses 62

APPENDIX A (User Manual)

APPENDIX B (Hardware & Software Requirements)

APPENDIX C (References)

6-1 Test case for Text

MeSSagING....ccccveverrieeieenrinne

6-2 Test case for File

Transfer....eeevveeeerenenn.

6-3 Test case for Offline

MesSSagiNg.....ccceeeeeveeereenrnnnne

6-4 Test case for Text

MeESSAING....ccvvvrverrrerreerrianne

6-5 Test case for Text

MeSSALING....ccvvrverrierieenriene

6-6 Test case for

LIST OF TABLES

LIST OF FIGURES

3-1 Usecase Diagram of
AdMINISTrAtON ... e 28

3-2 Usecase Diagram of
U S ettt e e s 29

3-3 Sequence Diagram of
AdMINISTrator. ..o e e 30

3-4 Sequence Diagram of
U Sl ettt e et er e et e s n e e e s 31

4-1 Architectural
[T T={ - o P 34

4-2 High Level
DT = o 1 TRt 35

4-3 Overall Client

4-4 Overall Server
DR = o 1 SRR SRS 37

4-5 Voice Chat Module
DT = o 1R 38

4-6 File Transfer Client
DBSIEN .. ettt st e et 39

4-7 File Transfer Server
DIBSIEN ettt ettt et e e e e et e b e e e e e ae s 40

4-8 Class Diagram of
ClIBNT ettt ettt sttt st st s s en e ebe e 41

4-9 Class Diagram of
SBIVE ottt et e e e e s s 41

4-10 DFD for
LOBIN ettt ettt e e s e e e et e sre s ee e n e et nee s 43

4-11 DFD for Sending
Bl ettt st st s e et s s b s 44

4-12 DFD for Receiving
Il ettt e st e e e 45

4-13 DFD for Sending
V0ICR... ittt ettt ettt ere e s e e e 46

4-14 DFD for Receiving

[0 {1 T OSSP 64
A-2 Main
IIEINUL ettt e et e e e et e s e e e e ehe e et n e n e e e e 65

A-3 Changing
PASSWOIT. ..ttt ettt sttt ettt st s bbbt sbe s s seeaeebesesbeb e e an seesbens 67

A-4 Sending
VLB SSAEE. .. e ireeiee it crttes e crtteee e sttt s te st e e st sae e es e e beaaeaea e saeessbessaesrsaanae sreesrerens 68

A-5 Sending
Il e e et et s s et b s en e ehe e 69

A-6 Voice
Gl et e et et et b et et n et e e er e eaes 70

A-7 Sending Offline
IMIESSAEES. . eutirrienieerste st ettt ter et et s sre et e e s et st see s sreeneeneeereens 71

A-8 Receiving Offline
MIESSAEES. . iverienieeser st st ettt et see e et ee et es e een et e see sreeneenrneens 72

A-9

STV ettt e e e bbb ehe sre sr sae s bens 73
A-10 Adding User
ACCOUNT. ..t et e e e e e 75

A-11 History

A-12 Resetting

PaSSWOIT. ..ottt ettt e ettt sete ebe s eabeessabeess e e sababeesanbeesens 77

Chapter 1

Introduction

1.1 Preface

IMS (Integrated Messaging System) is fundamentally a computer
network with secure E-mail facility. Signals Research &Development Estb has
devised this system to replace the AMSS (Automatic Messaging Switching
System). The system was installed at 9 Signal Centers (Sigcens) as pilot
project in May 2005 after rigorous test and trials. This system is installed in
35 Sigcens (Total 62 Sigcens) all over Pakistan. ADN (Army Data Network) is
being used as the backbone media network. The modes used by the IMS
workstations are Leased Line (LL), Dialup PC to Mail Server (through ADN),
Dialup PC to PC (through PASCOM/DEFCOM) and Off-line.

Every Signal center is envisioned to house a LAN. This LAN will comprise of
IMS Workstations, IMS workstations and computers of supervisory staff to
enter data in “Local Query Server (LQS) regarding different messages and

perform routine management tasks. These LANs all over Pakistan is

connected to a centrally located IMS Central Mail Server (CMS). This LAN is
connected with the ADN through LL connection using leased line modems or
directly on Ethernet depending on the location of the nearest ADN switch. It
facilitates exchange of messages among signal centers throughout Pakistan.
IMS/IMS workstations can also be connected through dialup facility using
ADN and one to one without involving ADN. IMS keep record/track of all the
signals/messages being exchanged between the signal centers. For this
purpose a LQS will be implemented. The system can also be connected on
HF//VHF radio if it has data communication capability. Major drawbacks of
the existing system (IMS) are only text messages can be handled, no instant
messaging, no voice chat availabilitys, no facility for online file sharing and no

video conferencing facility.

1.2 Project Vision

The present IMS clearly lacks in the above incorporating facilities.
Therefore the basic idea behind the project is to overcome the above

shortcomings possessed by the system.

1.3 Proposed Solution

The solution proposed for the following above shortcomings
possessed by the system is to inter-connect the Sigcens all over Pakistan
through Voice over IP, to display the online users, to provide text chatting

facility, to deliver offline messages according to the list mentioned by the

user, to make the users capable of voice chatting and to offer file sharing

facility to the users.

1.4 Aim of the Project

The aim of the project is to incorporate the missing functionalities in

existing Integrated Messaging System (IMS), required by the users.

This could be achieved by developing an Instant Messenger for
Integrated Messaging System. This messenger will include a Text Chatting
module which will facilitate online sending of messages. It will also indicate
the user about all the online clients. File sharing module will facilitate in
sending and receiving files from any online client._The file sharing will be
done over File Transfer Protocol. Voice chatting module will facilitate the
users with voice chatting to communicate important messages through voice
over IP. Offline messaging module will facilitate the users to send messages

to offline users which they will received at log-in.

1.5 Organization of Project Report

The project report has been drafted carefully deciding the sequence
to be followed. After the introduction section, the report incorporates the

Literature Review chapter summarizing the text studied before and during

the project’s execution. Subsequently, the System Analysis chapter comes
which includes the major interface, functional and non-functional
requirements of the system. Next is the System Design chapter comprising of
the architectural diagram, high and low level design, data flow diagram, class
diagram and interaction diagram. Following this the report includes the
implementation chapter identifying and elucidating the classes which are
implemented. Then is the testing chapter incorporating the testing process
employed to test the system and the results that were obtained. The next
chapter then discusses the work that can be done in future to further

enhance the system and ultimately this chapter wraps the report.

Chapter 2

Literature Review

2.1 Client Server Architecture

Client-server computing or networking is a distributed application

architecture that partitions tasks or workloads between service providers
(servers) and service requesters, called clients. Often clients and servers

operate over a computer network on separate hardware. A server machine is

a high-performance host that is running one or more server programs which
share its resources with clients. A client does not share any of its resources,
but requests a server's content or service function. Clients therefore initiate
communication sessions with servers which await (listen to) incoming

requests.

2.1.1 Description

Client-server describes the relationship between two computer
programs in which one program, the client program, makes a service request
to another, the server program. Standard networked functions such as email
exchange, web access and database access, are based on the client-server
model. For example, a web browser is a client program at the user computer
that may access information at any web server in the world. To check bank
account from computer, a web browser client program in computer forwards
request to a web server program at the bank. That program may in turn
forward the request to its own database client program that sends a request
to a database server at another bank computer to retrieve account balance.
The balance is returned to the bank database client, which in turn serves it
back to the web browser client in personal computer, which displays the

information for you.

The client-server model has become one of the central ideas of

network computing. Many business applications being written today use the

client-server model. So do the Internet's main application protocols, such as

HTTP, SMTP, Telnet, DNS. In marketing, the term has been used to distinguish

distributed computing by smaller dispersed computers from the "monolithic"
centralized computing of mainframe computers. But this distinction has
largely disappeared as mainframes and their applications have also turned to

the client-server model and become part of network computing.

Each instance of the client software can send data requests to one or

more connected servers. In turn, the servers can accept these requests,

process them, and return the requested information to the client. Although
this concept can be applied for a variety of reasons to many different kinds of

applications, the architecture remains fundamentally the same.

The most basic type of client-server architecture employs only two
types of hosts: clients and servers. This type of architecture is sometimes
referred to as two-tier. It allows devices to share files and resources. The two
tier architecture means that the client acts as one tier and application in

combination with server acts as another tier.

The interaction between client and server is often described using

sequence diagrams. Sequence diagrams are standardized in the Unified

Modeling Language. Specific types of clients include web browsers, email

clients, and online chat clients. Specific types of servers include web servers,

ftp servers, application servers, database servers, name servers, mail servers,

file servers, print servers, and terminal servers. Most web services are also

types of servers.
2.1.2 Comparison to Client-Queue-Client

Architecture

While classic client-server architecture requires one of the
communication endpoints to act as a server, which is much harder to

implement, Client-Queue-Client allows all endpoints to be simple clients,

while the server consists of some external software, which also acts as

passive queue (one software instance passes its query to another instance to
gueue, e.g. database, and then this other instance pulls it from database,
makes a response, passes it to database etc.). This architecture allows greatly
simplified software implementation. Peer-to-peer architecture was originally

based on the Client-Queue-Client concept.

2.1.3 Advantages

In most cases, client-server architecture enables the roles and
responsibilities of a computing system to be distributed among several
independent computers that are known to each other only through a
network. This creates an additional advantage to this architecture: greater
ease of maintenance. For example, it is possible to replace, repair, upgrade,
or even relocate a server while its clients remain both unaware and

unaffected by that change.

All the data is stored on the servers, which generally have far greater
security controls than most clients. Servers can better control access and
resources, to guarantee that only those clients with the appropriate

permissions may access and change data.

Since data storage is centralized, updates to that data are far easier to

administer than what would be possible under a P2P paradigm. Under a P2P

architecture, data updates may need to be distributed and applied to each
peer in the network, which is both time-consuming and error-prone, as there

can be thousands or even millions of peers.

Many mature client-server technologies are already available which
were designed to ensure security, friendliness of the user interface, and ease

of use. It functions with multiple different clients of different capabilities.

2.1.4 Disadvantages

Traffic congestion on the network has been an issue since the
inception of the client-server paradigm. As the number of simultaneous client
requests to a given server increases, the server can become overloaded.
Contrast that to a P2P network, where its aggregated bandwidth actually
increases as nodes are added, since the P2P network's overall bandwidth can
be roughly computed as the sum of the bandwidths of every node in that

network.

The client-server paradigm lacks the robustness of a good P2P
network. Under client-server, should a critical server fail, clients’ requests
cannot be fulfilled. In P2P networks, resources are usually distributed among
many nodes. Even if one or more nodes depart and abandon a downloading
file, for example, the remaining nodes should still have the data needed to

complete the download.

2.2 Voice over Internet Protocol

Voice over Internet Protocol (VolP) is a general term for a family of

transmission technologies for delivery of voice communications over IP

networks such as the Internet or other packet-switched networks. Other

terms frequently encountered and synonymous with VolP are IP telephony,
Internet telephony, voice over broadband (VoBB), broadband telephony, and

broadband phone.

Internet telephony refers to communications services — voice,
facsimile, and/or voice-messaging applications — that are transported via the

Internet, rather than the public switched telephone network (PSTN). The

basic steps involved in originating an Internet telephone call are conversion
of the analog voice signal to digital format and compression/translation of

the signal into Internet protocol (IP) packets for transmission over the

Internet; the process is reversed at the receiving end.

VolP systems employ session control protocols to control the set-up
and tear-down of calls as well as audio codecs which encode speech allowing
transmission over an IP network as digital audio via an audio stream. Codec
use is varied between different implementations of VolP (and often a range
of codecs are used); some implementations rely on narrowband and

compressed speech, while others support high fidelity stereo codecs.

Most VolP companies provide the features that normal phone

companies charge extra for when they are added to service plan. VolP

includes caller ID, call waiting, call transfer, repeat dial, return call and three-

way calling.

There are also advanced call-filtering options available from some
carriers. These features use caller ID information to allow you make a choice
about how calls from a particular number are handled. You can forward the
call to a particular number, send the call directly to voice mail, give the caller
a busy signal, play a "not-in-service" message or send the caller to a funny

rejection hotline.

With many VolIP services, you can also check voice mail via the Web or
attach messages to an e-mail that is sent to computer or handheld. Not all
VolP services offer all of the features above. Prices and services vary so if

you're interested, it's best to do a little shopping.

Now that we've looked at VolP in a general sense, let's look more
closely at the components that make the system work. To understand how
VolP really works and why it's an improvement over the traditional phone

system, it helps to first understand how a traditional phone system works.

2.2.1 Circuit Switching

Existing phone systems are driven by a very reliable but somewhat
inefficient method for connecting calls called circuit switching. Circuit

switching is a very basic concept that has been used by telephone networks

for more than 100 years. When a call is made between two parties, the

connection is maintained for the duration of the call. Because you're

connecting two points in both directions, the connection is called a circuit.

This is the foundation of the Public Switched Telephone Network (PSTN).

Here's how a typical telephone call works. You pick up the receiver
and listen for a dial tone. This lets you know that you have a connection to
the local office of telephone carrier. You dial the number of the party you
wish to talk to. The call is routed through the switch at local carrier to the
party you are calling. A connection is made between telephone and the other
party's line using several interconnected switches along the way. The phone
at the other end rings, and someone answers the call. The connection opens
the circuit. You talk for a period of time and then hang up the receiver. When

you hang up, the circuit is closed, freeing line and all the lines in between.

Let's say you talk for 10 minutes. During this time, the circuit is
continuously open between the two phones. In the early phone system, up
until 1960 or so, every call had to have a dedicated wire stretching from one
end of the call to the other for the duration of the call. So if you were in New
York and you wanted to call Los Angeles, the switches between New York and
Los Angeles would connect pieces of copper wire all the way across the
United States. You would use all those pieces of wire just for call for the full
10 minutes. You paid a lot for the call, because you actually owned a 3,000-

mile-long copper wire for 10 minutes.

Telephone conversations over today's traditional phone network are
somewhat more efficient and they cost a lot less. Voice is digitized, and voice

along with thousands of others can be combined onto a single fiber optic

cable for much of the journey (there's still a dedicated piece of copper wire
going into house, though). These calls are transmitted at a fixed rate of 64
kilobits per second (Kbps) in each direction, for a total transmission rate of
128 Kbps. Since there are 8 kilobits (Kb) in a kilobyte (KB), this translates to a
transmission of 16 KB each second the circuit is open, and 960 KB every
minute it's open. In a 10-minute conversation, the total transmission is 9,600

KB, which is roughly equal to 10 megabytes (check out How Bits and Bytes

Work to learn about these conversions). If you look at a typical phone

conversation, much of this transmitted data is wasted.

2.2.2 Packet Switching

A packet-switched phone network is the alternative to circuit
switching. It works like this: While you're talking, the other party is listening,
which means that only half of the connection is in use at any given time.
Based on that, we can surmise that we could cut the file in half, down to
about 4.7 MB, for efficiency. Plus, a significant amount of the time in most
conversations is dead air -- for seconds at a time, neither party is talking. If
we could remove these silent intervals, the file would be even smaller. Then,
instead of sending a continuous stream of bytes (both silent and noisy), what

if we sent just the packets of noisy bytes when you created them?

Data networks do not use circuit switching. Internet connection would
be a lot slower if it maintained a constant connection to the Web page you

were viewing at any given time. Instead, data networks simply send and

retrieve data as you need it. And, instead of routing the data over a dedicated
line, the data packets flow through a chaotic network along thousands of

possible paths. This is called packet switching.

While circuit switching keeps the connection open and constant,
packet switching opens a brief connection -- just long enough to send a small
chunk of data, called a packet, from one system to another. It works like this
that the sending computer chops data into small packets, with an address on
each one telling the network devices where to send them. Inside of each
packet is a payload. The payload is a piece of the e-mail, a music file or
whatever type of file is being transmitted inside the packet. The sending
computer sends the packet to a nearby router and forgets about it. The
nearby router sends the packet to another router that is closer to the
recipient computer. That router sends the packet along to another, even
closer router, and so on. When the receiving computer finally gets the
packets (which may have all taken completely different paths to get there), it
uses instructions contained within the packets to reassemble the data into its

original state.

Packet switching is very efficient. It lets the network route the packets
along the least congested and cheapest lines. It also frees up the two
computers communicating with each other so that they can accept

information from other computers, as well.

2.2.3 Advantages of Using VolP

VolP technology uses the Internet's packet-switching capabilities to
provide phone service. VolP has several advantages over circuit switching.
For example, packet switching allows several telephone calls to occupy the
amount of space occupied by only one in a circuit-switched network. Using
PSTN, that 10-minute phone call we talked about earlier consumed 10 full
minutes of transmission time at a cost of 128 Kbps. With VolP, that same call
may have occupied only 3.5 minutes of transmission time at a cost of 64
Kbps, leaving another 64 Kbps free for that 3.5 minutes, plus an additional
128 Kbps for the remaining 6.5 minutes. Based on this simple estimate,
another three or four calls could easily fit into the space used by a single call
under the conventional system. And this example doesn't even factor in the

use of data compression, which further reduces the size of each call.

Let's say that you and friend both have service through a VolP
provider. You both have analog phones hooked up to the service-provided
ATAs. Let's take another look at that typical telephone call, but this time
using VolP over a packet-switched network. You pick up the receiver, which
sends a signal to the ATA. The ATA receives the signal and sends a dial tone.
This lets you know that you have a connection to the Internet. You dial the
phone number of the party you wish to talk to. The tones are converted by
the ATA into digital data and temporarily stored. The phone number data is
sent in the form of a request to VolP company's call processor. The call
processor checks it to ensure that it's in a valid format. The call processor

determines to whom to map the phone number. In mapping, the phone

number is translated to an IP_address (more on this later). The soft switch
connects the two devices on either end of the call. On the other end, a signal
is sent to friend's ATA, telling it to ask the connected phone to ring. Once
friend picks up the phone, a session is established between computer and
friend's computer. This means that each system knows to expect packets of

data from the other system. In the middle, the normal Internet infrastructure

handles the call as if it were e-mail or a Web page. Each system must use the
same protocol to communicate. The systems implement two channels, one
for each direction, as part of the session. You talk for a period of time. During
the conversation, system and friend's system transmit packets back and forth
when there is data to be sent. The ATAs at each end translate these packets
as they are received and convert them to the analog audio signal that you
hear. ATA also keeps the circuit open between itself and analog phone while
it forwards packets to and from the IP host at the other end. You finish
talking and hang up the receiver. When you hang up, the circuit is closed
between phone and the ATA. The ATA sends a signal to the soft switch

connecting the call, terminating the session.

Probably one of the most compelling advantages of packet switching
is that data networks already understand the technology. By migrating to this
technology, telephone networks immediately gain the ability to communicate

the way computers do.

2.2.4 Disadvantages of Using VolP

The current Public Switched Telephone Network is a robust and fairly
bulletproof system for delivering phone calls. Phones just work, and we've all
come to depend on that. On the other hand, computers, e-mail and other
related devices are still kind of flaky. Let's face it -- few people really panic
when their e-mail goes down for 30 minutes. It's expected from time to time.
On the other hand, a half hour of no dial tone can easily send people into a
panic. So what the PSTN may lack in efficiency it more than makes up for in
reliability. But the network that makes up the Internet is far more complex
and therefore functions within a far greater margin of error. What this all
adds up to be one of the major flaws in VolP: reliability. First of all, VolP is
dependent on wall power. Current phone runs on phantom power that is
provided over the line from the central office. Even if power goes out, phone
(unless it is a cordless) still works. With VolP, no power means no phone. A
stable power source must be created for VolP. Another consideration is that
many other systems in home may be integrated into the phone line. Digital

video recorders, digital subscription TV services and home security systems

all use a standard phone line to do their thing. There's currently no way to
integrate these products with VolP. The related industries are going to have
to get together to make this work. Emergency 911 calls also become a
challenge with VolP. As stated before, VolP uses IP-addressed phone
numbers, not NANP phone numbers. There's no way to associate a
geographic location with an IP address. So if the caller can't tell the 911
operator where he is located, then there's no way to know which call center

to route the emergency call to and which EMS should respond. To fix this,

perhaps geographical information could somehow be integrated into the
packets. Because VolP uses an Internet connection, it's susceptible to all the
hiccups normally associated with home broadband services. All of these
factors affect call quality e.g. Latency, lJitter, Packet loss. Phone
conversations can become distorted, garbled or lost because of transmission
errors. Some kind of stability in Internet data transfer needs to be
guaranteed before VolP could truly replace traditional phones. VolP is

susceptible to worms, viruses and hacking, although this is very rare and VolP

developers are working on VolP encryption to counter this. Another issue
associated with VolP is having a phone system dependant on individual PCs
of varying specifications and power. A call can be affected by processor drain.
Let's say you are chatting away on softphone, and you decide to open a
program that saps processor. Quality loss will become immediately evident.
In a worst case scenario, system could crash in the middle of an important
call. In VolP, all phone calls are subject to the limitations of normal computer

issues.

One of the hurdles that was overcome some time ago was the
conversion of the analog audio signal phone receives into packets of data.
How it is that analog audio is turned into packets for VolP transmission? The

answer is codecs.

2.2.5 Codecs

A codec, which stands for coder-decoder, converts an audio signal
into compressed digital form for transmission and then back into an

uncompressed audio signal for replay. It's the essence of VolP.

Codecs accomplish the conversion by sampling the audio signal
several thousand times per second. For instance, a G.711 codec samples the
audio at 64,000 times a second. It converts each tiny sample into digitized
data and compresses it for transmission. When the 64,000 samples are
reassembled, the pieces of audio missing between each sample are so small
that to the human ear, it sounds like one continuous second of audio signal.
There are different sampling rates in VolP depending on the codec being used
e.g. 64,000 times per second, 32,000 times per second, 8,000 times per
second. A G.729A codec has a sampling rate of 8,000 times per second and is

the most commonly used codec in VolP.

Codecs use advanced algorithms to help sample, sort, compress and
packetize audio data. The CS-ACELP algorithm (CS-ACELP = conjugate-
structure algebraic-code-excited linear prediction) is one of the most
prevalent algorithms in VolP. CS-ACELP organizes and streamlines the
available bandwidth. Annex B is an aspect of CS-ACELP that creates the
transmission rule, which basically states "if no one is talking, don't send any
data." The efficiency created by this rule is one of the greatest ways in which
packet switching is superior to circuit switching. It's Annex B in the CS-ACELP

algorithm that's responsible for that aspect of the VolP call.

The codec works with the algorithm to convert and sort everything
out, but it's not any good without knowing where to send the data. In VolIP,

that task is handled by soft switches.

E.164 is the name given to the standard for the North American

Numbering Plan (NANP). This is the numbering system that phone networks

use to know where to route a call based on the dialed numbers. A phone
number is like an address e.g. (313) 555-1212. 313 = State, 555=City and 1212

= Street address

The switches use "313" to route the phone call to the area code's
region. The "555" prefix sends the call to a central office, and the network
routes the call using the last four digits, which are associated with a specific
location. Based on that system, no matter where you're in the world, the
number combination "(313) 555" always puts you in the same central office,

which has a switch that knows which phone is associated with "1212."

The challenge with VolIP is that IP-based networks don't read phone
numbers based on NANP. They look for IP addresses, which look like

192.158.10.7.

IP_addresses correspond to a particular device on the network like a
computer, a router, a switch, a gateway or a telephone. However, IP
addresses are not always static. They're assigned by a DHCP server on the
network and change with each new connection. VolP's challenge is

translating NANP phone numbers to IP addresses and then finding out the

current IP address of the requested number. This mapping process is handled

by a central call processor running a soft switch.

The central call processor is hardware that runs a specialized
database/mapping program called a soft switch. Think of the user and the
phone or computer as one package -- man and machine. That package is

called the endpoint. The soft switch connects endpoints.

Soft switches know where the network's endpoint is, what phone number is

associated with that endpoint and the endpoint's current IP address.

2.3 G.7-11 Protocol

G.711 is the international standard for encoding telephone audio on
an 64 kbps channel. It is a pulse code modulation (PCM) scheme operating at
a 8 kHz sample rate, with 8 bits per sample. According to the Nyquist
theorem, which states that a signal must be sampled at twice its highest
frequency component, G.711 can encode frequencies between 0 and 4 kHz.
Telcos can select between two different variants of G.711: A-law and mu-law.

A-law is the standard for international circuits.

Each of these encoding schemes is designed in a roughly logarithmic
fashion. Lower signal values are encoded using more bits; higher signal values
require fewer bits. This ensures that low amplitude signals will be well

represented, while maintaining enough range to encode high amplitudes.

The actual encoding doesn't use logarithmic functions, however. The
input range is broken into segments, each segment using a different interval
between decision values. Most segments contain 16 intervals, and the

interval size doubles from segment to segment.

2.3.1 A-Law Algorithm

An A-law algorithm is a standard companding algorithm, used in

European digital communications systems to optimize, i.e., modify, the

dynamic range of an analog signal for digitizing. A-law encoding effectively

reduces the dynamic range of the signal, thereby increasing the coding
efficiency and resulting in a signal-to-distortion ratio that is superior to that

obtained by linear encoding for a given number of bits.

2.3.2 p-Law Algorithm

The p-law algorithm is a companding algorithm, primarily used in the

digital telecommunication systems of North America and Japan. Companding

algorithms reduce the dynamic range of an audio signal. In analog systems,

this can increase the signal-to-noise ratio (SNR) achieved during transmission,

and in the digital domain, it can reduce the quantization error (hence
increasing signal to quantization noise ratio). These SNR increases can be

traded instead for reduced bandwidth for equivalent SNR.

The py-law algorithm provides a slightly larger dynamic range than the

A-law at the cost of worse proportional distortion for small signals. By

convention, A-law is used for an international connection if at least one

country uses it.

Chapter 3

System Analysis

3.1 Introduction

This chapter covers the system analysis phase of the project. In this
phase, first of all scope of the project is presented as it’s clear definition and
understanding is needed for the absolute comprehension of the system’s
requirements’ specification phase, including major functional and non-
functional requirements, is described. The requirements’ specification phase
is then followed by usecase diagram and domain model of the system for the

better understanding of the system analysis phase of the project.

3.2 Project Scope

This product is intended to be delivered to Signals Corp. The
Integrated Messaging System (IMS) currently deployed by the Slgcens,
interconnect the Slgcens all over Pakistan. The current system uses electronic
mailing technology to send and receive messages and files. The new system
should interconnect the Sigcens all over Pakistan incorporating the

functionalities of text chat, file transfer, offline messaging and voice over IP.

3.3 Requirements Specification

The requirements specifications of the system include its external
interface requirements including user and software interface requirements. It
also involves the analysis of the major functional requirements including the

main functionalities that the system is expected to deliver. Analysis of main

non-functional requirements is also important as it tends to give an idea

about the characteristics of the system such as accuracy, scalability etc.

3.3.1 External Interface Requirements

Requirements which include the interaction of the system with the
external requirement e.g. user interface through which the user interacts
with the system and software interfaces means the software tools which are

employed in the system.

3.3.1.1 User Interfaces

The GUI of this application will be made in a way that the user will be
presented with a screen to login at first. After the authentication of the user,
the user will be presented with a screen showing the list of online users.
When a user wishes to chat with a certain user he will need to click on the
user’s name to know the list of available options. Available options will be
including written chat & voice chat. After choosing a certain operation, a
separate window will be opened for the conversation whether it is text or

voice.

SIP .Net will be used for the implementation of the voice
conversation. SIP is the most suited protocol for the implementation of VOIP
under the given circumstances. This API provides the following features for

establishing a voice conversation e.g. authentication, supports the SIP

methods e.g. REGISTER, INVITE, ACK etc, creating and parsing SDP messages,

show online users, instant Messaging.

3.3.1.2 Software Interfaces

The project employs Windows XP and Vista as the operating system

and software tool such as SQL 2005 and DirectX is required to run the system.

3.3.2 Major Functional Requirements

Functional requirements means the core functionalities that the
system is meant to deliver e.g. the Users of IMIMS should be able to see
other users of IMIMS that are online simultaneously, the Sigcens all over
Pakistan should be capable of interacting with each other through instant
text messages, the Users of IMIMS should be able to send offline messages
according to the priority list mentioned by the same user, the Sigs. Centre

should be able to communicate with each other via voice chatting.

The Users of IMIMS should be able to see other users of IMIMS that
are online simultaneously. A user will be able to see the other online users
working at different workstation situated at several locations (Sigcens). It is a
necessity to display the users the information of other users online so that
they can know that with what users they can communicate at that time. No

dependencies with other requirements.

The Sigcens all over Pakistan should be capable of interacting with
each other through instant text messages. The users of the IMIMS (people
sitting at workstations at different Sigcens) will be made capable of
interacting with each other via text messages which can be sent and received
in real-time. The existing IMS system does not facilitate the users with the
functionality of having an interaction via text messages instantaneously. The
users wanted to have a way of interacting in real-time so that they can know
if the specific mail or file has been received at the other end and get an
acknowledgement. The users will be able to send instantaneous text
messages depending on whether the target user is logged on to the system
or not. The user should be able to send instantaneous text messages only if

the other user is logged on.

The Users of IMIMS should be able to send offline messages according
to the list mentioned by the same user. A user will be able to send offline
messages to another user who is not online at that time, according to a
priority list mentioned by the sending user, so that if the required user
doesn’t come online, then the message is delivered to the user next in the
priority list. A message which needs to be responded in certain period of time
can be catered through this functionality. No dependencies with other

requirements.

The Sigcens should be able to communicate with each other via voice
chatting. The users of the IMIMS will be able of having a voice conversation

using voice over IP. Any computer equipped with a sound card installed and

having a microphone should be able to have a voice chat with any other user
of the IMIMS with same specs of his system. The user will only be able to
have a voice conversation with the other user of the system if they are
appearing online to each other. The most important technical issues involved
with this requirement are the voice quality of calls which depends on

network congestion.

3.3.3 Major Non-Functional Requirements

The major non-functional requirements that the system provides are
security, reliability and compatibility.

The system should be secure in a sense that the information should
be received by the intended user only. The system should be reliable in a
sense that the system should provide the users with the required
functionality round the clock. The system will be made compatible with all

systems with Microsoft Windows installed.

3.4 Usecase Diagram

Iy Registers new Users

Administrator

Update Existing
Acoounts

Figure 3-1: Usecase Diagram of Administrator

System Boundary

Call a User
W7

Accept Incoming
Calls

Login

View Online Users

HLI5E

HUSESR Reject Incoming
Calls

rlk
Racieve Files
Al

Genarate a Flash
Message

Get Notified for
Flash Message Delivery

Figure 3-2: Usecase Diagram of User

The use-case diagram created above shows the possible use-cases for

the administrator. The administrator can register a new user if anyone wants

to register with this system. The administrator will also be able to update the

existing accounts. This use-case diagram shows all the possible use-cases for

any user of the system.

3.5 Sequence Diagram

ogin ain Menu <<Ul=> iting Menu <<U|>= atabage
Logi Main M Ul Editing M Ll Datab
Mminlﬂramr . I		
I interacts to login I		I
I		
:		
	I	
autherticates		:
I		
il aunthenticated		
' o		
		I
[I	
I		create a new account
I		
l		
I		
: L o back 1o main menu I		
:		I
	I	
!		edit existing account info
	I o	
I		commit changes
!		1 N
I	I I I	
:		I
: L o back 1o main menu I		
'		
L-.-		
: | | |
‘ I | |

Logs out

Figure 3-3: Sequence Diagram of Administrator

Login Sereen <<Ul=> Onlng Users <l : '« ~ Incoming Cal il | | Elash Message <<= Datatese
T T T T T
| I [| | |
| I [| | I
| I [| | |
| | I [| | I
Acort | I [| | |
| | I [| | I
| interacts | | \ | | |
|———— I I . | | I
| | send info to db forvgliction | | |
| | | 1
‘ T T
\ | ' | feturn results | |
I L } : } } T
| | I [| | |
I | I [| | I
| | I record found I | | | I
b \ | | I
: | | slects a user | | | |
| | — | | I
| | | | | |
| | I | | I
| | I chas (IM} | | I
| | I | | I
| : I closes the windw : : :
: | I [| | |
| | I [| | I
| | | choosesausertocal | | | |
| | | | I
| | | [|
| | el remains esiabiidhed l [
| : #nds the call : : :
: | | choosas a user to send a il | | | |
I | — | | I
| | I [| | |
| | I [| | I
‘ | I [| | |
| | | [| | I
‘ I I PoceptReject | i I
| | f 1 o~ | I
| | | \ | |
|
} : : Interacts 1o generate flash message, : :
I | f f [
| | I \ ‘ I
| | | \ Deliver the Message
| | | Nofifies about the message delivary! |
| K i
} |
| |
| |
| |
| |
| |
| |
i |

Figure 3-4: Sequence Diagram of User

The sequence diagram for the administrator shows that the

administrator first interacts with the login screen to prove himself as an

administrator. Then after the authentication, he will get the main menu

authenticates

where he can choose either of the use-cases specified above. The sequence
diagram for the user shows that first the user will be authenticated by the
system from the database. After authentication, the user gets a screen where
he sees his online and offline contacts. If he chooses to interact with a
particular user of the system he will get a new window to chat or call or send

a file.

3.6 Conclusion

The system analysis of the project has been covered in this chapter.
The cope of the project has been revised for the clear understanding of the
requirements, key functional and non-functional requirements have been
enumerated, the usecase diagram showing the major actors and their actions
have been included. The sequence diagram identifying the sequence of
actions taken has been incorporated as well. This chapter has been written
comprehensively so that the fore coming design chapter becomes easy to

comprehend.

Chapter 4

System Design

4.1 Introduction

System design is a very important phase in the software development
process. The succeeding implementation phase is performed taking into
consideration the design constraints. This chapter begins by presenting the
high level design of the project showing the main modules of the system
without including much detail. Next the low level design is incorporated
elucidating the modules identified in the high level design. It is then followed
by the data flow diagrams of the project. Class diagram is also included
focusing on the implemented classes, their attribute and their relationships

with each other.

4.2 Architectural Diagram

The system is mainly composed of four modules. They are Instant
Messaging (Text Chatting), Voice Chat Module, File Transfer Module and

Offline Messaging.

The diagram presented here shows two nodes using this system. Both of
them are having the above stated modules. These two nodes need a
mediator (The Server) to make the connection get established between them

to complete any of the desired tasks.

Voice Chat File Transfering
{G.711) (FTP)

Instant Offline
Messaging Messaging

Voice Chat File Transfering
(6.711) (FTP)

Instant Offline
Messaging Messaging

Figure 4-1: Architectural Diagram

4.3 High Level Diagram

The High level design of the project is shown in Figure 4-2. It is built
using black box approach, focusing on the main modules of the system and

not considering their inner details. The Figure 4-2 identified the four

fundamental modules of the project as instant messaging (Text Chatting),

voice chat, file sharing and offline messaging modules.

Figure 4-2: High Level Design

4.4 Low Level Diagram

Figure 4-3 to Figure 4-7 illustrates the detailed low level design of the

project. Here each module is explained in more details.

4.4.1 Overall Client

Client I Client Socket \
State objects |-

Use TCP/IP protocol
File Transfer = B pilonadeg
Voice Over IP ||
Messaging I

Figure 4-3: Overall Client Design

The Figure 4-3 explains the overall client design in detail. It is using
TCP/IP protocol for communication with the server. File transferring is done
by File Transfer Protocol (FTP), voice over IP by G-711 Protocol and

messaging by Hyper Text Transfer Protocol.

4.4.2 Overall Server

Server | | Server Socket

State objects

Use TCP/IP protocol
| for communication

File Transfer

L4 with server

Voice Over IP

Messaging

Figure 4-4: Overall Server Design

The Figure 4-4 explains the overall server design in detail. It is also

using TCP/IP protocol for communication with the client.

4.4.3 Voice Chat Module

(G.711 Protocol)

A-Law Encoder

A-Law Decoder

Port# [1450]-Listen

CALLING On Receiving asynchronously for
Call incoming messages
from any IP.

Sending Audio Receiving Audio

Portif [1550]-Receive
audio data and feed it
Initializing Uninitializing ——1 tospeakers.

Call Call

Figure 4-5: Voice Chat Module Design

The Figure 4-5 explains the voice chat module in detail. A-law
encoding and decoding is used in G-711 Protocol. Listening asynchronously
for incoming messages from any IP is done on Port# 1450. Port #1550

receives audio data and feed it to speakers.

4.4.4 File Transfer Client

File Transferring Module

' i A N\
simply follows the File Porti [5656] Receives
Transfer Protocol. Contacts i

. and sends file using
the clients through server e
and just simply starts &
transferring the files \.
Usually FTP sends
data using portf21

Figure 4-6: File Transfer Client Design

The Figure 4-6 explains the FTP client in detail. It simply follows File
Transfer Protocol, contact the clients through server and stars transferring

files. Receiving is done on Port# 5656 and data send using Port# 21.

4.4.5 File Transfer Server

File Transferring Module

simply follows the File i —
Transfer Protocol. Receives Port# [m'mﬂl‘i'm
the file from a client and dzends Beeag
sends it to the other client this port
%

Usually FTP server

uses port#20 for

listening but all the

ports greater than

1024 are free ports

\ ¥

Figure 4-7: File Transfer Server Design

The Figure 4-7 explains the FTP server in detail. It simply follows File
Transfer Protocol, receives the file from client and send it to another client.

Receiving is done on Port# 5656 and listening using Port# 20.

4.5 Class Diagram

Class diagrams of Server and Client are illustrated in Figure 4-8.

farm1
@m_Worker WorkerSocket

SupdateRichEditCallBack()
PDispose)
@update_contral)
&rm_Waorker_OnConnect])
@ m_Waorker_onDisconnect()
@processData))
@m_Worker_OnDataRecieved))

WorkerSocket

& m_ovWorker ; Socket

$Cannect()
SDisconnect])

| @ConnectCallBack()

@OnRecieveCallBack)
®send()
@rsendCallBack)

O

voice chat

gstiame © string
gUmdCommand :
Public command
gvocoder - Public
gvocoder
$CaptureBuffer
glescription :

Private Capturs
SBufferDescription
@haveformat -
Private Wave

& Format
@rudpClient : Privat
e UdpClient
@ratherpartyip -
@MPEndPaint

to voice call connecting to server

client asd peer to peer

Deals with all the functions related

and then interacting with the other

—

_|with server and send and

Build TCP/APConnections j

StateObject

gwotkarSocket © Socket = null
¢BufferSize : cons int = 1024
$Buffer : byte|]

&sh o stringbuilder

______ reading client

$StateObject()
Shey))

State object for

data
asynchronously

Turns 16-bit linear PCM FTClient
values mtoIB-hn A law &Curhsy : static
: string = idle————————
AlawEncoder
&alawTopcmbdan
> static shon[]
@ALaW .
SEncodercoder)
this class is used for
transferring file from
AlawDecoder client ta server,
&alawTopcmbap Selecting file and bindi
SalawDecaden)
$Decodel
WAlawDecode()

Turns 8-bit A-law bytes
- |back into 16-bit PCh

Figure 4-8: Class Diagram of Client

farm1.1 — — — - | form ov serve
I%m_ServerSnck ServerSocket . rclass
PDispose])
&m_SeverSock_OnDataReceived()
&FrocessDatal) Semersocket
@Workers_OnWorkerConnect) Fo>—— @m_oListener : socket -
@orkers_OnworkerDisconnect() 18 m_RemoteWarkers © StateOhjectCallection state_object
T l%m_hListening . bool = false EworkerSocket © Socket = null
1 @BufferSize : int = 1024
\ I SServarSocket() b ®pBuffer : byte[]
FTserverCode | :StartL_isten_ingo sb o StringBuilder
- - | StopListeninal)
ipEnd : IPEnd | $0OnAcceptCalBack) #StateOhject()
$Paint @ronReceiveCallback])
gsock ; socket I "
greceivedPath ; ! ;
string |
Ycurhsg © string "~ | Dispose fuction clean up :
any resources being used
T !
X ;
| H
! 1.5tate ohject for
: reading client data
class of_server dealing with file . ;_Sérﬂfcf;rr?:?ﬁslfecieve
transferring module buffer

Figure 4-9: Class Diagram of Server

4.6 Data Flow Diagram

Data flow diagrams for login, sending/receiving file and

sending/receiving voice is illustrated in following figures.

Figure 4-10: DFD for Login

== i1 1 = "
User Database
g ;
Login
Mot authe nticated
3 2

Retrieval Online ‘ Auitheriication Authentication

Users

vy |
Main Menu

Logged-in
User

Transfer

Rejects

Rejects

sending Fails

Failure
Motification

t OnCom pletion Notification

Figure 4-11: DFD for Sending File

F o
Logged-in h File Receiving
User Interface

Rejects

o
Main Menu * 2
B Receiving
F Y .
i Failure A—
Failure
Notification Notification

Figure 4-12: DFD for Receiving File

Call Interface

(.
If Callee Speaks

Decompre ssion

Speakers

Figure 4-13: DFD for Sending Voice

=

Figure 4-14: DFD for Receiving Voice

4.7 Conclusion

This chapter presented the architecture of Instant Messenger for
Integrated Messaging System (IMIMS). It has incorporated the high level
design, low level design, data flow diagram and class diagram of the system.
Four main modules have been identified which are instant messaging (Text

Chatting), offline messaging, voice chat and file transfer.

Chapter 5

Implementation

5.1 Introduction

This chapter presents the implementation details of the project. The
coding is done in C#. As illustrated in the prior chapter, there are four
modules of the system, Instant messaging (Text Chatting), Offline messaging,
Voice chat and File transfer. As the system is distributed so the classes which
are implemented are disseminated among these modules. The
implementation chapter is hence structured in the same way i.e. mentioning
each module and then elucidating the classes which are needed on that

module.

5.2 Implementation Language

The implementation language which has been chosen for the project
is CH. It has been preferred over other languages because of several reasons
e.g. it is a platform independent language which enhances the system’s
portability. This factor is significant as the system built is of distributed
nature. Also it supports object oriented language which makes it simple to
visualize the objects in real life. It also supports an easy integration with

database. Database is build using SQL language in Microsoft SQL Server 2005.

5.3 Distribution of classes with respect to Modules

Considering in account the fact that the system is distributed, the
implemented classes will be explained with respect to their placement in the
system. From the high level design in the preceding chapter, the two
identified sub-systems are IMIMS Client and IMIMS Server. The four
identified modules of IMIMS Client are Voice Chat, Text Chat, Offline

Messaging and File Transfer.

Each module of the system contains a certain set of implemented C#
classes and their interaction carry out the operation for which they are

destined for i.e. text chat for the user using IMIMS.

5.3.1 IMIMS Client

This sub-system holds a set of classes which collectively form the
client side functionalities including user interface. It means that it is through
these classes that the user interacts with the system without indulging in the
internal details of the system. The classes present on this system can mainly

be separated into eight sets.

5.3.1.1 Login

Login class (Form1.cs) provides the implementation for the login form.

This class deals both with the user interface and the user data for the login

form. The functionalities provided by this class are authentication of the user
login into the system, receive offline messages as soon as the user logs in to

the system.

5.3.1.2 Main Menu

Main Menu class (Main_Menu.cs) provides the implementation for
the Main Menu form. This class deals both with the user interface and the
user data for the main menu form. This class creates UDP socket for receiving
offline messages and open s up the socket to listen at port# 7000. It also
creates two TCP sockets listening at port # 5656 and port # 9050 for file
transfer and instant text respectively. The major functionalities of this class
are connecting to the other client for text chatting, sending text messages in
chatting, receiving offline messages in main menu, receiving file,

disconnecting from the server and receiving voice call invitations.

5.3.1.3 Text Chat

Text Chat class (TextMessaging.cs) provides the implementation for
the Text Chat form. This class deals both with the user interface and the user
data for the Text Chat form. This class receives the TCP socket as an
argument from the main menu class whenever a user receives a request for
text chat or clicks the text chat button from the main menu, driving the
control to text chat form. The major functionalities of this class are sending

text data, receiving text data.

5.3.1.4 Voice Chat

Voice Chat class (VoiceChat.cs) provides the implementation for the
Voice Chat form. This class deals both with the user interface and the user
data for the Voice Chat form. It creates two UDP sockets, one socket for
receiving and sending the voice data and other for sending and receiving
acknowledgement. Once the user accepts the invitation for the voice call or
clicks the voice chat button on the main menu, the control is driven to voice
chat class. This class uses the objects of A-law encoder and A-law decoder
class to encode the voice data before sending the UDP datagram on the
network and decodes voice data after receiving the UDP datagram from the

network.

5.3.1.5 File Transfer

File Transfer class (FileTransfer.cs) provides the implementation for
the File Transfer form. This class deals both with the user interface and the
user data for the File Transfer form. This class creates a TCP socket which is
used to send a file. The other client receives the file using the TCP socket

listening at port # 5656.

5.3.1.6 Offline Messaging

Offline Messaging class (OfflineForm.cs) provides the implementation

for the Offline Messaging form. This class deals both with the user interface

and the user data for the Offline Messaging form. The only functionality of

this form is to send the offline messages to the clients added by the user.

5.3.1.7 A-Law Encoder

This class is an implementation of G.7-11 audio protocol. It turns the

16-bit linear PCM values into 8-bit A-law bytes.

5.3.1.8 A-Law Decoder

This class supports the implementation of G.7-11 audio protocol. It

turns the 8-bit A-law bytes back into 16-bit linear PCM values.

5.3.2 IMIMS Server

This sub-system deal with the server side of the system consisting of

classes mentioned below along with their details.

5.3.2.1 Forml

It creates a TCP socket listening at port # 11000 to accept request for
connections from clients. Also creates a UDP socket and opens it for listening
at port # 5000 for user authentication. It receives username and password
from the client and connects it the server to the database to verify the user
referring to the credentials table maintained in the database. It also creates a

UDP socket opened for listening at port # 1300 to receive offline messages

from the client and connects to the database to save offline messages in

Offline Message table in IMIMS database.

5.4 Conclusion

This chapter incorporated the details of the classes implemented. . The
classes have been distributed among the two basic sub- systems which are
IMIMS Server and IMIMS Client. C# has been used as the programming
language for the project due to its object-oriented and platform independent

nature. Also the database has been deployed in Microsoft SQL Server 2005.

Chapter 6

Testing

6.1 Introduction

Testing is a very important phase in the software development
process. Once the coding process is completed, then the software goes under
the testing process which involves checking the codes for errors and bugs. It
involves any activity aimed at evaluating n attribute or capability of a
program or a system and determining that it meets it required results*. This
chapter involves all the testing techniques which have been employed in the
project and conclusions which have been deduced on the basis of the results
of the testing procedures. Test cases for different units and components have
been drafted illustrating their expected behaviors on the success and failure
of each test. The output of each test is then compared with the one
documented in the test case to make sure that the system behaves in the

same way in which it is meant to behave.

6.2 Testing Process

The testing process has been carried out throughout the development
process as an iterative approach has been used in the project for
development. Each phase of development was visited several times making

sure that the testing process goes in parallel with the development process.

The testing was basically done at three levels, Unit testing, Integration and

System testing.

6.2.1 Client Testing

The test cases for different components of the system are elucidated

and shown under the following headings.

6.2.1.1 Text Messaging

Identity TextMessaging.cs
Category Component testing
Description This class accepts a socket

created in the MainMenu.cs.
Once the system accepts the
connection it creates a socket
randomly on any port and this
socket is passed to this class.
After the creation of this socket,
it handles the text chatting
between the two client
machines

Set up Dependable classes,
MainMenu.cs

Expected Success The two clients are able to have

text chat successfully
Results

Failure Exceptions are thrown.

Table 6-1: Test case for Text Messaging

6.2.1.2 File Transfer

Identity FileTransfer.cs
Category Component testing
Description This class is respomsible for

sending a file over a tcp stream.
The client starts listening for the
files at port 5656 on first run.
The listening is on the
MainMenu.cs

Set up Dependable classes,
MainMenu.cs

Expected Success The two clients are able to send

and receive file successfully
Results

Failure Exceptions are thrown.

Table 6-2: Test case for File Transfer

6.2.1.3 Offline Messaging

Identity

OfflineForm.cs

Category

Component testing

Description

This class sends messages to the
server and the server stores
these messages and displays
instantly to the user if he is
online and if he is offline, it is
displayed on the next sign-in

Set up

Dependable classes,
MainMenu.cs (for the listening
of Flash Messages), Forml.cs
(for Offline Messaging listening)

Expected

Results

Success

The client is able to send a
message to the server and the
server stores them successfully
and the message is displayed to
the user on successful sign-in

Failure

Exceptions are thrown.

Table 6-3: Test case for Offline Messaging

6.2.1.4 Voice Chat

Identity VoiceChat.cs

Category Component testing

Description This class is responsible for
sending and receiving voice data

Set up Dependable classes,
AlLawDecoder.cs,
AlLawEncoder.cs,
MulLawDecoder.cs,
MulawEncoder.cs

Expected Success The two clients are able to have
voice chat

Results

Failure

Exceptions are thrown.

Table 6-4: Test case for Text Messaging

6.2.1.5 Online Clients

Identity MainMenu.cs

Category Component testing

Description This class is responsible for
overall interaction with all the
online users and it maintains a
list of online users.

Set up Dependable classes,
ServerSocket.cs,
WorkerSocket.cs

Expected Success The list of online clients is

accurate

Results Failure Exceptions are thrown.
Table 6-5: Test case for Text Messaging
6.2.2 Server Testing

Identity Forml.cs

Category Component testing

Description This class is responsible for
overall interaction with all clients
to update online clients with
them.

Set up Dependable classes,
Database_IMIMS.cs,
ServerSocket.cs,

Expected Success The list of online clients with the
server and client is accurate

Results

Failure Exceptions are thrown.

6.2.3 Static Analysis of Code

Table 6-6: Test case for Server

Besides testing the code dynamically, static analysis of the code has

been done as well to find defects, if any, in the blocks of code due to which it

does not implement the exact requirement or to determine the ways by

which the code can be optimized to make it full proof.

The code has been statically analyzed in many ways which are briefly

illustrated under following headings.

6.2.3.1 Control Flow Analysis

Control flow analysis has been carried out for the verification and
validation of control blocks in the source code, for instance, the 'for', 'while'
loops and the 'if' condition blocks. It has been observed that no unnecessary

code has been included and all these blocks are optimized.

6.2.3.2 Data Analysis

Data analysis has been done to find and remove improper
initializations, unnecessary assignments and those variables that are declared
but never used. All such unnecessary lines have been eliminated thus giving a

refine code.

6.2.3.3 Interface Analysis

Interface analysis has also been done to insure consistency of

interface, class, procedure declaration, definition and their use. It has also

been observed through test that all the method declared in the interface is
correctly implemented in the classes and that there are no redundant

methods.

6.4 Conclusion

This chapter illustrated the testing process of the system that has
been carried out and the corresponding results obtained. The testing of a
system has been done in complete detail using test cases. Using these test
cases, results have been authenticated. Static inspection of the code has
been carried out as well so that it becomes optimized and does not become
redundant. All the test results were very successful proving that system

delivers all its functionalities in an efficient way.

APPENDIX A

User Manual

User Manual

This application software has two categories of users.

1. The user that uses the functionality of the software as a client.

2. The user that mostly manages the database and accounts as server.

1. Client Side

Once the program is opened, the user will be ready to begin using the

messenger. The initial interface of the application will look like as follows:

-

o= IMIMS Login

ip"

Please log in

Uszer Hame: J

2 Password: J

3 Sign In |

Figure A-1: Login

Each of the demarcations will have a specific purpose.

1- Place where users should write the email address (for example,
XYZ@signals.com).

2- Here the user should write the password of the email address. No changes
should be made as regards the password use for the email.

3- After completing the previous steps, users can sign in.

After signing in, for the first time the users will see the interface of

their instant messenger with the contacts they have.

2 IMIMS

|§-§-Elec1 auser's IP and click on send a message to send an ins

2 ' Send File

Online Users

listE ol

Call

I Offline Message i

b

|

Mot Connected

=

Figure A-2: Main Menu

Each of the demarcations will have a specific purpose.

1- Change Password button. This button will open change password form
where user can change its password.
2- List of Online users. This list will show the online users and it is

continuously updated by the server.

3- Status bar. This will show whether user is connected with the server or not
connected.

4- Sign Out button. This button will sign out the user from the messenger.

5- Send Message button. This button will open a send message form where
user can chat with other users.

6- Send File button. This button will open a send file form where user can
send a file to a user.

7- Call button. This button will open a voice chat form where user can voice
chat with other user.

8- Offline Messages button. This button will open an offline messages form

where user can send messages to the users that are offline.

1.1 Changing Password

After clicking the change password button on the main menu a

Change Password form will be open this looks like:

’“9 Change Password g[ﬁ]

L YW [

0ld Pazsword:

Mew Password:

3 P | -

Confirm Password:

Change Paszword 4

Figure A-3: Changing Password

Each of the demarcations will have a specific purpose.

1- Old Password field. Place where user writes the current set password.
2- New Password field. Place where user writes the new password that he
wishes to set.

3- Confirm Password field. User confirms the new password by writing it
again here.

4- Change Password button. This button changes the password of the user.

1.2 Sending Message

For chatting with other users, select any user from the online user list
and then click on the Send a Message button on the main menu. It will open

a Text Messaging form which looks like:

~

rﬂH Texthessaging g@ =

h s B
Received Messages: 4 1
r

_T_vpe a Message to Send

&

‘ Send

LY -

Figure A-4: Sending Message

Each of the demarcations will have a specific purpose.

1- Received Messages filed. Here messages received by the other user appear
including the messages sent by you.

2- Type a Message field. To send a message to the other user, type a message
over here.

3- Send button. To send a message written in the above field 2, click the send

button and the message will be delivered to the other user.

1.3 Sending File

To send a file to one user at a time, click on the Send File button on

the main menu. This will open a File Transfer form which looks like:

a2 FileTransfer g@

2 Select a File to Send

Select Recipient

liztBios1

. i

= y

Figure A-5: Sending File

Each of the demarcations will have a specific purpose.

1- Browse Button. To send a file click on the browse button to browse for the
file in the memory.

2- Select a File to Send field. This field will show the complete URL of the
sending file.

3- Select Recipients filed. This field will show online users. Select one user to
whom you want to send a file.

4- Send File button. Click this button to send a file to the desired user.

1.4 Voice Call

For having voice chat with other users, click on the Call button on the

main menu. This will open a Voice Chat form which looks like:

ﬂu‘j VoiceChat

Select a user to call ﬂ

i

liztBow

Figure A-6: Voice Call

Each of the demarcations will have a specific purpose.

1- Select a user to call filed. This field will show list of online users. Select any
one user.

2- Call to field. This filed will indicate the user you have selected for calling.
3- Name field. Write your name on this field.

4- Codec selection. Select any one from the three choices such as A-law, p-
law or none.

5- Call button. This button will send your request for voice chat to other user.

6- End Call button. This button will terminate the voice chat.

1.5 Sending Offline Messages

To send offline messages to offline users or Flash messages to online
users, click on the offline messages button on the main menu. This will open

an Offline Messages form which looks like:

“‘J Offline Messaging g“

Add Qtnrdmg to @dlng priority (Add Ul s)

1 Add from the TextBox | listB o2

liztBow1
;

3 ‘ Remove

Enter:lriessage Here

Figure A-7: Sending Offline Messages

Each of the demarcations will have a specific purpose.

1- Add name field. Add an email id in field to whom you wish to send an
offline message.
2- Add from text box button. Clicking this button will add the id from field 1

to the field 4.

3- Online users filed. From here you can select any online user to send a
message. This message will be a Flash message. Just select any user in this
field.

4- Selected users filed. Here list of users that are selected for sending
message are listed.

5- Add Button. Clicking this button will add the selected user from the field 3
to field 4.

6- Remove button. Clicking this button will remove the selected id from field
4.

7- Enter Message field. Write the message the message here to send to the
users listed in filed 4.

8- Send button. Clicking this button will send offline messages to offline users

and flash messages to online users listed in the field 4.

1.6 Receiving Offline Messages

When the user will login, any offline messages sent to him by the

other users will pop up on an offline messages form. This will looks like:

,IHE Offline Messages E]@

]

n

listB ol

Figure A-8: Receiving Offline Messages

Each of the demarcations will have a specific purpose.

1- Offline messages list box. This list box will show offline messages.
2- Delete Messages button. Clicking this button will delete the selected

offline message from the list box.

2. Server Side

Once the server is open, the IMIMS Server form will appear which

looks like:

|| MM Server =) O
S erver — —
|Name.-".-‘l'«|:|dress:
_Star_t
2 | Part: 11000 EEening
W orkers 3
lzbforkers Add User
Accounts 6
4 7
8

Figure A-9: Server

Each of the demarcations will have a specific purpose.

1- Name field. This field will show the name of computer on which server is
running.

2- Port field. Add the port number on which server will listen all the requests.
3-Start Listening button. By clicking this button server will open its port for
listening requests.

4- Workers list. This list will show the workers that are logged in.

5- Stop Listening button. By clicking this button server will stop listening to
requests.

6- Add User Account button. Clicking this button will open an Add a New
Account form where new users can be added.

7-View History button. Clicking this button will open a History form where
table will demonstrate the history of the users.

8-Reset Password button. Clicking this button will open a Reset Password
form where user’s password could be reset to default password 123456

without knowing the users password.

2.1 Adding User Accounts

To add a user account, click on the Add User Accounts button on the
IMIMS Server form. This will open an Add a New Account form which looks

like:

| o5 Add a new Account E]@

Enter the username:

Add To Database

Figure A-10: Adding User Account

Each of the demarcations will have a specific purpose.

1- Enter Username field. Enter the username in this field which is to be

added.

2- Add to Database button. Clicking this button will create a new account in

the database of the username entered in the previous field.

2.2 Viewing History

To view history of the users logged in, click on the View History button

on the IMIMS Server form. This will open a history table which looks like:

a5 History . =B 3R
User ID || IP Address | Date || Time: __*_

S sarsh@signals.com |EAETS AR iZ-ifﬂ?fZﬂ-Dﬂ 00:0... |ﬂ5:42:ﬂ3.?354?3?

i taha@signals.com ||[192.168.13.180 524;’1}?!21}[?5 00:0... |ﬂ5:14:5ﬂ.?954?3? [
sarah@signals.com||[192.168.13.180 EZAIE?IZD‘BBDD:D... 09:27.53.4174737
taha@signals.com |[192.168.13.124 ||24/07/2009 00:0...| [03:29.:20.6374737 |
taha@signals.com |[[192.168.13.124 }2-1:"&?:"2%5 00:0...| |109:32-:05. 8844737

_ sarah@signals.com|||152.168.13.180 iZ-i:"D?:"Zﬂ-I}‘:'I' 00:0... |D5:32:1?.4444?3?
taha@signals.com ||[192.168.13.124 24/07/2009 00:0... |ﬂ9:53:5€.5?1}4?3?
sarah@signals com||[152.168.13.180 |||24/07/2009 00:0... i{ﬂ:ﬁd:ﬂﬂ.ﬂﬁ'l-i?ﬂ?
taha@signals.com |||1592.168.13.124 Edeﬂ?fZﬂ'D‘H' 000, |1}5:55:11.4234?3?

_ sarah@signals.com||[192.168.13.180 i24fﬂ?f2ﬂ-[ll‘:'|l 00:0... |[FEI:55:12.5154?3?
taha@signals.com ||[192.168.13.124 52-1,-’1}?,-’21}[#5 00:0... |1ﬂ:ﬂ-1:35.93?4?3?
sarah@signals.com| [192.168.12.180 524,-"1]?,-’21}[!5 00:0... i1ﬂ:ﬂ4:41_.¥44?3?
sarsh@signals.com||[127.0.0.1 \|26/07/2008 00:0._||[17:23-14 0171380 -

Figure A-11: History Table

Each of the demarcations will have a specific purpose.

1- User ID column. Number of users logged in will be shown in this column.

2- IP Address column. IP addresses of the users logged in will be shown in this
column.

3-Date column. Date on which user logged in will be shown in this column.

4-Time column. Time at which user logged in will be shown in this column.

2.3 Resetting Password

To reset password of any user, click on the Reset Password button on
the IMIMS Server form. This will open a Reset Password form which looks

like:

-

o5 Reset Password E]@

Select a user and click Reset to Hezet Password

liztE ol

Reset 2

Figure A-12: Resetting Password

Each of the demarcations will have a specific purpose.

1- Registered Users list. Select a user from this list whose password needs to
reset.
2- Reset button. Clicking this button will set the selected users password to

default 123456.

APPENDIX B

Hardware and Software Requirements

Hardware and Software Requirements

Hardware Requirements:

° 1.0 GHz Processor or More
° 256 MB of RAM or More
. Microphone and speakers (Voice Chatting)

Software Requirements:

) Platform:

.Net framework 2.0 or higher

° Operating System:

Windows ® Vista/XP/98/2000/NT 4.0

) Other:

DirectX 9.0 or higher

APPENDIX C

References

References

[1] http://en.wikipedia.org/wiki/Client-server

[2] http://communication.howstuffworks.com/ip-telephony.htm

[3] http://www.lincoln.edu/math/rmyrick/ComputerNetworks/

InetReference/127.htm

[4] http://en.wikipedia.org/wiki/A-law_algorithm

[5] http://en.wikipedia.org/wiki/%CE%9C-law_algorithm

