

DESIGN AND DEVELOPMENT OF FRAMEWORK
FOR ROBOTICS USING CLOUD COMPUTING

By

Omar Rahman

UsamaYaseen

KhurramJaved

Submitted to the Faculty of Computer Software Engineering, Military College of

SignalsNational University of Sciences and Technology, Islamabad in partial

fulfillment for the requirements of a BE in Computer Software Engineering

JUNE 2012

Abstract

This thesis reports a cloud robotics framework composed of mobile phone

based robots and a cloud computing architecture, facilitating complex and

heavily computational tasks to aid the user in the completion of difficult

robotics related problems. The Cellbot based framework will complement

the group of networks that the user may already be a part of, contributing

as a connection bridge between real and virtual worlds.

The objective of this endeavor marks the implementation of a small

test/demo cloud based robotics service framework that permits distant

groups of cellbots to share learned skills while simultaneously improving

collaboration with non-technical human users. This cloud facility allows for

robots to share new and used knowledge by downloading and uploading

information as it arrives, without needing onboard storage, thus risking

information freshness.

In this scenario the context aware skill arranges the system to give

services such as maze traversal and path following. The small movement

Cellbot used in the experiments is able to navigate its way through both

the scenarios without relative difficulty after receiving commands from the

Cloud server with negligible amounts of delay times. The needed input for

the system to make the Cellbot move was entirely done using a single 2D

camera of the Android smartphone placed on the Cellbot, whereas all

storage and processing was done on the Cloud.

Declaration

We, NC Omar Rahman, PC UsamaYaseenand NCKhurramJaved, do hereby

solemnly declare that the work presented in this report is our own, and has

not been presented previously to any other institution.

Signature

(Syndicate Leader)

(Member)

(Member)

Certified:

Supervisor

iv

Dedication

We would like to dedicate this project to our wonderful parents, who

made every day easy for us, so that we could focus our energies on this

project, while they took care of the rest.

v

Acknowledgements

First of all we would like to thank Allah Almighty. Whatever we have achieved,

we owe it to Him totally.

We are really grateful to our parents, family and well-wishers for their

admirable support not only during the course of the project, but also

throughout our lives, as without them, this would never have been possible.

They have always been behind our every success and are the major force

that facilitates us in achieving what we aspire.

We would like to thank our project supervisor Lt. Col. Dr. Asif Masood for all

the inspiration and technical corrections. Col. Dr. Fahim Arif has been very

helpful in directing us to do the right thing in the right manner. Together, both

of them provided us with the opportunity to polish our technical skills. This

project has been brought to shape by their consistent assistance.

There are other people who played their part in various ways. Dr. Hammad

Afzal was always there, whenever we needed him, to solve various problems.

Dr. AwaisMajeed helped in providing documentation guidance. Lec. Bilal Rauf

helped with lab facilities and technical matters. We are highly grateful to all of

you in making this project a success.

vi

Preface

Cloud Robotics is a recently envisioned concept that aims to bring together

the ideas of “Remote brained robots” and Cloud computing into one niche.

The common man has limited reach to robots for his everyday needs such as

household work, car driving, and help for the elderly and so on. Using

methods employed in the domain of cloud robotics, everyone can utilize some

sort of benefit with a simple robot that takes its commands from an ordinary

user and performs functions as any high end robot would.

In this project, it was aimed to develop a small demo framework that supports

the idea using a small private cloud, attached to an Android based robot that

fulfills basic navigational tasks. Using this set up, we demonstrate how a

dumb terminal robot uses the computational and storage capabilities of a

remote cloud for its own purposes. This is done when a user selects a simple

navigation task on the Android robot, which then connects to the cloud,

requesting for help on how to perform that task.

In real world scenarios, this framework is extensible to large scale robotic

environments, where either labor costs are high or skills are less available.

Quick deployment of untrained robots in a field is possible whereby one

requires only a simple internet connection to the cloud. Upon connection

establishment, algorithms could be downloaded for a wide array of

applications. These applications range from object recognition and

vii

autonomous navigation to automatic vehicle driving and human-less military

forces.

The focus has been on a simple navigation plan, in which it has determined

movements of the robot beforehand. The robot, referred to as the “Cellbot” in

our document, has no prior information of the navigational area, and thus

seeks information from the cloud on first use. This small scale demo partially

fulfills the requirement for a full blown cloud robotics suite. Yet, even in our

simple demo environment, it was shown how robots could be made simpler

and yet more productive, by offloading their storage and computational needs

to a remote server.

Our private cloud is an alternative to the traditional web server in the manner

in which it is used. While a traditional web server may require a user to run

and maintain an application on the client end, the cloud server takes all the

hosting and maintenance responsibility on itself, providing a one-window

interface to the user, as the user only provides the data and requests. Here

too, the user shall only give the requests for the available navigation services,

regardless of how the application is running to provide the service to the user.

viii

TABLE OF CONTENTS

Chapter Page Number

1. Introduction 2

1.1. Document Conventions 2

1.1.1. Headings 3

1.1.2. Bullets And Numbering 3

1.1.3. Figures And Tables 3

1.1.4. References 4

1.1.5. Links To Web Pages 4

1.1.6. Acronyms 4

1.1.7. Basic Text 4

1.2. Intended Audience And Reading Suggestions 4

1.2.1. Project Deputy Supervisor And Faculty Members 5

1.2.2. Reading Suggestions 6

1.3. Problem Domain And Problems Addressed 6

1.4. Objectives 10

1.5. Deliverables 11

1.6. Technological Requirements 11

1.7. Project Plan 12

1.7.1. Team 12

1.7.2. Milestones 13

1.8. Summary 14

2. Literature Review 16

2.1. Works Read Error! Bookmark not defined.
2.2. Works And Literature On Cloud Robotics 20

2.3. Summary 21

3. System Requirements Specification 24

3.1. Purpose 24

3.2. Scope 25

3.2.1. Final Year Project Limitations 25

3.2.2. New Technologies In Their Early Development Stages 26

ix

3.2.3. Limitations On The Robot 27

3.2.4. Cloud Size Limitations 27

3.3. Overall Description 28

3.3.1. Product Perspective 28

3.4. Product Functions 30

3.4.1. The Android App 30

3.4.2. The Cellbot Controller 30

3.4.3. The Cloud App 30

3.4.4. The Cloud Fabric 31

3.4.5. The User Agent Admin 31

3.5. User Classes And Characteristics 31

3.5.1. Cellbot User 31

3.5.2. Administrator 32

3.6. Operating Environment (Oe) 32

3.6.1. The Cloud And Its Oe 33

3.6.2. The Cellbot And Its Oe 33

3.6.3. Languages Used In Oe 34

3.7. Design And Implementation Constraints 34

3.8. User Documentation 34

3.9. Assumptions And Dependencies 35

3.10. External Interface Requirements 36

3.10.1. User Interfaces 36

3.10.2. Hardware Interfaces 38

3.10.3. Software Interfaces 40

3.10.4. Communications Interfaces 41

3.11. System Features 42

3.11.1. Path Planning Service For Cellbots 42

3.11.2. Path And Object Information Downloading From The Cloud 45

3.11.3. Simple System Administration 47

3.12. Other Nonfunctional Requirements 49

3.12.1. Performance Requirements 49

3.12.2. Safety Requirements 50

3.12.3. Security Requirements 51

x

3.12.4. Software Quality Attributes 51

3.12.5. Other Requirements 51

3.13. Summary 52

4. System Design Specifications 54

4.1. Scope 54

4.2. Overview Of The System Design 57

4.2.1. Deployment Diagram 57

4.2.2. Architectural Design 57

4.2.3. Data Structure Design 57

4.2.4. State Chart Diagrams 58

4.2.5. Use Case Realizations 58

4.2.6. Activity Diagrams 58

4.2.7. Sequence Diagrams 58

4.2.8. UI Design 59

4.3. Design Models 59

4.3.1. Deployment Diagram 59

4.3.2. Architectural Design 62

4.3.3. Tp Link Proprietary Protocols Router 64

4.3.4. Create ® Cellbot 64

4.3.5. Failover Cluster (Cloud) 66

4.3.6. Server A And B 67

4.3.7. SQL Server Database 67

4.3.8. Administration Portal 68

4.4. Data Structure Design 69

4.4.1. Android App Package 70

4.4.2. Cloud App Package 72

4.4.3. Administration Portal Package 77

4.4.4. BL Databases 80

4.5. State Chart Diagrams 80

4.5.1. HandleRobot 80

4.5.2. RobotClient 82

4.6. Use Case Realizations 83

4.7. Use Case List Of Cellbot Android App 83

xi

4.7.1. Use Case: Login 83

4.7.2. Use Case: Select Task 85

4.8. Use Case List For Administration Portal 87

4.8.1. Use Case: Change Username/Password 87

4.8.2. Use Case: Add New Account 89

4.8.3. Use Case: Edit Account Info 91

4.8.4. Use Case: Administer BL Database 92

4.9. Activity Diagrams 94

4.10. Sequence Diagram Design 95

4.10.1. Administration 95

4.10.2. Path Following 96

4.10.3. Maze Solving 96

4.10.4. User Interface Design 97

4.11. Summary 99

5. System Implementation 101

5.1. Software Implementation 101

5.1.1. The Cloud App Backend 101

5.1.2. Implementing The Private Cloud 107

5.1.3. Administrating The Cloud App 115

5.1.4. The Android App Backend 116

5.2. Hardware Implementation 121

5.2.1. The iRobot Create 121

5.2.2. Irobot Create Open Interface Commands 124

5.3. Summary 126

6. Testing and Results Analysis 129

6.1. Unit Testing 129

6.2. Integration Testing 130

6.3. System Testing 131

6.4. Software Results 131

6.4.1. Live Video Streaming Module’s Results 131

6.4.2. Command Downloading Results 132

6.5. Hardware Results 132

6.6. Analysis 133

xii

6.7. Summary 135

7. Conclusion and Future Work 137

7.1. Future Work 137

7.2. Conclusion 138

7.3. Summary 139

Bibliography 140

Appendix A 143

Appendix B 148

Appendix C 155

Appendix D 159

xiii

LIST OF TABLES

Table Number Page Number

1.1 Project Team 12
1.2 Project Milestones 14
4.1 Robotclient Class Detail 70
4.2 Viduploader Class Detail 71
4.3 Instructionreceiver Class Detail 71
4.4 Bluetoothinterface Class Detail 72
4.5 Authentication Class Detail 74
4.6 Cloud Appserver Class Detail 74
4.7 Handlerobot Class Detail 75
4.8 Robotdetails Class Detail 75
4.9 Instructiongenerator Class Detail 76
4.10 Mazesolver Class Detail 76
4.11 Pathfollowing Class Detail 77
4.12 User Class Detail 78
4.13 Administrator Class Detail 79
4.14 Administration Class Detail 80

xiv

LIST OF FIGURES

Figure Number Page Number

4.1 The Deployment Diagram 60
4.2 High Level Architecture 63
4.3 Android App Package 69
4.4 The Cloud App Package 73
4.5 User Agent Administrator Package 78
4.6 Administration Portal Sequence Diagram 95
4.7 Path Following Service 96
4.8 Maze Solving Service 97
4.9 Signing In To The Administrator Portal 97
4.10 Managing The Whole Framework 98
4.11 Results Of The Client Node Health 99
5.1 Block Diagram Of The Image Processing Algorithm 103
5.2 Implementing Failover Clustering 109
5.3 Node And Disk Majority Quorum Configuration 112
5.4 Tcp Sequence Diagram 120
5.5 Irobot Create ® Top View 123
5.6 Irobot Create ® Bottom View 123
6.1 Testing The Output Of The System 134
B.1 Using The Android App 149
B.2 Administering The Cloud App 150
B.3 Service Selection Activity 151
B.4 Administration Activity 152
B.5 State Chart For Class Handlerobot 153
B.6 State Chart For Class Robotclient 154

1

Chapter 1

Introduction

2

1. Introduction

This document is the documented deliverable of the Final Year Project group

of the group syndicate including Omar Rahman, UsamaYaseen, and

KhurramJaved of BESE 14 at the Department of Computer Software

Engineering. The title of the project is “Design and Development of

Framework for Robotics using Cloud Computing”. The project is based on

the concept of cloud robotics, a new and innovative application of cloud

computing. This document contains the software requirements, software

design, implementation and testing, as well as the user manual for the project.

Cloud computing is a word for computation, software, data access, and

storage services, not requiring end user knowledge of location nor

configuration for mass distribution and usage. It is an IT service model for

enabling convenient, on-demand network access to a shared pool of

computing resources to users who are connected simply through the internet.

Cloud Robotics is the amalgamation of cloud computing with robotics to make

robots easy to understand and build, while at the same time reduce costs and

machine size requirements. It has been a challenge thus far to build robots for

large scale applications, however with the help of cloud computing, robot

machines now need just a connection to the cloud for processing and storage

capabilities.

1.1. Document Conventions

This section describes the standards followed while writing this document.

3

1.1.1. Headings:

Heading are prioritized in a numbered fashion, the highest priority heading

having a single digit and subsequent headings having more numbers,

according to their level. All of the main headings are titled as follows: single

digit number followed by a dot and the name of the section (All bold Arial, size

16, e.g.[2.Overall Description]).

All second level sub headings for every sub section have the same number as

their respective main heading, followed by one dot and subsequent sub

heading number followed by name of the sub section (All bold Arial, size 14,

e.g.[2.2 Product Features]).

Further sub headings, i.e. level three and above, follow the same rules as

above for numbering and naming, but have font sizes gradually decreasing.

1.1.2. Bullets and numbering:

Bullets have been given where there is no need for prioritizing a list. For

example the list of use cases, where uses cases may appear in any order.

The bullet kind used in this document is [•].

Numbered lists are normally used for prioritizing purposes. Prioritizing

purposes arise when the customer has specified a specific order for the

requirements or when a need for prioritizing arises due to business needs.

1.1.3. Figures and tables:

All figures have captions and numbers below them while tables have captions

above them with numbering. Unless specified, all use case, context, flow and

other diagrams are based on UML standards.

4

1.1.4. References:

All references to text in this document are provided primarily as footnotes,

however where not present, the superscripts are present and indicate a

passage in the references section at the end. All ambiguous terms have been

clarified in the glossary at the end of this document. Reference and citation

standard is IEEE:

<Author(s) Last name, Author(s) First Name>, “<Name of the work>”,

<Publication/Journal/Book Title>, <Publication City>, <Publication Year>,

<Pages cited>.

1.1.5. Links to web pages:

All links have been provided with underlined font, the title of the web page or

e-book is written at the top of the link and the title may be searched on Google

to pinpoint to the exact address.

1.1.6. Acronyms:

All acronyms have been explained at the glossary at the end of this

document, unless an acronym needs expansion for explanation purposes.

1.1.7. Basic Text:

All other basic text appears in regular, size 12 Arialfonts. Every paragraph

explains one type of idea.

1.2. Intended Audience and Reading Suggestions

This section describes the intended audience for the document including the

stakeholders and non-stakeholders of project.

5

1.2.1. Project Deputy Supervisor and faculty members:

Project DS (Who must approve the submission of the SRS at department of

CSE):

Maj. Dr. AsifMasood, HoD, Department of IS, MCS.

Faculty Members:

Department of CSE project evaluation panel, who shall evaluate the

developed product and judge it according to given criteria.

Head of Department, Col. Dr. Fahim Arif, who shall evaluate the project

separately,

Project Evaluation Coordinator, Dr. Hammad Afzal.

Any other faculty members who wish to read the SRS for non-evaluation

purposes.

BESE 14-A group (developers, testers, and documentation writers):

Omar Rahman (Project Lead)

UsamaYaseen

KhurramJaved

Others at MCS:

• R&D Committee Members.

• Faculty members of other departments.

• Students of UG and PG courses.

6

Other Audiences:

• Students, faculty members of other universities and institutes

• People interested in Android application development, cloud

computing, or both

• People interested in cloud robotics, especially in open source

platforms.

1.2.2. Reading suggestions:

Readers interested in cloud computing, Android development and robotics

(either or all three of them), could directly move to functional requirements.

Readers interested in how cloud computing leverage and advantage may see

the nonfunctional requirements for numbers on cloud computing justification.

It issuggested that all readers start at the top and read till the end, because

the concept of cloud robotics is fairly new and most readers would appreciate

the technology more if they read the document in its entirety.

1.3. Problem Domain and Problems Addressed

The area of robotics theory has been limited to large research organizations

and universities due to the cost of building a real world robot. Normal robots

cost around $2000- 1 million depending on their size and complexity. Usually

a humanoid robot is not available for commercial use and those that are, have

very limited functionalities and high battery consumption rates.

Another problem is of the size of the machinery and task capability ratio. The

complexity of a robot is not only dependent on how well programmed it is, but

also how much hardware is laden on it. This machinery not only includes

7

mechanical parts for movement, but CPUs, sensors, memory, hard disks and

more that take up more than 90% of the size of the full robot. It leaves very

little space for a battery and thus robots are not able to work for a long

duration under full processing load. However a lot of hardware is needed for

the robot to be able to accomplish its tasks.

Connecting robots to a distant server offloads some of the hardware

requirements including the large CPUs and hard disks, leaving the robot with

more space for battery and mechanical parts. It increases the movement

capabilities of a robot due to increased battery life and decreased space

limits.

In the past, adding new functions to a robot usually meant adding more CPU

and memory, plus extra sensors, effectors and servos for work (and battery

with it all). This meant a whole lot of problems for the robot designers, as they

had to work out an efficient design for the robot based on the software

interfaces available plus physical design constraints. Cloud robotics takes out

the hurdle of adding compute and store hardware (it is now shifted to the

cloud), while software interfaces are also handled as the other machinery

such as sensors, actuators and effectors sends their requests to a common

cloud interface.

Cloud robotics represents a very large field of possible applications like robot

navigation, search based AI, autonomous grasp and manipulation, and path

planning to name a few. Most of these applications are difficult to work on for

us and it was decided that in the given time and resources, the

8

selecteddomain should be path planning and experiments be done with the

various dimensions that it offers to developers.

Path planning or motion planning is a term used in robotics for the process of

detailing a task into discrete motions. A path is taken and the robot divides

that path into bits and then covers those paths one by one according to

mathematical algorithms that are calculated by it. Usually a test environment

for path planning consists of a set of objects placed in the robots path that

define boundaries and obstacles. These paths and obstacles are then used

as variables for determining the path of the robot.

Robotics has always remained a problem for financially constrained groups

due to the high costs of the hardware, which is directly related to the size of

the hardware. This problem could be taken care of with the concept of

Cellbots. With the arrival of the Android OS, smartphones have been loaded

with GPS sensors and everything else required for basic robot building and

usage. Android phones have their SDKs freely available for developers to

use. Using simple Bluetooth connections to a microcontroller, an Android

phone is more than capable of becoming the nerve center of a robot and

moves it around, just like any Xeon CPU planted on a high end robot. The

possible applications that could be made for an Android phone is endless and

so are the robotics applications made for Cellbots.

Cellbots on their own have very limited functionality, again due to the small

size they have and limited CPU and storage. These days, a big budget

Android handset has around 2 GHz of CPU, 800 MBs of RAM, and an

expandable memory of around 32 GBs. Some have GPUs that enable further

9

processing capabilities and image processing, but in very limited amounts.

This does give a certain power to the Android as a robot controller, yet when

one speaks of applications such as autonomous robot environment

navigation, one requires much more resources (and not to mention battery

time – average batteries on an Android run for 2.2 hours on full resource

consumption).

By combining Cellbots and cloud computing, a whole new world of solutions

comes into perspective. One sees many applications being done that were

not possible before with such small hardware. It lets the power of processing

and storage on a cloud be leveraged by the small hardware of an Android

phone for moving around large servos and actuators. Since all the

functionalities are outsourced to the cloud, only basic hardware is used for the

robot (i.e. for movement help). A robot does not need to be trained or tested

anymore to see if it carries the software perfectly, as almost most of its

software does not lie on it anymore. Many robots could be handled through

the same cloud and given the same exact orders while they carry them out at

the same exact times. Robot maintenance also becomes much easier along

with reduced prices and increased battery times.

Cellbots could be used by many researchers, practitioners, doctors, soldiers,

engineers and scientists for small to large tasks, depending on the robot

assembly underneath the Android phone. Robot replacement is not an issue

anymore and neither is the fear of damaging one.

10

1.4. Objectives

Our objectives with this project are listed below:

To develop a framework that demonstrates the usage of cloud robotics and its

applicability on a small scale. A small indoor environment shall be developed

that shall have a limited number of objects in it to help the robot move around.

The sub field of path planning shall be used to implement the framework,

while using a small private cloud at the backend.

To apply the theoretical knowledge of programming and data structures,

networks, database systems, web engineering, and computer architecture to

practical perspective. The syndicate members have learned many subjects

over the course of three years and now shall be applying their theory to real

world problems.

To design a fully open source framework for cloud robotics that is helpful for

academia and other students. Most of the robotics platforms available today

are commercial and only a limited number of cloud robotics platforms exist.

Those that do have very limited documentation and they are difficult to work

with. Aim is to make a system that is easy to understand and build on. With

our framework students could experiment on very small scale cloud robotics

problems and appreciate the power of robotics.

To increase the development of robotics in Pakistan. Our country lacks in

robotics and its applications at almost all levels. One needs platforms that

enable cheap, smart and rapid robot construction and cloud robotics is an

answer to all these queries. With computers easily available and broadband

11

internet everywhere, it is a matter of time before cloud computing enables

robotics to take off in Pakistan.

1.5. Deliverables

The syndicate members shall be delivering some documents at the end of the

project phases namely:

The SRS document that explains in detail the functional and non-functional

requirements of the system and includes user interface specimens, the

Analysis document that contains architectural level models of the system

explaining the overall working and states, the Design document that explains

in detail the structure of the system, the classes and data flow methodologies

using models, test case document that shall describe what tests were carried

out in what fashion and how were the results of each and every one of them,

user manuals and troubleshooting guides, source code and installation

packages, a Cellbot, a Wi-Fi router and a private cloud installed on desktop

PCs in college laboratories.

1.6. Technological requirements

Software required:

The team requires only open source software for the entire duration of our

project. All of the software listed below is available for free on the Internet

(Genuine Microsoft software is available with MSDN subscriptions):

Windows Server 2008 R2, Windows Storage Server 2008 R2, Android SDK

r13, Android OS 3.2, Eclipse 3.7 Indigo IDE, Apache Hadoop 0.20.203.0, JRE

12

6 with JDK 1.4, Netbeans IDE 7, Visual Studio 2008 with SP1, and MySQL

standard edition.

Hardware Required:

The following hardware would be required for the project:

Three desktop computers with following specifications (64 bit Intel

i3processors, 3 GB RAM, 520 GB HDD, 2 LAN cards, and other I/O

peripherals), laptop computer with 64 bit architecture, TP Link Wi-Fi router,

Samsung Galaxy S handset, iRobot ® Create ™ robot base, and BAM

Bluetooth Accessory.

1.7. Project Plan

The project plan outlines who exactly is to work on this project and what their

responsibilities would be in contribution to this endeavor. It also lists down the

milestones to be achieved in a set frame of time. The team structure is shown

in table 1.1 and the milestones are shown in table 1.2.

1.7.1. Team:

Name Responsibilities
Omar Rahman Team Lead and Designer

UsamaYaseen Development

KhurramJaved Testing and Deployment

Table 1.1 Project Team

13

1.7.2. Milestones:

Milestones Description Milestone Criteria Planned
Date<yyyy-
mm-dd>

M0 Start Project <2011-06-
11>

 To read on cloud
robotics
documentation

Stakeholders
identified
Vision Document
Reviewed

M1 Start Planning <2011-07-
28>

 Scheduling,
budget/resource
allocation

Feasibility Report
Validated,
Requirements
gathering

M2 Start Execution of
project

 <2011-08-
11>

 Requirement analysis Requirements
agreed, project plan
reviewed, resources
committed

M3 Confirm Execution <2011-10-
19>

 Requirement
Validation, Paper
based Use case
Models Reviewed

Requirements
finalized ,baseline
developed

M4 Design and
architecture

 <2011-11-
23>

 Developing Models
using Rational Rose
and MS Visio

Behavioral
,FUCTIONAL , data
design models
mapping from use
case models
finalized

M5 Implementation <2012-01-
11>

 Programming using
OOP techniques in
specified development
environment.

Functional
Requirements
implemented

M6 Testing <2012-04-
01>

14

 White box and Black
Box testing, Code
walkthroughs

Product system
tested,
documentation
reviewed, UAT
completed, BAT
completed
successfully

M6 Documentation and
closing

 <2012-04-
12>

 Presentation given to
Supervisor at our
end, Documentation
and Project Package
sent to college

Deployment at
college

Table 1.2 (cont’d) Project milestones

1.8. Summary:

The chapter introduced the project and explained its various stages that are to

be undertaken by the syndicate members in order to bring the project to a

successful completion within in the given resources and time constraints. The

chapter closed with a milestone and Gantt chart explaining the entire project

lifetime and major obstacles to be overcome.

15

Chapter 2

Literature Review

16

2. Introduction

The syndicate members had to study very extensive material before

embarking on this project. Most of the literature available on cloud computing

and its sub branch, cloud robotics was either written on experimental works,

works in progress, or beta phase software like Robo Apps

(www.myrobots.com). Since so much work was in its early stages, reliance

had to be made on a wider study domain and start from the ground up, by

studying basics of cloud computing, SOA, service robots and cellbots. In the

following paragraphs, summaries are given of the books, and papers that the

syndicate members studied.Among the keywords searched on various online

databases were: Cloud computing, Robotics, cloud robotics, service robots,

cluster computing, grid computing, hyper v, virtualized servers, assisted living.

2.1. Works Read

In Binocular Stereo Vision Based Obstacle Avoidance Algorithm for

Autonomous Mobile Robots,[1]Saurav Kumar described an algorithm for

obstacle avoidance by building a stochastic representation of the Environment

Navigation Map. This algorithm worked by dividing the test environment in a

grid and assigning each cell a value of filled or unfilled.

In The experimental humanoid robot H7: a research platform for autonomous

behavior[2], the researchers give an overview of the humanoid robot 'H7',

which was developed over several years as an experimental platform for

walking, autonomous behavior and human interaction research at the

University of Tokyo. H7 was designed to be a human-sized robot capable of

http://www.myrobots.com/

17

operating autonomously in indoor environments designed for humans. The

hardware is relatively simple to operate and conduct research on, particularly

with respect to the hierarchical design of its control architecture.

“DAvinCi: A cloud computing framework for service robots.”[3]proposes a

software framework that provides the scalability and parallelism advantages of

cloud computing for service robots in large environments. The researchers

implemented such a system around the Hadoop cluster with ROS (Robotic

Operating system) as the messaging framework for our robotic ecosystem.

They explored the possibilities of parallelizing some of the robotics algorithms

as Map/Reduce tasks in Hadoop. The implemented the FastSLAM algorithm

in Map/Reduce and showed how significant performance gains in execution

times to build a map of a large area could be achieved with even a very small

eight-node Hadoop cluster. The global map can later be shared with other

robots introduced in the environment via Software as a Service (SaaS) Model.

In “Web Services Based Robot Control Platform for Ubiquitous Functions”

[4]the researchers employ Web services, programmable application logic

accessible using standard Internet protocol, to enable a robot to access the

distributed application logic based on the recent network technologies like

XML, SOAP, WSDL, UDDI. Applications can communicate with each other in

a platform and programming language independent manner. They then

explain the fundamental ubiquitous functions management framework for a

robot. In this framework, the applications were constructed from multiple Web

services that worked together to provide data and services for the application.

18

“A SemanticWeb Services Driven Application on Humanoid

Robots.”[5]introduces a combined application of two different domains that are

semantic Web services and robotics. It first presents semantic Web and Web

services, and then describes the robotics development and their current

limitation. The paper's core describes how semantic Web and Web services

can be applied on robotics in order to facilitate cooperation between robots for

joint tasks execution.

 “Integration of action and language knowledge: A roadmap for developmental

robotics” [6]proposes that the study of embodied cognitive agents, such as

humanoid robots, can advance our understanding of the cognitive

development of complex sensorimotor, linguistic, and social learning skills.

This in turn will benefit the design of cognitive robots capable of learning to

handle and manipulate objects and tools autonomously, to cooperate and

communicate with other robots and humans, and to adapt their abilities to

changing internal, environmental, and social conditions. Four key areas of

research challenges are discussed, specifically for the issues related to the

understanding of: 1) how agents learn and represent compositional actions; 2)

how agents learn and represent compositional lexica; 3) the dynamics of

social interaction and learning; and 4) how compositional action and language

representations are integrated to bootstrap the cognitive system.

In “An Architecture for Distributed High Performance Video Processing in the

Cloud.”[7]proposes the Split and Merge architecture for high performance

video processing, a generalization of the Map/Reduce paradigm that

rationalizes the use of resources by exploring on demand computing. To

19

illustrate the approach, they discuss an implementation of the Split and Merge

architecture that reduces video encoding times to fixed duration,

independently of the input size of the video file, by using dynamic resource

provisioning in the Cloud.

“Market-OrientedCloud Computing: Vision, Hype, and Reality for Delivering IT

Services as Computing Utilities.” [8]presents a 21st century vision of

computing. It identifies various computing paradigms promising to deliver the

vision of computing utilities. it defines Cloud computing and provides the

architecture for creating market-oriented Clouds by leveraging technologies

such as VMs. It provides thoughts on market-based resource management

strategies that encompass both customer-driven service management and

computational risk management to sustain SLA-oriented resource allocation.

It then presents some representative Cloud platforms especially those

developed in industries along with our current work towards realizing market-

oriented resource allocation of Clouds by leveraging the 3rd generation Aneka

enterprise Grid technology. Finally reveals our early thoughts on

interconnecting Clouds for dynamically creating an atmospheric computing

environment along with pointers to future community research and concludes

with the need for convergence of competing IT paradigms for delivering our

21st century vision.

“Robot as a Service in Cloud Computing.” [9]reports research on service-

oriented robotics computing and design, implementation, and evaluation of

Robot as a Service (RaaS). To fully qualify the RaaS as a cloud computing

unit, they have kept their design to comply with the common service

20

standards, development platforms, and execution infrastructure. They also

keep the source code open and allow the community to configure the RaaS

following the Web 2.0 principles of participation. Developers can add, remove,

and modify the RaaS of their own. For this purpose, they have implemented

our RaaS on Windows and Linux operating systems running on Atom and

Core 2 Duo architectures. RaaS supports programming languages commonly

used for service-oriented computing such as Java and C#. Special efforts

have been made to support Microsoft Visual Programming Language (VPL)

for graphic composition.

2.2. Worksand literature on Cloud Robotics

The following work has been going on with regards to cloud robotics in the

world; however no work has been done on cloud robotics in Pakistan.

SOA (the cloud computing model) is replacing client server model in large

companies like Google and businesses like Amazon. SOA has been here in

the past also but it was never used with virtualization and scaling. Businesses

have been saving billions of dollars per month after this model was

introduced.[10]

In April 2011, UC Berkeley College of Engineering used a cloud with its robot

to decrease latency from 50X to 10X of human speeds. The robot used was a

$400,000 PR2.Cloth grasp point detection based on multiple-view geometric

cues with application to robotic towel folding, UCB, 2011 [11]

21

Android Cellbots are being made in major companies across the world to help

old people and as toys for children. These cellbots are inexpensive, user

friendly and maintained remotely via the internet. [12]

RoboEarth is a global project to train a cloud with 3D images of all things in

the world. Anyone could contribute using RoboEarth’s software and 3D

sensors[13]

Hasbro has made a small Cellbot football team that has the player

substitutions feature available that replaces a damaged Cellbot within 30

seconds. The replaced Cellbot has all the information of the damaged Cellbot

downloaded to it.[14]

US Department of Defense is working with DARPA on creating an all-terrain

rapid deployment robot army that could be trained within seconds and

deployed to field within hours. [15]

Liquid Robotics is using small underwater cloud robots with only sensors and

movement hardware to capture deep sea and deep mine data for military and

environmental purposes.[16]

2.3. Summary:

The project has been undertaken after several careful readings of the cloud

computing and robotics literature. The team began their research on the topic

before carrying out the project proposal and in this chapter all those works

have been mentioned that have been worked on by scientists and engineers

around the world. Since the field of cloud robotics is relatively new, the

22

literature review is also subsequently small; however, it describes some very

major efforts done in order to make cloud robotics a reality.

23

Chapter 3

System Requirements Specifications

24

3. Introduction

This chapter introduces the software requirements specifications for the

project, including the functional, nonfunctional and external/internal

requirements of the system.

3.1. Purpose

The product in this document is referred to either asThe System or as The

Framework for convenience and reading ease. Although the full name for the

to-be developed software is “Design and Development of Framework for

Robotics using Cloud Computing”, as slated in the title of the document, it was

however revised to a shorter and subtler name for the length of the document.

The Framework’s purpose is to allow an end user to send/receive and

execute command messages on remotely deployed robots on the Android

mobile platform. A subset of the overall product shall include a cloud service

connecting all robots for efficient communication and operation. The cloud

shall also be the reservoir for all resources including multimedia, data and

algorithms. Along with the Android OS, the cloud used shall be based on an

open source platform to allow a complete cost free essence throughout the

project. This SRS covers the Cellbot Controller, CellbotApplication, the Cloud

Communicator, Cloud Service, and User Agent Admin.

Following are descriptions of each in the following pages:

25

Cellbot Controller: This is the software required to communicate with the

hardware of the robot, to translate commands from the user and mobile into

simple robot language.

Android Application: Application running on the mobile device atop the

robot, capturing images and processing them, while also communicating with

the Cellbot Controller.

Cloud Communicator: An application that is continuously in contact with the

cloud services above and the Android Application described above. It glues

together both the layers via the Internet.

Cloud Application: The cloud host at the backend of all the cellbots, doing all

major processing and storage as well as information uploads/downloads upon

referrals from the cellbots.

User Agent Admin: The administrator of the system, who is connected to the

cloud and may interact directly with cellbots.

3.2. Scope

This section describes what constraints, limits, and other similar bounds the

project is to be developed in. These bounds are resource, time, or external

factor based.

3.2.1. Final year project limitations:

The mobile cloud robotics framework is being developed for the final year

project of BESE 14 at School of Telecommunications. The scope is thus very

limited in terms of functional requirements and only baseline functionalities of

26

cloud robotics are being targeted, since the syndicate members did not own a

fully made R&D setup and neither had the finances. The basic purpose of the

development of this project is to give the team members a chance to apply all

learned theories to practice. The science of software engineering taught

during the last three years is to be put into concrete form. The development of

the project itself is a secondary objective after the first objective – i.e. hands

on learning.

Furthermore, the absence of abundant cloud computing and cloud robotics

further so has provided motivation for developing a system to fill this need.

Early adopters of any new technology have to face a chasm of problems,

mitigating which is a challenge in itself.

3.2.2. New Technologies in their early development stages:

In addition to cloud computing, another benefit of this system is to expose the

team to mobile computing. The Android platform has been chosen as the

mobile development standard, mainly for the libraries available as open

source that interface easily with almost all operating systems and vendors.

However, the syndicate members shall not be developing a full blown

application on the Android phone. Our first priority would be to make an

application that runs perfectly on our own phone, and then work shall be done

on making it compatible with other Android handsets. Later work shall be

adding networking components to the application on the phone, so that it

could connect via a Wi-Fi hotspot to an available cloud, but internet or

Bluetooth connectivity features will not be put in. The application would be

primarily developed with a touch based GUI.

27

3.2.3. Limitations on the robot:

Robot used would be of minimal functionality i.e. forward, backward, left, right

movement and with minimal I/O processing and storage related to movement

only. The cloud would not support functions other than those for robot

commands, video processing, and path finding, path following. The cloud

would handle no more than four robot nodes and two PC nodes at any given

time. Inter robot communication modules shall neither be put in at this time.

Current navigations would be done on a purpose built indoor environments

and objects in them shall be very limited.

Most of the work would be done on the cloud, not on the robot, therefore any

high level robotics would not be considered, e.g. object detection/recognition

or object tracking. The cameras used for the robot would be basically the on-

phone camera, thus any special EM spectra would not be catered for, only

visible light.

3.2.4. Cloud size limitations:

Finally, our private cloud would be very small in comparison to actual

commercial clouds; therefore it is not expected to work in the exact same

manner as clouds built on commercial data centers that span hundreds of

acres with thousands of servers. Our cloud shall be based on just four dual

core processors that shall only serve as a demonstrative cloud setup with

minimal horizontal (adding more systems) and vertical (adding more CPU)

scaling capabilities. Although this much power would suffice to work out our

image and video algorithms, it would at times give the impression of a non-

cloud environment.

28

The team however, shall be looking at scaling from a miniature perspective,

i.e. of a mobile application needs, so that the power of cloud computing within

minimal resources could be displayed. Had the team decided to use desktop

applications as node clients to the cloud, it would not have achieved much

visible scaling, as almost all of the available resources would have been used,

leaving none for peak use times.

3.3. Overall Description

The Framework to be developed is to bring robotics to the mobile world. To

this day, robotics development requires a large amount of work to be done,

not only by the hardware designers, but by the software engineering team as

well. Not to mention that even the most menial robotics tasks require very

complex hardware that both expensive and hard to design. Adding extra

functionalities to a robot means putting on extra hardware. In most cases the

hardware is quite large which requires a lot of battery power as well, thus

adding surplus weight. Many people choose to stay away from robotics for the

very reason of complexity and its direct costs (labor and financial).

3.3.1. Product Perspective

Until recently, some work has been done in companies like Google on using

smartphones with cloud computing to achieve a similar robotics complexity as

any high end robot. Researchers there have used smartphones, attached to

an underlying mechanical base, as nodes with “remote brains” based on a

cloud far away from them. The node would be connected to the cloud via a

wireless network connection. In doing so, they have shifted the entire

processing and storage load from the robot to the cloud. In effect no surplus

29

hardware is required for the robot (called a “Cellbot” in some cases) which

only has minimal hardware requirements for its movement. Whenever the

robot now has work to do, the cloud tells it exactly what to do after performing

large calculations on its servers instead of on the robot hardware.

There are several robotics frameworks available for PC environments, but not

many come for the mobile. The starting goal for the mobile phone will be the

Android operating system. To reduce processing and storage requirements of

the robot [i.e. images/video] will be stored on a cloud server. Windows Server

2008 with Hyper V is the target platform for the cloud services. It was chosen,

because of its scalability and compatibility with windows based operating

systems. It is not open source like Android but it is easier to configure and use

than other open source cloud platforms.

Before the advent of Cloud robotics using Cellbots, it was not possible to

make robots using a group of ordinary computers connected to some

mechanical hardware. In most cases the hardware would be very

sophisticated and then computers required would be server machines with

large computing power. Even to achieve the level of functionality that is being

tried to get with this Framework, a very large set up including a mainframe

computer and 500 kilos of mechanical hardware would be required at the very

least. A large team of technical people aside, a large test environment would

also be needed with air conditioning and internal lighting. Hence the need for

cloud robotics was felt and this invention has indeed made many lives easier.

30

3.4. Product Functions

The Framework consists of five parts, namely the Cellbot Controller, the

Android App, the Cloud App, the Cloud Fabric and the User Agent Admin.

3.4.1. TheAndroid App

The Cellbot App provides the user with a very simple GUI from which to

choose tasks from. The user selects tasks from the list upon which the app

requests the cloud app for instructions. The downloaded instructions are

passed on to the cellbot controller after data format conversion.

3.4.2. The Cellbot Controller

The cellbot controller provides no GUI and is simply working in the cellbot

app’s background. It takes one way instructions from the cellbot app and

passes one way error messages to it. The instructions received from the

cellbot app are converted to hardware specific language for the robot base. Its

basic instructions are vector movement: forward, backward, left, right along

with the distance in measure.

3.4.3. The Cloud App

The cloud app provides an interface to the cellbot app for video upstreaming

and instructions downloading service. It compares the video being received

with the already stored videos and creates algorithms to be sent to the cellbot

app. It then simultaneously stores on the cloud and sends the algorithms to

the cellbot app. The app also uses the object database on the cloud fabric to

create on the fly algorithms in case there is a shift in a stored video and its

algorithms. It continuously informs the cloud fabric of its resource

requirements and its current resource usage levels.

31

3.4.4. The cloud fabric

The cloud fabric stores all the object images and algorithms and a database is

used to handle their storage dynamically, meaning on-the-go. The fabric

decides the amount of processing power required by the cloud app on a real

time basis (scaling). It provides an interface to the user agent admin for

monitoring and maintenance. The data stored on the fabric is indexed by a

SQL database.

3.4.5. The User Agent Admin

The User Agent Admin gives a GUI for controlling the cloud fabric and cloud

app. It provides all kinds of tools for observing resource usage and health,

maintenance, configuration and functional overriding. It allows the user to

completely shut down the Framework and restrict certain Android users from

using cloud services.

3.5. User Classes and Characteristics

There are two kinds of users of the system, the Administrator and the Cellbot

user. Their detail is given in the sections that follow.

3.5.1. Cellbot User:

The Cellbot user would be the owner of the Cellbot. His requirements include

the movement of his Cellbot in an environment. Some tasks would be

available at his disposal that he could make his Cellbot do. The presence of a

cloud environment is unknown to this user and so are other technical details

including the internal functioning of the Cellbot. The only technical details that

are relevant to this user are the error messages received on his Cellbot

application GUI regarding the Cellbot malfunctioning. In essence, he owns an

32

Android phone (along with the robot base) on which there is only one

application installed – the Cellbot app.

This user is required to be proficient in English language and Android

smartphone basics. He shall be able to install, uninstall and configure his

Cellbot application. He is not required to have any hardware skills. However,

he could attach his Android phone to the robot base and is quite efficient in

connecting them via the Cellbot app GUI.

3.5.2. Administrator

The administrator is a technical person skilled in software and hardware

installation, configuration and maintenance. He would be responsible for

setting up the Framework from scratch and has knowledge of Android

development, cloud development, operating systems and network

configuration. He shall be handling the Framework via the User Agent Admin

GUI. He shall be proficient almost all kinds of computer technology.

His responsibilities shall include maintaining the system, monitoring the cloud

health and installing new features on the Framework when needed. He is also

the creator of the test and deployment environments in which the Cellbot shall

move around. The total infrastructure of the Framework is also set up by him.

3.6. Operating Environment (OE)

The Framework is to be designed around aMicrosoft based environment;

therefore the environment of choice is the Windows Server Operating System

with hypervisors for virtualization. The various kinds of OE are listed next.

33

3.6.1. The cloud and its OE:

For the cloud fabric, the Windows Server 2008 R2 Hyper-V hypervisor,

released in 2008 as a long term support version of Windows Server shall be

used. It contains support for open source cloud environments as many

software packages come preinstalled on it to enable cloud based solutions to

function smoothly. Many files and OS functions are built in specially for

enabling cloud based applications. Also Linux is installable on ordinary Intel

PCs and require little memory and storage for its existence.

For the purposes of virtualization and scaling, Hyper-V shall be installed on

top of Windows Server, so that the cloud application could be given only the

needed resources on demand. Hyper-V is a free world class cloud computing

solution used by large companies for research and business purposes. It was

selected as it is easy to use and has good documentation available online.

3.6.2. The Cellbot and its OE

The Cellbot shall be controlled by Android 2.3 OS that comes prebuilt inside

most smartphones today from major vendors like Samsung and Motorola. The

software development kits for Android are freely available and developers can

make applications for the phones and readily deploy them.

The other part of the Cellbot shall be a robot base from iRobot ™, the Create

® 1.0. Create has a small body with wheels and can move at up to speeds of

5 km/h. it allows itself to be integrated with any Smartphone, and comes with

a coding specification for developers. All applications developed for it must

conform to the messaging specifications mentioned.

34

3.6.3. Languages used in OE

The project shall use C# and Java for all our development, as the Android OS

is a java only platform. Also, Java is open source and it is a goal to make this

Framework partially open source.

3.7. Design and Implementation Constraints

The cloud to be developed is a private cloud, not a public cloud. A private

cloud is established on the local network of a company or institution and

allows only specific people to access it via wired or wireless connections. Also

our cloud would be based on three desktop computers, not server machines;

hence all the equipment of a desktop computer (monitors, keyboards, mice,

etc.) shall be part of the physical cloud, although useless to its overall

function.

The Cellbot shall be kept in a limited environment and the reasons for that

have been explained in section 3.2. The hardware of the cloud is outside the

scope of the document and will not be discussed here.

3.8. User Documentation

The Framework shall be delivered with an illustrative user manual required for

the Cellbot app that shall describe how to use the application. A

troubleshooting guide shall also be given to help the user with technical

problems like common errors and general maintenance.

A system admin guide shall be provided to explain cloud and Cellbot

installation, configuration and maintenance issues. The entire protocols

35

governing the data flow along with relevant diagrams shall be included. A

small user guide for the User Agent Admin shall be provided.

All the other documents of the development cycle, including the SRS, the

analysis and design documents, the test cases and results shall also be

provided. Source code shall be given in digital form.

3.9. Assumptions and Dependencies

There was a plan to test and deploy the Framework in a test environment.

Usually robots like line followers are made to function in a custom-built

environment that has minimal colors, objects and materials other than those

required by the robot to carry out its task. Our deployment environment would

be very simple as well. It would be a 16 foot squared area with one foot tall

walls that would restrict the Cellbot vision to that environment only.

The reason for using such a deployment and test environment is directly

inherent from our scope requirements. The team did not have the resources

and time to make a commercial or first class level cloud robotics platform

therefore it is not being developing it for external or indoor environments. The

team shall train the Framework around our tailor made environment so that

work could be done on a limited scope and targets achieved. Our target is not

to build a large scale cloud robotics platform, but only to make a workable

example of how cloud computing could be used to handle robots. Therefore

our dependencies are as follows:

1. The Cellbot shall be operated in the environment that has beenbuilt for

it.

36

2. The cloud shall not be used for any other application other than the

cloud application that is deployed on it.

3. The Cellbot shall have only two tasks given to it for the purposes of the

project

4. The software platforms shall remain the same for the cloud and the

Cellbot, i.e. Windows Server 2008 with Hyper-V for the cloud and

Android OS 2.3 for the Cellbot, respectively.

5. The hardware platforms shall remain the same for the project, i.e. the

robot base would be the Create ® from iRobot ™.

6. The materials placed as obstacles in the path of the Cellbot at run time

shall be from a very limited object set.

3.10. External Interface Requirements

The following sections list the external interface requirements.

3.10.1. User Interfaces

There are three user interfaces of the Framework: 1) the Cellbot app GUI for

the Cellbot user 2) the User Agent Admin GUI for the system administrator

and 3) the Cloud App that is accessible for the Administrator only for

observation.

The purpose of the Cellbot GUI is to receive touch screen commands from the

user for tasks to be done by the Cellbot and to display any error messages.

The screen shot for the Cellbot app has been shown in figure 3.1 below, but

the sample below is just a prototype GUI to be added to later.

37

It does not show the subsequent screens, e.g. the video that shall start once a

task is touched and the error message screen is not shown as well. The user

Figure 3.1 Main screen for Android App at application launch, with example error

Figure 3.2 The Cloud Admin on its launch, gives status of core usage as well

38

interface for the User Agent Admin (shown in figure 3.3) application shall be

like any desktop management program with tools for monitoring, controlling

and configuration. The user could click on available buttons for the required

action. The cloud app would be running on the cloud and cannot be handled

by human effort; therefore the Administrator would only be allowed to view

what it is doing at any given time.

3.10.2. Hardware Interfaces

The cloud shall be controlled by a combination of Windows Server 2008 R2

and Hyper-V while the Cellbot shall be under Android control. The User Agent

Admin shall be housed on a laptop with Windows 7. All three components

shall be connected via an 802.11g Wi-Fi router. As shown below in figure 3.4

the hardware communicates with each other in a multifaceted manner.

Figure 3.3 The Cloud App on its launch

39

The cloud has four computers (nodes), with one of the computers for network

connectivity (head node); The Cellbot has a capacitive touch screen enabled

Android device.

Figure 3.4 Hardware Interfaces

40

3.10.3. Software Interfaces

The android application on start sends connection request to the application

running on cloud; the app running on the cloud accepts the connection

request and sends the list of available services/tasks in the cloud, the android

app waits for the user to select a task, upon selection of the task the android

app sends the user’s requested task request to the cloud, the cloud app

receives the user’s requested task and on the basis of that requested task it

starts the algorithm (it would be a computer vision algorithm) of the requested

task. The software interfaces are shown in figure 3.5 below and it shows

certain components of the system connected with each other over software

interfaces.

The android app starts streaming the video feed from Cellbot App to the cloud

app, the cloud app receives that video feed and performs processing on the

video feed, the output of processing is the movement instructions (forward,

left, backward, forward), the cloud app sends these movement instructions to

Figure 3.5 Software interfaces

41

the android app, the android app receives these movement instructions and

pass them to the software burned on the robot’s micro-controller, and on

receiving these instructions robot starts moving in accordance with the

instructions.

3.10.4. Communications Interfaces

A. Communication between the cloud application and Cellbot App:

Figure 3.6 above shows that to get the services from the cloud initially a

connection will be established between the Cellbot App and the cloud using

the HTTP protocol. After establishing the connection the user will be able to

request a task from the cloud and the cloud will be able to send the movement

instructions (move straight, move back, turn right and turn left) to the Cellbot

app on the robot using the HTTP protocol.

Figure 3.6 The software communications interfaces

42

B. Live Video Streaming:

For getting live video stream from the robot, the RTP/ RTSP (real time

streaming protocol) will be used. The RTP connection will be initially

established as soon as the user selects a task on the user interface, after

establishing the RTP connection the Cellbot App will start sending the video

stream to the cloud application and it continues to stream until the application

is closed by the user.

C. Communication between robot’s micro-controller and Cellbot

controller:

The communication between the Cellbot Controller and robot’s micro-

controller takes place by the communication protocol called Bluetooth. By

using this protocol robot’s micro-controller can receive movement instructions

from the controller.

3.11. System Features

This section describes the features of the system and their functionalities in

detail. Each feature has a description, a stimulus/response sequence that tells

how the users are expected to behave with the feature and what are the

functional requirements from the feature.

3.11.1. Path planning service for Cellbots (Priority=high)

A. Description:

The cloud shall provide the service to Cellbots connected to it for navigating

pre planned paths. These paths would be known to the cloud only and all

43

Cellbots connected to it would not have any knowledge of how to walk those

paths. This path planning is a simple demonstration of how cloud computing

could help robots in working without large hardware on their backs. The two

types of paths that would be available to a Cellbot user are a simple straight

line and a curved line with walls that arereferred to as a Maze. Selecting one

of these tasks would make the robot first search for a line or a maze and then

start treading it according to the instructions of the cloud.

B. Ideal path without real time obstacles:

The cloud shall have a Cellbot streaming live video of the path to it. Since the

path would be already known to the cloud and not to the Cellbot, the cloud

would help the Cellbot at each step of the way by sending specific instructions

for every part of the path. The instructions sent by the cloud would include

messages containing vectors and speed information, i.e. where to move, how

much to move and at what speed. These instructions would be fed down to

the Android app, which shall convert them to robot specific language and

send it to the Cellbot controller, which shall make the robot base move.

C. Path with real time obstacle:

A problem could be encountered if a small object is placed in the path of the

moving Cellbot while it is receiving instructions from the cloud. This object

was not anticipated by the cloud. In this case the cloud would calculate on the

fly an algorithm for the Cellbot after reviewing the live video stream and the

object in front. It would send these new instructions as soon as it calculates

44

them, and the Cellbot would keep on moving after receiving them, going

around the object or avoiding it in some other way.

D. Stimulus/Response Sequences

1. User selects task from the given task list on Cellbot App GUI.

2. The Cellbot App sends the request to the cloud and starts streaming a

video upon response

3. The cloud tells the Cellbot to look for the path and takes information

from the video being sent

4. Upon the cloud’s detection of the path the Cellbot is given instructions

on how to walk the path

5. In case an obstacle is not encountered on the path, the Cellbot is given

instructions as they were once stored on the cloud

6. In case an obstacle is placed in real time on the path, the cloud

calculates a new path and sends instructions for following to the

Cellbot.

7. Upon path completion, the Cellbot is given instructions on how to walk

back to the start of the path.

E. Functional Requirements

1. Cellbot app be in working state and show options for task selection

2. Task selection can be of two types: Line following or Maze solving

3. Video streaming to cloud is done at start of task till task completion

4. The Cellbot is under cloud control till task completion

45

5. The Cellbot App displays the video on the screen along with

information on path completion percentage and cloud connection

health

6. The Cellbot App displays when exactly it is downloading information

from the cloud via an indicator e.g. a blinking light or status light on its

GUI

3.11.2. Path and object information downloading from the cloud
(Priority = high)

A. Description

The Cellbot does not have any information of the paths or objects placed

therein on its hardware. It is the responsibility of the cloud to store details of

the paths and objects on its database and provide their information to the

Cellbot when required. The cloud has a large storage space and CPU power

as well as memory that the Cellbot shall not have, therefore the cloud shall

send information to the Cellbot in the form of movement instructions only after

analyzing these paths and objects via the video being streamed to it and

comparing them to those stored already on it.

This repository would be first trained to it by the Administrator. The cloud

would be empty at the start and gradually be filled up by information of some

objects and path algorithms by the Administrator. This information would be

stored in a file system that would be indexed by a database. The database

would provide the cloud app the information of these paths and algorithms

when needed. This information request would not be invoked by any user or

Cellbot, but by the cloud app itself.

46

Training of the objects would be done by entering information on size, shape

and other features like photographs from various angles by the Administrator.

Similarly path knowledge would be trained on the cloud by providing frame by

frame directions to be stored in the database.

B. Stimulus/Response Sequences

1. The Cellbot app requests the cloud app for support on path planning

2. The cloud app analyzes the video being streamed to it and queries the

database for information

3. The information is sent to the cloud app that uses images from the cell

bot and compares them to the images from the database and selects

an algorithm for movement based on certain metrics.

4. The information is downloaded to the Cellbot app by the cloud as

movement instructions

5. Information is used for an object and sent down to the Cellbot in case

an object is placed in the Cellbot’s way in real time.

C. Functional Requirements

1. A database is installed on the cloud with relevant fields for path plans

including dimensions, photographs, movement algorithms and others.

2. The cloud app communicates with the database whenever it needs to

send instructions to the Cellbot app for movement.

3. The database would be accessible for change and training by the

Administrator during all times.

4. Objects that are doubtful to the cloud app would be placed on a doubt

queue for later resolution by the Administrator.

47

3.11.3. Simple system administration (priority = high)

A. Description

The cloud is supposed to be regulated throughout its functional life. This

includes managing the cloud’s resources, training the cloud, monitoring the

cloud’s usage, checking the cloud’s health and debugging. All of these

functions are available only to the system administrator via a GUI provided on

the administrator’s computer, which is not part of the cloud itself but instead

connected to the cloud like the Cellbot.

The administrator shall have his own application to handle the framework, the

User Agent Admin. This application would have GUIs for easy management

that would allow the cloud to be dealt with at all times. The cloud would

require handling at any given time.

This is also a To-be-added feature because Hyper-V gives its users many

options for managing the cloud; however a detailed list of available

management rights is out of this document’s scope.

B. Stimulus/Response Sequences

1. The administrator opens up the User Agent Admin application from his

computer.

2. The application establishes a connection to the cloud and downloads

the current health and activity metrics of the cloud.

3. The administrator is shown graphs for resource utilization, scaling

being done on the resources, number of Cellbots working with the

cloud and task being performed.

48

4. The health of all four nodes is also available for individual checking and

management, that tells if the node is currently connected to the others

and if they have any software issues.

5. The administrator shuts down the cloud for maintenance if the need be.

6. The GUI gives option for connection closing, which disconnects the

cloud from receiving videos from the Cellbot.

7. Training could be given to the cloud for new paths and objects.

8. The administrator opens up the database for entering information about

new objects

9. Options for viewing the database and searching is provided

10. If new information is to be entered about a new path and/or object, the

database allows the creation of a new entity.

11. For modifying information or adding information to an old path and/or

object, the database allows the administrator to modify an old entity.

12. The administrator enters the new information

C. Functional Requirements

1. GUI for the User Agent Admin be very simple to understand and easy

to use

2. The GUI should be window based and have keyboard shortcuts for

easy access along with mouse control.

3. The User Agent Admin should have access rights and usernames and

passwords for accessing it should be stored on the cloud

4. The GUI should have all available options for management on the left

side of the main screen and once an option is clicked on, it should

49

open up on the right side of the main screen. The list of options should

stay at its position at all times.

5. The options should be according to Windows Server’s Server Manager

or the console should be integrated into the User Agent Admin.

6. The data to be trained into the database should include photographs

and their metadata.

3.12. Other Nonfunctional Requirements

This section lists down all the nonfunctional requirements that include the

performance required from the cloud and the cellbot, as well as safety and

quality standards that the system must adhere to.

3.12.1. Performance Requirements

The cloud shall be responsible for the performance of the entire framework;

however the Cellbot and the user agent admin also have their specific

performance requirements.

A. Cellbot

1. The Cellbot would be required to process tasks given to it within 100

milliseconds of the user pressing the buttons on screen.

2. Movement speed of the Cellbot shall be not less than 3 km/h under

stress free and error-free operation.

3. Any task that requires more loading should have a progress indicator.

4. The user should be informed if the Cellbot is busy in receiving

commands from the cloud

50

5. The Cellbot should not delay movement after the upper layers have

given it the commands to move.

B. Cloud

1. The cloud should be scalable from 1 to 10 Cellbots with a 2 seconds

response time.

2. Storage should be available for up to 10 Cellbots with an average of 10

GB per Cellbot.

3. There should be a 99% uptime for the cloud.

4. The processing power given at any time should be 90% of the

maximum available CPU.

5. The cloud should quickly calculate on the fly algorithms and send them

to the Cellbot

C. User agent admin

1. Given tasks should be responsive

2. Network errors should be handled gracefully

3. Tasks that take a lot of time to start or load should have progress

indicators

3.12.2. Safety Requirements

The product does not have any important safety requirements. However users

with radio waves related problems should not use the system. Some people

have problems with touch screen phones e.g. electric shocks to sensitive skin.

They should also not use the system.

51

3.12.3. Security Requirements

1. User Agent Admin should only allow restricted access and enforce

certificates for login and user/data authentication.

2. The cloud nodes would not be accessible without user authentication.

For both the User Agent Admin, and cloud nodes a singular entity

would be responsible and no one else would be allowed access.

3. Cellbot does not require any user authentication nor any data

authentication as all the data transferred from it to the cloud and back

would be insensitive.

3.12.4. Software Quality Attributes

1. The software for the Framework should be reliable and appear error

free. It should recover from failures within one minute and also display

user friendly error messages.

2. The Framework should start up and be ready for function within five

minutes and require no extra effort for initialization. All details of

starting up and shutting down should be invisible to the users and

administrator.

3. The GUI of the Cellbot and user agent admin should be fluid and

smooth to use and must conform to all standard human computer

interface principles.

4. Network connectivity should be made as smooth as possible and as

fast as possible.

3.12.5. Other Requirements

This section describes the remaining few requirements of the system:

52

1. The product has components that are open source and therefore does

not require any legal requirements.

2. Databases developed for the cloud shall be open source as well and

based on MySQL. This database shall be controlled via the User Agent

Admin component and deployed on the cloud to work with the cloud

app and fabric.

3. The router that connects all three components should follow standard

networking protocols. It should be in good condition and be fault free.

3.13. Summary:

The chapter gave a formal specification of the objectives that are to be met by

the project syndicate members in order to bring the project to completion. The

chapter gave an overview of the methods and techniques that shall be used to

deliver the project and finished with certain use cases and other diagrams to

outline the functional and nonfunctional requirements of the system.

53

Chapter 4

System Design Specifications

54

4. Introduction

This chapter describes the various models used as blueprints for the

development of the project and its implementation during the next phases of

the project lifecycle. It also describes in detail the various large and small

components of the system that shall serve as a reference for future iterations

of the design phase. Lastly, it is a supplement to the previous document, the

Software Requirements Specification (SRS) submitted at the start of the

project. Together, these two documents provide a clear roadmap for the

development of the Cloud Robotics project.

4.1. Scope

 The overall picture of the project is as follows: A small scale cloud is

being used to drive a small dumb robot through a set of controlled indoor

environments using only a camera and network connectivity. The video feed

obtained from the camera mounted atop the dumb movable robot is used by

the cloud for processing and instruction creation. The instructions are meant

for the robot and it understands them as a set of commands for four way

movement and speed. To achieve this goal, two applications, a server and a

client shall work in tandem, over a wireless LAN, while the robot shall

outsource 90% of its performance requirements and 99% of its storage

requirements to the cloud.

The dominant design pattern used is the famous Model View Controller

(MVC) paradigm. This was due to the nature of the project, which includes a

cloud. Since a cloud is involved, it intrinsically relies on MVC, since for

55

clouds;a Presentation-Platform-Information model is the basis of

development. In a cloud environment, Presentation is provided by end user

clients like browsers, the Platform is always the hypervisor atop physical

hardware, and the Information is also stored on the cloud and accessed via

the hypervisor.

However, even though it is intended to build an application for cloud

environments, one has to limit the scope due to time and hardware

constraints and scale down to a very small version of a cloud, such that only

demonstrative capabilities of the cloud are developed, in order to showcase

an appreciation of the power of Cloud Computing. The purpose therefore, is to

solely work on making a very basic cloud, not to build a large datacenter level

cloud that handles millions of transcontinental clients.

Our cloud shall be based on two server machines and operate in a LAN

environment with a shared storage. It shall only be developed for the robotics

application being developed parallel to it as part of this project. The domain of

the cloud shall not cover aspects such as Migration and public cloud bursting;

neither shall it offer PaaS and IaaS versions, among other features available

in commercial clouds today.

The Android App shall also follow the MVC architecture, as it would only allow

its user to see services and shall not let the user access any data or “business

logic”. The term Business Logic, or BL, shall be used somewhat throughout

this document even though the processes described as part of the

applications do not have any business-like nature.

56

The Android App shall be installed on an Android phone and shall only be

able to upload videos and download text from the server deployed on the

cloud. It shall have no other use except to transfer video to the cloud and get

instructions from it for the robot underneath.

There shall be a total of three operation environments for the robot: two

mazes and one wall-less path denoted by a colored line on the floor. All of

these mazes shall be built by us and the application shall be configured to

walk the robot through these environments only. The robot shall not be able to

use services of the cloud to walk through other environments, external or

internal.

Finally, since this robotic cloud is to be built on two 64 bit desktops, the team

shall not be very keen on observing real-world cloud performance. In other

words, there should be latencies involved, as well as downtime problems.

However, since this application is very small in size compared to the two

machines combined, it shall be supposed that it is deployed on a cloud

environment.

The main driving force behind the creation of a cloud instead of a traditional

server is that this cloud shall provide a single interface for any number of

similar robots after one robot has successfully completed its predetermined

path or maze. New robots with no knowledge of previous experience in these

lab environments would simply have to download instructions and run them,

instead of going through the time consuming path learning experiences.

57

4.2. Overview of the System Design:

The forthcoming sections are already mentioned in the Table of Contents and

the figures in the document are indexed in the List of Figures at the beginning

of this document. However, here is a rundown of all the sections in brief detail.

4.2.1. Deployment Diagram:

It describes the very high level architecture of the system, by listing in figures,

all of the main parts of the system. The term “components” has not been

used, specifically because there is a separate components diagram later on,

which details all the technical components. The deployment diagram shows

how the system looks from the hardware world in a non-technical context.

This diagram will give the first impression of how the large parts are linked

together and what the total parts comprise without going into unnecessary

details.

4.2.2. Architectural Design

The architectural design, or the component diagram, shows somewhat more

technical details than the deployment diagram. It shows an insider’s

perspective of the system by describing the high level software components

that perform the major functions to make the system operational. It overlooks

the hardware aspects that were told in the Deployment Diagram.

4.2.3. Data Structure Design

UML class diagrams and database tables are described in this section. Class

diagrams are integral for the description of low level components of the

58

software that include data storage and state details. Classes provide the

means for the system to perform its functions. Tables stored in the database

are also defined here. These tables shall be used in a relational DBMS for

permanent storage of organized data.

4.2.4. State Chart Diagrams

These diagrams show the dynamic nature of the static UML classes. They

describe how the system shall behave under various circumstances and data

sets. They give the allowable states a dynamic class is to have, by showing it

in various scenarios.

4.2.5. Use Case Realizations

Use cases tell how the user shall be able to interact with the system and how

the system shall respond in return. They provide a means to show the

functionalities of the system in a user-concentric manner, without paying

attention to the dynamic behavior of the system or its underlying working.

They directly relate to the functional requirements of the SRS.

4.2.6. Activity Diagrams

Activity diagrams follow a workflow based approach to describe the overall

functioning of the system. They are a very good means to see how the steps

involved in major tasks inside a system without going into technical details

using a flow chart pattern.

4.2.7. Sequence Diagrams

Sequence diagrams show how different objects are involved in the completion

of a functionality of the system. They have a unique format that allows the

59

reader to see how many objects are used and for how long for the completion

of a system requirement.

4.2.8. UI Design

Some snapshots of the various graphical user interfaces are shown in this

section that prototype the way a user shall be interacting with the system in a

Windows Operating System on the cloud and an Android OS on the robot.

4.3. Design Models:

This section describes in much detail all of the design activities that have

been carried out to model the system requirements into a concrete shape.

4.3.1. Deployment Diagram

The deployment diagram provides a physical look at the system with each

processor and device indicated. Figure 4.1 below shows how each major

physical part of the system is connected to each other in a deployment

scenario.

60

Figure 4.1 The deployment of the product, showing major physical components

Each physical location will have its own software unit and units in different

physical locations will collaborate to provide the services that logically seem to

be straddling the units.

In our system, there is a wireless router that creates a wireless LAN

environment. All other hardware components connect to each other via this

router through their network interfaces.

The cellbot connects to this router via an Android phone’s Wi-Fi sensor. This

cellbot can operate as long as it is in the Wi-Fi range of the router. The cellbot

consists of an Android phone and an iRobot Create ® wheeled robot. The

Android phone is connected to the robot via a Bluetooth device called the

BAM Wireless Accessory via the phone’s Bluetooth sensor.

The Private cloud (called private due to LAN-only availability) consists of two

core i3 64-bit desktop machines that are configured with Windows Server

61

2008 R2. These two machines are connected via Ethernet and have a

hypervisor running on them. This hypervisor gels the two machines into one

single virtual machine with combined physical resources and power. Any

application installed on either machine would be available on both machines

in real time. These “cloud servers” also host the two databases to be used for

the project. One of the machines shall be set as the interface machine to

which the outside world shall connect. However it shall appear no different

than the other desktop, and to the outside world both machines would appear

as one.

Lastly, the Administration of the cloud shall be done remotely using a laptop

computer that shall also connect to the rest of the system via the wireless

LAN.

The two actors highlighted in the diagram, the User and the Administrator are

the only two logical users of this system. The User (with a capital “U”), is

supposedly a cellbot owner and has access to the services of the cloud

through his Android application. The Administrator on the other hand, is a

technical person and has full privileges to change all aspects of the system at

will. He is responsible for maintenance and controls the system via his

Administration portal on his laptop. He has put in place the protocols for the

network and has defined the data in/outflow mechanisms. The word Architect

was not used for this role, since it implies a non-maintenance nature. The

Administrator also makes use of the cloud databases and performs

troubleshooting tasks via his Administration portal.

62

Note that the cloud connects over a secure connection to the wireless router.

It only allows certain people to access its services, using a username and

password.

4.3.2. Architectural Design

Figure 4.2 below shows the previously mentioned components, their

relationships with each other and theirconnection with the actors in the

software design.

63

Server A Server B

WiFi Router

Failover Cluster (cloud)

RoboApp on hypervisor

RoboApp Instance A RoboApp Instance B

Motorolla proprietary protocol

Create CellBot

Android App

SQL Server Database

Accounts Database

Map Instruction Database

Accounts interface

Map Interface

Accounts Interface

Map Interface

Bluetooth (BAM)

Administration Portal

RoboApp Controls

RoboApp Monitoring

Secure Interface

Figure 4.2 High level architecture shows the major software components

 . At the highest level shown here each part has a name, an interface

and an abstract detail. Here, abstract detail means a written down purpose,

the given functions, the qualities (e.g. if it is dependent on other parts) and the

constraints under which it must operate. It also tells about the needed

resources, for example, any parts used by other parts that are outsiders to the

64

design, like physical devices (e.g., routers) and file share resources (e.g.,

software libraries).

All entities above are described below:

4.3.3. TP Link Proprietary protocols router:

A. Specification:

The TP Link IDV 350(w) router is a 3.5G indoor CPE and is based on a

BCS5200 CPE chipset for indoor, small office/home office use. It is has Wave

3 modem capability and a VPN/WAN router platform with a surefire quiet-

latency voice control. The Becham BCS5200 WiMAX CPE terminal thing

consists of a fast working baseband Internal chipset and a 2 band

straightconversion RFIC for operation in 2.3, 2.5 and 3.5 GHz bands. The

BCS5200 gives a base platform for multiple CPE SKUs for WiMAX data alone

as well as support for enhanced QoS for VoIP and other real time services.

The project shall be primarily using it in the 3.5 GHz range.

B. Interface:

The router has five RJ-45 sockets, out which four are for router to PC

connection, while one is for LAN or ADSL Modem to router connection.

4.3.4. Create ® Cellbot:

A. Specification:

The Android App is a stand-alone application that resides on an Android

phone. The team has called it simply the “Android App”, since it is the only

component in the entire system installed on the Android phone and also

65

performs minimal functions. It is based on Android version 2.3 release and

follows a predefined Google API standard for smartphone application user

interface. It shall be designed and built in the Android SDK available freely.

The purpose of the application would be to use the camera on the phone to

capture video streams and upload it to the cloud server. Its secondary

objective would be to download instructions from the cloud and send them to

the robot over the BAM accessory.

Bluetooth Adapter Module (BAM)gives the power of wireless control of the

Create cellbot via a cloud server. The BAM attaches itself to Create’s cargo

bay, and you don’t need any cables for it. BAM gives an imaginary serial port

connection between the cellbot and a Bluetooth node (in our case, the

Android). The Android phone could then talk with Create exactly in the same

way it would if it were connected with a real live serial cable. BAM gives the

human user the total wireless experience of the cellbot. It also shows Create’s

programmable IO, making it easy to connect more useful hardware.

B. Interface:

BAM has a Bluetooth Serial Port Profile available for custom configuration and

scanning purposes. It lets a high power Class 1 Bluetooth radio be operated

over large frequencies in the Wi-Fi range. The interface is controlled via an

application installed on the Android phone. However the team shall be making

this interface part of the Android App that shall be made as part of the project.

The Android App that shall be developed will have a standard touch interface

with start GUI buttons and selectable commands. There shall be no command

66

line functionality to ease user friendliness. The user shall be provided with

simple logical options to start and stop any service that is available.

4.3.5. Failover Cluster (cloud):

A. Specification:

thefailover cluster version of a server has become popular as an alternative to

traditional Internet hosting. Special software called a hypervisor is used in

conjunction with a server operating system to glue together multiple machines

and to provide clients with a set of available virtual resource pools on which

they may install their software. The benefit of such an approach is derived

from highly available grid computing. This cluster shall be available to the

Android App running on the cellbot to communicate with the database. It

depends on the cloud’s hypervisor, that from which exact server it provides

the service to the cellbot. It could be either server A or server B, or even both.

Both these servers would be accessed through a secure interface of the

cloud. These two servers would jointly be hosting the Cloud App, hence

forward called so, which is the heart of the system. The Cloud App would be

responsible for handling the major functions of the system including image

processing, database connectivity, sessions, and cloud scaling.

B. Interface:

The cloud is configured to let in only users with permitted usernames and

passwords. These credentials would be stored on a database hosted on the

cloud. The interface would only allow secure connections by storing the state

67

of the User and transferring data only after establishment of the secure

channel.

4.3.6. Server A and B:

A. Specification:

These two servers shall host Cloud App in two identical instances. In case

one instance fails, the other one shall handle the requests until both instances

are able to share the load. One of the servers shall be responsible for outside

connections. A limited demo of cloud bursting shall be shown on these two

servers as part of the project. When the resources of either server A or B will

be exhausted, the other remaining server shall be turned on. However this

shall be purposely done, since due to the small size of the cloud actual cloud

bursting shall not be prominently visible.

B. Interface:

These two servers shall be connected over NIC cards and shall be connected

via RTSP and TCP protocols. To the Android, they shall appear invisible and

appear as a collective cloud, since both of them would connect over a unique

IP address.

4.3.7. SQL Server Database:

A. Specification:

This shall be a relational database handled using SQL Server 2008 RDBMS.

It shall be installed on both the servers A and B. The state of the database

shall be maintained across both servers and kept current using database

policies. Two databases shall be part of the system, an Accounts database,

68

and a Map database. The accounts database shall hold information of the

users and the administrators. The Map database shall hold text instructions of

all the mazes and the path for the robots to download and follow. Both these

databases shall be available to both servers and one server’s portion of the

database shall be accessible to the other server.

B. Interface:

the servers shall connect the databases using secure protocols that require

explicit log on for administration purposes and implicit log on data fetching

purposes (once during each sessions/service request).

4.3.8. Administration portal:

A. Specification:

The administrator role is assigned the responsibility of maintaining the

system. He does it through this portal. In this portal he has the services to

monitor the usage of the cloud, check its resource health and also to shut

down servers if necessary. He could not administer the Android App from this

portal, and in order to do so, he would have to manually go to the Android

clients. This portal is meant only for the Cloud App. The Cloud App shall make

use of the databases, which the administrator could change from this portal.

Lastly, this portal could be used to handle users of the system and to change

their rights and privileges.

B. Interface:

A simple GUI shall be provided to the administrator to view and check the

health the cloud. In addition to this, a command line interface shall be

69

available for advanced functions like starting/shut down of the servers.

Database administration would be done directly on a tabular interface that

shall connect the database to the portal remotely. However, the administrator

has to first explicitly login to the portal before making any changes.

4.4. Data Structure Design

The data structure design contains information about the software classes

that make up the static portion of the software. There are three packages in

total. The Android App (figure 4.3), the Cloud App (figure 4.4), and the user

Agent Administrator (figure 4.5). All are described in the sections that follow

next.

+connect(in username : string = Admin, in password : string) : bool
+recServices(in servicesAvailable : string)
+sendUserOption(in selection : string)

-clientSocket : <unspecified> = Socket
-serviceList : string
-robotID : string
-username : string
-password : string
-selectedService : string

RobotClient

+startListening() : void
+recInstruction() : void

-instructionSocket : <unspecified> = ServerSocket
-currentInstruction : string

InstructionReceiver

+sendInstruction(in currentInstruction : string = stop) : bool
+getInstr(in instruction : string)

-blueAdapter : <unspecified> = BluetoothAdapter
-blueDevice : <unspecified> = BluetoothDevice
-blueServerSocket : <unspecified> = BluetoothServerSocket

BluetoothInterface

+startUpload() : bool
+stopUpload() : bool
+compress(in video : byte) : byte
+sendBytes(in vid : byte) : bool

-vidSocket : <unspecified> = UDPSocket
-camera : <unspecified> = Camera
-port : int
-imgHeight : int
-imgWidth : int

VidUploader
-Cloud connector1

-instrReceiver1

1

1

1

1

Android App

Figure 4.3Android App Package contains classes within classes according to the Android Spec.

70

4.4.1. Android App Package:

This package includes four classes: RobotClient, VidUploader,

InstructionReceiver, and BluetoothInterface. Due to the programming nature

and Google API specs, there has to be a main class, followed by smaller

classes that are composed inside the main class. Therefore there are not any

associations among classes in this package. The breakdown of these four is

given in the tables below:

A. RobotClient Detail:

Class Name RobotClient

Inherited Class None

Contained
Classes

VidUploader, InstructionReceiver

Associated
Classes

None

Data Members clientSocket, serviceList, robotID, username, password,
selectedService

Member
Functions

Connect(string, string), recServices(string),
sendUserOption(string)

Data Structures Socket, bool, string

Processing This class is the main class on the Android App that handles
connections to the Server and receives instructions from it.

Table 4.1RobotClient class detail

B. VidUploader detail:

Class Name VidUploader

Inherited Class None

Contained
Classes

None

71

Associated
Classes

RobotClient

Data Members vidSocket, camera, port, imgheight, imgwidth

Member
Functions

startUpload(), stopUpload() ,compress(), sendBytes(byte[])

Data Structures Int, bool, byte, UDPSocket, Camera

Processing This class has to manage the video upload stream to the
server

Table 4.2 (cont’d) VidUploader class detail

C. InstructionReceiver detail:

Class Name InstructionReceiver

Inherited Class None

Contained
Classes

BluetoothInterface

Associated
Classes

RobotClient

Data Members instructionSocket, currentInstruction

Member
Functions

startListening(), recInstruction()

Data Structures ServerSocket, string

Processing This class maintains the instructions that are received from
the server and converts them into language understandable
by the Create ® robot

Table 4.3InstructionReceiver class detail

D. BluetoothInterface detail:

Class Name BluetoothInterface

Inherited Class None

Contained
Classes

None

72

Associated
Classes

InstructionReceiver

Data Members blueAdapter, blueDevice, blueServerSocket

Member
Functions

sendInstruction(string), getInstr(string)

Data Structures BluetoothAdaptor, BluetoothDevice, BluetoothServerSocket,
string

Processing This class has to receive instruction strings, converted into
low level robot language and send them via the
BluetoothServerSocket connection down to the actual robot
with which it maintains a connection. This class uses specific
Android 2.3 SDK classes like BluetoothAdaptor,
BluetoothDevice, and BluetoothServerSocket

Table 4.4 (cont’d)BluetoothInterface class detail

4.4.2. Cloud App Package:

This package contains a total of seven classes, out of which one is an

abstract class, i.e. InstructionGenerator. This class is in turn implemented by

two other classes, MazeSolver and PathFollowing. As shown in figure 4.4, this

package is made for implementing the Cloud App, the main application of the

system, to be deployed on the cloud. It acts as the server for the cellbot.

73

+Authentication(in username : string, in password : string) : bool
+receiveData() : string

Authentication
-authStatus : bool
-username : string
-password : string

+startServer() : bool
+stopServer() : bool
+listenForRobot() : void

RoboAppServer
-taskList : string
-serverSocket : <unspecified> = TCPListener
-clientSocket : <unspecified> = TCPClient
-robotCount : int
-connectedRobot : object = LinkedList
-serverPort : int
-

+HandleRobot(in startTime : <unspecified> = DateTime) : <unspecified>
+serviceListener()
+vidReceiver()
+serveService()
+sendInstruction(in instr : string) : bool
+acknowledge()

HandleRobot
-startTime : <unspecified> = DateTime
-currentService : string
-videoPort : int
-instructionSocket : <unspecified> = TCPListener
-videoSocket : <unspecified> = RTSPListener
-currentInstruction : string
-receiveService : <unspecified> = TCPListener

+setTime(in time : <unspecified> = DateTime)
+getTime() : string
+setServiceRequest(in request : string)
+getServiceRequest() : string

RobotDetails
-startTime : <unspecified> = DateTime
-serviceRequested : string

+findPath() : bool
+followPath()

PathFollowing
-linefound : bool

+findMaze() : bool
+solveMaze()

MazeSolving
-mazeFound : bool

+getInstruction() : string
+startwork() : bool

InstructionGenerator
-currentFrame : <unspecified> = IPLImage
-prevFrame : <unspecified> = IPLImage
-moveInstr : string

currentUser connectionServer

1

-clientHandler0..*

1

1

<<implements>> <<implements>>

1

1

Cloud App

Figure 4.4The Cloud App Package contains classes that make up the business logic of the
framework

A. Authentication details:

Class Name Authentication

Inherited Class None

Contained
Classes

None

Associated Cloud AppServer

74

Classes

Data Members authStatus, username, password

Member
Functions

Authentication (string, string), receiveData()

Data Structures Bool, string

Processing This class is responsible for authenticating a robot client by
connecting to the Accounts Database and verifying the User before
allowing him to receive the services.

Table 4.5 Authentication class detail

B. Cloud AppServer details:

Class Name Cloud AppServer

Inherited Class None

Contained
Classes

HandleRobot

Associated
Classes

Authentication

Data Members taskList, serverSocket, clientSocket, robot, connectedRobot,
serverPort, Linked List

Member
Functions

startServer(), stopServer, listenForRobot()

Data Structures String, TCPListener, int

Processing This class is the main server which maintains connections with the
cellbot, however it does not serve instructions to the cellbot but only
maintains session state

Table 4.6Cloud AppServer class detail

C. HandleRobot details:

Class Name HandleRobot

Inherited Class None

Contained InstructionGenerator, RobotDetails

75

Classes

Associated
Classes

Cloud AppServer

Data Members startTime, currentService, videoPort, instructionSocket,
videoSocket, currentInstruction, receiveService

Member
Functions

HandleRobot(DateTime), serviceListener(), vidReceiver(),
serveService(), sendInstruction(string), acknowledge()

Data Structures DateTime, RTSPListener, TCPListener, int, string

Processing This class coordinates with RobotDetails and InstructionGenerator
classes to fetch instructions from the map database and passes
them down to the robot

Table 4.7HandleRobot class detail

D. RobotDetails details:

Class Name RobotDetails

Inherited Class None

Contained
Classes

None

Associated
Classes

HandleRobot

Data Members startTime, serviceRequest

Member
Functions

setTime(DateTime), getTime(), setServiceRequest(string),
getServiceRequest()

Data Structures DateTime, string

Processing This class stores the details of the robot client including the time it
connected to the robot and its unique ID.

Table 4.8RobotDetails class detail

E. InstructionGenerator details:

Class Name InstructionDetails

Inherited Class None

76

Contained
Classes

None

Associated
Classes

HandleRobot

Data Members currentFrame, prevFrame, moveInstr

Member
Functions

getInstruction(string), startwork()

Data Structures IPLImage, string

Processing This class is responsible for implementing the image processing
capability of the system for either mazes or the path. It uses the
IPLimage class of the EmguCV library

Table 4.9InstructionGenerator class detail

F. MazeSolver details:

Class Name MazeSolver

Inherited Class InstructionGenerator

Contained
Classes

None

Associated
Classes

None

Data Members mazeFound

Member
Functions

findMaze(), solveMaze()

Data Structures Bool

Processing This class implements image processing capabilities to help
the robot find a maze in a laboratory environment

Table 4.10MazeSolver class detail

G. PathFollowing details:

Class Name PathFollowing

Inherited Class IntructionGenerator

77

Contained
Classes

None

Associated
Classes

None

Data Members lineFound

Member
Functions

findLine(), followLine()

Data Structures Bool

Processing This class is responsible for using the image processing
capability to find the path in the lab environment and then to
help the robot to follow the path till completion.

Table 4.11Pathfollowing class detail

4.4.3. Administration Portal Package:

This package contains three classes: User, Administrator, and Administration.

These three classes shall be responsible for maintaining the information of the

User and the administrator, plus the administration activities, as shown in

figure 4.5 below.

They coordinate with the Accounts database to locate information for the

clients as well as the administrators, since there could be more than one

administrator and more than one simultaneous client. However, in this project

a single client, single administrator system shall be focused on.

78

+editAccounts()
+setPassword(in password : string)
+setUsername(in username : string)
+getUsername() : string
+getPassword() : string
+administerCloud()
+makeGraph()

Administrator

+makeNew() : bool
+login() : bool
+logout() : bool

-username : string
-password : string

User

«inherits»

+getCPUUsage() : string
+getRobotDetails() : string

-robotCount : int
-cpuUsage : string
-connectedRobotDetails : RobotDetails

Administration
manager monitors

Administration portal

Figure 4.5 User Agent Administrator Package

A. User details:

Class Name User

Inherited Class None

Contained
Classes

None

Associated
Classes

None

Data Members Username, password

Member
Functions

makeNew(), login(), logout()

Data Structures String

Processing This class logs on/off the User when he tries to connect to
the cloud via his Android App. It also facilitates the creation
of a new account through the administration portal.

Table 4.12 User class detail\

79

B. Administrator details:

Class Name Administrator

Inherited Class User

Contained
Classes

None

Associated
Classes

Administration

Data Members None

Member
Functions

editAccount(), setPassword(string), setUsername(string),
getUsername(), getPassword(), administerCloud(),
makeGraph()

Data Structures String

Processing This class gives the administrator the rights to handle the
administration policies for the cloud and to check the
resource usage and health of the cloud.

Table 4.13 Administrator class detail

C. Administration details:

Class Name Administrator

Inherited Class None

Contained
Classes

RobotDetails

Associated
Classes

Administrator

Data Members robotCount, CPUUsage, connectedRobotDetails

Member
Functions

getCPUUsage(), getRobotDetails()

Data Structures Int, string, RobotDetails

Processing This class has the atomic functions for cloud administration
and control and lets the Administrator class work in

80

coordination with itself.

Table 4.14 (cont’d) Administration class detail

4.4.4. BL Databases:

The Business Logic Databases are stored in the SQL Server databases on

the cloud itself. There are two such databases used in the system.

A. Map Database:

The Map database shall consist of two unrelated tables, titled “Maze” and

“Path”. They shall both consist of same entities: Serial no, Version,

TimeOfCreation, Algorithm, and Breakpoint. The breakpoint entity shall be a

number that shall describe the last number at which the last version ended

and this version started in the algorithm steps.

B. Accounts Database:

This database shall consist of two tables, unrelated to each other, called

“Users” and “Administrators”. They shall consist of the same entities:

Username, password, DateOfAccountCreation.

4.5. State chart Diagrams

The state chart diagrams are made for two classes that showed dynamic

behavior: HandleRobot of the Cloud App package, and RobotClient of the

Android App package. Their figures are included in appendix C and their

descriptions are as under.

4.5.1. HandleRobot:

The HandleRobot object exhibits dynamic behavior from the Cloud App

package as it is the only class with changing information over a certain period.

81

Other classes in its package are either single data carriers, whose data does

not change or have a single state for the entire duration of a session and

service request.

The HandleRobot has a total of eight states:

• Connected: the object establishes a connection with the database and

the client.

• Wait for command:goes into waiting state for the user to select a valid

task.

• Response to client:tells the client that it shall be processing its

request and waits for an ack from the client.

• Service started:starts reading the video frame sent from the client and

preprocesses it

• Processing: applies image processing algorithms on the frame to

determine map location and suitable instruction fetching from the map

database.

• Instruction transfer:It sends the fetched instructions to the client

• Response completed:the database sends a special character to

indicate that the end of the map has been reached, during this state, it

sends the client an acknowledgement and waits for the client to ack

back.

• Destruction:threads are destroyed, and garbage collection is done.

82

4.5.2. RobotClient:

The Android App package has a top class that handles all the dynamic

activities of the cellbot and all other classes are enclosed inside of it.

Therefore the only behavioral object is that of RobotClient, which has nine

states:

• Disconnected: when the cellbot is turned ON by the user, i.e. the

Android App is selected from the cellphone interface, the resources are

allocated inside the phone memory and all threads necessary are

created.

• Connected:the Cloud App server is sent a request for connection and

in this state the connection request packet is generated.

• Waiting:the server establishes a session, but is yet to send the cellbot

the list of available tasks that have algorithms in its library. To the

RobotClient object, this library is inaccessible and the server sends

down the list of tasks in text version.

• Service received:services (tasks) are downloaded to the cellbot

• Service selected:the user selects a service from the list and this is

sent to the server

• Waiting for Instruction:thecellbot waits for navigation instructions to

be downloaded to it from the server

• Service started:instruction downloading begins to the cellbot

• Instructions received:the instructions got one at a time from the

server are written to the Bluetooth Interface so that they could be sent

to the robot underneath.

83

• Service ended:the special character is downloaded but not sent to the

robot. After this, the threads are stopped and garbage collection is

done.

4.6. Use Case Realizations

The use cases describe how the user interacts with the system and what pre-,

post-conditions exist, as well as what kinds of user interaction sequences may

occur. The figures are available in Appendix C.

4.7. Use Case List of Cellbot Android App:

Only the two most important use cases were documented here to avoid

discrepancies.

1. Login

2. Select task

4.7.1. Use Case: Login

A. Use Case Requirement

• The App enables the user to login

B. Business Justification

• The app requires only authenticated Users to operate the cellbots.

• The User can be under check and security loopholes are minimized

C. Use Case Paths

• 1. Normal:

User authenticates himself

84

• 2. Exceptional:

User is unable to authenticate

1. Normal Path: User authenticates himself

Externals

• User

Preconditions

• The Android App is up and running, ready to take username and
password

Interactions

1. The User inputs username and password in their respective fields and
presses enter key, or an appropriate button.

2. The Android App shall authenticate the User after checking the
username and password.

Post-conditions

• The Android App is displayed the phone home screen.

Frequency: High (Daily)

Criticality: High

Probability of Defects: Medium

Risk: High

2. Exceptional path: User is unable to authenticate himself

Externals:

• User

Preconditions:

• The Android App is up and running, ready to take username and
password

85

Interactions:

1. The User inputs username and password in their respective fields and
presses enter key, or an appropriate button.

2. The Android App shall not authenticate User due to incorrect username
and/or password.

Post-conditions:

• The User is displayed the log in screen again with error message
“wrong username/password, please enter correct password”

Frequency: High (Daily)

Criticality: High

Probability of Defects: Medium

Risk: High

4.7.2. Use Case: Select Task

A. Use Case Requirement

• The Android App enables User to log in to select a specific tasks from

the given list only:

B. Business Justification

• The cloud requires users to operate the client only under its given

services and none else.

• The application can be under check and security loopholes are

minimized along with errors.

C. Use Case Paths

• 1. Normal:

86

User selects service

• 2. Exceptional:

User doesn’t select service

1. Normal Path: User Selects Service

Externals

• User

Preconditions

• The Android is connected to the cloud and service list is displayed

Interactions

1. The User selects a given service by pressing finger on its area/button.
2. Android app starts the algorithm for the service selected after 10

seconds.

Post-conditions

• The cellbot starts to move around in the environment, looking for the
service requested

Frequency: High (Daily)

Criticality: High

Probability of Defects: Medium

Risk: High

2. Exceptional path: User doesn’t select a service

Externals:

• User

Preconditions:

• The Android App is connected to the cloud and service list is displayed.

87

Interactions:

• The user turns off the device.

Post-conditions:

• Blank screen on the cellbot

Frequency: Low (Daily)

Criticality: Low

Probability of Defects: Low

Risk: Low

4.8. Use Case List for Administration Portal

All the most important use cases have been described below and the figure is

in appendix C.

1. Change Username and password

2. Add new account

3. Edit account info

4. Administer BL Database

4.8.1. Use Case: Change Username/password

A. Use Case Requirement

• The Administrator should be allowed to change his username and

password from time to time

B. Business Justification

• The app requires only authenticated administrators to use it

• The administrator can ensure that no one has stolen his credentials

88

C. Use Case Paths

• 1. Normal:

Administrator changes his credentials

• 2. Exceptional:

Administrator is unable to change his credentials

1. Normal Path: Administrator changes his credentials

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running, ready to take username
and password

Interactions:

1. The Administrator selects an option to change his password and
username

2. The Portal shall show forms for entry and keep password characters
hidden when typed.

3. The administrator submits the new username and password after
confirming his old password.

4. The Portal gives a success message

Post-conditions

• The Android App is displayed the phone home screen.

Frequency: Medium (Monthly)

Criticality: High

Probability of Defects: Low

Risk: High

2. Exceptional path: Administrator is unable to change his credentials

89

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running, ready to take username
and password

Interactions

1. The administrator selects the option to change his credentials
2. Some forms and fields are given to him and he enters his credentials.

The password characters are kept hidden as they are entered.
3. The administrator submits the credentials, however the old password

given for confirmation does not match the one in the database.
4. Error message is show saying that password and username were not

changed

Post-conditions:

• The User is displayed the log in screen again with error message
“wrong username/password, please enter correct password”

Frequency: High (Daily)

Criticality: High

Probability of Defects: Medium

Risk: High

4.8.2. Use Case: Add New Account

A. Use Case Requirement

• The Cloud App and Android App shall have more than one User and

Administrator

B. Business Justification

90

• The app requires only authenticated Users to operate the cellbots and

authorized administrators to access the Administration Portal

• The User and Administrator can be under check and security loopholes

are minimized

C. Use Case Paths

1. Normal:

Administrator adds a new account successfully

1. Normal Path: Administrator adds a new account successfully

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running, and the option to add a
new user/administrator is available

Interactions:

1. The Administrator selects the button to add a new user/admin.
2. The form is displayed to administrator to enter the credentials of the

user.
3. A checkbox is available to make the user an administrator.
4. The Administrator submits the information and the Portal displays the

message for successful addition.

Post-conditions:

• The home screen of the Administration Portal is displayed.

Frequency: Low (Monthly)

Criticality: High

Probability of Defects: Low

Risk: Medium

91

4.8.3. Use Case: Edit Account info

A. Use Case Requirement

• Users could be converted into Administrators and their rights should be

changeable.

B. Business Justification

• The app requires only authenticated Users to operate the cellbots and

• The User and Administrator can be under check and security loopholes

are minimized

• There could be levels of Administrator, e.g. senior admin, junior admin,

and each has their own levels of rights

C. Use Case Paths

1. Normal:

Administrator changes rights of account

1. Normal Path: Administrator changes rights of an account.

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running and option to edit accounts
is available.

Interactions:

1. The Administrator selects the option to edit accounts.
2. He is given a list of available accounts
3. He selects one of the administrator accounts and edits its rights
4. Rights include rights to edit map database, Cloud App, and accounts

database.

92

5. He selects “view only” for all three types for this certain account. Other
options are “full access” and “hidden”.

6. He closes this account and opens another administrator account and
assigns it the “junior” level from a drop down list. This makes the
account only accessible to Cloud App monitoring activities and takes
away all database rights.

7. He closes the account settings

Post-conditions

• The Administration Portal Home screen is displayed.

Frequency: High (Daily)

Criticality: High

Probability of Defects: High

Risk: High

4.8.4. Use Case: Administer BL Database

A. Use Case Requirement

• The administrator of the system should be able to directly access the

database and be allowed to edit its data including images and text.

B. Business Justification

• The system shall continue learning and addition of more information is

a must. Since the robot will be dumb, new information is required by it

at all times.

• Sometimes, wrong information has to be corrected in the database

• Information is available only to the administrator for editing purposes,

the client cannot change the information in the database in case of

problems.

93

C. Use Case Paths

1. Normal:

Administrator adds path info

2. Normal:

Administrator adds object info

1. Normal Path: Administrator adds path info

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running and database
administration option is available.

• Senior administrator, if available, is logged in

Interactions:

1. The administrator selects the database administration option and
selects “edit map”.

2. He is given a list of available maps
3. He opens a map by selecting it, either from Maze table or from Path

table.
4. He then selects a version
5. He adds to the text or corrects it.
6. He closes the table and saves the new information through a message

that appears on closing the table.

Post-conditions:

• The Map database home screen is displayed.

Frequency: High (Daily)

Criticality: High

Probability of Defects: Medium

94

Risk: High

2. Normal Path: Administrator adds object info

Externals:

• Administrator

Preconditions:

• The Administration Portal is up and running, and database
administration option is available.

Interactions:

1. The Administrator selects the database administration option and
selects “edit objects”.

2. He has given a table consists of objects in database.
3. He selects an object by double clicking on it and opening a form
4. The forms has field that describe the dimensions of the object and has

its snapshots from various angles, including its 3D graphical
representation.

5. The administrator adds a new snapshot by clicking on “upload picture”
button.

6. The new picture is displayed.
7. He changes the information about the object by clicking on relevant

fields and typing the new information.
8. He closes the object form and is prompted to save the information.

Post-conditions

• The database administration home screen is available

Frequency: High (Daily)

Criticality: Medium

Probability of Defects: Medium

Risk: Low

4.9. Activity Diagrams

The main two activities of the system are selection of a task and its execution

(on User’s end) and the system Administration (on Administrator’s end).

These two tasks are defined in the activity diagrams. They are modeled in

95

general self-explanatory UML specification. Their figures are available in

Appendix C. They describe how the two classes pass down data from the

start to the end.

4.10. Sequence Diagram Design

The diagrams below show the sequence of procedures and functions called to

complete three tasks: Administration, path following and Maze solving.

4.10.1. Administration

The administration and administrator classes have dynamic behavior. As

shown in figure 4.6 below, the class enables the user to login to the system

and then monitor the usage of the cluster, find out which robots are connected

to the cloud at the moment and plot graphs for the human administrator’s aid

in analyses.

Figure 4.6Administration Portal Sequence Diagram

96

4.10.2. Path Following:

The path following service requires certain classes to function on its behalf, as

show in figure 4.7 below. The classes server, authenticate and HandleRobot

allow the system to define if an authenticated cellbot user is requesting

services from the cloud. Then the robot details are shared with the cloud and

the cloud tells it how to follow the path, through the functions getinstruction(),

followpath(), and sendinstruction().

4.10.3. Maze Solving:

Maze Solving service requires the use of a database and subsequent

querying by the cloud to the database. These requests are made by

findMaze() function, as shown in figure 4.8 below. After the querying is

finished, the rest of the activity is carried out by the solveMaze() function.

Figure 4.7 Path following service in action on the system

97

4.10.4. User Interface Design

Some of the user interfaces that have been developed so far as part of the

prototype are displayed below. The user could login to the system through the

welcome screen on the Admin portal as shown in figure 4.9.

Figure 4.9Signing in to the Administrator Portal via the GUI

Figure 4.8 Maze solving service in action on the system

98

The user will next see a list of available management options (figure 4.10).

The admin portal could also be used to see the statistics for the system, how

many robots are using the system and what services are being requested, as

shown in figure 4.11 below.

Figure 4.10 Managing the whole framework through the admin portal

99

4.11. Summary:

The chapter gave a detailed design description of the project, outlining the

design for the product architecture, how it will be deployed, and its classes.

The states those classes would be in are shown using state chart and

sequence diagrams. Use case realizations are done to ensure a steady

design of the use cases given during the requirements phase. Finally some UI

designs were presented to show how the system would interact with the user.

Figure 4.11Results of the client node health on the administration Portal GUI

100

Chapter 5

System Implementation

101

5. Introduction

This chapter discusses the details of the methods and techniques used to

finally implement the system. There are two separate sections for both

hardware and software implementation. The hardware section consists

primarily of assembly and assembly stages that were undertaken to bring

together different parts of the cloud subsystem in contact with the cellbot. The

latter part of the hardware implementation talks about how the Bluetooth

device was made to interact with the Android application.

The software implementation phase was divided according to

topologicalcategories, namely, of software deployed over the cloud and that

on the Android device. The sections below describe firstly the software parts

that brought together the image processing procedures in tandem with the

wireless communication processes to connect to the Android device for real-

time streaming, image capture and upload/download routines using simple

network streaming protocols.

5.1. Software Implementation

The software was developed separately for the cloud portion and the Android

portion. The cloud portion includes a small database and the Cloud App

deployed over a Windows Server 2008 R2 failover cluster. The Android

portion contains the Android App deployed over the mobile phone device.

5.1.1. The CloudAppbackend

The popularity of image processing is continuously increasing as more and

more digital cameras are available to the general public and the

102

computational power behind cameras is becoming larger. There are several

computer vision and digital image processing libraries for lots of modern

languages.OpenCV is just one of such libraries written for C by Intel and then

supported and rewritten for C++ since version 2 by WillowGarage. EmguCV

has been used, which is an open source OpenCV wrapper for C#

environments. Its library has more than 500 complex functions including

segmentation, tracking, image transformations, feature detection, and

machine learning. It is freely available for Android development on Windows.

5.2.1.1 Development environments for developing Cloud App and its

database:

This is minimal platform supported by OpenCV Java API. And it is set as

default for OpenCV distribution. It is possible to use newer platform with

OpenCV package, but it requires editingOpenCV project settings.

• Sun JDK 6

• Android SDK and its components (Android SDK tools revision 12,

• SDK Platform Android 2.2, API 8, rev 2

• Eclipse IDE 3.7 Indigo

• ADT Plugin for Eclipse

• MySQL 7

5.2.1.2 Implementation of Image Processing

The algorithm can be divided into two main steps: feature selection and

tracking, as shown in the figure 5.1 below.

103

Figure 5.1 Basic Block Diagram of the image processing algorithm on Cloud App

A. Feature Selection:

In this phase of the algorithm, very distinct points called corners are found in a

frame. These points have to be distinctive so that they can be found in

subsequent frames. One common feature selection algorithm implemented in

OpenCV and used in this project is the Shi-Tomasi algorithm[17]. This

algorithm is provided in appendix D. The project team implemented this

algorithm for feature selection.

104

B. Tracking:

To compute the optical flow vector between a point in one frame and that

same point translated in a subsequent frame, the location of this point must

be determined in the sequence of frames. Therefore this point must

correspond to the same point in all the frames. This is known as tracking or

correspondence. The tracking algorithm implemented and used in OpenCV is

the Pyramidal Lucas-Kanade algorithm[18](given in appendix D). In this

strategy, the image is decomposed into several cells. For each cell, the

median magnitude and direction of the optical flow field are computed. Each

cell is then compared to its neighboring cells for evidence of discontinuities.

Here the depth of the features in the image sequences is used to identify

obstacles. Obstacles in an image will have different depth values. In fact

regions with significantly longer optical flow vectors are indicative of the

presence of obstacles.

First of all the C# code will convert the YUV image to BGRA and then to HSV

because this color space is more practical in case of color detection then

other color spaces. Each pixel of the HSV image will be checked if it is inside

a certain color range that matches the color of the torchlight. All pixels in the

resulting image will be set to 1 if there is a light at that location and to 0

otherwise. The position of the light area inside the image is reported as well.

According to the function call above the C# code receives a byte array that

contains the current camera image in YUV420 format, an int array for the

resulting image in BGRA format, and finally a double array for light location

105

values. The first step is to use these parameters from the C++ appropriately.

This is done by the following code:

Algorithm 5.1 using parameters for image conversion

Now the image arrays can be converted to Mat matrices which is the most

important data type in EmguCV. For this reason the width and the height

parameters determine the dimensions of the images.

Algorithm 5.2 converting images into matrices

Using height + height/2 for image height in case of YUV is not the right

technique, but this is how it has to be done with the YUV420 compression.

The YUV image is converted to HSV color space in two steps using

cvtColorOpenCV function and then the mhsv matrix holds the new image.

Algorithm 5.3 YUV to HSV conversion

The inRangeOpenCV function can determine if the pixels of an image are

between two scalars. The result is stored in a one-channel matrix with the

same size as the input image. The new one-channel matrix (mdetect) is

jbyte* _yuv = env->GetByteArrayElements(yuv, 0); jint* _bgra =

env->GetIntArrayElements(bgra, 0); jdouble* _array = env-

>GetDoubleArrayElements(array, 0);

Mat myuv(height + height/2, width, CV_8UC1, (unsigned

char *)_yuv); Mat mbgra(height, width, CV_8UC4,

(unsigned char *)_bgra);

cvtColor(myuv, mbgra, CV_YUV420sp2BGR, 4); Mat mhsv

= Mat(mbgra.rows,mbgra.cols,CV_8UC4);

cvtColor(mbgra, mhsv, CV_BGR2HSV, 4);

106

created to store the 1s and the 0s of torch light locations. lightLower and

lightUpper are the limiting 3 dimensional scalars for the range checking. Since

these scalars are used on mhsv (a HSV image) the 3 channels are interpreted

as hue, saturation, and value. Each channel in mhsvare stored on 1 byte so

constant values can be in the 0 and 255 range.

The predefined numbers in the following code mean that hue of the pixel is

unimportant as all possible values between 0 and 255 are in range so white,

red, and blue bright lights are all acceptable. However small saturation

(between 0 and 10) and high value (between 220 and 255) are requested

which means that the color intensity of the checked pixel is low while its

brightness is high so pale, bright light pixels are searched for. Then inRange

uses these scalars to store torchlight pixels in mdetect. Finally this 1-channel

image is converted back to 4-channel BGRA image and the result is stored in

the mbgra function parameter for further usage on the Java side.

Algorithm 5.4 Reconversion to 4-channel BGRA

It is not enough to know that there is a certain light patch on the scene but the

patch location related to the robot is also important. This calculation can be

done using image moments that is behind the momentsOpenCV function.

vector planes; Mat mdetect =

Mat(mbgra.rows,mbgra.cols,CV_8UC1); Scalar lightLower =

Scalar(0, 0, 220); Scalar lightUpper = Scalar(255, 10, 255);

inRange(mhsv, lightLower, lightUpper, mdetect);

cvtColor(mdetect, mbgra, CV_GRAY2BGRA, 4);

107

After each call rgba stores the calculated light image and first three elements

of buffer contain light location information. It is not necessary to show the

calculated light image but it is useful to know why the robot moves into a

certain direction. So rgba is converted to a Bitmap in SampleView (see below)

and then the bitmap is drawn on the canvas of the surfaceholder in the run

method of SampleViewBase.

The navigation of the robot is performed in calculateMove of

SampleViewBase. If there is not enough light (the 0th buffer value is below

100) then the robot stops. Otherwise the second coordinate of light blob is

used to calculate horizontal direction based on the patch distance from the

central line what is the current heading of the robot. Then two simple linear

equations determine the left and the right motor speeds. Finally

updateMotorControl is called with these intensity values.

5.1.2. Implementing the Private Cloud

The CloudAppis installed on top of a private cloud built using two desktop

nodes. These two desktop nodes are part of a Failover Cluster – a term used

in cloud computing to describe two fully independent and highly available co-

working compute nodes connected to a single storage node. In case of failure

at one compute node, the load of the application is shifted to the other

compute node. In a real world scenario, there are hundreds of thousands of

compute nodes connected to a SAN with a private cloud fabric such as Hyper-

V inside of Windows Server 2008. The following section discusses how each

of these technologies are used together to achieve a similar result on a

smaller scale.

108

A. Configuring the failover cluster

In simple terms, a failover cluster is another word for cloud server

architecture. Since cloud computing revolves around the idea of highly

available servers, failover clustering brings this concept to reality. A failover

cluster is a two word phrase that constitutes are group of computers (or

nodes) designated as node A and B. When the cluster A stops functioning, it

“fails over” to the failover B. Here, failover is a word for a cluster that is being

used as a substitute. In essence, this increases the availability of the

applications and services and users see a continuous, highly available cloud

service being offered to them[19].

Cluster Shared Volumes (CSV) is a feature that simplifies the configuration

and management of Hyper-V virtual machines in failover clusters. With CSV,

on a failover cluster that runs Hyper-V, multiple virtual machines can use the

same LUN (disk) yet fail over (or move from node to node) independently of

one another. CSV provides increased flexibility for volumes in clustered

storage—for example, it allows you to keep system files separate from data to

optimize disk performance, even if the system files and the data are contained

within virtual hard disk (VHD) files. CSV is available in versions of Windows

Server® 2008 R2.

109

Figure 5.2 Implementing failover clustering with Clustered Shared Volumes in Windows Server
2008 R2

B. Physical node quorum in the failover cluster

Explaining in other words, a quorum for a cluster is actually the amount of

nodes that must be working for that cluster to stay online. Resultantly, each

node can cast a single “vote” to control whether the cluster stays online and

serving. In themselves, the votes are either the nodes or a disk witness

(explained later) or file share witness (also explained later). Each voting entity

(the file share witness doesn’t count) has a shadow file of the cluster-config,

and the Cluster service works to keep all shadow files exact forever. This is

done such that the cluster stops running abnormally in case too many failures

take place or if a sudden problem occurs with the internode communication

channel. In reality, a node has to be able to support the full functionality of the

applications that are failed over to it in case of a cluster failover, and so the

quorum is not the only deciding factor here. Let’s take an example here, of a

110

cluster that has five nodes, and whose two nodes fail. Under normal

conditions, the remaining three nodes should be failed over to and function

normally. But in reality, those nodes would only serve the applications if they

have the desired capacity to accommodate a failover.

The biggest problems with network failures are internode communication

hassles. Some nodes might talk to each other in a small subnet of clusters but

they might not be able to talk to another cluster in a faraway network. This

causes the famous “split” problem, where one has to forcibly stop one of the

subnets to stop acting as a cluster part. Otherwise major problems could

occur.

In order to tackle the split problem, quorum voting comes into play once more.

Here, the cluster software has a built in voting mechanism that decides within

the sets of cluster if that specific subnet has quorum at that given moment or

not. The voting then decides to either shut down the subnet prematurely or

not. Since every cluster subnet has a quorum configuration file, it will know

what constitutes a majority. In case that subnet has a majority, or if it doesn’t,

the cluster will take the appropriate action. That subnet would continue to

watch out for new nodes appearing on the subnet and whether they make

quorum once again or not, however unless and until the cluster subnet

reaches quorum, it will not be a part of the failover cluster.

For example, in a five node cluster that is using a node majority, consider

what happens if nodes 1, 2, and 3 can communicate with each other but not

with nodes 4 and 5. Nodes 1, 2, and 3 constitute a majority, and they continue

running as a cluster. Nodes 4 and 5 are a minority and stop running as a

111

cluster, which prevents the problems of a “split” situation. If node 3 loses

communication with other nodes, all nodes stop running as a cluster.

However, all functioning nodes will continue to listen for communication, so

that when the network begins working again, the cluster can form and begin to

run.

C. Choosing the quorum configuration

There have been significant improvements to the quorum model in Windows

Server 2008. In Windows Server 2003, almost all server clusters used a disk

in cluster storage (the “quorum resource”) as the quorum. If a node could

communicate with the specified disk, the node could function as a part of a

cluster, and otherwise it could not. This made the quorum resource a potential

single point of failure. In Windows Server 2008, a majority of ‘votes’ is what

determines whether a cluster achieves quorum. Nodes can vote, and where

appropriate, either a disk in cluster storage (called a “disk witness”) or a file

share (called a “file share witness”) can vote. There is also a quorum mode

called No Majority: Disk Only which functions like the disk-based quorum in

Windows Server 2003. Aside from that mode, there is no single point of failure

with the quorum modes, since what matters is the number of votes, not

whether a particular element is available to vote.

There are four quorum modes:

1. Node Majority: Each node that is available and in communication can

vote. The cluster functions only with a majority of the votes, that is,

more than half.

112

2. Node and Disk Majority: Each node plus a designated disk in the

cluster storage (the “disk witness”) can vote, whenever they are

available and in communication. The cluster functions only with a

majority of the votes, that is, more than half.

3. Node and File Share Majority: Each node plus a designated file share

created by the administrator (the “file share witness”) can vote,

whenever they are available and in communication. The cluster

functions only with a majority of the votes, that is, more than half.

4. No Majority: Disk Only: The cluster has quorum if one node is

available and in communication with a specific disk in the cluster

storage.

Since there was an even number of nodes, but not a multi-tiered cluster in this

project, the team chose the option “Node and Disk Majority”. All of these

configurations are shown in the figure below:

Figure 5.3 Node and Disk Majority quorum configuration

113

The three main reasons why quorum is important are: to ensure consistency,

act as a tie-breaker to avoid partitioning, and to ensure cluster

responsiveness.

Because the basic idea of a cluster is multiple physical servers acting as a

single logical server, a primary requirement for a cluster is that each of the

physical servers always has a view of the cluster that is consistent with the

other servers. The cluster hive acts as the definitive repository for all

configuration information relating to the cluster. In the event that the cluster

hive cannot be loaded locally on a node, the Cluster service does not start,

because it is not able to guarantee that the physical server meets the

requirement of having a view of the cluster that is consistent with the other

servers.

A witness resource is used as the tie-breaker to avoid “split” scenarios and to

ensure that one, and only one, collection of the members in a distributed

system is considered “official.” A split scenario happens when all of the

network communication links between two or more cluster nodes fail. In these

cases, the cluster may be split into two or more partitions that cannot

communicate with each other. Having only one official membership prevents

unsynchronized access to data by other partitions (unsynchronized access

can cause data corruption). Likewise, having only one official membership

prevents clustered services or applications being brought online by two

different nodes: only a node in the collection of nodes that has achieved

quorum can bring the clustered service or application online.

114

To ensure responsiveness, the quorum model ensures that whenever the

cluster is running, enough members of the distributed system are operational

and communicative, and at least one replica of current state can be

guaranteed. This means that no additional time is required to bring members

into communication or to determine whether a given replica is guaranteed.

D. Process of achieving quorum

Because a given cluster has a specific set of nodes and a specific quorum

configuration, the cluster software on each node stores information about how

many "votes" constitutes a quorum for that cluster. If the number drops below

the majority, the cluster stops providing services. Nodes will continue listening

for incoming connections from other nodes on port 3343, in case they appear

again on the network, but the nodes will not begin to function as a cluster until

quorum is achieved.

There are several phases a cluster must go through in order to achieve

quorum. At a high level, they are:

As a given node comes up, it determines if there are other cluster members

that can be communicated with (this process may be in progress on multiple

nodes simultaneously).

Once communication is established with other members, the members

compare their membership “views” of the cluster until they agree on one view

(based on timestamps and other information).

A determination is made as to whether this collection of members “has

quorum,” or in other words, has enough members that a “split” scenario

115

cannot exist. A “split” scenario would mean that another set of nodes that are

in this cluster was running on a part of the network not accessible to these

nodes.

If there are not enough votes to achieve quorum, then the voters wait for more

members to appear. If there are enough votes present, the Cluster service

begins to bring cluster resources and applications into service.

With quorum attained, the cluster becomes fully functional.

5.1.3. Administrating the CloudApp

The team has so far used the commonly used methodologies to implement

our customized version of a private cloud. Next on, they proceeded to simple

administration of the, which includes checking the resources, validating the

operating conditions of the application and others. A list of common

commands that are run using the Windows Server Powershell is provided

below:

1. Review status of clustered services and applications: Get-

ClusterGroup

2. Review the resources in a cluster application: Get-ClusterGroup

"Clustered Server 1" | Get-ClusterResourceWhere

Clustered Server 1 is a clustered server (such as a file server) that

contains resources you want to review.

3. Review detailed settings of resources in a clustered service or

application: Get-ClusterGroup "Clustered Server 1" |

Get-ClusterResource | Get-

116

ClusterParameterWhereClustered Server 1 is a clustered server

(such as a file server) for which you want to review resources and

detailed resource settings.

4. Bring a clustered service or application online:Start-

ClusterGroup "Clustered Server 1" Where Clustered Server

1 is a clustered server (such as a file server) that you want to bring

online.

5. Take a clustered service or application offline: Stop-

ClusterGroup "Clustered Server 1"

6. Move a clustered service or application (This also tests failover):

Move-ClusterGroup "Clustered Server 1" Where Clustered

Server 1 is a clustered server (such as a file server) that you want to

test or move.

7. Review the status of Cluster Shared Volumes: Get-

ClusterSharedVolume

8. Move a Cluster Shared Volume to a different node: Move-

ClusterSharedVolume "Cluster Disk 3" Where Cluster Disk

3 is the Cluster Shared Volume you are moving to ownership by a

different node.

5.1.4. The Android App Backend

Android applications vary in complexity from application to application, just

like their Windows counterparts[20]. In our case, the application to be built

were a simple 2D video capture and live streaming application on one hand,

while a simple message receiver for the cellbot on the other. It does not have

117

any image processing function except for transmission of the captured live

video to, which acts as its server. Once the server has processed the image

and returned a set of text commands, it converts them into scripts for the

iRobot Create cellbot and sends them over to it using its Bluetooth interface.

A. The UI thread

In the Android OS, upon application launch, the system creates a main

thread, coincidentally called the ‘main’ thread. Later on it is also known as the

UI thread, and is a very important part of the whole system because it has

thedutyof dispatching the events to the appropriate components, including

drawing and callout events. It is also the thread where your application

interacts with running components of the Android UI toolkit.

For example, upon touching a button on the phone, the main thread

messages the touch event to the component, which in turn sets its state to

“pressed” and sends out an invalidate request to the event queue. The main

thread dequeues the request and tells the component to redraw itself.

If you do not implement the algorithm properly, the uni-thread concept could

crash the application due to bad performance. For example if things like

database access and network queries take place on a single thread and other

long operations as well, the main thread will block the user interface

completely. Until these large operations complete, no other event would be

undertaken. Hence, long screen block outs would be experienced. The ANR,

or Application Not Responding error comes if the user interface remains hung

due to the UI thread being blocked for more than 5 seconds.

118

Android 1.5 and later platforms offer a utility class called AsyncTask that

simplifies the creation of long-running tasks that need to communicate with

the user interface. The goal of AsyncTask is to take care of thread

management. The following code snippet is an example of an image being

uploaded onto the server from the live video stream:

Algorithm 5.5 Image frame upload to server

As one can see, AsyncTaskmust be used by sub classing it. It is also very

important to remember that an AsyncTask instance has to be created on the

UI thread and can be executed only once, a quick overview of its working

follows:

• The parameter types could be specified using generics as well as the

final and progress values of the task

• doInBackground() function runs by itself on a worker thread

• UI thread invokes the onPostExecute(), onProgressUpdate(), and

onPreExecute() functions on itself

• onPostExecute() gets the value given by doInBackground()

• One good thing is that the function publishProgress() could be called

always in doInBackground() to run onProgressUpdate()

private class DownloadImageTask extends AsyncTask<String, Void,
Bitmap> {
 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }

 protected void onPostExecute(Bitmap result) {
 mImageView.setImageBitmap(result);
 }
 }

119

B. UDP datagram implementation for video streaming:

UDP is one of the main parts of the Internet Protocol Suite, which are network

protocols to run the internet. Using UDP, applications can send/receive

commands, also in UDP’s case known as datagrams, to other applications on

a network that understands IP without the need to set up special transmission

channels or data paths.

At the simplest level, our Android App gets a frame(byte[]) array from the

device camera and sends it to the server () using UDP. At the server side, first

a server_port is opened on port 12345 and a DatagramSocket() is

opened on it with the local address of the server. Then a byte[] message is

recorded with message.getBytes(). This message is sent in the new

DatagramPacket to the server.

At the server side, the video is received in

DatagramPacket(message,message.length) while it listens on a

server port with DatagramSocket. The incoming messages are set to the

maximum size using byte[] message = new byte[1500];

C. TCP packets for command transmission implementation

TCP is probably the most commonly used protocol, simply because it is used

for so many applications such as HTTP, POP, SMTP, etc. TCP is a protocol

which guarantees that the receiver will receive exactly what the sender sent -

there will be no errors, it will be in the correct order, and everything will work

just fine. That is why TCP was chosen for delivery of commands to the cellbot

120

via Android App working as the Cloud App’s client. Figure 5.4 below shows

how the server contacts the client in a sequence of steps.

Figure 5.4 TCP sequence diagram

1. At the, a simple ServerSocket is established on port 12345 to listen to

client connection requests. A new buffer is made to receive commands

from the to be sent using BufferedReader input

=newBufferedReader(newInputStreamReader(s.getInputSt

ream()));

2. A new printer is made using

a. PrintWriter output =

newPrintWriter(s.getOutputStream(),true);

3. The commands are sent using output.print()function to the client.

121

4. A buffer on the Android App is created and it uses an

InputStreamReader to send the incoming textual commands via the

BufferedReader to the Bluetooth interface of the cellbot.

5.2. Hardware Implementation

The hardware portion of the system consists of an iRobot Create cellbot that

uses a separate Bluetooth interface to communicate with the Android App.

The Bluetooth Interface is called the BAM Wireless Accessory and comes

with the iRobot Create for use on its serial port as an alternative to PC

attached serial cables. The team selected the iRobot Create because of its

ease of use for navigational demo purposes. Our aim was to use a simple

wheel assembly robot that could execute basic movement commands via an

Android phone placed on it. The iRobot Create fulfilled all the following criteria

for robot selection:

• Twin wheel assembly for basic movement (up, down, left, right, stop)

• Lightweight and light hardware with customizable options

• Cargo bay

• Programmable interfaces

• Ease of use and little hardware development

• The hardware implementation details are given in the sections that

follow:

5.2.1. The iRobot Create

iRobot® Create is a moving robo-development kit that allows users to flexibly

program movement behaviors without the hassles of mechanical assembly

122

and low-level coding. Create’s Open Interface (OI) gives a set of commands,

such as drive and sensor commands, out which the drive commands were

only used. With this development robot, one could easily develop new

movements as well as add 3rd party components, and not care about

integration issues at a mechanical level or low-level code. Further electronics

could be added on top of the Create cargo bay, such as Android

smartphones, robotics arms, and sensors. A top and bottom view of the robot

is given in figures 5.5 and 5.6 below.

Create is used in the system as a test/demo node as a dumb terminal client

that uses the capabilities of the cloud framework. In a real world scenario, this

robot could be part of a larger army of iRobot Creates that all use the same

cloud interface to download similar commands and execute them in the exact

same way collectively. In our system, this single robot node acts a test bed for

checking navigation applications in a simple and uncomplicated manner.

The robot has many sensors, few of which were of use to us, since the project

was using an Android device’s camera for our video streaming purposes. The

only part of interest to us was the Cargo Bay Connector. It is a DB-25

connector used for programming. The software interface lets you

manipulateCreate’s behavior and read its sensors through a series

ofcommands including mode commands, actuator commands,song

commands, demo commands, and sensor commandsthat you send to

Create’s serial port by way of a PC ormicrocontroller that is connected to the

Cargo Bay Connector.The team used this connector with the BAM module,

described in a later section.

123

Figure 5.5 iRobot Create ® top view

Figure 5.6 iRobot Create ® bottom view

124

A. The DB-25 Cargo Bay Connector

To use the OI, a processor capable of generating serial commands such as a

PC or a microcontroller must be connected to the external Mini-DIN connector

or the Cargo Bay Connector on Create. These connectors provide two-way,

serial communication at TTL (0 – 5V) levels. The connectors also provide an

unregulated direct connection to iRobot Create’s battery, which you can use

to power the OI applications. The Cargo Bay Connector also provides a

regulated 5V power supply and several input and output pins.

The Cargo Bay Connector, located in the front middle of the cargo bay,

contains 25 pins that you can use to attach electronics for peripheral devices

such as additional sensors. The Cargo Bay Connector provides four digital

inputs, an analog input, three digital outputs, three high-current low side driver

outputs (useful for driving motors), a charging indicator, a power toggle input,

0-5V serial input and output, a 5V reference, battery ground and battery

voltage.

5.2.2. iRobot Create Open Interface Commands

The Create comes with a set of programmable interfaces that allow

developers to use it according to their own purposes. Create has an OI (Open

Interface) with certain commands that follow the given pattern: Each

command starts with a 1-byte opcode with optional additional data bytes. The

most used commands are given below. Their opcodes are fed into the

Android App module that connects with iRobot Create using the BAM

interface.

125

A. Start OI command

Opcode:128

Data Bytes: 0

This command starts the OI. You must always send the Start command

before sending any other commands to the OI.

B. Baud command

Opcode: 129

Data Bytes: 1

This command sets the baud rate in bits per second (bps)at which OI

commands and data are sent according to the baud code sent in the data

byte. The default baud rate at power up is 57600 bps, but the starting baud

rate can be changed to 19200

C. Drive Command

Opcode: 137

Data Bytes: 4

This command controls Create’s drive wheels. It takes four data bytes,

interpreted as two 16-bit signed values using two’s complement. The first two

bytes specify the average velocity of the drive wheels in millimeters per

second (mm/s), with the high byte being sent first. The next two bytes specify

the radius in millimeters at which Create will turn. The longer radii make

Create drive straighter, while the shorter radii make Create turn more. The

126

radius is measured from the center of the turning circle to the center of

Create. A Drive command with a positive velocity and a positive radius makes

Create drive forward while turning toward the left. A negative radius makes

Create turn toward the right. Special cases for the radius make Create turn in

place or drive straight, as specified below. A negative velocity makes Create

drive backward.

• Serial sequence: [137] [Velocity high byte] [Velocity low byte][Radius

high byte] [Radius low byte]

• Drive data byte 1: Velocity (-500 – 500 mm/s)

• Drive data byte 2: Radius (-2000 – 2000 mm)

Example:

To drive in reverse at a velocity of -200 mm/s while turning at a radius of

500mm, send the following serial byte sequence:

[137] [255] [56] [1] [244]

Velocity = -200 = hex FF38 = [hex FF] [hex 38] = [255] [56]

Radius = 500 = hex 01F4 = [hex 01] [hex F4] = [1] [244]

5.3. Summary:

The chapter described how the designs made during the system design

phase were realized and implemented using techniques developed by the

syndicate members. It shows how the two fold domain of cloud computing and

robot path navigation was combined to achieve the objectives for cloud

127

robotics simulation over a Wi-Fi terminal. It details the techniques that were

undertaken to deploy a failover cluster using Microsoft Hyper-V and how the

robot application was split into partially the and the Android App. Lastly; it

described the various commands that were constructed to move the cellbot

correctly.

128

Chapter 6

Testing and Results Analysis

129

6. Introduction

Testing has been done at different level in this project to make sure the high

quality of the end product. Different testing techniques have been adopted for

removing the errors from the system. Different level of testing including unit

testing, integration testing and system testing has been done so that the

system could be checked in detail and the unwanted results could be

removed from the end product. Different types of test cases have been made

in every level of testing to make sure that the system provides its required

result.

6.1. Unit testing

In unit testing, all the modules have been tested to make sure that they are all

working efficiently without producing any kind of error. All the functionality of

the software has been tested in this level of testing. Live video streaming

module and the Cellbot’s movement control module of the system has been

tested in detail in at this level.

For the testing of live video streaming module of the android application, the

connection between the user interface and the android application has been

tested that they are working efficiently. Live video streaming module is also

tested for the time delay issue to make sure that there will not be large time

delay in the live video stream.

For testing the robot’s movement control module of the android application,

initially some dummy inputs were sent to the android application from the user

end interface which sends the inputs to the BAM and Create to check the

130

input values and use its own program to run the specific movement command

to verify that the control signals are successfully working.

Bluetooth connection to BAM is also tested in this level of testing to make

sure that it will send the correct command to the mechanical part of the

cellbot.

6.2. Integration testing

In integration testing, the testing during the integration of the different software

modules and the testing during the integration of software and the hardware

part has been done.

In first step of integration testing, the live video streaming module and the

robot’s movement control module are integrated and tested by running them

in parallel. The quality of the live video stream has been tested that there

must be no long time delay issue after integration of both modules. The

robot’s movement control module’s working is also checked that it’s working

efficiently as it was before the integration of the both modules.

The testing during the integration of the software and the hardware is also

done to make sure that there will be no problems after integrating the software

(Android App) part with the hardware (BAM and Create both). Testing has

been done after integrating the Android App (running on the phone) with the

BAM and Create. During integration, connection between the Android App

and the BAM has been tested, the connection between BAM and Create’s

DB-25 has been tested and the connection between the DB-25 and the

mechanical parts of the robot has been tested.

131

6.3. System testing

System testing has been done after integrating all the software and the

hardware parts. In this testing level, the system as a whole is tested to make

sure that it’s giving then required outputs without generating any kind of

errors.

For system testing the inputs from the user have been given to the interface

and then check that the connection has been made without generating any

error and also test the live video streaming to make sure that there is not

enough delay in the live video streaming.

Create’s movement is also tested by giving some move command to the

interface of the Android App so that it could be checked that the cellbot is

moving in the desired direction without generating any kind of unexpected

results.

6.4. Software Results

For checking the software results, the output of live video streaming and the

command download from the cloud has been kept in mind. For analyzing the

hardware results, the forward, left, right, backward, stop movementsof Create

has been checked and it is working as expected.

6.4.1. Live video streaming module’s results

The software part is divided into two major modules, one is the live video

streaming module and the other one is the command downloading. For

checking the results of the live video streaming module of the Android App,

the live video stream has been analyzed at the user end interface and the

132

Cloud App. At the start of the project, it was expected that the live video

streaming should have minimum time delay in streaming (less than 1 sec) and

when the output of the live video streaming module has been analyzed the

live video streaming module was giving accurate results with time delay of

less than 1 sec in streaming the live stream from the Android App to the Cloud

App end.

6.4.2. Command Downloading results

The commands were downloaded to the Android phone over the wireless

network in less than 1 sec/command. The team divided the command

download tests into categories of empty commands, light commands, and

heavy commands. Heavy and light commands consisted of large and small

amounts of test text commands, respectively. All three categories were able to

download themselves to the Android App in less than 1 sec/command.

6.5. Hardware results

In the hardware testing part the Cellbot’s movement and control responses

were checked. This module of the Android App has been implemented to

control the movement of the cellbot. For analyzing the movement control

module’s results, different movement inputs are given at the interface at the

Cloud App end. Tester gave all the inputs including move up, move down,

move right, move left, move forward and move backward. All the movements’

commands have been tested and the cellbot was moving according to the

given movement commands.

133

Hardware of the system includes all the structure of the iRobot Create, BAM,

and the Android phone mounted on it. For analyzing the hardware results, the

movement of the cellbot has been checked that it moves properly without

facing jerking issues. Different movement commands were been given on the

Cloud App interface for checking the results of the cellbot that it moves to the

right direction as the input is given to it.

6.6. Analysis

The experiments were performed expansively so that large data could be

sought on how the system performed for the Core i3 processors that were in

use in our framework, as well as how much power they consumed at low and

high clock rates. In this section, a sample of the data collected was given, as

well interpreted. The setting for the entire experiments was as follows: 3 Intel

Core i3 processors with a certain group of parallel threads executing on each.

For all three core i3 processors, these loads were too low: around 0.5-2.1% of

the processor usage for less than 5 threads and 100% usage for threads

reaching above 200. For higher load measuring scenarios, the team coded

simulated threads in conjunction with special sleep breaks to model service

idle modes. In the experiment setting,selected sleep times were 100ms,

500ms, and 1000ms, which represent the arrival rates of 4/second, 1/second,

and 0.5/second, respectively. Unfortunately, the team was at no position to

verify the real world delays in service, and had to rely on the assumption that

wireless service is marginally fair. Video and image frame processing for

object recognition and their related delays were not included in this part of the

simulation as they were negligible due to their minute compute requirements

134

on the cloud. The advantage in this whole test bed was that thousands of

simulation threads could be coded for stress testing on the cloud hardware.

For our experiments, fifty percent of the threads were made to run in a

continuous loop and were used as clients that could give requests to the cloud

server. Rest fifty percent of threads ran in a continuous loop and was used as

application services to serve resources to clients. Then, processor usage data

from Windows Task Manager was recorded for two minutes each, with an

average calculation at the end for result. Repeated experiments were done for

various types of sleep times per iteration and different clock rates for Intel

Core i3. The data collected are shown in Figures below.

Figure 6.1 Testing the output of the system at very low clock rates for the Intel Core i3 processor

The usage data found from our experiments is a visible proof of the vast

amount of the services a cloud server could host and provide. The threads in

135

the figure (X Axis) are used to show the services, while the different sleep

modes are shown by the colored lines to model requests.

As is shown in the figure, these processors were ready to take a very large

number of service requests, even at low clock rates. For purposes of our

demo environment, these service requests might be low and light weight,

however, given that a linear increase in the request/service provision ratio is

seen, one could predict that real world applications demanding millions of

services would run very smoothly on the same hardware. The good thing

about this setting is that by using a hypervisor such as Hyper-V, a cloud

server could scale down to low clock rates in a low demand scenario, and

scale up in a high demand scenario without greatly affecting its performance.

By scaling down, it could reduce power consumption and processor heating,

as they both rise exponentially to clock rate doubling.

6.7. Summary:

This chapter focused on the testing of the product to check for verification and

validity of the initial objectives set down in the software requirements

gathering phase. All relevant parts of a software testing were carried out

including unit, integration and system testing to ensure that the project met its

objectives correctly. The results obtained from tests were then analyzed and

conclusions were made about how the product was finally performing and

whether any improvements need to be made.

136

Chapter 7

Conclusion and Future Work

137

7. Introduction

With this chapter, the documentation of the project comes to a formal closure

and ways are discussed for further extension as far as the system

functionality enhancement is concerned. To make this framework worthy of

use for robot training, testing and demo, as well as large scale deployment

purposes, more functionality needs to be added.

7.1. Future Work

To integrate Language and Action in the field of robotics, some challenges

were given toward this end[21]. These have been vastly described in the

literature for Cloud Robotics since its inception by major software firms like

Google Inc. These challenges were filed under the heading of developmental

robotics for the next ten years. They impose certain requirements on the

underlying machines that make the entire Cloud Robotics architecture very

computationally and storage demanding. Therefore the work to be seen in the

near future will mainly focus on the integration of the human language and

computer action domains for social and military robotics with further aiding in

social/behavior analysis.

The concepts given by us so far and those to be given during the coming

years will primarily drive their energies from socialization techniques of

advanced mobile robots and their architectural capabilities. An artificial

system would be made able to understand some sort of developmental

learning technique that allows it to grow due to inspirational needs. Such an

implemented system, either on mobile platforms, or on Cloud Computing

138

platforms, have rich application domains in fields of military, rehabilitation and

surgery, space and volcanic research, deep sea travel, and general security.

7.2. Conclusion

The project showed a small test framework that used a distributed failover

cluster for server and mobile phone robot, or cellbot, for client. The framework

employed the failover cluster as a Cloud server using Hyper-V role of

Windows Server 2008 ®. In order to provide a proof-of-concept for the

comparatively new cloud robotics field, this framework shows how exactly,

using minimal hardware and software, Cloud Robotics could be implemented

on much larger scales. Since this framework was developed for a test and

demo environment, only a minor domain of Robotics, i.e. autonomous

navigation was used to demonstrate the combined power of the cloud

computing and robotics. Our robot, under the guidance of a cloud server, was

able to navigate a maze and traverse a line without any onboard storage or

computational facilities. All the storage/compute nodes were in the cloud,

whereas the client cellbot was only supposed to interpret the commands sent

to it for movement. Thus the cellbot acted as a dummy client, and ran on very

inexpensive hardware, yet it performed functions similar to those of

commercial and expensive robots with onboard computers. Keeping in view,

these low hardware implementation costs, the cloud framework can now be

used for more complex, and human collaborative/adaptable tasks.

Architecturally, the framework justified the need for cloud computing as the

server, instead of a simple web server. The software requirements and

objectives to be met were shown. Next the implementation and design

139

backgrounds were explained in detail. At the end, testing was done on the

finished product and analysis with results was elaborated for the reader to

decide if the framework is feasible for their uses or not.

Our approach was aimed at making a very simple framework that

demonstrated how computers could utilize cloud robotics to gain a physical

advantage over their predecessor systems that could only compute and show

results, yet not do any physical work. Even though physical work has been

carried out in factories and assembly lines, however programming those

modules is extremely difficult and inflexible. Our framework shows how easy it

is to use robotics as the augmented limbs of a computing system, which

extends its reach into the physical, non-binary domain. By distributing the

workload among several nodes, the teamwas able to achieve efficiency,

speed and timeliness. Finally the future work possible for the project was

presented.

7.3. Summary:

The chapter gives a brief conclusion of the entire project, how it began and

what phases it went through to reach completion. It describes any new

techniques that could be added in the future to aid the development of the

product expansion. It tells how the product could be given advanced

supplications in order to adapt it to real world environments. Lastly it gives an

overall conclusion about the project and tells whether the expectations of the

syndicate members were met or not with regards to the research.

140

BIBLIOGRAPHY

[1] S. Kumar, "Binocular Stereo Vision Based Obstacle Avoidance Algorithm
for Autonomous Mobile Robots," in Advance Computing Conference,
2009. IACC 2009. IEEE International, Patiala, 2009.

[2] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba and H. Inoue, "The
experimental humanoid robot H7: a research platform for autonomous
behaviour," Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp.
79-107, 2007.

[3] R. Arumugam, "DAvinCi: A cloud computing framework for service
robots," in 2010 IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, AK, 2010.

[4] B. K. Kim, "Web Services Based Robot Control Platform for Ubiquitous
Functions," in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, 2005. ICRA 2005, Barcelona, 2005.

[5] L. Vasiliu, B. Sakpota and H.-G. Kim, "A Semantic Web Services Driven
Application on Humanoid Robots," in Proceedings of the The Fourth IEEE
Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, and the Second International Workshop on
Collaborative Computing, Integration, and Assurance (SEUS-WCCIA'06),
Gyeongju, 2006.

[6] G. Metta, G. Sagerer, S. Nolfi, C. Nehaniv, K. Fischer, J. Tani, T.
Belpaeme, G. Sandini, F. Nori, L. Fadiga, B. Wrede, K. Rohlfing, E. Tuci,
K. Dautenhahn, J. Saunders and A. Zeschel, "Integration of Action and
Language Knowledge: A Roadmap for Developmental Robotics," IEEE
Transactions on Autonomous Mental Development, vol. 2, no. 3, pp. 167-
195, 2010.

[7] R. Pereira, "An Architecture for Distributed High Performance Video
Processing in the Cloud," in IEEE 3rd International Conference on Cloud
Computing (CLOUD), Miami, FL, 2010.

[8] R. Buyya, "Market-Oriented Cloud Computing: Vision, Hype, and Reality
of Delivering Computing as the 5th Utility," in 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID '09), Shanghai,
2009.

141

[9] Y. Chen, "Robot as a Service in Cloud Computing," in Fifth IEEE
International Symposium on Service Oriented System Engineering
(SOSE), Nanjing, 2010.

[10] J. Rhoton, Cloud Computing Explained: Handbook for Enterprise
Implementation, Vienna: Recursive Limited, 2010.

[11] Google and Willow Garage, "Google I/O 2011," Youtube, San Francisco,
2011.

[12] Google, "Android," Cellbots, 23 May 2011. [Online]. Available:
http://www.cellbots.com/category/android/. [Accessed 20 November
2011].

[13] M. B. M. Waibel, J. Civera, R. D'Andrea, J. Elfring, D. Galvez-Lopez, K.
Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M.
Tenorth, O. Zweigle and R. van de Molengraft, "RoboEarth," Robotics &
Automation Magazine, IEEE, vol. 18, no. 2, pp. 69-82, 2011.

[14] C. Davies, "Hasbro Android Robot Toys get I/O video playtime,"
SlashGear, 11 May 2011. [Online]. Available:
http://www.slashgear.com/hasbro-android-robot-toys-get-io-video-
playtime-11151542/. [Accessed 20 November 2011].

[15] K. Drummond and N. Shachtman, "Darpa’s Next Grand Challenge: Build
Us Lifelike, Humanoid Robots," Wired, 5 April 2012. [Online]. Available:
http://www.wired.com/dangerroom/2012/04/darpa-humanoid-robots/.
[Accessed 5 April 2012].

[16] G. Clarke, "Father of Java abandons Google for floating robot cloud," The
Register, 31 August 2011. [Online]. Available:
http://www.theregister.co.uk/2011/08/31/gosling_liquid_robotics/.
[Accessed 20 November 2011].

[17] J. Shi, "Good Features to Track," in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR '94) , Seattle, WA,
1994.

[18] J. Y. Bouguet, "Pyramidal implementation of the Lucas Kanade feature
tracker," Intel Corp, Microprocessor Research Labs, OpenCV
Documents, vol. 3, no. 1, pp. 1-10, 1999.

[19] S. Cummins, Pro SharePoint 2010 Disaster Recovery and High
Availability, New York: Apress , 2011.

[20] J. Friesen and D. Smith, Android Recipes, New York: Apress, 2011.

142

[21] N. Kwak, "3D grid and particle based SLAM for a humanoid robot," in 9th
IEEE-RAS International Conference on Humanoid Robots (Humanoids
2009) , Paris, 2009.

143

Appendix A

144

Glossary:

A

Android:An open source mobile phone operating system made by Google. It

comes with software tools to develop applications for its operating system

based phones.

C

Cellbot:Cellbots are a new technology that combine smartphones with any

mechanical component for movement or physical arbitration and make up a

functional robot. Examples include Cellbots from the toy company Hasbro ©.

Cloud bursting:Cloud bursting is an application deployment model in which

an application runs in a private cloud or data center and bursts into a public

cloud when the demand for computing capacity spikes. The advantage of

such a hybrid cloud deployment is that an organization only pays for extra

compute resources when they are needed.

Cloud Computing:Computation, software, data access, and storage services

not requiring end user knowledge of neither location nor configuration for

mass distribution and usage.Typically described as an IT service model for

enabling convenient, on-demand network access to a shared pool of

computing resources.Usually mentioned simply as the ‘Cloud’.

Cloud scaling:The option to increase the available virtual servers and

processing power/storage capacity during peak performance timings without

any noticeable change.

F

Failover Cluster: Failover clusters (also known as High Availability clusters or

HA Clusters) are groups of computers that support server applications that

can be reliably utilized with a minimum of down-time. They operate by

145

harnessing redundant computers in groups or clusters that provide continued

service when system components fail. Without clustering, if a server running a

particular application crashes, the application will be unavailable until the

crashed server is fixed. HA clustering remedies this situation by detecting

hardware/software faults, and immediately restarting the application on

another system without requiring administrative intervention, a process known

as failover. As part of this process, clustering software may configure the

node before starting the application on it. For example, appropriate

filesystems may need to be imported and mounted, network hardware may

have to be configured, and some supporting applications may need to be

running as well.

HA clusters usually use a heartbeat private network connection which is used

to monitor the health and status of each node in the cluster. One subtle but

serious condition all clustering software must be able to handle is split-brain,

which occurs when all of the private links go down simultaneously, but the

cluster nodes are still running. If that happens, each node in the cluster may

mistakenly decide that every other node has gone down and attempt to start

services that other nodes are still running. Having duplicate instances of

services may cause data corruption on the shared storage.

H

Hyper-V:A private cloud computing tool for desktop and network virtualization

which provides options like failover clustering and that is available for software

development for private and public clouds via free downloads through MSDN

subscriptions.

146

Hypervisor: In computing, a hypervisor, also called virtual machine manager

(VMM), is one of many hardware virtualization techniques allowing multiple

operating systems, termed guests, to run concurrently on a host computer. It

is so named because it is conceptually one level higher than a supervisory

program. The hypervisor presents to the guest operating systems a virtual

operating platform and manages the execution of the guest operating

systems. Multiple instances of a variety of operating systems may share the

virtualized hardware resources. Hypervisors are installed on server hardware

whose only task is to run guest operating systems. The term can be used to

describe the interface provided by the specific cloud computing functionality

infrastructure as a service (IaaS).

M

Migration:Live migration is the movement of a virtual machine from one

physical host to another while continuously powered-up. When properly

carried out, this process takes place without any noticeable effect from the

point of view of the end user. Live migration allows an administrator to take a

virtual machine offline for maintenance or upgrading without subjecting the

system's users to downtime.

S

SaaS, PaaS, and IaaS:Software as a service, sometimes referred to as "on-

demand software," is a software delivery model in which software and its

associated data are hosted centrally (typically in the (Internet) cloud) and are

typically accessed by users using a thin client, normally using a web browser

over the Internet.

Platform as a service (PaaS) is a category of cloud computing services that

provide a computing platform and a solution stack as a service. In the classic

layered model of cloud computing, the PaaS layer lies between the SaaS and

the IaaS layers. PaaS offerings facilitate the deployment of applications

without the cost and complexity of buying and managing the underlying

hardware and software and provisioning hosting capabilities, providing all of

147

the facilities required to support the complete life cycle of building and

delivering web applications and services entirely available from the Internet.

Infrastructure as a Service is a provision model in which an organization

outsources the equipment used to support operations, including storage,

hardware, servers and networking components. The service provider owns

the equipment and is responsible for housing, running and maintaining it. The

client typically pays on a per-use basis.

Characteristics and components of IaaS include:

• Utility computing service and billing model.

• Automation of administrative tasks.

• Dynamic scaling.

• Desktop virtualization.

• Policy-based services.

• Internet connectivity.

SDK:Software Development Kit - A set of software creation tools that enable a

programmer to create applications from a pre-designed software framework.

148

Appendix B

149

1. UML Use Case Diagram for Android App (section 4.7)

User

Make connection
Login

«uses»

Select Task Select Maze Solving
«extends»

Select path
following

«extends»

End Task

Disconnect device

«uses»

Administrator

Troubleshoot

Fix bluetooth
connectivity

Fix Android
application

«extends»

«extends»

Cellbot Android App

Enter credentials

«uses»

Figure B.1 Using the Android App

150

2. UML Use Case Diagram for Cloud App Admin Portal (section 4.8)

Administrator

Login Enter Username and
Password

Change
username/password

Confirm old
password

«uses»

«extends»

«uses»

Administer
accounts DB

Add new account

Edit existing
account

«uses»
«uses»

Add Administrator
account

Add User account

«extends»

«extends»

Enter credentials

«uses»

«uses»

Delete account
Edit account info

«extends» «extends»

Update rights Change credentials

«uses» «uses»

Cloud App Administration

Figure B.2 Administering the Cloud App

151

3. UML Activity Diagrams(Section 4.9).

Start app on Robot

Make connection with cloud [unsuccessful]

Select available tasks

[success]

Path following

Maze Solving

Exit App

[no obstacles]

Get alternative instructions

[obstacle detected] [End not reached]

[End reached]

Download instructions

[End not reached]

[End of path]
[End reached]

Figure B.3 Service Selection Activity

152

Login

RoboApp Administration

New Account Creation

[Inexistant username]

[Incorrect password]

[Unverified]

[Verified administrator]

[Perform actions] [Account created]

Edit Database Monitor RoboApp

[Change/update] [View stats]

[Finished] [Finished]

Logout

[No further action]

[Further actions]

[No actions]

Figure B.4 Administration Activity

153

4. State Chart Diagrams (section 4.5)

Figure C.5 State Chart for class HandleRobot

154

Figure B.6 State Chart for class RobotClient

155

Appendix C

156

1. Shi-Tomasi algorithm

Point motion for a deformation area in a picture’s pixels matrix D is described

by:

𝐽𝐽(𝐴𝐴𝐴𝐴 + 𝑑𝑑) = 𝐼𝐼(𝐴𝐴)

where

• J is the current image

• I is the 1st image

• A = 1+D (1 is 2x2 identity matrix and D is the deformation matrix)

• d is the translation

D= �𝑑𝑑𝐴𝐴𝐴𝐴 𝑑𝑑𝐴𝐴𝑑𝑑
𝑑𝑑𝑑𝑑𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑�

D is usually set to zero. Now we measure dissimilarity c.

𝑐𝑐 = � [𝐽𝐽(𝐴𝐴𝐴𝐴 + 𝑑𝑑) − 𝐼𝐼(𝐴𝐴)]2𝑤𝑤(𝐴𝐴)𝑑𝑑𝐴𝐴
𝑤𝑤

• w(x) can be 1 or Gaussian function to emphasize center of window

• Differences are squared and summed

• Solved using Newton Rap son method

• Yields 6x6 system of linear equations

• Smaller system available for tracking only

Now the system is to be linearized:

𝐽𝐽(𝐴𝐴𝐴𝐴 + 𝑑𝑑) = 𝐽𝐽(𝐴𝐴) + 𝑔𝑔𝑇𝑇(𝑢𝑢)

Where:

g is the unknown guesses of the deformation matrix D.

T = ∬ � 𝑈𝑈 𝑉𝑉
𝑉𝑉𝑇𝑇 𝑍𝑍�𝑤𝑤 𝑤𝑤𝑑𝑑𝐴𝐴

157

Where:

If the two eigenvalues of Z are 𝜆𝜆1, 𝜆𝜆2 then our window of the corner is

min (𝜆𝜆1,𝜆𝜆2) > 𝜆𝜆

Where:𝜆𝜆 is a predefined threshold.

2. Pyramidal Lucas-Kanade Algorithm

This is a popular differential method for optical flow estimation and feature

tracking. The algorithm below has been taken from the paper Pyramidal

Implementation of the Lucas Kanade Feature Tracker Description (by Jean-

Yves Bouquet, Intel Corp.)

158

159

APPENDIX D

160

BAM specifications:

The Element Direct BAM (short for Bluetooth Adapter Module) enables

wireless control of the iRobot® Create™ robot from a Windows, Macintosh, or

Linux PC. The BAM connects to the Create’s cargo bay port – without any

extra wires or cables. The BAM provides a virtual serial port connection

between a Bluetooth host and Create. A PC can communicate with Create in

the same way it would as if it were attached with a serial cable. The BAM

gives a user complete wireless control of Create. It also exposes Create’s

programmable IO, making it easy to connect additional hardware. Bluetooth is

a communications system intended to replace the cables connecting

electronic devices. Unlike Wi-Fi and other wireless systems, Bluetooth is both

a low-power and a low-cost option, making it ideal for use with iRobot Create.

Bluetooth operates in the unlicensed ISM band at 2.4 GHz and employs a

frequency hopping radio to combat interference from other RF sources.

About BAM:

The BAM is a Class 1 (high power) Bluetooth device. It is capable of

communicating with a Bluetooth-enabled host, such as a desktop PC, laptop,

or PDA. There are two basic types of Bluetooth hardware: Bluetooth hosts

and Bluetooth devices. A laptop PC is an example of a Bluetooth host. A

wireless mouse, wireless printer, and the BAM are all examples of Bluetooth

devices. In order to connect to the BAM, you must have a computer which can

act as a Bluetooth host. Please consult your computer’s documentation to

determine whether it is a Bluetooth-enabled host.

161

Windows desktop PCs generally require an external USB Bluetooth radio.

Laptops may have an internal radio or require an add-on USB Bluetooth radio.

Androids may be a Bluetooth host already, or they may require an add-on

card.

BAM Features:

The BAM appears to the host computer or PDA as a Bluetooth Serial Port. It

provides a virtual serial cable connection between the host and Create. From

the host’s prospective, Create is connected to a wired serial port, and the host

can communicate and control Create through the iRobot Open Interface as if

Create were attached to the host with its included RS-232 serial cable. The

BAM has an IO Connector which enables users to add their own hardware to

Create. The DB-25 connector on the bottom edge of the BAM plugs directly

into the Create’s Cargo Bay Connector.

Indicator LED:

A red indicator LED displays the BAM’s current state. It provides a simple

method to determine whether the BAM is connected or disconnected to the

host. When Create and BAM are first powered on, the LED will flash 26 times

quickly. When the BAM is connected to a Bluetooth host, the LED will flash

once per second. When the BAM is disconnected from a host, the LED

flashes once every 3 seconds.

	Introduction
	Document Conventions
	Headings:
	Bullets and numbering:
	Figures and tables:
	References:
	Links to web pages:
	Acronyms:
	Basic Text:

	Intended Audience and Reading Suggestions
	Project Deputy Supervisor and faculty members:
	Reading suggestions:

	Problem Domain and Problems Addressed
	Objectives
	Deliverables
	Technological requirements
	Project Plan
	Team:
	Milestones:

	Summary:

	Introduction
	Works Read
	Worksand literature on Cloud Robotics
	Summary:

	Introduction
	Purpose
	Scope
	Final year project limitations:
	New Technologies in their early development stages:
	Limitations on the robot:
	Cloud size limitations:

	Overall Description
	Product Perspective

	Product Functions
	TheAndroid App
	The Cellbot Controller
	The Cloud App
	The cloud fabric
	The User Agent Admin

	User Classes and Characteristics
	Cellbot User:
	Administrator

	Operating Environment (OE)
	The cloud and its OE:
	The Cellbot and its OE
	Languages used in OE

	Design and Implementation Constraints
	User Documentation
	Assumptions and Dependencies
	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Communications Interfaces
	Communication between the cloud application and Cellbot App:
	Live Video Streaming:
	Communication between robot’s micro-controller and Cellbot controller:

	System Features
	Path planning service for Cellbots (Priority=high)
	Description:
	Ideal path without real time obstacles:
	Path with real time obstacle:
	Stimulus/Response Sequences
	Functional Requirements
	Cellbot app be in working state and show options for task selection
	Task selection can be of two types: Line following or Maze solving
	Video streaming to cloud is done at start of task till task completion
	The Cellbot is under cloud control till task completion
	The Cellbot App displays the video on the screen along with information on path completion percentage and cloud connection health
	The Cellbot App displays when exactly it is downloading information from the cloud via an indicator e.g. a blinking light or status light on its GUI

	Path and object information downloading from the cloud (Priority = high)
	Description
	Stimulus/Response Sequences
	The Cellbot app requests the cloud app for support on path planning
	The cloud app analyzes the video being streamed to it and queries the database for information
	The information is sent to the cloud app that uses images from the cell bot and compares them to the images from the database and selects an algorithm for movement based on certain metrics.
	The information is downloaded to the Cellbot app by the cloud as movement instructions
	Information is used for an object and sent down to the Cellbot in case an object is placed in the Cellbot’s way in real time.
	Functional Requirements

	Simple system administration (priority = high)
	Description
	Stimulus/Response Sequences
	Functional Requirements

	Other Nonfunctional Requirements
	Performance Requirements
	Cellbot
	Cloud
	User agent admin

	Safety Requirements
	Security Requirements
	Software Quality Attributes
	Other Requirements

	Summary:

	Introduction
	Scope
	Overview of the System Design:
	Deployment Diagram:
	Architectural Design
	Data Structure Design
	State Chart Diagrams
	Use Case Realizations
	Activity Diagrams
	Sequence Diagrams
	UI Design

	Design Models:
	Deployment Diagram
	Architectural Design
	TP Link Proprietary protocols router:
	Specification:
	Interface:

	Create ® Cellbot:
	Specification:
	Interface:

	Failover Cluster (cloud):
	Specification:
	Interface:

	Server A and B:
	Specification:
	Interface:

	SQL Server Database:
	Specification:
	Interface:

	Administration portal:
	Specification:
	Interface:

	Data Structure Design
	Android App Package:
	RobotClient Detail:
	VidUploader detail:
	InstructionReceiver detail:
	BluetoothInterface detail:

	Cloud App Package:
	Authentication details:
	Cloud AppServer details:
	HandleRobot details:
	RobotDetails details:
	InstructionGenerator details:
	MazeSolver details:
	PathFollowing details:

	Administration Portal Package:
	User details:
	Administrator details:
	Administration details:

	BL Databases:
	Map Database:
	Accounts Database:

	State chart Diagrams
	HandleRobot:
	RobotClient:

	Use Case Realizations
	Use Case List of Cellbot Android App:
	Use Case: Login
	Use Case Requirement
	Business Justification
	Use Case Paths
	Externals
	Preconditions
	Interactions
	Post-conditions

	Use Case: Select Task
	Use Case Requirement
	Business Justification
	Use Case Paths

	Use Case List for Administration Portal
	Use Case: Change Username/password
	Use Case Requirement
	Business Justification
	Use Case Paths

	Use Case: Add New Account
	Use Case Requirement
	Business Justification
	Use Case Paths

	Use Case: Edit Account info
	Use Case Requirement
	Business Justification
	Use Case Paths

	Use Case: Administer BL Database
	Use Case Requirement
	Business Justification
	Use Case Paths

	Activity Diagrams
	Sequence Diagram Design
	Administration
	Path Following:
	Maze Solving:
	/User Interface Design

	Summary:

	Introduction
	Software Implementation
	The CloudAppbackend
	5.2.1.1 Development environments for developing Cloud App and its database:
	5.2.1.2 Implementation of Image Processing
	Feature Selection:
	Tracking:

	Implementing the Private Cloud
	Configuring the failover cluster
	Physical node quorum in the failover cluster
	Choosing the quorum configuration
	Process of achieving quorum

	Administrating the CloudApp
	The Android App Backend
	The UI thread
	UDP datagram implementation for video streaming:
	TCP packets for command transmission implementation

	Hardware Implementation
	The iRobot Create
	The DB-25 Cargo Bay Connector

	iRobot Create Open Interface Commands
	Start OI command
	Baud command
	Drive Command

	Summary:

	Introduction
	Unit testing
	Integration testing
	System testing
	Software Results
	Live video streaming module’s results
	Command Downloading results

	Hardware results
	Analysis
	Summary:

	Introduction
	Future Work
	Conclusion
	Summary:

	BIBLIOGRAPHY
	Appendix A
	Appendix B
	Appendix C
	APPENDIX D

