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ABSTRACT 

3D RECONSTRUCTION FROM 2D UAV DATA 

Stereo vision refers to the ability to infer information on the 3-D structure of a 

scene from two or more images taken from different viewpoints. Depth 

information is lost in the initial phase when image is taken. Stereo pairs stand as 

an imperative source for depth extraction. Processing a pair involves certain 

steps and techniques exist for each one. But there is not a completely defined 

approach, which encompasses these steps directing to depth extraction from a 

stereo pair. This report describes a system, which automatically recovers the 

depth information from images frames. After testing a number of stereo pairs, the 

experimental results demonstrate that our proposed approach leads to a system 

encompassing the state-of-art algorithms, which extracts the relative depth 

information from a stereo pair. Our system finds a number of applications in 3D 

vision, Robots systems, photogrammetry, traffic analysis and various other 

applications.   
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Future Work and Enhancement 

The work on this project has been done up till the part of constructing a 3D model 

from 2D images. Our images are taken from a UAV. Further work can be done in 

enhancing the 3D structure by extracting exact depth of the objects. The depth 

information is lost when we take images of the 3D world. Therefore, our 3D 

model can be converted into DEMs (Digital Elevation Model) by calculating 

accurate or with minimum amount of error in the height. This procedure can be 

achieved by slight addition to the ortho-rectification. By calculating the exact 

height, we are not only able to visualize the objects in the images in 3D space 

but also look at its height which will give a better perspective of understanding 

how the objects stand with one another in the real world. Such work will have a 

great importance in the military where understanding of the topology of  earth 

surface is very important in planning tactics and strategy. 
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CHAPTER 1 

OVERVIEW 
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1.1 3D Reconstruction 

The area of Robotics has found an intensive research effort over the last 

decade. The endeavor by the researchers to make robots intelligent machines 

has started giving dividends and a need of giving vision to these machines 

stands as a prerequisite. Instead of making a robot move on a specified path and 

perform predefined actions, can there be a possibility that it detects the obstacles 

and explores its own path during maneuver. It led to the evolution of a field called 

as Computer or Machine Vision. 
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Computer Vision is not only restricted to robots and machines but finds 

immense applications in other areas as modeling scenes for virtual reality 

applications, either in the areas of business (real estate, architecture, 

information-dispensing) , education (electronic museums and multimedia books), 

or entertainment (interactive 3-D games, movies) and above all the military 

applications (not only in extracting the true information of enemy deployment but 

also useful in target recognition ,detection and tracking). The option of creating 

virtual environments by capturing real scenes through video cameras is getting 

particular attention, given the labor-intensive and thus expensive nature of 

creating models by hand using a 3-D geometric modeler. Any given view of the 

camera or a depth imaging such as a light-stripe rangefinder is insufficient for 

creating models of a large scene or an entire object; thus merging of multiple 

views taken at different locations is usually necessary. Integrating the different 

views to result in a seamless 3-D model then follows this. Depth information, 

which is extracted from stereo imagery using different techniques of Computer 

Vision, not only enables to get topographic maps of large areas but also is 

significant in getting intelligence of hostile terrain and enemy deployment. The 

process used is called as epipolar geometry alternatively known as stereovision. 

Stereovision does not remain restricted to 3D reconstruction but its roots extend 

much beyond this. Figure 1.1 shows 3D model of scene. 
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1.2 What is Machine Vision? 

The goal of a machine vision system is to create a model of the real world from images. A machine vision system 
recovers useful information about a scene from its two-dimensional projections. Since images are two-dimensional 
projections of three-dimensional world the information is not directly available and must be recovered. Recovery 
requires the inversion of a many-to-one mapping. To recover the information, knowledge about the objects in the 
scene and the projection geometry is required. 

The information recovered by a vision system is different in different cases. If diagnosis of a disease using computed 
tomography images is desired, then some techniques of machine vision can be applied. Quantitative measurements 
on regions of interest can also be made easily available. Machine vision systems help a physician to recover 
information by enhancing the images. Such systems have been used for quality control of products ranging from 
pizza to turbine blades, from submicron structures on wafers to auto-body panels, and from apples to oranges. The 
information obtained from two pairs of images known as stereo images acquired by a mobile robot or a flying 
unmanned aircraft or a satellite is combined to get a robust map of environment at a resolution which is sufficient for 
the task.  Such information is useful in autonomous navigation of automobiles airplanes, tanks, and robots. Machine 
vision systems are playing an increasingly important role in analysis and information management of the exceedingly 
large volume of data collected by satellites. 

1.2.1 Relationship to Other Fields 

1.2.1.1 Machine Vision and Image Processing. Image processing is a well- 

developed field. Image processing techniques usually transform images into 

other images; the task of information recovery is left to a human user. This field 

includes topics such as Image enhancement, image compression and correcting 

blurred and out of focus images. Machine vision algorithms take images as 

inputs but produce other types of outputs, such as representations for the object 

contours in an image. Emphasis in machine vision is on recovering information 

automatically, with minimal interaction with a human. Image processing 

algorithms are useful in early stages of a machine vision system. They are 

usually used to enhance particular information and suppress noise. 

1.2.1.2 Computer Graphics and Machine Vision. Computer graphics 

generates images from geometric primitives such as lines, circles, and free form 

surfaces. Computer graphics techniques play a significant role in visualization 

and virtual reality. Machine vision is the inverse problem: estimating the 

geometric primitives and other features from the image. Thus computer graphics 

is the synthesis of images and machine vision is the analysis of images. These 

two fields have been growing closer. Machine vision is using curve and surface 

representations and several other techniques from computer graphics and 

computer graphics is using many techniques from machine vision to enter 
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models into the computer for creating realistic images. Visualization and virtual 

reality are bringing these two fields closer. 

Vision = Geometry + Measurements + Interpretation 

1.2.1.3 Artificial Intelligence and Machine Vision. Artificial intelligence is 

concerned with designing systems that are intelligent. Artificial intelligence is 

used to analyze scenes by computing a symbolic representation of the scene 

contents after the images have been processed to obtain features. Artificial 

intelligence may be viewed as having three stages: Perception cognition and 

action. Perception translates signals from the world into symbols, cognition 

manipulates symbols and action translates symbols into signals that effect 

changes in the world. Computer vision is often considered as sub field of artificial 

intelligence. Neural networks are being increasingly applied to solve some 

machine vision problems. 

1.2.1.4 Human Vision and Machine Vision. Many techniques in machine vision 

are related to what is known about human vision Many researchers in computer 

vision are more interested in preparing computational models of human vision 

than in designing machine vision systems [1]. Unlike the cameras rigidly attached 

to a passive stereo rig, the two eyes of a person can rotate in their socket. At 

each instant, they fixate on a particular point in space. Figure 1.2 explains a 

simplified two-dimensional situation. If l and r denote the angle between the 

vertical planes of symmetry of two eyes and two rays passing through the same 

scene point, the corresponding disparity is defined as difference of r and l. It is an 

elementary exercise in trigonometry to show that  d =  D – F where D denotes  

the angle between these rays, and f is the angle between the two rays passing 

through the fixated point. Points with zero disparity lie on the Vieth- Muller circle 

that passes through the fixated point and the interior nodal points in the eye. 

Points inside the circle have positive disparity and points outside it have negative 

disparity. The three dimensional case is of course more complicated, the locus of 

zero disparity points becoming a surface , the horopter, but the general 

conclusion is same  and absolute positioning requires the vergence angles. 
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Figure 1.2 Human Vision System 

1.3 Applications 

1.3.1 Digital Elevation Models (DEMs) 

Satellite stereo pairs are processed to extract elevation information of the terrain 

whose digital representation is called as DEM. Figure 1.3 shows representation. 
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Figure 1.3 Creation of DEM from Satellite Imageries 
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1.3.2 Robot Vision  

Again the stereo pairs taken by 2 cameras focused at the same location give the 

depth information thus giving vision to the robots (Figure 1.4) .   

 

 

 

Figure 1.4 Robot vision 

1.3.3 Traffic Management 

Tasks like Traffic scene, Number of vehicles, Type of vehicles, Location of 

closest obstacle and Assessment of congestion can be performed using 

stereovision (Figure 1.5) 

 

 

 

Figure 1.5 Traffic management 

1.3.4 Pilotless Vehicles 

To give vision to the vehicles and make them drive without drivers. The same 

concept is being used in military research for Remotely Piloted Vehicles (Figure 

1.6). 
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Figure 1.6 Pilotless Vehicles. A project being undertaken in Germany 

1.3.5 Visually Guided Mobile Robots 

Though through use of laser and infrared rays, guided robots exist but the 

technique involves emission of radiation, which may lead to their detection in 

case of military applications and also does not give better results. Also such 

robots were limited to detect the obstacle in front but were not able to get the 

picture of scene in front. The modern robots equipped with stereovision 

mechanism are able to get the depiction of scene in front and are guided more 

accurately. 

1.3.6 Multi Camera Multi Person Tracking 

A stereo system can also be used for tracking and so can also extend to 

target recognition and detection (Figure 1.7). 

 

 

 

Figure 1.7 Person tracking Modules 

1.4 Stereopsis 

The image in the human retina is a projection of the three-dimensional 

world onto a two-dimensional surface, the information on the third dimension, 
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depth, is already lost at the very first stage of vision. However, fusing the images 

perceived by our two eyes and exploiting the difference between them allows us 

to obtain a sense of depth, which in the human visual system is called stereo 

vision. Stereo vision refers to the ability to infer information on the 3-D structure 

and distance of a scene from two or more images taken from different 

viewpoints.  For computers, two views of a scene are analogous to the two eyes 

in the human visual system. By having two cameras displaced from each other, 

knowing the camera focal lengths and using epipolar geometry, the depth of 

objects in an imaged scene can be estimated. 

In stereopsis, two images are taken of the same scene from slightly 

different viewpoints. Those objects in the scene that are far away from the two 

cameras will appear nearly identical in the two images, whereas those objects 

that are near the cameras will change significantly between the two images. The 

key idea underlying stereopsis (or stereo vision) is to make use of the disparity, 

or change in image location, of an object from one view to the next. The closer 

an object is to the camera, the larger the disparity will be. This allows us to 

reconstruct three-dimensional shape from disparity. Generally the depth (or 

distance) information recovered from stereo is quite noisy, and thus a surface 

interpolation process is often applied to the data. Such interpolation methods 

have broad applicability beyond computer vision.  

A classic stereo pair is a narrow baseline stereo with two cameras shortly 

displaced from each other while wide baseline stereo involves the cameras 

largely displaced and resultantly the images have a lot of occluded regions. The 

depth to a physical point can be computed by triangulation if projections of the 

point in two images are known (reconstruction problem). The idea underlying 

stereopsis is to determine a correspondence (or matching) between each 

location of one image and some location of second image. In other words, to find 

the pairs of points that results from the projection of the same point M into the 

two images. Note that a given point need not have an image in both the images   

there may be some other point in the scene that hides point from view in the first 
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or second image, causing there to be no correspondence and such points are 

said to be occluded. 

If an object is infinitely far away, then its projection into the two camera 

planes will be at the same location, and the disparity will be zero. If an object is 

close to the cameras then the disparity will be large. In other words, disparity is 

inversely proportional to the distance between an object and the camera system. 

Stereopsis is a common technique for recovering shape both in artificial vision 

systems and in the human visual system. It is not indispensable, however, as a 

significant percentage of people have little or no stereo vision. 

  Establishing the matching image coordinates is the fundamental problem 

in stereo vision. If knowledge about the camera geometry and relative viewpoints 

is available, a powerful geometric constraint, known as the epipolar constraint, 

reduces the search space for possible matches from two dimensions (the entire 

image plane) to one dimension (the epipolar curve). The basis of stereo vision is 

finding the parallax in the stereo pair. The concept of parallax can be best 

understood by the following example [2] .Hold hand in front of face and turn head 

right and left without moving hand. Then observe how the background and hand 

are shifted relative to each other (Figure 1.8). This is called parallax error 

  

Figure1.8 Head moving towards right showing the Parallax 

Observe this 
hand in next 
image 

Background 
has moved 
relative to 
hand due to 
parallax 
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Now imagine this is recorded by camera. First turn our head to the left and 

imagine a picture is taken, turn head to the right and imagine taking one more 

picture. Hand should be in the overlapping area. As anyone will see, the 

overlapping area has a different content and there is no way to stitch these 

images together. Things that are nearer have more parallax while things those 

are far have less parallax. In figure 1.5 observe that the relative movement of 

window is much more then the relative movement of background window. 

1.5 Basic Terminologies 

1.5.1 Rank of Matrix 

The rank of a matrix is the no of linearly independent rows/columns in the matrix. 

1.5.2 Linear Independence.  

Let v as vectors and c as scalars so then 

1 2
1 2 .. .... .. 0n

nc v c v c v+ + + =  

It implies that all scalars must be zero only then the above condition can be 

satisfied. 

1.5.3 Eigen Values and Eigen Vectors 

Let A=[ajk] be then given matrix. Consider the equation 

Ax=λx 

Where λ is the scalar (real or exponential). To be determined and x is the vector ( 

can be a  row or column vector and can’t be a matrix) to be determined. For 

every λ one solution is x=0.A scalar λ such that the above equation holds  for 

some vector x ~ λ  is called an eigen value of A, and this vector is called an eigen 

vector of A corresponding to this eigenvalue of λ. 
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Ax - λ x=0 

111 12

21 22 2

0
0

xa a
a a x

λ
λ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞
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Now if A is 9x9 matrix then x is a 9x1 vector so Ax is 9x1 vector. 

1.5.4 Singular Matrix 

 If A has no inverse then A is called the singular matrix. 

1.5.5 Spectrum of A 

The set of the eigen values of A is called the spectrum of A. 

1.5.6 Eigenspace or Vector Space 

The set of all eigenvectors corresponding to an eigenvalue of A together with 

zero is called the eigenspace of A.  

1.5.7 Null Space   

A homogeneous linear system 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0
0

0

n n

n n

m m mn n

a x a x a x
a x a x a x

a x a x a x

+ + + =
+ + + =

+ + + =

LL

LL

LLLLLLLLLLLL

LL

 

always has the trivial solution x1=0,……..,xn=0. Nontrivial solutions exist only if 

rank A<n. If rank A =r<n, these solutions together with x=0 form a vector space of 

dimension n-r. x solution means that a solution containing all the values of 

x1,x2,……xn. Now if there are 2 other solutions i.e x(1) and x(2) i.e 2 other sets of 

x1,x2,….xn then  

x=c1x(1)+c2x(2) 
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where c1 and c2 are scalars. 

It is mentioned that vector space of all solutions of above equations is called the 

Null Space of the coefficient matrix A, 

A=
11 1

1

n

m mn

a a

a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

 

Because if any x in this null space of A is multiplied result is 0 as the solutions 

that are satisfying the above equations are part of the vector space and these all 

solutions are based on the answer to be zero. 

1.5.8 Symetric and Skew Symmetric Matrix    

If A=AT then the matrix is symmetric. A matrix is skew symmetric when AT= -A 

A matrix is orthogonal if AT=A-1. 

1.5.9 Length or Norm of A Vector  

2 2
1. | | | |na a a a a= = +� � L  

1.5.10 Computational Stereo 

It refers to the problem of determining 3-dimensional structure of a scene from 

two or more images taken from distinct viewpoints. The fundamental basis for 

stereo is the fact that a single three-dimensional physical location projects to a 

unique pair of image locations in two observing cameras  

 

 

1.5.11 Calibration 
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It is the process of determining camera system external geometry (the relative 

positions and orientations of each camera) and internal geometry (focal lengths, 

optical centers and lens distortions). Accurate estimates of this geometry are 

necessary in order to relate image information (expressed in pixels) to an 

external world coordinate system. 

1.5.12 Occlusion 

Disparities can only be computed for features visible in both images; features 

visible in one image but not the other are said to be occluded 

1.5.13 Correspondence problem  

The correspondence problem consists of determining the locations in each 

camera image that are the projection of the same physical point in space. 

1.5.14 Reconstruction problem 

The reconstruction problem consists of determining 3-dimensional structure from 

a disparity map, based on known camera geometry. 

 

 

 

 

 

 

Figure 1.9 Epipolar Geometry 

1.5.15 Epipolar Geometry 
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The epipolar geometry is the intrinsic projective geometry between two views. It 

is independent of scene structure, and only depends on the cameras' internal 

parameters and relative pose. The epipolar geometry between two views is 

essentially the geometry of the intersection of the image planes with the pencil of 

planes having the baseline as axis (the baseline is the line joining  the camera 

centers, Figure 1.9 ). This geometry is usually motivated by considering the 

search for corresponding points in stereo matching [1].  

1.6 Techniques Available 

One of the goals of visual processing is to extract three-dimensional geometric 

information from one or more images. Extracting three-dimensional geometry 

from images is often referred to as shape-from-x, because there are a number of 

different sources of information that can be used to recover the three-

dimensional structure of a scene (or shape) from two-dimensional images. For 

instance, shading in an image reveals information about three-dimensional 

shapes (e.g., much of the way that the shape of a sphere in a photograph is 

perceived as being a solid rather than a disk is due to the   uniform change in 

brightness away from the light source). Shape-from-shading is also an active 

area of research. Some of the techniques available are Relief Displacement, 

Parallax Theorem, Stereo Imaging, Structure From Motion and X Techniques 

that includes Photometric stereo, Shape and Shading, Shape from Texture, 

Shape from Focus and Range Imaging. 

1.6.1 Relief Displacement 

In this technique the depth information is extracted from one photograph. The 

basis is the leaning of the elevated objects in the photograph. 

 

1.6.2 Parallax Theorem 
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It is based on a very common observation that while traveling in the train and 

looking out of the window, the trees and other objects in the near vicinity pass 

quickly while mountains at the back pass very slowly. So in a sequence of image 

especially in a video mosaic this technique can be effectively used. In 

subsequent frames the objects that are displaced more are nearer to the camera 

position while the objects that are displaced less are comparatively away from 

the camera. Basing on this fact and the knowledge of camera’s intrinsic and 

extrinsic parameters the elevation or depth information is extracted from the 

frames. 

1.6.3 Shapes from X 

Method described above and numerous other methods known as shape from X 

techniques have been developed for extracting shape information from intensity 

image. 

Image of the same scene are obtained using light sources from three different 

directions 

1.6.3.1 Shape from Shading 

Shapes from shading methods exploit the changes in the image intensity 

(shadowing) to recover surface shape information. This is done by calculating the 

orientation of the scene surface corresponding to each point in the image. 

1.6.3.2 Shape from Texture 

Texture properties such as density, size and orientation are the cues exploited by 

shape from texture algorithms.  

 

1.6.3.3 Shape from Focus 
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Due to finite depth of the field of optical systems only objects which are at a 

proper distance appear focused in the image whereas those at other depths are 

blurred in proportion to their distances. 

1.6.3.4 Shape from Motion 

When image of a stationary scene are acquired using a moving camera, the 

displacement of the image plane coordinate of a scene point from one frame to 

another depends on the distance of the scene point from the camera. 

1.6.4 Stereo Imaging and Human Vision  

The image in the human retina is a projection of the three-dimensional world onto 

a two-dimensional surface, the information on the third dimension, depth, is 

already lost at the very first stage of vision. However, fusing the images 

perceived by our two eyes and exploiting the difference between them allows us 

to obtain a sense of depth, which in the human visual system is called stereo 

vision. For computers, two views of a scene are analogous to the two eyes in the 

human visual system. Having two cameras 

 

 

Figure1.10 SPOT Satellite taking Stereo Pairs 

displaced from each other, knowing the camera focal lengths and using epipolar 

geometry can estimate the depth of objects in an imaged scene. The real trick to 
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autonomously estimate the depth information in a scene is to determine the 

correspondence between the two images and to then estimate the epipolar 

geometry, which is described by so-called fundamental matrix. Once epipolar 

geometry is determined, the 3D structure recovery problem is essentially solved. 

In figure 1.10 the desired place is photographed from two different location with 

the camera positions known and then by epipolar geometry and conjugate pair of 

images, the depth information is extracted. 

1.6.4.1 Stereoscopic Vision Using Spot satellites 

The SPOT Satellite Earth Observation System was designed by the CNES 

(Centre National d’Etudes Spatiales), in France, and developed with the 

participation of Sweden and Belgium. The system comprises a series of 

spacecrafts plus ground facilities for satellite control and programming, image 

production and distribution. The first satellite SPOT 1 was launched on 22 

February 1986, and the latest in the series SPOT 5 was launched in May 2002. 

There are currently three operational satellites. SPOT’s unique features - high 

resolution, stereo imaging and revisit capability - enable it to acquire data from 

areas of special interest for various applications (cartography, agriculture, 

environment, land use, landcover, etc...). 

1.6.4.2 Epipolar Geometry 

The application of projective geometry techniques in computer vision is 

most notable in the Stereo Vision. The epipolar geometry between two views is 

essentially the geometry of the intersection of the image planes with the pencil of 

planes having the baseline as axis (the baseline is the line joining the camera 

centres). Considering the search for corresponding points in stereo matching 

usually motivates this geometry.  

1.6.5 Structure from motion  
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An important approach is structure from motion. Here the idea is to take a 

sequence of images, and to use the motion of an object with respect to the 

camera to reconstruct its three-dimensional shape. There are many methods for 

solving this problem, but all of them involve first tracking the object (finding 

corresponding points in successive frames), and then applying some sort of 

technique to recover the three dimensional positions of the points from their two-

dimensional motions. The tracking problem is itself quite difficult, particularly 

when it is necessary to identify corresponding points in successive frames. Many 

methods require the object to be stationary, and the camera to undergo a 

restricted type of motion. This helps with both the tracking problem, and the 

subsequent shape reconstruction. Stereo vision is however more structured of 

the other methods, because it is assumed that the cameras and the objects are 

fixed. It is also generally assumed that something about the relation between the 

two camera frames is known.  

 

CHAPTER 2 

STEREOPSIS 

2.1 Introduction  

In the basic stereovision paradigm, there are two cameras observing a 

static scene (i.e., where nothing is moving). The relative coordinate systems of 

the two cameras are known, or are constrained in some fashion. Various 

modifications include adding a third camera, and adding small motions of the 

cameras to help resolve possible ambiguities. In the basic two-camera case, the 

images are generally referred to as I and I’ (resulting from the left and right 

cameras respectively). The idea underlying stereopsis is to determine a 

correspondence (or matching) between each location m of I and some location 

m’ of I’. 
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In other words, to find the pairs of points m and m’ that result from the 

projection of the same point M into the two images. Note that a given point M 

need not have an image in both I and I’ — there may be some other point in the 

scene that hides M from view in the left or right image, causing there to be no 

correspondence. 

The disparity or difference in image location, of m and m’ then indicates 

the distance from the cameras to the point M in the world. If an object is infinitely 

far away, then its projection into the two camera planes will be at the same 

location, and the disparity will be zero. If an object is close to the cameras then 

the disparity will be large. In other words, disparity is inversely proportional to the 

distance between an object and the camera system. Stereopsis is a common 

technique for recovering shape both in artificial vision systems and in the human 

visual system. It is not indispensable, however, as a significant percentage of 

people have little or no stereovision. 

To make the discussion more precise, the geometry of the camera system is 

considered. Use a simple pinhole-camera model for this purpose(Figure 2.1), 

where optical effects due to the lens are ignored completely. A simple camera 

thus consists of a focal point (or center), o, through which all the rays of light 

pass, and an image plane I onto which these rays are projected. 

  

Figure 2.1: A pinhole camera model 
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The optical axis of the camera is the line perpendicular to the image plane, 

I, and through the focal point, o. o’ is the intersection of the optical axis with the 

image plane. The distance from o to o’ is called the focal length, f, of the camera. 

The situation is explained in figure 2.1. Place the origin of the world coordinate 

system at o, and the origin of the image plane at o’, and assume that the optical 

axis points in the ˆz direction, then the following two equations describe the 

projection of a point at location (x, y, z) in the world into location (x’, y’) in the 

image plane 

'x x
f z

=      (2.1) 

'y y
f z

=     (2.2) 

These equations are referred to as the perspective equations. The 

projection of the world onto a plane through a central point in this manner is 

referred to as perspective projection (or central projection). In general it is  

assumed that the world origin is at o, the image origin is at o’, and the optical axis 

is in the ˆz direction, and use the above equations. 

 

Figure 2.2: A simple stereo camera geometry of the two cameras 
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2.2 Stereo Derivation 

For stereovision there are two cameras at some fixed relative position and 

orientation with respect to one another. First simple stereo camera geometry is 

considered in which the optical axes of the two cameras are parallel to one 

another, and are perpendicular to the baseline connecting the two camera 

centers (which are denoted by o and o’). 

Moreover, assume that the focal length, f of the two cameras is the same. 

This situation is illustrated in Figure 2.2, where the length of the baseline 

(distance between the camera centers) is denoted by b. Let the origin of the 

coordinate system for the left image plane, I, be the projection of its optic axis, o 

(and similarly the origin of the right image plane, I’, is at o’). Let the origin of the 

world coordinate frame be along the baseline, at the point equidistant between 

the two camera centers (at distance b/2 from each o and o’). Note that this 

camera geometry makes I and I’ the same plane, and with the same coordinate 

frames except for a translation of the origin in the x-direction. 

Consider a point M = (X,Y,Z)T in the world which is imaged into I at 

location m= (x,y) and into R at location m’ = (x’, y’ ). By the perspective equations 

and the geometry 

2
bXx

f Z

+
=      (2.3) 

' 2
bXx

f Z

−
=  

'y y Y
f f Z

= =      (2.4) 

Where b is the baseline width and f is the focal length of both cameras. Thus in 

this simple camera geometry, only the x location of a projected point differs 
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between the left and right images. The y location of a given point in space is the 

same for both images. Recall that the disparity is defined as the distance 

between (x, y) and (x’, y’), which in this case is just the magnitude of the 

difference between the x coordinates, x − x’..  

From the above equations, it is observed that 

     (2.5) 

Thus if b and f are known then the depth Z of the point M can be 

computed from the disparity. Note that as Z gets infinitely large the disparity goes 

to zero (things that are very far away have no disparity). If b and f are unknown 

then relative depths of points cab be computed, but not their absolute distance 

from the camera (because b and f although unknown are fixed, and thus there is 

simply a constant factor difference). In other words, for an uncalibrated camera 

system (unknown f and b) it is concluded is disparity is inversely proportional to 

depth. 

The disparity is directly proportional to the focal length, f. Thus a larger 

focal length camera system will produce bigger disparities for the same distance, 

z. Disparity is also directly proportional to the baseline width, b. Note that if there 

is some fixed error in determining disparity, then increasing b and f will reduce 

the error in the depth computation (because increasing these quantities 

increases the amount of disparity for a fixed depth difference). The focal length, f 

is effectively limited for most cameras. The baseline is quite easy to increase, 

however this results in other problems. As b is increased, the two images 

become less and less similar to one another (in the worst case two finite size 

images contain nothing in common). Even when the images contain common 

subparts, the large disparities make it quite difficult to identify corresponding 

points m and m’ in the two images that both result from the same point M in the 

world (because the points may be very far apart). This is a fundamental tradeoff 

in stereo imaging systems: a wider baseline provides more accurate depth 
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estimates for fixed errors in disparity; however it also makes the problem of 

determining a correspondence much more difficult. 

A point M = (X, Y, Z) in the world and the two camera centers define a 

plane called the epipolar plane (alternatively this plane is defined by M and its 

two images m = (x, y) and m’ = (x, y). In other words, for each point in space 

there is a corresponding epipolar plane defined by that point and the two camera 

centers (or the two images in the stereo camera system). A given epipolar plane 

intersects with the left camera plane, I, defining an epipolar line. Analogously the 

intersection with I’ defines an epipolar line. These two lines, one in each image, 

are referred to as a corresponding pair of epipolar lines. Note that in the simple 

camera model illustrated in Figure-2.2, the epipolar lines are both parallel to x-

axis, and have the same y-coordinate. 

The epipolar lines are important in stereo vision because if the 

corresponding pairs of epipolar lines in I and I’ are known, then this constrains 

the possible locations of corresponding pairs of points in the left and right 

images. If a point m lies on a given epipolar line, then the corresponding point m’ 

must lie on the corresponding line in the right image (if it occurs at all in the 

bounded image region of the plane I’). For example, in the simple camera 

geometry y = y’, and thus the corresponding epipolar lines of the left and right 

image are those lines with the same y coordinates. The central computational 

problem in stereo vision is to determine for each point m  in the left image, what 

matching point m’ in the right image corresponds to m (that is what pairs of points 

m and m’ are projections of the same point M). Thus knowing the corresponding 

pairs of epipolar lines in the two images constrains the search for corresponding 

pairs of points to just a line, rather than the entire image plane. In the case of the 

simple camera geometry a given point in the left image m = (x, y) must have a 

match on the line m’ = (x’, y’) (if there is any matching point at all in the right 

image). 

In case of general camera geometry, the corresponding epipolar lines in I’ 

and I form pencils of lines through the images of the other camera centers (a 
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pencil of lines in the plane is the set of all lines through some given point). That 

is, all the epipolar lines in I go through projection of right camera center into that 

image (the image of o’ in I’), and analogously all the epipolar lines in I’ go through 

the projection of the right camera center into that image. In the case of the simple 

camera geometry, the right camera center o’ projects to infinity rather than into I 

(and analogously for o and I’). Thus the point that all the epipolar lines go through 

is at infinity — in other words the epipolar lines are parallel. (Note that the image 

of the left (right) camera center need not actually be visible in the right (left) 

image, because the image is just a finite portion of I’ (I).) 

The correspondence of epipolar lines in the left and right images must be 

discovered through some sort of calibration process that relates the coordinate 

systems of I and I’. Accurate calibration is a difficult and tedious process.  

 

Figure 2.3 Epipolar Geometry 

Generally cameras are used that are setup in (approximately) the simple 

geometry, where corresponding epipolar lines are lines parallel to the x-axis with 

the same y coordinate. 

2.3 Epipolar Geometry 

The only geometrical constraint that exists in a stereo pairs is called 

epipolar geometry (Figure 2.3).  A stereo system can compute a great deal of 3-

D information without any prior knowledge of the stereo parameters 

(uncaliberated stereo). In order to deal properly with reconstruction, it is needed 
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to deal with the geometry of stereo which is epipolar geometry as shown in 

following figure. The epipolar geometry is the intrinsic projective geometry 

between two views. It is independent of scene structure, and only depends on 

the cameras' internal parameters and relative pose. So two images of a single 

scene/object are  related by the epipolar geometry, which can be described by a 

3x3 singular matrix called the essential matrix if image’s internal parameters are 

known, or the fundamental matrix otherwise. It captures all geometric information 

contained in two images, and its determination is very important in many 

applications of computer vision.  

The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 x 3 

matrix of rank 2. Note that in stereovision, projective geometry techniques are 

notably applied. 

Let o and o’ be a pair of pinhole cameras in 3D space. Let m and m’ be 

the projections through o and o’ of a 3D point M in images I and I’ respectively. 

The geometry of these definitions is shown in above figure.  

The basic line equation states 

, ' 0Tm l =      (2.6) 

The fundamental matrix maps points in I to lines in I’, and points in I’ to lines in I. 

This is called epipolar constraint i.e. 

'Fm l=      (2.7)  

Equations 2.6 and 2.7 lead to 

, 0Tm Fm=          (2.8)      

where F is called fundamental matrix and this equation defines the epipolar 

constraint for all pairs of images correspondences m and m’. The fundamental 
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matrix F is a 3×3 rank-2 matrix that maps points in I to lines in I’, and points in I’ 

to lines in I. For a fundamental matrix F there exists a pair of unique points  

' 0TFe F e= =        (2.9)                         

Where 0 = [0, 0, 0]T is the zero vector. The points e and e’ are known as the 

epipoles of image I and image I’ respectively. The epipoles have the property that 

all epipolar lines in I pass through e, similarly all epipolar lines in I’ pass through 

e’. In 3D space, e and e’ are the intersections of the baseline oo’ with the planes 

containing image I and I’. The set of planes containing the line oo’ are called 

epipolar planes. Any 3D point M not on line oo’ will define an epipolar plane, the 

intersection of this epipolar plane with the plane containing I or I’ will result in an 

epipolar line.  The objective of determining epipolar geometry is to reduce the 

search space for finding the correspondences between the 2 images. Our vivid  

 

 

 

 

 

 

 

 

Figure 2.4 Epipolar Planes 

3-D perception of the world is due to the interpretation that the brain gives of the 

computed difference in the retinal position, named disparity between 
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disparity map. If the geometry of the viewed scene is known, the disparity map 

can be converted to a 3-D map of the viewed scene called as the 3-D 

reconstruction. 

The fundamental matrix is the algebraic representation of epipolar 

geometry. The essential property of the fundamental matrix is that it conveniently 

encapsulates the epipolar geometry of the uncalibrated imaging configuration. It 

can be used to reconstruct the scene structure from two uncalibrated views, 

image rectification, and computation of projective invariants and so on. 

A match ,m m↔ provides a linear constraint on the coefficients of F. 

, 0Tm Fm =      (2.10) 

The fundamental matrix is given as 

11 12 13

21 22 23

31 32 1

f f f
F f f f

f f

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
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With the 2 corresponding points ( , ,1)Tx y  and , ,( , ,1)Tx y  , the equation , 0Tm Fm =  

becomes 

( )
11 12 13

21 22 23

31 32

' ' 1 0
1 1

f f f x
x y f f f y

f f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Solving this results into  

' ' ' ' ' '
11 12 13 21 22 23 31 32 1 0xx f x yf x f xy f yy f y f xf yf+ + + + + + + + =   (2.11) 

which in the matrix from can be written as 
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and for 8 corresponding points 

, ' , , , ,
111 1 1 1 1 1 1 1 1 1
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, ' ' ' , ,

8 8 8 8 8 8 8 8 8 8 8 8 32
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. . . . . . . . 1
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0
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. . . . . . . . 1
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1

fx x x y x x y y y y x y
f
f
f
f
f
f

x x x y x x y y y y x y f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
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⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  

0A f =   

It was observed that each matching pair of points between the two images 

provides a single linear constraint on F. This allows F to be estimated linearly (up 

to the usual arbitrary scale factor) from 8 independent correspondences.   

2.4 Geometric Derivation 

The mapping from a point in one image to a corresponding epipolar line in 

the other image may be decomposed into two steps. In the first step, the point m 
is mapped to some point m’ in the other image lying on the epipolar line l’. This 

point m’ is a potential match for the point m. In the second step, the epipolar line 

l’ is obtained as the line joining m’ to the epipole e’. 
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2.4.1 Step 1: Point Transfer Via A Plane 

Refer to following figure (Figure 2.5). Consider a plane in space not 

passing through either of the two camera centers. The ray through the first 

camera center corresponding to the point m meets the plane π in a point M. This 

point M is then projected to a point m’ in the second image. This procedure is 

known as transfer via the plane π. Since M lies on the ray corresponding to m, 

the projected point m’ must lie on the epipolar line l’ corresponding to the image 

of this ray, as illustrated in figure 1b. The points m and m’ are both images of the 

3D point M lying on a plane. 

 

Figure 2.5 Fundamental matrix 

The set of all such points mi in the first image and the corresponding points m’i in 

the second image are projectively equivalent, since they are each projectively 

equivalent to the planar point set Mi. Thus there is a 2D homography H mapping 

each mi to m’i. 

2.4.2 Step 2: Constructing The Epipolar Line 

Given the point m’ the epipolar line l’ passing through m’ and the epipole 

e’ can be written as l’ = e’ x m’ = [e’]x m’ (i.e the line can be found by cross 

product of 2 points) (the notation [e’] x is used for cross product). Since m’ may 

be written as m’ = Hm, So 
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                                              l’ = [e’] x Hm = Fx     (2.12) 

Where F = [e’] x H is defined as the fundamental matrix. This show following 

results: 

2.4.3 Result 1 

The fundamental matrix F may be written as F = [e’] x H, where H is the 

transfer mapping from one image to another via any plane π . Furthermore, since 

[e’] x  has rank 2 and H  rank 3, F is a matrix of rank 2. 

Geometrically, F represents a mapping from the 2-dimensional projective 

plane of the first image to the pencil of epipolar lines through the epipole e’. 
Thus, it represents a mapping from a 2-dimensional onto a 1-dimensional 

projective space, and hence must have rank 2. 

Note, the geometric derivation above involves a scene plane π, but a plane is not 

required in order for F to exist. The plane is simply used here as a means of 

defining a point map from one image to another. The connection between the 

fundamental matrix and transfer of points from one image to another via a plane 

is important. 

2.4.4 Correspondence Condition 

Up to this point the map m        l’ defined by F is considered. Now the 

most basic properties of the fundamental matrix are considered. 

2.4.5 Result 2 

The fundamental matrix satisfies the condition that for any pair of 

corresponding points m         m’ in the two images. 

                                                             , 0Tm Fm =  
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This is true, because if points m and m’ correspond, then m’ lies on the 

epipolar line l’ = Fm corresponding to the point m. In other words 

                                                      ,0 ' 'T Tm l m Fm= =  

As the vector product of a point and a line is zero if the point lies on the 

line. Conversely, if image points satisfy the relation , 0Tm Fm = then the rays 

defined by these points are coplanar. This is a necessary condition for points to 

correspond. 

The importance of the relation of result 2 is that it gives a way of 

characterizing the fundamental matrix without reference to the camera matrices, 

i.e. only in terms of corresponding image points. This enables F to be computed 

from image correspondences alone. F may also be computed from the two 

camera matrices, P, P’ and in particular that F is determined uniquely from the 

cameras, up to an overall scaling.  

2.5  Properties of Fundamental Matrix 

2.5.1 If F is the fundamental matrix of the pair of cameras (P; P’), then FT is the 

fundamental matrix of the pair in the opposite order: (P’; P). 

2.5.2 F has seven degrees of freedom: a 3 x 3 homogeneous matrix has eight 

independent ratios (there are nine elements, and the common scaling is not 

significant); however, F also satisfies the constraint det F = 0 which removes one 

degree of freedom. 

2.5.3 F is rank 2 homogeneous matrix. 
2.5.4 Point correspondence: If m and m’ are corresponding image points, then 

     , 0Tm Fm =  

2.5.5 Epipolar lines: 

l’=Fm is the epipolar line corresponding to m 
l=FTm’ is the epioplar line corresponding to m’ 
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Figure 2.6 Corresponding Epipolar lines in a stereo pair 

2.5.6 Epipoles 

Fe=0 (e is the right null space of F) 

e’TF= 0 (e’ is the left null space of F) 

2.5.7 F is a projective map taking a point to a line. In this case a point in the first 

image m defines a line in the second l’ = Fm, which is the epipolar line of m. If l 

and l’ are corresponding epipolar lines  then any point m on l is mapped to the 

same line l’. This means there is no inverse mapping, and F is not of full rank. 

For this reason, F is not a proper correlation (which would be invertible).  

2.6 Pure Translation 

In considering pure translations of the camera, one may consider the 

equivalent situation in which the camera is stationary, and the world undergoes a 

translation In this situation points in 3-space move on straight lines parallel to t, 

and the imaged intersection of these parallel lines is the vanishing point v in the 

direction of t. This is illustrated in Figure 2.7. It is evident that e is the epipole for 

both views, and the imaged parallel lines are the epipolar lines. i.e. has the same 

coordinates in both images, and points appear to move along lines radiating from 

the epipole. The epipole in this case is termed the Focus of a point. 
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Figure 2.7 Pure Translational Motion. 

In Figure 2.7 (a) shows Fixed Point Expansion (FOE) of epipole under the motion 

(b) and (c) shows the same epipolar lines are overlaid in both cases. Note the 

motion of the posters on the wall which slide along the epipolar line. 

2.7 Geometric Representation Of The Fundamental Matrix 

The fundamental matrix can be decomposed into its symmetric and 

asymmetric parts, and each part is given a geometric representation. The 

symmetric and asymmetric parts of the fundamental matrix are 

 

       Fs = ( F + FT)/2      (2.13) 

       Fa = ( F – FT)/2     (2.14) 

So that     

       F = Fs + Fa. 

To motivate the decomposition, consider the points M in 3-space that map 

to the same point in two images. These image points are fixed under the camera 

motion so that         m =m’. Clearly such points are corresponding and thus 

satisfy mTFm = 0(though the original condition is m’TFm=0 but as the m and m’ 
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are the same points so this can be used), which is a necessary condition on 

corresponding points. Now, for any skew-symmetric matrix A the form mTAm is 

identically zero. Consequently only the symmetric part of F contributes to mTFm 

= 0, which then reduces to mTFsm= 0.  

2.8 Difference between Essential matrix and Fundamental matrix 

Two perspective images of a single rigid object/ scene are related by the 

so-called epipolar geometry, which can be described by a 3 × 3 singular matrix. If 

the internal (intrinsic) parameters of the images (e.g., the focal length, the 

coordinates of the principal point, ie where camera is placed etc) are known, it is 

possible to work with the normalized image coordinates, and the matrix is known 

as the essential matrix; otherwise, work with the pixel image coordinates, and the 

matrix is known as the fundamental matrix. It contains all geometric information 

that is necessary for establishing correspondences between two images, from 

which three-dimensional structure of the perceived scene can be inferred. In a 

stereovision system where the camera geometry is calibrated, it is possible to 

calculate such a matrix from the camera perspective projection matrices  through 

calibration. When the intrinsic parameters are known but the extrinsic ones (the 

rotation and translation between the two images) are not, the problem is known 

as motion and structure from motion, and has been extensively studied in 

Computer Vision. The study of uncalibrated images has many important 

applications. Any geometric information from a projective structure cannot be 

obtained: measurements of lengths and angles do not make sense. However, a 

projective structure still contains rich information, such as co planarity, co 

linearity, and cross ratios (ratio of ratios of distances), which is sometimes 

sufficient for artificial systems, such as robots, to perform tasks such as 

navigation and object recognition. In many applications such as the 

reconstruction of the environment from a sequence of video images where the 

parameters of the video lens are submitted to continuous modification, camera 

calibration in the classical sense is not possible. 
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Any metric information cannot be extracted but a projective structure is still 

possible if the camera can be considered as a pinhole. Furthermore, if some 

knowledge of the scene into the projective structure is introduced, a more 

specific structure of the scene is obtained. For example, by specifying a plane at 

infinity (in practice, it is needed to specify a plane sufficiently far away), affine 

structure can be computed, which preserves parallelism and ratios of distances 

i.e first reconstruct a projective structure, and then use 8 ground reference points 

to obtain the Euclidean structure and the camera parameters.). The 3D convex 

hull of an object can be computed from a pair of images whose epipolar 

geometry is known. If it is assumed that the camera parameters do not change 

between successive views, the projective invariants can even be used to 

calibrate the cameras in the classical sense without using any calibration 

apparatus (known as self-calibration). Even in the case where images are 

calibrated, more reliable results can be obtained if the constraints arising from 

uncalibrated images are used as an intermediate step.  

 

 

 

 

CHAPTER 3 

SYSTEM DESIGN 
3.1 System Modules 

Developing a system that computes relative depth requires as its basis the 

determination of epipolar geometry of the stereo pair, which subsequently needs 

8 matching points in a stereo pair. Figure 3.1 illustrates the main blocks of the 

project. Finding these points lead to the determination of the fundamental matrix 
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which then simplifies the correspondence problem. With the stereo pair as the 

input they are processed in these modules and finally the relative depth map is 

obtained. Below is the high level design of the system being developed. Different 

modules are given below for easier understanding of the system. 

 
Figure 3.1 System Modular Diagram 

3.2 Explanation: 
3.2.1 Feature Detection 

In feature detection module, basically features would be from the stereo 
images. And after working on different feature detection algorithms it will be 

examined that which one works better on our images. An algorithm would be 

better if  

1. It detects most of the features in the image. 

2. The detected features such as corners are indeed features in the images. 

3.2.2 Feature Matching 
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In this module, matching algorithms is implemented. What this component 

will do is it will take the features detected previously, as inputs, and find the 

corresponding pairs of features such as corners. It will compare the features of 

the left image with the right image and find the best matching pair. After this, 

fundamental or essential matrix will be calculated depending upon whether 

calibrated or uncalibrated camera is required. The fundamental or essential 

matrix will later be used in the epipolar geometry. 

 

3.2.3 Image Rectification 
This module move or align the images onto a common image plane using 

linear transformations. If there are any distortions, they are removed. The 

distortions can too much brightness or blurriness. The images are aligned in such 

a way that the epipolar lines become horizontal to the x-axis. The disparities can 

be found then instead of searching along the skewed scan lines, which is 

computationally intensive along the image rows.  

 

3.2.4 Disparity Calculation 
Disparity is usually computed as a shift to the left of an image feature 

when viewed in the right image. In this module, different algorithms or techniques 

will be implemented to calculate disparity such as correlation, SSD, SAD. Its 

output would be a disparity map and disparity matrix. Different techniques will 

yield different result. 

 

3.2.5 Depth Map: 
This is the last module through which the information extracted from our 

stereo images pass through. Depth is calculated using the disparity calculated in 

the previous module and displays it in the form of depth map. 

 
 

CHAPTER 4 
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FEATURE EXTRACTION 

4.1 Overview 
In pattern recognition and in image processing, Feature extraction is a 

special form of dimensionality reduction. When the input data to an algorithm is 

too large to be processed and it is suspected to be notoriously redundant (much 

data, but not much information) then the input data will be transformed into a 

reduced representation set of features (also named features vector). 

Transforming the input data into the set of features is called features extraction. If 

the features extracted are carefully chosen it is expected that the features set will 

extract the relevant information from the input data in order to perform the 

desired task using this reduced representation instead of the full size input. 

Feature extraction involves simplifying the amount of resources required 

to describe a large set of data accurately. When performing analysis of complex 

data one of the major problems stems from the number of variables involved. 

Analysis with a large number of variables generally requires a large amount of 

memory and computation power or a classification algorithm which over fits the 

training sample and generalizes poorly to new samples. Feature extraction is a 

general term for methods of constructing combinations of the variables to get 

around these problems while still describing the data with sufficient accuracy. 

The concept of feature detection refers to methods that aim at computing 

abstractions of image information and making local decisions at every image 

point whether there is an image feature of a given type at that point or not. The 

resulting features will be subsets of the image domain, often in the form of 

isolated points, continuous curves or connected regions. 

 

4.2 Feature 
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There is no universal or exact definition of what constitutes a feature, and 

the exact definition often depends on the problem or the type of application. 

Given that, a feature is defined as an "interesting" part of an image, and features 

are used as a starting point for many computer vision algorithms. Since features 

are used as the starting point and main primitives for subsequent algorithms, the 

overall algorithm will often only be as good as its feature detector. Consequently, 

the desirable property for a feature detector is repeatability: whether or not the 

same feature will be detected in two or more different images of the same scene. 

4.2.1 Low level Image processing 
Feature detection is a low-level image processing operation. That is, it is 

usually performed as the first operation on an image, and examines every pixel 

to see if there is a feature present at that pixel. If this is part of a larger algorithm, 

then the algorithm will typically only examine the image in the region of the 

features. As a built-in pre-requisite to feature detection, the input image is usually 

smoothed by a Gaussian kernel in a scale-space representation and one or 

several feature images are computed, often expressed in terms of local 

derivative operations. 
Occasionally, when feature detection is computationally expensive and 

there are time constraints, a higher level algorithm may be used to guide the 

feature detection stage, so that only certain parts of the image are searched for 

features. 

Where many computer vision algorithms use feature detection as the 

initial step, so as a result, a very large number of feature detectors have been 

developed. These vary widely in the kinds of feature detected, the computational 

complexity and the repeatability. At an overview level, these feature detectors 

can (with some overlap) be divided into the Edges, Corners, Blobs and Ridges 

groups. 

 

4.3 Feature extraction in aerial data 
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Feature detection has been key issue in all computer vision algorithms. 

Features are basically points that describe the image. And based upon that 

feature points one can correlate two or more images. All tracking and 3D 

reconstruction depends on how good the feature points are. A good set of feature 

points leads to a better result in the end and bad points could mislead the whole 

process 

A lot of work has been done in feature point detection and analysis for 

tracking purposes. Harris Corner detector proposed in 1988 is still being used for 

feature detection. But the problem is Harris detector is affected by scale changes 

in data set. SIFT is invariant to scale changes, rotation and 3D view point. So this 

can be used for reliable image matching. A good features extraction algorithm 

should possess properties like detection of all feature points, no false feature 

point is detected, feature point is well localized, robust to noise algorithm and 

efficient in terms of time and memory [1]. 

There are algorithms available after the research of Moravec. Harris 

corner detector proposed by Harris and Stephens [2] gives good corner points for 

reliable image matching. It is invariant to affine image changes like rotation and 

translation but fails when scale changes are very large. At small changes it may 

give good results. It just uses derivatives of intensities to check for corner points 

in images. 

4.3.1 Harris Corner detector  
The algorithm works by taking a local window and shifting it along the 

image. It then checks for intensity changes in image. The concept of 

autocorrelation was used in this approach. 

The hessian matrix is given by: 

                                                                              (4.1) 

The strength of the corner is determined by how much the second 

derivative is there. Based upon Eigen values of C (α, β) following inferences can 

be made: 

For a flat region: no change in all directions; small α and β 
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For an edge: no change along the edge direction; small α and large β or vice 

versa 

For corner: significant change in all directions; large α and β 

As the exact Eigen value computation is not possible so Harris and Stephen 

proposed following function: 

                                               (4.2) 

Where Det(C) =αβ and Tr(C) =α + β 

Harris corner detector is not invariant to image scaling. This shortcoming or 

defect was corrected by SIFT [3,4]. 

 
4.3.2 Scale invariant feature transform (SIFT) 

Harris corner detector is just invariant to affine image changes. But in case 

of UAV data a lot of scale and 3D viewpoint changes. SIFT provide reliable and 

scale invariant features to track through the data stream. It is not only robust to 

affine image changes but also invariant to scale and 3D orientation changes.  

The key points in the working of algorithm are stated as follows: 

Scale space construction: Construction of Gaussian and Difference of 

Gaussian (DoG) pyramids 

Key point localization: Key points are selected from the scale space based 

upon there stability measure and local extrema.  

Orientation assignment: Orientations are assigned to each key point based on 

there histograms. 

Key point descriptor: representation in 128-dimensional vector. 

This approach has been named as Scale Invariant feature transform as it 

transforms original data into scale invariant-coordinates relative to local features. 

Little explanation to above algorithm is as follows: 

 
 
4.3.2.1 Scale space construction 

Interesting image points can be found out using cascading approach that 

filters out the potential candidates for interest points that can be used for further 

research. First step is to find image locations that are invariant to scale changes. 
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This can be accomplished using scale function that searches for scale invariant 

features. The convolution kernel in this case is Gaussian. Image is convolved 

with Gaussian kernel.  

                                      (4.3) 

To detect scale invariant features, difference of Gaussian blurred images 

at scales σ and kσ is computed given by equation 4.4 and 4.5 to form a pyramid 

like structure (Fig 4.1). 

 

                                              (4.4)                        

                                                  (4.5)                      

            

 As the DoG function is closes approximation of scale normalized 

Laplacian of Gaussian. Maxima and minima of this scale normalized LoG gives 

scale invariant features as compared to others like image gradient, Harris 

operator or Hessian matrix. 

 
Figure 4.1: Figure showing Gaussian blurred images and there difference forming pyramid of 

DoG[3] 
 
4.3.2.2 Key point localization  

4.3.2.2.1 Local space detection 
 

Local maxima and minima of DoG function are considered as feature 

points or key point candidates. Further processing will be done on these to filer 

out the non-scale invariant features. Interest points (called key points in the SIFT 
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framework) are identified as local maxima or minima of the DoG images across 

scales. Each pixel in the DoG images is compared to its 8 neighbors at the same 

scale, plus the 9 corresponding neighbors at neighboring scales. If the pixel is a 

local maximum or minimum, it is selected as a candidate key point (Figure 4.2). 

 

 
Figure 4.2: Figure showing extrema extraction.  

Pixel marked with X is compared with eight neighboring and 9 pixels in adjacent 

scales of DoG (From Lowe 2004) 

 

4.3.2.2.2 Rejecting low contrast key points 
 

Once candidate feature points are found then they are scanned to get the 

feature points which are low contrast because they are more prone to noise and 

are poorly localized along an edge. 

4.3.2.2.3 Eliminating Edge responses 
 

Using low contrast filtering will not give that much good result as DoG has 

strong response at edge as well because of its sensitivity to noise. Edges can 

easily be detected by using 2 X 2 Hessian matrix. A poorly defined peak will have 

large principal curvature at edge and small in perpendicular direction. Calculating 

curvature through Hessian matrix: 

     (4.6)    

The derivatives are computed as a difference of neighboring points. Eigen 

values are proportional to principal curvature of D.    .  

Trace of H is calculated which sum of highest Eigen value α and lowest Eigen 

value β given below: 
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        (4.7) 

The determinant is given by equation 

   (4.8) 

If the determinant has different signs it means that point can be discarded. If ratio 

of Eigen values instead of their original values is taken then that would be more 

robust. 

Let α be highest Eigen value and β being lowest such that α=rβ then ratio is 

given by equation: 

    (4.9) 

Lowe suggested to take value of r =10 for edge elimination. 

 

4.3.2.3 Orientation Assignment 
To determine the key point orientation, a gradient orientation histogram is 

computed in the neighborhood of the key point (using the Gaussian image at the 

closest scale to the key point's scale). The contribution of each neighboring pixel 

is weighted by the gradient magnitude and a Gaussian window with a σ that is 

1:5 times the scale of the key point. 

For a particular Gaussian image L(x,y) the gradient magnitude and orientation is 

computed as: 

    (4.10) 

         (4.11) 

Where m is magnitude and θ is orientation and Lx and Ly are consecutive pixel 

differences. Peaks in the histogram correspond to dominant orientations. A 

separate key point is created for the direction corresponding to the histogram 

maximum and any other direction within 80% of the maximum value. So for 

multiple points of same magnitude there will be multiple key points created at 

same location with different orientations.  

 

4.3.2.4 Key point descriptor 
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Once orientations with respect to scale and location are assigned for each 

key point then a 2 dimensional coordinate system may be used to enforce the 

invariance to these features and to describe the local image region. In the next 

step a local descriptor is calculated that provides in variance to 3D pose and 

illumination changes. This descriptor is distinct for local image region.  

4.4 Comparison of Harris and SIFT for feature detection 
Harris corner detector not only detects corners but also highlights the 

points which have maximum intensity change in particular region. Experiments 

have been conducted on various frames extracted from UAV data to make 

comparisons of different techniques. It was found that Harris gives lesser points 

as compared to SIFT. SIFT features are numerous in number but they are more 

reliable and lesser false points were detected. The results can be found at the 

end.  Both of features are used in this project. Both have their own advantages 

and disadvantages in term of computational complexity. Harris gives accurate 

results in lesser time.  

4.5 Experimental Results: 
 

  
 

Figure 4.3 Original Stereo Pair 

 
 
Figure 4.4 Results of Harris Corner Detector, 37 Corners on Left Image and 38 Corners on Right 

Image 
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(a)                                                                    (b) 

Figure 4.5 SIFT feature extractor results (a) 100 keypoints (b) 92 keypoints 
 

4.6 Discussion 
It has been noticed in the above results that Harris corner detector gave 

accurate results except few. This is because of the reason that it takes into 

account extreme intensity changes and declares them as corners (though they 

are not). If window size for filter is increased then there will be lesser points for 

that particular image and if window size is decreased then more points will be 

detected as a result of local interactions. Harris corners can be used as reliable 

features. As ratio of inaccurately detected points is considerably less. 

SIFT on the other hand is computationally intensive. The arrows above 

show the orientation and magnitude of keypoint. It requires a lot of computations 

and is not recommended if image contains a lot of information. As only eight 

points are needed for fundamental matrix estimation so Harris is more desirable 

which gives speedy and reliable results. 

 

 

Chapter 5 

IMAGE CORRESPONDENCE 

5.1 Overview 
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Image matching has also been another major research area in computer 

vision algorithms. It is a key problem of computer vision and frequently used in 

3D-model reconstruction, object recognition, image alignment, camera self-

calibration and so on. Feature point matching is the most common one among all 

kinds of image matching. 

Correspondence between two frames is needed to exploit various 

differences in them for 3D reconstruction from aerial data. This also helps in 

tracking points from frame to frame.  Correspondence can be find using both 

Harris feature points and SIFT feature points. 

There are two schools of thought for solving the feature correspondence 

problem. In the first one, features are detected in one image and then 

correspondences for each of them are sought for in the second image, generally 

via multi-scale techniques. In the second approach, features are detected 

independently in both images and then matched up usually by relaxation. 

Incidentally, recent state-of-the-art work on the fundamental matrix estimation 

follows this latter avenue for achieving initial correspondences. 

Due to its inherent combinatorial complexity and illposedness, feature 

correspondence is one of the hardest low-level image analysis tasks. The 

problem can be stated as finding pairs of features in two (or more) perspective 

views of a scene such that each pair corresponds to the same scene point. Some 

of the techniques that were analyzed include illustrious works notably by Ullman 

[5] and Marr and Poggio [6]. In particular, Ullman put forward his minimal 

mapping 1 theory to implement three intuitive local criteria for establishing good 

global mapping that are: the principle of similarity, principle of proximity (other 

things being equal, choose the closest) and the principle of exclusion (only one-

to-one matching are allowed). As Marr pointed out, by simple local interactions a 

good global mapping effect can often be achieved. A vast amount of work has 

been done on this subject.  Most methods have a sometime complicate 

algorithmic formulation. 

5.2 The Scott and Longuet-Higgins Algorithm 
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In a landmark paper [8], Scott and Longuet-Higgins proposed a neat, 

direct way of associating features of two arbitrary patterns. The algorithm exploits 

some properties of the singular value decomposition (SVD) to satisfy both the 

exclusion and proximity principles set forth by Ullman. A remarkable feature of 

the algorithm is its straightforward implementation founded on a well-conditioned 

eigenvector solution, which involves no explicit iterations. 

Let I and I’ be two images, containing m features ( 1... )iI i m= and n 

features ' ( 1... )jI j n= , respectively, which are desired to be in one-to-one 

correspondence. The algorithms consist of three stages. 

Build a proximity matrix G of the two sets of features where each element 

ijG  is Gaussian-weighted distance between two features iI  and ' jI  

                                      
2

22 1... , 1...
ijr

ijG e i m j nσ
−

= = =                             (5.1) 

where 'ij i jr I I= −  is their Euclidean distance if they are regarded as lying on the 

same plane. G is positive definite and ijG  decreases monotonically from 1 to 0 

with distance. The parameter σ  controls the degree of interaction between the 

two sets of features i.e the distance between the features: a small value of σ  

enforces local interactions, while a larger value permits more global interactions. 

Perform the singular value decomposition (SVD) of ,m nG M∈ i.e a matrix of m 

rows and n columns. 

                                           TG UDV=  

where mU M∈ and nV M∈  are orthogonal matrices and the diagonal matrix 

,m nD M∈  contains the (positive) singular values along its diagonal elements ijD  
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in descending numerical order. If m < n, only the first m columns of U have any 

significance. 

Convert D to a new matrix E obtained by replacing every diagonal element 

Dii with 1 and then compute the product  

                                                         TP UEV=  

This new matrix ,m nP M∈  has the same shape as the proximity matrix G and has 

the interesting property of sort of ‘amplifying’ good pairings and ‘attenuating’ bad 

ones.    ‘’if ijP  is both the greatest element in its row and the greatest element in 

its column, then those two different features iI  and ' jI  are regarded as being in 

1:1 correspondence with one another; if this is not the case, it means that 

features iI   competes unsuccessfully with other features for partnership. 

5.3 Rogue point analysis: 

There must be some points that are visible in one image but not visible in 

second image. Such points are called rogue points. To count for such points 

normalized cross correlation is used. Saying that the Scott and Longuet-Higgins 

algorithm does not embed the feature similarity principle, so dear to most stereo 

correspondence approaches, can summarize this behavior. Obviously, this 

behavior calls for the use of some local measurements to quantify feature 

similarity, such as the normalized (cross) correlation between gray level patches 

about the features. 

If two w x w areas centered on features iI  and ' jI  are represented as two 

w x w arrays of pixel intensities A and B, respectively, the normalized correlation 

is defined as 
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( ) ( )1 1

2 ( ) ( )

W W
uv uvu v

ij

A A B B
C

W A Bσ σ
= =

− • −
=

• •
∑ ∑

   (5.2) 

 

where ( )A B   is the average and  ( )( ( ))A Bσ σ  the standard deviation of all the 

elements of A (B). ijC  varies from -1 for completely uncorrelated patches to 1 for 

identical patches. One way of including this correlation information into the 

proximity matrix is to transform the elements of G as follows: 

                                               
2 2 2 2( 1) /2 /2ij ijC

ijG e eγ γ σ− − −⎡ ⎤= •
⎣ ⎦    (5.3) 

 

 

Figure 5.1 Some more test images pairs. Disparities are overlaid onto the top 

images and matching corners onto the bottom ones. 

where term in bracket is a gaussian-weighted function of the correlation ijC  in 

which γ  determines how quickly its values decreases with a diminishing ijC  (σ  

= 0.4 (for this algorithm). 

This new correspondence strength can be seen as a correlation-weighted 

proximity. It is easy to see that the elements of G still range from 0 to 1 and, as in 
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equation (5.1), the closer and the more correlated two features iI  and ' jI  are, 

the higher ijG  is going to be. This new correspondence strength now embodies 

similarity between features and is therefore much more selective than just 

proximity as in Equation (5.1). In some ways, by applying the algorithm with the 

said correlation-weighted G, a minimum overall distance mapping is obtained still 

complying to the proximity and uniqueness principles but under the constraint of 

similarity. It can be seen in figure that a considerably higher number of 1:1 

matches has been found. Figure 5.1 shows corresponding pairs. Figure 5.2 

shows correspondence using Harris corner points and Figure 5.3 shows 

correspondence using SIFT features. 

5.4 Experimental Results: 
 
 

 
Figure 5.2 Feature correspondences in using Harris feature detector (33 

corresponding features on both images) 
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Figure 5.3 Feature correspondence using SIFT features (76 matches) 

 

5.5 Discussion 
 In figure 5.2 the Harris corner points are used and by exploiting the 

properties of singular value decomposition correspondence is found between two 

images. As Scott and Higgins algorithm makes use of Similarity principle so 

reliable results are found and the highlighted points we get are exactly in 1:1 

correspondence with each other. Not even a single noisy result was found in this 

image when Harris features were used. 

 In case of SIFT matching, again the algorithm showed more complexity in 

terms of memory and time. So to get fast reliable image matching with points in 

1:1 correspondence Harris matching feature points should be used which serve 

as basis for further operations on image. SIFT should only be used when there 

are scale and orientation changes in image pair. In that case SIFT would give 

excellent results as it is invariant to scale and orientation changes upto a certain 

level. 

 

 

Chapter 6 
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EPIPOLAR GEOMETRY and FUNDAMENTAL 
MATRIX 

6.1 Overview 

Epipolar geometry refers to the geometry of stereo vision. When two 

cameras view a 3D scene from two distinct positions, there are a number of 

geometric relations between the 3D points and their projections onto the 2D 

images that lead to constraints between the image points. Epipolar geometry 

contains all geometric information contained in the two images. A stereo system 

can compute a great deal of 3-D information without any prior knowledge of the 

stereo parameters (uncaliberated stereo). In order to deal properly with 

reconstruction, it is necessary to deal with the geometry of stereo which is 

epipolar geometry 

The epipolar geometry is the intrinsic projective geometry between two 

views. It is independent of scene structure, and only depends on the cameras' 

internal parameters and relative pose. So two images of a single scene/object 

are related by the epipolar geometry, which can be described by a 3x3 singular 

matrix called the essential matrix if image’s internal parameters are known, or the 

fundamental matrix otherwise. It captures all geometric information contained in 

two images, and its determination is very important in many applications of 

computer vision. 
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Figure 6.1 The Epipolar Constraint 

 

At first it might seem that correspondence requires a search through the whole 

image, but the epipolar constraint reduces this search to a single line. Figure 6.1 

shows the epipolar constraint between two planes 

 

6.2 Definitions 
6.2.1 Epipole 

The epipole is the point of intersection of the line joining the optical 

centres that is the baseline, with the image plane. Thus the epipole is the image, 

in one camera, of the optical centre of the other camera [9]. 

        

6.2.2 Epipolar plane 

The epipolar plane is the plane defined by a 3D point M and the optical 

centres C and C'.  

The epipolar line is the straight line of intersection of the epipolar plane 

with the image plane. It is the image in one camera of a ray through the optical 

centre and image point in the other camera. All epipolar lines intersect at the 

epipole[10]. 
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Thus, a point x in one image generates a line in the other on which its 

corresponding point x’ must lie. It can be observed that search for 

correspondences is thus reduced from a region to a line.       

   

 

 
Figure 6.2 The epipolar line along which the corresponding point for X must lie 

 

The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 x 3 matrix 

of rank 2. Note that in stereovision, projective geometry techniques are notably 

applied. Figure 6.2 shows the corresponding epipolar line on which the point 

must lie. 

 

6.3 Basic Equations 
Let o and o’ be a pair of pinhole cameras in 3D space. Let m and m’ be 

the projections through o and o’ of a 3D point M in images I and I’ respectively. 

The geometry of these definitions is shown in a figure given below.  

 

The basic line equation states 

mTI=0 

 

The fundamental matrix maps points in I to lines in I’, and points in I’ to lines in I. 

This is called epipolar constraint i.e. 

Fm=I’ 

 

Above two equations lead to 



 
 

lxviii 
 

mTFm=0 

 

where F is called fundamental matrix and this equation defines the epipolar 

constraint for all pairs of images correspondences m and m’. The fundamental 

matrix F is a 3×3 rank-2 matrix that maps points in I to lines in I’, and points in I’ 

to lines in I. For a fundamental matrix F there exists a pair of unique points  

Fe=FTe’=0 

 

where 0 = [0, 0, 0]T is the zero vector. The points e and e’ are known as the 

epipoles of image I and image I’ respectively. The epipoles have the property that 

all epipolar lines in I pass through e, similarly all epipolar lines in I’ pass through 

e’. In 3D space, e and e’ are the intersections of the baseline oo’ with the planes 

containing image I and I’. The set of planes containing the line oo’ are called 

epipolar planes. Any 3D point M not on line oo’ will define an epipolar plane, the 

intersection of this epipolar plane with the plane containing I or I’ will result in an 

epipolar line.  The objective of determining epipolar geometry is to reduce the 

search space for finding the correspondences between the 2 images. 

Our vivid 3-D perception of the world is due to the interpretation that the brain 

gives of the computed difference in the retinal position, named disparity between 

corresponding items. The disparities of all the image points form the so called 

disparity  map. If the geometry  of the viewed  scene is known, the disparity  map 

can be converted to a 3-D map of the viewed scene called as the 3-D 

reconstruction. 

 

6.4 Fundamental Matrix 
The fundamental matrix is the algebraic representation of epipolar 

geometry. It captures all geometric information contained in the two images. The 

essential property of the fundamental matrix is that it conveniently encapsulates 

the epipolar geometry of the uncalibrated imaging configuration. It can be used to 

reconstruct the scene structure from two uncalibrated views, image rectification, 

and computation of projective invariants and so on. 
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A match m m’ provides a linear constraint on the coefficients of F[11]. 

mTFm=0 

 

The fundamental matrix is given as 

11 12 13

21 22 23

31 32 1

f f f
F f f f

f f

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠  

 

With the 2 corresponding points (x,y,1)T and (x’,y’,1)T the equation mTFm=0 

becomes 

( )
11 12 13

21 22 23

31 32

' ' 1 0
1 1

f f f x
x y f f f y

f f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠  

 

Solving this results into  

xx’f11+x’yf12+x’f13+xy’f21+yy’f22+y’f23+xf31+yf32+1=0 

 

which in the matrix from can be written as 

( )

11

12

13

21
' ' ' ' '

22

23

31

32

1 0

1

f
f
f
f

xx x y x xy yy y x y f
f
f
f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

 

 

And for 8 corresponding points  
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, ' , , , ,
111 1 1 1 1 1 1 1 1 1

12

13

21

22

23

31
, ' ' ' , ,

8 8 8 8 8 8 8 8 8 8 8 8 32

1
. . . . . . . . 1
. . . . . . . . 1
. . . . . . . . 1

0
. . . . . . . . 1
. . . . . . . . 1
. . . . . . . . 1

1

fx x x y x x y y y y x y
f
f
f
f
f
f

x x x y x x y y y y x y f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  
 

A f = 0 

Each matching pair of points between the two images provides a single linear 

constraint on F. This allows F to be estimated linearly (up to the usual arbitrary 

scale factor) from 8 independent correspondences[12]. 

 

6.5 Recovering Epipolar geometry 
Process of computing fundamental matrix is known as recovering epipolar 

geometry. The essential property of the fundamental matrix is that it conveniently 

encapsulates the epipolar geometry of the uncalibrated imaging configuration. 

Hartley’s 8 point normalized algorithm requires the matching block will provide 8 

independent correspondences and these correspondences[19]. 

The eight-point algorithm for computing the essential matrix was introduced by 

Longuet-Higgins. The essential matrix is used to compute the structure of a 

scene from two views with calibrated cameras. The great advantage of the eight-

point algorithm is that it is linear, hence fast and easily implemented. If eight point 

matches are known, then the solution of a set of linear equations is involved. 

With more than eight points, a linear least squares minimization problem must be 

solved. One notices immediately that the same algorithm may be used to 

compute a matrix with this property from uncalibrated cameras. In this case of 

uncalibrated cameras it has become customary to refer to the matrix so derived 

as the fundamental matrix. Just as in the calibrated case, the fundamental matrix 

may be used to reconstruct the scene from two uncalibrated views, but in this 

case only up to a projective transformation.  
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Apart from scene reconstruction, the fundamental matrix may also be 

used for many other tasks, such as image rectification computation of projective 

invariants outlier detection and stereo matching. Unfortunately, despite its 

simplicity the eight-point algorithm has often been criticized for being excessively 

sensitive to noise in the specification of the matched points. Indeed this belief 

has become the prevailing wisdom. Consequently, because of its importance, 

many alternative algorithms have been proposed for the computation of the 

fundamental matrix. Without exception, these algorithms are considerably more 

complicated than the eight-point algorithm. The poor performance of the eight-

point algorithm can probably be traced to implementations that do not take 

sufficient account of numerical considerations, most specifically the condition of 

the set of linear equations being solved. Hartley showed that a simple 

transformation (translation and scaling) of the points in the image before 

formulating the linear equations leads to an enormous improvement in the 

condition of the problem and hence of the stability of the result. The added 

complexity of the algorithm necessary to do this transformation is insignificant. It 

is not claimed that this modified eight-point algorithm will perform quite as well as 

the best iterative algorithms. However it is shown by Hartley in thousands of 

experiments on many images that the difference is not very great between the 

modified eight-point algorithm and iterative techniques. Indeed the eight-point 

algorithm does better than some of the iterative techniques.  

 

6.6 Linear Solution for the Fundamental Matrix 
The fundamental matrix is defined by the equation    

mTFm=0 

for any pair of matching points m m’ in two images. Given sufficiently many 

point matches mi mi’ (at least eight) this equation can be used to compute the 

unknown matrix F. In particular, writing m=(x,y,1)T  and m’(x’,y’,1)T  with x 

showing the column no and y showing the row no, each point match gives rise to 

one linear equation in the unknown entries of F. The coefficients of this equation 
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are easily written in terms of the known coordinates. Specifically, the equation 

corresponding to a pair of points (x,y,1)T  and (x’,y’,1)T  will be[11] 

xx’f11+x’yf12+x’f13+xy’f21+yy’f22+y’f23+xf31+yf32+f33=0 

The row of the equation matrix may be represented as a vector 

(xx’,x’y,x,yx’,yy’,y,x’,y’,1) 

From all the point matches, a set of linear equations of the form  

Af = 0      (6.1) 

Is obtained where f is a nine-vector containing the entries of the matrix F, and A 

is the equation matrix. The fundamental matrix F, and hence the solution vector f 

is defined only up to an unknown scale. For this reason, and to avoid the trivial 

solution f, the additional constraint is made 

|f| = 1 

where |f| is the norm of  f. Under these conditions, it is possible to find a solution 

with as few as eight point matches. With more than eight point matches, there is  

an over-specified system of equations. Assuming the existence of a non-zero 

solution to this system of equations, it is deduced that the matrix A must be rank-

deficient. In other words, although A has nine columns, the rank of A must be at 

most eight. In fact, except for exceptional configurations the matrix A will have 

rank exactly eight, and there will be a unique solution for f. This previous 

discussion assumes that the data is perfect, and without noise. In fact, because 

of inaccuracies in the measurement or specification of the matched points, the 

matrix A will not be rank-deficient, it will have rank nine. In this case, it is not 

possible to find a non-zero solution to the equations Af = 0.  

Instead, a least-squares solution to this equation set is considered. In 

particular, the vector f that minimizes |Af| subject to the constraint |f| = fT f = 1 is 

found. It is well known (and easily derived using Lagrange multipliers) that the 

solution to this problem is the unit eigenvector corresponding to the smallest 

eigenvalue of ATA. Note that since  

ATA is positive semi-definite and symmetric, all its eigenvectors are real and 

positive, or zero. For convenience, (though somewhat inexactly), this  

eigenvector is called the least eigenvector of ATA. An appropriate algorithm for 

finding this eigenvector is the algorithm off the Singular Value Decomposition. 
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6.6.1 The Singularity Constraint 
An important property of the fundamental matrix is that it is singular, in fact 

of rank two. Furthermore, the left and right null-spaces of F are generated by the 

vectors representing (in homogeneous coordinates) the two epipoles in the two 

images. Most applications of the fundamental matrix rely on the fact that it has 

rank two. The matrix F found by solving the set of linear equations (6.1) will not in 

general have rank two, and steps are taken to enforce this constraint. The most 

convenient way to enforce this constraint is to correct the matrix F found by the 

solution of (6.1). Matrix F is replaced by the matrix F’  that minimizes the 

Frobenius norm |F – F’| subject to the condition  

det F’ = 0. A convenient method of doing this is to use the Singular Value 

Decomposition (SVD). In particular, let  

F = UDVT 

be the SVD of F, where D is a diagonal matrix  D=diag(r,s,t) satisfying r≥s≥t. 

Let 

F’ = Udiag(r,s,0)VT 

Minimizing the difference between F and F’ in Frobenius norm has little 

theoretical justification, and in fact there are other methods of enforcing the 

singularity constraint a posteriori which have more theoretical basis. However, 

this method gives good results. Thus, the eight-point algorithm for computation of 

the fundamental matrix may be formulated as consisting of two steps, as follows: 

 
6.6.1.1 Linear Solution 

Given point matches mi mi’, solve the equations mTFm=0 to find F. The 

solution is the least eigenvector, f of ATA, where A is the equation matrix. 

 

 

 
6.6.1.2 Constraint Enforcement 
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Replace F by F’, the closest singular matrix to F under Frobenius norm. 

This is done using the Singular Value Decomposition. The algorithm thus stated 

is extremely simple and rapid to implement, assuming the availability of a 

suitable linear algebra library. 

 

6.6.2 A Measure of Comparison or Difference between Two 
Fundamental Matrices 

In order to find the differences between two fundamental matrices, let the 

two given fundamental matrices be F1 and F2. The measure is computed as 

follows: 

 

Step 1: Choose randomly a point m in the first image. 

Step 2: Draw the epipolar line of m in the second image using F1. The line is 

shown as a dashed line, and is denoted by F1m. 

Step 3: If the epipolar line does not intersect the second image, go to Step 1 i.e 

choose another point. 

Step 4: Choose randomly a point m’ on the epipolar line. Note that m and m’ 

correspond to each other exactly with respect to F1. 

Step 5: Draw the epipolar line of m in the second image using F2, i.e., F2m, and 

compute the distance, noted by d’1 between point m’ and line F2m. 

Step 6: Draw the epipolar line of m’ in the first image using F2, i.e., FT
2m’, and 

compute the distance, noted by d1, between point m and line FT
 2m’. 

Step 7: Conduct the same procedure from Step2 through Step 6, but reversing 

the roles of F1 and F2, and compute d2 and d’2. 

Step 8: Repeat N times Step 1 through Step 7. 

Step 9: Compute the average distance of d’s, which is the measure of difference 

between the two fundamental matrices.  

 

With normalization of the coordinates in order to improve the condition of the 

problem, the eight-point algorithm performs almost as well as the best iterative 

algorithms. On the other hand, it runs about 20 times faster and is far easier to 
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code. There seems to be little advantage in choosing the non-isotropic scaling 

scheme for the normalization transform, since the simpler isotropic scaling 

performs just as well. Without normalization of the inputs, however, the eight-

point algorithm performs quite badly, often with errors as large as 10 pixels, 

which makes it virtually useless. If extra accuracy is needed and an iterative 

algorithm is used, it is best to use the normalized, rather than the unnormalized 

eight-point algorithm to provide a starting point for iteration. Difficulties with 

stopping criteria, as well as the risk of finding a local minimum mean that the 

quality of the iteratively estimated result depends on the initial estimate. The 

technique of data normalization described above is widely applicable to other 

problems. Among others it is directly applicable to the following problems: 

computing the projective transformations between point sets; estimating the 

trifocal tensor and determining the camera matrix of a projective camera using 

the DLT algorithm. 

 

6.7 Properties of Fundamental Matrix 
The essential and the fundamental matrixes have the following properties: 

6.7.1 The fundamental matrix encapsulates both the intrinsic and the extrinsic 

parameters of the camera, whilst the essential matrix encapsulates only the 

extrinsic parameters[9] 
6.7.2 If F is the fundamental matrix of the pair of cameras (P; P’), then FT is the 

fundamental matrix of the pair in the opposite order: (P’; P) [10] 
6.7.3 F has seven degrees of freedom: a 3 x 3 homogeneous matrix has eight 

independent ratios (there are nine elements, and the common scaling is 

not significant); however, F also satisfies the constraint det F = 0 which 

removes one degree of freedom.[10] 
6.7.4 F is rank 2 homogeneous matrix. 
6.7.5 Point correspondence: If m and m’ are corresponding image points, then 

, 0Tm Fm =  
6.7.6 Epipolar lines: 

l’=Fm is the epipolar line corresponding to m 
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l=FTm’ is the epioplar line corresponding to m’ 

 

 

 

 

 

 

 

 

 
Figure 6.3 Corresponding Epipolar lines in a stereo pair[10] 

 

6.7.7 Epipoles 

Fe=0 (e is the right null space of F) 

e’TF= 0 (e’ is the left null space of F) 

6.7.8 F is a projective map taking a point to a line. In this case a point in the first image 

m defines a line in the second l’ = Fm, which is the epipolar line of m. If l and l’ 

are corresponding epipolar lines  then any point m on l is mapped to the same 

line l’. This means there is no inverse mapping, and F is not of full rank. For this 

reason, F is not a proper correlation (which would be invertible).  

6.8  Experimental results 

 
Figure 6.4 Epipolar lines on left image 
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Figure 6.5 Epipolar lines on right image 

 

6.9 Discussion 
In figure 6.4 epipolar lines are shown on right image. For each and every 

highlighted point in left image there exists a line in right image on which its 

corresponding point must lie. That can be seen from above results.  

Similarly for figure 6.5 epipolar lines for left image are shown on right 

image. These lines would help reduce the search space from 2D to 1D through a 

process called image rectification. As in this process a matrix is determined 

which when multiplied with point gives a line (epipolar) on other image. The very 

same matrix (fundamental matrix will be used as input to next step which is 

image rectification). 

 

 

CHAPTER 7 

IMAGE RECTIFICATION 

7.1 Overview 

Image rectification is an important component of stereo computer vision 

algorithms. As the epipolar geometry has been determined so the corresponding 

points between the two images must satisfy the so-called epipolar constraint. For 

a given point in one image, it is required to search for its correspondence in the 
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other image along an epipolar line. In general, epipolar lines are not aligned with 

coordinate axis and are not parallel. Such searches are time consuming since it 

is needed to compare pixels on skew lines in image space. These types of 

algorithms can be simplified and made more efficient if epipolar lines are axis 

aligned and parallel. This can be realized by applying 2D projective transforms, 

or homographies, to each image. This process is known as image rectification. 

The pixels corresponding to point features from a rectified image pair will 

lie on the same horizontal scan-line and differ only in horizontal displacement. 

This horizontal displacement or disparity between rectified feature points is 

related to the depth of the feature. Seitz [12] has shown that distinct views of a 

scene can be morphed by linear interpolation along rectified scan-lines to 

produce new geometrically correct views of the scene. Zheng’s [13] approach to 

rectification involves decomposing each homography into a projective and affine 

component. Then the projective component that minimizes a well defined 

projective distortion criterion is found, the affine component of each homography 

is decomposed into a pair of simpler transforms, one designed to satisfy the 

constraints for rectification, the other is used to further reduce the distortion 

introduced by the projective component. The rectified image points are defined 

as m̂ Hm=   and  , ' ,m̂ H m=  while the fundamental matrix for the rectified pair is  

 

 

Figure 7.1 Lines on Common Epipolar plane. 
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0 0 0
ˆ 0 0 1

0 1 0
F

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

    (7.1) 

So as per epipolar constraint  

, ˆˆ ˆ 0Tm Fm =  

Replacing m̂ and ,m̂   

, ' ˆ 0T Tm H FHm =     (7.2) 

and so the F is defined as 

' ˆTF H FH=  

Note that the homographies H  and 'H  that satisfy above equation are not 

unique. The task is to find a pair of homographies H and 'H that minimize image 

distortion. Let u, v, and w be lines equated to the rows of H such that 

1

T
a b c

T
a b c

T
a b

u u u u
H v v v v

w w w

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 and 

, , , ,

' , , , ,

, , , 1

T
a b c

T
a b c

T
a b

u u u u
H v v v v

w w w

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (7.3) 

Lines v and v’, and lines w and w’ must be corresponding epipolar lines. H is 

decomposed into  

a pH H H=      (7.4) 

where pH  is the projective transform and aH  is the affine transform. pH  is 

defined as 
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1 0 0
0 1 0

1
p

a b

H
w w

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and the affine matrix as 

1

0 0 1

a c a b c b c

a p a c a b c b c

u u w u u w u
H HH v v w v v w v−

− −⎛ ⎞
⎜ ⎟= = − −⎜ ⎟
⎜ ⎟
⎝ ⎠

    (7.5) 

The affine transform aH is further decomposed into 

a s rH H H=  

where sH  is the shear transform and rH  is the similarity transform. The 

transform rH  has the form 

0

0 0 1

b c b c a a

r a c a b c b c

v v w v w v
H v v w v v w v

− −⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The shear transform sH  is defined as  

1
0 1 0 0 1 0
0 0 1 0 0 1

a b c a b

s

s s s s s
H

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (7.6) 

Note that sH  only affects the x coordinate of a point i.e. the column no so it will 

not affect the rectification. 

Now how to compute each component transforms just defined. 

7.2 Projective Transform 
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The transforms pH  and '
pH  completely characterize the projective 

components of H and H’. These transforms map the epipoles e and e’ to points at 

infinity (points with w-coordinate equal to zero ) so make the epipolar lines 

parallel. By definition, pH  and '
pH  are determined by lines w and w’ respectively. 

The lines w and w’ are not independent. Given a direction Tz = [   0 ]λ µ  in image 

I, it comes as: 

                           xw=[e] z        (7.7) 

and 

    ,w Fz=    

where x[ ] denotes the antisymmetric matrix. So [ ]xe  denotes the antisymmetric 

matrix of the epipole. 

The relationship between epipole and the fundamental matrix is  

0Fe =  

As F has the rank 2, it follows that the epipole, e, ia the null space of F 

and similarly e’ is the null space of FT. So e can be found by singular value 

decomposition of F. 

TF UDV=  

So e is the column of V corresponding to the null singular value and e’ is the 

column of U corresponding to the null singular value. 

Any such z will define a pair of corresponding epipolar lines w and w’. The 

objective is to find z that minimizes the distortion defined below.  
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Let i , ,p [ , ,1]T
i x i yp p=  be a point in the original image. This point will be 

transformed by  pH  to point ,.[ ' ,1]i y Ti x

i i

pp
w w

 with weight T
i iw w p= . If the weights 

assigned to points are identical then there is no projective distortion and the 

homography is necessarily an affine transform. In order to map the epipole e 

from the affine (image) plane to a point at infinity pH  cannot in general be affine. 

However, as the image is bounded an attempt is to make pH  as affine as 

possible. This serves as basis of distortion minimization criterion. 

7.2.1 Distortion Minimization Criteria 

Although having identical weights in general is not possible (except when 

the epipole is already at infinity), but it is tried to minimize the variation of the 

weights assigned to a collection of points over both images. All the pixels from 

both images are used as our collection, but some other subset of important 

image points can also be used if necessary. The variation is measured with 

respect to the weight associated with the image center. More formally, 

computation is:  

2

1

n
i c

i c

w w
w=

⎡ ⎤−
⎢ ⎥
⎣ ⎦

∑  

Where T
i iw w p= , T

c cw w p=  and 
1

1 n

c i
i

p p
n =

= ∑  is the average of all the points. In 

the matrix form the above equation can be rewritten as 

T T

T T
c c

w PP w
w p p w

=
[ ] [ ]

[ ] [ ]
( )

( )

T T
x x

T T
c cx x

e z PP e z
e z p p e z

=
[ ] [ ]

[ ] [ ]
( )

( )

TT T
x x
TT T

c cx x

z e PP e z

z e p p e z
  (7.8) 

where P is a 3xn matrix 
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1, , 2, , , ,

1, , 2, , , ,

0 0 0

x c x x c x n x c x

y c y y c y n y c y

p p p p p p
P p p p p p p

− − −⎛ ⎞
⎜ ⎟= − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L

 

For both the images : 

[ ] [ ]
[ ] [ ]

' '

, ,

T T T T T
x x

T T T T T
c c c cx x

z e PP e z z F P P Fz
z e p p e z z F p p Fz

+ =
'

'

T T

T T

z Az z A z
z Bz z B z

+   (7.9) 

Where ' ', , ,A B A B  are 3 x 3 matrices. z is defined as  ( )Tz λ µ ν= Since 

the v coordinate of z is equal to zero as the direction is to infinity only the upper-

left 2 x 2 blocks of the matrices ' ', , ,A B A B  are important. So A, B, A’ and B’ are 

found and upper 2 x 2 block is extract for further calculations. Denote Tz = [   ]λ µ  

and as it is defined up to a scalar factor so without loss of generality set µ=1. 

Because of scaling it is only λ  which is important to be found. So taking 

( )1 Tz λ=  and putting in above equation and then solve for λ by minimizing the 

above equation, which is a nonlinear optimization problem. Values of λ are found 

for which  

'

'

T T

T T

d z Az z A z
d z Bz z B zλ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
  

is equal to zero. Then the value of λ, which gives the minimum value for, 
'

'

T T

T T

z Az z A z
z Bz z B z

+  is the desired criteria. The matrices PPT and pcpc
T are:- 

2

2

1 0 0
0 1 0

12
0 0 0

T

w
whPP h

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

    (7.10) 

and 
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2

2

( 1) ( 1)( 1) 2( 1)
1 ( 1)( 1_ ( 1) 2( 1)
4

2( 1) 2( 1) 4

T
c c

w w h w
p p w h h h

w h

⎛ ⎞− − − −
⎜ ⎟

= − − − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

w and w’ is found as: 

xw=[e] z   and   ,w Fz=  

and the projective transformation matrices are 

1 0 0
0 1 0

1
p

a b

H
w w

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and '

, ,

1 0 0
0 1 0

1
p

a b

H
w w

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

7.3 Similarity Transform 

The transforms pH  and '
pH  were found that map the epipoles e and e’ to 

points at infinity. Let’s define a pair of similarity transforms rH and '
rH  that rotate 

these points at infinity into alignment with the direction ( )1 0 0 T  as required for 

rectification so that the epipolar lines are then horizontally aligned. Additionally, a 

translation in the y-direction on one of the images is found to exactly align the 

scan-lines in both images. As 

0

0 0 1

b c b c a a

r a c a b c b c

v v w v w v
H v v w v v w v

− −⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Let’s assume that the lines w and w’ are known. av And bv  from above equation 

can be eliminated by making use of the following: 

' ˆTF H FH=  
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, , , , , ,

, , , , , ,

, , ,

a a a a b a a b c a a

a b b a b b b b c b b

a c a b c b c c

v w v w v w v w v w v
F v w v w v w v w v w v

v v w v v w v v

⎛ ⎞− − −
⎜ ⎟

= − − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 (7.11) 

From the last row of the matrix gives 

,
31

,
32

,
33

a c a

b c b

c c

v f v w

v f v w

v f v

= +

= +

= +

 

So finally rH  and '
rH are 

 
32 33 33 31

,
31 33 32 33 33

0

0 0 1

b a

r a b c

f w f w f f
H f w f f w f f v

− −⎛ ⎞
⎜ ⎟= − − +⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 

, ,
33 23 13 33

' , , ,
33 13 33 23

0

0 0 1

b a

r a b c

w f f f w f
H w f f w f f v

⎛ ⎞− −
⎜ ⎟

= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

There is a translation term involving ,
cv which aligns the scan lines. 

7.4 Shearing Transform  
The freedom afforded by the independence of x and x’(column nos) is exploited 

to reduce the distortion introduced by the projective transforms pH  and '
pH . The  

 
effect of x as the shearing transform is modeled.  

0
0 1 0
0 0 1

s

a b
H

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Select 4 points on the image which are on the midpoints of the edges of the 

image I. i.e if w is the width and h is the height of the image then the points are 
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1,0,1
2

11, ,1
2

1, 1,1
2

10, ,1
2

T

T

T

T

wa

hb w

wc h

hd

−⎡ ⎤= ⎢ ⎥⎣ ⎦

−⎡ ⎤= −⎢ ⎥⎣ ⎦

−⎡ ⎤= −⎢ ⎥⎣ ⎦

−⎡ ⎤= ⎢ ⎥⎣ ⎦

                                     (7.12) 

Let ˆ r pa H H a=  be a point in the affine plane by dividing through so that ˆ 1za =  i.e  

ˆˆ ˆˆ , ,
ˆ ˆ ˆ

T
yx z

z z z

aa aa
a a a

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.Similarly define ˆ ˆˆ, ,b c d .  It is tried to preserve the 

perpendicularity and aspect ratio of the lines bd and ca . 

ˆ ˆˆ
ˆ ˆ ˆ
x b d
y c a

= −
= −

     i.e   
ˆ ˆ ˆ( , )
ˆ ˆ ˆ( , )

x y

x y

x x x

y y y

=

=
 

So the real solution is 

                           
2 2 2 2ˆ ˆ

ˆ ˆ ˆ ˆ( )
y y

y x x y

h x w y
a

hw x y x y
+

=
−

 and 
2 2ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( )
x y x y

y x x y

h x x w y y
b

hw x y x y
+

=
−

   (7.13) 

 

7.5 Experimental results: 

 

Figure 7.2 Projective Transformation 
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Figure 7.3 Similarity Transform 

 

Figure 7.4 Shear Transform 

7.6 Discussion 

 Above three transformations reduce 2D search to 1D as both the images 

come on same plane. This rectification process has main advantage that it 

removes projective distortions from image which are present in images when 

they are taken. Without this process 3D reconstruction is possible but it will be 

computationally intensive because of 2D search in whole image. Similarity 

Transform is as such not needed but gives more strength to results if done. 

 

 

CHAPTER 8 

DISPARITY AND DEPTH MAPS 

8.1 Overview 
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Computation of disparity or parallax between the 2 images was our main 

task of the project as it leads to the depth or elevation information. All the 

modules through which the stereo pair has passed through have been just to 

ensure accuracy of computing the disparity. As already defined that by disparity it 

is meant that if a point is in one image then how much this point has moved in 

the second image and this movement is only in terms of column coordinates as 

the horizontal shift has the disparity information.  Various techniques exist for this 

trivial task and some of them, which are the state of art today, are discussed 

below.  

8.2 Sum of Square Differences (SSD) 

A template is picked around the pixel of interest from the first image which 

may be a window of 5x5 or 7x7 or any desirable size. This template is now to be 

matched with a region in the second image so from that region template of the 

same size as the template of the first image is picked and then sum of square 

differences operation is performed. 

' '
' 2

, ,
( )x y x y
I I−∑     (8.1) 

Solving this equation leads to 

2

' ' ' '
2 ' '

, ,, ,
2x y x yx y x y

I I I I+ +∑  

2
,x yI  and 

2

' '
'

,x y
I  will be positive numbers and will just add to the sum so are not 

much significant in template matching. The last term ' '
'

, ,
2 x y x y

I I  is of more 

importance but again the multiplication factor of 2 is not contributing to the 

matching criteria. So the real part that contributes to the matching criteria is 

' '
'

, ,x y x y
I I  
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which leads to the approach of correlation.  

8.3 Fast Normalized Cross-Correlation 

Normalized cross correlation is computed in the spatial domain for finding 

the disparity maps. Unfortunately the normalized form of correlation (correlation 

coefficient) preferred in template matching does not have a correspondingly 

simple and efficient frequency domain expression. For this reason normalized 

cross-correlation has been computed in the spatial domain. Due to the 

computational cost of spatial domain convolution, several inexact but fast spatial 

domain matching methods have also been developed. 

8.3.1 Template Matching by Cross-Correlation 

The use of cross-correlation for template matching is motivated by the 

distance measure (squared Euclidean distance): 

                                     ( ) ( ) ( )2
, 1 1 1 1

,

, , ,I t
x y

d x y I x y t x x y y= − − −⎡ ⎤⎣ ⎦∑   (8.2) 

(where I is the image and the sum is over x, y under the window containing the 

feature t positioned at x1, y1). In the expansion of d2 

                     ( ) ( )2 2 2
, 1 1 1 1 1 1

,
( , ) , 2 , ( , ) ( , )I t

x y
d x y I x y f x y t x x y y t x x y y⎡ ⎤= − − − + − −⎣ ⎦∑   

the term 2
1 1( , )t x x y y− −∑  is constant. If the term ( )2 ,I x y∑ is approximately 

constant then the remaining cross-correlation term                                                     

                                            1 1 1 1
,

( , ) ( , ) ( , )
x y

c x y I x y t x x y y= − −∑      (8.3)                         

 is a measure of the similarity between the image and the feature. There are 

several disadvantages to using this for template matching:  

• If the image energy ( )2 ,I x y∑  varies with position, matching using above 

equation can fail. For example, the correlation between the feature and an 
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exactly matching region in the image may be less than the correlation 

between the feature and a bright spot.  

• The range of c(x1,y1) is dependent on the size of the feature.  

• Above equation is not invariant to changes in image amplitude such as 

those caused by changing lighting conditions across the image sequence.  

8.3.2 Normalized Cross Correlation 

The correlation coefficient overcomes these difficulties by normalizing the 

image and feature vectors to unit length, yielding a cosine-like correlation 

coefficient 

         
1 1

1 1

, 1
,

1 1 2 2
, 1

, ,

[ ( , ) ][ ( , ) ]
( , )

{ [ ( , ) ] [ ( , ) ] }

x y
x y

x y
x y x y

f x y I t x x y y t
x y

I x y I t x x y y t
γ

− − − −
=

− − − −

∑

∑ ∑
 (8.4) 

where  is the mean of the feature and 1 1,x yI  is the mean of  ,x yI   in the region 

under the feature. This equation is referred to as normalized cross-correlation. 

 

8.3.3 Disadvantages of Normalized Cross Correlation 

Because of it’s over sensitivity to the slight changes in the template, it 

gives errors in the disparity maps. So the sum of square differences is more 

advocated for template matching. 

8.4 Sum of Absolute Differences (SAD) 

The implementation is similar to the SSD approach but the function that is 

computed for both the templates is  

' '
'

, ,
( )x y x y
I I−∑  
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The accuracy of results varied as window size was changed. However 

more accurate results were achieved as window size of 5x5 or 7x7 was used. An 

increase in window size beyond this resulted into missing matches and smaller 

details while a decrease in window size resulted in more wrong matches. 

8.5 Dynamic Programming 

It is reasonable to assume that the order of matching features along a pair 

of epipolar lines is the inverse of the order of the corresponding surfaces 

attributes along the curve where the epipolar plane intersects the observed 

object’s boundary this is so called the ordering constraint. 

INTERESTINGLY ENOUGH, IT MAY NOT BE SATISFIED BY REAL 

SCENES, IN PARTICULAR WHEN SMALL SOLIDS OCCLUDE PARTS OF 

LARGER ONES OR, MORE RARELY AT LEST IN ROBOT VISION, WHEN 

TRANSPARENT OBJECTS ARE INVOLVED. 

DESPITE THESE RESERVATIONS, THE ORDERING CONSTRAINTS 

REMAIN A REASONABLE ONE, AND IT CAN BE USED TO DEVICE 

EFFICIENT ALGORITHMS RELYING ON DYNAMIC PROGRAMMING TO 

ESTABLISH STEREO CORRESPONDENCES. LET US ASSUME THAT A 

NUMBER OF FEATURE POINTS HAVE BEEN FOUND ON CORRESPONDING 

EPIPOLAR LINES. OUR OBJECTIVE HERE IS TO MATCH THE INTERVAL 

SEPARATING THOSE POINTS ALONG THE TWO INTENSITY PROFILES. 

ACCORDING TO THE ORDERING CONSTRAINT THE ORDER OF THE 

FEATURE POINTS MUST BE THE SAME ALTHOUGH THE OCCASIONAL 

INTERVAL IN EITHER IMAGERY MAY BE REDUCED TO A SINGLE POINT 
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CORRESPONDING TO MISSING CORRESPONDENCES ASSOCIATED WITH 

OCCLUSION AND/OR NOISE. 

8.6 Graph Cuts 

Reconstructing an object’s 3-dimensional shape from a set of cameras is 

a classic vision problem. In the last few years, it has attracted a great deal of 

interest, partly due to a number of new applications both in vision and in graphics 

that require good reconstructions. While the problem can be viewed as a natural 

generalization of stereo, it is considerably harder. The major reason for this is the 

difficulty of reasoning about visibility. In stereo matching, most scene elements 

are visible from both cameras, and it is possible to obtain good results without 

addressing visibility constraints. In the more general scene reconstruction 

problem, however, very few scene elements are visible from every camera, so 

the issue of visibility cannot be ignored.  

The origin of Graph Cuts in image processing was for image 

segmentation. Segmentation is a very fundamental problem in vision. Intuitively, 

segmentation is to group up similar components such as image pixels, image 

regions or even video clips. However, this problem becomes very complicated 

when it is difficult to define the similarity measurements, e.g., define similarity in 

terms of intensity, color, texture or motion , and when people are ambitious to 

expect some semantics from segmentation, e.g., Segmentation of people from 

image is required.  Image segmentation is to group up similar pixels together to 

form a set of coherent image regions, given a single image. The pixel similarity 

could be measured based on the consistency of location, intensity, color, and 

texture of different pixels. Generally, these elements can be compound together 

to represent an image pixel, or use some of them. For example, only use color 

components or use both location and intensities. 
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Figure 8.1 The Ideal Graph Cut 

Segmentation can be done by by clustering, graph cuts and by EM algorithms 

As per graph theory, each pixel in the image is connected to its neighbors. 

This results in a grid-like graph representation of the image. Each link between 

two pixels is given a weight; the weight is high if the pixels are similar and low if 

they differ. One (or several) pixels are marked as object and one (or several) 

pixels are marked as background. A cut of minimum cost surrounding the object 

pixels is found using minimum graph cut theory. The image analysis part is to 

make a good choice of weights. The cut defines the boundary of the object . 

Ramin Zabih’s approach of Graph Cuts [15] looks at the scene reconstruction 

problem from the point of view of energy minimization. Energy minimization has 

several theoretical advantages, but has generally been viewed as too slow for 

early vision to be practical. This approach is motivated by some recent work in 

early vision, where fast energy minimization algorithms have been developed 

based on graph cuts [15, 16]. The energy that is minimize has three important 

properties.It treats the input images symmetrically. Secondly it handles visibility 

properly and it imposes spatial smoothness while preserving discontinuities. 
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Figure 8.2 Image Segmentation using Graph Cuts 

The problem of reconstructing a scene from multiple cameras has received a great 
deal of attention in the last few years. One extensively explored approach to this 
problem is voxel occupancy. In voxel occupancy [17, 18] the scene is represented as a 
set of 3-dimensional voxels, and the task is to label the individual voxels as filled or 
empty. Voxel occupancy is typically solved using silhouette intersection, usually 
from multiple cameras but sometimes from a single camera with the object placed on 
a turntable. It is known that the output of silhouette intersection even without noise is 
not the actual 3-dimensional shape, but rather an approximation called the visual hull 
[19]. 

One major limitation of voxel coloring and space carving is that they lack a way of 

imposing spatial coherence. This is particularly problematic because the image data is 

almost always ambiguous. Another (related) limitation comes from the fact that these 

methods traverse the volume making “hard” decisions concerning the occupancy of 

each voxel they analyze. Because the data is ambiguous, such a decision can easily be 

incorrect, and there is no easy way to undo such a decision later on. Now energy 

function will be defined that is to be minimized. It will consist of three terms: 

( ) ( ) ( ) ( )d a ta s m o o th n e s s v i s ib i l i tyE f E f E f E f= + +  (8.5) 

The data term will impose photo-consistency(i.e the pixels corresponding to 

same 3D point have similar pixel intensity). It is 
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( , ( ) ) , ( , ( ) )

( ) ( , )d a t a
p f p q f q I

E f D p q
∈

= ∑   (8.6) 

where D(p, q) is a non-positive value depending on intensities of pixels p and q. It 

can be, for example,  

2( , ) min{0, ( ( ) ( )) }D p q Intensity p Intensity q K= − −    (8.7) 

for some constant K >0. 

Since the energy is minimized, terms D(p, q) that are summed up will be 

small. These terms are required to be non-negative. Thus, pairs of pixels p, q 

which come from the same scene point according to the configuration f will have 

similar intensities, which cause photo-consistency. The smoothness term 

involves a notion of neighborhood; Assumption is made that there is a 

neighborhood system on pixels 

                       {{ , } , }N p q p q P⊂ ∈     (8.8) 

This can be the usual 4-neighborhood system: pixels ( , )x yp p p=  and 

( , )x yq q q= are neighbors if they are in the same image and 1x x y yp q p q− + − = . 

Smoothness term is written as: 

,
{ , }

( ) ( ( ) , ( ))sm o o th n e ss p q
p q N

E f V f p f q
∈

= ∑   (8.9) 

Term V{p,q} is required to be a metric. This imposes smoothness while 

preserving discontinuities, as long as an appropriate robust metric is picked. For 

example, the robustified L1 distance 1 2 1 2( , ) min( , )V l l l l K= −  for constant K can 

be used.  
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Figure 8.3 Example of pixel interactions.  

There is a photo-consistency constraint between the red round point and the blue 

round point, both of which are at the same depth (l = 2). The red round point 

blocks camera C2’s view of the green square point at depth l = 3 

The last term will encode the visibility constraint (taking care of occlusion): it will 

be zero if this constraint is satisfied and infinity otherwise. This can be written 

using another set of interactions visI   which contains pairs of 3D-points violating 

the visibility constraint: 

( , ( ) ) , ( , ( )
( )

v i x

v i s i b i l i t y
p f p q f q I

E f
∈

= ∞∑       (8.11) 

The set visI  is required to meet following condition: 

Only 3D-points at different depths can interact, i.e. if 1 1 2 2{( , ), ( , )} visp l p l I∈ then 

1 2l l= . 

The visibility constraint says that if a 3D-point (p, l) is present in a configuration f 

(i.e. l = f(p)) then it “blocks” views from other cameras: if a ray corresponding to a 

pixel q from the other image goes through (or close to) (p, l) then its depth is at 

most l because it is the  pixel p which is occluding the pixel q. An example of our 
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problem formulation in action is shown in figure 1. There are two cameras C1 

and C2. There are 5 labels shown as black vertical lines. As in our current 

implementation, labels are distributed by increasing distance from a fixed 

camera. Two pixels, p from C1 and q from C2 are shown, along with the red 

round 3D-point (q, 2) and the blue round 3D-point (p, 2). These points share the 

same label, and interact (i.e., {(p, 2), (q, 2)} . I). So there is a photoconsistency 

term between them. The green square point (q, 3) is at a different label (greater 

depth), but is behind the red round point. The pair of 3D-points { p, 2), (q, 3)} is in 

visI . So if the ray p from camera C1 sees the red round   point (p, 2), the ray q 

from C2 cannot see the green square point (q, 3). Zabih’s approach is to 

construct an approximation algorithm based on graph cuts that finds a strong 

local minimum.  

8.6.1 Graph construction 

How to efficiently minimize E among all configurations using graph cuts i.e 

select different configurations and minimize E for each and the configuration for 

which E is minimized is selected. The output of this method will be a local 

minimum in a strong sense. In particular, consider an input configuration f and a 

disparityα . Another configuration f’ is defined to be within a singleα -expansion 

of f when for all pixels p P∈  either f’(p) = f(p) or f’(p) =α  . This notion of an 

expansion forms the basis for several very effective stereo algorithms.This 

algorithm is very straightforward; it simply selects (in a fixed order or at random) 

a disparityα  , and find the unique configuration within a single α -expansion 

move (our local improvement step). If this decreases the energy, then go there; if 

there is no α  that decreases the energy, its done. One restriction on the 

algorithm is that the initial configuration must satisfy the visibility constraint. This 

will guarantee that all subsequent configurations will satisfy this constraint as 

well, since energy is minimized, and configurations that do not satisfy the visibility 

constraint have infinite energy. The critical step in this method is to efficiently 

compute the α -expansion with the smallest energy.  
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8.6.2 Experimental Results 

.  

Figure 8.4 Absolute Disparity map 

 

Figure 8.5 Disparity map 

 

Figure 8.6 Depth map 
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8.7 Discussion 

Figure 8.4 shows the absolute disparity map of stereo pair. Figure 8.5 

shows disparity map and then finally depth is extracted in Figure 8.6. The more 

the disparity greater is the depth and vice versa. In figure 8.6 the more intense 

regions show more relative depth in reference to some plane. This particular 

result is achieved using Cross correlation technique. Hence it is seen that depth 

can be extracted from stereo pair by following some steps. If exact dimensions of 

the object are required, then camera parameters like orientation, interior and 

exterior parameters are required. Anyhow it can be seen that successful depth 

extraction system has been implemented.  

Research work includes feature extraction, image matching to find 

correspondences, epipolar geometry, image rectification and finally disparity and 

depth calculation. 
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