
      Software Design Document 

For 

Storyboarding on the Move 
 

 

 

Prepared by: 
NC Hareerah Rafaqat 

NC Zainab Akhtar  
NC Zaineb Niaz 

 
 

Approved by: 
 

___________________________________________ 
Project Supervisor: Assistant Professor Bilal Rauf 

 
___________________________________________ 

Project Co-Supervisor: Lecturer Mobeena 
 
 

Military College of Signals (MCS), National University of Science and 
Technology (NUST) 

February 12, 2014 



Software Design Document for <Storyboarding on the Move >         2 

 

1.  INTRODUCTION.......................................................................................................................... 4 

1.1.  PURPOSE ................................................................................................................................. 4 
1.2.  PROJECT BACKGROUND .......................................................................................................... 4 
1.3.  SCOPE ..................................................................................................................................... 5 
1.4.  REFERENCE MATERIAL ........................................................................................................... 6 
1.5.  WORK BREAKDOWN STRUCTURE ............................................................................................ 6 

2.  DESIGN CONSIDERATIONS ..................................................................................................... 7 

2.1.  ASSUMPTIONS AND DEPENDENCIES ........................................................................................ 7 
2.2.  GENERAL CONSTRAINTS ......................................................................................................... 7 
2.3.  DEVELOPMENT METHODS ....................................................................................................... 8 

3.  ARCHITECTURAL DESIGN ...................................................................................................... 9 

3.1.  SYSTEM BLOCK DIAGRAM ...................................................................................................... 9 
3.2.  SYSTEM CONTEXT DIAGRAM ................................................................................................ 10 
3.3.  SOFTWARE COMPONENTS ..................................................................................................... 11 
3.4.  HARDWARE COMPONENTS .................................................................................................... 12 
3.5.  ARCHITECTURAL STYLE ........................................................................................................ 12 

4.  DETAILED DESIGN .................................................................................................................. 16 

4.1.  DATABASE DIAGRAM ............................................................................................................ 16 
4.2.  UNIFIED MODELING LANGUAGE (UML) DIAGRAMS ............................................................. 17 

5.  HUMAN INTERFACE DESIGN ............................................................................................... 36 

5.1.  USER INTERFACE ................................................................................................................... 36 

6.  DESIGN PATTERNS .................................................................................................................. 38 

6.1.  PATTERN NAME: 3-TIER PATTERN ........................................................................................ 38 
6.2.  PATTERN NAME: CONTROLLER PATTERN ............................................................................. 39 
6.3.  PATTERN NAME: CONTROLLER PATTERN .............................................................................. 41 
6.4.  PATTERN NAME:  3-TIER PATTERN ........................................................................................ 42 

7.  REFERENCES ............................................................................................................................. 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Software Design Document for <Storyboarding on the Move >         3 

 

Figure 1: Storyboarding On the Move. (a) Android User taking a picture (b)  Content 
uploaded on Website (c) Content saved in Database ................................................................. 5 
Figure 2: Work Breakdown Structure ........................................................................................ 6 
Figure 3: V-Model ...................................................................................................................... 8 
Figure 4: System Block Diagram ............................................................................................. 10 
Figure 5: System Context Diagram .......................................................................................... 11 
Figure 6: Model-View-Controller Diagram ............................................................................. 14 
Figure 7: 3-Tier Architecture .................................................................................................... 15 
Figure 8: Entity-Relationship Diagram .................................................................................... 16 
Figure 9: Use Case Diagram of System ................................................................................... 17 
Figure 10: Sequence Diagram for Login .................................................................................. 20 
Figure 11: Collaboration Diagram for Login ........................................................................... 20 
Figure 12: Use-case Diagram of Main Menu ........................................................................... 22 
Figure 13: Sequence Diagram for Take Picture ....................................................................... 24 
Figure 14: Collaboration Diagram for Take Picture ................................................................. 25 
Figure 15: Sequence Diagram for Set Location Alarm ............................................................ 27 
Figure 16: Collaboration Diagram for Set Location Alarm ..................................................... 27 
Figure 17: Sequence Diagram for View Storyboard ................................................................ 29 
Figure 18: Collaboration Diagram for View Storyboard ......................................................... 29 
Figure 19: System State Transition Diagram ........................................................................... 30 
Figure 20: Activity Diagram - Android Subsystem ................................................................. 31 
Figure 21: Activity Diagram - Web Subsystem ....................................................................... 32 
Figure 22: System Class Diagram ............................................................................................ 33 
Figure 23: Storyboard Interface - Web ..................................................................................... 37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Software Design Document for <Storyboarding on the Move >         4 

 

 

1. Introduction 

1.1.  Purpose 

The purpose of the project is to develop an android based mobile application along with a 

website based on similar context that focuses on maintaining a storyboard of user’s place to 

place, time to time activities. This paper typically documents all basic features of the android 

application as well as of the website.  

Main focus of this application is to provide the user with an attractive interface that offers a 

single platform to organize typical gallery items (pictures, videos, audio recording), personal 

notes, location alarms and to do list. All these features are maintained on the website as well, 

along with consistent updating. 

1.2. Project Background 

The product will be an application of the developed storyboarding system. It will maintain 

user’s time to time travel log by uploading the data on the website in form of a storyboard. It 

will be a new system focusing on facilitating the user to save his pictures, videos, personal 

notes, and other gallery features on the move, along with the coordinates from map of his 

current location using Wi-Fi to a secure server. If Wi-Fi is not available at some location then 

this application will buffer all the information and will upload this data after connecting to a 

Wi-Fi automatically. The product will be a new one of its kind.  

Software system will operate on Android based mobile devices and a web server. The product 

will be hosted by a web server since half part of the product is web-based. 

The application will be developed basically for mobile devices with limited memory and 

processing power. We have also considered the uploading time and slow speed of internet. 

For an effective Storyboarding application and Website, we need to limit the sizes of videos, 

audio and pictures etc. (gallery items) initially. For now we have limited the size of the 

pictures, videos or audio recordings to be not more than 10MB each. This way, we can 

manage to upload the content easily from the android device to the website.  

In addition, due to limited time of the project, some of the features that have been kept 

optional include providing an online platform to the users to comment and discuss about their 



Software Design Document for <Storyboarding on the Move >         5 

 

updates and the places they have already been to i.e. updating statuses and check-ins and 

creating a friend group such that only that group can view the shown content. 

1.3. Scope 

Purpose of the system is to develop an Application for Smartphones and a Web Application 

that maintains Users Timeline automatically. Content can only be uploaded from mobile 

phone and not the website. The tasks include uploading of pictures, videos, audio recordings, 

personal notes, status and location updates to the web server through web services 

(automatically when Wi-Fi is available otherwise kept in buffer).  

Optionally, the project might involve restricting the content to specific group of people added 

in the user’s contact list.  

Figure 1: Storyboarding On the Move. (a) Android User taking a picture (b) Content uploaded on
Website (c) Content saved in Database



Software Design Document for <Storyboarding on the Move >         6 

 

1.4.   Reference Material 

1.4.1. Project Proposal 

1.4.2. Project Defense Report 

1.4.3. Literature Review  

1.4.4. Software Requirements and Specification Document  
 

1.5. Work Breakdown Structure                                                                            

Figure 2: Work Breakdown Structure



Software Design Document for <Storyboarding on the Move >         7 

 

2.   Design Considerations 

2.1. Assumptions and Dependencies 

The project is based on the following assumptions: 

1. An Android based mobile will be available for deployment of application. 

2. The application would be developed using Android’s OS architectural model. 

3. The Android version on which the application will be created is Android 4.1 Jelly Bean. 

4. Application would run on required mobile device without integration of any extra 

hardware.   

5. The mobile device that will be used must have a Camera, GPS and WIFI hardware 

properly functional. 

6. We may use some third party components, COTS, to specifically achieve functional or 

non-functional requirements, as is required. 

7. We may require some initial training (i.e. workshop to familiarize us with the 

technology). 

8. As now the project scope/core functionalities to achieve have been finalized and 

approved by the concerned committees, scope may not be further enhanced at any stage 

during the project construction.  

2.2. General Constraints 

The application will be developed basically for mobile devices with limited memory and 

processing power. We have also considered the uploading time and slow speed of internet. 

For an effective Storyboarding on the Move, we need to limit the sizes of videos, audio and 

pictures etc. (gallery items) initially. For now we have limited the size of the pictures, videos 

or audio recordings to be not more than 10MB each. This way, we can manage to upload the 

content easily from the android device to the website.  

In addition, due to limited time of the project, some of the features that have been kept 

optional include providing an online platform to the users to comment and discuss about their 

updates and the places they have already been to i.e. updating statuses and check-ins and 

creating a friend group such that only that group can view the shown content. 



Software Design Document for <Storyboarding on the Move >         8 

 

2.3. Development Methods 

The approach used for this software design is V-Model method. V-model means Verification 

and Validation model. The V-Shaped life cycle is a sequential path of execution of processes. 

Each phase must be completed before the next phase begins. Testing of the product is planned 

in parallel with a corresponding phase of development. In figure 3, V-model has been shown 

that shows how at each phase testing has to be carried out. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                            

 

 

Figure 3: V-Model



Software Design Document for <Storyboarding on the Move >         9 

 

Requirements like BRS and SRS begin the life cycle model before development is started; 

a system test plan is created.  The test plan focuses on meeting the functionality specified in 

the requirements gathering. 

The high-level design (HLD) phase focuses on system architecture and design. It provides 

overview of solution, platform, system, product and service/process. An integration test plan 

is created in this phase as well in order to test the pieces of the software systems ability to 

work together. 

The low-level design (LLD) phase is where the actual software components are designed. It 

defines the actual logic for each and every component of the system. Class diagram with all 

the methods and relation between classes comes under LLD. Component tests are created in 

this phase as well. 

The implementation phase is, again, where all coding takes place. Once coding is complete, 

the path of execution continues up the right side of the V where the test plans developed 

earlier are now put to use. 

Coding is at the bottom of the V-Shape model. Module design is converted into code by 

developers. 

The reason of selecting V-Model as a development method for this project is because at each 

step testing was required to verify the perfection of the product. If at any step an error 

occurred and was ignored i.e. was not tested then it causes a bigger error in later stage. Also, 

because this model is Simple and easy to use and testing activities like planning, test 

designing etc. happens well before coding, which saves a lot of time, hence higher chance of 

success over the waterfall model. V-Model supports Proactive defect tracking i.e. defects are 

found at early stage. It avoids the downward flow of the defects and works well for small 

projects where requirements are easily understood. 

3. Architectural Design 

3.1.System Block Diagram 
Block diagram is a diagram of a system in which the principal parts or functions are 

represented by blocks connected by lines that show the relationships of the blocks. It is 

typically used for a higher level, less detailed description aimed more at understanding the 

overall concepts and less at understanding the details of implementation. 



Software Design Document for <Storyboarding on the Move >         10 

 

In Figure 3, system block diagram of Storyboarding on the Move clearly shows the 

relationship between the User, Android Device, Website, Server and the Database. The user 

can interact with the Android Device and Website. The android device uploads data to the 

server and the server then sends the data to the website and the database. 

 

3.2.System Context Diagram 

A System Context Diagram (SCD) is a diagram that defines the boundary between the system, 

or part of a system, and its environment, showing the entities that interact with it. This 

diagram is a high level view of a system. It is similar to a block diagram. 

In Figure 5, the context diagram of Storyboarding on the Move shows how the user interacts 

with the website and the android device. The admin interacts with the website and the 

database. Android device sends the data to the web server via web services, whereas the web 

server sends the data to the web site and the database via web services. 

 

Figure 4: System Block Diagram



Software Design Document for <Storyboarding on the Move >         11 

 

Before going into the detail of architectural design we here present logical division of project 

into modules/parts/subparts and different useful views. 

 

3.3. Software Components 

Our project contains following software components: 

Figure 5: System Context Diagram



Software Design Document for <Storyboarding on the Move >         12 

 

3.3.1. Operating Systems 

3.3.1.1. Windows 7-8 

3.3.1.2. Android OS (4.1.1 Jelly Bean) 

3.3.2. Software Packages 

3.3.2.1. Application 

3.3.2.1.1. Android SDK (Software Development Kit) 

3.3.2.1.2. Eclipse IDE (Integrated Development Environment) 

3.3.2.1.3. Java SDK 1.6 

3.3.2.2. Website 

3.3.2.2.1. Wamp Server 

3.3.2.2.2. Internet Browsers i.e. Google Chrome, Mozilla Fox etc. 

3.3.2.3. Database 

3.3.2.3.1. MySQL (Wamp Server) 

3.4. Hardware Components 

3.4.1. Personal Computer(s) 

3.4.2. Android Device with proper functioning Camera, GPS, Wi-Fi etc. 

3.4.3. Connecting Cables 

3.5. Architectural Style 

3.5.1. Application 

Architecture of Storyboarding on the Move application can be modeled using Model-View-

Controller.  



Software Design Document for <Storyboarding on the Move >         13 

 

3.5.1.1. Model 
A model is an object representing data or even activity. Model has the application data. In the 

project’s application the data will be saved in the devices’ storage memory. 

3.5.1.2. View 
A view is told by the controller all the information it needs for generating an output 

representation to the user. It can also provide generic mechanisms to inform the controller of 

user input. User class which has the functions related to the GUI forms the view. Interface of 

the system is distinct from the application logic. Interface forms the View of the architecture. 

In the project’s application all the .xml files are included in the view. 

3.5.1.3. Controller 
Controller in this system is Usecase handlers as the system functionality is clearly divided in 

modules. But for reusability of the system a façade controller will be a bad choice so use-case 

handler controllers are used. Controller controls the coordination between the view and the 

model. There is no direct communication between model and the view all the communication 

is directed using the controller.  

The system is divided into modules as per the main functionality of the system. These 

functionalities can be used separately as off-the shelf components. Interface of this system has 

no application logic embedded in it so the system architecture can easily be made using 

Model View Controller approach. 

For Example, pressing TakePicture_Button, RecordAudio_Button and ViewMap_Button are 

the functions that involve the processing of interface and no application logic is involved in it. 

So these will be included in View.  

TakePictureHandler is used for the TakePicture module, RecordAudioHandler is used for the 

RecordAudio module and ViewMapHandler is used for the ViewMap module. These 

UsecaseHandlers only invoke the functions of their respective modules. Controller only 

invokes the functions but does no processing. 

Model in this system is the TakePicture, RecordAudio, ViewMap class which is 

encapsulating the application logic. These classes are composing the other classes which have 

the distributed functionality. These classes process the requests made by the view through the 

controller. After processing, Model gives the retrieved results back to the controller. 

 



Software Design Document for <Storyboarding on the Move >         14 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                
 

3.5.2. Website 
Architecture of Storyboarding on the Move website can be modeled using Three-

Tier Architecture. 

3-tier architecture is client–server architecture in which presentation, application processing, 

and data management functions are logically separated. It provides a model by which 

developers can create flexible and reusable applications. By segregating an application into 

tiers, developers acquire the option of modifying or adding a specific layer, instead of 

reworking the entire application. 3-tier architecture is typically composed of a 

presentation tier, a logic tier, and a data tier. 

As more users access the system a three-tier solution is more scalable than the other solutions 

because you can add as many middle tiers (running on each own server) as needed to ensure 

good performance (N-tier or multiple-tier). Security is also the best in the three-tier 

architecture because the middle layer protects the database tier. There is one major drawback 

to the N-tier architecture and that is that the additional tiers increase the complexity and cost 

of the installation. 
3.5.2.1. Presentation tier 

This is the topmost level of the application. It communicates with other tiers by which it puts 

out the results to the browser/client tier and all other tiers in the network. In simple terms it is 

a layer which users can access directly such as a web page, or an operating systems GUI.  

Figure 6: Model-View-Controller Diagram



Software Design Document for <Storyboarding on the Move >         15 

 

In the project’s website, the data displayed by the web pages in the web browsers comes 

under this tier. 

3.5.2.2. Logic tier  

The logical tier is pulled out from the presentation tier and, as its own layer; it controls an 

application’s functionality by performing detailed processing. In this project, the PHP script 

will be in logic tier. The presentation layer contacts with the logic tier  

3.5.2.3. Data tier 

This tier consists of database servers. Here information is stored and retrieved. This tier keeps 

data neutral and independent from application servers or business logic. Giving data its own 

tier also improves scalability and performance. The database is included in the data tier. If 

there is any SQL query it is asked from the data tier, which in return sends a table to the logic 

tier for further processing.  

Figure 7: 3-Tier Architecture



Software Design Document for <Storyboarding on the Move >         16 

 

4. Detailed Design 

4.1. Database Diagram 

4.1.1. Entity Relationship Diagram 

ENTITIES ATTRIBUTES 

User UserID, FullName, Gender, Year Of Birth, Profile Pic 

Posts PostID, UID, DateTime, Post(Picture, Video, Audio, Places, 

Personal Notes) 

Comments CommentId, Pid, Uid, Comments 

Friends Uid, FriendID 

Accounts UserId, UserName, Password 

Figure 8: Entity-Relationship Diagram



Software Design Document for <Storyboarding on the Move >         17 

 

4.2. Unified Modeling Language (UML) Diagrams  

4.2.1. Use case Diagram 

Figure 9: Use Case Diagram of System



Software Design Document for <Storyboarding on the Move >         18 

 

4.2.1.1. Use case Specifications 

Actors: 

User  

Admin 

Use Cases: 

 

Main Menu To Do List Maintain User Profile  

Take Picture Status Updates (Optional Feature) Registration (application end) 

Make Video  Maintain Database (on server end)  Commenting and Discussion (Web end 

– Optional Feature) 

Record Audio  Login (for application) Create Friend Groups (Web end – 

Optional Feature) 

Personal Notes Login (for website) View Map  

Set Location Alarms Logout (for application) Logout (for website)  

View Storyboard 

 
Login (for website)  
 
Use Case Specification  

Use Case ID 1 

Use Case Name Login (for application) 

Actor(s) User 

Description The ‘Login’ feature on the web end will authorize the actor to 

enter and start with the website. After the actor’s login 

(username and password) is validated, he is able to use all 

features of the website. This actor authentication will take the 

actor to user profile where the he can view all system features 



Software Design Document for <Storyboarding on the Move >         19 

 

 
 
 
 
 
 
 
 

and his timeline.  

Pre-Conditions The Website must be linked with the application. 

Post-Conditions If the use case is successful, the actor will effectively login to 

the application. Otherwise, not. 

Normal Flow (Primary 

Scenario) 

The use case starts when the actor launches a browser: 

1. Write website address in the URL ; i.e. 

https://www.storyboardingonthemove.com 

2. The login screen will appear in case the actor is visiting 

the website for the first time or he has unchecked the 

“stay signed in” option previously.   

3. Actor will enter the username and password if already 

registered. 

Alternative Flow(s)  First Alternative Flow 

The use case starts when the actor launches a browser: 

1. Write website address in the URL ; i.e. 

https://www.storyboardingonthemove.com 

2. The login screen will appear in case the actor is visiting 

the website for the first time or he has unchecked the 

“stay signed in” option previously.   

3. Actor will enter the username and password if already 

registered. 

4. Otherwise, if the actor has checked the “stay signed in” 

option previously, he will be redirected to the homepage. 

If the user is not registered, however, he would have to 

click on register option on the screen.  



Software Design Document for <Storyboarding on the Move >         20 

 

Sequence Diagram 

 
Collaboration Diagram 

Figure 10: Sequence Diagram for Login

Figure 11: Collaboration Diagram for Login 



Software Design Document for <Storyboarding on the Move >         21 

 

Main Menu  

Use Case Specification  

Use Case ID 2 

Use Case Name Main Menu 

Actor(s) User 

Description Main menu allows the actor to select a particular feature among 

basic seven features of the application. These include: 

1. Take picture 

2. Make video 

3. Record audio  

4. Personal notes 

5. Set Location Alarms 

6. View Map 

7. To do List 

8. Status Update (Optional) 

Furthermore, the actor will also be able to access the pictures 

and videos from the main gallery. As for the audio recordings 

the actor will be able to access them from the application’s 

‘Audio’ folder. Also, there will be a ‘Log Out’ icon on the top 

right corner of this ‘Main Menu’ screen. 

Pre-Conditions The application must be properly installed on the device and 

actor should be authorized to use this application. The actor has 

to start the application first and log in to it. Also, the content 

related to the respective feature must be loaded in the 

application already and each feature must be linked with its 

metadata.  

Post-Conditions If the use case is successful the actor has the choice to enjoy any 



Software Design Document for <Storyboarding on the Move >         22 

 

of the above mentioned features of application. Otherwise, he 

can exit from the application as and when desired.  

Normal Flow (Primary 

Scenario) 

1. Click on any of the desired icon of the features being 

displayed on the Main Menu screen. 

2. A new screen will be displayed that will contain the 

content related to the feature selected in point 1. 

Alternative Flow(s)  1. Click back icon on the android device’s screen.  

2. Actor will be navigated back to the device’s menu where 

all other applications are seen in a grid view.  

 
  

 
Figure 12: Use-case Diagram of Main Menu



Software Design Document for <Storyboarding on the Move >         23 

 

Take Picture  

Use Case Specification 

Use Case ID 3 

Use Case Name Take Picture 

Actor(s) User 

Description The ‘Take Picture’ feature takes the actor to device’s camera, allows 

him to take picture. The picture is then saved to device’s gallery.  

Also, the actor will be given the option to accept or reject and retake 

a picture as per the desire. Accepting or rejecting the picture taken 

will generate an alert that is described in the following flow.  

Pre-Conditions The application must be properly installed on the device and actor 

should be authorized to use this application. Also, the device’s 

camera must be loaded in due time. 

Post-Conditions If the use case is successful the picture is saved in gallery. Otherwise, 

back or cancel button would close the ‘Take Picture’ activity safely 

and bring back the ‘Main Menu’ screen.   

Normal Flow 

(Primary Scenario) 

1. Click on the capture icon of the camera.  

2. An image will be captured and the actor will be having the 

options of accepting or rejecting the picture represented by a 

tick or cross respectively.  

3. Clicking on the tick mark will (firstly save the picture into the 

gallery at the back end and then) prompt the actor if he wants 

to upload the picture privately or publicly. 

 

Alternative Flow(s) First Alternative Flow 

1. Click on the capture icon of the camera.  

2. An image will be captured and the actor will be having the 

options of accepting or rejecting the picture represented by a 

tick or cross respectively.  

3. In case if the actor does not want to upload the picture at all, 



Software Design Document for <Storyboarding on the Move >         24 

 

 

Sequence Diagram 

he can click the ‘No’ option on prompt that will take him back 

to camera screen.   

Second Alternative Flow 

1. Click on the capture icon of the camera.  

2. An image will be captured and the actor will be having the 

options of accepting or rejecting the picture represented by a 

tick or cross respectively.  

3. If the actor wants to discard the picture altogether, he can 

click the cross sign, that will take him back to camera screen. 

Figure 13: Sequence Diagram for Take Picture 



Software Design Document for <Storyboarding on the Move >         25 

 

Collaboration Diagram 

Set Location Alarms 

Use Case Specification 

Use Case ID 4 

Use Case Name Set Location Alarms 

Actor(s) User 

Description This feature will be interlinked with the ‘To Do List’ feature of the 

application. Based on the location of a particular listed in the ‘To Do 

List’ feature, the ‘Location Alarm’ feature will get the co-ordinates of 

that location. An alarm will be triggered when the actor would be 

about to approach the respective location.   

Pre-Conditions The application must be properly installed on the device and actor 

Figure 14: Collaboration Diagram for Take Picture 



Software Design Document for <Storyboarding on the Move >         26 

 

should be authorized to use this application. Information of ‘To Do 

List’ feature must be linked and maintained constantly with this 

feature. Also, GPS of the android device should be activated and 

turned on.  

Post-Conditions If the use case is successful, application will trigger the respective 

alarm as the actor approaches relevant place.  

Normal Flow 

(Primary Scenario) 

1. The actor needs to turn on the GPS while he’s on the move.  

2. This feature will automatically trigger any alarms that might 

be related to the place(s) which cross the actor’s route at that 

time. 

3. A pop up window will appear that the actor would need to 

click/tap.  

4. Clicking this pop up will show all the details that the actor 

had already recorded while entering the task in ‘To Do List’ 

feature.  

5. Clicking the ‘OK’ button will take the actor back to ‘Main 

Menu’. 

Alternative Flow(s)  First Alternative Flow 

1. The actor needs to turn on the GPS while he’s on the move.  

2. This feature will automatically trigger any alarms that might 

be related to the place(s) which cross the actor’s route at that 

time. 

3. A pop up window will appear that the actor would need to 

click/tap.  

4. Clicking this pop up will show all the details that the actor 

had already recorded while entering the task in ‘To Do List’ 

feature.  

5. Clicking the ‘Done’ button will delete the alarm and mark out 

the respective task from the ‘To Do List’ feature. 

 
 



Software Design Document for <Storyboarding on the Move >         27 

 

Sequence Diagram 

 

Collaboration Diagram 

Figure 15: Sequence Diagram for Set Location Alarm 

Figure 16: Collaboration Diagram for Set Location Alarm 



Software Design Document for <Storyboarding on the Move >         28 

 

View Storyboard 

Use Case Specification 

 
 

 

 
 
 
 
 

Use Case ID 5 

Use Case Name View Storyboard  

Actor(s) User 

Description It will facilitate the actor to view a friend’s or his own storyboard 

activities.  

Pre-Conditions The user must be logged in already. The Website must also be 

linked with the DBMS along with consistent updating of data from 

the DBMS. 

Post-Conditions If the use case is successful, the actor will have the option to set 

privacy on his activities by making them visible only to selective 

people.  

Normal Flow 

(Primary Scenario) 

1. Click on name of the actor that is seen just below his picture 

at top left corner.  

2. The actor’s own storyboard will be seen.   

Alternative Flow(s)  1. Navigate to the website’s ‘Homepage’. 

2. Click on name of the actor that is seen just below his picture 

at top left corner.  

3. The actor’s own storyboard will be seen.  

4. In case the actor wants to view a friend’s storyboard, he 

searches the friend’s name in ‘Friends’ category on his own 

homepage, and clicks it.  

5. His friend’s storyboard will be seen. 



Software Design Document for <Storyboarding on the Move >         29 

 

Sequence Diagram 

 
Collaboration Diagram 

Figure 17: Sequence Diagram for View Storyboard 

Figure 18: Collaboration Diagram for View Storyboard 



Software Design Document for <Storyboarding on the Move >         30 

 

4.2.2. Logical View 

State Transition Diagram 

Figure 19: System State Transition Diagram



Software Design Document for <Storyboarding on the Move >         31 

 

4.2.3. Dynamic View 

Activity Diagram for Application 

Figure 20: Activity Diagram - Android Subsystem



Software Design Document for <Storyboarding on the Move >         32 

 

 
Activity Diagram for Website 

Figure 21: Activity Diagram - Web Subsystem



Software Design Document for <Storyboarding on the Move >         33 

 

4.2.4. Implementation View 

System Class Diagram 

Figure 22: System Class Diagram



Software Design Document for <Storyboarding on the Move >         34 

 

System Class Description 

Class Name Description 

 

User This is the base class of the system. The subclasses, Web User and Android 

User, inherit from this base class. Same user can be web user and android 

user also. 

Web User This class is the main class on the web side. Its sub classes include Admin 

class that maintains the database class. This class can manipulate the data 

uploaded and can view all the content that is pictures, video etc. 

Android User This class inherits from the base class User. It is the main class of the 

android application. It contains the following classes Picture, Video, Audio, 

Personal Notes, Locations, Alarms, To Do List. It leads to the other classes 

of the application. This class includes the function Register() that registers a 

new user. 

Post This is the main class for the posts the user posts on the webpage. It forms 

the base class for the following subclasses: Pictures, Video, Audio, Personal 

Notes and Locations. Post class has the following funtions: Save(), Upload() 

and Delete(). So the derived classes inherit the functions. 

Picture This class is responsible for openning camera activity, taking the picture and 

adjusting the camera features.This class is solely responsible for the 

capturing of image, saving it and uploading it as the user is asked whether he 

wants to upload the picture or not. It saves the image in the application’s 

folder. This class inherits the functions Save(), Delete() and Upload() from 

class ‘Post’ and another method of its own, i.e; ViewPic(). 

Video This class is responsible for openning camcorder activity, making the video 

and adjusting the camcorder features.This class is solely responsible for the 

recording of video, saving it and uploading it as the user is asked whether he 

wants to upload the video or not. It saves the image in the application’s 

folder. This class inherits the functions Save(), Delete() and Upload() from 

class ‘Post’ and another method of its own, i.e; PlayVid(). 

Audio This class records the audio tracks or voice notes.This class is solely 



Software Design Document for <Storyboarding on the Move >         35 

 

responsible for recording audio, saving it and uploading it as the user is 

asked whether he wants to upload the recording or not. It saves the audio file 

in the application’s folder. This class inherits the functions Save(), Delete() 

and Upload() from class ‘Post’ and a couple of methods of its own, i.e; 

PlayAud() and CreatePlaylist(). 

Personal 

Notes 

If the user chooses to save some notes for himself then this class handles it. 

The user is given the choice to whether upload the noted words or not. This 

class inherits the functions Save(), Delete() and Upload() from class ‘Post’ 

and another method of its own, i.e; WriteDescription(). 

Locations Locations class using the Google Maps API to display the map and also 

returns the coordinates of the user’s current location. When the user changes 

his location this class updates the coordinates using location listener. This 

class inherits the functions Save(), Delete() and Upload() from class ‘Post’ 

and another method of its own, i.e; GetCoordinates(). 

Alarms When the user has to set a reminder on a specific location, this class is 

responsible. It coordinates with the location class so that when the user 

passes that location, the alarm rings. It includes the functions; 

GetCoordinates() and Beep(). 

To Do List This class takes the users tasks to be done on the locations and saves it until 

the location is reached. It then triggers an alarm. This class inherits the 

functions GetCoordinates() and Beep() from class ‘Alarms’ and another 

method of its own, i.e; WriteDetails(). 

Admin This class is solely responsible for maintaining the database. As whatever the 

user does has to be saved in the database.  

Database This class maintains the data. It has all the data stored in it including the 

comments, posts, content etc. 

Storyboard This class is the main class on the user end. As it shows the data uploaded by 

the user. It contains the following funcitons; RetrieveDataFromDB(), 

DisplayData() and  SetPrivacy(). 

 



Software Design Document for <Storyboarding on the Move >         36 

 

5. Human Interface Design 

5.1. User Interface 
Storyboarding on the Move Application 

 
 

 
 

 
 

  

Splash Screen Registration Form Login Screen 

Menu Screen Camera Screen Video Screen 



Software Design Document for <Storyboarding on the Move >         37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Storyboarding on the Move - Website 

Map View Record Audio Screen 

Figure 23: Storyboard Interface - Web



Software Design Document for <Storyboarding on the Move >         38 

 

6. Design Patterns 

6.1. Pattern Name: 3-Tier Pattern 

Problem: What first object beyond the UI layer receives and coordinates a system operation 

(Login of Website)? 

Solution:  

 



Software Design Document for <Storyboarding on the Move >         39 

 

Whenever an input system event is generated by pressing the Login Button which is in the 

Presentation Layer of the system, request for the processing will be made to the Business 

Layer which in this scenario is Login class. This layer will then require the authenticated 

users from the database so the process will enter the Data Access Layer which in this case is 

the Login. This will use the database and retrieve the authenticated users from the database 

table. After processing, user will login if the user name is valid and the password matches the 

username. 

By using 3-tier architectural design pattern, clear separation of user-interface-control and data 

presentation from application-logic is obtained. Change in business logic won’t need change 

in other layers. Also, Dynamic load balancing can be done by use of multiple servers. 

Flexibility and scalability is achieved by running each layer on a different server. 

6.2. Pattern Name: Controller Pattern 
Problem: What first object beyond the UI layer receives and coordinates ("controls") a 

system operation (Take Picture)? 
Solution:  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Software Design Document for <Storyboarding on the Move >         40 

 

Whenever an input system event is generated by pressing the TakePicture Button which is in 

the View of the system, request for the processing will be made to the Controller which in 

this scenario is TakePictureHandler - a usecase controller class. TakePictureHandler will then 

forward this request to the TakePicture class which is Model in this case, will then process the 

request using its functions and data.  After processing, Model will return the result to view 

which in this case will be an image. 

Processing in the Model includes opening of the camera feature of mobile, adjusting the 

image if required and then capturing it. 

By using this Controller pattern, interface logic will be separated from the business logic .It 

will increase the potential for reuse and pluggable interfaces. It also provides an opportunity 

to reason about the state of the use case which is done by the controller which allows the state 

information to be saved in the usecase handler. It provides low coupling, high cohesion and 

high reusability. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Software Design Document for <Storyboarding on the Move >         41 

 

6.3. Pattern name: Controller Pattern 

Problem: What first object beyond the UI layer receives and coordinates ("controls") a 

system operation (Set Location Alarms)? 
Solution:  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Whenever an input system event is generated by pressing the SetLocationAlarms Button 

which is in the View of the system, request for the processing will be made to the Controller 

which in this scenario is SetLocationAlarmsHandler - a usecase controller class. 

SetLocationAlarmsHandler will then forward this request to the SetLocationAlarms class 

which is Model in this case, will then process the request using its functions and data.  After 

processing, Model will return the result to view which in this case will be an image. 

Processing in the Model includes taking a location from the user, locating it on the map, 

taking time for the alarm and setting it to beep at that time.  



Software Design Document for <Storyboarding on the Move >         42 

 

By using this Controller pattern, interface logic will be separated from the business logic .It 

will increase the potential for reuse and pluggable interfaces. It also provides an opportunity 

to reason about the state of the use case which is done by the controller which allows the state 

information to be saved in the usecase handler. It provides low coupling, high cohesion and 

high reusability. 

6.4. Pattern name:  3-tier Pattern 

Problem: What first object beyond the UI layer receives and coordinates a system operation 

(View Storyboard)? 

Solution: 

Whenever an input system event is generated by pressing the ViewStoryboard Button which 

is in the Presentation Layer of the system, request for the processing will be made to the 

Business Layer which in this scenario is Storyboard class. This layer will then require the 

authenticated users from the database so the process will enter the Data Access Layer which 

in this case is the tables in the database. This will use the database and retrieve all the data 

from the database tables.  



Software Design Document for <Storyboarding on the Move >         43 

 

By using 3-tier architectural design pattern, clear separation of user-interface-control and data 

presentation from application-logic is obtained. Change in business logic won’t need change 

in other layers. Also, Dynamic load balancing can be done by use of multiple servers. 

Flexibility and scalability is achieved by running each layer on a different server. 

 

7. References  

[1] IEEE Standard SRS Template 

[2] www.processimpact.com 

[3] http://www.utd.edu/~chung/RE/NFR-18-4-on-1.pdf 

[4] https://www.student.cs.uwaterloo.ca/~se463/Examples/SRS-Alex-Kalaidjian.pdf 

[5] http://www.threesl.com/pages/webletterFebruary06/Non_Functional_Requirements.php 

[6] https://play.google.com/store/apps/details?id=gaugler.backitude 
[7] https://play.google.com/store/apps/details?id=se.bjuremo.hereiam.lite 
[8] https://play.google.com/store/apps/details?id=silvertech.LocationAlarm&hl=en 
[9] https://play.google.com/store/apps/details?id=igost.presents.locationalert&hl=en 

[10] http://www.studymode.com/essays/Conclusion-For-Benifits-Of-Using-a-1093275.html 
[11] https://sites.google.com/site/facebooktlc/what-is-facebook-1 
[12] https://play.google.com/store/apps/details?id=gaugler.backitude&hl=en 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Software Design Document for <Storyboarding on the Move >         44 

 

Appendix A: Glossary 

 
Abbreviation Complete 

SDS Software Design Specification 

Wi-Fi Wireless Fidelity 

DBMS Database Management System 

GPS Global Positioning System 

APP Application 

API Application Programming Interface 

HTTP Hyper Text Transfer Protocol 

OS Operating System 

COTS Component off the shelf 

APK Android Package Kit 

HTML Hyper Text Markup Language 

 


