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ABSTRACT 
SADE (Software Analysis and De-obfuscation Engine) is a software analysis toolkit 
that generically (without finding out the specifics of the compression and encryption 
scheme used) detects and unpacks a packed (encrypted and compressed) windows 
executable file (PE32 file) and makes the unpacked code available for analysis. 
SADE also shows additional information about the executable file (resources, 
imports, sections etc). The motivation behind the project is that the problem to 
generically unpack malicious executables has been solved to some extent 
commercially but the competitive nature of the anti-virus software industry refrain 
them from publishing a solution. There is hence a lack of publicly available generic 
unpacking tools that can handle a wide range and variety of packed executable files 
without knowing the exact packer used to pack it. Furthermore, the growing epidemic 
of malware has strengthened the need to have more freely available tools to help in 
analyzing packed executable files. The chief users of the application are security 
analysts and main area of application is malware analysis. Malware authors use 
packing techniques to hide their malicious code and security analysts need to 
uncover the hidden executable code for creating signatures and understanding 
attacks. 
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CHAPTER 1 
INTRODUCTION 
In the past it was not uncommon to see malware that used no encryption at all to 
hinder analysis. Over time malware authors have jumped on the encryption 
bandwagon as a means of obscuring their activities, whether they seek to protect 
communications or whether they seek to prevent disclosure of the contents of a 
binary. 
A runtime packer is a software “envelope” used by malware authors to hide the 
functionality of an executable file. A number of packers are available publicly and are 
used by legitimate software to reduce the size of their executable files and to protect 
the intellectual property that is distributed with their code. Packers encode programs 
to which they are applied. Upon execution, the packer will decode and decompress 
the original program in memory and execute it. If a key value is modified in the 
encoding routine, the binary file that is produced looks completely different, 
especially to security software that relies on detection by known signature [1]. 
1.1. The Packing Problem 
Packing is a data hiding technique that replaces a binary (code and data) sequence 
with a data block containing the binary sequence in encrypted and compressed form 
and a decryption routine that, at runtime, recovers the original binary sequence from 
the data block. The result of packing is a program that dynamically generates code in 
memory and then executes it. There are a large number of tools available for this 
purpose commonly known as executable packers. Packing describes the process of 
encrypting a program and adding a runtime decryption routine to it, such that the 
behaviour of the original program is preserved. By randomly choosing encryption 
keys, it is possible to create a multitude of instances from one original program. The 
encryption completely changes the binary signature of a program, and malware 
authors commonly use packing to evade string-based malware detectors. The 
malicious code resides in the executable file in an encrypted form, and is not 
2 
exposed until the moment the executable is run. Thus, a scan string algorithm will fail 
to detect the malware by reading the file, unless it is updated with a new scan string 
tailored towards this specific packed instance of the malware [2]. 
Packing resembles encryption because it also compresses the code, greatly reducing 
the file size of the executable program. This feature is important for programs that 
are to be distributed over the Internet. A packed binary appears to be an 
undecipherable series of symbols, and only the decryption routine (or only a part of it 
in the case of polymorphic code) is visible on the disk. After the decryption routine 
has been executed, the original program becomes visible in memory. Once in 
memory, the program can be edited dynamically. The memory dumping process is 
complicated by anti-memory dumping code, and the fact that the PE (Portable 
Executable) headers and Import Address Tables need restoration to their original 
state [3]. 
Packers were first written in order to provide a mechanism to shrink executables so 
they take less space to store and less time to transfer over slow channels. Later on, 
their usage started taking another scope when malware authors used them to 
conceal their parasites. There are a few reasons behind this close correlation 
between malware authors and packers. Packers always offered a sanctuary for 
malware authors where they managed to disguise the code and data which their 
malware contained. Likewise, in some cases, packers provided them with different 
looking binaries each time they repacked their code (a technique commonly used 



against check summing). Malware authors can unleash a new malware by simply 
repacking a known virus without any significant work on its coding aside from minor 
changes. 
1.2. Magnitude of the Problem 
Undoubtedly, the single most challenging problem Anti Virus (AV) vendors currently 
face is the problem of packed malware. Traditionally, AV vendors dealt with packers 
by providing their engines with un-packing routines to normalise the executables and 
generate the unpacked version of the file. This was achieved through two different 
ways. By either releasing updated engines, or releasing new signatures that 
contained the unpacking routines which will be interpreted by the engines at the 
users' end. AV vendors who have followed the former method suffered from the slow 
cycles in which their engines had to go through before being fully tested and ready to 
3 
be released. While the latter method gave some AV vendors an edge by providing 
faster updates, they still had to invest more resources into analysing the different 
packers that got released restlessly. A further extension for the problem is the fact 
that some software vendors, for no obvious reasons decide to publish their software 
packed with rather very suspicious packers. 
In 2007, Avert Labs started experiencing the birth of at least one packer or a variant 
of a packer on a daily basis. Figure 1.1 shows the distribution of packed malware 
experienced by Avert Labs in 2007. It shows that the rules of the game have 
changed and it is no longer a few packers that dominated the scene. Instead, there 
are many variants of unknown or patched packers. This relationship is projected to 
worsen simply because mass producing those packers is much less costly than 
coding their unpackers [4]. 
Figure 1.1 - Distribution of packed malware in 2007 
According to the research of WSLabs (Websense Security Labs), more than 80% 
malicious codes are disguised by a certain packer. Figure 1.2 shows the top ten 
packers (of all times) from the tracker of WSLabs [5]. The essential problems raised 
by packers are that they have made it easier to produce “new” malware. Using 
packers brings more difficulties to analysts and researcher. Also, the packed files are 
smaller in size and hence easier to propagate. 
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Figure 1.2 - Top ten packers by Websense Security Labs 
1.3. Incentive for Project 
One way that malware writers have been using to disguise their malicious software is 
executable compression and encryption. They use tools that take a Windows PE-file 
(or another platform executable file) and compress it in such a way that the 
compressed file only decompresses itself in memory at runtime. The PE-files 
compression presents two problems for antivirus engines. First, to detect a known 
malware, the file has to be decompressed before the point where signature matching 
can occur can be reached. Secondly, it is necessary to decompress the file so that 
strong code analysis heuristics can be applied. There are some already available 
methods that can be used to decompress these files to the point at which they can be 
analyzed further. They have both advantages as well as disadvantages. There is 
definitely scope for enhancement. 
Packed malicious programs (malware) pose a striking problem in malware analysis, 
detection, and forensics. Such programs consist of a decompression or decryption 
routine that extracts the garbled payload from memory and then executes it. This 
unpacking routine can be invoked once, in which case the whole payload is extracted 
to memory in a single step, or multiple times, when parts of the payload are extracted 
to memory at different times. For a security analyst, this means that the program has 
to be executed in a contained yet accurate environment before an analysis of the 



payload can be performed. For a malware detector, this means that the scanning for 
malicious code has to be postponed until after the start of execution, i.e., when the 
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program has unpacked its payload. Malware writers have learned that binary packers 
are effective at bypassing signature-based detectors and at keeping the malware 
undetected for longer. The numerous packers currently available generate many 
variants from the same executable. The percentage of new malware that is packed is 
on the rise, from 29% in 2003 to 35% in 2005 up to 80% in 2007. This situation is 
further complicated by the ease of obtaining and modifying the source code for 
various packers (e.g., UPX). Alterations to the source code can introduce changes in 
the compression or encryption algorithm, create multiple layers of encryption, or add 
protection against reverse engineering. Currently, new packers are created from 
existing ones at a rate of 10–15 per month. As a result, malware writers have a large 
selection of tools to pack their malware, to the point that more than 50% of malware 
samples are simply repacked versions of existing malware [6]. 
A preliminary requirement in the executable analysis is the capability to robustly 
parse and analyze executable files. Dealing with the full spectrum of executables 
found in the wild is quite demanding. While normal files are typically well structured, 
malicious files can be quite difficult to analyze, often due to deliberate malformations 
intended to foil static analysis. The consequence of successfully applying packing 
techniques is that static analysis of the file will view the obfuscated block as noninstruction 
data or omit its analysis entirely, thereby hiding the code’s true intentions. 
The capacity of information security practitioners to implement models of detection 
and methods of recovery against malware are often thwarted by instances of packed 
malware, such as encrypted and polymorphic viruses [7]. 
Time must be invested to learn the mechanism by which a given instance of malware 
unpacks its compile-time obfuscated code (usually the malicious component) so that 
it can be extracted and studied. Some Computer Emergency Response Teams 
(CERTs) report that as many as 160 new viruses arrive each day, out of many 
hundreds of sample submissions. Given this volume, the process of unpacking alone 
(before any analysis is performed) can be overwhelming. Further, resources can be 
wasted in determining whether a new malware sample contains unpack-execute 
behaviour, or when two or more new samples found turn out to be the same malware 
with well-differentiated unpacking methods [8]. Generic unpacking is the solution to 
the threat of diverse packing techniques. Automating the unpacking process in a 
generic way so that it is not hampered by continually evolving packing schemes can 
go a long way to save the time and effort of security analysts and help the overall 
malware detection process. 
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1.4. Scope 
Development of a toolkit for executable analysis that detects whether any packing 
transformation has been applied on the input executable and then upon detecting 
packing, unpacks the executable code and data and makes it available for analysis 
along with retrieving useful executable file information. 
The chief users of the toolkit are security analysts. Malware writers use executable 
encryption and compression to hide their malicious code and security analysts need 
to uncover the hidden data and code for creating signatures and understanding 
attacks. 
1.5. Achievements 
Our Research Paper with the title “Generic Unpacking Techniques” has been 
presented at and published by IEEE-International Conference on Computer, Control 
& Communication (IC4), 2009. The research paper is available at IEEE digital library 
on IEEE-explorer. 



This Project SADE scored 3rd position in 8th All Pakistan Software Project 
Exhibition and Competition COMPPEC, 2009 organized by NUST at College of 
Electrical & Mechanical Engineering. 
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CHAPTER 2 
LITERATURE STUDY 
This chapter provides background knowledge about the project. Pre-requisite 
information pertaining to the project has been covered as well as a comprehensive 
study of already existing packing techniques and other related work in the field of 
information security. 
2.1. Microsoft Portable Executable File Format 
Microsoft introduced the Portable Executable File format, more commonly known as 
the PE format, as part of the original Win32 specifications. The term "Portable 
Executable" was chosen because the intent was to have a common file format for all 
flavours of Windows, on all supported CPUs. A very handy aspect of PE files is that 
the data structures on disk are the same data structures used in memory. Loading an 
executable into memory is primarily a matter of mapping certain ranges of a PE file 
into the address space. The key point is that if you know how to find something in a 
PE file, you can find the same information when the file is loaded in memory. 
PE files are not just mapped into memory as a single memory-mapped file. Instead, 
the Windows loader looks at the PE file and decides what portions of the file to map 
in. This mapping is consistent in that higher offsets in the file correspond to higher 
memory addresses when mapped into memory. The offset of an item in the disk file 
may differ from its offset once loaded into memory. However, all the information is 
present to allow anyone to make the translation from disk offset to memory offset, as 
shown in figure 2.1. The central location where the PE format is described is 
WINNT.H. Within this header file, nearly every structure definition, enumeration, and 
#define needed to work with PE files or the equivalent structures in memory can be 
found [9]. Figure 2.2 shows the detailed layout of a typical PE file. First section in 
figure 2.2 is the MS-DOS 2.0 section which is placed for backward compatibility with 
MS-DOS. Next there is the PE header and then the section headers. Finally, there 
are the PE file directories which include the import pages containing the import 
information, export information, base relocations and resource information. 
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Figure 2.1 – PE File on disk and mapped in memory 
Figure 2.2 - Typical Portable Executable File Layout 
9 
2.1.1. PE File Sections 
A PE file section represents code or data of some sort. While code is just code, there 
are multiple types of data. Besides read/write program data (such as global 
variables), other types of data in sections include API import and export tables, 
resources, and relocations. Each section has its own set of in-memory attributes, 
including whether the section contains code, whether it's read-only or read/write, and 
whether the data in the section is shared between all processes using the 
executable. Each section has a distinct name. This name is intended to convey the 
purpose of the section. For example, a section called .rdata indicates a read-only 
data section. 
Sections have two alignment values, one within the disk file and the other in memory. 
The PE file header specifies both of these values, which can differ. Each section 
starts at an offset that's some multiple of the alignment value. For instance, in the PE 
file, a typical alignment would be 0x200. Thus, every section begins at a file offset 



that's a multiple of 0x200. Once mapped into memory, sections always start on at 
least a page boundary. That is, when a PE section is mapped into memory, the first 
byte of each section corresponds to a memory page. On x86 CPUs, pages are 4KB 
aligned, while on the IA-64, they're 8KB aligned. 
2.1.2. Relative Virtual Addresses (RVA) 
PE files can load just about anywhere in the process address space. For this reason, 
it's important to have some way of specifying addresses that are independent of 
where the executable file loads. To avoid having hardcoded memory addresses in 
PE files, RVAs are used. An RVA is simply an offset in memory, relative to where the 
PE file was loaded. To convert an RVA to an actual address, add the RVA to the 
actual load address to find the actual memory address. The actual memory address 
is called a Virtual Address (VA). 
2.1.3. The MS-DOS Header 
Every PE file begins with a small MS-DOS executable. The need for this stub 
executable arose in the early days of Windows, before a significant number of 
consumers were running it. When executed on a machine without Windows, the 
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program could at least print out a message saying that Windows was required to run 
the executable. The first bytes of a PE file begin with the traditional MS-DOS header, 
called an IMAGE_DOS_HEADER. The only two values of any importance are 
e_magic and e_lfanew. The e_lfanew field contains the file offset of the PE header. 
The e_magic field needs to be set to the value 0x5A4D. There's a #define for this 
value, named IMAGE_DOS_SIGNATURE. In ASCII representation, 0x5A4D is MZ, 
the initials of Mark Zbikowski, one of the original architects of MS-DOS. 
2.1.4. PE Signature 
After the MS-DOS stub, at the file offset specified at offset 0x3c, is a 4-byte signature 
that identifies the file as a PE format image file. This signature is “PE\0\0” (the letters 
“P” and “E” followed by two null bytes). This can be used to validate an input 
executable as a correct windows executable. 
2.1.5. Common Object File Format File Header and Optional Header 
At the beginning of an object file, or immediately after the signature of an image file, 
is a standard Common Object File Format (COFF) file header. Every image file has 
an optional header that provides information to the loader. The size of the optional 
header is not fixed. The SizeOfOptionalHeader field in the COFF header must be 
used to validate that a probe into the file for a particular data directory does not go 
beyond SizeOfOptionalHeader. The IMAGE_NT_HEADERS structure is the primary 
location where specifics of the PE file are stored. Its offset is given by the e_lfanew 
field in the IMAGE_DOS_HEADER at the beginning of the file. There are actually two 
versions of the IMAGE_NT_HEADER structure, one for 32-bit executables and the 
other for 64-bit versions. The optional header magic number determines whether an 
image is a PE32 (32 bit) or PE32+ (64 bit) executable, as shown in table 2.1. 
Table 2.1 – Identifier for 32-bit and 64-bit executable files 
Magic Number PE Format 
0x10b PE32 
0x20b PE32+ 
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This information can be used to validate that the input portable executable file is 32- 
bit for which the software has been tailored. 
2.1.6. Optional Header Data Directories 
Each data directory gives the address and size of a table or string that Windows 
uses. These data directory entries are all loaded into memory so that the system can 
use them at run time. 
2.1.6.1. The Section Table 



Each row of the section table is, in effect, a section header. This table immediately 
follows the optional header. This positioning is required because the file header does 
not contain a direct pointer to the section table. Instead, the location of the section 
table is determined by calculating the location of the first byte after the headers. The 
number of entries in the section table is given by the NumberOfSections field in the 
file header. Entries in the section table are numbered starting from one. The code 
and data memory section entries are in the order chosen by the linker. In an image 
file, the virtual addresses for sections must be assigned by the linker so that they are 
in ascending order and adjacent, and they must be a multiple of the 
SectionAlignment value in the optional header. 
2.1.6.2. The .debug Section and Debug Directory 
The .debug section is used in object files to contain compiler-generated debug 
information and in image files to contain all of the debug information that is 
generated. This section describes the packaging of debug information in object and 
image files. Image files contain an optional debug directory that indicates what form 
of debug information is present and where it is. This directory consists of an array of 
debug directory entries whose location and size are indicated in the image optional 
header. The debug directory can be in a discardable .debug section or it can be 
included in any other section in the image file, or not be in a section at all. The debug 
directory can be used to find out the name of the environment or tool that generated 
the executable and the version of the tool. It can also tell the time of creation of the 
executable file. 
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2.1.6.3. The Imports Section and Import Directory Table 
All image files that import symbols, including virtually all executable (EXE) files, have 
an .idata section. The import information begins with the import directory table, which 
describes the remainder of the import information. The import directory table contains 
address information that is used to resolve fix up references to the entry points within 
a DLL image. The import directory table consists of an array of import directory 
entries, one entry for each DLL to which the image refers. The last directory entry is 
empty (filled with null values), which indicates the end of the directory table [10]. 
2.1.7. Dynamically Linked Libraries (DLLs) 
Dynamically linked libraries (DLLs) are a key feature in a Windows. The idea is that a 
program can be broken into more than one executable file, where each executable is 
responsible for one feature or area of program functionality. The benefit is that overall 
program memory consumption is reduced because executables are not loaded until 
the features they implement are required. Additionally, individual components can be 
replaced or upgraded to modify or improve a certain aspect of the program. From the 
operating system’s standpoint, DLLs can dramatically reduce overall system memory 
consumption because the system can detect that a certain executable has been 
loaded into more than one address space and just map it into each address space 
instead of reloading it into a new memory location. DLLs are different from build-time 
static libraries (.lib files) as static libraries are permanently linked into an executable. 
With static libraries, the code in the .libfile is statically linked right into the executable 
while it is built, just as if the code in the .libfile was part of the original program source 
code. When the executable is loaded the operating system has no way of knowing 
that parts of it came from a library. If another executable gets loaded that is also 
statically linked to the same library, the library code will essentially be loaded into 
memory twice, because the operating system will have no idea that the two 
executables contain parts that are identical. Windows programs have two different 
methods of loading and attaching to DLLs in runtime. Static linking refers to a 
process where an executable contains a reference to another executable within its 
import table. This is the typical linking method that is employed by most application 



programs, because it is the most convenient to use. Static linking is implementing by 
having each module list the modules it uses and the functions it calls within each 
module (this is called the import table). When the loader loads such an executable, it 
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also loads all modules that are used by the current module and resolves all external 
references so that the executable holds valid pointers to all external functions it plans 
on calling. Runtime linking refers to a different process whereby an executable can 
decide to load another executable in runtime and call a function from that executable. 
The principal difference between these two methods is that with dynamic linking the 
program must manually load the right module in runtime and find the right function to 
call by searching through the target executable’s headers. Runtime linking is more 
flexible, but is also more difficult to implement from the programmer’s perspective. 
From a reversing standpoint, static linking is easier to deal with because it openly 
exposes which functions are called from which modules [11]. 
2.2. Obfuscation 
One of the most prevalent features of modern malware is obfuscation. Obfuscation is 
the process of modifying something so as to hide its true function. In the case of 
malware, obfuscation is used to make automated analysis of the malware nearly 
impossible and to aggravate manual analysis to the maximum extent possible. The 
term obfuscation refers to techniques that preserve the program’s semantics and 
functionality while at the same time making it more difficult for the analyst to extract 
and comprehend the program’s structures. In the context of disassembly, obfuscation 
refers to transformations of the binary such that the parsing of instructions becomes 
difficult. Besides obfuscation techniques to increase the difficulty of the disassembly 
process, the code itself can be obfuscated to make it difficult to extract the control 
flow of a program or to perform data flow analysis. The basic idea for such 
obfuscation techniques is that they can be automatically applied, but not easily 
undone, even if the transformation approach is known. Finally, the code that is 
analyzed by a static analyzer may not necessarily be the code that is actually run. In 
particular, this is true for self-modifying programs that use polymorphic and 
metamorphic techniques and packed executables that unpack themselves during 
run-time. 
Sophisticated techniques for protecting code against reverse engineering are called 
code obfuscation. An obfuscator transforms a program into an obfuscated program 
that displays the same observable behaviour but is illegible. The quality of an 
obfuscator is measured by its potency, resilience and cost. Potency is the amount of 
subjective complexity added to a program, thus making it harder for humans to 
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comprehend the functionality. Resilience describes the robustness of the obfuscation 
against automated de-obfuscation methods and cost refers to the magnitude of 
additional time and space consumption caused by the transformation. Some of the 
common obfuscation transformations are dead code insertion, code reordering, 
instruction substitution and packing. These different methods of obfuscation are 
briefly described in the subsequent sections. 
2.2.1. Dead Code Insertion 
Dead code insertion is the simplest of the obfuscation techniques. It means to insert 
instructions or sequences of instructions without changing the machine state at 
random points in the program. Examples of dead code on x86 architectures are the 
NOP (No Operation or No Operation Performed) instruction or statements such as 
mov eax, eax that have no effect on the code execution yet change the binary 
signature of the program. Dead code insertion changes the binary footprint of a piece 
of malicious software, yielding false negatives in traditional anti-virus products. NOPs 
are often involved when cracking software that checks for serial numbers, specific 



hardware or software requirements etc. This is accomplished by altering functions 
and subroutines to by-pass security checks and simply returning the expected value 
being checked for. 
2.2.2. Code Reordering 
A sequence of binary code can be broken into several pieces and put together in a 
random order by connecting subsequent instructions in the original code through 
unconditional jumps. As long as addresses used in the code are rewritten during the 
process, the program semantics are not affected even though the resulting binary 
executable is new. 
2.2.3. Instruction Substitution 
In large instruction sets such as those of the x86 processor family, various 
instructions can be used to perform equivalent operations. Substituting an instruction 
with its equivalent would not change the outcome of the program but could change its 
signature [12]. 
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2.2.4. Packing 
Packing is the method that an executable uses to obfuscate an executable or to 
reduce its size. Packers are typically implemented with a small decoder stub which is 
used to unpack or obfuscate a binary in question. Once the decoding process is 
complete, the decoder stub transfers control back to the original code of the program. 
Execution then proceeds similar to that of a normal executable. Packing involves 
compressing an executable file but leaving it in an executable state. An infected 
executable can thereby be changed by the packing process such that its signature 
becomes completely different while remaining executable. 
2.2.4.1. Packer Tools 
Tools used to obfuscate compiled binary programs are generically referred to as 
packers. This term stems from the fact that one technique for obfuscating i.e. 
disguising a binary program is simply to compress the program, as compressed data 
tends to look far more haphazard, and certainly does not resemble machine 
language. For the program to stay executable on the target computer, it must remain 
a valid executable for the target platform. The standard approach taken by most 
packers is to embed an unpacking stub in to the packed program and to modify the 
program entry point to point to the unpacking stub. 
When the packed program executes, the operating system reads the new entry point 
and initiates execution of the packed program at the unpacking stub. The purpose of 
the unpacking stub is to restore the packed program to its original state and then to 
transfer control to the restored program. Packers vary significantly in their degree of 
sophistication. The most basic packers simply perform compression of a binary’s 
code and data sections. More sophisticated packers not only compress, but also 
perform some degree of encryption of the binary’s sections. Finally, many packers 
will take steps to obfuscate a binary’s import table by compressing or encrypting the 
list of functions and libraries that the binary depends upon [13]. 
Programs obfuscated by packing consist of a decryption routine (an instruction 
sequence that generates code and data), a trigger instruction that transfers control to 
the generated code, an unpacked area (the memory area where the generated code 
resides) and a packed area (the memory area from where the packed original binary 
is read). PE packers typically take the existing sections of the image file to be 
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packed, compress them, and store them in a new section within the packed 
executable. Then they add the unpacking stub, possibly some more data needed 
during the unpacking process, and new headers to correctly describe the packed file. 
This typically includes creating a new section that will contain the unpacked data, 
with a raw size of zero and the virtual size set to at least the size of the unpacked 



data, adding new sections to contain the packed data and the unpacking stub, and 
setting the entry point to the entry point of the unpacking stub. At the same time, PE 
packers typically remove most of the original import data as well and keep or add 
only a few imports, as a bare minimum only for the LoadLibraryA and the 
GetProcAddress from kernel32.dll. At load time, the unpacking stub is executed 
which unpacks the packed code into the empty section reserved for it. Then, the stub 
typically resolves the original imports, using the LoadLibraryA API call to have 
Windows load dynamic link libraries into the process’s address space and return 
handles to them, and using the GetProcAddress API call to obtain the virtual 
addresses of symbols these libraries export. These virtual addresses are then written 
to the unpacked executable’s import address table. Finally, control is transferred to 
the unpacked code’s entry point, typically dubbed original entry point (OEP) in this 
context, the unpacking process is complete, and the original code should be able to 
execute as if nothing had happened [14]. 
2.3. De-Obfuscation 
De-obfuscation is the opposite process of obfuscation. There are two basic ways to 
deal with obfuscation. The first way is to simply ignore it, in which case your only real 
option for understanding the nature of a piece of malware is to observe its behaviour 
in a carefully instrumented environment such as a virtual computer. The second way 
to deal with obfuscation is to take steps to remove the obfuscation and reveal the 
original “de-obfuscated” program, which can then be analyzed using traditional tools 
such as disassemblers and debuggers. Of course, malware authors understand that 
analysts will attempt to break through any obfuscation, and as a result they design 
their malware with features designed to make de-obfuscation tricky. De-obfuscation 
can never be made truly unattainable since the malware must eventually run on its 
target CPU; it will always be possible to view the sequence of instructions that the 
malware executes using some combination of hardware and software tools. In all 
likelihood, the malware author’s goal is simply to make analysis amply complicated 
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that a window of opportunity is opened for the malware in which it can run without 
discovery. 
2.4. Analysis Techniques 
Malware analysis is the process of determining the purpose and functionality of a 
given malware sample (such as a virus, worm or Trojan horse). This process is a 
necessary step to be able to develop effective detection techniques for malicious 
code. In addition, it is an important prerequisite for the development of removal tools 
that can thoroughly delete malware from an infected machine. Traditionally, malware 
analysis has been a manual process that is tedious and time intensive. Unfortunately, 
the number of samples that need to be analyzed by security vendors on a daily basis 
is constantly increasing. This clearly reveals the need for tools that automate and 
simplify parts of the analysis process. Analyzing unknown executables is not a new 
problem. Consequently, many solutions already exist. These solutions can be divided 
into two broad categories: static analysis and dynamic analysis techniques. 
2.4.1 Static Analysis 
Static analysis is the process of analyzing a program’s code without actually 
executing it. In this process, a binary is usually disassembled which denotes the 
process of transforming the binary code into corresponding assembler instructions. 
Then, both control flow and data flow analysis techniques can be employed to draw 
conclusions about the functionality of the program. A number of static binary analysis 
techniques have been introduced to analyze different types of malware. Static 
analysis has the advantage that it can cover the complete program code and is 
usually faster than its dynamic counterpart. However, a general problem with static 
analysis is that many interesting questions that one can ask about a program and its 



properties are un-decidable in the general case. Of course, there exists a rich body of 
work on static analysis techniques that demonstrate that many problems can be 
approximated well in practice, often because difficult to handle situations occur rarely 
in real-world software. Unfortunately, the situation is different when dealing with 
malware. Because malicious code is written directly by the adversary, it can be 
crafted deliberately so that it is hard to analyze. In particular, the attacker can make 
use of binary obfuscation techniques to thwart both the disassembly and code 
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analysis steps of static analysis approaches. There are many tools out there to do 
basic static analysis such as PEiD [15]. 
Static analysis can be used to gather a variety of information about an executable 
e.g., high-level information such as its file size, a cryptographic hash, its file format, 
imported shared libraries, the compiler used to generate it, or even just a list of 
human-readable strings that are contained in the file, or, low-level information 
gathered by disassembling or decompiling the specimen. Information about the file 
format, shared library or compiler can aid disassembly or de-compilation. 
Cryptographic hashes can be used to identify a specimen. Packer signatures or its 
entropy may be used to determine whether it might be runtime packed. 
Static analysis has several advantages over dynamic approaches. As static methods 
do not involve executing a potentially malicious program, there is a lesser risk of 
damaging the system that analysis is performed on. Given availability of the right 
tools, it is also possible to perform the analysis on a platform that differs from the 
platform that the specimen is designed to run on, further mitigating the risk of 
damaging the analysis platform (e.g., by accidentally executing it). Furthermore, 
static analysis typically covers the whole program and not just those code paths that 
are executed for a set of inputs, like dynamic analysis. There are however some 
disadvantages, too. Determining a sample’s behaviour through low-level static 
analysis, like disassembly, is typically very time-consuming and requires a lot of 
knowledge and skill. Static analysis also has trouble dealing with self-modifying code 
and packed binaries as these generate new code during execution, behaviour that is 
hard to capture without executing a specimen. 
2.4.2. Dynamic Analysis 
In contrast to static techniques, dynamic techniques analyze the code during runtime. 
While these techniques are non-exhaustive, they have the significant 
advantage that only those instructions are analyzed that the code actually executes. 
Thus, dynamic analysis is immune to obfuscation attempts and has no problems with 
self-modifying programs. When using dynamic analysis techniques, the question 
arises in which environment the sample should be executed. Of course, running 
malware directly on the analyst’s computer, which is probably connected to the 
Internet, could be disastrous as the malicious code could easily escape and infect 
other machines. Furthermore, the use of a dedicated standalone machine that is 
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reinstalled after each dynamic test run is not an efficient solution because of the 
overhead that is involved. 
As Dynamic analysis is a way of analysing an unknown program by executing it and 
observing its behaviour, careful consideration must be given to securing the analysis 
environment, so as not to risk damaging the systems on which it is run. The simplest 
solution to containing hostile code is the so-called sacrificial lamb, which is a real 
machine with no or limited network access, which can be disposed of or wiped clean 
and reinstalled after an analysis run. There also exist hardware and software 
solutions to automate the task of restoring a real machine to an untouched state. 
Dynamic analysis can be performed at different levels of abstraction. In the simplest 
case, a security researcher can record the initial system state, execute the program 



to be analysed and examine the system state after execution and make note of all 
changes. Additionally, the researcher can monitor the system’s inputs and outputs 
during execution, e.g., network activity. More fine-grained dynamic analysis involves 
tracing a program’s behaviour, which, again, can be performed at various levels of 
abstraction. System call tracing captures the interaction of a program with the 
operating system, on transitions from user mode to kernel mode code. System call 
tracing can also quickly generate a lot of data that might be hard for a human analyst 
to process. To perform analysis at a higher level of abstraction on other operating 
systems, library call tracing is another method that can be employed for dynamic 
analysis. For programs written in a high-level language, this method provides a more 
natural view of a program’s inner workings than system call tracing, if the program 
uses the high-level language’s standard libraries (which is common practice). 
Dynamic analysis has several advantages. At high levels of abstraction, e.g., library 
call tracing, it can quickly give a researcher an overview of what a certain program 
does. It is largely immune to obfuscation techniques that target static analysis 
methods, like self-modifying code, including runtime-packing or encryption, or antidisassembly 
tricks. But there are also drawbacks. Dynamic analysis typically only 
covers one possible execution path through a program [14]. 
2.4.2.1. Virtual Machines 
Running the executable in a virtual machine (that is, a virtualized computer) can only 
affect the virtual PC and not the real one. After performing a dynamic analysis run, 
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the infected hard disk image is simply discarded and replaced by a clean one (i.e., so 
called snapshots). Virtualization solutions are sufficiently fast. There is almost no 
difference to running the executable on the real computer, and restoring a clean 
image is much faster than installing the operating system on a real machine. Virtual 
machines are easier to handle than real machines and provide greater flexibility, e.g., 
they allow a researcher to save one or more snapshots of the machine state, which 
can later be restored. On the other hand, virtual machines are normally slower than 
real machines and the executable to be analyzed may determine that it is running in 
a virtualized machine and, as a result, modify its behaviour. In fact, a number of 
different mechanisms have been published that explain how a program can detect if 
it is run inside a virtual machine. 
2.4.2.2. Sand-Boxing 
Sand-boxing systems are a relatively new approach to handling malicious code. 
Sand-boxing solutions introduce cages, "virtual subsystems" of the actual operating 
system. The idea is to let the unknown program run on a virtual machine that 
accesses the same information which the user can access on the local machine but 
has access to a copy of the information within the cage. On the virtual system, the 
known program, such as a computer virus, will be able to read files that are "on the 
real system," even read the Registry keys and so on, but its networking capabilities 
are reduced. And when it attempts to make any changes, it makes them in the replica 
of information within the cage. Thus the virus is free to do anything it wants, but this 
will happen in a cage instead of on the real system. When the application finishes 
execution, the file and Registry changes can be thrown away, and malicious-looking 
actions can be logged. Unfortunately, this solution comes with a few limitations such 
as compatibility problems and the virtualized system might have holes that are similar 
to those of behaviour-blocking systems. Tricky malicious code might be able to 
execute unwanted functions on the real machine instead of the virtual machine [11]. 
2.4.2.2. Emulator 
A PC emulator is a piece of software that emulates a personal computer (PC), 
including its processor, graphic card, hard disk, and other resources, with the 
purpose of running an unaffected operating system. The difference between virtual 
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machines and PC emulators is that virtual machines can run an unaffected operating 
system but they execute a statistically dominant subset of the instructions directly on 
the real CPU. This is in contrast to PC emulators, which simulate all instructions in 
software. Because all instructions are emulated in software, the system can appear 
exactly like a real machine to a program that is executed, yet keep complete control. 
Thus, it is more difficult for a program to detect that it is executed inside a PC 
emulator than in a virtualized environment. However, there is one observable 
difference between an emulated and a real system: speed of execution. This fact 
could be exploited by malicious code that relies on timing information to detect an 
emulated environment. It is possible for the emulator to provide incorrect clock 
readings to make the system appear faster for processes that attempt to time 
execution speed. 
In addition to differentiating the type of environment used for dynamic analysis, one 
can also distinguish and classify different types of information that can be captured 
during the analysis process. Many systems focus on the interaction between an 
application and the operating system and intercept system calls or hook Windows 
API calls. These tools are implemented as operating system drivers that intercept 
native Windows system calls. As a result, they are invisible to the application that is 
being analyzed. They cannot, however, intercept and analyze Windows API calls or 
other user functions. On the other hand, tools exist that can intercept arbitrary user 
functions, including all Windows API calls. The complete control offered by a PC 
emulator potentially allows the analysis that is performed to be even more fine grain. 
Similar to the functionality typically provided by a debugger, the code under analysis 
can be stopped at any point during its execution and the process state (i.e., registers 
and virtual address space) can be examined [16]. 
2.5. Unpacking 
Unpacking consists of constructing a program instance which contains the embedded 
program, contains no code-generating routine, and behaves equivalently to the selfgenerating 
program. Packing does not change the relevant behavior of a program. 
Hence, reverting back of a packed program (called unpacking) consists of recovering 
the original program that has the same relevant behaviour as the packed program. In 
a packed program the decryption routine precedes the execution of the original 
program. To ensure that the original program is correctly restored at runtime, the 
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decryption routine generates the same results every time the program is run, 
regardless of any input to the program. Furthermore, the operations of the decryption 
routine affect only program memory. As a consequence, it is possible to create an 
equivalent program not containing the decryption routine by setting all the values in 
the unpacked area to the expected results of its computation beforehand. 
2.6. Unpacking Techniques 
There are several ways to unpack packed executables. The main weakness of 
typical runtime-packers and executable protectors is that at some point, the original 
code must be executed. This can be exploited by manual unpacking, i.e., by 
debugging the executable to be unpacked, and determining when the original code is 
completely unpacked and the unpacking stub is about to branch to it. Then, the 
process memory can be dumped and an attempt be made to regenerate the original 
executable by fixing headers and reconstructing an import address table. Another 
method is reverse engineering the unpacking stubs of individual packers and using 
that knowledge to create packer-specific unpackers that can statically unpack 
executables, i.e., without executing them. While this is typically more time-consuming 
than unpacking a single executable, it can save a lot of time as soon as several files 
packed by an individual packer need to be unpacked. However, many runtimepackers 



and executable protectors try to prevent these unpacking methods by 
hardening their unpacking stubs against reverse engineering, e.g., by using antidebugging 
and code-obfuscation techniques. Some of the commonly used unpacking 
methods are: routine-based (static unpacking), emulator-based (dynamic unpacking) 
and mixed routine-based and emulator-based unpacking. 
2.6.1. Routine-based Unpacking 
Routine-based unpacking is based on decompression algorithms. If the packer 
author has used a standard compression algorithm then the decompression 
algorithm can be applied to reverse packing. Examples of such algorithms are FSG 
and UPack. Advantage of routine-based unpacking is high speed while disadvantage 
is a lack of flexibility as every packer and each and every one of its variants would 
require a separate unpacking routine. Some compression programs such as UPX 
use their own decompression program included within them. Within a variety of all 
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packers, they are a minority. These stand-alone unpackers can be useful for 
research purposes but they are not appropriate for incorporating into mainstream 
antivirus products. Possibly, they could be a useful add-on for free antivirus solutions. 
Single-purpose decompression program are the most frequently used method of 
decompression of run-time packed files. This method works well when a packer uses 
the same unpacking code each time. One possibility to write this decompression 
program is to disassemble a sample of a packed file and just copy the bulk of the 
resulting assembly language code and edit some parts of this code to be able to selfrun 
(i.e., not run as part of compressed file) with a compressed file as input. The 
resulting code will run quickly. However, the generated code will be processorspecific, 
and therefore in order to run on many different processors it will need to be 
patched to the correct form. Duplicating the original code is not a safe strategy. A 
typical packer has minimal error checking. If code from this packer is used to unpack 
the file, the product can overflow the memory allocated, which may eventually crash 
the process, crash the entire system, or allow an attacker to gain a complete control 
of the system. The solution of this most important problem is to encapsulate the code 
within a defensive environment. Another solution would be to add many errorchecking 
controls (buffer underflow/overflow, etc.). Since specific code is needed for 
each packer and perhaps for each version of each packer, the size of an antivirus 
product incorporating routine-based unpacking can grow quite large [17]. 
2.6.2. Emulator-based Unpacking 
Emulator-based unpacking is based on loading and running a file in a virtual 
environment. If file is stopped right at the original entry point, the unpacked file is 
found. This technique is generic and can cope with different packers. Generic code 
emulation is a very powerful decompression method. To program a code emulator is 
not simple but once done, it can greatly speed up the process of adding new 
unpackers. Often, part of the process of adding a new packer can be skipped, 
because the emulator can decompress a file automatically. The code emulator loads 
a program into a virtual environment and then runs until the file is decompressed – a 
point which is defined heuristically, not algorithmically. How the heuristic defines a 
state when a file is decompressed is the most difficult part of decompression by a 
code emulator. Also, once an emulator is able to cope with anti-debugging tricks 
used by one unpacker, it can cope with the tricks in PE-files compressed by any 
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other packer. Code emulation is slower than other decompression methods. This is 
because the code emulator always has to maintain the entire CPU state. 
2.6.3. Mixed Routine-based and Emulator-based 
Since emulation based unpacking is too slow and static unpacking is too specific, 
both can be combined and used as a hybrid approach. This technique combines the 



efficiency of routine-based unpacking with the generic nature of emulator based 
unpacking. If the two types can work harmoniously, efficiency and flexibility can be 
attained. Routine-based unpacking can cope with the standard decompression 
algorithms while emulation can handle the modified packers or unknown packers. For 
particularly tricky packers, it is a good strategy to mix emulation and specific routines. 
For instance, emulation might take place until polymorphic encryption key has been 
found. Then the particular encrypted data can be decrypted by a specific routine. Its 
use is faster than emulation. Mixing code emulator with specific routines, however, 
brings additional complications [18]. 
2.6.4. Run and Dump Unpacking 
Another technique that is quite successful in decompression of run-time packed 
executable files is running the code and then using a utility to capture the in-memory 
image and saving it on a disc. The main difficulty with this approach is finding out the 
right point when a running program is to be stopped and its image captured in the 
memory. The drawback of this method is that the executable must be loaded, which 
might not be acceptable in all cases as it cannot always be guaranteed that the 
program is terminated before any malicious functionality is executed. Besides using a 
virtual machine to avoid potential damage, it is also possible to unpack the 
executable by creating a separate tool out of the information gained from the 
unpacking routine included in the program. 
With most packed programs, the first phase of execution involves unpacking the 
original program in memory, loading any required libraries, and looking up the 
addresses of imported functions. Once these actions are completed, the memory 
image of the program closely resembles its original, unpacked version. If a snap shot 
of the memory image can be dumped to a file at this point, that file can be analyzed 
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as if no packing had ever taken place. The advantage to this technique is that the 
embedded unpacking stub is leveraged to do the unpacking. The difficult part is 
determining exactly when to take the memory snapshot. The snap shot must be 
made after the unpacking has taken place and before the program has had a chance 
to cover its tracks. This is one drawback to this approach for unpacking. The other, 
perhaps more significant drawback is that the malware must be allowed to run so that 
it can unpack itself. To do this safely, a sandbox environment should be configured. 
Most operating systems provide facilities for accessing the memory of running 
processes. 
The dumped process image is not executable till the executable’s header is corrected 
with the new values but the code itself is visible in its original form and disposed for 
reverse engineering and static analysis. This simple method works for most kinds of 
executable packers and encryptions, as the unpacking function typically extracts the 
complete program right at start, and does not interfere with later computations. 
2.6.4.1. Debugger-Assisted Unpacking 
Allowing malware to run freely is not always a great idea. If the executable file is 
unreliable and its exact function is not known, running it without any checks would 
give it the opportunity to wreak havoc before a dump of the memory image can be 
captured to disk to analyse the actual program code. Debuggers offer greater control 
over the execution of any program under analysis. The basic idea when using a 
debugger is to allow the malware to execute just long enough for it to unpack itself 
then utilizing the memory dumping capabilities of the debugger , the process image 
can be dumped to a file for further analysis. The problem with debugging is 
determining the stopping condition when the image of the process in memory is 
captured. 
2.7. Identifying Packed Binaries 
When having to analyse a large number of unknown binaries, it can be helpful to be 



able to determine whether a binary has been packed or not. There are heuristics that 
give good estimates whether a program contains hidden, packed code or not. Both 
packing and encryption transform one byte sequence into another, where the new 
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byte sequence typically has higher entropy than the original one (depending on the 
input data). This property can be leveraged to try to distinguish “regular" executables 
from packed or encrypted ones. Split each sample file into 256 byte sized blocks and 
record its average block entropies and its highest block entropy. Analysing the 
aggregated entropy scores statistically gives significant differences between packed 
and normal files leading to the conclusion that entropy metrics are indeed a valid 
heuristic to determine whether an executable has been packed or encrypted. 
Experiments show that a similar metric, based on the maximum entropy of sections 
within PE files, yields similar differences between unpacked and packed or encrypted 
files. It is possible to explicitly manipulate data within PE files to change their entropy. 
Random bytes can be added to increase a file’s entropy and the same byte can be 
added multiple times to lower it [14]. 
2.8. Published Unpacking Approaches 
Various unpacking approaches have been published so far. Some of the published 
unpacking techniques are described in this section. 
2.8.1. Malware Normalization 
The proposed malware normalizer [19] is a system that takes an obfuscated 
executable, undoes the obfuscation and outputs a normalized executable. The 
technique uses code emulation to normalize executables. Unpacking consists of two 
basic steps. In the first step, the program to be normalized is executed in a controlled 
environment to identify the control-flow instruction that transfers control into the 
generated-code area. All writes to the code area are captured in this step. The 
second step uses information captured in the first step to construct a normalized 
program that contains the generated code. 
2.8.1.1. Identifying the First Control Transfer into Generated Code 
The first control transfer into generated code is identified by executing the program in 
an emulator, collecting all the memory writes (retaining for each address only the 
most recently written value) and monitoring execution flow. If the program attempts to 
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execute code from a memory area that was previously written, the target address of 
the control flow transfer is captured (i.e., the trigger instruction) and execution of 
code terminated. This technique is based on the assumption that the code generator 
and the instruction causing the control-flow transfer are reached in all program 
executions. By emulating the program and monitoring each instruction executed, the 
moment when execution reaches a previously written memory location can be 
identified. If heuristics are employed for determining this location, false negatives are 
generated. 
2.8.1.2. Constructing a Non-self-generating Program 
The captured data can be used to construct an equivalent program that does not 
contain the code generator. The data area targeted by the trigger instruction is 
replaced with the captured data. The memory write captured contain both 
dynamically generated code and the execution specific data e.g. the state of the 
program stack and heap. The executable file of the new program is a copy of the 
executable file of the old program with the byte values in the virtual memory range 
set from the captured data. The program location where execution was terminated is 
used as the entry point for the new program. 
2.8.1.3. Limitations of Technique 
This technique has several limitations. The unpacked executable is not ready-to-run. 
While all the code is present in the normalized executable, the imports table listing 



the dynamically linked libraries used by the program is not recovered, since most 
packing obfuscations replace it by a custom dynamic loader. This approach is open 
to resource consumption attacks and can have false negatives since the execution 
time in the sandbox often has to be heuristically restricted for performance reasons. 
2.8.2. OmniUnpack 
OmniUnpack [6] is a generic unpacking technique that incorporates a malware 
detector and is able to handle any type of packer and any type of self-modifying 
code. OmniUnpack monitors the program execution and tracks written as well as 
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written then-executed memory pages. When the program makes a potentially 
damaging system call, OmniUnpack invokes a malware detector on the written 
memory pages. If the detection result is negative (i.e., no malware found), execution 
is resumed. Code monitoring has been made efficient by tracking memory accesses 
at the page level (using non-executable pages or equivalent hardware mechanisms) 
instead of the instruction level. The resulting low overhead means that continuous 
monitoring can be deployed. Furthermore, OmniUnpack handles any number of 
unpacking and self modifying layers, each time communicating to the malwaredetection 
engine only the newly generated code that needs to be scanned. 
The OmniUnpack algorithm follows a simple strategy to handle packed code. All 
memory writes and the program counter are tracked. If the program counter reaches 
a written memory address, it is identified that some form of unpacking or code 
generation occurs in the program. All written-then executed (or written-and-about-tobe- 
executed) memory locations should then be analyzed by a malware detector. The 
salient features of this approach are page-level tracking and continuous monitoring. 
These qualities as well as the disadvantages of OmniUnpack are touched upon in the 
succeeding subsections. 
2.8.2.1. Page-level Tracking 
Page-level tracking decreases the granularity of monitoring while greatly reducing the 
overhead of memory-access tracking. As a downside, it is less precise, often 
resulting in spurious detected unpacking stages. The spurious unpacking stages are 
caused by multiple layers of packing and by anti-disassembly and anti-static analysis 
techniques. Furthermore, code that executes from the same page on which it writes, 
even though non-self-modifying, also generates multiple spurious unpacking stages. 
It would be unnecessarily expensive to invoke the malware detector every time a 
written memory page is executed, because such an event (written-then-executed) is 
frequent. Written then-executed pages are indicative of unpacking but not indicative 
of the end of unpacking. The problem of determining when unpacking is completed 
can only be approximated. The end of an unpacking stage is approximated by using 
the heuristic that if the current execution trace indicates unpacking (i.e., memory 
pages were written and then executed), and if the program is about to invoke a 
dangerous system call, then it is assumed that an unpacking stage has completed 
and the malware detector is invoked. A dangerous system call has been defined as is 
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a call whose execution can leave the system in an unsafe state. 
2.8.2.2. Continuous Monitoring 
Because of the possibility of multiple unpacking stages and of the approximation 
used to detect them, it is insufficient to monitor and scan the program only once 
during an execution. OmniUnpack implements a continuous monitoring approach, 
where the execution is observed in its entirety. 
2.8.2.3. Disadvantages of Approach 
OmniUnpack raises performance concerns during the execution of benign programs. 
Furthermore, this approach is open to resource-consumption attacks and is prone to 
false negatives. 



2.8.3. Pandora’s Bochs 
The unpacker of Pandora’s Bochs [13] is based on ‘Bochs’ a portable x86 emulator. 
Bochs is a pure software virtual machine that is not subject to some of the designinherent 
flaws of reduced-privilege guest virtual machines for which well known and 
simple detection methods exists. There exist some methods to detect the presence 
of Bochs which are mainly due to errors in Bochs’s CPU implementation, not its 
architecture, and due to the possibility to fingerprint the emulated hardware. While 
the former can possibly be mitigated by fixing the emulation code, the latter is a 
problem of all virtual machines alike. Bochs provides a built-in mechanism for 
instrumenting code running on the emulated CPU. Major disadvantage of using 
Bochs is that it is quite slow. Also determining whether a program will unpack 
additional code and transfer control to unpacked code cannot be determined in the 
general case. It is however possible to estimate whether some monitored process is 
still showing any progress that might lead to the generation of new, unpacked code, 
or whether all monitored processes have reached a stable state. To that end, 
innovation is tracked for all monitored processes through memory writes versus 
branch targets, dynamic link libraries, execution of modified memory. Termination of 
the unpacking process is guaranteed by using an upper bound to the unpacker’s total 
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run time. The limitations to the proposed technique are slow speed, compatibility 
issues and a high number of malware samples failing to execute properly, despite 
being able to do so on other platforms. Import information is not always recovered 
correctly. 
2.8.4. PolyUnpack 
PolyUnpack [20] is a behaviour-based approach that uses a combination of static 
and dynamic analysis to automate the process of extracting the hidden-code. 
Hidden-code is automatically extracted based on the observation that sequences of 
unpacked code in a malware instance can be made self-identifying when the 
instance is executed in an environment with knowledge of the instance’s static code 
model. Starting with a malware instance, static analysis is performed to acquire a 
model of what its execution would look like if it did not generate and execute code at 
runtime. The statically derived model and the malware instance are then fed into the 
dynamic analysis component where the malware is executed in a sterile, isolated 
environment. The malware’s execution is paused after each instruction and its 
execution context is compared with the static code model. When the first instruction 
of a sequence not found in the static model is detected, representations of that 
unknown instruction sequence are written out and the malware’s execution is halted. 
PolyUnpack automates the process of extraction without requiring knowledge of how 
the malware unpacks its hidden-code. 
PolyUnpack, like most instrumentation tools, is not transparent to the malware being 
processed. Therefore, there exists the possibility that an instance of malware being 
executed in PolyUnpack may detect that it is being instrumented and alter its 
behaviour (e.g., halting its execution instead of generating hidden-code) in order to 
evade extraction of its unpacked code. 
2.8.5. Renovo 
Renovo [21] is an emulation technique which monitors currently-executed 
instructions and memory writes at run-time. This approach maintains a shadow 
memory of the memory space of the analyzed program, observes the program 
execution, and determines if newly generated instructions are executed. Then it 
extracts the generated code and data. 
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After the packed executable starts, its attached decryption routine performs 
transformation procedures on the packed data, and then recovers the original code 



and data. When the restoration completes, the decryption routine prepares the 
execution context for the original program code to execute, which includes initializing 
the CPU registers and assigning the program counter to the entry point of the newlygenerated 
code region. A packed executable may have multiple hidden layers, 
making it even more difficult to analyze. No matter what packing methods or how 
many hidden layers are applied, the original program code and data should 
eventually be present in memory to be executed, and also the instruction pointer 
should jump to the Original Entry Point (OEP) of the restored program code which 
has been written in memory at run-time. Taking advantage of this inevitable nature of 
packed executables, this technique has been proposed to dynamically extract the 
hidden original code and the OEP from the packed executable by examining whether 
the current instruction has been generated at run-time, after the program binary was 
loaded. For this purpose, the instruction pointer is monitored for jumps to the memory 
region which has been written after the program start-up. A memory map is 
generated when a program is loaded in memory and initialized as clean. Whenever 
the program performs a memory write instruction the corresponding destination 
memory region is marked as dirty, which means it is newly generated. Meanwhile, 
when the instruction pointer jumps to one of these newly-generated regions, it is 
determined that there is a hidden layer hiding the original program code, and identify 
the newly-generated memory regions to contain the hidden code and data, and the 
address pointed by the instruction pointer as the original entry point (OEP). To 
handle the possible hidden layers that may appear later on, the memory map is 
initialised as clean again after storing all the information extracted from the current 
hidden layer. The same procedure is repeated until time-out. 
The emulated environment is not impervious to detection. The malicious code could 
measure elapsed time for certain instructions for which emulation these incurs high 
overhead, or check the results of certain instructions, because the results they 
generate are different under real and emulated environments. 
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CHAPTER 3 
REQUIREMENTS 
This chapter provides the description, functional and non-functional requirements and 
the constraints on SADE and has been supplemented with context mode and data 
flow diagrams. The contents given below were used as a guideline for designing the 
system. 
3.1. The Overall Description 
SADE will take a win32 portable executable file as input and will detect whether the 
file has been packed or not. The compressed (packed) file will be passed on to the 
main module of the software, the deobfuscation engine that will generically recover 
the original code that had been hidden by any packing obfuscation. The recovered 
data will finally be displayed in the output in a meaningful form (that should be of use 
and understandable to a security analyst) and the unpacked executable file will be 
the output of the software. The software will also display data about the file 
comprising of the modules loaded and resources handled etc. to facilitate the file 
analysis. 
3.2. User Characteristics 
The primary users of SADE will be security professionals. The software will extract 
the hidden code from a packed executable. When code is obtained from a compiled 
executable file, it is available in raw form (hex code or with further processing 
assembly language form) and requires that the analyst be familiar with the structure 
of the Windows Portable Executable (PE) files such as the portable executable file 



headers, file sections and data directories etc. The user should also have a 
rudimentary idea about how windows executable files are loaded on the windows 
platform and native windows functions are called to be able to understand and 
benefit from the output information from file analysis. 
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3.3. Constraints 
� SADE might not work on every single type of packing obfuscation or on 
multiple layers of packing obfuscations. 
� SADE will work only for Win32 PE files. 
� The packed input executable file might contain code that can detect the 
presence of SADE and our software may or may not be able to handle it. 
3.3.1. Assumptions and Dependencies 
� SADE is being developed for Windows 32-bit platform. 
3.4. Apportioning of Requirements 
Requirements that may be delayed till future versions of the software are described 
here. These requirements have been delayed either because they are enormous 
undertakings on their own or because their implementation and integration into the 
system is not top priority and can wait till future versions of the application. 
� Converting the unpacked executable file into a valid PE file that will be able to 
run on the windows platform can be performed in future work. This involves 
fixing the import section of the file and other modifications till it is fit to be run 
on the windows platform. 
� Another requirement that can be catered for in future versions is the 
disassembly of the recovered code from the code section of the executable 
file into assembly language. 
� Another possible extension to the software is to make it compatible on 64-bit 
windows platform. 
3.5. Functional Requirements 
Table 3.1 gives the functional requirements along with their descriptions. 
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Table 3.1 - Functional Requirements 
Requirement Description 
1 Win32 Portable 
Executable Files 
SADE shall work only for Win32 Portable Executable files. The 
PE32 file given to the software as input might be packed or not, 
the software should be able to handle both cases accordingly. 
2 Detect Packing The program shall detect whether the input executable file is 
packed or not. The software shall detect the presence of 
compression and/or encryption without needing to discover the 
exact compression and/or encryption scheme used. Generic 
unpacking unpacks packed executable files independent of the 
packing technique used hence it is sufficient that the software is 
able to differentiate between a packed and an unpacked 
executable file. Only files that shall be found to have been 
packed will be passed to the generic unpacking routine so the 
process of detecting packing should be fool proof. 
3 Generic Unpacking The input executable file shall be generically unpacked i.e. some 
transformation or processing performed on it to uncover the 
original PE file code. The software shall uncover the original 
executable code without using any specific decompression 
and/or decryption techniques but rather provide a generic 
solution that should be one-fit-for-all i.e. it should work on a wide 
variety of packed files. 



4 Evade Running 
Harmful Code 
The software shall not run the input PE32 file since the main 
usage of the software will be analyzing hidden malicious code. 
So harmful code should not be allowed to run. 
5 Information for File 
Analysis 
The imports (modules loaded) and resources of the PE file shall 
be shown in the output to help in file analysis. 
6 Dump of Recovered 
Code 
The software shall create an image or dump of the recovered 
PE file. The de-obfuscated code of the input PE32 file shall be 
displayed for analysis purposes. The recovered executable file 
containing the unpacked code may not necessarily be a running 
version of the executable as emphasis is on the discovery of the 
hidden code and making the hidden code available for analysis. 
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3.6. External Interfaces 
Table 3.2 gives the external interface requirements. 
Table 3.2 - External Requirements 
Requirement Description 
1 Input SADE will take a Win32 PE file as input. The input interface should be 
able to display appropriate error message if wrong type of file is entered. 
2 Output SADE will output a dump of the unpacked executable code if the file was 
packed and for a PE32 file for which no packing is discovered, 
information about the file such as the imports and resources should be 
displayed for analysis. SADE will also display the modules loaded by the 
file and resources and other structures contained in the file along with 
the unpacked code in the output. 
3.7. Non-functional Requirements 
Following are the quality and performance characteristics that SADE must possess. 
These requirements have to be testable just like the functional requirements. 
3.7.1. Performance Requirements 
Table 3.3 gives performance requirements for the system 
Table 3.3 - Performance Requirements 
1 Unpacking of input file should take around average 40 seconds and should not take more 
than 90 seconds. 
2 For a file in which no unpacking is detected, there should be no performance overhead 
between inputting file and time taken to display PE file information. 
3 SADE shall analyze only one file at a time. 
4 Only one instance of SADE shall be run on any system at a time. 
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3.7.2. Quality Requirements 
Table 3.4 gives quality requirements for the system. 
Table 3.4 - Quality Requirements 
Requirement Description 
1 
Reliability 
SADE should be able to unpack 80% of input packed files. The 
reliability of SADE is dependent on the complexity level of 
packing and on the packer code being able to detect the 
presence of any external software trying to force-unpack it. 
2 
Security 
SADE should not compromise the safety of the system on which 



it is being run by executing potentially malicious code. The 
packed input file might be malicious as packing is used by 
malware author to hide the true intent of their code so SADE 
should not run any potentially harmful code. 
3 
Portability 
SADE shall run on any architecture on which 32-bit Windows 
platform is installed. 
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CHAPTER 4 
SYSTEM DESIGN 
4.1. Introduction 
This chapter contains the design specification for SADE. The design of SADE has 
been described with different levels of abstraction in the subsequent sections. 
4.1.1. Purpose 
The design specification encapsulates the high level to the low level design covering 
all the aspects and levels of abstraction from the high level view of the project to the 
low level subcomponent details. Purpose of the document is to provide a detailed 
and unambiguous design which is coherent and consistent with the software 
requirements. 
4.1.2. Scope 
The design specification covers the overall design decisions and strategies, 
architectural design as well as low-level component design and abstract interface 
design. This chapter also covers the UML (Unified Modeling Language) diagrams 
and the Graphical User Interface design of SADE. 
4.2. System Overview 
SADE is an executable analysis toolkit that generically detects and unpacks a 
packed windows executable file (PE32 file) and makes the data hidden by encryption 
and compression available for analysis purposes. The unpacked executable file is 
not a valid windows executable as the import address table needs reconstruction 
(which is out of the scope of our project) but the unpacked code and other 
information about the file such as the modules and resources loaded by the 
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executable are available through the toolkit. The toolkit is invaluable to security 
analysts as their time is expensive and individual malware samples can take hours to 
analyze and manual unpacking is a tedious and error prone process. 
4.2.1. Input 
The input to the system is a PE32 executable file. The toolkit first checks the validity 
of the file. If the file is a valid 32-bit windows executable, it is loaded in memory and 
important file information, such as header information, section details and modules 
loaded by the file are extracted from the executable. 
4.2.2. Major Processes 
The first step in generic unpacking is to detect if an executable is packed. This saves 
processing and time spent in trying to unpack an already unpacked or normal 
executable that does not have any transformations such as compression or 
encryption performed on it. Once packing is detected the Generic Unpacking Engine 
is triggered, which uses file dumps and statistical analysis of those dumps to unpack 
hidden program code. 
4.2.3. Output 
The outputs produced by the system are PE file information, dump of the recovered 
code and result of statistical analysis in tabular and graphical form. The PE file 



information includes information gathered from the headers of the file such as the 
names of the Windows APIs called by the executable, the size and address of 
different sections in the executable and information about directories like the debug 
directory etc. 
4.3. Design Considerations 
This section describes some of the issues which need to be addressed or resolved 
before attempting to devise a complete design solution. 
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4.3.1. Assumptions and Dependencies 
i) SADE works only for 32 bit windows portable executable files. 
ii) SADE might not work on every single type of packing obfuscation or on 
multiple layers of packing obfuscations. The packed input executable file 
might contain code that can detect the presence of SADE and SADE may 
or may not be able to handle it. 
iii) Disassembling module for the executable will not be implemented. A 
disassembler may be imported from an external source and integrated 
with the system to produce a more helpful and refined output. 
iv) The application is designed for the Windows platform. 
v) The primary users of SADE are security professionals. The software 
provides unpacked code from a packed executable. When code is 
obtained from a compiled executable file, it is available in raw form (hex 
code or with further processing assembly language form) and requires 
that the analyst be familiar with the structure of the windows Portable 
Executable (PE) files and also with how windows executable files are 
loaded on the windows platform to be able to understand and use the 
output information in file analysis. 
vi) Possible and/or probable changes in functionality 
4.3.2. General Constraints 
Global limitations or constraints can have a significant impact on the design and 
development of any software system. The constraints and limitations that may affect 
SADE are listed and described briefly in the consequent subsections (the list is not 
exhaustive). 
4.3.2.1. Hardware and Software Environment 
The input executable file might be able to detect the debugging environment in 
which it is being unpacked and upon detecting a third party software trying to monitor 
and control its behavior, the input executable file can change its execution by for 
instance going into an infinite loop or by halting its execution altogether. The design 
of the system should try to evade this possibility or incase of its occurrence inform 
the user with an appropriate message. 
40 
4.3.2.2. End-user Environment 
The software design only concerns 32-bit windows platform as the end user 
environment. Porting the software for 64-bit platform can be considered in future 
work. 
4.3.2.3. Standards Compliance 
SADE should comply with the latest standard for portable executable and common 
file format files released by Microsoft. 
4.3.2.4. Security Requirements 
The system has to avoid running harmful code as input executable file might be a 
hidden malicious program. 
4.3.2.5. Memory Limitations 
The software environment to be designed and developed for SADE should not over 
burden the system it is being run on or exhaust the system memory. 



4.3.2.6. Performance requirements 
SADE should enable the smooth operation of other software on the end user system 
it is being run on i.e. it should not overload the system and affect its overall 
performance. 
4.3.3. Goals and Guidelines 
The goal of this software application is to provide a professional toolkit which helps 
the security analysts analyze the packed executables and help in the detection of 
malicious software and the identification of signatures for malware. The design 
decisions have been made on the following principles: 
i) Simple and unambiguous design graphically demonstrated so that it is 
conceivable and understandable. 
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ii) Extensible design that can smoothly incorporate future developments without 
requiring major paradigm changes. Object-Oriented design principles make 
this job easier and manageable. 
iii) Optimal design based on best possible tradeoff between speed and memory 
usage. 
iv) Preference to Security in the design i.e. the security of the system is of 
prime importance since the system will primarily deal with malicious 
executables. 
v) Research incentive in the project was a major motivational factor and goal. 
The major incentive behind the project was to supplement and implement the 
latest research in the field of packed malware successfully and efficiently so 
that the end product is state-of-the-art and comparable with its 
contemporaries. 
4.4. Unpacking Methodology 
The unpacking methodology adopted for SADE is run and dump unpacking approach 
using a debugger. Run and dump unpacking does not have any of the limitations or 
problems of using virtual machines and emulators. The approach is based on the 
innate property of encrypted and compressed executables that regardless of the 
packing technique applied to the original program the original code or its equivalent 
will eventually be present in memory and get executed at some point at run-time. By 
taking advantage of this intrinsic nature of packed executables, one could potentially 
extract the hidden binary code or its equivalent as a raw memory dump. However, it 
is not clear which regions in the memory contain the hidden binary and when is the 
right time to dump such regions, i.e., when the execution context jumps to the hidden 
original code. The essential problem with this straightforward and simplistic approach 
of figuring out when to stop the run and dump process has been approximated by 
using several statistical and heuristic measures. 
4.5. Architectural Strategies 
Following are the design decisions and strategies that affect the overall organization 
of the system and its higher-level structures. 
i) In order to provide debugging capabilities to run and dump a packed file, the 
windows debug API in kernel32.dll has been used. 
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ii) Open source and free ware code libraries for debugging have been employed 
to help construct the debugger for the generic unpacking module. 
iii) Visual C# is the programming language used. The C# paradigm is helpful in 
constructing the graphical user interface and providing file reading, writing 
and data marshalling capabilities. 
iv) In the future work, the software can be upgraded with a disassembling 
module to improve the readability of the unpacked code. 



4.6. System Architecture 
SADE has two principle responsibilities. First is to detect whether an input executable 
file is packed or not and the second is to unpack an executable that is found to be 
packed. The Unpacking task additionally has two separable responsibilities. The 
unpacking task incorporates a debugging module which runs the unpacking stub of 
the packed input executable to enable the recovery of original input file code. The 
unpacking job also requires a statistical analysis engine that is the system core 
where heuristic decisions are made on when to stop the debugging process. The 
debugging and analysis engine requires a dumping module to take snapshots of the 
process in memory as the state of the input executable changes while the process 
runs in the debugger. SADE has an auxiliary responsibility to extract information from 
the input executable file that supplements the unpacked code for analysis purposes. 
The decomposition of the system has been based on these singular responsibilities. 
The high level architecture of SADE is depicted in figure 4.1. 
Figure 4.1 – Architecture of SADE 
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SADE has been divided into its respective components on the basis of required 
functionality. An executable file is presented as input to the system. The Dump 
module has the capability to take a dump of a process or file in memory. Dumping a 
file is the act of copying raw data from one place to another with little or no formatting 
for readability. The Dump module provides the data in hexadecimal and ASCII 
formats. A static dump of the executable file is taken and passed to the Packing 
Detection module. When provided with a valid input executable file, packing 
detection module detects whether the file is packed or not. The output of Packing 
Detection is to give a Boolean value indicating whether the file appears to have 
some packing transformation performed on it or not. If the input file is not packed, it 
does not need to be unpacked and can be sent straight to the File Info Retrieval 
component. The File Info Retrieval module extracts the portable executable file 
information such as the PE file headers and the PE sections etc. In the scenario 
where the file is found to be packed it is sent to the Generic Unpacking Engine. 
The Generic Unpacking module has further two distinct sub-modules: Debugger and 
Statistical Analysis. The Debugger module provides debugging functionalities that 
are required for the unpacking procedure. The Statistical Analysis component uses 
various statistical heuristics like entropy of the file being progressively debugged to 
provide a stopping criteria that decides when the executable file has been unpacked 
completely and to stop debugging the executable. The Dump module interacts with 
Generic Unpacking to capture changes in the file as it is executed and the 
unpacking routine in the packed file runs to uncover the original program code that 
was obscured by packing. The Generic Unpacking runs the executable in the 
Debugger in a debug loop that executes a small portion of the debugee (program 
being debugged) program at a time till the stopping criteria has been met. Once the 
Generic Unpacking Engine has recovered the unpacked file, it is sent to File Info 
Retrieval to extract PE file information that is further helpful to security analysts for 
file analysis. The output from SADE is the unpacked executable and file info. 
4.7.UML Diagrams 
This section covers the UML diagrams for SADE. This includes the use case diagram 
of the system, the class diagram and the interaction diagrams for the different 
scenarios that can occur in the system. The interaction diagrams cover both 
sequence and communication diagrams. Furthermore, the data flow diagrams of the 
different modules of the system are presented in this section. 
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4.7.1. Use Case Diagram 
The use case diagram of SADE, figure 4.2, describes all the functionalities that the 



user will be able to avail through the use of the application. The user can load any 
PE32 file and can use the system to discover if the input file has been altered with 
some packing transformation or not. The user can also retrieve portable executable 
file information; which includes information about the modules loaded as well as 
section and header information. The user can also retrieve the dump of both packed 
and unpacked versions of the file. The dump of original file has section and header 
information while the dump of unpacked file can be viewed in ACSII and 
Hexadecimal format. Further future work includes providing disassembled unpacked 
code. The users of the system have been classified as novice users and security 
analysts. A novice user of the system is someone who has nominal understanding of 
the executable files and file analysis. Security analysts are familiar with executable 
files and can use the system for malicious software analysis to create malware 
signatures etc. 
Figure 4.2 – Use Case Diagram of SADE 
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Use Case Description 
Table 4.1 describes the details of the class diagram in figure 4.3. Descriptions are 
given for each use case of figure 4.3. 
Table 4.1 - Use Case Description 
Use Case Description 
Load Executable 
File 
User browses through the end-system to select an input executable file. 
Get Packing 
Detection 
Information 
SADE informs user whether the input executable file has some packed 
obfuscation performed on it or not. 
Unpack Executable User prompts SADE to unpack or recover the hidden original program 
code. 
Dump Original File Dump of the input executable file in its original form. This is also 
referred to as a static dump. 
Get File Information User can get the portable executable information from the system. 
Get File Header 
Information 
Information contained in the portable executable file header. Includes 
file signature, size etc. 
Get File Section 
Information 
Information about the portable executable file’s sections. These can 
include the data, code and resource section etc. 
Get Modules 
Loaded Information 
Information about the modules that is external resources imported by 
the executable file. These include the Windows API Dynamic Link 
Library (.DLL) files. This is useful for file analysis as different modules 
loaded correspond to different system-level functionalities and can 
reflect on the tasks performed by the system like using network 
resources etc. 
Get Unpacked File 
Dump 
Dump of the unpacked file. This is the dump of the code that was 
hidden by the packing transformation and was recovered on runtime 
and captured by our software. 
Hex Dump Dump of executable file in hexadecimal format. 
ASCII Dump Dump of executable file in ASCII character set. 
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4.7.2. Class Diagram 
The class diagram shown in figure 4.3 is the visual representation of the object 
oriented model for SADE. It includes the classes described in table 4.2. 
Figure 4.3 – Class Diagram of SADE 
47 
Table 4.2 - Class Diagram Description 
Class Description 
Packing Detection This class contains the functionality for identifying whether an input 
file is packed or not. Provides a function that returns true if packing 
is found. 
Unpack The unpack class contains the debugging code that runs the input 
executable till complete dump is found. 
Dump Class encapsulates the byte image of entire file. Provides function 
to view file dump in different formats. 
Analysis Used by unpack class to detect when to stop the run-and-dump 
process i.e. the point where the hidden program code is 
completely dumped. 
Debug Process File containing variables such as process id assigned by windows 
and functions such as setting breakpoints on a line of code on the 
process loaded in memory being debugged (called the “debugee”). 
Debug Event An event that is raised by the debugger each time a debugging 
event occurs for instance a module is loaded etc. 
Kernel32.dll Windows API used for debugging tasks. Contains functions to start 
and suspend threads, create a new process, read process 
memory etc. 
File Info Class that extracts the portable executable file information such as 
headers, sections, file directories and resources etc. 
Debug Module Class that stores information for each individual module imported 
by the debug process. 
4.7.3. Interaction Diagram 
Interaction diagram includes both sequence and communication diagrams. Following 
interaction diagrams will define the detailed object design of SADE. There are two 
possible scenarios for a file. The input executable file could be a packed file or in the 
second case it could be a benign or normal file with no packing obfuscation. The 
behaviour of the system is different for the two scenarios. 
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4.7.3.1. Interaction Diagrams for Packed File Scenario 
i) The user opens the application to see the input window. 
ii) User selects executable through the “browse” window to load executable. 
iii) Now user can view the static dump of the file. 
iv) System uses static dump to generically detect some packing transformation 
on the file. 
v) If packing is found, system unpacks it generically and returns the dump of 
unpacked file. 
vi) The user is now able to retrieve information of original file. 
Figure 4.4 shows the sequence diagram for the “packed file” scenario and figure 4.5 
shows the communication diagram for the “packed file” scenario. 
Figure 4.4 – Sequence diagram for scenario where the input file is packed 
4.7.3.2. Interaction Diagrams for Normal (Benign) File Scenario 
i) The user opens the application to see the input window. 
ii) User selects executable through the “browse” window to load executable. 
iii) Now user can view the static dump of the file. 
49 
iv) System uses static dump to generically detect some packing transformation 
on the file. 



v) In case of no packing detected, no further processing is required on the file. 
vi) File information can be directly retrieved now without needing to pass the 
executable through generic unpacking engine. 
Figures 4.6 and 4.7 show the sequence and communication diagram for the case 
where the input executable is not packed. 
Figure 4.5 – Communication diagram for scenario where input file is packed 
Figure 4.6 - Sequence diagram for scenario where input file is not packed 
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Figure 4.7 - Communication diagram for scenario where input file is not packed 
4.7.4. Data Flow Diagrams 
This sub-section contains data flow diagrams for all the processes in SADE. The data 
flow diagrams of SADE have been divided into two parts. One is for packing 
detection and unpacking (figure 4.8) and the second is for retrieving file information 
(figure 4.9). 
4.7.4.1. DFD of Packing Detection and Unpacking 
As shown in figure 4.8, the flow of data in SADE starts from the input “Browse” 
window where the user specifies the path of the input executable file. The path is 
used to open the executable file in memory i.e. loading the executable file. A static 
dump of the file is taken i.e. dump of the executable file in its original form. Once the 
debugging process starts, the unpacking stub attached by the packer to the input 
executable file is run and the unpacking stub recovers the actual or real program in 
memory at runtime. The static dump of the input executable file is passed to the 
packing detection module where the decision is made about whether the file is 
packed or not. If the input file is found to have been altered by some compression or 
encryption transformation (i.e. packing), it is sent to the debugging module. If no 
packing is detected, the original file dump requires no further processing and is sent 
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to the PE file information retrieval module, where file information is extracted from the 
executable file which is useful to security analysts for file analysis. If packing was 
found in the file, the entry point of the executable is taken from the optional header of 
the process (file loaded in memory) and a breakpoint is set on it. From then onwards, 
the debugger goes into an unpacking loop where the file is run for a very short 
interval and then the process execution is halted, latest dump of the file is taken from 
memory and statistical analysis is performed on it. The results of statistical analysis 
are taken by debugger to check for stopping criteria i.e. the point at which the actual 
program code has been completely uncovered and the original entry point is found. 
The original entry point is the entry point of the executable that was packed and a 
packing stub attached to it. Once the unpacking process completes and the debug 
loop breaks when stopping criterion has been met, the PE file information is retrieved 
and the unpacked code with additional file information is shown as output. 
Figure 4.8 – Data flow diagram of packing detection and unpacking 
4.7.4.2. DFD of PE File Information Retrieval 
The data flow of the information retrieval module has been shown separately in figure 
4.9, as the information retrieval process is independent of the identification and 
unpacking process. When a file is sent to the information retrieval process, the PE 
file signature is checked. This confirms that the input file is actually a 32 bit portable 
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executable file. If the PE signature is not found an error is shown and program 
terminates. The PE file header which includes the section table is extracted next. The 
section table contains the starting address and size of all the sections present in the 
executable file. The section headers are displayed. Each section entry is used to 
retrieve the entire section and then section information is displayed. 
Figure 4.9 – Data flow diagram of PE File Information Retrieval 



4.8. Detailed Subsystem Designs 
This section describes in detail, the design of components of SADE. 
4.8.1. Generic Unpacking 
The sub-components of Generic Unpacking Engine have been described in this subsection. 
4.8.1.1. Debugger 
The debugger module provides various debugging utilities that are instrumental to 
the unpacking process as the unpacking principal is based on running the input 
executable to the point that the unpacking routine attached by the packer has 
completely recovered the original program code and then halting program execution 
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before the unpacked code has chance to run. In this regard, the debugger provides 
the facility to create a suspended process or a process with debugger attached to it. 
The debugger for SADE has the following major responsibilities: 
i) Create a suspended process or create a process with debugger attached 
to it. 
ii) Suspend and resume process thread during execution. 
iii) Raise a debug event each time a debugging event happens such as a 
module is loaded, a new thread is created or a child process is created, a 
debug exception is raised. 
iv) Set and reset breakpoints on any portion of the code. 
v) Get thread context for the process. Thread context is a structure provided 
by windows that contains the current values of all the registers such as 
instruction pointer, stack pointer etc. Thread Context can only be taken 
when the thread whose context is being taken is suspended. 
vi) Set thread context of the process being debugged. This involves changing 
values of the registers and raising bit flags such as the Int3 flag to cause a 
breakpoint. The Get and Set thread functionality should be used with 
utmost care. 
4.8.1.2. Statistical Analysis 
Statistical Analysis is the brain center of Generic Unpacking Engine. Statistical 
Analysis is required to determine the point where the debugger should halt execution 
of the executable being debugged; this point is generally referred to as the Stopping 
Condition. Statistical analysis assimilates the stopping criteria to detect when the 
stopping condition has been met. Statistical Analysis can use various heuristic and 
statistic measures in the stopping criteria. 
4.8.1.2.1. Entropy 
Change in entropy is the primary criterion to detect when the stopping condition has 
been met. “Entropy is the measure of redundancy in the file”. A file can have byte 
entropy in the range 0 to 8. Packed files are less redundant and have higher 
entropies. An unpacked file or a file that has not been compressed or encrypted has 
a more uniform distribution of data, has a higher amount of redundancy and has less 
entropy than a packed file. Entropy calculation involves finding the occurrence of the 
data elements in the file i.e. the histogram. 
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Entropy of a file dump containing data with values X in the range {x0, x1,……. xn} is 
where xi = {x0, x1,……. xn}, 
p(x) = count of occurrence of x / length of data segment and b=2. 
The following variations of entropy have been used as statistical metrics: 
i) File Entropy: Entropy of the entire Portable Executable (PE) file. 
ii) Block Entropy: The block entropy is not a conclusive measure for statistical 
analysis and determining the stopping condition. It does not show an 
identifiable pattern or change in the progressive dumps of the file being 
debugged. Block entropies have been used to find an identifiable pattern in 



the changing entropies as the file executes, more of the unpacked code is 
recovered and the redundancy in the file changes. Block entropy is calculated 
by dividing the file into 256 or 1024 byte blocks and then calculating the 
entropy of each block. 
iii) File Section Entropy: Another useful entropy measure is the entropy of the 
portable executable file sections. A PE file can have several different sections 
like the code section, data section and resource section. Entropy of the code 
section can be viewed in isolation as that is the part of the PE file where the 
original program code is restored by the unpacking routine generated by the 
packer. 
iv) Portable Executable File Header Entropy: Every portable executable file 
has a header that contains information about the location and size of all the 
sections and other necessary information required by the operating system to 
run the file. The entropy of the file header is yet another measure that is part 
of the stopping criteria. 
4.8.1.2.2. Checksum 
A checksum is a form of redundancy check, a simple way to protect the integrity of 
data by detecting errors in data. It works by adding up the basic components of a 
message, typically the assorted bits or bytes and storing the resulting value. Some 
interesting checksum properties are: Two or more blocks which are very similar at 
binary levels have very close checksum values. The simplest form of checksum 
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which simply adds up the assorted bytes in the data can help classify when the 
blocks of data have changed. 
4.8.2. Packing Detection 
The packing detection module can use various metrics to decide whether an input file 
is in normal state or it has been altered by some packing transformation. 
4.8.2.1. PE Header, Code, Data, File and Block Entropies 
The encrypted code of a packed application is usually stored in a code or data 
section of the PE file (A section can be identified as a code section if the Executable 
section flag is set, otherwise it can be considered as the data section). As the code of 
the program is usually somehow encrypted, it will look like “random”, loosely 
speaking. On the other hand non encrypted code sections contain well “structured” 
information, namely the opcode of executable instructions and the memory location 
of the operands. Non-encrypted data sections also contain somehow structured 
information. Following this observation, the byte entropy of the code and data 
sections in the PE file can be measured. If the entropy of a section is close to 8, 
which is the maximum byte entropy, the section likely contains encrypted code. The 
code and data sections are not the only places where the executable packing tool 
may hide the code of the original application. There are parts of the PE header 
dedicated to optional fields that are not necessary for the correct loading of the 
program into memory by the operating system. Some packing tools may therefore 
hide encrypted code in those unused portions of the PE header. For this reason it is 
useful to measure the byte entropy of the PE header as well. Considering that the PE 
file is quite complex and contains other such unused spaces, the entropy of the PE 
file as a whole is also taken into account. If a portable executable file is found to have 
average and maximum entropy above a respective threshold, it can be classified as 
packed. 
4.8.2.2. Number of Entries in the IAT (Import Address Table) 
The Import Address Table (IAT) of an executable contains the address of the 
external functions called by the application. These external functions are imported 
from Dynamic Linked Libraries (DLL). Each imported function has an address in the 
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IAT which is written by the operating system loader after the application is launched 
and the PE file is mapped into memory. Every time the application calls an external 
function, the IAT is queried in order to resolve its address in memory. Most nonpacked 
executables import many external functions. For example, they usually import 
many functions from the native Windows API, which are used to read/write from and 
to files, open new windows on the screen and manage a network connection and so 
on. Therefore, the IAT will usually contain many entries, one per each imported 
function. On the other hand, packed executables often import very few external 
functions. The main reason is that the unpacking routine does not need many 
external functions. The basic operations the unpacking routing performs are read and 
write memory locations in order to decrypt the code of the packed application on the 
fly. For example, no window on the screen or network operation is usually needed. 
This is reflected in a small number of entries in the IAT of a packed executable. 
Hence, the number of entries in the import address table is an excellent criterion for 
deciding whether a file has been packed or not. 
4.8.2.3. Number of Standard and Non-Standard Sections 
Normal portable executable files usually contain a well defined set of standard 
sections. For example, applications compiled using Microsoft Visual C++ usually 
contain at least one code section named .text, and two data sections named .data, 
and .rsrc section. On the other hand, packed executables often contain code and 
data sections which do not follow these standard names. For example, the UPX 
executable packing tool usually creates a PE file that contain two sections named 
.UPX0 and .UPX1, respectively, and a section named .rsrc. Hence the number of 
standard and non-standard sections can be used as an auxiliary criterion for 
detecting packing. 
4.9. Graphical User Interface (GUI) Design 
This section describes the interface of Software Analysis & De-obfuscation engine 
(SADE). 
4.9.1. Design Principles 
This section describes the design principles for the interface of SADE. 
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4.9.1.1. Usability 
Interface design emphasizes clarity and ease of use. Microsoft Visual Studio 2005 
has been used primarily with the intent to implement the latest GUI standards. 
4.9.1.2. Improved User Experience 
The simplified application architecture increases the user experience by removing all 
confusion and complications. This process prevents user error and enhances 
perceived product value. 
4.9.1.3. Enhanced Design 
The engaging design process renders the technology more attractive to its target 
audience because its appearance is inviting, clean and easy to use. 
4.9.1.4. Coherence 
Interface is "intuitive", for the technical operators who are familiar with the information 
security terms, or more precisely packing terminologies. The behavior of the program 
is designed to be internally and externally consistent. In other words logical, 
consistent, and easily followed. Internal consistency means that the program's 
behaviors make "sense" with respect to other parts of the program. For example, if 
one attribute of an object (e.g. color) is modifiable using a pop-up menu, then it is to 
be expected that other attributes of the object would also be editable in a similar 
fashion. One should strive towards the principle of "least surprise". External 
consistency means that the program is consistent with the environment in which it 
runs. This includes consistency with both the operating system and the typical suite 
of applications that run within that operating system. One of the most widely 



recognized forms of external coherence is compliance with user-interface standards. 
4.9.1.5. State Visualization 
Changes in behaviour will be reflected in the appearance of the program in the form 
of graphs and dumps. It is important that this internal state be visualized in a way that 
is consistent, clear, and unambiguous. 
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4.9.1.6. Shortcuts 
System will provide both concrete and abstract ways of getting a task done. Once a 
user has become experienced with an application, he/she will start to build a mental 
model of the application. She will be able to predict with high accuracy what the 
results of any particular user gesture/command will be in any given context. Hence, 
the program's attempts to make things "easy" by breaking up complex actions into 
simple steps may seem cumbersome. 
4.9.2. Software Features 
The salient features of the GUI of SADE have been described in this subsection. 
i) PE file information Retrieval 
ii) Generic Unpacking engine 
iii) Memory Dump- HEX and ASCII Dump 
iv) Assembly Code View 
v) Display of Statistical Matrices 
vi) User Help 
Support 
SADE requires .net platform installed on the system. Pre-requisite of installing and 
running the application on any system is that it should have the .net framework 3.5 
installed. 
4.9.3. Interface Design Model 
Figure 4.10 shows the overall layout of the system, with screens shown as boxes and 
navigation path shown as arrows. 
The screens or windows in the interface design model are ‘Main Window’, ‘Statistical 
Details’, ‘File Information’, ‘Generic Unpacking’ and ‘View Dump’. The ‘Main Window’ 
is the GUI that shows when the application is opened. All other windows are 
navigated though it. ‘‘Statistical Details’, ‘File Information’ and ‘Generic Unpacking’ 
can be opened through the ‘Main Window’. The ‘View Dump’ window can be 
navigated through ‘Generic Unpacking’ screen. 
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Figure 4.10 – Interface Design Model of SADE 
Figure 4.11 – GUI of PE File Header Information 
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Figure 4.12 – GUI of PE Sections and Details 
4.9.3.1. Generic Unpacking 
The window in Figure 4.13 is the GUI for Generic Unpacking of the PE File. The user 
selects and loads the file. System will then provide the user to view the static dump 
as well as the unpacked code of the file. 
Figure 4.13 – GUI of Unpacking Details 
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4.9.3.2. File Dump 
The system displays the dump of unpacked file in ASCII and Hexadecimal formats as 
shown in figure 4.14. 
Figure 4.14 – GUI of ASCII and Hex Dump 
4.9.3.3. Statistical Details 
The system displays the statistical results of both packed and unpacked file in 
graphical form as shown in figures 4.15 and 4.16. This will help the user to compare 
the data of both files easily. 



Figure 4.15 – GUI of Entropy Results 
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Figure 4.16 – GUI of Statistical Result 
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CHAPTER 5 
IMPLEMENTATION 
This chapter contains the implementation details of SADE. Each SADE module will 
be elaborated separately in this chapter (without any programming jargon) with the 
help of block diagrams. The overall algorithm of SADE is described in figure 5.1. The 
major decisions that the system has to make have been shown along with a high 
level view of the tasks that it has to perform. 
Figure 5.1 – Algorithm (High Level View) of SADE 
The subsequent sections provide implementation details for each SADE module. 
5.1. Packing Detection 
The first and foremost task that SADE has to perform when presented with a valid 
32-bit input executable file is to send it to the Packing Detection module. Packing 
detection generically establishes whether the input executable is packed or not i.e. it 
is not concerned with the packer and packing algorithm used to pack the executable 
but simply finds out whether any brand of packing transformation has been applied 
on the file. SADE unpacks the packed executables generically so the details of the 
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specific encryption and/or compression algorithms used to pack the executable are 
redundant. The packing detection results should show a high level of accuracy as 
only those files which are found to be packed by the packing detection module are 
sent to the Generic Unpacking Engine. If the Packing Detection fails to detect a 
packed file, then it will not be unpacked by Generic Unpacking and the goal of the 
project to automate the process of malware analysis will fail. Packing detection is 
deduced through static analysis while Generic Unpacking works on the principle of 
dynamic analysis. Various metrics were considered for packing detection before 
settling for the block entropy of the static dump of input executable file as primary 
criterion. 
5.1.1. Entropy 
The concept of information is too broad to be captured completely by a single 
definition. However, for any probability distribution, a quantity called entropy can be 
defined which has many properties that agree with the intuitive notion of what a 
measure of information should be. Entropy is a measure of the average uncertainty in 
a random variable. It is the number of bits on average required to describe the 
random variable. Entropy is measured in bits by taking logarithms to the base 2. If ‘X’ 
is a discrete random variable then the set X = {x0, x1,……, xn} then probability mass 
function p(x) = Pr{X Є x} [22]. The entropy of a random variable X with a probability 
mass function p(x) is denoted by 
For the purpose of detecting packing, the entropy of the entire file as a whole was 
taken but it did not provide any discernible information i.e. there was no detectable 
difference between the file entropies of packed and normal files which could be made 
a decisive factor for detecting packing. Next, the entropies of the executable file 
header and all the file sections were taken separately but they also failed to 
contribute to the static analysis for packing detection criteria. Finally, the block 
entropy was gauged as the principle metric for the packing detection criterion. For 
calculating block entropies, different block sizes were considered such as 128-byte 
blocks, 256-byte blocks and 1024-byte blocks. The size of one block was chosen to 
be 256-byte after experimental evaluation and comparison. The next subsection 



describes the packing detection criterion using 256-byte blocks. 
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5.1.2. Packing Detection Criterion using Block Entropy 
Block entropy is determined by dividing the static dump of the input executable file 
into 256-byte blocks and then calculating the entropy of each block. A histogram for 
the block entropies is maintained. Byte entropy has the range 0 to 8. The histogram 
shows the frequency of byte entropies. Normal files were found to have block 
entropies less than 7 while packed files lean towards block entropies above 7. The 
frequency of blocks having entropy in the range 0 to 7 are classified as normal or 
unpacked blocks while number of blocks having entropy above 7 are labelled as 
packed blocks. The ratio of packed to unpacked blocks is then used as the deciding 
factor for determining whether the input file has some packing obfuscation performed 
on it or not. Packing results were studied for a multitude of files packed with different 
packers and an experimental threshold was discovered that provides accurate 
packing detection for all files. If the ratio of packed blocks in an input executable is 
found to be greater than 20%, then the file is classified as packed. 
5.1.3. Number of Entries in the IAT (Import Address Table) 
Number of entries in the import address table is used as the second determining 
factor in packing detection. Through experimentation and study of a vast array of 
packed files, a general rule was deduced about packed files that the packed files 
always have less than 30 entries in the import address table while normal files have 
entries far beyond this number. Packed files have very few entries in the import 
address table because packing tends to hide the actual import address table of a 
program in order to hide the structure of the file being packed; only those entries are 
available which are required by the unpacking stub attached by the packer. The 
unpacking stub performs basic read, write and allocate memory operations so the 
entries in the import address table of packed files never exceeds a certain threshold 
which was experimentally found to be 30. 
Block Entropy and number of entries in the Import Address Table collectively serve 
as the Packing Detection criterion used in the packing detection module. Figure 5.2 
shows the algorithm for SADE that detects whether the input executable has been 
modified with any encryption and/or compression transformations or not. The 
outcome of the algorithm is either ‘packing detected’ or ‘no packing detected’. 
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Figure 5.2 – Algorithm for Packing Detection 
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5.2. Generic Unpacking 
The Generic Unpacking Engine takes the input executable files that are detected as 
packed by Packing Detection and unpack them using the debugger. The Generic 
Unpacking Engine can be divided into two distinct modules. The Debugger module 
loads the packed executable in a carefully contained environment and the Statistical 
Analysis module determines the stopping point when the unpacking process is 
estimated to have completed its task. The algorithm is shown in flowchart in figure 
5.3. 
Figure 5.3 – Algorithm (High Level View) for Generic Unpacking 
68 
5.2.1. Debugging 
Debuggers exist primarily to assist software developers with locating and correcting 
errors in their programs but they can also be used as powerful reversing tools. In 
modern operating systems debuggers can be roughly divided into two very different 
flavours: user-mode debuggers and kernel-mode debuggers. User-mode debuggers 
are the more conventional debuggers that are typically used by software developers. 
As the name implies, user-mode debuggers run as normal applications, in user 
mode, and they can only be used for debugging regular user-mode applications. 
Kernel-mode debuggers are far more powerful. They allow unlimited control of the 
target system and provide a full view of everything happening on the system, 
regardless of whether it is happening inside application code or inside operating 
system code. 
5.2.1.1. User-Mode Debugger 
For SADE, a user-mode debugger has been implemented using the Win32 
Debugging API. User-mode debuggers are conventional applications that attach to 
another process (the debuggee) and can take full control of it. The debugger and the 
debuggee (the process being debugged) have a parent-child relationship, if the 
debugger created the process. If the debugger is “attached” to an already executing 
process, then the debugger and the debuggee are independent and the debuggee 
can detach from the debugger without terminating. User-mode debuggers have the 
advantage of being very easy to set up and use, because they are just another 
program that is running on the system (unlike kernel-mode debuggers). The 
downside is that user-mode debuggers can only view a single process and can only 
view user mode code within that process. Being limited to a single process is not a 
problem for SADE because it will be dealing with one packed executable at a time. 
Being restricted to viewing user-mode code is not a problem unless the product being 
debugged has its own kernel-mode components (such as device drivers) which will 
not be the case for SADE normally as it will be debugging executable applications. 
When a program is implemented purely in user mode there is usually no real need to 
step into operating system code that runs in the kernel. Beyond these limitations, 



some user-mode debuggers are also unable to debug a program before execution 
reaches the main executable’s entry point (this is typically the .exe file’s WinMain 
callback). This can be a problem in some cases because the system runs a 
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significant amount of user-mode code before that, including calls to the DllMain 
callback of each DLL that is statically linked to the executable [23]. This is not a 
problem for SADE either because it is able to detect when a DLL is loaded and raises 
a debug event for it and halts the debugger execution. Furthermore, process 
information is useful to have while debugging. There is an endless list of features that 
could fall into this category, but the most basic ones are a list of the currently loaded 
executable modules and the currently running threads, along with a stack dump and 
register dump for each thread. 
5.2.1.2. Win32 Debug API 
The Windows API are Microsoft's core set of application programming interfaces 
(APIs) available in the Microsoft Windows operating systems. Almost all Windows 
programs interact with the Windows API; a small number (such as programs started 
early in the Windows startup process) use the Native API. The Win32 debug API 
provides services over which a native code debugger can be built. It provides 
functionality to load a program for debugging (or attach to an existing program). 
Information of interest about the process being debugged can be obtained. Win32 
API offers services that provide notifications when debugging-related events are 
generated in the debuggee process or thread starting or exiting, DLLs being loaded 
or unloaded etc. The debug API also allows reading from and writing to the 
debuggee memory and instruction stream. The steps to debugging are explained in 
the subsequent sections [24]. 
5.2.1.2.1. Create Debuggee Process or Attach to Existing Process 
The Debugger can create the debuggee (process being debugged under the 
debugger) as a child process using the 
CreateProcess(...DEBUG_ONLY_THIS_PROCESS…); API call or the debugger can 
attach to an existing process by using DebugActiveProcess(ProcessID); function. If 
the process being debugged is created as a child process it will exist only when 
linked to its parent process and terminate when the debugger terminates but if the 
debugger attached to an already existing process, then the attached process can 
exist independently once it is detached. SADE typically creates a child process for 
debugging. 
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5.2.1.2.2. Continue Execution 
The debugee process is created in suspended state and waits for the debugger to 
allow continue execution by calling ContinueDebugEvent(…);. The debugee process 
will then continue execution till the next debug event occurs. The debugger can go 
into a debug loop where it waits for debug events to occur, handles each event 
accordingly and keeps executing till the stopping criteria is met. When the debugger 
is processing debug events it has full control over the debuggee. The Operating 
System stops all debuggee threads and does not schedule them until the debugger 
says so. Every time a debug event occurs, the debugger halts program execution. 
The ContinueDebugEvent(DBG_CONTINUE); is called to continue execution. 
5.2.1.2.3. Debug Events 
Windows defines several debug events that are fired during the lifetime of the 
debuggee. The debugger goes into waiting after the WaitForDebugEvent(..) API is 
called. This debugging function can be passed time in micro seconds as argument 
and the debugger will timeout after the allotted time whether a debug event has 
occurred or not. The debugger waiting in the debug loop is notified of these events. 
The debug events being used by SADE are Create Process Debug Event, Create 



Thread Debug Event, Exception Debug Event, Exit Process Debug Event, Exit 
Thread Debug Event, Load DLL Debug Event, Unload DLL Debug Event and Output 
Debug String Event. They are summarized in table 5.1. 
5.2.1.2.4. Read and Write Memory 
Reading from and writing to a debuggee process’s memory space is supported 
through the ReadProcessMemory and WriteProcessMemory API functions (e.g. 
modifying debuggee code). The ReadProcessMemory is used to get an image 
(dump) of the process in memory. 
5.2.1.2.5. Get CPU Registers and Set Breakpoints 
The Win32 debug API can be used to get or set the current context or CPU registers 
using GetThreadContext(…) and SetThreadContext(…) API calls. The debug API 
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services can be further extended to set breakpoints. Debuggers use breakpoints 
extensively behind the scenes to control their debuggees (e.g. while stepping over a 
function call, “running to cursor”, or to Break execution). A breakpoint corresponds to 
a “breakpoint instruction”, the instruction mnemonic is ‘INT 3’ on the Pentium (0xCC 
is the OpCode). 
Table 5.1 - Debug Events 
Debug Event Description 
Create Process Debug Event It is the first event generated by the kernel for a process just 
before it begins executing in user-mode. The Create 
Process Debug Event indicates that the process was 
loaded and not executed. 
Create Thread Debug Event This event is generated whenever a new thread is created 
in a process being debugged. 
Exception Debug Event Generated whenever an exception occurs in the process 
being debugged. Examples of exceptions include 
breakpoint exception, single stepping code exception, illegal 
memory usage etc. The Exception Debug Event is fired 
before the first instruction of the process is executed – 
called the initial breakpoint. 
Exit Process Debug Event Fired when a process exits. 
Exit Thread Debug Event Fired whenever a thread that is a part of the process being 
debugged exits. 
Load DLL Debug Event Fired each time the debuggee loads a DLL. Can be used by 
the debugger to load the symbol table corresponding to the 
DLL. 
Unload DLL Debug Event Fired whenever a process unloads a DLL. Can be used to 
unload corresponding loaded symbol tables. 
Output Debug String Event Fired in response to the debuggee making the 
OutputDebugString API call. 
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5.2.2. Statistical Analysis 
Generic Unpacking Engine carries out statistical analysis in conjunction with 
debugging the packed executable to determine the point at which the unpacking stub 
attached to the process has finished unpacking the original code in memory. It is not 
possible to know this exact location therefore it is approximated using heuristics and 
statistical analysis. The chief heuristics used for detecting the stopping condition of 
the debugger are described in the rest of the section. 
5.2.2.1. Code Section Entropy 
Change in code section’s entropy is used as a primary metric for detecting the 
stopping condition. Change in the entropy of the code is indicative of the end of an 
unpacking stage. These entropy values are calculated each time the debugger halts 
and whenever a change is detected, the stopping criteria is compared with the 
process’s current state to determine whether unpacking is finished and debugging 



can be halted or to carry on debugging and wait for next change in section entropy. 
5.2.2.2. Block Entropy 
Each time the debugger is halted when a debug event occurs or the debugger times 
out, snapshot of the debuggee is taken and block entropies are calculated for the 
memory dump similar to the process carried out for Packing Detection. The memory 
dump is broken into 256-byte blocks, entropy calculations are carried out for each 
block and then the frequency of byte entropies is determined to find the ratio of 
packed and unpacked blocks in the memory dump. The stopping criteria is said to be 
met when the ratio of packed blocks in the memory dump is less than 10%. 
5.2.2.3. Checksum 
Another useful metric for determining end of unpacking is checksum. As the 
compressed code is decompressed in memory, the checksum of the file is increased. 
The change in checksum can be compared against a pre-defined threshold to 
support the detection of stopping condition. 
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5.2.2.4. ASCII String Literals 
Packing tends to mask all the string literals in an executable file. As the unpacking 
routine uncovers the hidden code in memory, the string literals inside the executable 
are unmasked. The stopping condition can be determined by tracking the number of 
string literals inside the executable file loaded in memory as the unpacking 
progresses. 
5.3. Portable Executable File Information Retrieval 
The file information retrieval module uses the structure definitions and details 
provided in the Microsoft Portable Executable and Common Object File Format 
Specification to extract executable file structures which contain useful information. 
The retrieved structures include the Image Header, Optional Header, Section 
Headers, Import Address Table, Debug Directories etc. 
First the file header is initialized and the module can check the PE file signature to 
determine that the input executable file is indeed a 32-bit windows executable. The 
optional header contains a field that specifies the number of section headers that 
follow the optional header. Each section header is read which contain fields 
indicating the relative virtual address of the section and size of the section etc. Each 
section is read and the directories that it contains are retrieved from it. The import 
address table is read which is hierarchal i.e. each entry in the table points to an entry 
for a DLL and that entry in turn points to all the functions called by that particular 
DLL. The import address table is traversed to find the name of each DLL and the 
names of all the functions called by that DLL till the end of the import address table is 
reached. 
5.4. Entropy and Statistical Information Graphs 
The entropy of the original file as well as the entropy of the final unpacked dump and 
other statistical information such as file entropy, section entropy, average entropy 
and checksum etc. is displayed to the user as graphs, bar charts and pie charts using 
the services provided by “ZedGraph.dll”. 
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CHAPTER 6 
SOFTWARE TEST PLAN 
Approved by 
Supervisor Date 
Evaluation Panel Date 
Evaluation Panel Date 
Evaluation Panel Date 



[Other] Date 
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Project Information 
Project Release Information 
Table 6.1 - Project Release Information 
Project Name Software Analysis and De-obfuscation Engine 
Project Code SADE 
Project Release Version 1.0 
Project Release Date 6th August, 2009 
Testing Dates 1st July, 2009 to 25th July, 2009 
Testing Iteration Number 1 
Project Modules Information Software/ Application 
Project Team Information 
Table 6.2 - Project Team Information 
Group Leader Faiza Khalid 
Developers Komal Babar, Faiza Khalid 
Quality Analyst Abdul Wahab 
Tester Nauvera Rehman 
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6.1. Introduction 
This test approach document describes the appropriate strategies, process, 
workflows and methodologies used to plan, organize, execute and manage testing of 
software project SADE. 
6.1.1 Scope 
In Scope: Test Plan defines the unit, integration, system, regression, and 
acceptance testing approach. The test scope includes the following: 
� Testing of all functional, application performance and use cases requirements 
listed in the Use Case document. 
� Quality requirements. 
� End-to-end testing and testing of interfaces of all system components that 
interact with the SADE. 
Out of Scope: The following are considered out of scope for SADE system Test Plan 
and testing scope: 
� Functional requirements testing for systems outside SADE 
� Testing of Business SOPs, disaster recovery and Business Continuity Plan. 
6.1.2. Quality Objective 
6.1.2.1 Primary Objective 
A primary objective of testing application systems is to: assure that the system 
meets the full requirements, including quality requirements (non-functional 
requirements), fits metrics for each quality requirement and satisfies the use 
case scenarios and maintains the quality of the product. At the end of the 
project development cycle, the user should find that the project has met or exceeded 
all of their expectations as detailed in the requirements. 
Any changes, additions, or deletions to the Requirements Document, Functional 
Specification, or Design Specification will be documented and tested at the highest 
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level of quality allowed within the remaining time of the project and within the ability 
of the test team. 
6.1.2.2. Secondary Objective 
The secondary objective of testing application systems will be to: identify and 
expose all issues and associated risks, communicate all known issues to the 
project team, and ensure that all issues are addressed in an appropriate 
manner before release. As an objective, this requires careful and methodical 



testing of the application to first ensure that all areas of the system are scrutinized 
and, consequently, all issues (bugs) found are dealt with appropriately. 
6.2. Assumptions and Constraints for Test Environment 
Below are some minimum assumptions: 
� For User Acceptance testing, the Developer team has completed unit, system 
and integration testing and met all the requirements (including quality 
requirements) based on Requirement Traceability Matrix. 
� User Acceptance testing will be conducted by the supervisor and evaluation 
panel. 
� Test results will be reported on daily basis. Failed tests and defect list with 
evidence will be sent to developer directly. 
� Use cases have been developed for User Acceptance testing. Use cases are 
approved by the evaluation panel. 
� Test results are developed and approved periodically by the Team Lead. 
� Test Team will support and provide appropriate guidance to supervisors and 
developers to conduct testing. 
� Testers should clearly understand on test procedures and recording a defect 
or enhancement. Testing Team will schedule meetings with Developers and 
supervisors to train and address any testing related issues. 
� Developer will receive consolidated list of request for test environment set up, 
data set, defect list, etc. 
� Developer will support ongoing testing activities based on priorities. 
� Test scripts must be approved by Test Lead prior to test execution. 
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� Test team is responsible to identify dependencies between test results and 
submit clear request to set up test environment 
6.3. Test Methodology 
6.3.1. Overview 
The purpose of the Test Plan is to achieve the following: 
� Define testing strategies for each area and sub-area to include all the functional 
and quality (non-functional) requirements. 
� Divide Design Specification into testable areas and sub-areas (do not confuse 
with more detailed test specification). Be sure to also identify and include areas 
that are to be omitted (not tested). 
� Define bug-tracking procedures. 
� Identify required resources and related information. 
� Provide testing Schedule. 
6.3.2. Usability Testing 
The purpose of usability testing is to ensure that the new components and features 
will function in a manner that is acceptable to the customer. 
Development will typically create a non-functioning prototype of the UI components to 
evaluate the proposed design. Usability testing can be coordinated by testing, but 
actual testing must be performed by non-testers (as close to end-users as 
possible). Testing will review the findings and provide the project team with its 
evaluation of the impact these changes will have on the testing process and to the 
project as a whole. 
6.3.3. Performance Testing 
Performance of SADE was evaluated by two ways. First, known executable files 
were packed using a variety of different packers (using their default options) and an 
attempt was made to uncompress them using SADE. The unpacking results were 
then compared to the original binary. Secondly, some packed copyrighted 
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executables were downloaded from the internet and the unpacking results were 
examined to gauge their quality. 
The size of the smallest executable tested on the system was 15KB and the largest 
file tested on the system was 3MB. 
6.3.3.1 Synthetic Samples 
A test set of packed binaries was generated from two different executables. The first 
one was Glow.exe which is a very small file of 15 KB and the second one was 
notepad.exe, a text editor that comes with the default installation of Windows XP. It is 
a fairly small executable of 69120 bytes. 
6.3.3.2. Packers 
Following is the list of packers used on the test files for packing them. 
� UPX 3.01w, a free and open source, cross-platform runtime packer, currently 
available at http://upx.sourceforge.net/ 
� ASPack 2.12, a commercial runtime packer. An evaluation version is 
currently available at http://www.aspack.com/ 
� ASProtect 1.35, a commercial executable protector. An evaluation version is 
currently available at http://www.aspack.com/ 
� eXpressor 1.5.0.1, a commercial executable protector. An evaluation version 
is currently available at http://www.cgsoftlabs.ro/ 
� EXECryptor a freeware executable packer available at 
www.freedownloadscenter.com/...Tools/EXECryptor.html 
� PE Pack 1.0 a freeware packer downloaded from internet 
� RLPack a trial version available at http://rlpack.jezgra.net 
� PETITE 2.2 trial version available at http://wareseeker.com/Utilities/petite- 
2.2.zip/57874 
� PETITE 2.3 trial version available at http://www.wareseeker.com 
� Winupack 3.9 packer trial version available on internet 
� XPack available at 
http://www.eurodownload.com/downloadsoftware/...../Download W32/ 
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� PE Compact packer free trial version available at 
http://www.softpedia.com/get/Programming/Packers-Crypters- 
Protectors/PECompact.shtml 
� BeRoExePacker Packer trial version available at 
http://leechermods.blogspot.com/2008/02/exe-packer-collection-3-bymodssubcc. 
html 
Obtaining this collection of runtime packers was not an easy task. Some packers 
were only available for a fee or as demo versions that require user interaction before 
they transfer control to the original executable, some had no easily locatable “official" 
home where they could be downloaded from (the reason for including URLs in the 
above list), and many packers failed to create working executables from the chosen 
sample executables. 
6.3.3.3. Packing Detection 
There is no overhead involved in packing detection, as static analysis of file is done 
which is quite instant. The detection time for various executables is shown in table 
6.3. The packing detection time for all input executable files is always same because 
the packing detection is performed through static analysis of the input file. The static 
packing detection time was found to be 15 milliseconds. 
6.3.3.4. Generic Unpacking 
Table 6.4 lists the detailed results from executing each synthetic sample under 
SADE. For each packer it was noted whether it could generate an executable file 
from the original image and whether the packed executable required user interaction 
to complete unpacking (some demo versions of commercial packers did so). Then, 



the details of the analysis run are listed. 
� The termination reason can be either automatic for SADE’s 
successful halt of executable before its hidden code executes and 
liveness when SADE terminated because it could not detect any 
progress, or abnormal termination if for example the file detects the 
presence of SADE and terminates itself. 
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� The correct unpacking column shows whether the SADE was able to 
show correct unpacking results or not after unpacking routine has 
completed its operation. 
� The unpacking time column contains the absolute run time of SADE 
for a given sample. 
Table 6.3 - Packing Detection Results 
Executable Name Packer used Packing Detection 
Speed 
(millisecond) 
Correct 
detection 
Glow.exe UPX 15 (0.0156250 sec) � 
Aspkgen.exe UPX 15 � 
Noepad.exe ASPack 15 � 
Notepad.exe ASProtect 15 � 
Notepad.exe BeRoExPacker 15 � 
Notepad.exe ExeCryptor 15 � 
Notepad.exe PEPack 15 � 
Notepad.exe Pe Compact 15 � 
Notepad.exe Petite 15 � 
Notepad.exe Expressor 15 � 
Notepad.exe XPack 15 � 
Notepad.exe - 15 � 
Glow.exe - 15 � 
InternetExplorer.exe - 15 � 
Table 6.4 summarizes the results of SADE on the synthetic samples. 
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Table 6.4 - Generic Unpacking Results 
Packer Packed file 
size(KB) 
Termination 
reason 
Correct 
Unpacking 
Unpacking 
time 
(millisecond) 
UPX 32 Automatic � 484 
ASPack 52.5 Automatic � 468 
ASProtect 328 Abnormal � 750 
BeRoExPacker 35.5 Automatic � 390 
Execryptor 98.0 Automatic � 156 
PEPack 98.0 Automatic � 343 
PE Compact 48.5 Automatic � 531 
Petite 2.2 39 Automatic � 453 
Petite 2.3 38.5 Automatic � 421 



Expressor 56.8 Automatic � 531 
XPack 45.7 Automatic � 625 
� Output similarity measure was used in which the original executable dump 
was compared to the data that the unpacking result contains. Figure 6.1 to 
6.7 containing the graphs of entropy distribution show the results for files 
tested in table 6.4: 
Figure 6.1 – Notepad.exe (not packed) 
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Figure 6.2 – AsPack (unpacked file by SADE) 
Figure 6.3 – BeRoExPack (unpacked file by SADE) 
Figure 6.4 – ExeCryptor (unpacked file by SADE) 
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Figure 6.5 – PE Compact (unpacked file by SADE) 
Figure 6.6 – Expressor (unpacked file by SADE) 
Figure 6.7 – XPack (unpacked file by SADE) 
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6.3.3.5. Unknown Packed Samples (Original Files Not Available) 
The packed samples of table 6.5 were run on the system for which original 
executable files were not available. Hence the accuracy of results is measured in 
terms of strings available in output dump. This criterion is useful, since all the ASCII 
strings which will finally be available in file at runtime can be found in the dump as 
well (if dump is of unpacked file). One of the main characteristics of executable 
encryption and compression is that it hides all the string literals in the executable. As 
a packed executable is unpacked and the hidden code becomes available, the 
number of string literals in the unpacked code rises. This trend has been used to test 
accuracy of results of files for which the unaltered executables were not available for 
comparison. 
Table 6.5 - Unknown packed samples’ results 
File name Packed 
file size 
(KB) 
Termination 
reason 
strings 
available 
in output 
Unpacking 
time 
(millisecond) 
Aspkgen.exe 193 Automatic � 218 
Keygen.exe 83.5 Automatic � 296 
GLOW.exe 15.0 Automatic � 281 
PETGUI.exe 54.2 Automatic � 953 
Unlocker.exe 42.0 Automatic � 421 
USBVaccine.exe 392 Automatic � 250 
BatteryDoubler.exe 833 Automatic � 734 
BitDefenderRemoveTool.exe 195 Automatic � 828 
6.3.4. Testing Completeness Criteria 
The milestone target is to place the release/application (build) into production after it 
has been shown that the system has reached a level of stability that meets or 
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exceeds the client expectations as defined in the Requirements, Functional 
Specifications and Design document. 



6.4. Test Levels 
Testing of an application can be broken down into three primary categories and 
several sub-levels. The test categories and test levels are defined in the subsequent 
subsections. 
6.4.1. Build Tests 
6.4.1.1. Level 1 - Build Acceptance Tests 
The application was tested to check if it can be built and installed successfully on 
different computers. If any Level 1 test case fails, the build is returned to developers 
un-tested. The system specifications and environment on which the tests were 
carried out are shown in table 6.6 
Table 6.6 - Build Test Specifications 
S# System Specifications Windows 
1 Intel CPU, 1.73 GHz, 760 MB RAM Windows XP 2002 
2 Intel Core Duo CPU, 1.60 GHz, 1.75 GB RAM Windows XP (Service Pack 3) 
3 Intel Core 2 Duo CPU, 2.0 GHz, 2 GB RAM Windows Vista (Service Pack 2) 
6.4.1.2. Level 2 - Smoke Tests 
These test cases verify the major functionality at high level. The objective is to 
determine if further testing is possible. These test cases emphasize breadth more 
than depth. All components have been touched, and every major feature has been 
tested briefly by the Smoke Test. If any Level 2 test case fails, the build is returned to 
developers un-tested. 
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Level 2a - Bug Regression Testing: Every bug that was “Open” during the previous 
build but marked as “Fixed, Needs Re-Testing” for the current build under test, will 
need to be regressed, or re-tested. Once the smoke test is completed, all resolved 
bugs need to be regressed. 
Bug Regression is a central tenant throughout all testing phases. All bugs that were 
resolved as “Fixed, Needs Re-Testing” were regressed when testing team was 
notified of the new drop containing the fixes. 
When a bug passes regression it will be considered “Closed, Fixed”. When a Severity 
1 bug fails regression, adopters Testing team also puts out an immediate email to 
development. The Test Engineer is responsible for tracking and reporting to 
development team and Team Lead the status of regression testing. 
6.5. Deliverables Matrix 
Table 6.7 provides the list of artifacts that are process driven and produced during 
the testing lifecycle. This matrix has been updated routinely throughout the project 
development cycle in Test Plan. 
Table 6.7 - Deliverable Matrix 
Deliverable 
Documents 
� Test Plan 
� Test Schedule 
Test Case / Bug Write-Ups 
Test Cases / Results 
Reports 
Test Results Report 
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6.6. Test Environment 
6.6.1. Hardware 
The Hardware used for testing the system was: 
� Intel ® Core Duo CPU 
� 1.60 GHz 



� 2 GB RAM 
6.6.2. Software 
The following list of software is the minimum requirement for testing the system 
� Windows NT 
� MS Office 2000+ Professional 
� Task Manager (Testing Tool Server) 
� PEiD (freeware commercial tool for testing PE file) 
6.7. Bug Severity and Priority Definition 
Bug Severity and Priority fields are both very important for categorizing bugs and 
prioritizing if and when the bugs will be fixed. The bug Severity and Priority levels will 
be defined as outlined in the following tables below. Testing will assign a severity 
level to all bugs. The Test Lead will be responsible to see that a correct severity level 
is assigned to each bug. 
6.7.1. Severity List 
The severity levels of the detected bugs are given in table 6.8. It includes severity ID, 
severity level and severity description. 
6.7.2. Priority List 
Table 6.9 gives the priority list of the detected bugs. 
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Table 6.8 - Severity List 
Severity ID Severity Level Severity Description 
1 Critical The module/product crashes or the bug causes nonrecoverable 
conditions. System crashes, GP Faults, file 
corruption, or potential data loss, program hangs requiring 
reboot are all examples of a Severity 1 bug. 
2 High Major system component unusable due to failure or incorrect 
functionality. Severity 2 bugs cause serious problems such as 
a lack of functionality, or insufficient or unclear error messages 
that can have a major impact to the user, prevents other areas 
of the app from being tested, etc. Severity 2 bugs can have a 
work around, but the work around is inconvenient or difficult. 
3 Medium Incorrect functionality of component or process. There is a 
simple work around for the bug if it is Severity 3. 
4 Minor Documentation errors or signed off Severity 3 bugs. 
Table 6.9 – Priority List 
Priority ID Priority Level Priority Description 
5 Must Fix This bug must be fixed immediately; the product 
cannot ship with this bug. 
4 Should Fix These are important problems that should be fixed as 
soon as possible. It would be an embarrassment to 
the project team if this bug shipped. 
3 Fix When Have Time The problem should be fixed within the time available. 
If the bug does not delay shipping date, then fix it. 
2 Low Priority It is not important (at this time) that these bugs be 
addressed. Fix these bugs after all other bugs have 
been fixed. 
1 Trivial Enhancements/ Good to have features incorporatedjust 
are out of the current scope. 
6.8. Test Personnel 
The test personnel and their respective responsibilities are given in table 6.10. 
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Table 6.10 - Test Personnel 
Parties Contact Person Roles and Responsibilities 
DS Aisha Khalid Overall supervision 
Work stream management 



Review of Test Plan and Test Cases 
Monitor testing schedule and procedure 
Test Team Lead Komal Babar QA team Lead 
Development of Test Plan and Test Cases 
Managing and directing testing activities 
To ensure testing activity comply with project 
requirements and test plan 
Test Engineer Nauvera Rehman Conduct testing 
Develop test cases and conduct testing 
Submit Bug Reports 
6.9. Test Schedule 
The test schedule is given in table 6.11. It documents the start and end dates of 
testing for the different SADE components as well as the number of days spent on 
testing for each module. The requirements document and execution of test cases 
took the longest time in the testing process while testing the design document and 
walkthrough of test plan took the least time. 
Table 6.11 - Test Schedule 
Task Start Date End Date Days 
Document Requirement 01-07-09 05-07-09 5 
Document Design 06-07-09 07-07-09 1 
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Create Test Cases 08-07-09 10-07-09 2 
Conduct walk-through of Test Cases and 
Test Plan 
10-07-09 11-07-09 1 
Test Case Execution 12-07-09 17-07-09 5 
Regression Testing 17-07-09 21-07-09 3 
Sign off on Test Results 30-07-09 30-07-09 2 
6.10. Test Cases 
This section contains the test cases for all the modules of the application. Each test 
case has been given a test case number and has certain preconditions. The name of 
the tester and date of testing have also been documented. 
6.10.1. Module information 
Test cases were written for each module of the system. Table 6.12 contains the 
names of the modules for which test cases have been generated. 
Table 6.12 - Module Information 
Description The software comprises of various modules integrated together. 
Modules/ 
Test Components 
1. Packing Detection 
2. Generic Unpacking (Stopping Criteria) 
3. PE File Information 
4. User Interface 
6.10.2. Test case table 
Tables 6.13 to table 6.20 describe the test cases for testing the application. 
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Table 6.13 - Test Case: Packing Detection 
Test case Name: Packing Detection 
Test case Number FN-REQ-02-PackD0001 
Precondition Visual studio 2005 must be installed 
PE 32 Input file must be selected. 
Procedure Test all options 
-> Click browse button 
-> Input executable file 
-> Compare the packing detection result with PEiD results 



for the same executable 
Expected Result Packing detection result matches PEiD Results. 
Actual Result Packing detection result matches PEiD Results. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Komal Babar 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.14 - Test Case: Generic Unpacking 
Test case Name: Generic Unpacking 
Test case Number FN-REQ-03-Unpack0001 
Precondition Visual studio 2005 must be installed 
PE 32 Input file must be selected. 
Packing has been detected. 
Procedure Test all options 
-> Click browse button 
-> Input executable file 
-> Click 'Yes' on message box which pops up and ask user 
permission to extract hidden file. 
-> Compare the output file dump with Packed input file 
dump. 
Expected Result Meaningful strings found in output dump reflecting 
unpacked file UI and string outputs of executable. 
Actual Result Meaningful strings reflecting file menu and other UI 
features found in output. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Faiza Khalid 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.15 - Test Case: PE File Information 
Test case Name: PE File information 
Test case Number FN-REQ-05-PEInf0001 
Precondition Visual studio 2005 must be installed 
PE 32 Input file must be selected. 
Procedure Test all options 
-> Click browse button 
-> Input executable file 
-> Click on "Header information" in file Info menu 
-> Click on "COFF header" button 
-> Click on "Optional Header" button 
->Click on "Section Header" button 
-> Click on "Data directories" button 
-> Click on "Section information" link in file Info menu 
->Click on Tree-view Sections to see section details 
Expected Result All fields correctly match with PEiD results for file info. 
Actual Result All fields correctly matched with PEiD results. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 



throughout debugging> 
Tester Nauvera Rehman 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.16 - Test Case 1: Graphical User Interface 
Test case Name: Graphical User Interface 
Test case Number FN-REQ-04-GUI0001 
Precondition .net platform must be installed 
Procedure Test all options in left panel (menu) and related controls 
-> Click browse button 
-> Input executable file which is not packed. 
Expected Result -> The Packing Detection icon turns green and title bar 
displays "File is not packed" 
-> Menu options "runtime details" and "other statistics" 
disabled. 
Actual Result -> Packing Detection icon turned green and title bar 
displayed "File is not packed" 
-> "runtime details" and "other statistics" links disabled. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Abdul Wahab 
Date 18-06-09 
Remarks <Additional remarks> 
96 
Table 6.17 - Test Case 2: Graphical User Interface 
Test case Name: Graphical User Interface 
Test case Number FN-REQ-04-GUI0002 
Precondition .net platform must be installed 
Procedure Test all options in left panel (menu) and related controls 
-> Click browse button 
-> Input executable file which is packed. 
-> A message box prompts if "you want to extract the 
hidden code". Click No 
Expected Result -> The Packing Detection icon turns red and title bar 
displays "Packing detected" 
-> Menu options "runtime details" and "other statistics" 
disabled. 
Actual Result -> Packing Detection icon turned red and title bar 
displayed "Packing detected" 
-> "runtime details" and "other statistics" links disabled. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Abdul Wahab 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.18 - Test Case 3: Graphical User Interface 
Test case Name: Graphical User Interface 
Test case Number FN-REQ-004-GUI0003 
Precondition .net platform must be installed 



Procedure Test all options in left panel (menu) and related controls 
-> Click browse button 
-> Input executable file which is packed. 
-> A message box prompts if "you want to extract the 
hidden code". Click Yes 
Expected Result -> The Packing Detection icon turns red and title bar 
displays "Packing detected" 
-> All menu options are enabled. 
Actual Result -> Packing Detection icon turned red and title bar 
displayed "Packing detected" 
->All menu options were enabled. 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Abdul Wahab 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.19 Test Case: Packed Blocks Graph 
Test case Name: Packed Blocks Graph 
Test case Number FN-REQ-000-Graph0001 
Precondition .net platform must be installed 
Input file must be loaded. 
Procedure Test all options for graph display of packed blocks 
-> Click the link "Packed Blocks" on left panel. 
Expected Result -> The Entropy graph is displayed correctly 
Actual Result -> The Entropy graph displayed correctly 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Komal Babr 
Date 18-06-09 
Remarks <Additional remarks> 
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Table 6.20 - Test Case: Graph Other Statistics 
Test case Name: Graph-Other statistics 
Test case 
Number 
FN-REQ-004-Graph0002 
Precondition .net platform must be installed 
Packed file is loaded and unpacked by system 
Procedure -> Click on "Other statistics" link on left panel 
Expected Result -> Line graph is displayed showing statistical analysis 
Actual Result -> Line graph is displayed showing statistical analysis 
Status Pass 
Bud ID <In case the test fails, specify a bud ID to track its changes 
throughout debugging> 
Tester Komal Babar 
Date 18-06-09 
Remarks <Additional remarks> 
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6.11. Test Results Report 
This subsection summarizes the test results. 



� All software modules preliminary execution shows desired results 
� All modules integration testing reflect no problem 
� Desired results of packing detection and generic unpacking algorithms 
demonstrate improved values of parameters. 
� The mean values of the results are given in table 6.21. 
Table 6.21 - Test Results Report 
Packing detection speed 15 millisecond 
Packing detection rate 100% 
Generic unpacking speed 470 millisecond 
Similarity of output dumps with 
original file (comparing entropy 
results). 
78% 
PE file information accuracy 100% 
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CHAPTER 7 
USER GUIDE 
This chapter provides a walkthrough for the users of SADE. The subsequent sections 
explain how to use SADE from start to finish with the help of screen shots. 
7.1. Starting SADE 
SADE has been developed for the Windows platform and requires 32-bit portable 
executable files as input. Start SADE by double-clicking the SADE shortcut icon on 
your Windows desktop or through the Start Menu. Figure 7.1 shows the main screen 
of the program. This is the first window that opens when SADE is started. 
Figure 7.1 – Starting SADE 
7.2. Loading the Executable 
Whenever you open this toolkit, you will select input file by clicking on “Browse” 
button. Load your required executable through the browser window that will pop up. 
Figure 7.2 shows the location of the “Browse” button and figure 7.3 shows the 
browser window that navigates the path of the executable file that the user wants to 
load. 
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Figure 7.2 – “Browse” Button 
Figure 7.3 – Selecting Input File 
Once a file is selected, an alert box will appear with a message mentioning whether 
the file is packed or not. If the file is found to be packed, user is queried if he/she 
wants to extract the hidden code or not. Figure 7.4 shows the state of SADE when 
the input executable file is encrypted and compressed while figure 7.5 is screenshot 
of SADE when the input executable is benign or normal. 
103 
Figure 7.4 – Packing Detected 
Figure 7.5 – Packing Not Detected 
7.3. Viewing PE File Information 
After allowing the application to extract hidden code; the user will be able to view all 
the static and dynamic information of the file. Static file information contains: 
o Header Information 
o Section Information 
o Static Dump 
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7.3.1. Header Information 
In this window, all PE file header are displayed accordingly. It begins with File 



Header that consists of a COFF file header and an optional header. 
7.3.1.1. COFF (Common Object File Format) Header 
The COFF header describes the type of target machine, size of section table and 
creation date and time of the file etc. Figure 7.6 shows the ‘COFF Header’ tab. 
Figure 7.6 – View COFF Header 
7.3.1.2. Optional Header 
Every image file has an optional header that provides information to the loader. This 
header is optional in the sense that some files (specifically, object files) do not have 
it. For image files, this header is required. The optional header magic number 
determines whether an image is a PE32 (32-bit) or PE32+ (64-bit) executable. Figure 
7.7 shows the ‘Optional Header’ tab in the ‘PE File Header Information’ window pane. 
In this portion, following sections of the file are displayed: 
� The size of the code (text) section or the sum of all code sections if there are 
multiple sections. 
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� The size of the initialized data section, or the sum of all such sections if there 
are multiple data sections. 
� The size of the un-initialized data section, or the sum of all such sections if 
there are multiple BSS sections. 
� The address of the entry point relative to the image base when the executable 
file is loaded into memory. For program images, this is the starting address. 
For device drivers, this is the address of the initialization function. An entry 
point is optional for DLLs. When no entry point is present, this field must be 
zero. 
Figure 7.7 – View Optional Header 
7.3.1.3. Section Header 
Each row of the section table is, in effect, a section header. This table immediately 
follows the optional header, if any. This positioning is required because the file 
header does not contain a direct pointer to the section table. 
In this portion following sections of the file are displayed: 
� Name of the section; an 8-byte, null-padded UTF-8 encoded string. 
� The total size of the section when loaded into memory. 
� Virtual address of the executable i.e. the address of the first byte of the 
section relative to the image base when the section is loaded into memory. 
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� The size of the section (for object files) or the size of the initialized data on 
disk (for image files).etc 
� The file pointer to the first page of the section within the COFF file. 
� The file pointer to the beginning of relocation entries for the section. This is 
set to zero for executable images or if there are no relocations. 
� The file pointer to the beginning of line-number entries for the section. 
� The number of relocation entries for the section. This is set to zero for 
executable images. 
� The number of line-number entries for the section. 
Figure 7.8 shows the ‘Section Header’ tab in the ‘PE File Header Information’ window 
pane. 
Figure 7.8 – View Section Header 
7.3.1.4. Data Directories 
Each data directory gives the address and size of a table or string that Windows 
uses. These data directory entries are all loaded into memory so that the system can 
use them at run time. A data directory is an 8-byte field. This portion contains 
information about the import table i.e. its size and address. Figure 7.9 shows the 
‘Data Directories’ tab in the ‘PE File Header Information’ window pane. 
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Figure 7.9 – View Data Directories 
7.3.2. Section Information 
This portion of file information retrieval displays different sections of the import table 
of the file. The import directory table contains address information that is used to 
resolve fix up references to the entry points within a DLL image. The import directory 
table consists of an array of import directory entries, one entry for each DLL. The last 
directory entry is empty (filled with null values), which indicates the end of the 
directory table. 
Each import directory entry contains following Information: 
o DLL Name 
o Time and date stamp 
o Name RVA (The address of an ASCII string that contains the name of the 
DLL) etc. 
Figure 7.10 shows the Import Address Table as shown in the ‘PE Sections and 
Details’ window of SADE. 
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Figure 7.10 – View Import Address Table (IAT) 
For each DLL, the details of APIs called by it are displayed accordingly as shown in 
Figure 7.11. 
Figure 7.11 – View APIs Called 
7.3.3. Static Dump 
In this section, the static dump of the executable is displayed in ASCII and Hex 
format. This dump is taken without running the file. Figure 7.12 shows the window 
that displays the dump in ASCII format. 
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Figure 7.12 – Static ASCII Dump 
Figure 7.13 shows the window that displays the Hex representation of the static 
dump. 
Figure 7.13 – Static Hex Dump 
7.4. Viewing Runtime Details 
This portion describes the runtime details of the executable. The runtime details are 
gathered during the unpacking process so the runtime or dynamic details are only 
available for those files that are classified as packed. For normal or benign 
executable files, only the information gathered through static analysis is available. 
For packed files, dynamic analysis is performed and the gathered data is presented 
to user in useful format such as tables and graphs. These runtime details include 
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o Debug Events 
o Modules Loaded 
o Unpacked File Dump 
Figure 7.14 shows the ‘Runtime Details’ window of SADE. The Process ID of the 
input executable when it was loaded in memory is also shown here. 
Figure 7.14 – Runtime Details 
7.4.1. Viewing Debug Events 
Figure 7.15 shows the ‘Debug Events Details’ window of SADE. 
Figure 7.15 – Debug Events 
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In this section, the details of debug events raised by the process being analyzed are 
shown in the table. The entries of the tables are 
o Event (name of the debug event) 
o Address (the memory address of the raised event) 



o Source (The source of the raised event) 
7.4.2. Viewing Modules Loaded 
In this section the modules loaded by the executable for its execution are displayed. 
Each module has a base address, entry point and size etc. Figure 7.16 shows the 
‘Debug Events Details’ window of SADE. 
Figure 7.16 – Modules Loaded 
7.4.3. Viewing Unpacked File Dump 
This section displays the dump of complete code in ASCII and Hex format. This 
memory dump is larger in size than the static dump. Figure 7.17 shows the window of 
SADE that displays the unpacked file dump which is available in ASCII as well as 
Hexadecimal representation. 
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Figure 7.17 – Unpacked File Dump 
7.5. Viewing Entropy Distribution 
This section presents graphical representation of entropy results. The Block Entropy 
Distribution of the original file is shown side by side with the Block Entropy 
Distribution of the final unpacked dump. 
Figure 7.18 shows the ‘Packed Blocks’ window of SADE. The entropy distribution of 
the input file is shown in its original form and below it the entropy distribution of the 
unpacked data is displayed. The x-axis of the graphs shows byte entropy which has 
the range 0 to 8. The y-axis of the graphs show the number of 256-byte blocks. The 
bar graphs of the original packed file have peaks towards the right of the graph 
because packed files have high block entropies. The unpacked files have a more 
random distribution of data as well as greater size of data than the input file. The 
unpacked file’s entropy distribution bar graph has peaks towards the left showing 
majority of 256-byte blocks having small entropy values. 
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Figure 7.18 – Entropy Distribution 
7.6. Other Statistics 
Other statistical measures like checksum, file entropy, average block entropy of the 
file etc. are displayed in this section. Figure 7.19 shows the ‘Other Statistics’ window. 
Figure 7.19 – Other Statistics 
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7.7. History 
This section displays the percentage of packed files and normal files in the form of a 
pie-chart. SADE maintains a history of files executed on it and this history is 
displayed as shown in figure 7.20. 
Figure 7.20 – History 
7.8. Help 
SADE provides a help document with a walk through for novice users, an index and 
searching capabilities within the document. The snapshot of the help document is 
shown in figure 7.21. 
Figure 7.21 – Help Window 
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CHAPTER 8 
FUTURE WORK 
SADE successfully unpacks the hidden code from an obfuscated file and retrieves 
useful information from the executable structure but still there is room for future work 
in the project which is described in the following subsections. 
8.1. Disassembly of Code 



A disassembly module can be integrated with SADE as future work to convert the 
compiled code inside the executable to assembly language. This will be of further 
assistance in executable analysis. SADE has been designed to be extensible and 
fully supports both implementation of a disassembler module or integration of an 
outsourced disassembler into the project. The disassembly module was out of the 
scope of our project because it is a huge undertaking in itself. With the introduction 
of a disassembler, SADE can be used as a cracking tool by the reverse engineering 
community. The debugger that has been implemented for SADE has the functionality 
to put breakpoints on any line of code and to view the state of the CPU registers as 
well as to see the process stack. The disassembly module can be integrated with the 
debugger to allow the user to put a breakpoint on any assembly instruction, single 
step through the code as well as see the state of the registers at any point during the 
process execution. 
8.2. Reconstruction of Dumped Executable 
The unpacked dump is taken as a snapshot of the process in memory. The unpacked 
dump is not executable because the Import Address Table requires reconstruction. 
Fields in the PE file header such as the Entry Point of the executable need to be 
corrected before the executable file can be run without first executing the unpacking 
routine code. This task is usually independently performed by executable 
reconstruction tools such as ImpRec. However, an import reconstruction tool can be 
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integrated into SADE to provide an output unpacked executable file that is 
executable and can be analyzed further with any standard executable tool. 
8.3. Portability with 64-bit Windows Platform 
SADE can be ported to work on 64-bit windows executable file as well. Currently it 
only works for 32-bit files. 
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ANNEX - A 
PROJECT CHARTER 
Project Charter 
for 
SADE 
(Version 1.0 approved) 
Prepared by 
Faiza Khalid, Komal Babar, Nauvera Rehman, Abdul Wahab 
Supervised by: Lec. Aisha Khalid, Dr. Fauzan Mirza 
118 
Project Description 
The intent of the project is to develop a software analysis toolkit that will generically 
(without finding out the specifics of the compression and encryption scheme used) 
detect and unpack a packed windows executable file (PE32 file) and make the 
unpacked code available for analysis. The motivation behind the project is that the 
problem to generically unpack malware executables has been solved commercially 
but the competitive nature of the anti-virus software industry refrain them from 
publishing a solution. There is hence a lack of publicly available generic unpacking 
tools that can handle a wide range and variety of packed executable files without 
knowing the exact packer used to pack it. Furthermore, the growing epidemic of 
malware has strengthened the need to have more freely available tools to help in 
analyzing packed executable files. 
Business Objectives and Success Criteria 



Business Objective Success Criteria 
Design and implement a technique to 
generically detect obfuscated (packed) 
windows executables and to extract and 
dump the code without running the 
executable. 
Objective is measurable by testing the 
implemented technique on sample 
packed executables and comparing 
results with published statistics of 
existing unpackers. 
Design and develop a user-friendly 
interface to analyze the recovered 
executable code. 
Objective is measurable by feedback of 
toolkit from beta testers. 
Contribute to research in the domain of 
code obfuscation and malware analysis. 
Objective is measurable by publication of 
research. 
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Stakeholders 
Internal Stakeholders: 
Project Team Members 
Project Supervisor 
CS Dept, MCS 
External Stakeholder: 
Security Analysts 
Vision 
Software Analysis and De-obfuscation Engine (SADE) is a toolkit that generically 
unpacks packed executables for security analysts who need to analyze potentially 
malicious packed executables for creating signatures and understanding attacks. 
Project Scope 
The software product will be a toolkit that will generically detect and unpack a packed 
windows executable file (PE32 file) and make the encrypted and compressed file 
available for analysis purposes. The chief users of the application will be security 
analysts and main area of application for software is malware analysis. Malware 
authors use packing techniques to hide their malicious code and security analysts 
need to uncover the hidden executable code for creating signatures and 
understanding attacks. The unpacked executable file may or may not be a valid 
executable (i.e. able to run on Windows platform) but the unpacked code and other 
information about the file such as the modules and resources loaded by the 
executable will be available through the toolkit. This toolkit will be invaluable to 
security analysts as their time is expensive and individual malware samples can take 
hours to analyze and manual unpacking is a tedious and error prone process. 
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Assumptions and Dependencies 
SADE is for Windows 32-bit platform and works for Portable Executable files. SADE 
might not work on every single type of packing obfuscation or on multiple layers of 
packing obfuscations. The packed input executable file might contain code that can 
detect the presence of SADE and our software may or may not be able to handle it. 
Constraints 



SADE might not work on every single type of packing obfuscation or on multiple 
layers of packing obfuscations. 
SADE will work only for Win PE32 files. 
The packed input executable file might contain code that can detect the presence of 
SADE and our software may or may not be able to handle it. 
Milestones 
Milestone Completion Date 
1. Research paper on Generic 
Unpacking Techniques 
4th January,2009 
2. Requirements Document 28th January, 2009 
3. Packing Detection Algorithm 15th April, 2009 
4. SADE Implemented 4th May, 2009 
5. SADE tested 16th June, 2009 
6. Project completion 20th June, 2009 
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Deliverables 
Deliverables 
1 Chief deliverable of project will be a toolkit for executable binaries with a deobfuscation 
engine for the use of security analysts. Software Analysis toolkit: 
SADE 
2 Research paper on the developed unpacking and de-obfuscation technique. 
3 Project Scope Statement 
4 Requirements Model, Analysis Model and Design Model 
5 WBS, project schedule, software development plan, software Implementation 
plan, software test plan 
6 Software Implementation description 
7 Final Project Report 
8 User Manual 
Approvals 
Approval Decision 
� Approved, development of detailed project plan is authorized 
� Approved, project execution is authorized 
� Approved, but project is on hold until future notice 
� Revise charter and resubmit for approval 
� Charter and project proposal are rejected 
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Role or Title Name and Signature Date 
Revision History 
Name Date Reason For Changes Version 
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ANNEX - B 
RESEARCH PAPER 
“Generic Unpacking Techniques” 
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Abstract—Traditional signature-based malware 
detection techniques rely on byte sequences, called 
signatures, in the executable for signaturematching. 
Modern malware authors can bypass 
signature-based scanning by employing the 
recently emerged technology of code obfuscation 
for information hiding. Obfuscation alters the byte 



sequence of the code without effectively changing 
the execution behavior. A commonly used 
obfuscation technique is packing. Packing 
compresses and/or encrypts the program code. 
Actual code stays hidden till runtime (when the 
executable is unpacked) making it immune to 
static analysis. Since every packer has its 
associated unpacker to undo packing, successful 
generic unpackers are difficult to come by. A few 
automated unpacking techniques have been 
published so far that attempt to unpack packed 
binaries without any specific knowledge of the 
packing technique used. In this paper, we aim to 
provide a comprehensive summary of the currently 
published prevalent generic unpacking techniques 
and weigh their effectiveness at dealing with the 
spreading nuisance of packed malware. 
Dynamic analysis is a promising solution to the 
packing problem as every packed binary has to 
inevitably unpack itself for execution. Emulation 
(running code in a virtual environment) is an 
effective and powerful technique for generic 
unpacking. We will be reviewing various 
unpacking techniques based on emulation and a 
few other hybrid and alternative approaches. 
Index Terms – obfuscation, generic unpacking, 
malware, dynamic analysis, emulation, virtual 
machines 
INTRODUCTION 
ne of the most prevalent features of 
modern malware is obfuscation. 
Obfuscation is the process of modifying 
something so as to hide its true purpose. 
Obfuscation increases the complexity of a 
program to make reverse engineering harder. 
Three of the most important practical 
obfuscations are packing, code reordering, and 
junk insertion. This paper only discusses 
packing, which is the most commonly used 
anti-reverse engineering technique. The 
packing obfuscation replaces a binary (code 
and data) sequence with a data block 
containing the binary sequence in packed form 
(encrypted or compressed) and a decryption 
routine that, at runtime, recovers the original 
binary sequence from the data block. The 
result of the packing obfuscation is a program 
that dynamically generates code in memory 
and then executes it. There are a large number 
of tools available for this purpose commonly 
known as executable packers [29, 30, 31, 32, 
33]. Packing describes the process of 
encrypting a program and adding a runtime 
decryption routine to it, such that the behavior 
of the original program is preserved. Programs 
obfuscated by packing consist of a decryption 
routine (an instruction sequence that generates 
code and data), a trigger instruction that 
transfers control to the generated code, an 
unpacked area (the memory area where the 
generated code resides), and a packed area (the 
memory area from where the packed original 



binary is read) [10]. Packers embed an 
unpacking stub into the packed program and 
modify the program entry point to point to the 
unpacking stub. When the packed program 
executes, the operating system reads the new 
entry point and initiates execution of the 
packed program at the unpacking stub. The 
purpose of the unpacking stub is to restore the 
packed program to its original state and then to 
transfer control to the restored program. 
Packers vary significantly in their degree of 
sophistication. The most basic packers simply 
perform compression of a binary’s code and 
data sections. More sophisticated packers not 
only compress, but also perform some degree 
of encryption of the binary’s sections. Finally, 
many packers will take steps to obfuscate a 
binary’s import table by compressing or 
encrypting the list of functions and libraries 
that the binary depends upon. In this last 
scenario, the unpacking stub must be 
sophisticated enough to perform many of the 
functions of the dynamic loader, including 
loading any libraries that will be required by 
the unpacked binary and obtaining the 
addresses of all required functions within those 
libraries [1]. 
Packing is applied on legitimate 
software to reduce the size of executable 
files and to protect the intellectual 
property that is distributed with the code. 
Malware writers use packing to bypass 
signature-based detection as packing 
completely modifies the binary foot-print of a 
program. The malicious code resides in the 
executable file in an encrypted form, and is not 
exposed until the moment the executable is 
run. A static analysis of a packed program will 
view the obfuscated block as non-instruction 
data or omit its analysis entirely, thereby 
hiding the program’s true intentions. The 
percentage of new malware that is packed is on 
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the rise, from 29% in 2003 to 35% in 2005 up 
to 80% in 2007. This situation is further made 
complex by the ease of obtaining and 
modifying the source code for various packers. 
Modifications to the source code can introduce 
changes in the compression or encryption 
algorithm, create multiple layers of encryption 
and/or add protection against reverse 
engineering. Currently, new packers are 



created from existing ones at a rate of 10–15 
per month [21]. According to WildList 
03/2006, over 92% of malware file out there 
are runtime packed. Only 54 out of 739 files 
are not packed [17]. 
Unpacking is the recovering of the 
original program that has the same relevant 
behavior as the packed program. Unpacking 
consists of constructing a program instance 
which contains the embedded program, 
contains no code-generating routine, and 
behaves equivalently to the self-generating 
program [12]. Malware authors understand that 
analysts will attempt to break through any 
obfuscation, and as a result they design their 
malware with features designed to make deobfuscation 
difficult. De-obfuscation can never 
be made truly impossible since the malware 
must ultimately run on its target CPU; it will 
always be possible to observe the sequence of 
instructions that malware execute. In all 
likelihood, the malware author’s goal is simply 
to make analysis sufficiently difficult that a 
window of opportunity is opened for the 
malware in which it can operate without 
detection [1]. Dedicated decryption routines 
can be developed to detect any packed virus 
but writing such a routine requires that the 
virus be analyzed completely. A thorough 
analysis of the malware and then developing 
and testing a specific decryption routine could 
take a lot of work and time to accomplish. 
Moreover, dedicated routines fail to detect 
modifications to the packing routine. Generic 
unpacking attempts to unpack obfuscated 
binaries without determining the exact packing 
technique used to pack the program. In this 
paper, we intend to identify, compare and 
contrast various existing generic unpacking 
techniques and highlight their strengths and 
weaknesses. 
DETECTING PACKING 
It can be useful to first detect that an 
executable has been packed using some 
encryption or compression technique before 
setting to the task of unpacking it generically. 
One of the heuristic methods used for packer 
detection is to see how the byte distribution 
(entropy) is changed by the packers as well as 
check import tables of the executable under 
observation [8]. Analyzing byte distribution 
involves determining the frequency of 
occurrence of the byte distributions of the file 
contents. Such a frequency analysis is 
advantageous in detecting compressed data as 
effective compression techniques tend to 
increase the entropy of byte distributions in the 
file. This is done without unpacking data in the 
file from its compressed form and therefore 



helps in detecting compressed files without 
actually decrypting its contents which 
otherwise would make the system vulnerable 
to potentially malicious executables [9]. 
However, this technique alone cannot be used 
as a criterion to identify a packed executable as 
legitimate copyright protected software also 
use packing for information hiding of an 
executable to evade disassembly of binary 
code and reduce size for distribution over the 
Internet. 
DYNAMIC ANALYSIS TECHNIQUES 
Once a packed executable has been 
detected, the executable then needs to be 
unpacked correctly. Dynamic analysis is a 
promising answer to the problem of hidden 
code extraction because it does not depend on 
signatures. Dynamic analysis techniques make 
use of the fact that no matter what packing 
technique is applied to the executable, the 
actual code or its equivalent will ultimately be 
available in memory and sooner or later, it will 
execute at some point at run-time. This innate 
property of a packed executable is the key to 
extracting the hidden binary code or its 
equivalent as a raw memory dump. However, 
it is not certain where the hidden binary code 
lies in the memory and when the execution 
flow jumps to the hidden code. Apart from 
this, another essential piece of information for 
analysis of an executable is the original entry 
point (OEP). The original entry point is the 
first hidden instruction being executed when 
the program control flow is transferred from 
the decryption/unpacking routine to the hidden 
code [18]. Dynamic analysis is less susceptible 
to being tricked by the use of obfuscation or 
self-modifying code. When using dynamic 
analysis techniques, the issue arises in the 
choice of environment in which the sample 
should be executed. The use of a sacrificial 
lamb (a dedicated standalone machine that is 
reinstalled after each dynamic test run) is not 
an efficient solution because of the overhead 
involved. In addition to determining the type 
of environment to be used for dynamic 
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analysis, one can also discern the different 
types of information that can be captured 
during the analysis process [15]. 
Run and Dump Unpacking 
Generally, a packed program upon 
executing first unpacks the program in 
memory, loads the required libraries, and 
accesses the imported functions by scanning 
the import address table of the executable. The 
structure of the original program is exposed 
and a snapshot of the memory image can be 
taken at this point and stored in a file (called 



dumping). This file can then be analyzed for 
signature analysis by virus scanners. The 
advantage of this technique is that the critical 
and complex task of unpacking is done by the 
stub itself. The paradox of this technique is 
figuring out exactly when the snapshot of the 
memory should be taken. If the snapshot of the 
memory is taken prematurely (before the 
program has been completely unpacked) the 
entire hidden code will not be obtained for 
analysis. And if the snapshot is delayed for too 
long, the program will start executing the 
unpacked code, making the system vulnerable 
to malicious attacks [1]. Furthermore, the 
dumped executable requires some additional 
fixing of header structures, but the code itself 
is visible in its original form and available for 
reverse engineering and static analysis. This 
simple method works for most kinds of 
executable packers and encryptions, as the 
unpacking function typically extracts the 
complete program right at the start, and does 
not interfere with later computations (but this 
is not always the case). The biggest drawback 
of this method is that the executable must be 
loaded, which might not be acceptable in all 
cases as it cannot always be guaranteed that 
the program is terminated before any malicious 
function is called. Sandbox environments can 
be used to avoid the potential damage [11]. 
Sandbox is a virtual environment provided to 
the executables to run, so that they cannot 
exploit the actual system while they are being 
analyzed [2]. Sandboxes are usually found in a 
kid’s playground. Kids use it to play in, 
building and tearing down structures. A 
sandbox inside a scanner engine is also a 
playground – for computer files [19]. 
Sandboxing can be performed in two ways: 
Sandboxing using Virtual Machine-where the 
executable runs on a subset of the actual 
system in a constrained controlled 
environment and Sandboxing using Emulationwhere 
the sandbox is a virtual world where 
everything is emulated drawing a concrete wall 
between the real and the emulated 
environment. 
Virtual Machine 
Running the executable in a virtual machine 
(i.e. a virtualized computer), such as one 
provided by VMware [24], is a popular choice. 
In this case, the malware can theoretically only 
damage the virtual PC and not the real one. 
After performing a dynamic analysis, the 
infected hard disk image is simply discarded 
and replaced by a clean one (i.e., so called 
snapshots). Most (or all) code is run directly in 
an isolated hardware environment which can 
be done using software solutions (VMware) or 



using hardware features (new Intel/AMD 
processors, IBM z/VM). It requires support 
from the OS or kernel-level modifications 
(drivers). In virtualization, code is not 
(usually) analyzed or cached. It is just run in 
an isolated environment [27]. Virtualization 
solutions are sufficiently fast. There is almost 
no difference to running the executable on the 
real computer, and restoring a clean image is 
much faster than installing the operating 
system on a real machine. The running code 
inside of a self contained environment can be 
more closely controlled than raw hardware 
[15]. Unfortunately, a significant drawback is 
that the executable to be analyzed may 
determine that it is running inside a virtual 
machine and may become inactive or execute 
differently in order to evade the virtual setup. 
All current virtual machines exhibit 
identifiable features and detecting them is one 
of the most common methods available to a 
malware author to protect malicious code from 
analysis [5]. 
Emulation 
A PC emulator is a piece of software that 
emulates a personal computer (PC), including 
its processor, graphic card, hard disk, and 
other resources, with the purpose of running 
an unmodified operating system [15]. Generic 
code emulation is a very potent de-obfuscation 
technique. A virtual machine is implemented 
to simulate the CPU and memory management 
systems to impersonate the code execution. 
The packed executable is replicated in the 
virtual environment and no actual code (which 
may contain malicious content) is executed by 
the real processor. The purpose of the code 
emulation is to mimic the instruction set of the 
CPU using virtual registers and flags. It is also 
important to define memory access functions 
to fetch 8-bit, 16-bit, and 32-bit data. 
127 
Furthermore, the functionality of the operating 
system must be emulated to create a 
virtualized system that supports system APIs, 
file and memory management [2]. All the 
hardware resources are virtualized using data 
structures. 
When the packed executable runs in the 
emulator, each instruction triggers some 
software routines that update the respective 
data structures in such a way that the program 
gets the same response it would get if run on 
an actual processor. Each instruction is first 
decoded to find the instruction type, length, 
operands and other information that need to be 
updated. Once the necessary information is 
available, the respective emulation routines are 
called which update any emulated hardware 



resources (which are actually data structures), 
if required. The address of the next instruction 
is obtained either as result of instruction 
decoding or computed by the emulation 
routine. 
Generally, Program’s Entry Point marks the 
beginning of emulation which executes 
instructions sequentially. Complexity of the 
unpacking process posses little difficulty to the 
emulation environment provided that the 
unpacking stub is available in the executable 
and the emulator has enough resources to 
complete unpacking. Since a program would 
use only a small subset of all the resources of 
system, it is quite affordable to provide 
emulator with these resources. 
On the other hand, code emulation is 
significantly slower than running the code on 
an actual processor. Decoding a single 
instruction in a program requires hundreds of 
instructions to be executed at the back-end. 
After instruction decoding, several routines are 
called for updating data structures, find where 
the next instruction lies in memory, followed 
by many other steps to simulate a correct 
response. All these factors make emulation 
considerably slower and inefficient. This 
difference in speed of execution is one of the 
very strong tools used by anti-emulation 
techniques which could be embedded inside an 
executable being analyzed. However, such 
anti-emulation technique can as easily be 
fooled by emulator by providing incorrect 
clock readings so that the system appears 
faster to the program. 
Another problem is that, for some 
packers, the program is not completely 
unpacked at one time, or some parts of its code 
may have been moved around by the packer. 
Also, if the emulation engine does not emulate 
correctly, error tracing becomes very complex 
since emulator executes a lot more instructions 
than an actual processor. One of the inherent 
problems of dynamic analysis techniques is 
deciding when to stop the emulation process. 
Heuristic checks can be used to help make this 
decision [16]. Occurrence of an event, which 
may be statically defined, could be used to 
stop emulation. In addition, some form of 
resource exhaustion limit, for example number 
of emulated instructions or emulation time, is 
needed in order to avoid infinite-loop 
execution [6]. Some other common ways to 
trick emulation is using fake API calls, using 
complex program logic (which can greatly 
slow down the emulation process). Since one 
of the major weaknesses of emulation is its 
speed, the goal of anti-emulation techniques is 
that the emulator quits without finishing the 



unpacking process (usually a maximum timeout 
is predefined in emulator) [25]. 
Difference between Emulators and Virtual 
Machines 
It is important to differentiate emulators from 
virtual machines. Like PC emulators, Virtual 
Machines can run an unmodified operating 
system, but they execute a statistically 
dominant subset of the instructions directly on 
the real CPU. This is in contrast to PC 
emulators, which simulate all instructions in 
software. Because all instructions are emulated 
in software, the system can appear exactly like 
a real machine to a program that is executed, 
yet keep complete control. Thus, it is more 
difficult for a program to detect that it is 
executed inside a PC emulator than in a 
virtualized environment. A PC emulator has 
complete control over the sample program. It 
can intercept and analyze both native Windows 
operating system calls as well as Windows 
API calls while being invisible to malicious 
code. The complete control offered by a PC 
emulator potentially allows the analysis that is 
performed to be even more fine grain [15]. On 
the other hand virtual machines are much 
faster than PC emulation; they are almost up to 
the native speed of the system being used. 
Unpacking Methods Using Emulation: 
1. MALWARE NORMALIZATION 
The method for malware normalization 
attempts to unpack malware generically. The 
presented method [12] assumes that the code 
generator and the instruction causing the 
control-flow transfer are reached in all 
program executions. Another assumption is 
that code generation is independent of inputs 
or the runtime environment. This is generally a 
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valid assumption to make as malware is 
usually independent and designed to 
automatically run and unpack itself on a 
variety of different victim systems. 
Unpacking by malware normalization 
consists of two basic steps. First, execute the 
program in a controlled environment to 
identify the control-flow instruction that 
transfers control into the generated-code area. 
i.e. execute the program in an emulator, collect 
all the memory writes (retaining for each 
address only the most recently written value) 
and monitor execution flow. If the program 
attempts to execute code from a memory area 
that was previously written, capture the target 
address of the control flow transfer (i.e., the 
trigger instruction) and terminate execution. 
By emulating the program and monitoring 
each instruction executed, the moment when 
execution reaches a previously written 



memory location can be identified. Second, 
with the information captured in the previous 
step, construct a normalized program that 
contains the generated code. In the second 
step, construct a non-self-generating program. 
Using the captured data, an equivalent 
program can be constructed that does not 
contain the code generator. The data area 
targeted by the trigger instruction is replaced 
with the captured data. The memory write 
captured contain both dynamically generated 
code and the execution specific data e.g. the 
state of the program stack and heap. The 
executable file of the new program is a copy of 
the executable file of the old program with the 
byte values in the virtual memory range set 
from the captured data. The program location 
where execution was terminated is used as the 
entry point for the new program. 
This technique has some major drawbacks. 
The unpacked executable is not ready-to-run. 
Although the packed coded can be successful 
unpacked and produced in the normalized 
executable, but since its not the actual file, the 
import table which lists the dynamically linked 
libraries and API calls used by the program 
may not be recovered, since most packing 
obfuscations replace it by a custom dynamic 
loader. This approach is open to resource 
consumption attacks and can have false 
negatives since the execution time in the 
sandbox often has to be heuristically restricted 
for performance reasons. 
2. RENOVO 
Reference [18] details a useful unpacking 
technique using emulation. The Renovo 
emulation technique is a fully dynamic method 
which monitors currently executed instructions 
and memory writes at run-time. Renovo uses 
an approach similar to malware normalization 
but with a few customizations. The approach 
maintains a shadow memory of the memory 
space of the analyzed program, observes the 
program execution, and determines if newly 
generated instructions are executed. Then it 
extracts the generated code and data. 
Assuming nothing about the binary 
compression and encryption techniques, it 
provides a means to extract the hidden code 
and information, which is robust against antireverse- 
engineering techniques. 
After the packed executable starts, its attached 
decryption routine performs transformation 
procedures (also called hidden layers) on the 
packed data, and then recovers the original 
code and data. After this, the decryption 
routine sets up the execution context for the 
original program code to be executed. This 
involves initializing the CPU registers and 



setting the program counter to the entry point 
of the newly-generated code in memory. 
A packed executable may have multiple 
hidden layers, making it even more difficult to 
analyze. But irrespective of the packing 
method and the hidden layers, the original 
program code and data will ultimately be 
available in memory. Also, the instruction 
pointer should jump to the OEP (Original 
Entry Point) of the restored program code 
which has been written in memory at run-time. 
Making use of these properties of packed 
executables, an algorithm to dynamically 
extract the hidden original code and the OEP 
from the packed executable has been suggested 
in [18] which examines whether the current 
instruction has been generated at run-time, 
after the program binary was loaded. The 
instruction pointer is monitored to see if it 
jumps to the memory region which has been 
written after the program start-up. 
When a program is loaded in memory, a 
memory map is generated and initialized as 
clean. Whenever the program performs a 
memory write instruction, the corresponding 
destination memory region is marked as dirty, 
which means it is newly generated. 
Meanwhile, when the instruction pointer jumps 
to one of these newly-generated regions, it is 
determined that there is a hidden layer hiding 
the original program code, and the newlygenerated 
memory regions are indentified to 
contain the hidden code and data, and the 
address pointed by the instruction pointer as 
the original entry point (OEP). To handle the 
possible hidden layers that may appear later 
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on, the memory map is initialized as clean 
again. The same procedure is repeated until 
time-out. 
The advantages of this approach are 
threefold: Firstly, nothing is assumed about the 
packing methods except the inevitable fact that 
the original hidden code should eventually be 
written and executed at run-time. Therefore, 
the approach is able to handle any sort of 
packing techniques applied to the binaries. 
Secondly, the approach can determine the 
exact memory regions accommodating the 
code or data generated at run-time. Since the 
information about memory writes are kept at 
byte-level, it is possible to efficiently extract 
the newly-generated code and data. Lastly, this 
approach does not rely on any information on 
the code and data sections of the binary. 
When analyzing an executable, it is run in an 
emulated environment. The emulated 
environment facilitates simulating CPU 
instructions in a fine-grained manner, in 



particular the instructions that perform 
memory writes. This technique also suffers 
from the weaknesses of emulation and can 
easily be evaded by anti-emulation techniques. 
Packers also use anti-memory dumping 
technique that involves the deletion of a 
section of code immediately after it is 
executed. 
3. SAFFRON [5] 
Saffron is a generic automated malware 
unpacker that employs dynamic 
instrumentation using software tools such as 
intel PIN which provides facilities to closely 
monitor and interact with a program's 
execution. Saffron uses Pin to monitor 
execution flow and memory reads and writes 
of malware. As with other tool already 
discussed, SAFRON unpacking mechanism 
also depends on the original entry point of the 
program. If execution jumps to previously 
written memory, the target memory becomes a 
candidate original entry point and the memory 
is dumped to a file. 
It however fails if the program uses a 
checksum to verify the integrity of the 
program’s address space before transferring 
control to the stub procedure. Such executables 
cannot be unpacked using Pin, as it is easily 
detectable and it also modifies the 
instrumented processes' address space. 
Another drawback of this approach is that it is 
fairly slow and standard anti-debugger 
techniques cause problems with Pin. 
The other method used by Saffron is page 
fault handler debugging, which works by 
modifying Microsoft Windows's page fault 
handler and subverting the x86 architecture's 
paging mechanism to trace memory accesses 
to individual pages. During their presentation 
at the Black Hat security conference in August 
2007 the authors mentioned that page fault 
handler debugging does not work within 
virtual machines, so that extra care must be 
taken to isolate malware samples to be 
analyzed, e.g., by using a real machine as a 
sacrificial lamb. The authors also stated during 
their presentation that their method does not 
yet automatically choose a most likely out of 
several candidate original entry points and that 
they currently rely on third-party software to 
reconstruct valid PE files from memory dumps 
[26]. 
4. Pandora's Bochs 
Unpacking in Pandora's Bochs is done by 
Bochs [28], a portable x86 emulator which is a 
pure software virtual machine that provides a 
built-in mechanism for instrumenting code 
running on the emulated CPU. Pandora's 
Bochs collects a lot of information during 



execution of a malware sample, such as all 
memory write and all branches. This 
information is useful in several ways. It is used 
during the reconstruction of the executable 
(without the unpacking stub) to help 
regenerating a program's import information. It 
can also be helpful for performing a detailed 
analysis of the inner works of unpacking stubs 
as it provides an accurate execution trace at the 
basic block level that is unaffected by code 
obfuscation and anti-debugging techniques. 
The goal of the thesis [26] was to enhance the 
Bochs PC emulator to unobtrusively monitor 
execution of samples of packed malware in the 
emulated environment, use heuristics to 
determine when the unpacking process is done, 
and finally store a memory image of the 
malware process along with additional 
information for further (static) analysis. To 
achieve this goal, the Bochs PC emulator has 
been enhanced in several ways, such that it can 
identify processes running within the guest 
operating system, gather information about the 
processes such as which dynamic libraries are 
mapped into the processes' address spaces and 
which symbols these libraries export, trace 
execution of processes and determine which 
library functions they call and whether the 
execution path covers memory areas that were 
modified by the process and dump memory 
images of running processes, and to that end, 
also force the guest operating system to bring 
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in all virtual memory pages needed for a full 
dump. Additionally, an attempt is made to 
reconstruct the original, unpacked malware 
executable. The goal is to execute a packed 
binary within the enhanced Bochs PC emulator 
and return an unpacked, normalized version of 
this binary for further analysis. The unpacking 
process utilizes Boch's save/restore mechanism 
that can save and restore the emulator's CPU, 
memory, and device state. Pandora's Bochs 
takes a slightly refined approach to OEP 
detection. Moreover, to account for multiple 
unpacking stages, Pandora's Bochs simply 
continues execution of the monitored process 
while it still shows some progress, up to a 
user-defined timeout. Needless to say, this 
technique is also very slow in performance 
[26]. 
Dynamic Translation 
The dynamic translation is an improvement 
of emulation with a better execution speed and 
performance. In this approach, the executable 
under analysis is disassembled and then an 
equivalent unpacked code is generated. The 
executable code obtained as a result of 
translation is persisted; if execution of 



program enters a loop, the persisted coded can 
usually be executed directly without requiring 
translation. Code is translated only on the first 
iteration and for the subsequent iterations 
persisted code dos not need any translation. 
Thus the method eliminates redundant analysis 
of repeating code sequences. Although code 
translation makes execution slower, it is many 
times faster than pure emulation. To add here, 
the computational cost of disassembly is 
comparable to emulation. 
The dynamic translation engine has to 
determine whether translated code is available 
for any given instruction, and if so, locate the 
corresponding code. One way to do this is to 
maintain a table with virtual addresses of 
translated instructions and addresses of 
corresponding executable code. However 
searching a virtual address in this table for 
each processed instruction will introduce 
additional overhead, negating the speed 
advantage of executing translating code. A 
much more efficient way is to partition the 
original code into blocks of instructions and 
only store a table entry for each block. This 
would improve table look-up operation. But 
dividing the original code into blocks is not as 
simple as it sounds. A block must have some 
specific properties that limit its size. On the 
other hand bigger the blocks are, more 
efficient the storage and searching will be. A 
basic building block is a contiguous block of 
code having a single entry point at the 
beginning of the block and a single exit point 
at the end of the block. If the code within such 
a block is executed via a call instruction to the 
beginning of the block, all the instructions in 
the block will be executed. A single instruction 
is needed at the end of the block to return the 
control to the caller. As a consequence, any 
basic building block of original code will 
contain at most one jump instruction. 
Discovering and delimiting basic blocks is a 
dynamic process, meaning that new blocks 
maybe discovered or existing blocks could be 
modified as a result of processing previously 
discovered blocks. After translating a block 
and executing the resulted code, the beginning 
address of the next block to be processed will 
be the destination address of the jump 
instruction at the end of the block that was just 
executed. The main advantage of this 
technique is that if several blocks are executed 
inside a loop, searching for a successor block 
needs to be done only once for each successor. 
There is no need to search for successor of that 
block at any subsequent loop iteration. 
Given any arbitrary program code to 
be analyzed, the code could be unsafe. It is 



possible to translate the given code into 
another code sequence that is functionally 
equivalent to the original one and that can be 
safely and correctly executed on the host 
machine. There are multiple ways in which 
code translation that meets the above criterion 
can be achieved. Simplest technique is 
translating directly from the original code to 
target code. Each original instruction will be 
decoded and then an equivalent instruction or 
instruction sequence will be generated for the 
target code. Another method is translating 
using an intermediate language (IL). Each 
original instruction will first be translated to an 
intermediate code sequence and then the 
intermediate code will be translated to target 
native code. This method is preferable for 
multiple sources and multiple target languages. 
It is possible to perform code optimizations 
using the intermediate language form. The 
intermediate language should be platform 
independent. The intermediate language would 
need to support all the possible operators, 
operand types and a combination of these from 
all source languages raising its degree of 
complexity. Combining the above two 
methods could be achieved in a way that 
preserves the advantages of both without any 
of their disadvantages. Most instructions could 
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be translated using a fairly simple intermediate 
language while the most complex ones that 
would require a complicated intermediate 
language will be translated directly. Typically, 
the code obtained as a result of translation will 
not be as efficient as the original code. This 
may happen for various reasons like some 
instructions or operand encodings from the 
source language might not have a 1:1 
correspondence in either the IL or the target 
language. It is possible to perform some 
optimizations at basic block level at translation 
time to improve efficiency of the translated 
code. If the analyzed code is linear, the code 
will be translated once and executed once. As 
the execution time is negligible as compared to 
the translation time, in this case translation 
would account for most of the analysis time. 
As improving the efficiency of the translated 
code is done at the cost of translation speed, a 
compromise between these two must be 
obtained. 
For each file that needs to be scanned for 
malware, analysis consists of sequentially 
analyzing and processing of basic blocks. At 
the beginning of the analysis the current 
address is initialized to the entry point of the 
program to be scanned. After each basic block 
is processed, the current address is updated to 



the destination address of the jump instruction 
at the end of this block. The Dynamic 
Translation engine must provide access to 
various hardware devices (disk drives, 
keyboard, mouse, network interface, video 
card, real-time clock, etc.) as well as software 
resources such as BIOS data structures and 
routines and operating system APIs. Since the 
code provided to the dynamic translation 
engine could be malicious, most of these 
resources need to be virtualized. 
Writing unpacking routines for all the 
packers publicly available takes a lot of 
development and test effort. In some cases, 
writing the unpacker would require reverse 
engineering the packer. In the absence of a 
dedicated unpacking routine, a packed 
executable would be emulated until the 
unpacked code is obtained. However 
unpacking with an emulator could be very 
slow, especially for large packed files that 
would require emulating several millions of 
instructions. Using dynamic translation, a 
program can be unpacked significantly 
efficiently as compared to emulation providing 
detection for malware packed with new 
packers, with reasonable speed performance, 
before a dedicated routine is developed. In 
some cases, the generic unpacking using 
Dynamic Translation could prove fast enough 
that dedicated routines won’t even be needed 
[23]. 
HYBRID APPROACHES 
Detection of packed malware requires the 
use of emulation and sandboxing technologies 
which are open to resource consumption 
attacks since the execution time in a sandbox 
has to be restricted for performance reasons 
[10]. 
1. Mixing Code Emulation and Specific 
Routines 
If an executable is packed with a complex 
packer, it is quite useful to use a combination 
of emulation and specific unpacking routines 
for known packer. Although using specific 
routines is an efficient approach but integrating 
it with emulation introduces additional 
complexity to the system. [6]. 
As emulation based unpacking is too slow 
and static unpacking is too specific, a hybrid 
approach is a solution which combines the 
advantages of both. The hybrid approach 
would involve an emulator for IA-32 
instructions, flat memory, Win32 APIs, Win32 
system and Static un-packers (called "miniemulators"( 
MEs)). The generic emulator can 
be optimized by caching memory accesses, 
independent CPU flags emulation and 
avoiding CPU flags setting when possible. The 



static unpackers do not handle heavily 
polymorphic code. It is handled by slow 
generic emulation instead. Advantage of this 
technique is that it is universal by generic 
emulation and fast as the specific unpacking is 
independent of the code being emulated. It is 
easily expandable and can be implemented and 
deployed incrementally, as initially small 
number of specific unpacking routine are 
written and with time, the results of emulations 
can be used to widen the scope of specific 
mini-emulators. MEs have relatively simple 
implementation as each one handles one single 
algorithm. It is much faster than generic 
emulation and also faster than Dynamic 
Translation as no need for code analysis and 
tranlation or code optimization [14]. 
2. PolyUnpack 
Reference [22] gives a hybrid unpacking 
approach called PolyUnpack. It is a behaviorbased 
approach that uses a combination of 
static and dynamic analysis to automate the 
process of extracting the hidden-code of 
packed malware. The core emphasis of this 
technique is on the results (i.e., runtime132 
generated code execution) of unpack-execution 
rather than the unpacking mechanism used. It 
supercedes other approaches as prior 
knowledge about the packer or explicit 
programming of the semantic behavior 
capturing all instances in an unpacking class is 
not required. It first generates a static code 
view of the packed program (i.e. the code 
sequence of program does not produce any 
code at run-time) in memory using static 
analysis. The static code model is then 
forwarded to dynamic analysis engine (i.e. 
emulation or any virtual environment). This 
dynamic analysis differs from the usual runtime 
analysis as it has the ability to verify if 
the observed sequence of execution matches 
any part of the static model. While the stub 
(restoration routine) is being executed, the 
code will follow the same sequence as the 
stub’s static view. After execution of each 
instruction, the execution context is compared 
to the static model. The point in run-time when 
the code deviates from the static view indicates 
that the code has been unpacked (since 
unpacked code sequence is not available in 
static model). This is the stopping condition of 
analysis and provides the unpacked code of the 
executable under analysis. This technique uses 
the fact that the hidden code which has been 
obfuscated is not available to the static model. 
Thus this approach gives a wider scope to the 
static analysis which otherwise is too specific 
and provides a mechanism which is 
independent of packing mechanism. 



The fundamental step of static analysis is to 
disassemble the program to identify code and 
data. The code portion is then partitioned from 
the data area to generate a static model. 
This is not all the unpacker has to do as it is 
not always the case that absence of a code 
sequence in static model will be the hidden 
code. The dynamic link libraries (DLLs) 
loaded during Windows binary execution also 
result in execution of code that is not available 
in the static model. Misinterpretation of these 
DLLs has to be catered for. So, whenever, a 
DLL is loaded, the memory it occupies is 
noted. During single-step execution, the 
program’s program counter (pc) is continually 
compared against all known memory areas. If 
the pc points to memory occupied by a DLL, 
the return address from the stack is read and a 
breakpoint set there, allowing single-step 
execution to resume after the call’s return. 
To deal with the increased program 
complexity due to multiple packed layers, the 
PolyUnpack technique can be extended to 
proceed iteratively. Every time the resultant 
hidden code is attained, the static model of the 
code is generated. Execution resumes from the 
first instruction of the code under analysis. If 
at any step the binary sequence of executed 
code does not match any part of static view, 
the next iteration begins. The final unpack 
code is the one whose static model is totally 
consistent with its run-time execution 
sequence. In other words, the last iteration 
would be running the unpacked code. 
This technique like most instrumentation 
tools is not transparent to the malware being 
processed. Therefore, there exists the 
possibility that an instance of malware being 
executed in it may detect that it is being 
instrumented and alter its behavior (e.g., 
halting its execution instead of generating 
hidden-code) in order to evade extraction of its 
unpacked code [22]. 
ALTERNATIVE APPROACH 
As described earlier, all the covered techniques 
have their own limitations. Even, poly-unpack 
suffers from inefficiency as it involves singlestep 
debugging. Hence an alternative approach 
to the above mentioned techniques is 
OmniUnpack [21]. Omni unpacking technique 
addresses the shortcomings of existing 
systems. This is a generic approach to handle 
any type of packer and any type of selfmodifying 
code. It does not depend on virtual 
environment, emulation or debugging for 
unpacking. It monitors the program execution 
and tracks written and written-then-executed 
memory pages. Written-then-executed pages 
are indicative of unpacking but not indicative 



of the end of unpacking, as there could be 
multiple unpacking stages. The approach uses 
heuristics to approximate the end of 
unpacking. In order to improve the 
performance, page-level monitoring is done. 
When stub, which is embedded in the program, 
writes the unpacked code to memory, the 
destination page is marked as writable but not 
executable. At the end of the unpacking stage, 
when the program accesses the same page for 
execution, the lack of execution permission 
causes a protection exception. If the program 
then makes a potentially damaging system call, 
a malware detector is invoked on the written 
memory pages. If the detection result is 
negative (i.e., no malware found), execution is 
resumed. The resulting low overhead means 
that this technique can be used for continuous 
monitoring of a production system. 
When the virtual-physical address mapping 
needs to be updated or when the memory 
protection is violated, the hardware signals to 
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the OS through an exception and allows the 
OS to repair the memory state before 
continuing execution. Existing features are 
used to intercept the first moment when a page 
is written and the first moment when a page is 
about to be executed after a write. 
A disadvantage of the technique is 
imprecision of page-level tracking. Page-level 
tracking decreases the granularity of 
monitoring although it significantly reduces 
the overhead of memory-access tracking. It is 
less precise, often resulting in incorrectly 
detecting unpacking stages. It would be 
unnecessarily expensive to invoke the malware 
detector every time a written memory page is 
executed, because such an event (written-thenexecuted) 
is frequent. Hence determining the 
end of unpacking is hard to decide and is only 
an approximation. The technique assumes that 
a packed program will generally be malicious. 
Therefore, it provides the facility to 
automatically call the malware detection 
engine if a dangerous system call is made. This 
introduces anther level of complexity in the 
algorithm as decision has to be made about the 
choice of dangerous system calls. A dangerous 
system call is a system call whose execution 
can leave the system in an unsafe state. To 
achieve its malicious goal, the malware has to 
interact with the system. As a simple solution, 
any system call that modifies OS state is 
considered dangerous in this technique. 
Because of the possibility of multiple 
unpacking stages and of the approximation 
being using to detect them, it is insufficient to 
monitor and scan the program only once 



during an execution. This technique 
implements a continuous monitoring approach, 
where the execution is observed in its entirety. 
This is a necessary departure from the 
traditional view of unpacking and scanning as 
separate, one-time stages of the malware 
detection process. Also, efficiency can further 
be increased if all memory-page accesses are 
not observed. It is sufficient to observe the first 
memory access in an uninterrupted sequence 
of accesses of the same type. For example, 
only the first write to a page is useful, 
subsequent writes to the same page do not 
impact the result of the algorithm and can be 
ignored. Thus, this unpacking technique aims 
to be very generic as it supports binaries 
packed with any arbitrary algorithms applied 
any number of times [21]. 
CONCLUSION 
Current approaches for automatic analysis 
suffer from a number of shortcomings. One 
problem is that malicious code is often 
equipped with detection routines that check for 
the presence of a virtual machine or a 
simulated OS environment. When such an 
environment is detected, the malware modifies 
its behavior and the analysis delivers incorrect 
results. Malware also checks for software (and 
even hardware) breakpoints to detect if the 
program is run in a debugger. This requires 
that the analysis environment is invisible to the 
malicious code [15]. As any other dynamicanalysis 
technique, emulation places a time 
limit on the execution of the packed program 
and is restricted by the reliability of the 
emulation environment. Extracting packed 
binaries and finding the original entry point 
using dynamic analysis is feasible but these 
approaches either rely on some heuristics or 
require disassembling the packed program. 
However, heuristics about packed code may 
not be reliable in all cases and can be easily 
evaded. In addition, correctly disassembling a 
binary program itself is challenging and errorprone. 
Hybrid approaches for packed code 
extraction perform a series of static and 
dynamic analysis which leads to performance 
overhead. 
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