
Software Analysis and De-obfuscation Engine

By
NC. Faiza Khalid (Syndicate Leader)

NC. Komal Babar, NC. Nauvera Rehman, PC. Abdul Wahab
Submitted to the Faculty of Computer Science Department Military College of Signals,
National University of Sciences and Technology, Rawalpindi in partial fulfilment for the

requirements of a B.E. Degree in Computer Software Engineering
August 2009

Ii

ABSTRACT
SADE (Software Analysis and De-obfuscation Engine) is a software analysis toolkit
that generically (without finding out the specifics of the compression and encryption
scheme used) detects and unpacks a packed (encrypted and compressed) windows
executable file (PE32 file) and makes the unpacked code available for analysis.
SADE also shows additional information about the executable file (resources,
imports, sections etc). The motivation behind the project is that the problem to
generically unpack malicious executables has been solved to some extent
commercially but the competitive nature of the anti-virus software industry refrain
them from publishing a solution. There is hence a lack of publicly available generic
unpacking tools that can handle a wide range and variety of packed executable files
without knowing the exact packer used to pack it. Furthermore, the growing epidemic
of malware has strengthened the need to have more freely available tools to help in
analyzing packed executable files. The chief users of the application are security
analysts and main area of application is malware analysis. Malware authors use
packing techniques to hide their malicious code and security analysts need to
uncover the hidden executable code for creating signatures and understanding
attacks.
iii

DEDICATION
The entire effort of this project is dedicated to our parents and family who were a
constant source of inspiration and whose encouragement, understanding and
support made this study possible.
iv

ACKNOWLEDGMENT
This project owes its existence to the Computer Science Department of Military
College of Signals (MCS), National University of Sciences and Technology (NUST).
We are indebted to both our internal and external advisors, Lec. Aisha Khalid and Dr.
Fauzan Mirza, whose assistance made this project possible. They provided
invaluable guidance to us in all aspects of our work. Our special thanks to Mr. M.
Bilal Siddique (MIS Cell) for his constant support and cooperation in project
development.
We are also grateful to the faculty and administration of CS Department MCS for
their encouragement and appreciation at all stages.
v

CONTENTS
LIST OF TABLES - viii
LIST OF FIGURES - x
1. INTRODUCTION - 1
1.1. The Packing Problem - 1
1.2. Magnitude of the Problem - 2
1.3. Incentive for Project - 4
1.4. Scope - 6
1.5. Achievements - 6
2. LITERATURE STUDY - 7
2.1. Microsoft Portable Executable File Format - - - - - - - - - - - - - - 7
2.2. Obfuscation - 13
2.3. De-Obfuscation - 16

2.4. Analysis Techniques - 17
2.5. Unpacking - 21
2.6. Unpacking Techniques - 22
2.7. Identifying Packed Binaries - 25
2.8. Published Unpacking Approaches -26
3. REQUIREMENTS - 32
3.1. The Overall Description - 32
3.2. User Characteristics - 32
3.3. Constraints - 33
3.4. Apportioning of Requirements - 33
3.5. Functional Requirements - 33
3.6. External Interfaces - 35
vi
3.7. Non-functional Requirements - 35
4. SYSTEM DESIGN - 37
4.1. Introduction - 37
4.2. System Overview - 37
4.3. Design Considerations - 38
4.4. Unpacking Methodology - 41
4.5. Architectural Strategies - 41
4.6. System Architecture - 42
4.7. UML Diagrams - 43
4.8. Detailed Subsystem Designs - 52
4.9. Graphical User Interface (GUI) Design- - - - - - - - - - - - - - - - - 56
5. IMPLEMENTATION -63
5.1. Packing Detection - 63
5.2. Generic Unpacking - 67
5.3. Portable Executable File Information Retrieval- - - - - - - - - - - 73
5.4. Entropy and Statistical Information Graphs - - - - - - - - - - - - - 73
6. SOFTWARE TEST PLAN - 74
6.1. Introduction - 76
6.2. Assumptions and Constraints for Test Environment - - - - - - - 77
6.3. Test Methodology - 78
6.4. Test Levels - 86
6.5. Deliverables Matrix -87
6.6. Test Environment -88
6.7. Bug Severity and Priority Definition - - - - - - - - - - - - - - - - - - - 88
6.8. Test Personnel - 89
6.9. Test Schedule - 90
6.10. Test Cases - 91
6.11. Test Results Report - 100
vii
7. USER GUIDE -101
7.1. Starting SADE - 101
7.2. Loading the Executable - 101
7.3. Viewing PE File Information - 103
7.4. Viewing Runtime Details - 109
7.5. Viewing Entropy Distribution - 112

7.6. Other Statistics - 113
7.7. History - 114
7.8. Help - 114
8. FUTURE WORK -115
8.1. Disassembly of Code - 115
8.2. Reconstruction of Dumped Executable -115
8.3. Portability with 64-bit Windows Platform -116
ANNEX - A “Project Charter” -117
ANNEX - B “Research Paper” -123
ANNEX - C “Bibliography” -135
viii
LIST OF TABLES
2.1 - Identifier for 32-bit and 64-bit executable files - 10
3.1 - Functional Requirements - 34
3.2 - External Interfaces - 35
3.3 - Performance Requirements - 35
3.4 - Quality Requirements -36
4.1 - Use Case Description - 45
4.2 - Class Diagram Description - 47
5.1 - Debug Events - 71
6.1 - Project Release Information - 75
6.2 - Project Team Information - 75
6.3 - Packing Detection Results -81
6.4 - Generic Unpacking Results - 82
6.5 - Unknown Packed Samples’ Results - 85
6.6 - Build Test System Specification -86
6.7 - Deliverable Matrix -87
6.8 - Severity List -89
6.9 - Priority List - 89
6.10 - Test Personnel -90
6.11 - Test Schedule -90
6.12 - Module Information - 91
6.13 - Test Case: Packing Detection - 92
ix
6.14 - Test Case: Generic Unpacking - 93
6.15 - Test Case: PE File Information -94
6.16 - Test Case 1: Graphical User Interface -95
6.17 - Test Case 2: Graphical User Interface - 96
6.18 - Test Case 3: Graphical User Interface - 97
6.19 - Test Case: Packed Blocks Graph - 98
6.20 - Test Case: Graph Other Statistics - 99
6.21 - Test Results Report - 100
x
LIST OF FIGURES
1.1 - Distribution of Packed Malware in 2007 - 3
1.2 - Top Ten Packers by Websense Security Labs - 4
2.1 - PE File on Disk and Mapped in Memory - 8
2.2 - Typical Portable Executable File Layout - 8
4.1 - Architecture of SADE - 42
4.2 - Use Case Diagram of SADE - 44

4.3 - Class Diagram of SADE - 46
4.4 - Sequence Diagram for Scenario where Input File is Packed - - - - - - - - - - 48
4.5 - Communication Diagram for Scenario where Input File is Packed - - - - - - 49
4.6 - Sequence Diagram for Scenario where Input File is Not Packed - - - - - - - 49
4.7 - Communication Diagram for Scenario where Input File is Not Packed - - - 50
4.8 - Data Flow Diagram of Packing Detection and Unpacking - - - - - - - - - - - - 51
4.9 - Data Flow Diagram of PE File Information Retrieval - - - - - - - - - - - - - - - -52
4.10 - Interface Design Model of SADE - 59
4.11 - GUI of PE File Header Information - 59
4.12 - GUI of PE Sections and Details - 60
4.13 - GUI of Unpacking Details - 60
4.14 - GUI of ASCII and Hex Dump - 61
4.15 - GUI of Entropy Results - 61
4.16 - GUI of Statistical Results - 62
5.1 - Algorithm (High Level View) of SADE - 63
5.2 - Algorithm for Packing Detection - 66
xi
5.3 - Algorithm (High Level View) for Generic Unpacking - - - - - - - - - - - - - - - - 67
6.1 - Notepad.exe (Not Packed) - 82
6.2 - AsPack (Unpacked File by SADE) - 83
6.3 - BeRoExPack (Unpacked File by SADE) -83
6.4 - ExeCryptor (Unpacked File by SADE) - 83
6.5 - PE Compact (Unpacked File by SADE) - 84
6.6 - Expressor (Unpacked File by SADE) - 84
6.7 - XPack (Unpacked File by SADE) - 84
7.1 - Starting SADE - 101
7.2 - ‘Browse’ Button - 102
7.3 - Selecting Input File -102
7.4 - Packing Detected - 103
7.5 - Packing Not Detected - 103
7.6 - View COFF Header - 104
7.7 - View Optional Header - 105
7.8 - View Section Header - 106
7.9 - View Data Directories - 107
7.10 - View Import Address Table (IAT) -108
7.11 - View APIs Called - 108
7.12 - Static ASCII Dump -109
7.13 - Static Hex Dump -109
7.14 - Runtime Details - 110
7.15 - Debug Events - 110
7.16 - Modules Loaded - 111
xii
7.17 - Unpacked File Dump - 112
7.18 - Entropy Distribution - 113
7.19 - Other Statistics - 113
7.20 - History - 114
7.21 - Help Window - 114

1

CHAPTER 1
INTRODUCTION
In the past it was not uncommon to see malware that used no encryption at all to
hinder analysis. Over time malware authors have jumped on the encryption
bandwagon as a means of obscuring their activities, whether they seek to protect
communications or whether they seek to prevent disclosure of the contents of a
binary.
A runtime packer is a software “envelope” used by malware authors to hide the
functionality of an executable file. A number of packers are available publicly and are
used by legitimate software to reduce the size of their executable files and to protect
the intellectual property that is distributed with their code. Packers encode programs
to which they are applied. Upon execution, the packer will decode and decompress
the original program in memory and execute it. If a key value is modified in the
encoding routine, the binary file that is produced looks completely different,
especially to security software that relies on detection by known signature [1].
1.1. The Packing Problem
Packing is a data hiding technique that replaces a binary (code and data) sequence
with a data block containing the binary sequence in encrypted and compressed form
and a decryption routine that, at runtime, recovers the original binary sequence from
the data block. The result of packing is a program that dynamically generates code in
memory and then executes it. There are a large number of tools available for this
purpose commonly known as executable packers. Packing describes the process of
encrypting a program and adding a runtime decryption routine to it, such that the
behaviour of the original program is preserved. By randomly choosing encryption
keys, it is possible to create a multitude of instances from one original program. The
encryption completely changes the binary signature of a program, and malware
authors commonly use packing to evade string-based malware detectors. The
malicious code resides in the executable file in an encrypted form, and is not
2
exposed until the moment the executable is run. Thus, a scan string algorithm will fail
to detect the malware by reading the file, unless it is updated with a new scan string
tailored towards this specific packed instance of the malware [2].
Packing resembles encryption because it also compresses the code, greatly reducing
the file size of the executable program. This feature is important for programs that
are to be distributed over the Internet. A packed binary appears to be an
undecipherable series of symbols, and only the decryption routine (or only a part of it
in the case of polymorphic code) is visible on the disk. After the decryption routine
has been executed, the original program becomes visible in memory. Once in
memory, the program can be edited dynamically. The memory dumping process is
complicated by anti-memory dumping code, and the fact that the PE (Portable
Executable) headers and Import Address Tables need restoration to their original
state [3].
Packers were first written in order to provide a mechanism to shrink executables so
they take less space to store and less time to transfer over slow channels. Later on,
their usage started taking another scope when malware authors used them to
conceal their parasites. There are a few reasons behind this close correlation
between malware authors and packers. Packers always offered a sanctuary for
malware authors where they managed to disguise the code and data which their
malware contained. Likewise, in some cases, packers provided them with different
looking binaries each time they repacked their code (a technique commonly used

against check summing). Malware authors can unleash a new malware by simply
repacking a known virus without any significant work on its coding aside from minor
changes.
1.2. Magnitude of the Problem
Undoubtedly, the single most challenging problem Anti Virus (AV) vendors currently
face is the problem of packed malware. Traditionally, AV vendors dealt with packers
by providing their engines with un-packing routines to normalise the executables and
generate the unpacked version of the file. This was achieved through two different
ways. By either releasing updated engines, or releasing new signatures that
contained the unpacking routines which will be interpreted by the engines at the
users' end. AV vendors who have followed the former method suffered from the slow
cycles in which their engines had to go through before being fully tested and ready to
3
be released. While the latter method gave some AV vendors an edge by providing
faster updates, they still had to invest more resources into analysing the different
packers that got released restlessly. A further extension for the problem is the fact
that some software vendors, for no obvious reasons decide to publish their software
packed with rather very suspicious packers.
In 2007, Avert Labs started experiencing the birth of at least one packer or a variant
of a packer on a daily basis. Figure 1.1 shows the distribution of packed malware
experienced by Avert Labs in 2007. It shows that the rules of the game have
changed and it is no longer a few packers that dominated the scene. Instead, there
are many variants of unknown or patched packers. This relationship is projected to
worsen simply because mass producing those packers is much less costly than
coding their unpackers [4].
Figure 1.1 - Distribution of packed malware in 2007
According to the research of WSLabs (Websense Security Labs), more than 80%
malicious codes are disguised by a certain packer. Figure 1.2 shows the top ten
packers (of all times) from the tracker of WSLabs [5]. The essential problems raised
by packers are that they have made it easier to produce “new” malware. Using
packers brings more difficulties to analysts and researcher. Also, the packed files are
smaller in size and hence easier to propagate.
4
Figure 1.2 - Top ten packers by Websense Security Labs
1.3. Incentive for Project
One way that malware writers have been using to disguise their malicious software is
executable compression and encryption. They use tools that take a Windows PE-file
(or another platform executable file) and compress it in such a way that the
compressed file only decompresses itself in memory at runtime. The PE-files
compression presents two problems for antivirus engines. First, to detect a known
malware, the file has to be decompressed before the point where signature matching
can occur can be reached. Secondly, it is necessary to decompress the file so that
strong code analysis heuristics can be applied. There are some already available
methods that can be used to decompress these files to the point at which they can be
analyzed further. They have both advantages as well as disadvantages. There is
definitely scope for enhancement.
Packed malicious programs (malware) pose a striking problem in malware analysis,
detection, and forensics. Such programs consist of a decompression or decryption
routine that extracts the garbled payload from memory and then executes it. This
unpacking routine can be invoked once, in which case the whole payload is extracted
to memory in a single step, or multiple times, when parts of the payload are extracted
to memory at different times. For a security analyst, this means that the program has
to be executed in a contained yet accurate environment before an analysis of the

payload can be performed. For a malware detector, this means that the scanning for
malicious code has to be postponed until after the start of execution, i.e., when the
5
program has unpacked its payload. Malware writers have learned that binary packers
are effective at bypassing signature-based detectors and at keeping the malware
undetected for longer. The numerous packers currently available generate many
variants from the same executable. The percentage of new malware that is packed is
on the rise, from 29% in 2003 to 35% in 2005 up to 80% in 2007. This situation is
further complicated by the ease of obtaining and modifying the source code for
various packers (e.g., UPX). Alterations to the source code can introduce changes in
the compression or encryption algorithm, create multiple layers of encryption, or add
protection against reverse engineering. Currently, new packers are created from
existing ones at a rate of 10–15 per month. As a result, malware writers have a large
selection of tools to pack their malware, to the point that more than 50% of malware
samples are simply repacked versions of existing malware [6].
A preliminary requirement in the executable analysis is the capability to robustly
parse and analyze executable files. Dealing with the full spectrum of executables
found in the wild is quite demanding. While normal files are typically well structured,
malicious files can be quite difficult to analyze, often due to deliberate malformations
intended to foil static analysis. The consequence of successfully applying packing
techniques is that static analysis of the file will view the obfuscated block as noninstruction
data or omit its analysis entirely, thereby hiding the code’s true intentions.
The capacity of information security practitioners to implement models of detection
and methods of recovery against malware are often thwarted by instances of packed
malware, such as encrypted and polymorphic viruses [7].
Time must be invested to learn the mechanism by which a given instance of malware
unpacks its compile-time obfuscated code (usually the malicious component) so that
it can be extracted and studied. Some Computer Emergency Response Teams
(CERTs) report that as many as 160 new viruses arrive each day, out of many
hundreds of sample submissions. Given this volume, the process of unpacking alone
(before any analysis is performed) can be overwhelming. Further, resources can be
wasted in determining whether a new malware sample contains unpack-execute
behaviour, or when two or more new samples found turn out to be the same malware
with well-differentiated unpacking methods [8]. Generic unpacking is the solution to
the threat of diverse packing techniques. Automating the unpacking process in a
generic way so that it is not hampered by continually evolving packing schemes can
go a long way to save the time and effort of security analysts and help the overall
malware detection process.
6
1.4. Scope
Development of a toolkit for executable analysis that detects whether any packing
transformation has been applied on the input executable and then upon detecting
packing, unpacks the executable code and data and makes it available for analysis
along with retrieving useful executable file information.
The chief users of the toolkit are security analysts. Malware writers use executable
encryption and compression to hide their malicious code and security analysts need
to uncover the hidden data and code for creating signatures and understanding
attacks.
1.5. Achievements
Our Research Paper with the title “Generic Unpacking Techniques” has been
presented at and published by IEEE-International Conference on Computer, Control
& Communication (IC4), 2009. The research paper is available at IEEE digital library
on IEEE-explorer.

This Project SADE scored 3rd position in 8th All Pakistan Software Project
Exhibition and Competition COMPPEC, 2009 organized by NUST at College of
Electrical & Mechanical Engineering.
7

CHAPTER 2
LITERATURE STUDY
This chapter provides background knowledge about the project. Pre-requisite
information pertaining to the project has been covered as well as a comprehensive
study of already existing packing techniques and other related work in the field of
information security.
2.1. Microsoft Portable Executable File Format
Microsoft introduced the Portable Executable File format, more commonly known as
the PE format, as part of the original Win32 specifications. The term "Portable
Executable" was chosen because the intent was to have a common file format for all
flavours of Windows, on all supported CPUs. A very handy aspect of PE files is that
the data structures on disk are the same data structures used in memory. Loading an
executable into memory is primarily a matter of mapping certain ranges of a PE file
into the address space. The key point is that if you know how to find something in a
PE file, you can find the same information when the file is loaded in memory.
PE files are not just mapped into memory as a single memory-mapped file. Instead,
the Windows loader looks at the PE file and decides what portions of the file to map
in. This mapping is consistent in that higher offsets in the file correspond to higher
memory addresses when mapped into memory. The offset of an item in the disk file
may differ from its offset once loaded into memory. However, all the information is
present to allow anyone to make the translation from disk offset to memory offset, as
shown in figure 2.1. The central location where the PE format is described is
WINNT.H. Within this header file, nearly every structure definition, enumeration, and
#define needed to work with PE files or the equivalent structures in memory can be
found [9]. Figure 2.2 shows the detailed layout of a typical PE file. First section in
figure 2.2 is the MS-DOS 2.0 section which is placed for backward compatibility with
MS-DOS. Next there is the PE header and then the section headers. Finally, there
are the PE file directories which include the import pages containing the import
information, export information, base relocations and resource information.
8
Figure 2.1 – PE File on disk and mapped in memory
Figure 2.2 - Typical Portable Executable File Layout
9
2.1.1. PE File Sections
A PE file section represents code or data of some sort. While code is just code, there
are multiple types of data. Besides read/write program data (such as global
variables), other types of data in sections include API import and export tables,
resources, and relocations. Each section has its own set of in-memory attributes,
including whether the section contains code, whether it's read-only or read/write, and
whether the data in the section is shared between all processes using the
executable. Each section has a distinct name. This name is intended to convey the
purpose of the section. For example, a section called .rdata indicates a read-only
data section.
Sections have two alignment values, one within the disk file and the other in memory.
The PE file header specifies both of these values, which can differ. Each section
starts at an offset that's some multiple of the alignment value. For instance, in the PE
file, a typical alignment would be 0x200. Thus, every section begins at a file offset

that's a multiple of 0x200. Once mapped into memory, sections always start on at
least a page boundary. That is, when a PE section is mapped into memory, the first
byte of each section corresponds to a memory page. On x86 CPUs, pages are 4KB
aligned, while on the IA-64, they're 8KB aligned.
2.1.2. Relative Virtual Addresses (RVA)
PE files can load just about anywhere in the process address space. For this reason,
it's important to have some way of specifying addresses that are independent of
where the executable file loads. To avoid having hardcoded memory addresses in
PE files, RVAs are used. An RVA is simply an offset in memory, relative to where the
PE file was loaded. To convert an RVA to an actual address, add the RVA to the
actual load address to find the actual memory address. The actual memory address
is called a Virtual Address (VA).
2.1.3. The MS-DOS Header
Every PE file begins with a small MS-DOS executable. The need for this stub
executable arose in the early days of Windows, before a significant number of
consumers were running it. When executed on a machine without Windows, the
10
program could at least print out a message saying that Windows was required to run
the executable. The first bytes of a PE file begin with the traditional MS-DOS header,
called an IMAGE_DOS_HEADER. The only two values of any importance are
e_magic and e_lfanew. The e_lfanew field contains the file offset of the PE header.
The e_magic field needs to be set to the value 0x5A4D. There's a #define for this
value, named IMAGE_DOS_SIGNATURE. In ASCII representation, 0x5A4D is MZ,
the initials of Mark Zbikowski, one of the original architects of MS-DOS.
2.1.4. PE Signature
After the MS-DOS stub, at the file offset specified at offset 0x3c, is a 4-byte signature
that identifies the file as a PE format image file. This signature is “PE\0\0” (the letters
“P” and “E” followed by two null bytes). This can be used to validate an input
executable as a correct windows executable.
2.1.5. Common Object File Format File Header and Optional Header
At the beginning of an object file, or immediately after the signature of an image file,
is a standard Common Object File Format (COFF) file header. Every image file has
an optional header that provides information to the loader. The size of the optional
header is not fixed. The SizeOfOptionalHeader field in the COFF header must be
used to validate that a probe into the file for a particular data directory does not go
beyond SizeOfOptionalHeader. The IMAGE_NT_HEADERS structure is the primary
location where specifics of the PE file are stored. Its offset is given by the e_lfanew
field in the IMAGE_DOS_HEADER at the beginning of the file. There are actually two
versions of the IMAGE_NT_HEADER structure, one for 32-bit executables and the
other for 64-bit versions. The optional header magic number determines whether an
image is a PE32 (32 bit) or PE32+ (64 bit) executable, as shown in table 2.1.
Table 2.1 – Identifier for 32-bit and 64-bit executable files
Magic Number PE Format
0x10b PE32
0x20b PE32+
11
This information can be used to validate that the input portable executable file is 32-
bit for which the software has been tailored.
2.1.6. Optional Header Data Directories
Each data directory gives the address and size of a table or string that Windows
uses. These data directory entries are all loaded into memory so that the system can
use them at run time.
2.1.6.1. The Section Table

Each row of the section table is, in effect, a section header. This table immediately
follows the optional header. This positioning is required because the file header does
not contain a direct pointer to the section table. Instead, the location of the section
table is determined by calculating the location of the first byte after the headers. The
number of entries in the section table is given by the NumberOfSections field in the
file header. Entries in the section table are numbered starting from one. The code
and data memory section entries are in the order chosen by the linker. In an image
file, the virtual addresses for sections must be assigned by the linker so that they are
in ascending order and adjacent, and they must be a multiple of the
SectionAlignment value in the optional header.
2.1.6.2. The .debug Section and Debug Directory
The .debug section is used in object files to contain compiler-generated debug
information and in image files to contain all of the debug information that is
generated. This section describes the packaging of debug information in object and
image files. Image files contain an optional debug directory that indicates what form
of debug information is present and where it is. This directory consists of an array of
debug directory entries whose location and size are indicated in the image optional
header. The debug directory can be in a discardable .debug section or it can be
included in any other section in the image file, or not be in a section at all. The debug
directory can be used to find out the name of the environment or tool that generated
the executable and the version of the tool. It can also tell the time of creation of the
executable file.
12
2.1.6.3. The Imports Section and Import Directory Table
All image files that import symbols, including virtually all executable (EXE) files, have
an .idata section. The import information begins with the import directory table, which
describes the remainder of the import information. The import directory table contains
address information that is used to resolve fix up references to the entry points within
a DLL image. The import directory table consists of an array of import directory
entries, one entry for each DLL to which the image refers. The last directory entry is
empty (filled with null values), which indicates the end of the directory table [10].
2.1.7. Dynamically Linked Libraries (DLLs)
Dynamically linked libraries (DLLs) are a key feature in a Windows. The idea is that a
program can be broken into more than one executable file, where each executable is
responsible for one feature or area of program functionality. The benefit is that overall
program memory consumption is reduced because executables are not loaded until
the features they implement are required. Additionally, individual components can be
replaced or upgraded to modify or improve a certain aspect of the program. From the
operating system’s standpoint, DLLs can dramatically reduce overall system memory
consumption because the system can detect that a certain executable has been
loaded into more than one address space and just map it into each address space
instead of reloading it into a new memory location. DLLs are different from build-time
static libraries (.lib files) as static libraries are permanently linked into an executable.
With static libraries, the code in the .libfile is statically linked right into the executable
while it is built, just as if the code in the .libfile was part of the original program source
code. When the executable is loaded the operating system has no way of knowing
that parts of it came from a library. If another executable gets loaded that is also
statically linked to the same library, the library code will essentially be loaded into
memory twice, because the operating system will have no idea that the two
executables contain parts that are identical. Windows programs have two different
methods of loading and attaching to DLLs in runtime. Static linking refers to a
process where an executable contains a reference to another executable within its
import table. This is the typical linking method that is employed by most application

programs, because it is the most convenient to use. Static linking is implementing by
having each module list the modules it uses and the functions it calls within each
module (this is called the import table). When the loader loads such an executable, it
13
also loads all modules that are used by the current module and resolves all external
references so that the executable holds valid pointers to all external functions it plans
on calling. Runtime linking refers to a different process whereby an executable can
decide to load another executable in runtime and call a function from that executable.
The principal difference between these two methods is that with dynamic linking the
program must manually load the right module in runtime and find the right function to
call by searching through the target executable’s headers. Runtime linking is more
flexible, but is also more difficult to implement from the programmer’s perspective.
From a reversing standpoint, static linking is easier to deal with because it openly
exposes which functions are called from which modules [11].
2.2. Obfuscation
One of the most prevalent features of modern malware is obfuscation. Obfuscation is
the process of modifying something so as to hide its true function. In the case of
malware, obfuscation is used to make automated analysis of the malware nearly
impossible and to aggravate manual analysis to the maximum extent possible. The
term obfuscation refers to techniques that preserve the program’s semantics and
functionality while at the same time making it more difficult for the analyst to extract
and comprehend the program’s structures. In the context of disassembly, obfuscation
refers to transformations of the binary such that the parsing of instructions becomes
difficult. Besides obfuscation techniques to increase the difficulty of the disassembly
process, the code itself can be obfuscated to make it difficult to extract the control
flow of a program or to perform data flow analysis. The basic idea for such
obfuscation techniques is that they can be automatically applied, but not easily
undone, even if the transformation approach is known. Finally, the code that is
analyzed by a static analyzer may not necessarily be the code that is actually run. In
particular, this is true for self-modifying programs that use polymorphic and
metamorphic techniques and packed executables that unpack themselves during
run-time.
Sophisticated techniques for protecting code against reverse engineering are called
code obfuscation. An obfuscator transforms a program into an obfuscated program
that displays the same observable behaviour but is illegible. The quality of an
obfuscator is measured by its potency, resilience and cost. Potency is the amount of
subjective complexity added to a program, thus making it harder for humans to
14
comprehend the functionality. Resilience describes the robustness of the obfuscation
against automated de-obfuscation methods and cost refers to the magnitude of
additional time and space consumption caused by the transformation. Some of the
common obfuscation transformations are dead code insertion, code reordering,
instruction substitution and packing. These different methods of obfuscation are
briefly described in the subsequent sections.
2.2.1. Dead Code Insertion
Dead code insertion is the simplest of the obfuscation techniques. It means to insert
instructions or sequences of instructions without changing the machine state at
random points in the program. Examples of dead code on x86 architectures are the
NOP (No Operation or No Operation Performed) instruction or statements such as
mov eax, eax that have no effect on the code execution yet change the binary
signature of the program. Dead code insertion changes the binary footprint of a piece
of malicious software, yielding false negatives in traditional anti-virus products. NOPs
are often involved when cracking software that checks for serial numbers, specific

hardware or software requirements etc. This is accomplished by altering functions
and subroutines to by-pass security checks and simply returning the expected value
being checked for.
2.2.2. Code Reordering
A sequence of binary code can be broken into several pieces and put together in a
random order by connecting subsequent instructions in the original code through
unconditional jumps. As long as addresses used in the code are rewritten during the
process, the program semantics are not affected even though the resulting binary
executable is new.
2.2.3. Instruction Substitution
In large instruction sets such as those of the x86 processor family, various
instructions can be used to perform equivalent operations. Substituting an instruction
with its equivalent would not change the outcome of the program but could change its
signature [12].
15
2.2.4. Packing
Packing is the method that an executable uses to obfuscate an executable or to
reduce its size. Packers are typically implemented with a small decoder stub which is
used to unpack or obfuscate a binary in question. Once the decoding process is
complete, the decoder stub transfers control back to the original code of the program.
Execution then proceeds similar to that of a normal executable. Packing involves
compressing an executable file but leaving it in an executable state. An infected
executable can thereby be changed by the packing process such that its signature
becomes completely different while remaining executable.
2.2.4.1. Packer Tools
Tools used to obfuscate compiled binary programs are generically referred to as
packers. This term stems from the fact that one technique for obfuscating i.e.
disguising a binary program is simply to compress the program, as compressed data
tends to look far more haphazard, and certainly does not resemble machine
language. For the program to stay executable on the target computer, it must remain
a valid executable for the target platform. The standard approach taken by most
packers is to embed an unpacking stub in to the packed program and to modify the
program entry point to point to the unpacking stub.
When the packed program executes, the operating system reads the new entry point
and initiates execution of the packed program at the unpacking stub. The purpose of
the unpacking stub is to restore the packed program to its original state and then to
transfer control to the restored program. Packers vary significantly in their degree of
sophistication. The most basic packers simply perform compression of a binary’s
code and data sections. More sophisticated packers not only compress, but also
perform some degree of encryption of the binary’s sections. Finally, many packers
will take steps to obfuscate a binary’s import table by compressing or encrypting the
list of functions and libraries that the binary depends upon [13].
Programs obfuscated by packing consist of a decryption routine (an instruction
sequence that generates code and data), a trigger instruction that transfers control to
the generated code, an unpacked area (the memory area where the generated code
resides) and a packed area (the memory area from where the packed original binary
is read). PE packers typically take the existing sections of the image file to be
16
packed, compress them, and store them in a new section within the packed
executable. Then they add the unpacking stub, possibly some more data needed
during the unpacking process, and new headers to correctly describe the packed file.
This typically includes creating a new section that will contain the unpacked data,
with a raw size of zero and the virtual size set to at least the size of the unpacked

data, adding new sections to contain the packed data and the unpacking stub, and
setting the entry point to the entry point of the unpacking stub. At the same time, PE
packers typically remove most of the original import data as well and keep or add
only a few imports, as a bare minimum only for the LoadLibraryA and the
GetProcAddress from kernel32.dll. At load time, the unpacking stub is executed
which unpacks the packed code into the empty section reserved for it. Then, the stub
typically resolves the original imports, using the LoadLibraryA API call to have
Windows load dynamic link libraries into the process’s address space and return
handles to them, and using the GetProcAddress API call to obtain the virtual
addresses of symbols these libraries export. These virtual addresses are then written
to the unpacked executable’s import address table. Finally, control is transferred to
the unpacked code’s entry point, typically dubbed original entry point (OEP) in this
context, the unpacking process is complete, and the original code should be able to
execute as if nothing had happened [14].
2.3. De-Obfuscation
De-obfuscation is the opposite process of obfuscation. There are two basic ways to
deal with obfuscation. The first way is to simply ignore it, in which case your only real
option for understanding the nature of a piece of malware is to observe its behaviour
in a carefully instrumented environment such as a virtual computer. The second way
to deal with obfuscation is to take steps to remove the obfuscation and reveal the
original “de-obfuscated” program, which can then be analyzed using traditional tools
such as disassemblers and debuggers. Of course, malware authors understand that
analysts will attempt to break through any obfuscation, and as a result they design
their malware with features designed to make de-obfuscation tricky. De-obfuscation
can never be made truly unattainable since the malware must eventually run on its
target CPU; it will always be possible to view the sequence of instructions that the
malware executes using some combination of hardware and software tools. In all
likelihood, the malware author’s goal is simply to make analysis amply complicated
17
that a window of opportunity is opened for the malware in which it can run without
discovery.
2.4. Analysis Techniques
Malware analysis is the process of determining the purpose and functionality of a
given malware sample (such as a virus, worm or Trojan horse). This process is a
necessary step to be able to develop effective detection techniques for malicious
code. In addition, it is an important prerequisite for the development of removal tools
that can thoroughly delete malware from an infected machine. Traditionally, malware
analysis has been a manual process that is tedious and time intensive. Unfortunately,
the number of samples that need to be analyzed by security vendors on a daily basis
is constantly increasing. This clearly reveals the need for tools that automate and
simplify parts of the analysis process. Analyzing unknown executables is not a new
problem. Consequently, many solutions already exist. These solutions can be divided
into two broad categories: static analysis and dynamic analysis techniques.
2.4.1 Static Analysis
Static analysis is the process of analyzing a program’s code without actually
executing it. In this process, a binary is usually disassembled which denotes the
process of transforming the binary code into corresponding assembler instructions.
Then, both control flow and data flow analysis techniques can be employed to draw
conclusions about the functionality of the program. A number of static binary analysis
techniques have been introduced to analyze different types of malware. Static
analysis has the advantage that it can cover the complete program code and is
usually faster than its dynamic counterpart. However, a general problem with static
analysis is that many interesting questions that one can ask about a program and its

properties are un-decidable in the general case. Of course, there exists a rich body of
work on static analysis techniques that demonstrate that many problems can be
approximated well in practice, often because difficult to handle situations occur rarely
in real-world software. Unfortunately, the situation is different when dealing with
malware. Because malicious code is written directly by the adversary, it can be
crafted deliberately so that it is hard to analyze. In particular, the attacker can make
use of binary obfuscation techniques to thwart both the disassembly and code
18
analysis steps of static analysis approaches. There are many tools out there to do
basic static analysis such as PEiD [15].
Static analysis can be used to gather a variety of information about an executable
e.g., high-level information such as its file size, a cryptographic hash, its file format,
imported shared libraries, the compiler used to generate it, or even just a list of
human-readable strings that are contained in the file, or, low-level information
gathered by disassembling or decompiling the specimen. Information about the file
format, shared library or compiler can aid disassembly or de-compilation.
Cryptographic hashes can be used to identify a specimen. Packer signatures or its
entropy may be used to determine whether it might be runtime packed.
Static analysis has several advantages over dynamic approaches. As static methods
do not involve executing a potentially malicious program, there is a lesser risk of
damaging the system that analysis is performed on. Given availability of the right
tools, it is also possible to perform the analysis on a platform that differs from the
platform that the specimen is designed to run on, further mitigating the risk of
damaging the analysis platform (e.g., by accidentally executing it). Furthermore,
static analysis typically covers the whole program and not just those code paths that
are executed for a set of inputs, like dynamic analysis. There are however some
disadvantages, too. Determining a sample’s behaviour through low-level static
analysis, like disassembly, is typically very time-consuming and requires a lot of
knowledge and skill. Static analysis also has trouble dealing with self-modifying code
and packed binaries as these generate new code during execution, behaviour that is
hard to capture without executing a specimen.
2.4.2. Dynamic Analysis
In contrast to static techniques, dynamic techniques analyze the code during runtime.
While these techniques are non-exhaustive, they have the significant
advantage that only those instructions are analyzed that the code actually executes.
Thus, dynamic analysis is immune to obfuscation attempts and has no problems with
self-modifying programs. When using dynamic analysis techniques, the question
arises in which environment the sample should be executed. Of course, running
malware directly on the analyst’s computer, which is probably connected to the
Internet, could be disastrous as the malicious code could easily escape and infect
other machines. Furthermore, the use of a dedicated standalone machine that is
19
reinstalled after each dynamic test run is not an efficient solution because of the
overhead that is involved.
As Dynamic analysis is a way of analysing an unknown program by executing it and
observing its behaviour, careful consideration must be given to securing the analysis
environment, so as not to risk damaging the systems on which it is run. The simplest
solution to containing hostile code is the so-called sacrificial lamb, which is a real
machine with no or limited network access, which can be disposed of or wiped clean
and reinstalled after an analysis run. There also exist hardware and software
solutions to automate the task of restoring a real machine to an untouched state.
Dynamic analysis can be performed at different levels of abstraction. In the simplest
case, a security researcher can record the initial system state, execute the program

to be analysed and examine the system state after execution and make note of all
changes. Additionally, the researcher can monitor the system’s inputs and outputs
during execution, e.g., network activity. More fine-grained dynamic analysis involves
tracing a program’s behaviour, which, again, can be performed at various levels of
abstraction. System call tracing captures the interaction of a program with the
operating system, on transitions from user mode to kernel mode code. System call
tracing can also quickly generate a lot of data that might be hard for a human analyst
to process. To perform analysis at a higher level of abstraction on other operating
systems, library call tracing is another method that can be employed for dynamic
analysis. For programs written in a high-level language, this method provides a more
natural view of a program’s inner workings than system call tracing, if the program
uses the high-level language’s standard libraries (which is common practice).
Dynamic analysis has several advantages. At high levels of abstraction, e.g., library
call tracing, it can quickly give a researcher an overview of what a certain program
does. It is largely immune to obfuscation techniques that target static analysis
methods, like self-modifying code, including runtime-packing or encryption, or antidisassembly
tricks. But there are also drawbacks. Dynamic analysis typically only
covers one possible execution path through a program [14].
2.4.2.1. Virtual Machines
Running the executable in a virtual machine (that is, a virtualized computer) can only
affect the virtual PC and not the real one. After performing a dynamic analysis run,
20
the infected hard disk image is simply discarded and replaced by a clean one (i.e., so
called snapshots). Virtualization solutions are sufficiently fast. There is almost no
difference to running the executable on the real computer, and restoring a clean
image is much faster than installing the operating system on a real machine. Virtual
machines are easier to handle than real machines and provide greater flexibility, e.g.,
they allow a researcher to save one or more snapshots of the machine state, which
can later be restored. On the other hand, virtual machines are normally slower than
real machines and the executable to be analyzed may determine that it is running in
a virtualized machine and, as a result, modify its behaviour. In fact, a number of
different mechanisms have been published that explain how a program can detect if
it is run inside a virtual machine.
2.4.2.2. Sand-Boxing
Sand-boxing systems are a relatively new approach to handling malicious code.
Sand-boxing solutions introduce cages, "virtual subsystems" of the actual operating
system. The idea is to let the unknown program run on a virtual machine that
accesses the same information which the user can access on the local machine but
has access to a copy of the information within the cage. On the virtual system, the
known program, such as a computer virus, will be able to read files that are "on the
real system," even read the Registry keys and so on, but its networking capabilities
are reduced. And when it attempts to make any changes, it makes them in the replica
of information within the cage. Thus the virus is free to do anything it wants, but this
will happen in a cage instead of on the real system. When the application finishes
execution, the file and Registry changes can be thrown away, and malicious-looking
actions can be logged. Unfortunately, this solution comes with a few limitations such
as compatibility problems and the virtualized system might have holes that are similar
to those of behaviour-blocking systems. Tricky malicious code might be able to
execute unwanted functions on the real machine instead of the virtual machine [11].
2.4.2.2. Emulator
A PC emulator is a piece of software that emulates a personal computer (PC),
including its processor, graphic card, hard disk, and other resources, with the
purpose of running an unaffected operating system. The difference between virtual

21
machines and PC emulators is that virtual machines can run an unaffected operating
system but they execute a statistically dominant subset of the instructions directly on
the real CPU. This is in contrast to PC emulators, which simulate all instructions in
software. Because all instructions are emulated in software, the system can appear
exactly like a real machine to a program that is executed, yet keep complete control.
Thus, it is more difficult for a program to detect that it is executed inside a PC
emulator than in a virtualized environment. However, there is one observable
difference between an emulated and a real system: speed of execution. This fact
could be exploited by malicious code that relies on timing information to detect an
emulated environment. It is possible for the emulator to provide incorrect clock
readings to make the system appear faster for processes that attempt to time
execution speed.
In addition to differentiating the type of environment used for dynamic analysis, one
can also distinguish and classify different types of information that can be captured
during the analysis process. Many systems focus on the interaction between an
application and the operating system and intercept system calls or hook Windows
API calls. These tools are implemented as operating system drivers that intercept
native Windows system calls. As a result, they are invisible to the application that is
being analyzed. They cannot, however, intercept and analyze Windows API calls or
other user functions. On the other hand, tools exist that can intercept arbitrary user
functions, including all Windows API calls. The complete control offered by a PC
emulator potentially allows the analysis that is performed to be even more fine grain.
Similar to the functionality typically provided by a debugger, the code under analysis
can be stopped at any point during its execution and the process state (i.e., registers
and virtual address space) can be examined [16].
2.5. Unpacking
Unpacking consists of constructing a program instance which contains the embedded
program, contains no code-generating routine, and behaves equivalently to the selfgenerating
program. Packing does not change the relevant behavior of a program.
Hence, reverting back of a packed program (called unpacking) consists of recovering
the original program that has the same relevant behaviour as the packed program. In
a packed program the decryption routine precedes the execution of the original
program. To ensure that the original program is correctly restored at runtime, the
22
decryption routine generates the same results every time the program is run,
regardless of any input to the program. Furthermore, the operations of the decryption
routine affect only program memory. As a consequence, it is possible to create an
equivalent program not containing the decryption routine by setting all the values in
the unpacked area to the expected results of its computation beforehand.
2.6. Unpacking Techniques
There are several ways to unpack packed executables. The main weakness of
typical runtime-packers and executable protectors is that at some point, the original
code must be executed. This can be exploited by manual unpacking, i.e., by
debugging the executable to be unpacked, and determining when the original code is
completely unpacked and the unpacking stub is about to branch to it. Then, the
process memory can be dumped and an attempt be made to regenerate the original
executable by fixing headers and reconstructing an import address table. Another
method is reverse engineering the unpacking stubs of individual packers and using
that knowledge to create packer-specific unpackers that can statically unpack
executables, i.e., without executing them. While this is typically more time-consuming
than unpacking a single executable, it can save a lot of time as soon as several files
packed by an individual packer need to be unpacked. However, many runtimepackers

and executable protectors try to prevent these unpacking methods by
hardening their unpacking stubs against reverse engineering, e.g., by using antidebugging
and code-obfuscation techniques. Some of the commonly used unpacking
methods are: routine-based (static unpacking), emulator-based (dynamic unpacking)
and mixed routine-based and emulator-based unpacking.
2.6.1. Routine-based Unpacking
Routine-based unpacking is based on decompression algorithms. If the packer
author has used a standard compression algorithm then the decompression
algorithm can be applied to reverse packing. Examples of such algorithms are FSG
and UPack. Advantage of routine-based unpacking is high speed while disadvantage
is a lack of flexibility as every packer and each and every one of its variants would
require a separate unpacking routine. Some compression programs such as UPX
use their own decompression program included within them. Within a variety of all
23
packers, they are a minority. These stand-alone unpackers can be useful for
research purposes but they are not appropriate for incorporating into mainstream
antivirus products. Possibly, they could be a useful add-on for free antivirus solutions.
Single-purpose decompression program are the most frequently used method of
decompression of run-time packed files. This method works well when a packer uses
the same unpacking code each time. One possibility to write this decompression
program is to disassemble a sample of a packed file and just copy the bulk of the
resulting assembly language code and edit some parts of this code to be able to selfrun
(i.e., not run as part of compressed file) with a compressed file as input. The
resulting code will run quickly. However, the generated code will be processorspecific,
and therefore in order to run on many different processors it will need to be
patched to the correct form. Duplicating the original code is not a safe strategy. A
typical packer has minimal error checking. If code from this packer is used to unpack
the file, the product can overflow the memory allocated, which may eventually crash
the process, crash the entire system, or allow an attacker to gain a complete control
of the system. The solution of this most important problem is to encapsulate the code
within a defensive environment. Another solution would be to add many errorchecking
controls (buffer underflow/overflow, etc.). Since specific code is needed for
each packer and perhaps for each version of each packer, the size of an antivirus
product incorporating routine-based unpacking can grow quite large [17].
2.6.2. Emulator-based Unpacking
Emulator-based unpacking is based on loading and running a file in a virtual
environment. If file is stopped right at the original entry point, the unpacked file is
found. This technique is generic and can cope with different packers. Generic code
emulation is a very powerful decompression method. To program a code emulator is
not simple but once done, it can greatly speed up the process of adding new
unpackers. Often, part of the process of adding a new packer can be skipped,
because the emulator can decompress a file automatically. The code emulator loads
a program into a virtual environment and then runs until the file is decompressed – a
point which is defined heuristically, not algorithmically. How the heuristic defines a
state when a file is decompressed is the most difficult part of decompression by a
code emulator. Also, once an emulator is able to cope with anti-debugging tricks
used by one unpacker, it can cope with the tricks in PE-files compressed by any
24
other packer. Code emulation is slower than other decompression methods. This is
because the code emulator always has to maintain the entire CPU state.
2.6.3. Mixed Routine-based and Emulator-based
Since emulation based unpacking is too slow and static unpacking is too specific,
both can be combined and used as a hybrid approach. This technique combines the

efficiency of routine-based unpacking with the generic nature of emulator based
unpacking. If the two types can work harmoniously, efficiency and flexibility can be
attained. Routine-based unpacking can cope with the standard decompression
algorithms while emulation can handle the modified packers or unknown packers. For
particularly tricky packers, it is a good strategy to mix emulation and specific routines.
For instance, emulation might take place until polymorphic encryption key has been
found. Then the particular encrypted data can be decrypted by a specific routine. Its
use is faster than emulation. Mixing code emulator with specific routines, however,
brings additional complications [18].
2.6.4. Run and Dump Unpacking
Another technique that is quite successful in decompression of run-time packed
executable files is running the code and then using a utility to capture the in-memory
image and saving it on a disc. The main difficulty with this approach is finding out the
right point when a running program is to be stopped and its image captured in the
memory. The drawback of this method is that the executable must be loaded, which
might not be acceptable in all cases as it cannot always be guaranteed that the
program is terminated before any malicious functionality is executed. Besides using a
virtual machine to avoid potential damage, it is also possible to unpack the
executable by creating a separate tool out of the information gained from the
unpacking routine included in the program.
With most packed programs, the first phase of execution involves unpacking the
original program in memory, loading any required libraries, and looking up the
addresses of imported functions. Once these actions are completed, the memory
image of the program closely resembles its original, unpacked version. If a snap shot
of the memory image can be dumped to a file at this point, that file can be analyzed
25
as if no packing had ever taken place. The advantage to this technique is that the
embedded unpacking stub is leveraged to do the unpacking. The difficult part is
determining exactly when to take the memory snapshot. The snap shot must be
made after the unpacking has taken place and before the program has had a chance
to cover its tracks. This is one drawback to this approach for unpacking. The other,
perhaps more significant drawback is that the malware must be allowed to run so that
it can unpack itself. To do this safely, a sandbox environment should be configured.
Most operating systems provide facilities for accessing the memory of running
processes.
The dumped process image is not executable till the executable’s header is corrected
with the new values but the code itself is visible in its original form and disposed for
reverse engineering and static analysis. This simple method works for most kinds of
executable packers and encryptions, as the unpacking function typically extracts the
complete program right at start, and does not interfere with later computations.
2.6.4.1. Debugger-Assisted Unpacking
Allowing malware to run freely is not always a great idea. If the executable file is
unreliable and its exact function is not known, running it without any checks would
give it the opportunity to wreak havoc before a dump of the memory image can be
captured to disk to analyse the actual program code. Debuggers offer greater control
over the execution of any program under analysis. The basic idea when using a
debugger is to allow the malware to execute just long enough for it to unpack itself
then utilizing the memory dumping capabilities of the debugger , the process image
can be dumped to a file for further analysis. The problem with debugging is
determining the stopping condition when the image of the process in memory is
captured.
2.7. Identifying Packed Binaries
When having to analyse a large number of unknown binaries, it can be helpful to be

able to determine whether a binary has been packed or not. There are heuristics that
give good estimates whether a program contains hidden, packed code or not. Both
packing and encryption transform one byte sequence into another, where the new
26
byte sequence typically has higher entropy than the original one (depending on the
input data). This property can be leveraged to try to distinguish “regular" executables
from packed or encrypted ones. Split each sample file into 256 byte sized blocks and
record its average block entropies and its highest block entropy. Analysing the
aggregated entropy scores statistically gives significant differences between packed
and normal files leading to the conclusion that entropy metrics are indeed a valid
heuristic to determine whether an executable has been packed or encrypted.
Experiments show that a similar metric, based on the maximum entropy of sections
within PE files, yields similar differences between unpacked and packed or encrypted
files. It is possible to explicitly manipulate data within PE files to change their entropy.
Random bytes can be added to increase a file’s entropy and the same byte can be
added multiple times to lower it [14].
2.8. Published Unpacking Approaches
Various unpacking approaches have been published so far. Some of the published
unpacking techniques are described in this section.
2.8.1. Malware Normalization
The proposed malware normalizer [19] is a system that takes an obfuscated
executable, undoes the obfuscation and outputs a normalized executable. The
technique uses code emulation to normalize executables. Unpacking consists of two
basic steps. In the first step, the program to be normalized is executed in a controlled
environment to identify the control-flow instruction that transfers control into the
generated-code area. All writes to the code area are captured in this step. The
second step uses information captured in the first step to construct a normalized
program that contains the generated code.
2.8.1.1. Identifying the First Control Transfer into Generated Code
The first control transfer into generated code is identified by executing the program in
an emulator, collecting all the memory writes (retaining for each address only the
most recently written value) and monitoring execution flow. If the program attempts to
27
execute code from a memory area that was previously written, the target address of
the control flow transfer is captured (i.e., the trigger instruction) and execution of
code terminated. This technique is based on the assumption that the code generator
and the instruction causing the control-flow transfer are reached in all program
executions. By emulating the program and monitoring each instruction executed, the
moment when execution reaches a previously written memory location can be
identified. If heuristics are employed for determining this location, false negatives are
generated.
2.8.1.2. Constructing a Non-self-generating Program
The captured data can be used to construct an equivalent program that does not
contain the code generator. The data area targeted by the trigger instruction is
replaced with the captured data. The memory write captured contain both
dynamically generated code and the execution specific data e.g. the state of the
program stack and heap. The executable file of the new program is a copy of the
executable file of the old program with the byte values in the virtual memory range
set from the captured data. The program location where execution was terminated is
used as the entry point for the new program.
2.8.1.3. Limitations of Technique
This technique has several limitations. The unpacked executable is not ready-to-run.
While all the code is present in the normalized executable, the imports table listing

the dynamically linked libraries used by the program is not recovered, since most
packing obfuscations replace it by a custom dynamic loader. This approach is open
to resource consumption attacks and can have false negatives since the execution
time in the sandbox often has to be heuristically restricted for performance reasons.
2.8.2. OmniUnpack
OmniUnpack [6] is a generic unpacking technique that incorporates a malware
detector and is able to handle any type of packer and any type of self-modifying
code. OmniUnpack monitors the program execution and tracks written as well as
28
written then-executed memory pages. When the program makes a potentially
damaging system call, OmniUnpack invokes a malware detector on the written
memory pages. If the detection result is negative (i.e., no malware found), execution
is resumed. Code monitoring has been made efficient by tracking memory accesses
at the page level (using non-executable pages or equivalent hardware mechanisms)
instead of the instruction level. The resulting low overhead means that continuous
monitoring can be deployed. Furthermore, OmniUnpack handles any number of
unpacking and self modifying layers, each time communicating to the malwaredetection
engine only the newly generated code that needs to be scanned.
The OmniUnpack algorithm follows a simple strategy to handle packed code. All
memory writes and the program counter are tracked. If the program counter reaches
a written memory address, it is identified that some form of unpacking or code
generation occurs in the program. All written-then executed (or written-and-about-tobe-
executed) memory locations should then be analyzed by a malware detector. The
salient features of this approach are page-level tracking and continuous monitoring.
These qualities as well as the disadvantages of OmniUnpack are touched upon in the
succeeding subsections.
2.8.2.1. Page-level Tracking
Page-level tracking decreases the granularity of monitoring while greatly reducing the
overhead of memory-access tracking. As a downside, it is less precise, often
resulting in spurious detected unpacking stages. The spurious unpacking stages are
caused by multiple layers of packing and by anti-disassembly and anti-static analysis
techniques. Furthermore, code that executes from the same page on which it writes,
even though non-self-modifying, also generates multiple spurious unpacking stages.
It would be unnecessarily expensive to invoke the malware detector every time a
written memory page is executed, because such an event (written-then-executed) is
frequent. Written then-executed pages are indicative of unpacking but not indicative
of the end of unpacking. The problem of determining when unpacking is completed
can only be approximated. The end of an unpacking stage is approximated by using
the heuristic that if the current execution trace indicates unpacking (i.e., memory
pages were written and then executed), and if the program is about to invoke a
dangerous system call, then it is assumed that an unpacking stage has completed
and the malware detector is invoked. A dangerous system call has been defined as is
29
a call whose execution can leave the system in an unsafe state.
2.8.2.2. Continuous Monitoring
Because of the possibility of multiple unpacking stages and of the approximation
used to detect them, it is insufficient to monitor and scan the program only once
during an execution. OmniUnpack implements a continuous monitoring approach,
where the execution is observed in its entirety.
2.8.2.3. Disadvantages of Approach
OmniUnpack raises performance concerns during the execution of benign programs.
Furthermore, this approach is open to resource-consumption attacks and is prone to
false negatives.

2.8.3. Pandora’s Bochs
The unpacker of Pandora’s Bochs [13] is based on ‘Bochs’ a portable x86 emulator.
Bochs is a pure software virtual machine that is not subject to some of the designinherent
flaws of reduced-privilege guest virtual machines for which well known and
simple detection methods exists. There exist some methods to detect the presence
of Bochs which are mainly due to errors in Bochs’s CPU implementation, not its
architecture, and due to the possibility to fingerprint the emulated hardware. While
the former can possibly be mitigated by fixing the emulation code, the latter is a
problem of all virtual machines alike. Bochs provides a built-in mechanism for
instrumenting code running on the emulated CPU. Major disadvantage of using
Bochs is that it is quite slow. Also determining whether a program will unpack
additional code and transfer control to unpacked code cannot be determined in the
general case. It is however possible to estimate whether some monitored process is
still showing any progress that might lead to the generation of new, unpacked code,
or whether all monitored processes have reached a stable state. To that end,
innovation is tracked for all monitored processes through memory writes versus
branch targets, dynamic link libraries, execution of modified memory. Termination of
the unpacking process is guaranteed by using an upper bound to the unpacker’s total
30
run time. The limitations to the proposed technique are slow speed, compatibility
issues and a high number of malware samples failing to execute properly, despite
being able to do so on other platforms. Import information is not always recovered
correctly.
2.8.4. PolyUnpack
PolyUnpack [20] is a behaviour-based approach that uses a combination of static
and dynamic analysis to automate the process of extracting the hidden-code.
Hidden-code is automatically extracted based on the observation that sequences of
unpacked code in a malware instance can be made self-identifying when the
instance is executed in an environment with knowledge of the instance’s static code
model. Starting with a malware instance, static analysis is performed to acquire a
model of what its execution would look like if it did not generate and execute code at
runtime. The statically derived model and the malware instance are then fed into the
dynamic analysis component where the malware is executed in a sterile, isolated
environment. The malware’s execution is paused after each instruction and its
execution context is compared with the static code model. When the first instruction
of a sequence not found in the static model is detected, representations of that
unknown instruction sequence are written out and the malware’s execution is halted.
PolyUnpack automates the process of extraction without requiring knowledge of how
the malware unpacks its hidden-code.
PolyUnpack, like most instrumentation tools, is not transparent to the malware being
processed. Therefore, there exists the possibility that an instance of malware being
executed in PolyUnpack may detect that it is being instrumented and alter its
behaviour (e.g., halting its execution instead of generating hidden-code) in order to
evade extraction of its unpacked code.
2.8.5. Renovo
Renovo [21] is an emulation technique which monitors currently-executed
instructions and memory writes at run-time. This approach maintains a shadow
memory of the memory space of the analyzed program, observes the program
execution, and determines if newly generated instructions are executed. Then it
extracts the generated code and data.
31
After the packed executable starts, its attached decryption routine performs
transformation procedures on the packed data, and then recovers the original code

and data. When the restoration completes, the decryption routine prepares the
execution context for the original program code to execute, which includes initializing
the CPU registers and assigning the program counter to the entry point of the newlygenerated
code region. A packed executable may have multiple hidden layers,
making it even more difficult to analyze. No matter what packing methods or how
many hidden layers are applied, the original program code and data should
eventually be present in memory to be executed, and also the instruction pointer
should jump to the Original Entry Point (OEP) of the restored program code which
has been written in memory at run-time. Taking advantage of this inevitable nature of
packed executables, this technique has been proposed to dynamically extract the
hidden original code and the OEP from the packed executable by examining whether
the current instruction has been generated at run-time, after the program binary was
loaded. For this purpose, the instruction pointer is monitored for jumps to the memory
region which has been written after the program start-up. A memory map is
generated when a program is loaded in memory and initialized as clean. Whenever
the program performs a memory write instruction the corresponding destination
memory region is marked as dirty, which means it is newly generated. Meanwhile,
when the instruction pointer jumps to one of these newly-generated regions, it is
determined that there is a hidden layer hiding the original program code, and identify
the newly-generated memory regions to contain the hidden code and data, and the
address pointed by the instruction pointer as the original entry point (OEP). To
handle the possible hidden layers that may appear later on, the memory map is
initialised as clean again after storing all the information extracted from the current
hidden layer. The same procedure is repeated until time-out.
The emulated environment is not impervious to detection. The malicious code could
measure elapsed time for certain instructions for which emulation these incurs high
overhead, or check the results of certain instructions, because the results they
generate are different under real and emulated environments.
32

CHAPTER 3
REQUIREMENTS
This chapter provides the description, functional and non-functional requirements and
the constraints on SADE and has been supplemented with context mode and data
flow diagrams. The contents given below were used as a guideline for designing the
system.
3.1. The Overall Description
SADE will take a win32 portable executable file as input and will detect whether the
file has been packed or not. The compressed (packed) file will be passed on to the
main module of the software, the deobfuscation engine that will generically recover
the original code that had been hidden by any packing obfuscation. The recovered
data will finally be displayed in the output in a meaningful form (that should be of use
and understandable to a security analyst) and the unpacked executable file will be
the output of the software. The software will also display data about the file
comprising of the modules loaded and resources handled etc. to facilitate the file
analysis.
3.2. User Characteristics
The primary users of SADE will be security professionals. The software will extract
the hidden code from a packed executable. When code is obtained from a compiled
executable file, it is available in raw form (hex code or with further processing
assembly language form) and requires that the analyst be familiar with the structure
of the Windows Portable Executable (PE) files such as the portable executable file

headers, file sections and data directories etc. The user should also have a
rudimentary idea about how windows executable files are loaded on the windows
platform and native windows functions are called to be able to understand and
benefit from the output information from file analysis.
33
3.3. Constraints
� SADE might not work on every single type of packing obfuscation or on
multiple layers of packing obfuscations.
� SADE will work only for Win32 PE files.
� The packed input executable file might contain code that can detect the
presence of SADE and our software may or may not be able to handle it.
3.3.1. Assumptions and Dependencies
� SADE is being developed for Windows 32-bit platform.
3.4. Apportioning of Requirements
Requirements that may be delayed till future versions of the software are described
here. These requirements have been delayed either because they are enormous
undertakings on their own or because their implementation and integration into the
system is not top priority and can wait till future versions of the application.
� Converting the unpacked executable file into a valid PE file that will be able to
run on the windows platform can be performed in future work. This involves
fixing the import section of the file and other modifications till it is fit to be run
on the windows platform.
� Another requirement that can be catered for in future versions is the
disassembly of the recovered code from the code section of the executable
file into assembly language.
� Another possible extension to the software is to make it compatible on 64-bit
windows platform.
3.5. Functional Requirements
Table 3.1 gives the functional requirements along with their descriptions.
34
Table 3.1 - Functional Requirements
Requirement Description
1 Win32 Portable
Executable Files
SADE shall work only for Win32 Portable Executable files. The
PE32 file given to the software as input might be packed or not,
the software should be able to handle both cases accordingly.
2 Detect Packing The program shall detect whether the input executable file is
packed or not. The software shall detect the presence of
compression and/or encryption without needing to discover the
exact compression and/or encryption scheme used. Generic
unpacking unpacks packed executable files independent of the
packing technique used hence it is sufficient that the software is
able to differentiate between a packed and an unpacked
executable file. Only files that shall be found to have been
packed will be passed to the generic unpacking routine so the
process of detecting packing should be fool proof.
3 Generic Unpacking The input executable file shall be generically unpacked i.e. some
transformation or processing performed on it to uncover the
original PE file code. The software shall uncover the original
executable code without using any specific decompression
and/or decryption techniques but rather provide a generic
solution that should be one-fit-for-all i.e. it should work on a wide
variety of packed files.

4 Evade Running
Harmful Code
The software shall not run the input PE32 file since the main
usage of the software will be analyzing hidden malicious code.
So harmful code should not be allowed to run.
5 Information for File
Analysis
The imports (modules loaded) and resources of the PE file shall
be shown in the output to help in file analysis.
6 Dump of Recovered
Code
The software shall create an image or dump of the recovered
PE file. The de-obfuscated code of the input PE32 file shall be
displayed for analysis purposes. The recovered executable file
containing the unpacked code may not necessarily be a running
version of the executable as emphasis is on the discovery of the
hidden code and making the hidden code available for analysis.
35
3.6. External Interfaces
Table 3.2 gives the external interface requirements.
Table 3.2 - External Requirements
Requirement Description
1 Input SADE will take a Win32 PE file as input. The input interface should be
able to display appropriate error message if wrong type of file is entered.
2 Output SADE will output a dump of the unpacked executable code if the file was
packed and for a PE32 file for which no packing is discovered,
information about the file such as the imports and resources should be
displayed for analysis. SADE will also display the modules loaded by the
file and resources and other structures contained in the file along with
the unpacked code in the output.
3.7. Non-functional Requirements
Following are the quality and performance characteristics that SADE must possess.
These requirements have to be testable just like the functional requirements.
3.7.1. Performance Requirements
Table 3.3 gives performance requirements for the system
Table 3.3 - Performance Requirements
1 Unpacking of input file should take around average 40 seconds and should not take more
than 90 seconds.
2 For a file in which no unpacking is detected, there should be no performance overhead
between inputting file and time taken to display PE file information.
3 SADE shall analyze only one file at a time.
4 Only one instance of SADE shall be run on any system at a time.
36
3.7.2. Quality Requirements
Table 3.4 gives quality requirements for the system.
Table 3.4 - Quality Requirements
Requirement Description
1
Reliability
SADE should be able to unpack 80% of input packed files. The
reliability of SADE is dependent on the complexity level of
packing and on the packer code being able to detect the
presence of any external software trying to force-unpack it.
2
Security
SADE should not compromise the safety of the system on which

it is being run by executing potentially malicious code. The
packed input file might be malicious as packing is used by
malware author to hide the true intent of their code so SADE
should not run any potentially harmful code.
3
Portability
SADE shall run on any architecture on which 32-bit Windows
platform is installed.
37

CHAPTER 4
SYSTEM DESIGN
4.1. Introduction
This chapter contains the design specification for SADE. The design of SADE has
been described with different levels of abstraction in the subsequent sections.
4.1.1. Purpose
The design specification encapsulates the high level to the low level design covering
all the aspects and levels of abstraction from the high level view of the project to the
low level subcomponent details. Purpose of the document is to provide a detailed
and unambiguous design which is coherent and consistent with the software
requirements.
4.1.2. Scope
The design specification covers the overall design decisions and strategies,
architectural design as well as low-level component design and abstract interface
design. This chapter also covers the UML (Unified Modeling Language) diagrams
and the Graphical User Interface design of SADE.
4.2. System Overview
SADE is an executable analysis toolkit that generically detects and unpacks a
packed windows executable file (PE32 file) and makes the data hidden by encryption
and compression available for analysis purposes. The unpacked executable file is
not a valid windows executable as the import address table needs reconstruction
(which is out of the scope of our project) but the unpacked code and other
information about the file such as the modules and resources loaded by the
38
executable are available through the toolkit. The toolkit is invaluable to security
analysts as their time is expensive and individual malware samples can take hours to
analyze and manual unpacking is a tedious and error prone process.
4.2.1. Input
The input to the system is a PE32 executable file. The toolkit first checks the validity
of the file. If the file is a valid 32-bit windows executable, it is loaded in memory and
important file information, such as header information, section details and modules
loaded by the file are extracted from the executable.
4.2.2. Major Processes
The first step in generic unpacking is to detect if an executable is packed. This saves
processing and time spent in trying to unpack an already unpacked or normal
executable that does not have any transformations such as compression or
encryption performed on it. Once packing is detected the Generic Unpacking Engine
is triggered, which uses file dumps and statistical analysis of those dumps to unpack
hidden program code.
4.2.3. Output
The outputs produced by the system are PE file information, dump of the recovered
code and result of statistical analysis in tabular and graphical form. The PE file

information includes information gathered from the headers of the file such as the
names of the Windows APIs called by the executable, the size and address of
different sections in the executable and information about directories like the debug
directory etc.
4.3. Design Considerations
This section describes some of the issues which need to be addressed or resolved
before attempting to devise a complete design solution.
39
4.3.1. Assumptions and Dependencies
i) SADE works only for 32 bit windows portable executable files.
ii) SADE might not work on every single type of packing obfuscation or on
multiple layers of packing obfuscations. The packed input executable file
might contain code that can detect the presence of SADE and SADE may
or may not be able to handle it.
iii) Disassembling module for the executable will not be implemented. A
disassembler may be imported from an external source and integrated
with the system to produce a more helpful and refined output.
iv) The application is designed for the Windows platform.
v) The primary users of SADE are security professionals. The software
provides unpacked code from a packed executable. When code is
obtained from a compiled executable file, it is available in raw form (hex
code or with further processing assembly language form) and requires
that the analyst be familiar with the structure of the windows Portable
Executable (PE) files and also with how windows executable files are
loaded on the windows platform to be able to understand and use the
output information in file analysis.
vi) Possible and/or probable changes in functionality
4.3.2. General Constraints
Global limitations or constraints can have a significant impact on the design and
development of any software system. The constraints and limitations that may affect
SADE are listed and described briefly in the consequent subsections (the list is not
exhaustive).
4.3.2.1. Hardware and Software Environment
The input executable file might be able to detect the debugging environment in
which it is being unpacked and upon detecting a third party software trying to monitor
and control its behavior, the input executable file can change its execution by for
instance going into an infinite loop or by halting its execution altogether. The design
of the system should try to evade this possibility or incase of its occurrence inform
the user with an appropriate message.
40
4.3.2.2. End-user Environment
The software design only concerns 32-bit windows platform as the end user
environment. Porting the software for 64-bit platform can be considered in future
work.
4.3.2.3. Standards Compliance
SADE should comply with the latest standard for portable executable and common
file format files released by Microsoft.
4.3.2.4. Security Requirements
The system has to avoid running harmful code as input executable file might be a
hidden malicious program.
4.3.2.5. Memory Limitations
The software environment to be designed and developed for SADE should not over
burden the system it is being run on or exhaust the system memory.

4.3.2.6. Performance requirements
SADE should enable the smooth operation of other software on the end user system
it is being run on i.e. it should not overload the system and affect its overall
performance.
4.3.3. Goals and Guidelines
The goal of this software application is to provide a professional toolkit which helps
the security analysts analyze the packed executables and help in the detection of
malicious software and the identification of signatures for malware. The design
decisions have been made on the following principles:
i) Simple and unambiguous design graphically demonstrated so that it is
conceivable and understandable.
41
ii) Extensible design that can smoothly incorporate future developments without
requiring major paradigm changes. Object-Oriented design principles make
this job easier and manageable.
iii) Optimal design based on best possible tradeoff between speed and memory
usage.
iv) Preference to Security in the design i.e. the security of the system is of
prime importance since the system will primarily deal with malicious
executables.
v) Research incentive in the project was a major motivational factor and goal.
The major incentive behind the project was to supplement and implement the
latest research in the field of packed malware successfully and efficiently so
that the end product is state-of-the-art and comparable with its
contemporaries.
4.4. Unpacking Methodology
The unpacking methodology adopted for SADE is run and dump unpacking approach
using a debugger. Run and dump unpacking does not have any of the limitations or
problems of using virtual machines and emulators. The approach is based on the
innate property of encrypted and compressed executables that regardless of the
packing technique applied to the original program the original code or its equivalent
will eventually be present in memory and get executed at some point at run-time. By
taking advantage of this intrinsic nature of packed executables, one could potentially
extract the hidden binary code or its equivalent as a raw memory dump. However, it
is not clear which regions in the memory contain the hidden binary and when is the
right time to dump such regions, i.e., when the execution context jumps to the hidden
original code. The essential problem with this straightforward and simplistic approach
of figuring out when to stop the run and dump process has been approximated by
using several statistical and heuristic measures.
4.5. Architectural Strategies
Following are the design decisions and strategies that affect the overall organization
of the system and its higher-level structures.
i) In order to provide debugging capabilities to run and dump a packed file, the
windows debug API in kernel32.dll has been used.
42
ii) Open source and free ware code libraries for debugging have been employed
to help construct the debugger for the generic unpacking module.
iii) Visual C# is the programming language used. The C# paradigm is helpful in
constructing the graphical user interface and providing file reading, writing
and data marshalling capabilities.
iv) In the future work, the software can be upgraded with a disassembling
module to improve the readability of the unpacked code.

4.6. System Architecture
SADE has two principle responsibilities. First is to detect whether an input executable
file is packed or not and the second is to unpack an executable that is found to be
packed. The Unpacking task additionally has two separable responsibilities. The
unpacking task incorporates a debugging module which runs the unpacking stub of
the packed input executable to enable the recovery of original input file code. The
unpacking job also requires a statistical analysis engine that is the system core
where heuristic decisions are made on when to stop the debugging process. The
debugging and analysis engine requires a dumping module to take snapshots of the
process in memory as the state of the input executable changes while the process
runs in the debugger. SADE has an auxiliary responsibility to extract information from
the input executable file that supplements the unpacked code for analysis purposes.
The decomposition of the system has been based on these singular responsibilities.
The high level architecture of SADE is depicted in figure 4.1.
Figure 4.1 – Architecture of SADE
43
SADE has been divided into its respective components on the basis of required
functionality. An executable file is presented as input to the system. The Dump
module has the capability to take a dump of a process or file in memory. Dumping a
file is the act of copying raw data from one place to another with little or no formatting
for readability. The Dump module provides the data in hexadecimal and ASCII
formats. A static dump of the executable file is taken and passed to the Packing
Detection module. When provided with a valid input executable file, packing
detection module detects whether the file is packed or not. The output of Packing
Detection is to give a Boolean value indicating whether the file appears to have
some packing transformation performed on it or not. If the input file is not packed, it
does not need to be unpacked and can be sent straight to the File Info Retrieval
component. The File Info Retrieval module extracts the portable executable file
information such as the PE file headers and the PE sections etc. In the scenario
where the file is found to be packed it is sent to the Generic Unpacking Engine.
The Generic Unpacking module has further two distinct sub-modules: Debugger and
Statistical Analysis. The Debugger module provides debugging functionalities that
are required for the unpacking procedure. The Statistical Analysis component uses
various statistical heuristics like entropy of the file being progressively debugged to
provide a stopping criteria that decides when the executable file has been unpacked
completely and to stop debugging the executable. The Dump module interacts with
Generic Unpacking to capture changes in the file as it is executed and the
unpacking routine in the packed file runs to uncover the original program code that
was obscured by packing. The Generic Unpacking runs the executable in the
Debugger in a debug loop that executes a small portion of the debugee (program
being debugged) program at a time till the stopping criteria has been met. Once the
Generic Unpacking Engine has recovered the unpacked file, it is sent to File Info
Retrieval to extract PE file information that is further helpful to security analysts for
file analysis. The output from SADE is the unpacked executable and file info.
4.7.UML Diagrams
This section covers the UML diagrams for SADE. This includes the use case diagram
of the system, the class diagram and the interaction diagrams for the different
scenarios that can occur in the system. The interaction diagrams cover both
sequence and communication diagrams. Furthermore, the data flow diagrams of the
different modules of the system are presented in this section.
44
4.7.1. Use Case Diagram
The use case diagram of SADE, figure 4.2, describes all the functionalities that the

user will be able to avail through the use of the application. The user can load any
PE32 file and can use the system to discover if the input file has been altered with
some packing transformation or not. The user can also retrieve portable executable
file information; which includes information about the modules loaded as well as
section and header information. The user can also retrieve the dump of both packed
and unpacked versions of the file. The dump of original file has section and header
information while the dump of unpacked file can be viewed in ACSII and
Hexadecimal format. Further future work includes providing disassembled unpacked
code. The users of the system have been classified as novice users and security
analysts. A novice user of the system is someone who has nominal understanding of
the executable files and file analysis. Security analysts are familiar with executable
files and can use the system for malicious software analysis to create malware
signatures etc.
Figure 4.2 – Use Case Diagram of SADE
45
Use Case Description
Table 4.1 describes the details of the class diagram in figure 4.3. Descriptions are
given for each use case of figure 4.3.
Table 4.1 - Use Case Description
Use Case Description
Load Executable
File
User browses through the end-system to select an input executable file.
Get Packing
Detection
Information
SADE informs user whether the input executable file has some packed
obfuscation performed on it or not.
Unpack Executable User prompts SADE to unpack or recover the hidden original program
code.
Dump Original File Dump of the input executable file in its original form. This is also
referred to as a static dump.
Get File Information User can get the portable executable information from the system.
Get File Header
Information
Information contained in the portable executable file header. Includes
file signature, size etc.
Get File Section
Information
Information about the portable executable file’s sections. These can
include the data, code and resource section etc.
Get Modules
Loaded Information
Information about the modules that is external resources imported by
the executable file. These include the Windows API Dynamic Link
Library (.DLL) files. This is useful for file analysis as different modules
loaded correspond to different system-level functionalities and can
reflect on the tasks performed by the system like using network
resources etc.
Get Unpacked File
Dump
Dump of the unpacked file. This is the dump of the code that was
hidden by the packing transformation and was recovered on runtime
and captured by our software.
Hex Dump Dump of executable file in hexadecimal format.
ASCII Dump Dump of executable file in ASCII character set.
46

4.7.2. Class Diagram
The class diagram shown in figure 4.3 is the visual representation of the object
oriented model for SADE. It includes the classes described in table 4.2.
Figure 4.3 – Class Diagram of SADE
47
Table 4.2 - Class Diagram Description
Class Description
Packing Detection This class contains the functionality for identifying whether an input
file is packed or not. Provides a function that returns true if packing
is found.
Unpack The unpack class contains the debugging code that runs the input
executable till complete dump is found.
Dump Class encapsulates the byte image of entire file. Provides function
to view file dump in different formats.
Analysis Used by unpack class to detect when to stop the run-and-dump
process i.e. the point where the hidden program code is
completely dumped.
Debug Process File containing variables such as process id assigned by windows
and functions such as setting breakpoints on a line of code on the
process loaded in memory being debugged (called the “debugee”).
Debug Event An event that is raised by the debugger each time a debugging
event occurs for instance a module is loaded etc.
Kernel32.dll Windows API used for debugging tasks. Contains functions to start
and suspend threads, create a new process, read process
memory etc.
File Info Class that extracts the portable executable file information such as
headers, sections, file directories and resources etc.
Debug Module Class that stores information for each individual module imported
by the debug process.
4.7.3. Interaction Diagram
Interaction diagram includes both sequence and communication diagrams. Following
interaction diagrams will define the detailed object design of SADE. There are two
possible scenarios for a file. The input executable file could be a packed file or in the
second case it could be a benign or normal file with no packing obfuscation. The
behaviour of the system is different for the two scenarios.
48
4.7.3.1. Interaction Diagrams for Packed File Scenario
i) The user opens the application to see the input window.
ii) User selects executable through the “browse” window to load executable.
iii) Now user can view the static dump of the file.
iv) System uses static dump to generically detect some packing transformation
on the file.
v) If packing is found, system unpacks it generically and returns the dump of
unpacked file.
vi) The user is now able to retrieve information of original file.
Figure 4.4 shows the sequence diagram for the “packed file” scenario and figure 4.5
shows the communication diagram for the “packed file” scenario.
Figure 4.4 – Sequence diagram for scenario where the input file is packed
4.7.3.2. Interaction Diagrams for Normal (Benign) File Scenario
i) The user opens the application to see the input window.
ii) User selects executable through the “browse” window to load executable.
iii) Now user can view the static dump of the file.
49
iv) System uses static dump to generically detect some packing transformation
on the file.

v) In case of no packing detected, no further processing is required on the file.
vi) File information can be directly retrieved now without needing to pass the
executable through generic unpacking engine.
Figures 4.6 and 4.7 show the sequence and communication diagram for the case
where the input executable is not packed.
Figure 4.5 – Communication diagram for scenario where input file is packed
Figure 4.6 - Sequence diagram for scenario where input file is not packed
50
Figure 4.7 - Communication diagram for scenario where input file is not packed
4.7.4. Data Flow Diagrams
This sub-section contains data flow diagrams for all the processes in SADE. The data
flow diagrams of SADE have been divided into two parts. One is for packing
detection and unpacking (figure 4.8) and the second is for retrieving file information
(figure 4.9).
4.7.4.1. DFD of Packing Detection and Unpacking
As shown in figure 4.8, the flow of data in SADE starts from the input “Browse”
window where the user specifies the path of the input executable file. The path is
used to open the executable file in memory i.e. loading the executable file. A static
dump of the file is taken i.e. dump of the executable file in its original form. Once the
debugging process starts, the unpacking stub attached by the packer to the input
executable file is run and the unpacking stub recovers the actual or real program in
memory at runtime. The static dump of the input executable file is passed to the
packing detection module where the decision is made about whether the file is
packed or not. If the input file is found to have been altered by some compression or
encryption transformation (i.e. packing), it is sent to the debugging module. If no
packing is detected, the original file dump requires no further processing and is sent
51
to the PE file information retrieval module, where file information is extracted from the
executable file which is useful to security analysts for file analysis. If packing was
found in the file, the entry point of the executable is taken from the optional header of
the process (file loaded in memory) and a breakpoint is set on it. From then onwards,
the debugger goes into an unpacking loop where the file is run for a very short
interval and then the process execution is halted, latest dump of the file is taken from
memory and statistical analysis is performed on it. The results of statistical analysis
are taken by debugger to check for stopping criteria i.e. the point at which the actual
program code has been completely uncovered and the original entry point is found.
The original entry point is the entry point of the executable that was packed and a
packing stub attached to it. Once the unpacking process completes and the debug
loop breaks when stopping criterion has been met, the PE file information is retrieved
and the unpacked code with additional file information is shown as output.
Figure 4.8 – Data flow diagram of packing detection and unpacking
4.7.4.2. DFD of PE File Information Retrieval
The data flow of the information retrieval module has been shown separately in figure
4.9, as the information retrieval process is independent of the identification and
unpacking process. When a file is sent to the information retrieval process, the PE
file signature is checked. This confirms that the input file is actually a 32 bit portable
52
executable file. If the PE signature is not found an error is shown and program
terminates. The PE file header which includes the section table is extracted next. The
section table contains the starting address and size of all the sections present in the
executable file. The section headers are displayed. Each section entry is used to
retrieve the entire section and then section information is displayed.
Figure 4.9 – Data flow diagram of PE File Information Retrieval

4.8. Detailed Subsystem Designs
This section describes in detail, the design of components of SADE.
4.8.1. Generic Unpacking
The sub-components of Generic Unpacking Engine have been described in this subsection.
4.8.1.1. Debugger
The debugger module provides various debugging utilities that are instrumental to
the unpacking process as the unpacking principal is based on running the input
executable to the point that the unpacking routine attached by the packer has
completely recovered the original program code and then halting program execution
53
before the unpacked code has chance to run. In this regard, the debugger provides
the facility to create a suspended process or a process with debugger attached to it.
The debugger for SADE has the following major responsibilities:
i) Create a suspended process or create a process with debugger attached
to it.
ii) Suspend and resume process thread during execution.
iii) Raise a debug event each time a debugging event happens such as a
module is loaded, a new thread is created or a child process is created, a
debug exception is raised.
iv) Set and reset breakpoints on any portion of the code.
v) Get thread context for the process. Thread context is a structure provided
by windows that contains the current values of all the registers such as
instruction pointer, stack pointer etc. Thread Context can only be taken
when the thread whose context is being taken is suspended.
vi) Set thread context of the process being debugged. This involves changing
values of the registers and raising bit flags such as the Int3 flag to cause a
breakpoint. The Get and Set thread functionality should be used with
utmost care.
4.8.1.2. Statistical Analysis
Statistical Analysis is the brain center of Generic Unpacking Engine. Statistical
Analysis is required to determine the point where the debugger should halt execution
of the executable being debugged; this point is generally referred to as the Stopping
Condition. Statistical analysis assimilates the stopping criteria to detect when the
stopping condition has been met. Statistical Analysis can use various heuristic and
statistic measures in the stopping criteria.
4.8.1.2.1. Entropy
Change in entropy is the primary criterion to detect when the stopping condition has
been met. “Entropy is the measure of redundancy in the file”. A file can have byte
entropy in the range 0 to 8. Packed files are less redundant and have higher
entropies. An unpacked file or a file that has not been compressed or encrypted has
a more uniform distribution of data, has a higher amount of redundancy and has less
entropy than a packed file. Entropy calculation involves finding the occurrence of the
data elements in the file i.e. the histogram.
54
Entropy of a file dump containing data with values X in the range {x0, x1,……. xn} is
where xi = {x0, x1,……. xn},
p(x) = count of occurrence of x / length of data segment and b=2.
The following variations of entropy have been used as statistical metrics:
i) File Entropy: Entropy of the entire Portable Executable (PE) file.
ii) Block Entropy: The block entropy is not a conclusive measure for statistical
analysis and determining the stopping condition. It does not show an
identifiable pattern or change in the progressive dumps of the file being
debugged. Block entropies have been used to find an identifiable pattern in

the changing entropies as the file executes, more of the unpacked code is
recovered and the redundancy in the file changes. Block entropy is calculated
by dividing the file into 256 or 1024 byte blocks and then calculating the
entropy of each block.
iii) File Section Entropy: Another useful entropy measure is the entropy of the
portable executable file sections. A PE file can have several different sections
like the code section, data section and resource section. Entropy of the code
section can be viewed in isolation as that is the part of the PE file where the
original program code is restored by the unpacking routine generated by the
packer.
iv) Portable Executable File Header Entropy: Every portable executable file
has a header that contains information about the location and size of all the
sections and other necessary information required by the operating system to
run the file. The entropy of the file header is yet another measure that is part
of the stopping criteria.
4.8.1.2.2. Checksum
A checksum is a form of redundancy check, a simple way to protect the integrity of
data by detecting errors in data. It works by adding up the basic components of a
message, typically the assorted bits or bytes and storing the resulting value. Some
interesting checksum properties are: Two or more blocks which are very similar at
binary levels have very close checksum values. The simplest form of checksum
55
which simply adds up the assorted bytes in the data can help classify when the
blocks of data have changed.
4.8.2. Packing Detection
The packing detection module can use various metrics to decide whether an input file
is in normal state or it has been altered by some packing transformation.
4.8.2.1. PE Header, Code, Data, File and Block Entropies
The encrypted code of a packed application is usually stored in a code or data
section of the PE file (A section can be identified as a code section if the Executable
section flag is set, otherwise it can be considered as the data section). As the code of
the program is usually somehow encrypted, it will look like “random”, loosely
speaking. On the other hand non encrypted code sections contain well “structured”
information, namely the opcode of executable instructions and the memory location
of the operands. Non-encrypted data sections also contain somehow structured
information. Following this observation, the byte entropy of the code and data
sections in the PE file can be measured. If the entropy of a section is close to 8,
which is the maximum byte entropy, the section likely contains encrypted code. The
code and data sections are not the only places where the executable packing tool
may hide the code of the original application. There are parts of the PE header
dedicated to optional fields that are not necessary for the correct loading of the
program into memory by the operating system. Some packing tools may therefore
hide encrypted code in those unused portions of the PE header. For this reason it is
useful to measure the byte entropy of the PE header as well. Considering that the PE
file is quite complex and contains other such unused spaces, the entropy of the PE
file as a whole is also taken into account. If a portable executable file is found to have
average and maximum entropy above a respective threshold, it can be classified as
packed.
4.8.2.2. Number of Entries in the IAT (Import Address Table)
The Import Address Table (IAT) of an executable contains the address of the
external functions called by the application. These external functions are imported
from Dynamic Linked Libraries (DLL). Each imported function has an address in the
56

IAT which is written by the operating system loader after the application is launched
and the PE file is mapped into memory. Every time the application calls an external
function, the IAT is queried in order to resolve its address in memory. Most nonpacked
executables import many external functions. For example, they usually import
many functions from the native Windows API, which are used to read/write from and
to files, open new windows on the screen and manage a network connection and so
on. Therefore, the IAT will usually contain many entries, one per each imported
function. On the other hand, packed executables often import very few external
functions. The main reason is that the unpacking routine does not need many
external functions. The basic operations the unpacking routing performs are read and
write memory locations in order to decrypt the code of the packed application on the
fly. For example, no window on the screen or network operation is usually needed.
This is reflected in a small number of entries in the IAT of a packed executable.
Hence, the number of entries in the import address table is an excellent criterion for
deciding whether a file has been packed or not.
4.8.2.3. Number of Standard and Non-Standard Sections
Normal portable executable files usually contain a well defined set of standard
sections. For example, applications compiled using Microsoft Visual C++ usually
contain at least one code section named .text, and two data sections named .data,
and .rsrc section. On the other hand, packed executables often contain code and
data sections which do not follow these standard names. For example, the UPX
executable packing tool usually creates a PE file that contain two sections named
.UPX0 and .UPX1, respectively, and a section named .rsrc. Hence the number of
standard and non-standard sections can be used as an auxiliary criterion for
detecting packing.
4.9. Graphical User Interface (GUI) Design
This section describes the interface of Software Analysis & De-obfuscation engine
(SADE).
4.9.1. Design Principles
This section describes the design principles for the interface of SADE.
57
4.9.1.1. Usability
Interface design emphasizes clarity and ease of use. Microsoft Visual Studio 2005
has been used primarily with the intent to implement the latest GUI standards.
4.9.1.2. Improved User Experience
The simplified application architecture increases the user experience by removing all
confusion and complications. This process prevents user error and enhances
perceived product value.
4.9.1.3. Enhanced Design
The engaging design process renders the technology more attractive to its target
audience because its appearance is inviting, clean and easy to use.
4.9.1.4. Coherence
Interface is "intuitive", for the technical operators who are familiar with the information
security terms, or more precisely packing terminologies. The behavior of the program
is designed to be internally and externally consistent. In other words logical,
consistent, and easily followed. Internal consistency means that the program's
behaviors make "sense" with respect to other parts of the program. For example, if
one attribute of an object (e.g. color) is modifiable using a pop-up menu, then it is to
be expected that other attributes of the object would also be editable in a similar
fashion. One should strive towards the principle of "least surprise". External
consistency means that the program is consistent with the environment in which it
runs. This includes consistency with both the operating system and the typical suite
of applications that run within that operating system. One of the most widely

recognized forms of external coherence is compliance with user-interface standards.
4.9.1.5. State Visualization
Changes in behaviour will be reflected in the appearance of the program in the form
of graphs and dumps. It is important that this internal state be visualized in a way that
is consistent, clear, and unambiguous.
58
4.9.1.6. Shortcuts
System will provide both concrete and abstract ways of getting a task done. Once a
user has become experienced with an application, he/she will start to build a mental
model of the application. She will be able to predict with high accuracy what the
results of any particular user gesture/command will be in any given context. Hence,
the program's attempts to make things "easy" by breaking up complex actions into
simple steps may seem cumbersome.
4.9.2. Software Features
The salient features of the GUI of SADE have been described in this subsection.
i) PE file information Retrieval
ii) Generic Unpacking engine
iii) Memory Dump- HEX and ASCII Dump
iv) Assembly Code View
v) Display of Statistical Matrices
vi) User Help
Support
SADE requires .net platform installed on the system. Pre-requisite of installing and
running the application on any system is that it should have the .net framework 3.5
installed.
4.9.3. Interface Design Model
Figure 4.10 shows the overall layout of the system, with screens shown as boxes and
navigation path shown as arrows.
The screens or windows in the interface design model are ‘Main Window’, ‘Statistical
Details’, ‘File Information’, ‘Generic Unpacking’ and ‘View Dump’. The ‘Main Window’
is the GUI that shows when the application is opened. All other windows are
navigated though it. ‘‘Statistical Details’, ‘File Information’ and ‘Generic Unpacking’
can be opened through the ‘Main Window’. The ‘View Dump’ window can be
navigated through ‘Generic Unpacking’ screen.
59
Figure 4.10 – Interface Design Model of SADE
Figure 4.11 – GUI of PE File Header Information
60
Figure 4.12 – GUI of PE Sections and Details
4.9.3.1. Generic Unpacking
The window in Figure 4.13 is the GUI for Generic Unpacking of the PE File. The user
selects and loads the file. System will then provide the user to view the static dump
as well as the unpacked code of the file.
Figure 4.13 – GUI of Unpacking Details
61
4.9.3.2. File Dump
The system displays the dump of unpacked file in ASCII and Hexadecimal formats as
shown in figure 4.14.
Figure 4.14 – GUI of ASCII and Hex Dump
4.9.3.3. Statistical Details
The system displays the statistical results of both packed and unpacked file in
graphical form as shown in figures 4.15 and 4.16. This will help the user to compare
the data of both files easily.

Figure 4.15 – GUI of Entropy Results
62
Figure 4.16 – GUI of Statistical Result
63

CHAPTER 5
IMPLEMENTATION
This chapter contains the implementation details of SADE. Each SADE module will
be elaborated separately in this chapter (without any programming jargon) with the
help of block diagrams. The overall algorithm of SADE is described in figure 5.1. The
major decisions that the system has to make have been shown along with a high
level view of the tasks that it has to perform.
Figure 5.1 – Algorithm (High Level View) of SADE
The subsequent sections provide implementation details for each SADE module.
5.1. Packing Detection
The first and foremost task that SADE has to perform when presented with a valid
32-bit input executable file is to send it to the Packing Detection module. Packing
detection generically establishes whether the input executable is packed or not i.e. it
is not concerned with the packer and packing algorithm used to pack the executable
but simply finds out whether any brand of packing transformation has been applied
on the file. SADE unpacks the packed executables generically so the details of the
64
specific encryption and/or compression algorithms used to pack the executable are
redundant. The packing detection results should show a high level of accuracy as
only those files which are found to be packed by the packing detection module are
sent to the Generic Unpacking Engine. If the Packing Detection fails to detect a
packed file, then it will not be unpacked by Generic Unpacking and the goal of the
project to automate the process of malware analysis will fail. Packing detection is
deduced through static analysis while Generic Unpacking works on the principle of
dynamic analysis. Various metrics were considered for packing detection before
settling for the block entropy of the static dump of input executable file as primary
criterion.
5.1.1. Entropy
The concept of information is too broad to be captured completely by a single
definition. However, for any probability distribution, a quantity called entropy can be
defined which has many properties that agree with the intuitive notion of what a
measure of information should be. Entropy is a measure of the average uncertainty in
a random variable. It is the number of bits on average required to describe the
random variable. Entropy is measured in bits by taking logarithms to the base 2. If ‘X’
is a discrete random variable then the set X = {x0, x1,……, xn} then probability mass
function p(x) = Pr{X Є x} [22]. The entropy of a random variable X with a probability
mass function p(x) is denoted by
For the purpose of detecting packing, the entropy of the entire file as a whole was
taken but it did not provide any discernible information i.e. there was no detectable
difference between the file entropies of packed and normal files which could be made
a decisive factor for detecting packing. Next, the entropies of the executable file
header and all the file sections were taken separately but they also failed to
contribute to the static analysis for packing detection criteria. Finally, the block
entropy was gauged as the principle metric for the packing detection criterion. For
calculating block entropies, different block sizes were considered such as 128-byte
blocks, 256-byte blocks and 1024-byte blocks. The size of one block was chosen to
be 256-byte after experimental evaluation and comparison. The next subsection

describes the packing detection criterion using 256-byte blocks.
65
5.1.2. Packing Detection Criterion using Block Entropy
Block entropy is determined by dividing the static dump of the input executable file
into 256-byte blocks and then calculating the entropy of each block. A histogram for
the block entropies is maintained. Byte entropy has the range 0 to 8. The histogram
shows the frequency of byte entropies. Normal files were found to have block
entropies less than 7 while packed files lean towards block entropies above 7. The
frequency of blocks having entropy in the range 0 to 7 are classified as normal or
unpacked blocks while number of blocks having entropy above 7 are labelled as
packed blocks. The ratio of packed to unpacked blocks is then used as the deciding
factor for determining whether the input file has some packing obfuscation performed
on it or not. Packing results were studied for a multitude of files packed with different
packers and an experimental threshold was discovered that provides accurate
packing detection for all files. If the ratio of packed blocks in an input executable is
found to be greater than 20%, then the file is classified as packed.
5.1.3. Number of Entries in the IAT (Import Address Table)
Number of entries in the import address table is used as the second determining
factor in packing detection. Through experimentation and study of a vast array of
packed files, a general rule was deduced about packed files that the packed files
always have less than 30 entries in the import address table while normal files have
entries far beyond this number. Packed files have very few entries in the import
address table because packing tends to hide the actual import address table of a
program in order to hide the structure of the file being packed; only those entries are
available which are required by the unpacking stub attached by the packer. The
unpacking stub performs basic read, write and allocate memory operations so the
entries in the import address table of packed files never exceeds a certain threshold
which was experimentally found to be 30.
Block Entropy and number of entries in the Import Address Table collectively serve
as the Packing Detection criterion used in the packing detection module. Figure 5.2
shows the algorithm for SADE that detects whether the input executable has been
modified with any encryption and/or compression transformations or not. The
outcome of the algorithm is either ‘packing detected’ or ‘no packing detected’.
66
Figure 5.2 – Algorithm for Packing Detection
Input Executable
Static Dump of Input Executable
Find First 256‐Byte Block
Calculate Entropy of Block
Update Frequency Histogram
There exists next
256‐Byte block
in static dump?
Calculate Entropy of Block
Update Frequency Histogram
Yes
Calculate Ratio of
Packed Blocks using
Frequency Histogram
Ratio of
Packed Blocks
> 0.2

Number of
Entries in
IAT < 30
Packing Detected
No Packing
Detected
No
Yes
Yes
No
No
67
5.2. Generic Unpacking
The Generic Unpacking Engine takes the input executable files that are detected as
packed by Packing Detection and unpack them using the debugger. The Generic
Unpacking Engine can be divided into two distinct modules. The Debugger module
loads the packed executable in a carefully contained environment and the Statistical
Analysis module determines the stopping point when the unpacking process is
estimated to have completed its task. The algorithm is shown in flowchart in figure
5.3.
Figure 5.3 – Algorithm (High Level View) for Generic Unpacking
68
5.2.1. Debugging
Debuggers exist primarily to assist software developers with locating and correcting
errors in their programs but they can also be used as powerful reversing tools. In
modern operating systems debuggers can be roughly divided into two very different
flavours: user-mode debuggers and kernel-mode debuggers. User-mode debuggers
are the more conventional debuggers that are typically used by software developers.
As the name implies, user-mode debuggers run as normal applications, in user
mode, and they can only be used for debugging regular user-mode applications.
Kernel-mode debuggers are far more powerful. They allow unlimited control of the
target system and provide a full view of everything happening on the system,
regardless of whether it is happening inside application code or inside operating
system code.
5.2.1.1. User-Mode Debugger
For SADE, a user-mode debugger has been implemented using the Win32
Debugging API. User-mode debuggers are conventional applications that attach to
another process (the debuggee) and can take full control of it. The debugger and the
debuggee (the process being debugged) have a parent-child relationship, if the
debugger created the process. If the debugger is “attached” to an already executing
process, then the debugger and the debuggee are independent and the debuggee
can detach from the debugger without terminating. User-mode debuggers have the
advantage of being very easy to set up and use, because they are just another
program that is running on the system (unlike kernel-mode debuggers). The
downside is that user-mode debuggers can only view a single process and can only
view user mode code within that process. Being limited to a single process is not a
problem for SADE because it will be dealing with one packed executable at a time.
Being restricted to viewing user-mode code is not a problem unless the product being
debugged has its own kernel-mode components (such as device drivers) which will
not be the case for SADE normally as it will be debugging executable applications.
When a program is implemented purely in user mode there is usually no real need to
step into operating system code that runs in the kernel. Beyond these limitations,

some user-mode debuggers are also unable to debug a program before execution
reaches the main executable’s entry point (this is typically the .exe file’s WinMain
callback). This can be a problem in some cases because the system runs a
69
significant amount of user-mode code before that, including calls to the DllMain
callback of each DLL that is statically linked to the executable [23]. This is not a
problem for SADE either because it is able to detect when a DLL is loaded and raises
a debug event for it and halts the debugger execution. Furthermore, process
information is useful to have while debugging. There is an endless list of features that
could fall into this category, but the most basic ones are a list of the currently loaded
executable modules and the currently running threads, along with a stack dump and
register dump for each thread.
5.2.1.2. Win32 Debug API
The Windows API are Microsoft's core set of application programming interfaces
(APIs) available in the Microsoft Windows operating systems. Almost all Windows
programs interact with the Windows API; a small number (such as programs started
early in the Windows startup process) use the Native API. The Win32 debug API
provides services over which a native code debugger can be built. It provides
functionality to load a program for debugging (or attach to an existing program).
Information of interest about the process being debugged can be obtained. Win32
API offers services that provide notifications when debugging-related events are
generated in the debuggee process or thread starting or exiting, DLLs being loaded
or unloaded etc. The debug API also allows reading from and writing to the
debuggee memory and instruction stream. The steps to debugging are explained in
the subsequent sections [24].
5.2.1.2.1. Create Debuggee Process or Attach to Existing Process
The Debugger can create the debuggee (process being debugged under the
debugger) as a child process using the
CreateProcess(...DEBUG_ONLY_THIS_PROCESS…); API call or the debugger can
attach to an existing process by using DebugActiveProcess(ProcessID); function. If
the process being debugged is created as a child process it will exist only when
linked to its parent process and terminate when the debugger terminates but if the
debugger attached to an already existing process, then the attached process can
exist independently once it is detached. SADE typically creates a child process for
debugging.
70
5.2.1.2.2. Continue Execution
The debugee process is created in suspended state and waits for the debugger to
allow continue execution by calling ContinueDebugEvent(…);. The debugee process
will then continue execution till the next debug event occurs. The debugger can go
into a debug loop where it waits for debug events to occur, handles each event
accordingly and keeps executing till the stopping criteria is met. When the debugger
is processing debug events it has full control over the debuggee. The Operating
System stops all debuggee threads and does not schedule them until the debugger
says so. Every time a debug event occurs, the debugger halts program execution.
The ContinueDebugEvent(DBG_CONTINUE); is called to continue execution.
5.2.1.2.3. Debug Events
Windows defines several debug events that are fired during the lifetime of the
debuggee. The debugger goes into waiting after the WaitForDebugEvent(..) API is
called. This debugging function can be passed time in micro seconds as argument
and the debugger will timeout after the allotted time whether a debug event has
occurred or not. The debugger waiting in the debug loop is notified of these events.
The debug events being used by SADE are Create Process Debug Event, Create

Thread Debug Event, Exception Debug Event, Exit Process Debug Event, Exit
Thread Debug Event, Load DLL Debug Event, Unload DLL Debug Event and Output
Debug String Event. They are summarized in table 5.1.
5.2.1.2.4. Read and Write Memory
Reading from and writing to a debuggee process’s memory space is supported
through the ReadProcessMemory and WriteProcessMemory API functions (e.g.
modifying debuggee code). The ReadProcessMemory is used to get an image
(dump) of the process in memory.
5.2.1.2.5. Get CPU Registers and Set Breakpoints
The Win32 debug API can be used to get or set the current context or CPU registers
using GetThreadContext(…) and SetThreadContext(…) API calls. The debug API
71
services can be further extended to set breakpoints. Debuggers use breakpoints
extensively behind the scenes to control their debuggees (e.g. while stepping over a
function call, “running to cursor”, or to Break execution). A breakpoint corresponds to
a “breakpoint instruction”, the instruction mnemonic is ‘INT 3’ on the Pentium (0xCC
is the OpCode).
Table 5.1 - Debug Events
Debug Event Description
Create Process Debug Event It is the first event generated by the kernel for a process just
before it begins executing in user-mode. The Create
Process Debug Event indicates that the process was
loaded and not executed.
Create Thread Debug Event This event is generated whenever a new thread is created
in a process being debugged.
Exception Debug Event Generated whenever an exception occurs in the process
being debugged. Examples of exceptions include
breakpoint exception, single stepping code exception, illegal
memory usage etc. The Exception Debug Event is fired
before the first instruction of the process is executed –
called the initial breakpoint.
Exit Process Debug Event Fired when a process exits.
Exit Thread Debug Event Fired whenever a thread that is a part of the process being
debugged exits.
Load DLL Debug Event Fired each time the debuggee loads a DLL. Can be used by
the debugger to load the symbol table corresponding to the
DLL.
Unload DLL Debug Event Fired whenever a process unloads a DLL. Can be used to
unload corresponding loaded symbol tables.
Output Debug String Event Fired in response to the debuggee making the
OutputDebugString API call.
72
5.2.2. Statistical Analysis
Generic Unpacking Engine carries out statistical analysis in conjunction with
debugging the packed executable to determine the point at which the unpacking stub
attached to the process has finished unpacking the original code in memory. It is not
possible to know this exact location therefore it is approximated using heuristics and
statistical analysis. The chief heuristics used for detecting the stopping condition of
the debugger are described in the rest of the section.
5.2.2.1. Code Section Entropy
Change in code section’s entropy is used as a primary metric for detecting the
stopping condition. Change in the entropy of the code is indicative of the end of an
unpacking stage. These entropy values are calculated each time the debugger halts
and whenever a change is detected, the stopping criteria is compared with the
process’s current state to determine whether unpacking is finished and debugging

can be halted or to carry on debugging and wait for next change in section entropy.
5.2.2.2. Block Entropy
Each time the debugger is halted when a debug event occurs or the debugger times
out, snapshot of the debuggee is taken and block entropies are calculated for the
memory dump similar to the process carried out for Packing Detection. The memory
dump is broken into 256-byte blocks, entropy calculations are carried out for each
block and then the frequency of byte entropies is determined to find the ratio of
packed and unpacked blocks in the memory dump. The stopping criteria is said to be
met when the ratio of packed blocks in the memory dump is less than 10%.
5.2.2.3. Checksum
Another useful metric for determining end of unpacking is checksum. As the
compressed code is decompressed in memory, the checksum of the file is increased.
The change in checksum can be compared against a pre-defined threshold to
support the detection of stopping condition.
73
5.2.2.4. ASCII String Literals
Packing tends to mask all the string literals in an executable file. As the unpacking
routine uncovers the hidden code in memory, the string literals inside the executable
are unmasked. The stopping condition can be determined by tracking the number of
string literals inside the executable file loaded in memory as the unpacking
progresses.
5.3. Portable Executable File Information Retrieval
The file information retrieval module uses the structure definitions and details
provided in the Microsoft Portable Executable and Common Object File Format
Specification to extract executable file structures which contain useful information.
The retrieved structures include the Image Header, Optional Header, Section
Headers, Import Address Table, Debug Directories etc.
First the file header is initialized and the module can check the PE file signature to
determine that the input executable file is indeed a 32-bit windows executable. The
optional header contains a field that specifies the number of section headers that
follow the optional header. Each section header is read which contain fields
indicating the relative virtual address of the section and size of the section etc. Each
section is read and the directories that it contains are retrieved from it. The import
address table is read which is hierarchal i.e. each entry in the table points to an entry
for a DLL and that entry in turn points to all the functions called by that particular
DLL. The import address table is traversed to find the name of each DLL and the
names of all the functions called by that DLL till the end of the import address table is
reached.
5.4. Entropy and Statistical Information Graphs
The entropy of the original file as well as the entropy of the final unpacked dump and
other statistical information such as file entropy, section entropy, average entropy
and checksum etc. is displayed to the user as graphs, bar charts and pie charts using
the services provided by “ZedGraph.dll”.
74

CHAPTER 6
SOFTWARE TEST PLAN
Approved by
Supervisor Date
Evaluation Panel Date
Evaluation Panel Date
Evaluation Panel Date

[Other] Date
75
Project Information
Project Release Information
Table 6.1 - Project Release Information
Project Name Software Analysis and De-obfuscation Engine
Project Code SADE
Project Release Version 1.0
Project Release Date 6th August, 2009
Testing Dates 1st July, 2009 to 25th July, 2009
Testing Iteration Number 1
Project Modules Information Software/ Application
Project Team Information
Table 6.2 - Project Team Information
Group Leader Faiza Khalid
Developers Komal Babar, Faiza Khalid
Quality Analyst Abdul Wahab
Tester Nauvera Rehman
76
6.1. Introduction
This test approach document describes the appropriate strategies, process,
workflows and methodologies used to plan, organize, execute and manage testing of
software project SADE.
6.1.1 Scope
In Scope: Test Plan defines the unit, integration, system, regression, and
acceptance testing approach. The test scope includes the following:
� Testing of all functional, application performance and use cases requirements
listed in the Use Case document.
� Quality requirements.
� End-to-end testing and testing of interfaces of all system components that
interact with the SADE.
Out of Scope: The following are considered out of scope for SADE system Test Plan
and testing scope:
� Functional requirements testing for systems outside SADE
� Testing of Business SOPs, disaster recovery and Business Continuity Plan.
6.1.2. Quality Objective
6.1.2.1 Primary Objective
A primary objective of testing application systems is to: assure that the system
meets the full requirements, including quality requirements (non-functional
requirements), fits metrics for each quality requirement and satisfies the use
case scenarios and maintains the quality of the product. At the end of the
project development cycle, the user should find that the project has met or exceeded
all of their expectations as detailed in the requirements.
Any changes, additions, or deletions to the Requirements Document, Functional
Specification, or Design Specification will be documented and tested at the highest
77
level of quality allowed within the remaining time of the project and within the ability
of the test team.
6.1.2.2. Secondary Objective
The secondary objective of testing application systems will be to: identify and
expose all issues and associated risks, communicate all known issues to the
project team, and ensure that all issues are addressed in an appropriate
manner before release. As an objective, this requires careful and methodical

testing of the application to first ensure that all areas of the system are scrutinized
and, consequently, all issues (bugs) found are dealt with appropriately.
6.2. Assumptions and Constraints for Test Environment
Below are some minimum assumptions:
� For User Acceptance testing, the Developer team has completed unit, system
and integration testing and met all the requirements (including quality
requirements) based on Requirement Traceability Matrix.
� User Acceptance testing will be conducted by the supervisor and evaluation
panel.
� Test results will be reported on daily basis. Failed tests and defect list with
evidence will be sent to developer directly.
� Use cases have been developed for User Acceptance testing. Use cases are
approved by the evaluation panel.
� Test results are developed and approved periodically by the Team Lead.
� Test Team will support and provide appropriate guidance to supervisors and
developers to conduct testing.
� Testers should clearly understand on test procedures and recording a defect
or enhancement. Testing Team will schedule meetings with Developers and
supervisors to train and address any testing related issues.
� Developer will receive consolidated list of request for test environment set up,
data set, defect list, etc.
� Developer will support ongoing testing activities based on priorities.
� Test scripts must be approved by Test Lead prior to test execution.
78
� Test team is responsible to identify dependencies between test results and
submit clear request to set up test environment
6.3. Test Methodology
6.3.1. Overview
The purpose of the Test Plan is to achieve the following:
� Define testing strategies for each area and sub-area to include all the functional
and quality (non-functional) requirements.
� Divide Design Specification into testable areas and sub-areas (do not confuse
with more detailed test specification). Be sure to also identify and include areas
that are to be omitted (not tested).
� Define bug-tracking procedures.
� Identify required resources and related information.
� Provide testing Schedule.
6.3.2. Usability Testing
The purpose of usability testing is to ensure that the new components and features
will function in a manner that is acceptable to the customer.
Development will typically create a non-functioning prototype of the UI components to
evaluate the proposed design. Usability testing can be coordinated by testing, but
actual testing must be performed by non-testers (as close to end-users as
possible). Testing will review the findings and provide the project team with its
evaluation of the impact these changes will have on the testing process and to the
project as a whole.
6.3.3. Performance Testing
Performance of SADE was evaluated by two ways. First, known executable files
were packed using a variety of different packers (using their default options) and an
attempt was made to uncompress them using SADE. The unpacking results were
then compared to the original binary. Secondly, some packed copyrighted
79

executables were downloaded from the internet and the unpacking results were
examined to gauge their quality.
The size of the smallest executable tested on the system was 15KB and the largest
file tested on the system was 3MB.
6.3.3.1 Synthetic Samples
A test set of packed binaries was generated from two different executables. The first
one was Glow.exe which is a very small file of 15 KB and the second one was
notepad.exe, a text editor that comes with the default installation of Windows XP. It is
a fairly small executable of 69120 bytes.
6.3.3.2. Packers
Following is the list of packers used on the test files for packing them.
� UPX 3.01w, a free and open source, cross-platform runtime packer, currently
available at http://upx.sourceforge.net/
� ASPack 2.12, a commercial runtime packer. An evaluation version is
currently available at http://www.aspack.com/
� ASProtect 1.35, a commercial executable protector. An evaluation version is
currently available at http://www.aspack.com/
� eXpressor 1.5.0.1, a commercial executable protector. An evaluation version
is currently available at http://www.cgsoftlabs.ro/
� EXECryptor a freeware executable packer available at
www.freedownloadscenter.com/...Tools/EXECryptor.html
� PE Pack 1.0 a freeware packer downloaded from internet
� RLPack a trial version available at http://rlpack.jezgra.net
� PETITE 2.2 trial version available at http://wareseeker.com/Utilities/petite-
2.2.zip/57874
� PETITE 2.3 trial version available at http://www.wareseeker.com
� Winupack 3.9 packer trial version available on internet
� XPack available at
http://www.eurodownload.com/downloadsoftware/...../Download W32/
80
� PE Compact packer free trial version available at
http://www.softpedia.com/get/Programming/Packers-Crypters-
Protectors/PECompact.shtml
� BeRoExePacker Packer trial version available at
http://leechermods.blogspot.com/2008/02/exe-packer-collection-3-bymodssubcc.
html
Obtaining this collection of runtime packers was not an easy task. Some packers
were only available for a fee or as demo versions that require user interaction before
they transfer control to the original executable, some had no easily locatable “official"
home where they could be downloaded from (the reason for including URLs in the
above list), and many packers failed to create working executables from the chosen
sample executables.
6.3.3.3. Packing Detection
There is no overhead involved in packing detection, as static analysis of file is done
which is quite instant. The detection time for various executables is shown in table
6.3. The packing detection time for all input executable files is always same because
the packing detection is performed through static analysis of the input file. The static
packing detection time was found to be 15 milliseconds.
6.3.3.4. Generic Unpacking
Table 6.4 lists the detailed results from executing each synthetic sample under
SADE. For each packer it was noted whether it could generate an executable file
from the original image and whether the packed executable required user interaction
to complete unpacking (some demo versions of commercial packers did so). Then,

the details of the analysis run are listed.
� The termination reason can be either automatic for SADE’s
successful halt of executable before its hidden code executes and
liveness when SADE terminated because it could not detect any
progress, or abnormal termination if for example the file detects the
presence of SADE and terminates itself.
81
� The correct unpacking column shows whether the SADE was able to
show correct unpacking results or not after unpacking routine has
completed its operation.
� The unpacking time column contains the absolute run time of SADE
for a given sample.
Table 6.3 - Packing Detection Results
Executable Name Packer used Packing Detection
Speed
(millisecond)
Correct
detection
Glow.exe UPX 15 (0.0156250 sec) �
Aspkgen.exe UPX 15 �
Noepad.exe ASPack 15 �
Notepad.exe ASProtect 15 �
Notepad.exe BeRoExPacker 15 �
Notepad.exe ExeCryptor 15 �
Notepad.exe PEPack 15 �
Notepad.exe Pe Compact 15 �
Notepad.exe Petite 15 �
Notepad.exe Expressor 15 �
Notepad.exe XPack 15 �
Notepad.exe - 15 �
Glow.exe - 15 �
InternetExplorer.exe - 15 �
Table 6.4 summarizes the results of SADE on the synthetic samples.
82
Table 6.4 - Generic Unpacking Results
Packer Packed file
size(KB)
Termination
reason
Correct
Unpacking
Unpacking
time
(millisecond)
UPX 32 Automatic � 484
ASPack 52.5 Automatic � 468
ASProtect 328 Abnormal � 750
BeRoExPacker 35.5 Automatic � 390
Execryptor 98.0 Automatic � 156
PEPack 98.0 Automatic � 343
PE Compact 48.5 Automatic � 531
Petite 2.2 39 Automatic � 453
Petite 2.3 38.5 Automatic � 421

Expressor 56.8 Automatic � 531
XPack 45.7 Automatic � 625
� Output similarity measure was used in which the original executable dump
was compared to the data that the unpacking result contains. Figure 6.1 to
6.7 containing the graphs of entropy distribution show the results for files
tested in table 6.4:
Figure 6.1 – Notepad.exe (not packed)
83
Figure 6.2 – AsPack (unpacked file by SADE)
Figure 6.3 – BeRoExPack (unpacked file by SADE)
Figure 6.4 – ExeCryptor (unpacked file by SADE)
84
Figure 6.5 – PE Compact (unpacked file by SADE)
Figure 6.6 – Expressor (unpacked file by SADE)
Figure 6.7 – XPack (unpacked file by SADE)
85
6.3.3.5. Unknown Packed Samples (Original Files Not Available)
The packed samples of table 6.5 were run on the system for which original
executable files were not available. Hence the accuracy of results is measured in
terms of strings available in output dump. This criterion is useful, since all the ASCII
strings which will finally be available in file at runtime can be found in the dump as
well (if dump is of unpacked file). One of the main characteristics of executable
encryption and compression is that it hides all the string literals in the executable. As
a packed executable is unpacked and the hidden code becomes available, the
number of string literals in the unpacked code rises. This trend has been used to test
accuracy of results of files for which the unaltered executables were not available for
comparison.
Table 6.5 - Unknown packed samples’ results
File name Packed
file size
(KB)
Termination
reason
strings
available
in output
Unpacking
time
(millisecond)
Aspkgen.exe 193 Automatic � 218
Keygen.exe 83.5 Automatic � 296
GLOW.exe 15.0 Automatic � 281
PETGUI.exe 54.2 Automatic � 953
Unlocker.exe 42.0 Automatic � 421
USBVaccine.exe 392 Automatic � 250
BatteryDoubler.exe 833 Automatic � 734
BitDefenderRemoveTool.exe 195 Automatic � 828
6.3.4. Testing Completeness Criteria
The milestone target is to place the release/application (build) into production after it
has been shown that the system has reached a level of stability that meets or
86
exceeds the client expectations as defined in the Requirements, Functional
Specifications and Design document.

6.4. Test Levels
Testing of an application can be broken down into three primary categories and
several sub-levels. The test categories and test levels are defined in the subsequent
subsections.
6.4.1. Build Tests
6.4.1.1. Level 1 - Build Acceptance Tests
The application was tested to check if it can be built and installed successfully on
different computers. If any Level 1 test case fails, the build is returned to developers
un-tested. The system specifications and environment on which the tests were
carried out are shown in table 6.6
Table 6.6 - Build Test Specifications
S# System Specifications Windows
1 Intel CPU, 1.73 GHz, 760 MB RAM Windows XP 2002
2 Intel Core Duo CPU, 1.60 GHz, 1.75 GB RAM Windows XP (Service Pack 3)
3 Intel Core 2 Duo CPU, 2.0 GHz, 2 GB RAM Windows Vista (Service Pack 2)
6.4.1.2. Level 2 - Smoke Tests
These test cases verify the major functionality at high level. The objective is to
determine if further testing is possible. These test cases emphasize breadth more
than depth. All components have been touched, and every major feature has been
tested briefly by the Smoke Test. If any Level 2 test case fails, the build is returned to
developers un-tested.
87
Level 2a - Bug Regression Testing: Every bug that was “Open” during the previous
build but marked as “Fixed, Needs Re-Testing” for the current build under test, will
need to be regressed, or re-tested. Once the smoke test is completed, all resolved
bugs need to be regressed.
Bug Regression is a central tenant throughout all testing phases. All bugs that were
resolved as “Fixed, Needs Re-Testing” were regressed when testing team was
notified of the new drop containing the fixes.
When a bug passes regression it will be considered “Closed, Fixed”. When a Severity
1 bug fails regression, adopters Testing team also puts out an immediate email to
development. The Test Engineer is responsible for tracking and reporting to
development team and Team Lead the status of regression testing.
6.5. Deliverables Matrix
Table 6.7 provides the list of artifacts that are process driven and produced during
the testing lifecycle. This matrix has been updated routinely throughout the project
development cycle in Test Plan.
Table 6.7 - Deliverable Matrix
Deliverable
Documents
� Test Plan
� Test Schedule
Test Case / Bug Write-Ups
Test Cases / Results
Reports
Test Results Report
88
6.6. Test Environment
6.6.1. Hardware
The Hardware used for testing the system was:
� Intel ® Core Duo CPU
� 1.60 GHz

� 2 GB RAM
6.6.2. Software
The following list of software is the minimum requirement for testing the system
� Windows NT
� MS Office 2000+ Professional
� Task Manager (Testing Tool Server)
� PEiD (freeware commercial tool for testing PE file)
6.7. Bug Severity and Priority Definition
Bug Severity and Priority fields are both very important for categorizing bugs and
prioritizing if and when the bugs will be fixed. The bug Severity and Priority levels will
be defined as outlined in the following tables below. Testing will assign a severity
level to all bugs. The Test Lead will be responsible to see that a correct severity level
is assigned to each bug.
6.7.1. Severity List
The severity levels of the detected bugs are given in table 6.8. It includes severity ID,
severity level and severity description.
6.7.2. Priority List
Table 6.9 gives the priority list of the detected bugs.
89
Table 6.8 - Severity List
Severity ID Severity Level Severity Description
1 Critical The module/product crashes or the bug causes nonrecoverable
conditions. System crashes, GP Faults, file
corruption, or potential data loss, program hangs requiring
reboot are all examples of a Severity 1 bug.
2 High Major system component unusable due to failure or incorrect
functionality. Severity 2 bugs cause serious problems such as
a lack of functionality, or insufficient or unclear error messages
that can have a major impact to the user, prevents other areas
of the app from being tested, etc. Severity 2 bugs can have a
work around, but the work around is inconvenient or difficult.
3 Medium Incorrect functionality of component or process. There is a
simple work around for the bug if it is Severity 3.
4 Minor Documentation errors or signed off Severity 3 bugs.
Table 6.9 – Priority List
Priority ID Priority Level Priority Description
5 Must Fix This bug must be fixed immediately; the product
cannot ship with this bug.
4 Should Fix These are important problems that should be fixed as
soon as possible. It would be an embarrassment to
the project team if this bug shipped.
3 Fix When Have Time The problem should be fixed within the time available.
If the bug does not delay shipping date, then fix it.
2 Low Priority It is not important (at this time) that these bugs be
addressed. Fix these bugs after all other bugs have
been fixed.
1 Trivial Enhancements/ Good to have features incorporatedjust
are out of the current scope.
6.8. Test Personnel
The test personnel and their respective responsibilities are given in table 6.10.
90
Table 6.10 - Test Personnel
Parties Contact Person Roles and Responsibilities
DS Aisha Khalid Overall supervision
Work stream management

Review of Test Plan and Test Cases
Monitor testing schedule and procedure
Test Team Lead Komal Babar QA team Lead
Development of Test Plan and Test Cases
Managing and directing testing activities
To ensure testing activity comply with project
requirements and test plan
Test Engineer Nauvera Rehman Conduct testing
Develop test cases and conduct testing
Submit Bug Reports
6.9. Test Schedule
The test schedule is given in table 6.11. It documents the start and end dates of
testing for the different SADE components as well as the number of days spent on
testing for each module. The requirements document and execution of test cases
took the longest time in the testing process while testing the design document and
walkthrough of test plan took the least time.
Table 6.11 - Test Schedule
Task Start Date End Date Days
Document Requirement 01-07-09 05-07-09 5
Document Design 06-07-09 07-07-09 1
91
Create Test Cases 08-07-09 10-07-09 2
Conduct walk-through of Test Cases and
Test Plan
10-07-09 11-07-09 1
Test Case Execution 12-07-09 17-07-09 5
Regression Testing 17-07-09 21-07-09 3
Sign off on Test Results 30-07-09 30-07-09 2
6.10. Test Cases
This section contains the test cases for all the modules of the application. Each test
case has been given a test case number and has certain preconditions. The name of
the tester and date of testing have also been documented.
6.10.1. Module information
Test cases were written for each module of the system. Table 6.12 contains the
names of the modules for which test cases have been generated.
Table 6.12 - Module Information
Description The software comprises of various modules integrated together.
Modules/
Test Components
1. Packing Detection
2. Generic Unpacking (Stopping Criteria)
3. PE File Information
4. User Interface
6.10.2. Test case table
Tables 6.13 to table 6.20 describe the test cases for testing the application.
92
Table 6.13 - Test Case: Packing Detection
Test case Name: Packing Detection
Test case Number FN-REQ-02-PackD0001
Precondition Visual studio 2005 must be installed
PE 32 Input file must be selected.
Procedure Test all options
-> Click browse button
-> Input executable file
-> Compare the packing detection result with PEiD results

for the same executable
Expected Result Packing detection result matches PEiD Results.
Actual Result Packing detection result matches PEiD Results.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Komal Babar
Date 18-06-09
Remarks <Additional remarks>
93
Table 6.14 - Test Case: Generic Unpacking
Test case Name: Generic Unpacking
Test case Number FN-REQ-03-Unpack0001
Precondition Visual studio 2005 must be installed
PE 32 Input file must be selected.
Packing has been detected.
Procedure Test all options
-> Click browse button
-> Input executable file
-> Click 'Yes' on message box which pops up and ask user
permission to extract hidden file.
-> Compare the output file dump with Packed input file
dump.
Expected Result Meaningful strings found in output dump reflecting
unpacked file UI and string outputs of executable.
Actual Result Meaningful strings reflecting file menu and other UI
features found in output.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Faiza Khalid
Date 18-06-09
Remarks <Additional remarks>
94
Table 6.15 - Test Case: PE File Information
Test case Name: PE File information
Test case Number FN-REQ-05-PEInf0001
Precondition Visual studio 2005 must be installed
PE 32 Input file must be selected.
Procedure Test all options
-> Click browse button
-> Input executable file
-> Click on "Header information" in file Info menu
-> Click on "COFF header" button
-> Click on "Optional Header" button
->Click on "Section Header" button
-> Click on "Data directories" button
-> Click on "Section information" link in file Info menu
->Click on Tree-view Sections to see section details
Expected Result All fields correctly match with PEiD results for file info.
Actual Result All fields correctly matched with PEiD results.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes

throughout debugging>
Tester Nauvera Rehman
Date 18-06-09
Remarks <Additional remarks>
95
Table 6.16 - Test Case 1: Graphical User Interface
Test case Name: Graphical User Interface
Test case Number FN-REQ-04-GUI0001
Precondition .net platform must be installed
Procedure Test all options in left panel (menu) and related controls
-> Click browse button
-> Input executable file which is not packed.
Expected Result -> The Packing Detection icon turns green and title bar
displays "File is not packed"
-> Menu options "runtime details" and "other statistics"
disabled.
Actual Result -> Packing Detection icon turned green and title bar
displayed "File is not packed"
-> "runtime details" and "other statistics" links disabled.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Abdul Wahab
Date 18-06-09
Remarks <Additional remarks>
96
Table 6.17 - Test Case 2: Graphical User Interface
Test case Name: Graphical User Interface
Test case Number FN-REQ-04-GUI0002
Precondition .net platform must be installed
Procedure Test all options in left panel (menu) and related controls
-> Click browse button
-> Input executable file which is packed.
-> A message box prompts if "you want to extract the
hidden code". Click No
Expected Result -> The Packing Detection icon turns red and title bar
displays "Packing detected"
-> Menu options "runtime details" and "other statistics"
disabled.
Actual Result -> Packing Detection icon turned red and title bar
displayed "Packing detected"
-> "runtime details" and "other statistics" links disabled.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Abdul Wahab
Date 18-06-09
Remarks <Additional remarks>
97
Table 6.18 - Test Case 3: Graphical User Interface
Test case Name: Graphical User Interface
Test case Number FN-REQ-004-GUI0003
Precondition .net platform must be installed

Procedure Test all options in left panel (menu) and related controls
-> Click browse button
-> Input executable file which is packed.
-> A message box prompts if "you want to extract the
hidden code". Click Yes
Expected Result -> The Packing Detection icon turns red and title bar
displays "Packing detected"
-> All menu options are enabled.
Actual Result -> Packing Detection icon turned red and title bar
displayed "Packing detected"
->All menu options were enabled.
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Abdul Wahab
Date 18-06-09
Remarks <Additional remarks>
98
Table 6.19 Test Case: Packed Blocks Graph
Test case Name: Packed Blocks Graph
Test case Number FN-REQ-000-Graph0001
Precondition .net platform must be installed
Input file must be loaded.
Procedure Test all options for graph display of packed blocks
-> Click the link "Packed Blocks" on left panel.
Expected Result -> The Entropy graph is displayed correctly
Actual Result -> The Entropy graph displayed correctly
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Komal Babr
Date 18-06-09
Remarks <Additional remarks>
99
Table 6.20 - Test Case: Graph Other Statistics
Test case Name: Graph-Other statistics
Test case
Number
FN-REQ-004-Graph0002
Precondition .net platform must be installed
Packed file is loaded and unpacked by system
Procedure -> Click on "Other statistics" link on left panel
Expected Result -> Line graph is displayed showing statistical analysis
Actual Result -> Line graph is displayed showing statistical analysis
Status Pass
Bud ID <In case the test fails, specify a bud ID to track its changes
throughout debugging>
Tester Komal Babar
Date 18-06-09
Remarks <Additional remarks>
100
6.11. Test Results Report
This subsection summarizes the test results.

� All software modules preliminary execution shows desired results
� All modules integration testing reflect no problem
� Desired results of packing detection and generic unpacking algorithms
demonstrate improved values of parameters.
� The mean values of the results are given in table 6.21.
Table 6.21 - Test Results Report
Packing detection speed 15 millisecond
Packing detection rate 100%
Generic unpacking speed 470 millisecond
Similarity of output dumps with
original file (comparing entropy
results).
78%
PE file information accuracy 100%
101

CHAPTER 7
USER GUIDE
This chapter provides a walkthrough for the users of SADE. The subsequent sections
explain how to use SADE from start to finish with the help of screen shots.
7.1. Starting SADE
SADE has been developed for the Windows platform and requires 32-bit portable
executable files as input. Start SADE by double-clicking the SADE shortcut icon on
your Windows desktop or through the Start Menu. Figure 7.1 shows the main screen
of the program. This is the first window that opens when SADE is started.
Figure 7.1 – Starting SADE
7.2. Loading the Executable
Whenever you open this toolkit, you will select input file by clicking on “Browse”
button. Load your required executable through the browser window that will pop up.
Figure 7.2 shows the location of the “Browse” button and figure 7.3 shows the
browser window that navigates the path of the executable file that the user wants to
load.
102
Figure 7.2 – “Browse” Button
Figure 7.3 – Selecting Input File
Once a file is selected, an alert box will appear with a message mentioning whether
the file is packed or not. If the file is found to be packed, user is queried if he/she
wants to extract the hidden code or not. Figure 7.4 shows the state of SADE when
the input executable file is encrypted and compressed while figure 7.5 is screenshot
of SADE when the input executable is benign or normal.
103
Figure 7.4 – Packing Detected
Figure 7.5 – Packing Not Detected
7.3. Viewing PE File Information
After allowing the application to extract hidden code; the user will be able to view all
the static and dynamic information of the file. Static file information contains:
o Header Information
o Section Information
o Static Dump
104
7.3.1. Header Information
In this window, all PE file header are displayed accordingly. It begins with File

Header that consists of a COFF file header and an optional header.
7.3.1.1. COFF (Common Object File Format) Header
The COFF header describes the type of target machine, size of section table and
creation date and time of the file etc. Figure 7.6 shows the ‘COFF Header’ tab.
Figure 7.6 – View COFF Header
7.3.1.2. Optional Header
Every image file has an optional header that provides information to the loader. This
header is optional in the sense that some files (specifically, object files) do not have
it. For image files, this header is required. The optional header magic number
determines whether an image is a PE32 (32-bit) or PE32+ (64-bit) executable. Figure
7.7 shows the ‘Optional Header’ tab in the ‘PE File Header Information’ window pane.
In this portion, following sections of the file are displayed:
� The size of the code (text) section or the sum of all code sections if there are
multiple sections.
105
� The size of the initialized data section, or the sum of all such sections if there
are multiple data sections.
� The size of the un-initialized data section, or the sum of all such sections if
there are multiple BSS sections.
� The address of the entry point relative to the image base when the executable
file is loaded into memory. For program images, this is the starting address.
For device drivers, this is the address of the initialization function. An entry
point is optional for DLLs. When no entry point is present, this field must be
zero.
Figure 7.7 – View Optional Header
7.3.1.3. Section Header
Each row of the section table is, in effect, a section header. This table immediately
follows the optional header, if any. This positioning is required because the file
header does not contain a direct pointer to the section table.
In this portion following sections of the file are displayed:
� Name of the section; an 8-byte, null-padded UTF-8 encoded string.
� The total size of the section when loaded into memory.
� Virtual address of the executable i.e. the address of the first byte of the
section relative to the image base when the section is loaded into memory.
106
� The size of the section (for object files) or the size of the initialized data on
disk (for image files).etc
� The file pointer to the first page of the section within the COFF file.
� The file pointer to the beginning of relocation entries for the section. This is
set to zero for executable images or if there are no relocations.
� The file pointer to the beginning of line-number entries for the section.
� The number of relocation entries for the section. This is set to zero for
executable images.
� The number of line-number entries for the section.
Figure 7.8 shows the ‘Section Header’ tab in the ‘PE File Header Information’ window
pane.
Figure 7.8 – View Section Header
7.3.1.4. Data Directories
Each data directory gives the address and size of a table or string that Windows
uses. These data directory entries are all loaded into memory so that the system can
use them at run time. A data directory is an 8-byte field. This portion contains
information about the import table i.e. its size and address. Figure 7.9 shows the
‘Data Directories’ tab in the ‘PE File Header Information’ window pane.

107
Figure 7.9 – View Data Directories
7.3.2. Section Information
This portion of file information retrieval displays different sections of the import table
of the file. The import directory table contains address information that is used to
resolve fix up references to the entry points within a DLL image. The import directory
table consists of an array of import directory entries, one entry for each DLL. The last
directory entry is empty (filled with null values), which indicates the end of the
directory table.
Each import directory entry contains following Information:
o DLL Name
o Time and date stamp
o Name RVA (The address of an ASCII string that contains the name of the
DLL) etc.
Figure 7.10 shows the Import Address Table as shown in the ‘PE Sections and
Details’ window of SADE.
108
Figure 7.10 – View Import Address Table (IAT)
For each DLL, the details of APIs called by it are displayed accordingly as shown in
Figure 7.11.
Figure 7.11 – View APIs Called
7.3.3. Static Dump
In this section, the static dump of the executable is displayed in ASCII and Hex
format. This dump is taken without running the file. Figure 7.12 shows the window
that displays the dump in ASCII format.
109
Figure 7.12 – Static ASCII Dump
Figure 7.13 shows the window that displays the Hex representation of the static
dump.
Figure 7.13 – Static Hex Dump
7.4. Viewing Runtime Details
This portion describes the runtime details of the executable. The runtime details are
gathered during the unpacking process so the runtime or dynamic details are only
available for those files that are classified as packed. For normal or benign
executable files, only the information gathered through static analysis is available.
For packed files, dynamic analysis is performed and the gathered data is presented
to user in useful format such as tables and graphs. These runtime details include
110
o Debug Events
o Modules Loaded
o Unpacked File Dump
Figure 7.14 shows the ‘Runtime Details’ window of SADE. The Process ID of the
input executable when it was loaded in memory is also shown here.
Figure 7.14 – Runtime Details
7.4.1. Viewing Debug Events
Figure 7.15 shows the ‘Debug Events Details’ window of SADE.
Figure 7.15 – Debug Events
111
In this section, the details of debug events raised by the process being analyzed are
shown in the table. The entries of the tables are
o Event (name of the debug event)
o Address (the memory address of the raised event)

o Source (The source of the raised event)
7.4.2. Viewing Modules Loaded
In this section the modules loaded by the executable for its execution are displayed.
Each module has a base address, entry point and size etc. Figure 7.16 shows the
‘Debug Events Details’ window of SADE.
Figure 7.16 – Modules Loaded
7.4.3. Viewing Unpacked File Dump
This section displays the dump of complete code in ASCII and Hex format. This
memory dump is larger in size than the static dump. Figure 7.17 shows the window of
SADE that displays the unpacked file dump which is available in ASCII as well as
Hexadecimal representation.
112
Figure 7.17 – Unpacked File Dump
7.5. Viewing Entropy Distribution
This section presents graphical representation of entropy results. The Block Entropy
Distribution of the original file is shown side by side with the Block Entropy
Distribution of the final unpacked dump.
Figure 7.18 shows the ‘Packed Blocks’ window of SADE. The entropy distribution of
the input file is shown in its original form and below it the entropy distribution of the
unpacked data is displayed. The x-axis of the graphs shows byte entropy which has
the range 0 to 8. The y-axis of the graphs show the number of 256-byte blocks. The
bar graphs of the original packed file have peaks towards the right of the graph
because packed files have high block entropies. The unpacked files have a more
random distribution of data as well as greater size of data than the input file. The
unpacked file’s entropy distribution bar graph has peaks towards the left showing
majority of 256-byte blocks having small entropy values.
113
Figure 7.18 – Entropy Distribution
7.6. Other Statistics
Other statistical measures like checksum, file entropy, average block entropy of the
file etc. are displayed in this section. Figure 7.19 shows the ‘Other Statistics’ window.
Figure 7.19 – Other Statistics
114
7.7. History
This section displays the percentage of packed files and normal files in the form of a
pie-chart. SADE maintains a history of files executed on it and this history is
displayed as shown in figure 7.20.
Figure 7.20 – History
7.8. Help
SADE provides a help document with a walk through for novice users, an index and
searching capabilities within the document. The snapshot of the help document is
shown in figure 7.21.
Figure 7.21 – Help Window
115

CHAPTER 8
FUTURE WORK
SADE successfully unpacks the hidden code from an obfuscated file and retrieves
useful information from the executable structure but still there is room for future work
in the project which is described in the following subsections.
8.1. Disassembly of Code

A disassembly module can be integrated with SADE as future work to convert the
compiled code inside the executable to assembly language. This will be of further
assistance in executable analysis. SADE has been designed to be extensible and
fully supports both implementation of a disassembler module or integration of an
outsourced disassembler into the project. The disassembly module was out of the
scope of our project because it is a huge undertaking in itself. With the introduction
of a disassembler, SADE can be used as a cracking tool by the reverse engineering
community. The debugger that has been implemented for SADE has the functionality
to put breakpoints on any line of code and to view the state of the CPU registers as
well as to see the process stack. The disassembly module can be integrated with the
debugger to allow the user to put a breakpoint on any assembly instruction, single
step through the code as well as see the state of the registers at any point during the
process execution.
8.2. Reconstruction of Dumped Executable
The unpacked dump is taken as a snapshot of the process in memory. The unpacked
dump is not executable because the Import Address Table requires reconstruction.
Fields in the PE file header such as the Entry Point of the executable need to be
corrected before the executable file can be run without first executing the unpacking
routine code. This task is usually independently performed by executable
reconstruction tools such as ImpRec. However, an import reconstruction tool can be
116
integrated into SADE to provide an output unpacked executable file that is
executable and can be analyzed further with any standard executable tool.
8.3. Portability with 64-bit Windows Platform
SADE can be ported to work on 64-bit windows executable file as well. Currently it
only works for 32-bit files.
117

ANNEX - A
PROJECT CHARTER
Project Charter
for
SADE
(Version 1.0 approved)
Prepared by
Faiza Khalid, Komal Babar, Nauvera Rehman, Abdul Wahab
Supervised by: Lec. Aisha Khalid, Dr. Fauzan Mirza
118
Project Description
The intent of the project is to develop a software analysis toolkit that will generically
(without finding out the specifics of the compression and encryption scheme used)
detect and unpack a packed windows executable file (PE32 file) and make the
unpacked code available for analysis. The motivation behind the project is that the
problem to generically unpack malware executables has been solved commercially
but the competitive nature of the anti-virus software industry refrain them from
publishing a solution. There is hence a lack of publicly available generic unpacking
tools that can handle a wide range and variety of packed executable files without
knowing the exact packer used to pack it. Furthermore, the growing epidemic of
malware has strengthened the need to have more freely available tools to help in
analyzing packed executable files.
Business Objectives and Success Criteria

Business Objective Success Criteria
Design and implement a technique to
generically detect obfuscated (packed)
windows executables and to extract and
dump the code without running the
executable.
Objective is measurable by testing the
implemented technique on sample
packed executables and comparing
results with published statistics of
existing unpackers.
Design and develop a user-friendly
interface to analyze the recovered
executable code.
Objective is measurable by feedback of
toolkit from beta testers.
Contribute to research in the domain of
code obfuscation and malware analysis.
Objective is measurable by publication of
research.
119
Stakeholders
Internal Stakeholders:
Project Team Members
Project Supervisor
CS Dept, MCS
External Stakeholder:
Security Analysts
Vision
Software Analysis and De-obfuscation Engine (SADE) is a toolkit that generically
unpacks packed executables for security analysts who need to analyze potentially
malicious packed executables for creating signatures and understanding attacks.
Project Scope
The software product will be a toolkit that will generically detect and unpack a packed
windows executable file (PE32 file) and make the encrypted and compressed file
available for analysis purposes. The chief users of the application will be security
analysts and main area of application for software is malware analysis. Malware
authors use packing techniques to hide their malicious code and security analysts
need to uncover the hidden executable code for creating signatures and
understanding attacks. The unpacked executable file may or may not be a valid
executable (i.e. able to run on Windows platform) but the unpacked code and other
information about the file such as the modules and resources loaded by the
executable will be available through the toolkit. This toolkit will be invaluable to
security analysts as their time is expensive and individual malware samples can take
hours to analyze and manual unpacking is a tedious and error prone process.
120
Assumptions and Dependencies
SADE is for Windows 32-bit platform and works for Portable Executable files. SADE
might not work on every single type of packing obfuscation or on multiple layers of
packing obfuscations. The packed input executable file might contain code that can
detect the presence of SADE and our software may or may not be able to handle it.
Constraints

SADE might not work on every single type of packing obfuscation or on multiple
layers of packing obfuscations.
SADE will work only for Win PE32 files.
The packed input executable file might contain code that can detect the presence of
SADE and our software may or may not be able to handle it.
Milestones
Milestone Completion Date
1. Research paper on Generic
Unpacking Techniques
4th January,2009
2. Requirements Document 28th January, 2009
3. Packing Detection Algorithm 15th April, 2009
4. SADE Implemented 4th May, 2009
5. SADE tested 16th June, 2009
6. Project completion 20th June, 2009
121
Deliverables
Deliverables
1 Chief deliverable of project will be a toolkit for executable binaries with a deobfuscation
engine for the use of security analysts. Software Analysis toolkit:
SADE
2 Research paper on the developed unpacking and de-obfuscation technique.
3 Project Scope Statement
4 Requirements Model, Analysis Model and Design Model
5 WBS, project schedule, software development plan, software Implementation
plan, software test plan
6 Software Implementation description
7 Final Project Report
8 User Manual
Approvals
Approval Decision
� Approved, development of detailed project plan is authorized
� Approved, project execution is authorized
� Approved, but project is on hold until future notice
� Revise charter and resubmit for approval
� Charter and project proposal are rejected
122
Role or Title Name and Signature Date
Revision History
Name Date Reason For Changes Version
123

ANNEX - B
RESEARCH PAPER
“Generic Unpacking Techniques”
124
Abstract—Traditional signature-based malware
detection techniques rely on byte sequences, called
signatures, in the executable for signaturematching.
Modern malware authors can bypass
signature-based scanning by employing the
recently emerged technology of code obfuscation
for information hiding. Obfuscation alters the byte

sequence of the code without effectively changing
the execution behavior. A commonly used
obfuscation technique is packing. Packing
compresses and/or encrypts the program code.
Actual code stays hidden till runtime (when the
executable is unpacked) making it immune to
static analysis. Since every packer has its
associated unpacker to undo packing, successful
generic unpackers are difficult to come by. A few
automated unpacking techniques have been
published so far that attempt to unpack packed
binaries without any specific knowledge of the
packing technique used. In this paper, we aim to
provide a comprehensive summary of the currently
published prevalent generic unpacking techniques
and weigh their effectiveness at dealing with the
spreading nuisance of packed malware.
Dynamic analysis is a promising solution to the
packing problem as every packed binary has to
inevitably unpack itself for execution. Emulation
(running code in a virtual environment) is an
effective and powerful technique for generic
unpacking. We will be reviewing various
unpacking techniques based on emulation and a
few other hybrid and alternative approaches.
Index Terms – obfuscation, generic unpacking,
malware, dynamic analysis, emulation, virtual
machines
INTRODUCTION
ne of the most prevalent features of
modern malware is obfuscation.
Obfuscation is the process of modifying
something so as to hide its true purpose.
Obfuscation increases the complexity of a
program to make reverse engineering harder.
Three of the most important practical
obfuscations are packing, code reordering, and
junk insertion. This paper only discusses
packing, which is the most commonly used
anti-reverse engineering technique. The
packing obfuscation replaces a binary (code
and data) sequence with a data block
containing the binary sequence in packed form
(encrypted or compressed) and a decryption
routine that, at runtime, recovers the original
binary sequence from the data block. The
result of the packing obfuscation is a program
that dynamically generates code in memory
and then executes it. There are a large number
of tools available for this purpose commonly
known as executable packers [29, 30, 31, 32,
33]. Packing describes the process of
encrypting a program and adding a runtime
decryption routine to it, such that the behavior
of the original program is preserved. Programs
obfuscated by packing consist of a decryption
routine (an instruction sequence that generates
code and data), a trigger instruction that
transfers control to the generated code, an
unpacked area (the memory area where the
generated code resides), and a packed area (the
memory area from where the packed original

binary is read) [10]. Packers embed an
unpacking stub into the packed program and
modify the program entry point to point to the
unpacking stub. When the packed program
executes, the operating system reads the new
entry point and initiates execution of the
packed program at the unpacking stub. The
purpose of the unpacking stub is to restore the
packed program to its original state and then to
transfer control to the restored program.
Packers vary significantly in their degree of
sophistication. The most basic packers simply
perform compression of a binary’s code and
data sections. More sophisticated packers not
only compress, but also perform some degree
of encryption of the binary’s sections. Finally,
many packers will take steps to obfuscate a
binary’s import table by compressing or
encrypting the list of functions and libraries
that the binary depends upon. In this last
scenario, the unpacking stub must be
sophisticated enough to perform many of the
functions of the dynamic loader, including
loading any libraries that will be required by
the unpacked binary and obtaining the
addresses of all required functions within those
libraries [1].
Packing is applied on legitimate
software to reduce the size of executable
files and to protect the intellectual
property that is distributed with the code.
Malware writers use packing to bypass
signature-based detection as packing
completely modifies the binary foot-print of a
program. The malicious code resides in the
executable file in an encrypted form, and is not
exposed until the moment the executable is
run. A static analysis of a packed program will
view the obfuscated block as non-instruction
data or omit its analysis entirely, thereby
hiding the program’s true intentions. The
percentage of new malware that is packed is on

Generic Unpacking Techniques
Komal Babar and Faiza Khalid, MCS, NUST.

O
125
the rise, from 29% in 2003 to 35% in 2005 up
to 80% in 2007. This situation is further made
complex by the ease of obtaining and
modifying the source code for various packers.
Modifications to the source code can introduce
changes in the compression or encryption
algorithm, create multiple layers of encryption
and/or add protection against reverse
engineering. Currently, new packers are

created from existing ones at a rate of 10–15
per month [21]. According to WildList
03/2006, over 92% of malware file out there
are runtime packed. Only 54 out of 739 files
are not packed [17].
Unpacking is the recovering of the
original program that has the same relevant
behavior as the packed program. Unpacking
consists of constructing a program instance
which contains the embedded program,
contains no code-generating routine, and
behaves equivalently to the self-generating
program [12]. Malware authors understand that
analysts will attempt to break through any
obfuscation, and as a result they design their
malware with features designed to make deobfuscation
difficult. De-obfuscation can never
be made truly impossible since the malware
must ultimately run on its target CPU; it will
always be possible to observe the sequence of
instructions that malware execute. In all
likelihood, the malware author’s goal is simply
to make analysis sufficiently difficult that a
window of opportunity is opened for the
malware in which it can operate without
detection [1]. Dedicated decryption routines
can be developed to detect any packed virus
but writing such a routine requires that the
virus be analyzed completely. A thorough
analysis of the malware and then developing
and testing a specific decryption routine could
take a lot of work and time to accomplish.
Moreover, dedicated routines fail to detect
modifications to the packing routine. Generic
unpacking attempts to unpack obfuscated
binaries without determining the exact packing
technique used to pack the program. In this
paper, we intend to identify, compare and
contrast various existing generic unpacking
techniques and highlight their strengths and
weaknesses.
DETECTING PACKING
It can be useful to first detect that an
executable has been packed using some
encryption or compression technique before
setting to the task of unpacking it generically.
One of the heuristic methods used for packer
detection is to see how the byte distribution
(entropy) is changed by the packers as well as
check import tables of the executable under
observation [8]. Analyzing byte distribution
involves determining the frequency of
occurrence of the byte distributions of the file
contents. Such a frequency analysis is
advantageous in detecting compressed data as
effective compression techniques tend to
increase the entropy of byte distributions in the
file. This is done without unpacking data in the
file from its compressed form and therefore

helps in detecting compressed files without
actually decrypting its contents which
otherwise would make the system vulnerable
to potentially malicious executables [9].
However, this technique alone cannot be used
as a criterion to identify a packed executable as
legitimate copyright protected software also
use packing for information hiding of an
executable to evade disassembly of binary
code and reduce size for distribution over the
Internet.
DYNAMIC ANALYSIS TECHNIQUES
Once a packed executable has been
detected, the executable then needs to be
unpacked correctly. Dynamic analysis is a
promising answer to the problem of hidden
code extraction because it does not depend on
signatures. Dynamic analysis techniques make
use of the fact that no matter what packing
technique is applied to the executable, the
actual code or its equivalent will ultimately be
available in memory and sooner or later, it will
execute at some point at run-time. This innate
property of a packed executable is the key to
extracting the hidden binary code or its
equivalent as a raw memory dump. However,
it is not certain where the hidden binary code
lies in the memory and when the execution
flow jumps to the hidden code. Apart from
this, another essential piece of information for
analysis of an executable is the original entry
point (OEP). The original entry point is the
first hidden instruction being executed when
the program control flow is transferred from
the decryption/unpacking routine to the hidden
code [18]. Dynamic analysis is less susceptible
to being tricked by the use of obfuscation or
self-modifying code. When using dynamic
analysis techniques, the issue arises in the
choice of environment in which the sample
should be executed. The use of a sacrificial
lamb (a dedicated standalone machine that is
reinstalled after each dynamic test run) is not
an efficient solution because of the overhead
involved. In addition to determining the type
of environment to be used for dynamic
126
analysis, one can also discern the different
types of information that can be captured
during the analysis process [15].
Run and Dump Unpacking
Generally, a packed program upon
executing first unpacks the program in
memory, loads the required libraries, and
accesses the imported functions by scanning
the import address table of the executable. The
structure of the original program is exposed
and a snapshot of the memory image can be
taken at this point and stored in a file (called

dumping). This file can then be analyzed for
signature analysis by virus scanners. The
advantage of this technique is that the critical
and complex task of unpacking is done by the
stub itself. The paradox of this technique is
figuring out exactly when the snapshot of the
memory should be taken. If the snapshot of the
memory is taken prematurely (before the
program has been completely unpacked) the
entire hidden code will not be obtained for
analysis. And if the snapshot is delayed for too
long, the program will start executing the
unpacked code, making the system vulnerable
to malicious attacks [1]. Furthermore, the
dumped executable requires some additional
fixing of header structures, but the code itself
is visible in its original form and available for
reverse engineering and static analysis. This
simple method works for most kinds of
executable packers and encryptions, as the
unpacking function typically extracts the
complete program right at the start, and does
not interfere with later computations (but this
is not always the case). The biggest drawback
of this method is that the executable must be
loaded, which might not be acceptable in all
cases as it cannot always be guaranteed that
the program is terminated before any malicious
function is called. Sandbox environments can
be used to avoid the potential damage [11].
Sandbox is a virtual environment provided to
the executables to run, so that they cannot
exploit the actual system while they are being
analyzed [2]. Sandboxes are usually found in a
kid’s playground. Kids use it to play in,
building and tearing down structures. A
sandbox inside a scanner engine is also a
playground – for computer files [19].
Sandboxing can be performed in two ways:
Sandboxing using Virtual Machine-where the
executable runs on a subset of the actual
system in a constrained controlled
environment and Sandboxing using Emulationwhere
the sandbox is a virtual world where
everything is emulated drawing a concrete wall
between the real and the emulated
environment.
Virtual Machine
Running the executable in a virtual machine
(i.e. a virtualized computer), such as one
provided by VMware [24], is a popular choice.
In this case, the malware can theoretically only
damage the virtual PC and not the real one.
After performing a dynamic analysis, the
infected hard disk image is simply discarded
and replaced by a clean one (i.e., so called
snapshots). Most (or all) code is run directly in
an isolated hardware environment which can
be done using software solutions (VMware) or

using hardware features (new Intel/AMD
processors, IBM z/VM). It requires support
from the OS or kernel-level modifications
(drivers). In virtualization, code is not
(usually) analyzed or cached. It is just run in
an isolated environment [27]. Virtualization
solutions are sufficiently fast. There is almost
no difference to running the executable on the
real computer, and restoring a clean image is
much faster than installing the operating
system on a real machine. The running code
inside of a self contained environment can be
more closely controlled than raw hardware
[15]. Unfortunately, a significant drawback is
that the executable to be analyzed may
determine that it is running inside a virtual
machine and may become inactive or execute
differently in order to evade the virtual setup.
All current virtual machines exhibit
identifiable features and detecting them is one
of the most common methods available to a
malware author to protect malicious code from
analysis [5].
Emulation
A PC emulator is a piece of software that
emulates a personal computer (PC), including
its processor, graphic card, hard disk, and
other resources, with the purpose of running
an unmodified operating system [15]. Generic
code emulation is a very potent de-obfuscation
technique. A virtual machine is implemented
to simulate the CPU and memory management
systems to impersonate the code execution.
The packed executable is replicated in the
virtual environment and no actual code (which
may contain malicious content) is executed by
the real processor. The purpose of the code
emulation is to mimic the instruction set of the
CPU using virtual registers and flags. It is also
important to define memory access functions
to fetch 8-bit, 16-bit, and 32-bit data.
127
Furthermore, the functionality of the operating
system must be emulated to create a
virtualized system that supports system APIs,
file and memory management [2]. All the
hardware resources are virtualized using data
structures.
When the packed executable runs in the
emulator, each instruction triggers some
software routines that update the respective
data structures in such a way that the program
gets the same response it would get if run on
an actual processor. Each instruction is first
decoded to find the instruction type, length,
operands and other information that need to be
updated. Once the necessary information is
available, the respective emulation routines are
called which update any emulated hardware

resources (which are actually data structures),
if required. The address of the next instruction
is obtained either as result of instruction
decoding or computed by the emulation
routine.
Generally, Program’s Entry Point marks the
beginning of emulation which executes
instructions sequentially. Complexity of the
unpacking process posses little difficulty to the
emulation environment provided that the
unpacking stub is available in the executable
and the emulator has enough resources to
complete unpacking. Since a program would
use only a small subset of all the resources of
system, it is quite affordable to provide
emulator with these resources.
On the other hand, code emulation is
significantly slower than running the code on
an actual processor. Decoding a single
instruction in a program requires hundreds of
instructions to be executed at the back-end.
After instruction decoding, several routines are
called for updating data structures, find where
the next instruction lies in memory, followed
by many other steps to simulate a correct
response. All these factors make emulation
considerably slower and inefficient. This
difference in speed of execution is one of the
very strong tools used by anti-emulation
techniques which could be embedded inside an
executable being analyzed. However, such
anti-emulation technique can as easily be
fooled by emulator by providing incorrect
clock readings so that the system appears
faster to the program.
Another problem is that, for some
packers, the program is not completely
unpacked at one time, or some parts of its code
may have been moved around by the packer.
Also, if the emulation engine does not emulate
correctly, error tracing becomes very complex
since emulator executes a lot more instructions
than an actual processor. One of the inherent
problems of dynamic analysis techniques is
deciding when to stop the emulation process.
Heuristic checks can be used to help make this
decision [16]. Occurrence of an event, which
may be statically defined, could be used to
stop emulation. In addition, some form of
resource exhaustion limit, for example number
of emulated instructions or emulation time, is
needed in order to avoid infinite-loop
execution [6]. Some other common ways to
trick emulation is using fake API calls, using
complex program logic (which can greatly
slow down the emulation process). Since one
of the major weaknesses of emulation is its
speed, the goal of anti-emulation techniques is
that the emulator quits without finishing the

unpacking process (usually a maximum timeout
is predefined in emulator) [25].
Difference between Emulators and Virtual
Machines
It is important to differentiate emulators from
virtual machines. Like PC emulators, Virtual
Machines can run an unmodified operating
system, but they execute a statistically
dominant subset of the instructions directly on
the real CPU. This is in contrast to PC
emulators, which simulate all instructions in
software. Because all instructions are emulated
in software, the system can appear exactly like
a real machine to a program that is executed,
yet keep complete control. Thus, it is more
difficult for a program to detect that it is
executed inside a PC emulator than in a
virtualized environment. A PC emulator has
complete control over the sample program. It
can intercept and analyze both native Windows
operating system calls as well as Windows
API calls while being invisible to malicious
code. The complete control offered by a PC
emulator potentially allows the analysis that is
performed to be even more fine grain [15]. On
the other hand virtual machines are much
faster than PC emulation; they are almost up to
the native speed of the system being used.
Unpacking Methods Using Emulation:
1. MALWARE NORMALIZATION
The method for malware normalization
attempts to unpack malware generically. The
presented method [12] assumes that the code
generator and the instruction causing the
control-flow transfer are reached in all
program executions. Another assumption is
that code generation is independent of inputs
or the runtime environment. This is generally a
128
valid assumption to make as malware is
usually independent and designed to
automatically run and unpack itself on a
variety of different victim systems.
Unpacking by malware normalization
consists of two basic steps. First, execute the
program in a controlled environment to
identify the control-flow instruction that
transfers control into the generated-code area.
i.e. execute the program in an emulator, collect
all the memory writes (retaining for each
address only the most recently written value)
and monitor execution flow. If the program
attempts to execute code from a memory area
that was previously written, capture the target
address of the control flow transfer (i.e., the
trigger instruction) and terminate execution.
By emulating the program and monitoring
each instruction executed, the moment when
execution reaches a previously written

memory location can be identified. Second,
with the information captured in the previous
step, construct a normalized program that
contains the generated code. In the second
step, construct a non-self-generating program.
Using the captured data, an equivalent
program can be constructed that does not
contain the code generator. The data area
targeted by the trigger instruction is replaced
with the captured data. The memory write
captured contain both dynamically generated
code and the execution specific data e.g. the
state of the program stack and heap. The
executable file of the new program is a copy of
the executable file of the old program with the
byte values in the virtual memory range set
from the captured data. The program location
where execution was terminated is used as the
entry point for the new program.
This technique has some major drawbacks.
The unpacked executable is not ready-to-run.
Although the packed coded can be successful
unpacked and produced in the normalized
executable, but since its not the actual file, the
import table which lists the dynamically linked
libraries and API calls used by the program
may not be recovered, since most packing
obfuscations replace it by a custom dynamic
loader. This approach is open to resource
consumption attacks and can have false
negatives since the execution time in the
sandbox often has to be heuristically restricted
for performance reasons.
2. RENOVO
Reference [18] details a useful unpacking
technique using emulation. The Renovo
emulation technique is a fully dynamic method
which monitors currently executed instructions
and memory writes at run-time. Renovo uses
an approach similar to malware normalization
but with a few customizations. The approach
maintains a shadow memory of the memory
space of the analyzed program, observes the
program execution, and determines if newly
generated instructions are executed. Then it
extracts the generated code and data.
Assuming nothing about the binary
compression and encryption techniques, it
provides a means to extract the hidden code
and information, which is robust against antireverse-
engineering techniques.
After the packed executable starts, its attached
decryption routine performs transformation
procedures (also called hidden layers) on the
packed data, and then recovers the original
code and data. After this, the decryption
routine sets up the execution context for the
original program code to be executed. This
involves initializing the CPU registers and

setting the program counter to the entry point
of the newly-generated code in memory.
A packed executable may have multiple
hidden layers, making it even more difficult to
analyze. But irrespective of the packing
method and the hidden layers, the original
program code and data will ultimately be
available in memory. Also, the instruction
pointer should jump to the OEP (Original
Entry Point) of the restored program code
which has been written in memory at run-time.
Making use of these properties of packed
executables, an algorithm to dynamically
extract the hidden original code and the OEP
from the packed executable has been suggested
in [18] which examines whether the current
instruction has been generated at run-time,
after the program binary was loaded. The
instruction pointer is monitored to see if it
jumps to the memory region which has been
written after the program start-up.
When a program is loaded in memory, a
memory map is generated and initialized as
clean. Whenever the program performs a
memory write instruction, the corresponding
destination memory region is marked as dirty,
which means it is newly generated.
Meanwhile, when the instruction pointer jumps
to one of these newly-generated regions, it is
determined that there is a hidden layer hiding
the original program code, and the newlygenerated
memory regions are indentified to
contain the hidden code and data, and the
address pointed by the instruction pointer as
the original entry point (OEP). To handle the
possible hidden layers that may appear later
129
on, the memory map is initialized as clean
again. The same procedure is repeated until
time-out.
The advantages of this approach are
threefold: Firstly, nothing is assumed about the
packing methods except the inevitable fact that
the original hidden code should eventually be
written and executed at run-time. Therefore,
the approach is able to handle any sort of
packing techniques applied to the binaries.
Secondly, the approach can determine the
exact memory regions accommodating the
code or data generated at run-time. Since the
information about memory writes are kept at
byte-level, it is possible to efficiently extract
the newly-generated code and data. Lastly, this
approach does not rely on any information on
the code and data sections of the binary.
When analyzing an executable, it is run in an
emulated environment. The emulated
environment facilitates simulating CPU
instructions in a fine-grained manner, in

particular the instructions that perform
memory writes. This technique also suffers
from the weaknesses of emulation and can
easily be evaded by anti-emulation techniques.
Packers also use anti-memory dumping
technique that involves the deletion of a
section of code immediately after it is
executed.
3. SAFFRON [5]
Saffron is a generic automated malware
unpacker that employs dynamic
instrumentation using software tools such as
intel PIN which provides facilities to closely
monitor and interact with a program's
execution. Saffron uses Pin to monitor
execution flow and memory reads and writes
of malware. As with other tool already
discussed, SAFRON unpacking mechanism
also depends on the original entry point of the
program. If execution jumps to previously
written memory, the target memory becomes a
candidate original entry point and the memory
is dumped to a file.
It however fails if the program uses a
checksum to verify the integrity of the
program’s address space before transferring
control to the stub procedure. Such executables
cannot be unpacked using Pin, as it is easily
detectable and it also modifies the
instrumented processes' address space.
Another drawback of this approach is that it is
fairly slow and standard anti-debugger
techniques cause problems with Pin.
The other method used by Saffron is page
fault handler debugging, which works by
modifying Microsoft Windows's page fault
handler and subverting the x86 architecture's
paging mechanism to trace memory accesses
to individual pages. During their presentation
at the Black Hat security conference in August
2007 the authors mentioned that page fault
handler debugging does not work within
virtual machines, so that extra care must be
taken to isolate malware samples to be
analyzed, e.g., by using a real machine as a
sacrificial lamb. The authors also stated during
their presentation that their method does not
yet automatically choose a most likely out of
several candidate original entry points and that
they currently rely on third-party software to
reconstruct valid PE files from memory dumps
[26].
4. Pandora's Bochs
Unpacking in Pandora's Bochs is done by
Bochs [28], a portable x86 emulator which is a
pure software virtual machine that provides a
built-in mechanism for instrumenting code
running on the emulated CPU. Pandora's
Bochs collects a lot of information during

execution of a malware sample, such as all
memory write and all branches. This
information is useful in several ways. It is used
during the reconstruction of the executable
(without the unpacking stub) to help
regenerating a program's import information. It
can also be helpful for performing a detailed
analysis of the inner works of unpacking stubs
as it provides an accurate execution trace at the
basic block level that is unaffected by code
obfuscation and anti-debugging techniques.
The goal of the thesis [26] was to enhance the
Bochs PC emulator to unobtrusively monitor
execution of samples of packed malware in the
emulated environment, use heuristics to
determine when the unpacking process is done,
and finally store a memory image of the
malware process along with additional
information for further (static) analysis. To
achieve this goal, the Bochs PC emulator has
been enhanced in several ways, such that it can
identify processes running within the guest
operating system, gather information about the
processes such as which dynamic libraries are
mapped into the processes' address spaces and
which symbols these libraries export, trace
execution of processes and determine which
library functions they call and whether the
execution path covers memory areas that were
modified by the process and dump memory
images of running processes, and to that end,
also force the guest operating system to bring
130
in all virtual memory pages needed for a full
dump. Additionally, an attempt is made to
reconstruct the original, unpacked malware
executable. The goal is to execute a packed
binary within the enhanced Bochs PC emulator
and return an unpacked, normalized version of
this binary for further analysis. The unpacking
process utilizes Boch's save/restore mechanism
that can save and restore the emulator's CPU,
memory, and device state. Pandora's Bochs
takes a slightly refined approach to OEP
detection. Moreover, to account for multiple
unpacking stages, Pandora's Bochs simply
continues execution of the monitored process
while it still shows some progress, up to a
user-defined timeout. Needless to say, this
technique is also very slow in performance
[26].
Dynamic Translation
The dynamic translation is an improvement
of emulation with a better execution speed and
performance. In this approach, the executable
under analysis is disassembled and then an
equivalent unpacked code is generated. The
executable code obtained as a result of
translation is persisted; if execution of

program enters a loop, the persisted coded can
usually be executed directly without requiring
translation. Code is translated only on the first
iteration and for the subsequent iterations
persisted code dos not need any translation.
Thus the method eliminates redundant analysis
of repeating code sequences. Although code
translation makes execution slower, it is many
times faster than pure emulation. To add here,
the computational cost of disassembly is
comparable to emulation.
The dynamic translation engine has to
determine whether translated code is available
for any given instruction, and if so, locate the
corresponding code. One way to do this is to
maintain a table with virtual addresses of
translated instructions and addresses of
corresponding executable code. However
searching a virtual address in this table for
each processed instruction will introduce
additional overhead, negating the speed
advantage of executing translating code. A
much more efficient way is to partition the
original code into blocks of instructions and
only store a table entry for each block. This
would improve table look-up operation. But
dividing the original code into blocks is not as
simple as it sounds. A block must have some
specific properties that limit its size. On the
other hand bigger the blocks are, more
efficient the storage and searching will be. A
basic building block is a contiguous block of
code having a single entry point at the
beginning of the block and a single exit point
at the end of the block. If the code within such
a block is executed via a call instruction to the
beginning of the block, all the instructions in
the block will be executed. A single instruction
is needed at the end of the block to return the
control to the caller. As a consequence, any
basic building block of original code will
contain at most one jump instruction.
Discovering and delimiting basic blocks is a
dynamic process, meaning that new blocks
maybe discovered or existing blocks could be
modified as a result of processing previously
discovered blocks. After translating a block
and executing the resulted code, the beginning
address of the next block to be processed will
be the destination address of the jump
instruction at the end of the block that was just
executed. The main advantage of this
technique is that if several blocks are executed
inside a loop, searching for a successor block
needs to be done only once for each successor.
There is no need to search for successor of that
block at any subsequent loop iteration.
Given any arbitrary program code to
be analyzed, the code could be unsafe. It is

possible to translate the given code into
another code sequence that is functionally
equivalent to the original one and that can be
safely and correctly executed on the host
machine. There are multiple ways in which
code translation that meets the above criterion
can be achieved. Simplest technique is
translating directly from the original code to
target code. Each original instruction will be
decoded and then an equivalent instruction or
instruction sequence will be generated for the
target code. Another method is translating
using an intermediate language (IL). Each
original instruction will first be translated to an
intermediate code sequence and then the
intermediate code will be translated to target
native code. This method is preferable for
multiple sources and multiple target languages.
It is possible to perform code optimizations
using the intermediate language form. The
intermediate language should be platform
independent. The intermediate language would
need to support all the possible operators,
operand types and a combination of these from
all source languages raising its degree of
complexity. Combining the above two
methods could be achieved in a way that
preserves the advantages of both without any
of their disadvantages. Most instructions could
131
be translated using a fairly simple intermediate
language while the most complex ones that
would require a complicated intermediate
language will be translated directly. Typically,
the code obtained as a result of translation will
not be as efficient as the original code. This
may happen for various reasons like some
instructions or operand encodings from the
source language might not have a 1:1
correspondence in either the IL or the target
language. It is possible to perform some
optimizations at basic block level at translation
time to improve efficiency of the translated
code. If the analyzed code is linear, the code
will be translated once and executed once. As
the execution time is negligible as compared to
the translation time, in this case translation
would account for most of the analysis time.
As improving the efficiency of the translated
code is done at the cost of translation speed, a
compromise between these two must be
obtained.
For each file that needs to be scanned for
malware, analysis consists of sequentially
analyzing and processing of basic blocks. At
the beginning of the analysis the current
address is initialized to the entry point of the
program to be scanned. After each basic block
is processed, the current address is updated to

the destination address of the jump instruction
at the end of this block. The Dynamic
Translation engine must provide access to
various hardware devices (disk drives,
keyboard, mouse, network interface, video
card, real-time clock, etc.) as well as software
resources such as BIOS data structures and
routines and operating system APIs. Since the
code provided to the dynamic translation
engine could be malicious, most of these
resources need to be virtualized.
Writing unpacking routines for all the
packers publicly available takes a lot of
development and test effort. In some cases,
writing the unpacker would require reverse
engineering the packer. In the absence of a
dedicated unpacking routine, a packed
executable would be emulated until the
unpacked code is obtained. However
unpacking with an emulator could be very
slow, especially for large packed files that
would require emulating several millions of
instructions. Using dynamic translation, a
program can be unpacked significantly
efficiently as compared to emulation providing
detection for malware packed with new
packers, with reasonable speed performance,
before a dedicated routine is developed. In
some cases, the generic unpacking using
Dynamic Translation could prove fast enough
that dedicated routines won’t even be needed
[23].
HYBRID APPROACHES
Detection of packed malware requires the
use of emulation and sandboxing technologies
which are open to resource consumption
attacks since the execution time in a sandbox
has to be restricted for performance reasons
[10].
1. Mixing Code Emulation and Specific
Routines
If an executable is packed with a complex
packer, it is quite useful to use a combination
of emulation and specific unpacking routines
for known packer. Although using specific
routines is an efficient approach but integrating
it with emulation introduces additional
complexity to the system. [6].
As emulation based unpacking is too slow
and static unpacking is too specific, a hybrid
approach is a solution which combines the
advantages of both. The hybrid approach
would involve an emulator for IA-32
instructions, flat memory, Win32 APIs, Win32
system and Static un-packers (called "miniemulators"(
MEs)). The generic emulator can
be optimized by caching memory accesses,
independent CPU flags emulation and
avoiding CPU flags setting when possible. The

static unpackers do not handle heavily
polymorphic code. It is handled by slow
generic emulation instead. Advantage of this
technique is that it is universal by generic
emulation and fast as the specific unpacking is
independent of the code being emulated. It is
easily expandable and can be implemented and
deployed incrementally, as initially small
number of specific unpacking routine are
written and with time, the results of emulations
can be used to widen the scope of specific
mini-emulators. MEs have relatively simple
implementation as each one handles one single
algorithm. It is much faster than generic
emulation and also faster than Dynamic
Translation as no need for code analysis and
tranlation or code optimization [14].
2. PolyUnpack
Reference [22] gives a hybrid unpacking
approach called PolyUnpack. It is a behaviorbased
approach that uses a combination of
static and dynamic analysis to automate the
process of extracting the hidden-code of
packed malware. The core emphasis of this
technique is on the results (i.e., runtime132
generated code execution) of unpack-execution
rather than the unpacking mechanism used. It
supercedes other approaches as prior
knowledge about the packer or explicit
programming of the semantic behavior
capturing all instances in an unpacking class is
not required. It first generates a static code
view of the packed program (i.e. the code
sequence of program does not produce any
code at run-time) in memory using static
analysis. The static code model is then
forwarded to dynamic analysis engine (i.e.
emulation or any virtual environment). This
dynamic analysis differs from the usual runtime
analysis as it has the ability to verify if
the observed sequence of execution matches
any part of the static model. While the stub
(restoration routine) is being executed, the
code will follow the same sequence as the
stub’s static view. After execution of each
instruction, the execution context is compared
to the static model. The point in run-time when
the code deviates from the static view indicates
that the code has been unpacked (since
unpacked code sequence is not available in
static model). This is the stopping condition of
analysis and provides the unpacked code of the
executable under analysis. This technique uses
the fact that the hidden code which has been
obfuscated is not available to the static model.
Thus this approach gives a wider scope to the
static analysis which otherwise is too specific
and provides a mechanism which is
independent of packing mechanism.

The fundamental step of static analysis is to
disassemble the program to identify code and
data. The code portion is then partitioned from
the data area to generate a static model.
This is not all the unpacker has to do as it is
not always the case that absence of a code
sequence in static model will be the hidden
code. The dynamic link libraries (DLLs)
loaded during Windows binary execution also
result in execution of code that is not available
in the static model. Misinterpretation of these
DLLs has to be catered for. So, whenever, a
DLL is loaded, the memory it occupies is
noted. During single-step execution, the
program’s program counter (pc) is continually
compared against all known memory areas. If
the pc points to memory occupied by a DLL,
the return address from the stack is read and a
breakpoint set there, allowing single-step
execution to resume after the call’s return.
To deal with the increased program
complexity due to multiple packed layers, the
PolyUnpack technique can be extended to
proceed iteratively. Every time the resultant
hidden code is attained, the static model of the
code is generated. Execution resumes from the
first instruction of the code under analysis. If
at any step the binary sequence of executed
code does not match any part of static view,
the next iteration begins. The final unpack
code is the one whose static model is totally
consistent with its run-time execution
sequence. In other words, the last iteration
would be running the unpacked code.
This technique like most instrumentation
tools is not transparent to the malware being
processed. Therefore, there exists the
possibility that an instance of malware being
executed in it may detect that it is being
instrumented and alter its behavior (e.g.,
halting its execution instead of generating
hidden-code) in order to evade extraction of its
unpacked code [22].
ALTERNATIVE APPROACH
As described earlier, all the covered techniques
have their own limitations. Even, poly-unpack
suffers from inefficiency as it involves singlestep
debugging. Hence an alternative approach
to the above mentioned techniques is
OmniUnpack [21]. Omni unpacking technique
addresses the shortcomings of existing
systems. This is a generic approach to handle
any type of packer and any type of selfmodifying
code. It does not depend on virtual
environment, emulation or debugging for
unpacking. It monitors the program execution
and tracks written and written-then-executed
memory pages. Written-then-executed pages
are indicative of unpacking but not indicative

of the end of unpacking, as there could be
multiple unpacking stages. The approach uses
heuristics to approximate the end of
unpacking. In order to improve the
performance, page-level monitoring is done.
When stub, which is embedded in the program,
writes the unpacked code to memory, the
destination page is marked as writable but not
executable. At the end of the unpacking stage,
when the program accesses the same page for
execution, the lack of execution permission
causes a protection exception. If the program
then makes a potentially damaging system call,
a malware detector is invoked on the written
memory pages. If the detection result is
negative (i.e., no malware found), execution is
resumed. The resulting low overhead means
that this technique can be used for continuous
monitoring of a production system.
When the virtual-physical address mapping
needs to be updated or when the memory
protection is violated, the hardware signals to
133
the OS through an exception and allows the
OS to repair the memory state before
continuing execution. Existing features are
used to intercept the first moment when a page
is written and the first moment when a page is
about to be executed after a write.
A disadvantage of the technique is
imprecision of page-level tracking. Page-level
tracking decreases the granularity of
monitoring although it significantly reduces
the overhead of memory-access tracking. It is
less precise, often resulting in incorrectly
detecting unpacking stages. It would be
unnecessarily expensive to invoke the malware
detector every time a written memory page is
executed, because such an event (written-thenexecuted)
is frequent. Hence determining the
end of unpacking is hard to decide and is only
an approximation. The technique assumes that
a packed program will generally be malicious.
Therefore, it provides the facility to
automatically call the malware detection
engine if a dangerous system call is made. This
introduces anther level of complexity in the
algorithm as decision has to be made about the
choice of dangerous system calls. A dangerous
system call is a system call whose execution
can leave the system in an unsafe state. To
achieve its malicious goal, the malware has to
interact with the system. As a simple solution,
any system call that modifies OS state is
considered dangerous in this technique.
Because of the possibility of multiple
unpacking stages and of the approximation
being using to detect them, it is insufficient to
monitor and scan the program only once

during an execution. This technique
implements a continuous monitoring approach,
where the execution is observed in its entirety.
This is a necessary departure from the
traditional view of unpacking and scanning as
separate, one-time stages of the malware
detection process. Also, efficiency can further
be increased if all memory-page accesses are
not observed. It is sufficient to observe the first
memory access in an uninterrupted sequence
of accesses of the same type. For example,
only the first write to a page is useful,
subsequent writes to the same page do not
impact the result of the algorithm and can be
ignored. Thus, this unpacking technique aims
to be very generic as it supports binaries
packed with any arbitrary algorithms applied
any number of times [21].
CONCLUSION
Current approaches for automatic analysis
suffer from a number of shortcomings. One
problem is that malicious code is often
equipped with detection routines that check for
the presence of a virtual machine or a
simulated OS environment. When such an
environment is detected, the malware modifies
its behavior and the analysis delivers incorrect
results. Malware also checks for software (and
even hardware) breakpoints to detect if the
program is run in a debugger. This requires
that the analysis environment is invisible to the
malicious code [15]. As any other dynamicanalysis
technique, emulation places a time
limit on the execution of the packed program
and is restricted by the reliability of the
emulation environment. Extracting packed
binaries and finding the original entry point
using dynamic analysis is feasible but these
approaches either rely on some heuristics or
require disassembling the packed program.
However, heuristics about packed code may
not be reliable in all cases and can be easily
evaded. In addition, correctly disassembling a
binary program itself is challenging and errorprone.
Hybrid approaches for packed code
extraction perform a series of static and
dynamic analysis which leads to performance
overhead.
REFERENCES
[1] SHON HARRIS, ALLEN HARPER, CHRIS EAGLE
AND JONATHAN NESS, “GRAY HAT
HACKING”, 2ND ED., MCGRAW-HILL, CHAP
21.
[2] Peter Szor (2005, Feb 3). “Art of Computer
Virus Research and Defence”, Chap 11,
[Online] Available:
http://safari.oreilly.com/0321304543/ch15lev
1sec4.
[3] Dr. Jose Nazairo, “Botnet Tracking: Tools
Techniques and Lessons Learned”, presented
at Lockdown 2007 University of Wisconsin-
Madison, page 12.

[4] Gaith Taha, “Counterattacking the packers”,
presented at AVAR 2007 Conference in
Seoul, page 1.
[5] Danny Quist and Valsmith, “Covert
Debugging: Circumventing Software
Armoring Techniques”, presented at Black
Hat Briefings USA August 2007, page 1-2.
[6] Miroslav Vnuk and Pavol Navrat,
“Decompression of run-time compressed PEfiles.”,
presented at IIT.SRC 2006 – Student
Research Conference, Slovak University of
134
Technology, Faculty of Informatics and
Information Technologies, page 2-4.
[7] Andrew Lee and Pierre-Marc Bureau, “The
Evolution of Malware”, presented at Virus
Bulletin Conference November 2007, page 8-
10.
[8] Proceedings of the 5th Australian Digital
Forensics Conference 3rd December 2007,
Edith Cowan University, Mount Lawley
Campus. Page 67, [Online] Available:
http://scissec.scis.ecu.edu.au/conference_proc
eedings/2007/forensics/00_Forensics2007_Co
mplete_Proceedings.pdf
[9] Andreas Beetz, “File Analysis”, US Patent US
2004/0236884 A1, Nov. 25, 2004.
[10] Mihai Christodorescu, Somesh Jha, Johannes
Kinder, Stefan Katzenbeisser and Helmut
Veith, “Software Transformations to Improve
Malware Detection” In Journal in Computer
Virology, vol. 3, (4): pp. 253–265, November
2007.
[11] Johannes Kinder , “Model Checking
Malicious Code”, Diplomarbeit, Technische
Universität München, 2005.
[12] Mihai Christodorescu and Somesh Jha,
“Malware Normalization”, Technical Report
#1539, Nov. 2005, page 7-9.
[13] Raymond J. Canzanese, Matthew Oyer,
Spiros Mancoridis and Moshe Kam, “A
Survey of Reverse Engineering Tools for the
32-Bit Microsoft Windows Environment”,
Jan. 2005, page 17-20.
[14] Mario Alberto López, “Unpacking, a Hybrid
Approach”, presented at 2nd International
CARO Workshop 1st & 2nd May 2008, The
Netherlands.
[15] Ulrich Bayer, Andreas Moser, Christopher
Kruegel and Engin Kirda, “Dynamic Analysis
of Malicious Code”, in Journal in Computer
Virology 2(1): 67-77 (2006), page 2-5.
[16] Tobias Graf, “Generic Unpacking How to
handle modified or unknown PE Compression
Engines” presented at Virus. Bulletin
Conference 2005.
[17] Tom Brosch and Maik Morgenstern,
“Runtime Packers: The Hidden Problem.”,
presented in Black Hat briefings USA 2006,
page 3.
[18] Min Gyung Kang, Pongsin Poosankam, and
Heng Yin, “Renovo: A Hidden Code
Extractor for Packed Executables”, presented
at 5th ACM Workshop on Recurring Malcode
(WORM 2007), page 1-4.
[19] Kurt Natvig, “Sandbox technology inside AV
Scanners”, presented at Virus Bulletin
Conference, September 2001, page 2.
[20] Norman SandBox Whitepaper, [Online]
Available:
http://www.norman.com/Download/White_pa
pers/en , page 14.
[21] Lorenzo Martignoni, Mihai Christodorescu
and Somesh Jha. “OmniUnpack: Fast,

Generic, and Safe Unpacking of Malware”,
presented at 23rd ACSAC (Annual Computer
Security Applications Conference) in Miami
Beach FL USA (2007), page 1-4.
[22] Paul Royal, Mitch Halpin, David Dagon,
Robert Edmonds, and Wenke Lee,
“PolyUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware”,
presented at 22nd ACSAC (2006), page 1-6.
[23] Adrian E. Stephan, “Defeating Polymorphism:
Beyond Emulation” presented at Virus
Bulletin Conference, October 2005, page 1-7
[24] VMware: server and desktop virtualization,
2006. http://www.vmware.com
[25] Xiaodong Tan, “Anti-unpack Tricks in
Malicious Code”, Security Labs, Websense
Inc. presented in AVAR 2007, Seoul. Page 5-
29.
[26] Lutz Bohne, Diploma Thesis “Pandora's
Bochs: Automatic Unpacking of Malware”,
28th January 2008, page 23-44.
[27] Jarkko Turkulainen, F-Secure Corporation
“Emulators and disassemblers”, T-110.6220,
page 21-31.
[28] The Bochs Development Team. Bochs - The
Cross Platform IA-32 Emulator 2007.
http://bochs.sourceforge.net/.
[29] ASPack Software. ASPack and ASProtect
http://www.aspack.com/.
[30] Bitsum Technologies. PECompact2.
http://www.bitsum.com/pec2.asp.
[31] Obsidium Software,
http://www.obsidium.de/show.php?home
[32] Teggo. MoleBox Pro,
http://www.molebox.com/download.shtml
[33] Silicon Realms Toolworks. Armadillo,
http://siliconrealms.com/index.shtml.
135

ANNEX - C
Bibliography
[1] Andrew Lee and Pierre-Marc Bureau, “The Evolution of Malware”, presented at
Virus Bulletin Conference November 2007.
[2] Mihai Christodorescu, Somesh Jha, Johannes Kinder, Stefan Katzenbeisser and
Helmut Veith, “Software Transformations to Improve Malware Detection” published in
Journal in Computer Virology, Vol. 3, November 2007.
[3] Raymond J. Canzanese, Matthew Oyer, Spiros Mancoridis and Moshe Kam, “A
Survey of Reverse Engineering Tools for the 32-Bit Microsoft Windows Environment”,
January 2005.
[4] Gaith Taha, “Counterattacking the packers” presented at AVAR 2007 Conference
in Seoul.
[5] Xiaodong Tan, “Anti-unpack Tricks in Malicious Code” Websense Inc., Security
Labs, AVAR 2007, Seoul
[6] Lorenzo Martignoni, Mihai Christodorescu and Somesh Jha, “OmniUnpack: Fast,
Generic, and Safe Unpacking of Malware” presented at 23rd ACSAC (Annual
Computer Security Applications Conference) in Miami Beach FL USA, 2007.
[7] Kim-Kwang Raymond Choo, Russell G Smith and Rob McCusker, “Future
directions in technology-enabled crime: 2007–09”, Australian Institute of Criminology,
2008.
[8] Symantec Internet and Security Threat Report, Vol IX
[9] Matt Pietrek, “An In-Depth Look into the Win32 Portable Executable File Format”.
[10] Microsoft Portable Executable and Common Object File Format Specification
(Revision 8.0)

[11] Chapter 11, “Antivirus Defense Techniques: The Art of Computer Virus
Research and Defence”, Peter Szor, 2005.
136
[12] Johannes Kinder, “Model Checking Malicious Code”, 2005.
[13] Shon Harris, Allen Harper, Chris Eagle and Jonathan Ness, “Gray Hat Hacking”,
2nd Edition, McGraw-Hill.
[14] Lutz Bohne, “Pandora's Bochs: Automatic Unpacking of Malware”, 2008.
[15] PEiD software, www.peid.info
[16] Ulrich Bayer, Andreas Moser, Christopher Kruegel and Engin Kirda, “Dynamic
Analysis of Malicious Code”, Journal in Computer Virology, Vol. 2, 2006.
[17] Miroslav Vnuk and Pavol Navrat, “Decompression of run-time compressed PEfiles”,
presented at IIT.SRC 2006 – Student Research Conference, Slovak University
of Technology.
[18] Mario Alberto López, “Unpacking, a Hybrid Approach” presented at 2nd

International CARO (Netherlands) Workshop 2008.
[19] Mihai Christodorescu, Somesh Jha, Johnnes Kinder, Stefan Katzenbeisser,
Helmut Veit, “Malware Normalization”, Technical Report #1539, 2005
[20] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee,
“PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing
Malware”, presented at 22nd ACSAC (Annual Computer Security Applications
Conference) 2006.
[21] Min Gyung Kang, Pongsin Poosankam, and Heng Yin, “Renovo: A Hidden Code
Extractor for Packed Executables”, presented at 5th ACM Workshop on Recurring
Malcode, WORM 2007.
[22] Thomas M. Cover and Joy A. Thomas, “Elements of Information Theory” 2nd

Edition published John Wiley and Sons, 2006.
[23] Eldad Eilam, “Reversing: Secrets of Reverse Engineering”, Wiley Publishing, Inc.
2005.
[24] Mario Hewardt and Daniel Pravat, “Advanced Windows debugging” published by
Addison-Wesley, October, 2007.

