

RADIO SPECTRUM MANAGEMENT SYSTEM

By

Capt Faisal Nasim

Capt Mohsin Bashir

PC Umar Farooq

PC Tahir Noor

Submitted to the Faculty of Computer Science

National University of Sciences and Technology, Rawalpindi in partial fulfillment for

the requirements of a B.E Degree in Computer Software Engineering

AUGUST 2009

ABSTRACT

RADIO SPECTRUM MANAGEMENT SYSTEM

R&S ESMB is a monitoring and test receiver for radio signals detection and their

monitoring tasks. This receiver is capable of receiving signals ranging from 9.0KHZ

to 3.0GHZ. These signals possess valuable information which cannot be extracted

due to usage of various types of modulations, source encoding techniques, scrambling

and encryption. These all things come in such a variety that any heuristic approach

cannot be used and only a careful analysis of signals can reveal the information inside

it. For this analysis, we need to receive these signals inside computing machine in a

soft format for further processing.

Radio Spectrum Management System is designed to communicate with R&S ESMB

radio receiver. This software connects to the R&S ESMB radio receiver via Ethernet

10Base-T interface through TCP/IP and gathers data sent from R&S ESMB radio

receiver to computer, stores the received data, implements a control module for

automated control of R&S ESMB radio receiver and plays real time audio data

received from receiver.

 ii

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

any other award or qualification either at this institution or elsewhere.

 iii

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation, a work

of this magnitude would not have been possible

 iv

ACKNOWLEDGMENTS

We are thankful to Almighty Allah for blessing us with the strength and courage to

undertake and complete this project.

We are grateful to MILITARY COLLEGE OF SIGNALS (MCS) as it had been

our foundation and has provided us opportunity to undertake this project.

We gratefully recognize the continuous supervision and motivation provided to us by

our Project Supervisor, Maj Dr NAVEED IQBAL RAO (Image Processing Centre,

MCS-NUST). A lot of effort and contribution has been put in by our co-supervisor Lt

Col MANSOOR SINDHU (R&D, MCS-NUST). We are really thankful to Maj

ZULFIQAR MEHDI (EW Dte) and Lec AHMED MEQEEM SHERI for putting their

efforts to facilitate us. We are grateful to the staff of R&D department, MCS for being

very helpful in this project. We deeply treasure the support and tolerance that we

received from our friends for their useful suggestions that helped us in completion of

this project. We are also deeply obliged to our families for their never ending patience

and support for our mental peace and to our parents for the strength that they gave us

through their prayers.

 v

TABLE OF CONTENTS

LIST OF TABLES………………………………………………………………................viii

LIST OF TABLES…………………………………………………………………………...ix

1 Introduction ..1

1.1 Preface: .. 1
1.2 Project Vision: ... 1
1.3 Proposed Solution: .. 2
1.4 Aim of the project: .. 2
1.5 Organization of Project Report: .. 3

2 Literature Review ..4

2.1 Introduction: .. 4
2.2 Introduction to R&S ESMB: ... 4
2.3 Device Model and Command Processing: .. 4

2.3.1 Remote Client: ... 6
2.3.2 Data Memory: .. 9

2.4 Conclusion:.. 10
3 System Analysis ..11

3.1 Introduction: .. 11
3.2 Project Scope: .. 11
3.3 Requirements Specification: ... 11

3.3.1 External Interface Requirements: .. 12
3.3.1.1 User Interfaces: ... 12
3.3.1.2 Software Interfaces: .. 12

3.3.2 Major Functional Requirements: ... 12
3.3.2.1 Controlling the receiver remotely: .. 13
3.3.2.2 Data Parsing: .. 13
3.3.2.3 Playing real time audio data: .. 14
3.3.2.4 Data Storage: .. 15

3.3.3 Major Non-Functional Requirements: ... 16
3.3.3.1 Security ... 16
3.3.3.2 Reliability ... 16
3.3.3.3 Maintainability.. 16
3.3.3.4 Reusability .. 16

 vi

3.3.3.5 User friendly GUI ... 16
3.4 Use case Diagram: ... 17
3.5 Conclusion:.. 19

4 System Design ...20

4.1 Introduction: .. 20
4.2 Architectural Diagram: .. 20
4.3 High Level Design: ... 21

4.3.1 Control Module: ... 22
4.3.2 Data Parser Module: .. 22
4.3.3 Data Storage Module: .. 23
4.3.4 Sound Module: ... 24

4.4 Low Level Design: .. 25
4.5 Class Diagram: .. 26
4.6 Data Flow Diagram: .. 27
4.7 Conclusion:.. 28

5 Implementation ..29

5.1 Introduction: .. 29
5.2 Implementation language: ... 29
5.3 Software Architecture: .. 30
5.4 Distribution of classes with respect to Modules: .. 31

5.4.1 Data Parsing Module: .. 31
5.4.2 Control Module: ... 33
5.4.3 Sound Module: ... 39
5.4.4 Data Storage Module: .. 39
5.4.5 Data Viewing: .. 40

5.5 Commands:.. 41
5.6 Conclusion:.. 44

6 Testing ...45

6.1 Introduction: .. 45
6.2 Testing Process: ... 45

6.2.1 Unit Testing: .. 45
6.2.1.1 CEB200UdpSock.cc: .. 46
6.2.1.2 ExampleWindow.cc:... 46
6.2.1.3 Command () of ExampleWindow.cc: ... 47
6.2.1.4 MessageList2.cc: .. 47

 vii

6.2.1.5 MessageList.cc: .. 48
6.2.1.6 Thread.cc: ... 49
6.2.1.7 Threadaudio.cc: .. 49
6.2.1.8 MScan.cc: ... 50
6.2.1.9 DScan.cc: .. 51
6.2.1.10 FScan.cc:... 51

6.2.2 Component Testing: ... 52
6.2.2.1 Parser Module: .. 52
6.2.2.2 Control Module: ... 53
6.2.2.3 Storage Module: ... 54
6.2.2.4 Sound Module: ... 55

6.2.3 Integration Testing: .. 55
6.2.3.1 Integration of Data Parser Module with GUI: 56
6.2.3.2 Integration of Control Module, Data Parser and GUI: 57
6.2.3.3 Integration of Data Storage Module with Data Parser, Control
Module and GUI: ... 58

6.2.4 White Box Testing: .. 58
6.2.5 Black Box Testing: .. 59

6.2.5.1 Checking the System on Valid Data: .. 59
6.2.5.2 Checking the System on Invalid Data: ... 59

6.2.6 Static Analysis of Code:... 60
6.2.6.1 Control Flow Analysis .. 60
6.2.6.2 Data Analysis:... 61
6.2.6.3 Interface Analysis: .. 61

6.3 Conclusion:.. 62
7 Future Work and Conclusion ...63

7.1 Future Work: ... 63
7.2 Conclusion:.. 64

APPENDIX A ...65

APPENDIX B ...71

APPENDIX C ...88

APPENDIX D ...90

APPENDIX E ...92

 viii

LIST OF TABLES

Table Page Number

3-1 Audio Modes ...16

4-1 Different Modes of Audio ...25

6-1 Test case for EB200UdpSock.cc ...47

6-2 Test case for ExampleWindow.cc ..48

6-3 Test case for Command() of ExampleWindow.cc ...48

6-4 Test case for MessageList2.cc ..49

6-5 Test Case for MessageList.cc ..49

6-6 Test Case for Thread.cc ...50

6-7 Test Case for Threadaudio.cc ..51

6-8 Test Case for MScan.cc ...51

6-9 Test Case for DScan.cc ..52

6-10 Test Case for FScan.cc ..53

6-11 Test Case for Parser Module ...54

6-12 Test Case for Control Module ...55

6-13 Test Case for Storage Module ...55

6-14 Test Case for Sound Module ...56

6-15 Test Case for Integrated Data Parser and GUI ..57

6-16 Test Case for Integrated Control, Data Parser and GUI58

6-17 Test Case for Integrated Data Parser, Storage, Control Modules and GUI59

 ix

LIST OF FIGURES

Figure Page Number

2-1 R&S ESMB Front Panel ...4

2-2 Device Model with Remote Control ...5

2-3 Structure of a Remote Client within the Firmware..6

2-4 Layer Model of Sockets ...7

2-5 Data Classification into Data Groups ..9

3-1 Use Case Diagram ...17

4-1 Architectural Diagram ...21

4-2 High Level Design ...21

4-3 Low Level Design ...25

4-4 Class Diagram..26

4-5 Data Flow Diagram ...27

5-1 Software Architecture ..30

5-2 Data Parsing ...32

5-3 GUI MScan ..33

5-4 GUI DScan ..33

5-5 GUI Att ..34

5-6 GUI FScan ...34

5-7 GUI EditList ..35

5-8 GUI Squelch ..35

5-9 GUI MemContents ..36

5-10 GUI Tone ...36

5-11 GUI Gain ...37

 x

5-12 GUI Common Controls ...37

5-13 Control Module..38

5-14 Data Storage Module ...40

 1

Chapter 1
1 Introduction

1.1 Preface:

R&S ESMB is a monitoring and test receiver for radio signals detection and

their monitoring tasks. This receiver can be connected to the computer via 10BASE-T

and RS32 interfaces. This receiver is capable of receiving signals ranging from

9.0KHZ to 3.0GHZ and. These signals possess valuable information which cannot be

extracted due to usage of various types of modulations, source encoding techniques,

Scrambling and encryption. These all things come in such a variety that any heuristic

approach cannot be used and only a careful analysis of signals can reveal the

information inside it. For this analysis, we need to receive these signals inside

computing machine in a soft format for further processing.

1.2 Project Vision:

The basic idea behind this project is to control the R&S ESMB radio receiver

remotely. Another objective is to facilitate the operator by providing him easy

interface to interact with the receiver. Reception of radio signals inside computer,

extraction of valuable information from these radio signals, and storage of the

important information retrieved from radio signals is also a main objective .This can

be done by implementing software which makes it possible for operator to configure

and control the receiver without operating the front panel of the R&S ESMB receiver.

This project is hence an effort to contribute towards achieving this goal.

 2

1.3 Proposed Solution:

The proposed solution addresses the following problem:

• Connection of the receiver to the computer via 10BASE-T interface

through TCP/IP

• Reception of radio signals inside computer

• Displaying information inside radio signals to the operator

• Providing a facility to control the receiver through the computer

• Making it possible to store the data received from receiver

• Retrieving the stored data

1.4 Aim of the project:

The aim of the project is to effectively deal with the scenario where an operator

is operating R&S ESMB radio receiver. In the recommended solution, the operator

instead of controlling and configuring the receiver from its front panel, he will be able

to do this by sitting on the computer. The operator with the help of proposed solution

will be able to receive the radio signals inside computer. The data received from

receiver can be viewed by the operator. There is also a facility to store and retrieve the

received data. Operator can also listen the audio coming from the receiver.

 3

1.5 Organization of Project Report:

The project report has been drafted carefully deciding the sequence to be

followed. After the introduction section, the report incorporates the Literature Review

chapter summarizing the text studied before and during the project’s execution.

Subsequently, the System Analysis chapter comes which includes the major interface,

functional and non-functional requirements of the system. It also incorporates the use

case diagram and the sequence diagram of the system. Next is the System Design

chapter comprising of the architectural diagram, data flow diagram and class diagram.

Following this the report includes the implementation chapter identifying and

elucidating the classes which are implemented. Then is the testing chapter

incorporating the testing process employed to test the system and the results that were

obtained. The next chapter then discusses the work that can be done in future to

further enhance the system and ultimately this chapter wraps the report.

 4

Chapter 2
2 Literature Review

2.1 Introduction:

This chapter is an effort to summarize the material that has been studied

throughout the project. The literature studied can be divided into three main parts,

introduction to R&S ESMB, Device Model and Command Processing and Status

reporting system. Going through this section will aid in comprehending the later

chapters.

2.2 Introduction to R&S ESMB:

R&S ESMB is a monitoring and test receiver for radio signals detection and

their monitoring tasks. This receiver is capable of receiving signals ranging from

9.0KHZ to 3.0GHZ. It can be connected to the computer by Ethernet 10Base-T

interface through TCP/IP. The front panel of the receiver is shown below.

Figure 2-1: R&S ESMB Front Panel [1]

2.3 Device Model and Command Processing:

The following figure shows the basic structure of the unit under firmware aspects.

 5

Figure 2-2: Device Model with Remote Control

The actual receiver is isolated from the front control panel and the remote control

units by a central data memory. This memory is at the core of the ESMB firmware

and deals with the following tasks:

• Administration of connected modules (receiver, front control panel, remote

clients)

• Making data available to the receiver (e.g. receive frequency, scan parameters)

• Sequentialization of settings for simultaneous manual and remote control

• Sending messages on parameter changes to all modules

• Storing data in the CMOS RAM for protection against power failure

As mentioned above, the receiver can be controlled from the front panel and one

or several remote control units – the remote clients – simultaneously (competitive

control). Upon system start, the front control panel and the receiver are logged in to

the data memory automatically. These modules are therefore always connected. The

remote clients are logged in if a host computer sets up a link to the ESMB [1].

The receiver obtains the required data (receive frequency, bandwidth, etc.)

from the memory. It has no data storage facility of its own and therefore has direct

access to the central memory. Due to the principle of competitive control, different

clients can modify the same parameters. The central memory sequentializes the access

CMOS RAM

Central
Memory

Receiver Front Control
Panel

Remote
Client

 6

procedures (last client wins) and sends messages to the other users that a parameter

has been changed [1].

Remote client 1 modifies the frequency value. The central memory signals to

the receiver that a new frequency is to be set. The front control panel is supplied with

the new frequency. Remote client 2 (if connected) receives a modification report [1].

If the receive frequency is changed by the receiver due to a scanning

procedure or an AFC correction, this is reported to remote clients 1 and 2. The front

control panel receives the new receive frequency and displays it [1].

A large number of parameters have to be stored power-failure-proof. This is

ensured by the central memory: it stores all modifications of the relevant parameters

in the CMOS RAM and assigns them to checksums. Upon switching on the unit, the

checksums are checked, and the data are retrieved from the CMOS RAM or default

values are used [1].

2.3.1 Remote Client:

Structure of a remote client within firmware is shown in the following figure

 Figure 2-3: Structure of a remote client within the firmware

• Sockets

The remote clients are connected to the host computer by so-called sockets. These

are logic point-to point links that are independent of the transmission medium used.

Input Unit
with Buffer

Memory

Command
Detect

Output Unit
with buffer

Memory

Status
Reporting

System

Socket

To data
memory

 7

Sockets are based on the Transmission Control Protocol (TCP) or the User Datagram

Protocol (UDP, not used in ESMB). These two protocols are in turn based on the

Internet Protocol (IP). Following figure shows the layer model of the sockets [1].

Figure 2-4: Layer Model of sockets

The transmission media are located beneath the IP layer. IF the ESMB is fitted

with an RS232- compatible interface (option) it is coupled to the IP layer by means of

the Point-to-Point Protocol (PPP). This is necessary because IP is a packet-oriented

protocol. This is not necessary if the LAN interface (standard) is used, because the

Ethernet protocol of this interface is already packet-oriented [1].

The use of sockets has several advantages:

1. The protocols used (PPP, IP, TCP, UDP) are standardized and implemented

on all customary operating systems (WindowsNT, Windows95, Windows 3.1,

UNIX, SunOS)

2. TCP links are protected against transmission errors

3. Host software can be generated independent of the transmission medium used

(LAN or RS232)

4. Several logic links may use the same transmission medium.

5. IP routing enables access also to remote units also over great distances (e.g.

via the Internet)

 8

When the unit is started, a so-called list socket is generated. It functions as the

unit’s "receptionist". Each host wishing to remote-control the ESMB has to log in

with the list socket first. The list socket then generates a new remote client and

allocates the link to a new socket so the list socket remains free to receive further

hosts. For login at the list socket, the host needs to have the address and port number

of the unit. This can be set in the Setup Remote menu [1].

• Input Unit

Data transmission via sockets is packet-oriented. Each packet received is handed

over to command recognition [1].

• Command Detect

Command detect analyzes the data received from the input unit. Data are

processed in the sequence they have been received. The data received consist of

strings that have to be in accordance with the SCPI standard. The SCPI standard is

based on the IEEE 488 standard. Normally, this standard only applies to IEC/IEEE

bus (also referred to as IEC625, HPIB or GPIB). Another IEEE standard, IEEE 1174,

is a supplement to IEEE 488, making it applicable also to LAN and serial links

(RS232). The ESMB uses this standard as a basis for SCPI commands via sockets.

Each identified setting command contained in an SCPI string is first stored in a

buffer memory. Only a <Program Message Terminator> (line feed) or a query

command will cause the setting commands to be sent to the data memory, where they

are checked for consistency. If the commands are consistent, they will be executed at

once, and the other modules will be informed. Query commands generate a request to

the memory. The memory sends back the data, which will then be processed

according to the SCPI standard by the command detect. Finally, the SCPI response

strings are sent to the output unit [1].

 9

• Output Unit

The output unit collects all data in the output buffer that were generated in

response to query commands. If the command detect identifies the end of an SCPI

command (by the <Program Message Terminators>), it causes the output unit to send

the data in the output buffer to the host computer via the socket [1].

• Status Reporting System

The Status Reporting System gathers information on the device status and

makes it available to the output unit on request. The Status Reporting System may be

used for messaging asynchronous events (e.g. error statuses, availability of results,

data modifications by other users, etc.) to the host computer [1].

2.3.2 Data Memory:

This figure shows the classification of data into data groups. These groups are

also reflected by the Status Reporting System of the remote clients in the extension

register status [1].

Figure 2-5: Data Classification into Data Groups

Receiver data
e.g. frequency,
bandwidth

Miscellaneous
e.g. Loudspeaker,
ext. reference

FScan data e.g.
start frequency,
stop frequency

Front contr.
Panel data e.g.
illumination

MScan data e.g.
cycle count

Memory
locations

Suppress Range

 10

2.4 Conclusion:

This chapter incorporated the explanation of all the significant technical terms

which are used in coming chapters. This chapter provides comprehensive information

necessary for the understanding of this project.

 11

Chapter 3
3 System Analysis

3.1 Introduction:

This chapter covers the system analysis phase of the project. In this phase, first

of all scope of the project is presented as it’s clear definition and understanding is

needed for the absolute comprehension of the system’s requirements’ specification

phase, including major functional and non-functional requirements, is described. The

requirement specification phase is then followed by use case diagram for the better

understanding of the system analysis phase of the project.

3.2 Project Scope:

Radio Spectrum Management System Using R&S ESMB is designed to

communicate with R&S ESMB device. This system will establish a connection to the

receiver via 10BASE-T interface through TCP/IP protocol. The system gets UDP

datagram from the receiver and extracts meaningful information out of this datagram.

Mechanism of data storage is devised so that important data can be stored on hard

disk for record and future data analysis. Automated control of the receiver is

implemented so that receiver can be configured through computer without operating

the front panel of the receiver and in order to achieve this; command set of the

receiver is implemented. A sound module is also implemented so that operator can

listen and store the audio data.

3.3 Requirements Specification:

The requirements specifications of the system include its external interface

requirements including user and software interface requirements. It also involves the

 12

analysis of the major functional requirements including the main functionalities that

the system is expected to deliver. Analysis of main non-functional requirements is

also important as it tends to give an idea about the characteristics of the system such

as accuracy, scalability etc.

3.3.1 External Interface Requirements:

Requirements which include the interaction of the system with the external

requirement e.g. user interface through which the user interacts with the system and

software interfaces means the software tools which are employed in the system.

3.3.1.1 User Interfaces:

Several GUIs are required to enable the operator to interact with the system for

example; a GUI to connect the receiver to the computer, a GUI to control the receiver

and another GUI to save the data in receiver’s memory locations.

3.3.1.2 Software Interfaces:

The Project employs opensuse11.0 as the operating system and software tools

such as GTKMM and KDEVELOP are used. GTKMM is a library for designing the

GUI and KDEVELOP is an IDE for C++.

3.3.2 Major Functional Requirements:

Functional requirements means the core functionalities that the system is meant

to deliver, e.g. separation of UDP datagram into meaningful information, controlling

the receiver from the computer rather than receiver’s front panel, playing the audio

data coming from the receiver and storing the data into system’s hard disk and then

retrieving this data. These functionalities are illustrated in more details under the

following headings.

 13

3.3.2.1 Controlling the receiver remotely:

The ESMB receiver has the capability to be remotely controlled from a computer

through the TCP/IP connection. The receiver has a standard command set through

which it is controlled e.g. if we want to set the frequency of the receiver to 106.20

through remote control client, we will use the following command, encapsulate it in a

TCP packet and send it to the receiver.

FREQuency 106.20 MHz

The frequency of ESMB receiver will be set to 106.20 MHz. Furthermore, to

report any changes in the receiver to the remote client, it has a complete status

reporting system through which it can send interrupts to client.

By using this command set and status reporting system, a GUI based control

module for the receiver will be designed. The command set of the receiver has a lot of

commands. The GUI of the control module will not implement all the commands

rather only those commands will be implemented that forms the basic structure for

controlling the receiver e.g. setting of the frequency remotely is necessary for remote

client and its commands will be implemented but command for adjusting the

brightness of the receiver’s display will not be the part of the control software and

which are not necessary at initial stage.

3.3.2.2 Data Parsing:

The receiver has the capability to send the monitored data to the client

computer through UDP. The remote client will implement the UDP server and listens

for the UDP data sent from the ESMB receiver. This UDP connection will be in

addition to the TCP connection for controlling the ESMB receiver.

 14

The ESMB receiver monitors following types of data

• FSCAN

• DSCAN

• MSCAN

• Audio

• GSM

• CW

• IFPAN

• FASTLAVCW

• LIST

One UDP datagram encloses only one type of data. The device monitors one

type of data at a time enclosed in a UDP datagram and sends to the nominated PC.

When the ESMB receiver is switched from one mode to another mode of data during

send process e.g. from FSCAN to Audio mode then UDP datagram contains data for

that mode. The data is enclosed by the device in UDP datagram as per standard set in

SCPI.

The functioning of this module is to check whether the UDP datagram

received is of RSMB receiver. After confirmation about the data, it will parse data i.e.

it will check which type of data the UDP datagram contains.

3.3.2.3 Playing real time audio data:

The ESMB receiver uses 12 Audio modes to send Audio data as shown in the

following table

 15

Table 3.1: Audio Modes

It should be able to pick up the mode of the ESMB receiver automatically

and configure its computer’s sound card accordingly for the play back of raw Audio

data.

3.3.2.4 Data Storage:

The system should have the mechanism to handle different types of data and save

individual types of data separately in different files for future analysis. This

requirement should be able to handle following issues

• When ESMB receiver is delivering one type of UDP data to the hosting

computer and is switched from one mode to another mode, the software

system should be able to handle new type of data and must be able to save

every type of data by tagging it.

• There should be a mechanism so that the stored data can be recognized i.e. if

user requires the data as per date/time or type of data he/she should be able to

find target files.

 16

3.3.3 Major Non-Functional Requirements:

3.3.3.1 Security
The system should be secure in a sense that the information should be received by the

intended user only.

3.3.3.2 Reliability
The system should be reliable in a sense that the system should provide the users with

the required functionality round the clock.

3.3.3.3 Maintainability
The system will be made maintainable so that incase of error or the user’s complaints

the system might be changed to satisfy the new needs or to correct the errors.

3.3.3.4 Reusability
The system will be made reusable by making the application open source.

3.3.3.5 User friendly GUI
The user interface for the application should be friendly and interactive.

 17

3.4 Use case Diagram:

Following is the use case diagram of the system

Figure 3-1: Use case Diagram

Figure 3.1: Use Case Diagram

Brief Description:

• Configure Receiver:

The operator will be able to configure the receiver through the control module.

The configuration will include such steps as setting of frequency changing bandwidth

and increasing or decreasing volume etc.

• Start Data Input:

 Data will be collected at computer which is sent from receiver. This is real

time data, which can be of any type.

Radio Spectrum Management System

Configure
Receiver

Start Data
Input

Stop Data
Input

Save Data

Play/Stop
Sound

Operator

 18

• Stop Data Input:

 The data coming from the receiver and collected by the computer will longer

be coming from the receiver.

• Play Sound:

 Operator sitting on the computer listen real time audio data coming from the

receiver.

• Stop Sound:

 Operator can stop the audio which is being played and listened on the

computer connected to the receiver.

• Save Data:

 The data coming from the receiver can be stored on the computer’s hard disk,

so that it can be available for future analysis.

 19

3.5 Conclusion:

 The system analysis of the project has been covered in this chapter. The scope

of the project has been revised for the clear understanding of the requirements, key

functional and non-functional requirements have been enumerated, the use case

diagram showing the major actors and their actions have been included. This chapter

has been written comprehensively so that the fore coming design chapter becomes

easy to comprehend.

 20

Chapter 4
4 System Design

4.1 Introduction:

System design is a very important phase in the software development process.

The succeeding implementation phase is performed taking into consideration the

design constraints. This chapter begins by presenting the high level design of the

project showing the main modules of the system without including much detail. Next

the low level design is incorporated elucidating the modules identified in the high

level design. It is then followed by the data flow diagram of the project. Class

diagram is also included focusing on the implemented classes, their attributes and

their relationships with each other.

4.2 Architectural Diagram:

The architectural diagram of the system is specified in Figure 4.1. It illustrates

the basic diagram and design of the project.

 As depicted in Figure 4.1, the communication between the receiver and the

parser is unidirectional as the parser can only receive data from receiver. Parser sends

the parsed data to the GUI and also to the Data Base. Data from the Data Base can be

viewed in GUI. Similarly the data can be stored in the data base through GUI.

Communication between GUI and control module is unidirectional and is from GUI

to control. Operator can send commands to receiver through GUI and these

commands go to control module which then send them to receiver.

 21

Figure 4-1: Architectural Diagram

4.3 High Level Design:

The high level design of the project is shown in the Figure 4.2

Figure 4-2: High Level Design

 22

4.3.1 Control Module:

The ESMB receiver has the capability to be remotely controlled from a

computer through the TCP/IP connection. The receiver has a standard command set

through which it is controlled e.g. if we want to set the frequency of the receiver to

106.20 through remote control client, we will use the following command,

encapsulate it in a TCP packet and send it to the receiver.

 FREQuency 106.20 MHz

The frequency of ESMB receiver will be set to 106.20 MHz. Furthermore, to

report any changes in the receiver to the remote client, it has a complete status

reporting system through which it can send interrupts to client.

By using this command set and status reporting system, a GUI based control

module for the receiver will be designed through which receiver can be controlled

remotely. The command set of the receiver has a lot of commands. The GUI of the

control module will not implement all the commands rather only those commands will

be implemented that forms the basic structure for controlling the receiver e.g. setting

of the frequency remotely is necessary for remote client and its commands will be

implemented but command for adjusting the brightness of the receiver’s display will

not be the part of the control software and which are not necessary at initial stage.

4.3.2 Data Parser Module:

 The receiver has the capability to send the monitored data to the client computer

through UDP. The remote client will implement the UDP server and listens for the

UDP data sent from the ESMB receiver. This UDP connection will be in addition to

the TCP connection for controlling the ESMB receiver.

 23

The ESMB receiver monitors following types of data

• FSCAN

• DSCAN

• MSCAN

• Audio

• CW

• IFPAN

• FASTLAVCW

• LIST

One UDP datagram encloses only one type of data. The device monitors one type

of data at a time enclosed in a UDP datagram and sends to the nominated PC. When

the ESMB receiver is switched from one mode to another mode of data during send

process e.g. from FSCAN to Audio mode then UDP datagram contains data for that

mode. The data is enclosed by the device in UDP datagram as per standard set in

SCPI.

The functioning of this module is to check whether the UDP datagram received is

of RSMB receiver. After confirmation about the data, it will parse data i.e. it will

check which type of data the UDP datagram contains.

4.3.3 Data Storage Module:

The system handles different types of data and saves individual types of data

separately in different files for future analysis.

 24

4.3.4 Sound Module:

The ESMB receiver uses 12 Audio modes to send Audio data as shown in the

following table

Table 4.1: Audio Modes

 It should be able to pick up the mode of the ESMB receiver automatically and

configure its computer’s sound card accordingly for the play back of raw Audio data.

 25

4.4 Low Level Design:

Following diagram shows the low level diagram of the system:

Figure 4-3: Low Level Design

This software is mainly divided in two processes. The functionality of

receiving and parsing the incoming data is delegated to one process. The other process

has the responsibility of gathering that parsed data, viewing the stored data and

playing the audio data. These two processes communicate through shared memory i.e.

same address space is accessible to both the processes. One process writes the parsed

data to the shared memory while other process reads that data from the same memory.

Shared memory is the fastest mean of IPC available in Linux. The process that

receives and parses the data is implemented as a single thread, while the other process

is implemented as four threads i.e. one main thread and three sub-threads.

Main thread has the responsibility to display the main window and other GUI

elements of the application. One thread runs continuously to receive any audio data

written to the shared memory. While other thread runs continuously to receive any

data other than audio data written to the shared memory. Fourth thread has the

responsibility to play the audio data.

Shared Memory

 Main
 Thread

Parsing

Other
Data

Thread

Audio
Thread

Process1 Process2

 26

ConnectionDialog

+Commands() : void
+mem_commands() : void
+mem_setting() : void
+mem_delete() : void
+on_menu_start() : void
+on_button_fscan() : void

-*squ : object(idl)
-*fsc : object(idl)
-*snd : object(idl)

ExampleWindow

Commen SquelchAtt

MScan

FScan

DScan

Tone

Gain

+on_button_play() : void
+on_button_stop() : void

-data : unsigned char
Sound

+getters() : void
+open() : void
+close() : void
+openfile() : void

-ket_datum : object(idl)
-data_datum : object(idl)
-dbm_ptr : object(idl)

MessageList2

Gtk::Window

Gtk::ScrolledWindow

+CheckDGram() : bool
+Scan() : void
+ParseData() : void
+FScan() : void
+MScan() : void
+DScan() : void
+Audio() : void
+IFPan() : void
+EB200UdpThread() : void

-*m_bstop : short
-*m_plevel : short

EB200

EditList

MemContents

+*EntryPoint() : void

-n : int
-mode : int
-frame_length : int
-freq : int
-bandwidht : int
-pAudioData : unsigned char

ThreadAudio

+*EntryPoint() : void

-identifier : int
-receiver : int

Thread

-*file_string : char
Efile

1

1

1

1

1

1

1

1

1

1

11
1

1

1

1

1
1

1

1

1
1

+getters() : void
+open() : void
+close() : void
+openfile() : void

-ket_datum : object(idl)
-data_datum : object(idl)
-dbm_ptr : object(idl)

MessageList

1

1

1

1

1
1

1

*

-11

-1*

-1

1
-1*

4.5 Class Diagram:

Class diagram of the system is illustrated in Figure 4.4. In this diagram the classes

that have been implemented are shown along with the inherited classes and the

implemented interfaces, along with identification of their relationships with each

other.

Figure 4-4: Class Diagram

 27

4.6 Data Flow Diagram:

The data flow diagram of the system is given in Figure 4.5. First of all the

receiver sends the data which is intended to be received by the data parser. Parser

receives the real time data being sent by the receiver.

After reception of data by parser from receiver, parser separates data into two

portions based on its data type. These portions are audio data and other data types.

Parser modules sends audio data to the sound playing module and other data to the

function which is supposed to provide the functionality of data view and data storage.

Data send to the sound playing module is played. And data received by the function

responsible for data viewing and storage are individually send to the view in GUI and

data storage functions which treats data accordingly.

Figure 4-5: Data Flow Diagram

 28

4.7 Conclusion:

This chapter presented the architecture for Radio Spectrum Management

System. It has incorporated the high level design, low level design, data flow diagram

and class diagram of the system. Four basic modules have been identified which are

Data parser, Control, Sound Playing and Data storage modules. The system design

chapter included details that are very important in comprehending well the upcoming

implementation chapter.

 29

Chapter 5
5 Implementation

5.1 Introduction:

This chapter presents the implementation details of the project. The coding is

done in the C++ and mainly object-oriented approach has been adopted. There are

logically four major modules of this project.

• Data Parsing Module

• Control Module

• Sound Module

• Data Storage Module

The data sent by the receiver will be received by the data parsing module. The

function of the data parsing module is to parse the incoming data i.e. data sent by the

receiver is composed of 9 types of data and is encapsulated in a UDP datagram. Data

parser separates each type of data and sends that data to its respective handling

functions. Control Module controls the receiver remotely. Sounds module receives the

audio data and plays it. Data storage module stores the data sent by the receiver.

5.2 Implementation language:

The implementation language which has been used to develop this project is

C++, which is an object oriented language. The system is developed in Linux (open

SUSE 11.0) operating system. For the implementation and design of GUI, Gtkmm is

used. Basically Gtkmm is a C++ wrapper of Gtk+ library which is implemented in C.

Gtk+ is used for GUI development in GNOME desktop. Threads being used in this

software are implemented using pthread library. This pthread library is supplied

with every major Linux distribution. The database system employed in the software is

 30

gdbm. This is file system for database system. It is also supplied with every major

Linux distribution.

5.3 Software Architecture:

Following diagram shows the software architecture of the system:

Figure 5-1: Software Architecture

This software is mainly divided in two processes. The functionality of

receiving and parsing the incoming data is delegated to one process. The other process

has the responsibility of gathering that parsed data, viewing the stored data and

playing the audio data. These two processes communicate through shared memory i.e.

same address space is accessible to both the processes. One process writes the parsed

data to the shared memory while other process reads that data from the same memory.

Shared memory is the fastest mean of IPC available in Linux. The process that

receives and parses the data is implemented as a single thread, while the other process

is implemented as four threads i.e. one main thread and three sub-threads.

Main thread has the responsibility to display the main window and other GUI

elements of the application. One thread runs continuously to receive any audio data

written to the shared memory. While other thread runs continuously to receive any

Shared Memory

 Main
 Thread

Parsing

Other
Data

Thread

Audio
Thread

Process1 Process2

 31

data other than audio data written to the shared memory. Fourth thread has the

responsibility to play the audio data.

Refer to the class diagram of the project in section 4.5.

5.4 Distribution of classes with respect to Modules:

Distribution of classes with respect to modules for this project is demonstrated

below.

5.4.1 Data Parsing Module:

This module consists of following class.

• CEB200

This class implements a member named EB200UdpThread () which implements

UDP server and is continuously listening for the receiver packets.

After receiving the packet, the CheckDGram () function is called which checks

whether this packet is EB200 packet or some other packet. If it is EB200 packet then

it means packet is sent from receiver. If packet is from receiver then ParseData ()

function is called. This function is to parse data which means to separate out packets

which belong to different data.

After separating different packets, corresponding data functions are called e.g.

FScan() is called for packets that are FScan packets and MScan() is called for MScan

packets. When the corresponding data packets are received by corresponding

functions they further dissect the packets getting different values which are sent by

receiver.

Another functionality of these corresponding functions i.e. FScan() and MScan()

etc is to populate shared memory with these new values which are received after

 32

dissection of packets. After all this the control is returned to the EB200UdpThread()

which waits for the next packet to come.

Following figure will clear the concept:

Figure 5-2: Data Parsing

 33

5.4.2 Control Module:

Control Module consists of following classes.

a) MScan

MScan is for scanning memory from one memory location to the other

memory locations which are set on the receiver.

Figure 5-3: GUI-MScan
b) DScan

DScan is for digital scan, it performs the digital scan from a specified

to a specified frequency.

Figure 5-4: GUI-DScan

 34

c) Att

Attenuation can be set, auto mode of attenuation can be set and also the

state of the attenuation can be set.

Figure 5-5: GUI-Att

d) FScan

Frequency scan be started and stopped. Start, stop and step frequencies

are mentioned and frequency scan is run. Frequency scan can be run to

the up direction or down direction.

Figure 5-6: GUI-FScan

 35

e) EditList

EditList can be used to view the memory contents. Basically receiver

provides 1000 memory locations to be saved in it. Using EditList

memory locations can be added or removed.

Figure 5-7: GUI-EditList

f) Squelch

Squelch can be set by setting different attributes in this window. State

of the squelch can be set, similarly threshold can be set to a value

which is between minimum and maximum values and also this

threshold can be set to minimum and maximum level.

Figure 5-8: GUI-Squelch

 36

g) MemContents

Memory contents can be set and updated using this window. Select a

memory location from the spin box which is desired to be set or

removed. Then in case of addition enter the relevant information in the

remaining fields and press OK. In this way a new memory will be

added or updated. For the purpose of deletion, provide only the

memory number and press delete.

 Figure 5-9: GUI-MemContents

h) Tone

Tone can be set to a desired level by selecting any value of the tone

from the spin box. Tone can be set to minimum or maximum level.

Similarly tone can be set to On or Off.

 Figure 5-10: GUI-Tone

 37

i) Gain

Gain can be set by using this window. Gain control mode can be

selected; gain control value can be selected. Similarly Gain can be set

to Minimum or Maximum value.

 Figure 5-11: GUI-Gain

j) Common

Common controls of the receiver can be handled.

 Figure 5-12: GUI-Common Controls

 38

All classes implementing control module implement different GUI windows

for the user. All windows are invoked by separate control module panel buttons on

main window.

All the windows have the same functionality for implementing different

functions of the receiver. All classes have class ExampleWindow as their friend

class. When a user invokes a window and set different parameters in the widgets, they

all are set in private variables of the classes. When the user presses apply button they

all will invoke Commands(int n) of the ExampleWindow class. They all give their

separate identity by setting variable n. In Commands(int n) a switch statement is

implemented. Since ExampleWindow is maintaining a TCP connection with receiver

therefore separate commands are sent for every different n to the receiver; which

execute that command.

Diagrammatically we can see the procedure as follows:

Figure 5-13: Control Module

 39

5.4.3 Sound Module:

This module contains the following classes:

• Sound

• Efile

Main class for sound module is Sound. This class also implements a GUI window

having four buttons

• Play

• Stop

On pressing Play button; a thread is initiated. This thread reads the “unsigned char

data[800] ” of the sound module and implements the playing of audio data.

5.4.4 Data Storage Module:

This module contains the following classes:

• MessageList

• MessageList2

• Thread

• Threadaudio

When the program starts; two threads start immediately along with the

MainThread. These two threads are implemented as following classes:

• Thread

• Threadaudio

After the program startup, these two threads immediately start looking any

updated data in shared memory. When the Start button is pressed in the main

window, two things happen.

 40

1. Second process is started

2. Open() function of MessageList and MessageList2 is called.

Open function does two things.

1. Opens the Data Base

2. Stores the data supplied by Thread and Threadaudio into the Data Base.

Once the Stop button on main GUI is pressed two things do occur

1. Process 2 (Parsing Process) closes

2. Data Base is closed

The whole process can be shown by following diagram:

Figure 5-14: Data Storage Module

gdbm-store() is called every time new data is received by the threads.

5.4.5 Data Viewing:

Two types of data i.e. audio data and data other than audio are automatically

stored in two different data bases with extension .audio and .other. When we want to

open stored data we select the data base through file selection dialog. MessageList

and MessageList2 function Openfile(Glib::ustring) is called supplying it with data

 41

base name. In Openfile() first of all gbdm-open() called, i.e. opening data base in

read only mode.

In second step gdbm-fetch() is called which fetches the data from the data base

and updates the view variables. In the last step gdbm-close() is called which closes

the data base.

5.5 Commands:

Following commands have been used in the implementation of the control module:

1. "SYSTem:AUDio:VOLume MAX\n"

2. "FREQuency:AFC %s\n"

3. "BANDwidth %s\n"

4. "FREQuency %s%s\n"

5. "SYSTem:AUDio:VOLume 0.%d\n"

6. "DEModulation %s\n"

7. "DETector %s\n"

8. "BANDwidth MIN\n"

9. "BANDwidth MAX\n"

10. "BANDwidth UP\n"

11. "BANDwidth DOWN\n"

12. "SYSTem:AUDio:VOLume MIN\n"

13. "SYSTem:AUDio:VOLume MAX\n"

14. "ABORt\n"

15. "FREQuency:MODE SWEep\n"

16. "SWEep DIRection UP\n"

17. "INITiate\n"

18. "SWEep DIRection DOWN\n"

19. "INITiate:CONM\n"

 42

20. "SWEep:DWELl %d\n"

21. "SWEep:COUNt MINimum\n"

22. "SWEep:COUNt MAXimum\n"

23. "SWEep:COUNt INFinity\n"

24. "FREQuency:STARt %s%s\n"

25. "FREQuency:STOP %s%s\n"

26. "SWEep:STEP %s%s\n"

27. "FREQuency:MODE MSCan\n"

28. "MSCan DIRection UP\n"

29. "MSCan DIRection DOWN\n"

30. "MSCan:COUNt MINimum\n"

31. "MSCan:COUNt MAXimum\n"

32. "MSCan:COUNt INFinity\n"

33. "MSCan:DWELl %d\n"

34. "MSCan:COUNt %d\n"

35. "FREQuency:MODE DSCan\n"

36. "CALCulate:DSCan:MARKer:MAXimum:NEXT\n"

37. "CALCulate:DSCan:MARKer:MAXimum\n"

38. "FREQuency:DSCan:SPEed LOW\n"

39. "FREQuency:DSCan:SPEed NORMal\n"

40. "FREQuency:DSCan:SPEed HIGH\n"

41. "VOLTage:AC:RANGe UP\n"

42. "VOLTage:AC:RANGe DOWN\n"

43. "VOLTage:AC:RANGe MIN\n"

44. "VOLTage:AC:RANGe MAX\n"

45. "MEASure:TIME MINimum\n"

46. "MEASure:TIME MAXimum\n"

 43

47. "MEASure:TIME DEFault\n"

48. "VOLTage:AC:RANGe %d\n"

49. "DSCan:COUNt %d\n"

50. "MEASure:TIME %d\n"

51. "FREQuency:DSCan:FCHannel %s\n"

52. "FREQuency:DSCan:STARt %s%s\n"

53. "FREQuency:DSCan:STOP %s%s\n"

54. "FREQuency:DSCan:MARKer %s%s\n"

55. "FREQuency:DSCan:CENTer %s%s\n"

56. "FREQuency:DSCan:SPAN %s%s\n"

57. "FREQuency:DSCan:RESolution:AUTO %s\n"

58. "INPut:ATTenuation:AUTO %s\n"

59. INPut:ATTenuation:STATe %s\n"

60. "OUTPut:SQUelch %s\n"

61. "OUTPut:SQUelch:THReshold MIN\n"

62. "OUTPut:SQUelch:THReshold MAX\n"

63. "OUTPut:SQUelch:THReshold %d\n"

64. "GCONtrol MAX\n"

65. "GCONtrol:MODE %s\n"

66. "GCONtrol %d\n"

67. "GCONtrol MIN\n"

68. "OUTPut:TONE:THReshold MIN\n" [2]

 44

5.6 Conclusion:

This chapter incorporated the details of the classes implemented. . The classes

have been distributed among the two basic processes of the system which are Main

thread and Parsing thread. Parsing thread communicates with the receiver and

receives the data sent from receiver. Data received by parser is put in a shared

memory, from where it is being read by main thread. This process reads the data from

shared memory and uses this data for viewing and storage purposes.

 45

Chapter 6
6 Testing

6.1 Introduction:

Testing is a very important phase in the software development process. Once the

coding process is completed, then the software goes under the testing process which

involves checking the code for errors and bugs. It involves any activity aimed at

evaluating an attribute or capability of a program or system and determining that it

meets its required results. This chapter involves all the testing techniques which have

been employed in the project and the conclusions which have been deduced on the

basis of the results of the testing procedures. Test cases for different units and

components have been drafted illustrating their expected behaviors on the success and

failure of each test. The output of each test is then compared with the one documented

in the test case to make sure that the system behaves in the same way in which it is

meant to behave.

6.2 Testing Process:

The testing process has been carried out throughout the development process as

an iterative approach has been used in the project for development. Each phase of

development was visited several times making sure that the testing process goes in

parallel with the development process. The testing was basically done at three levels,

Unit testing, Integration testing and System testing.

6.2.1 Unit Testing:

Unit testing has been done to determine that whether the individual units of the

source program work in the same way in which they are expected to work. The units

 46

in the project include those methods which cannot be tested by simple inspection and

those classes which cannot be broken down into smaller units for testing. The

identified units of the project along with the corresponding test cases are illustrated

under the following headings.

6.2.1.1 CEB200UdpSock.cc:

This is the class which lies on operator’s machine and is used to perform the

parsing operation. The expected results on success and failure can be observed from

following table. On success the parsing module starts receiving UDP packets and

starts parsing them. On failure this class will not receive UDP datagram.

Table 6-1: Test case for CEB200UdpSock.cc

Identity CEB200UdpSock.cc

Category Unit testing

Description This class is used to initiated parsing module

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success Parser starts and starts setting parsed data in shared
memory

Failure This class will not receive UDP datagram

6.2.1.2 ExampleWindow.cc:

This is the central class of the application. It is used to start central and main

thread of process1. Furthermore two more threads are also initiated when the

constructor of this class is called. It shows main GUI for the application.

 47

Table 6-2: Test case for ExampleWindow.cc

Identity ExampleWindow.cc

Category Unit testing

Description This class is used to show the main graphical user
interface of the application.

Set up Gtkmm is needed as supporting environment

Expected
 Results

Success Main GUI is displayed.

Failure The main GUI is unable to start.

6.2.1.3 Command () of ExampleWindow.cc:

This function takes as an argument an integer value and uses a switch statement

to send a command.

Table 6-3: Test case for Command () of ExampleWindow.cc

Identity Command() of ExampleWindow.cc

Category Unit testing

Description This function takes as an argument an integer value and
uses a switch statement to send a command

Expected
 Results

Success On success FScan window will be launched
Failure On failure FScan will not be launched

6.2.1.4 MessageList2.cc:

This class is used for two main functions. First is to view the audio data and

second is store the audio data in gdbm database. Openfilwe() is used to read data from

gdbm database and then display it. Void getters() is used to store data in gdbm.

 48

Table 6-4: Test case for MessageList2.cc

Identity MessageList2.cc

Category Unit testing

Description This class is used to view and store the data

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success When openfile function is called, the system reads data
from gdbm and displays it in the main window.
When getters() is called, the data will be stored in gdbm.

Failure In case of failure system will not read data from gdbm
and will not display this data in the main window.
Data will not be stored in gdbm.

6.2.1.5 MessageList.cc:

This class is used for two main functions. First is to view the other data and

second is store that data in gdbm database. Openfilwe() is used to read data from

gdbm database and then display it. Void getters() is used to store data in gdbm.

Table 6-5: Test case for MessageList.cc

Identity MessageList.cc

Category Unit testing

Description This class is used to view and store the data

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success When openfile function is called, the system reads data
from gdbm and displays it in the main window.
When getters is called, the data will be stored in gdbm.

Failure In case of failure system will not read data from gdbm
and will not display this data in the main window.
Data will not be stored in gdbm.

 49

6.2.1.6 Thread.cc:

This class starts defines the thread which is used to continuously pick the data

up from shared memory and update the variable of MessageList class. This class starts

when constructor of main class is called and runs continuously till the application is

alive.

Table 6-6: Test case for Thread.cc

Identity Thread.cc

Category Unit testing

Description This class is used to get data other than audio from
shared memory

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc and
CEB200UdpSock.cc

Expected
 Results

Success Data will be gathered from shared memory
Failure In case of failure data gathering will be failed.

6.2.1.7 Threadaudio.cc:

This class starts defines the thread which is used to continuously pick the audio

data up from shared memory and update the variable of MessageList class. This class

starts when constructor of main class is called and runs continuously till the

application is alive.

 50

Table 6-7: Test case for Threadaudio.cc

Identity Threadaudio.cc

Category Unit testing

Description This class is used to get audio data other than audio from
shared memory

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc and
CEB200UdpSock.cc

Expected
 Results

Success Audio Data will be gathered from shared memory
Failure In case of failure, audio data gathering will be failed.

6.2.1.8 MScan.cc:

This class is used to launch window of memory scan from the main window.

The window of this class is launched when a button from main window is pressed.

This class takes different parameters from user as inputs and calls command (int n)

function of the ExampleWindow which then sends command to the receiver which is

then executed.

Table 6-8: Test case for MScan.cc

Identity MScan.cc

Category Unit testing

Description This class takes different parameters from user as inputs
and calls command (int n) function of the
ExampleWindow which then sends command to the
receiver which is then executed.

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success On success MScan window will be launched

Failure On failure MScan will not be launched

 51

6.2.1.9 DScan.cc:

This class is used to launch window of digital scan from the main window. The

window of this class is launched when a button from main window is pressed. This

class takes different parameters from user as inputs and calls command (int n)

function of the ExampleWindow which then sends command to the receiver which is

then executed.

Table 6-9: Test case for DScan.cc

Identity DScan.cc

Category Unit testing

Description This class takes different parameters from user as inputs
and calls command (int n) function of the
ExampleWindow which then sends command to the
receiver which is then executed.

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success On success DScan window will be launched

Failure On failure DScan will not be launched

6.2.1.10 FScan.cc:

This class is used to launch window of frequency scan from the main window.

The window of this class is launched when a button from main window is pressed.

This class takes different parameters from user as inputs and calls command (int n)

function of the ExampleWindow which then sends command to the receiver which is

then executed.

 52

Table 6-10: Test case for FScan.cc

Identity FScan.cc

Category Unit testing

Description This class takes different parameters from user as inputs
and calls command (int n) function of the
ExampleWindow which then sends command to the
receiver which is then executed.

Set up Gtkmm is needed as supporting environment and this
class is dependent on ExampleWindow.cc

Expected
 Results

Success On success FScan window will be launched

Failure On failure FScan will not be launched

6.2.2 Component Testing:

Different units together form a component. After unit testing, the components

have been tested to make sure that they behave in the expected way. The test cases for

different components of the system are elucidated and shown under the following

headings.

6.2.2.1 Parser Module:

The parser module is basically used to receive and parse the data coming from

the receiver.

1. Receive data from receiver

2. Check the datagram whether it belongs to receiver or not.

3. Parse the incoming data as per its type e.g. FScan, DScan and MScan etc

4. Dispatch the parsed data to its respective functions

This module runs as a child process of the main process (GUI) and it transfers

data to main process by sharing the memory with it. The tests conducted on this

 53

component were very successful as it behaved in the same way as expected according

to the test case given in Table 6.11.

Table 6-11: Test case for Parser Module

Identity Parser Module

Category Component testing

Description The parser module has the following functionalities

1. Receive data from receiver
2. Check the datagram whether it belongs to

receiver or not.
3. Parse the incoming data as per its type e.g.

FScan, DScan and MScan etc
4. Dispatch the parsed data to its respective

functions

Set up Gtkmm is needed as supporting environment

Expected
 Results

Success This module is run separately. Receiver is turned to
different settings e.g. it is set for digital scan. The
corresponding values for DScan are observed by printing
values in a console. If the printed values are same as the
receiver settings then it is a success.

Failure If printed are not same a receiver settings then it is a
failure.

6.2.2.2 Control Module:

Control module is used to control the receiver remotely. The tests that were

performed on this component according to the test case in Table 6.12 were quite

successful, validating the test case.

 54

Table 6-12: Test case for Control Module

Identity Control Module
Category Component testing
Description This module is used to control the receiver remotely
Set up Gtkmm is needed as supporting environment
Expected
 Results

Success When we open some control module window, sets the
parameters and sends it to receiver, the receiver must
execute that command which can be seen on front panel
of receiver. If the parameters set on window are the same
as that of front panel then test is successful.

Failure If parameters set are not same as on the front panel then
that will a failure.

6.2.2.3 Storage Module:

This module is used to store the data received from the receiver in a database.

The database used is gdbm. The test case for this component is illustrated in Table

6.13.

Table 6-13: Test case for Storage Module

Identity Storage Module

Category Component testing

Description This module is used to store the data received from the
receiver in a database. The database used is gdbm.

Set up Gtkmm is needed as supporting environment

Expected
 Results

Success When we press start button of the main window, the data
starts pouring to the main window. When a name is given
to the database, two types of databases are produced, one
is with .audio extension and other is with .other
extension. After data starts pouring in, the audio data is
stored in database with .audio and other data is stored in
database with .others extensions respectively. After
stopping the data we will open these databases to see
whether data was stored or not. If we view the data then
the test is successful.

Failure If we do not see any data in the file, then it is a failure.

 55

6.2.2.4 Sound Module:

This module is used to play the real time audio data coming from the receiver.

The test case for this component is illustrated in Table 6.14.

Table 6-14: Test case for Sound Module

Identity Sound Module

Category Component testing

Description This module is used to real time audio data coming from
the receiver.

Set up Gtkmm is needed as supporting environment

Expected
 Results

Success If sound comes properly and continuously without noise
then it is a success.

Failure If too much noise comes or sound does not appear to
come then it is failure.

6.2.3 Integration Testing:

Integration testing means testing the functionality of the system stepwise while

integrating the components or modules. While amalgamating the components, tests

are carried out each time the components are integrated. If the tests are successful,

then further integration of the system takes place. Otherwise the components are

debugged and integrated again and again until the tests are successful.

 In the project, the components were integrated in four main steps. First of all

Data Parser and GUI were integrated and testing was done. If the test results were

successful, then Control module was combined with these two and the system was

tested again. After that, Sound Module was amalgamated with the rest of the system

and tests were carried out again. Finally Data Storage Module was embedded with the

rest of the system and tests were carried out. These steps have been elaborated as

follows:

 56

6.2.3.1 Integration of Data Parser Module with GUI:

Data parsing module comprising of different classes is responsible for receiving

the datagram packets from the receiver. Then this module checks whether the coming

datagram packet is of the receiver or not. If datagram is of receiver then it is accepted

otherwise it is rejected. Initially the parsing module was integrated with GUI and their

combined functionality was tested. After the integration of these two modules a

connection between receiver and computer should be established through GUI, data

should be checked and received in the GUI and data should be displayed in GUI. The

results were correct, so further components were integrated with it. The test case

which was considered to check the expected behavior of the integrated components is

given below.

Table 6-15: Test case for Integrated Data Parser and GUI

Identity Integrated Data Parser and GUI

Category Integration testing

Description As these modules are integrated, the combined effect
should be that user should be able to connect the receiver
to the computer, Start and end of the connection is also
its functionality. GUI should only accept packets from
the receiver, Data should be received by GUI and this
data should be displayed by GUI.

Set up Gtkmm should be there as a supporting environment, all
classes which collectively form these module should be
there.

Expected
 Results

Success The combined effect should be that user should be able to
connect the receiver to the computer, Start and end of the
connection is also its functionality. GUI should only
accept packets from the receiver, Data should be received
by GUI and this data should be displayed by GUI.
Fulfillment of all these functionalities will result in
success.

Failure If any of the above functionalities is not performed then
it is a failure.

 57

6.2.3.2 Integration of Control Module, Data Parser and GUI:

This step is performed after successful integration of Data Parser and GUI

modules. Control Module implements the command set of the receiver. By integrating

the control module with the data parser and GUI module, user will be able to send a

command to the receiver through computer. Criteria for success will be, that user

should be able to send all possible commands available in GUI. If any of the

command fails to executer which is present is GUI then this will be a failure. Test

case was carried and it was successful. The following table shows the test case for this

integration process.

Table 6-16: Test case for Integrated Control, Data parser and GUI.

Identity Test case for Integrated Control, Data parser and GUI

Category Integration testing

Description As these classes are integrated, the collective
functionality which is performed includes the
performance of the control commands available in GUI
successfully from the computer.

Set up Gtkmm should be there as a supporting environment, all
classes which collectively form these module should be
there. Integration of data parser and GUI should be
performed successfully before carrying this step.

Expected
 Results

Success The collective functionality which is performed includes
the performance of the control commands available in
GUI successfully from the computer.

Failure If any command present in GUI fails to execute then this
will be a failure.

 58

6.2.3.3 Integration of Data Storage Module with Data Parser, Control Module

and GUI:

This is the final step of the integration process. The collective functionality that

should be performed is that user should be able to store the incoming data in a file.

Based on the type of the data the system should save the data in files having .audio or

.other extensions according to their data types. For that purpose a database is created

and these files are kept in that database. The test case which was written to

authenticate the combined functionality of the system is as follows:

Table 6-17: Test case for Integrated Data Storage Module, Data Parser Module, Control Module
and GUI

Identity Integrated Data Storage Module, Data Parser Module,

Control Module and GUI

Category Integration testing

Description The combined functionality of this stage is that user
should be able to store the coming data in a file with
.audio or .other extension depending on the data type.

Set up Gtkmm should be there as a supporting environment, all
classes which collectively form these module should be
there. Integration of data parser, control module and GUI
should be performed successfully before carrying this
step.

Expected
 Results

Success If user is able to store the data according to correct data
type then it is a success.

Failure If user is unable to store the data in the corresponding
extension then it is a failure.

6.2.4 White Box Testing:

White box testing or structural testing uses an internal perspective of the system

to design test cases based on internal structure. It requires programming skills to

 59

identify all paths through the software [3]. The white box testing of the system has

been done at both unit testing and component testing stages.

6.2.5 Black Box Testing:

Black Box Testing is testing without knowledge of the internal workings of the

item being tested. It attempts to derive sets of inputs that will fully exercise all the

functional requirements of a system [4]. For each set of inputs, outputs are known and

in black box testing, the inputs are fed in and if the output matches the predicted

output it means that the system delivers the expected functionality.

If we consider that data as valid data for controlling the receiver remotely,

playing sound and storing data, following tests were conducted as part of the black

box testing.

6.2.5.1 Checking the System on Valid Data:

First the system was checked on data for which system controls the receiver

remotely, system plays the audio sound and system stores the incoming data in a

database. The results were checked and examined carefully which proved the right

functionality of the system on entering valid data.

6.2.5.2 Checking the System on Invalid Data:

Secondly the system was checked with invalid. So that this was the data where

the system should return wrong outputs or system should performs any error. This

step was carried out by placing invalid data values in control module and data storage

module. As a result these commands were simply discarded and hence it does not

show any wrong output.

 60

6.2.5.2.1 Skipping the noncompulsory fields:

 The control part takes the input from the user to execute certain commands. If

in a control window user skips some fields then there is no error of failure in the

application. These fields are checked and if without these fields command can be

executed then it is executed and if command cannot be executed then such command

will be discarded and no error is generated.

6.2.5.2.2 Skipping the compulsory fields:

Next while entering data, compulsory fields were skipped and it was observed

that, the commands send to control the receiver remotely and store the data are simply

discarded.

6.2.6 Static Analysis of Code:

Besides testing the code dynamically, static analysis of the code has been done

as well to find defects, if any, in the blocks of code due to which it does not

implement the exact requirement or to determine the ways by which the code can be

optimized to make it fool proof.

The code has been statically analyzed in many ways which are briefly illustrated

under following headings.

6.2.6.1 Control Flow Analysis

Control flow analysis has been carried out for the verification and validation of

control blocks in the source code, for instance, the ‘for’, ‘while’ loops and the ‘if’

condition blocks. It has been observed that no unnecessary code has been included

and all these blocks are optimized.

 61

6.2.6.2 Data Analysis:

 Data analysis has been done to find and remove improper initializations,

unnecessary assignments and those variables that are declared but never used. All

such unnecessary lines have been eliminated thus giving a refined code.

6.2.6.3 Interface Analysis:

Interface analysis has also been done to ensure consistency of interface, class,

procedure declaration, definition and their use. It has been observed through tests that

all the methods declared in the interface are correctly implemented in the classes and

that there are no redundant methods.

 62

6.3 Conclusion:
This chapter illustrated the testing process of the system that has been carried

out and the corresponding results obtained. The testing of the system has been done in

great detail. The test cases have been written for the three mains phases of testing,

unit testing, component testing and integration testing. Using these test cases, the

results of the tests have been authenticated. Both white box and black box testing

have been carried out to determine that whether the system delivers all the functional

requirements that it should be delivering. Even static inspection of the code has been

carried out as well so that it become optimized and does not become redundant. All

the test results were very successful proving that the system delivers all its

functionalities in an efficient way.

 63

Chapter 7

7 Future Work and Conclusion

7.1 Future Work:

The system that has been implemented in the project can be extended in many

ways. First of all, the data stored by the system can be further used by some analysis

software to analyze it. Future work can include the development of analysis software

based on data stored by this application. Analysis may include the modulation,

demodulation and bit stream analysis. Bit stream analysis is the technique is which

analysis on each bit and stream of bits of data can be performed. This will be a

challenging task.

Receiver does have the capability to monitor the frequency signals ranging from

9 KHz to 3GHz. So taking in mind this huge range, detection and monitoring of GSM

transmission can be performed. GSM is protected and secured transmission, its

transmission is encrypted and the process of eaves dropping is very difficult to be

performed in such case. Real hard work, dedication and concentration will be required

to achieve this task.

Audio tagging can be performed on the audio files being stored in this file.

Audio tagging is a powerful technology to identify, search, and organize tons of

music files. Unfortunately, many files have no information in the tags, or the

information is not complete. This problem is annoying when you rip or download a

huge number of music file, and then want to organize some collection or compilation.

After the process of tagging the audio files, these tags can be used for efficient

retrieval of these audio files. This process will be very fast and effective.

 64

7.2 Conclusion:

The software provides a platform for data analysis on the data stored by this

software. Also this can serve as a baseline for the detection and monitoring of GSM

transmission. Audio tagging can be performed on audio files and these tags can be to

efficiently retrieve the audio files.

 65

APPENDIX A

Hardware and Software Requirements

Hardware and Software Requirements

Hardware Requirements:

• 1.0 GHz Processor or More

• 256 MB of RAM or More

• 1 GB free space on Hard Disk

Software Requirements:

• Platform:

 Gtkmm 2.4

• Operating System:

Linux OpenSuse 11.0

 71

APPENDIX B

User Manual

 72

User Manual

Following steps should be followed for the easy use of the software:

Main Menu:

1. Press Configure button to open a window which will ask you to enter IP address and

port to connect with receiver. Fig2 will be displayed.

2. Click Connect button to start connection between receiver and computer.

3. Click Open button to go to Fig3 which will ask to enter a file name for data storage.

4. Click Start button to start the raw data storage in a file.

5. Press Stop button to stop the process of data storage in a file.

Fig 1: Main Menu

6. Press Openfile button to proceed to Fig4 which will ask user to select a file name to

view data stored in that file in GUI.

1 2 3 4 5 6 7

8
9

10
11
12
13
14
15

16

17

18

19

 73

7. Press Quit to exit from application.

8. Press FScan button to proceed to Fig5 which will ask the user to set different values to

start the frequency scan.

9. Press MScan button to proceed to Fig6 which will the user to set different values to

start the memory scan.

10. Press DScan button to proceed to Fig7 which will ask the user to set different values

to start the digital scan.

11. Press Attenuation to proceed to Fig8 which will the user to set the Attenuation.

12. Press Squelch to proceed to Fig9 which will prompt the user to set Squelch.

13. Press Tone to proceed to Fig10 which will prompt the user to set the Tone.

14. Press Gain to proceed to Fig11 which will ask the use to set Gain.

15. Press Common Controls button to proceed to Fig12 which will ask user to enter

certain values to control the receiver.

16. Press Memory button to go to Fig13 which will enable user to configure the memory

locations of the receiver.

17. Press Quit button to exit the application.

18. Press the Other tab to display data with .other extension.

19. Press Audio tab to display the audio data.

 74

Connection Settings:

Fig 2: Connection Settings

1. Enter a valid IP address which set on receiver.

2. Enter a valid port number.

3. Press OK to establish connection.

4. Press cancel to cancel the settings and go to Fig1.

File Selection:

Fig 3: File Selection

1. Enter a valid name for the file

2. Press Ok button to proceed further

3. Press cancel button to abort the process and go to Fig1.

1

2

3

4

1

2 3

 75

File Opening:

Fig 4: File Opening

1. Select the valid option from the tab.

2. Press open button to proceed further and display corresponding data in the main

window (Fig1), data with .other extension will be displayed in other tab and data with

.audio extension will be displayed in audio tab of the main window.

3. Press cancel button to go to Fig1.

FScan:

1. Enter a value for sweep from the spin box.

2. Press Apply button to apply changes.

3. Press infinity button to set the value to sweep to infinity.

4. Press maximum button to set the value of sweep to maximum.

5. Enter a value for the start frequency.

6. Press apply button to make the changes in start frequency.

7. Enter a value for the stop frequency.

8. Press apply button to make changes in stop frequency.

1

2

3

 76

Fig 5: FScan

9. Enter a value for the step frequency.

10. Press apply button to make changes in step frequency.

11. Set a value for dwell time from the spin box.

12. Press apply button to save value of dwell time.

13. Press the Up button to start the scan to the upward direction.

14. Press the Down button to start the scan to the downward direction.

15. Press the Up Continue button to continue the scan to the upward direction.

16. Press the Down Continue button to continue the scan to the downward direction.

17. Press Cancel button to cancel the settings.

18. Press Abort button to abort and go to Fig1.

19. Click Minimum button to select minimum value for sweep.

20. Select value for frequency in the spin box.

1 2

4

6

10

8

12

14

16

17

3

5

7

9

11

13

15

18

19

20

 77

MScan:

Fig 6: MScan

1. Enter a value for sweep from the spin box.

2. Press Apply button to apply changes.

3. Press infinity button to set the value to sweep to infinity.

4. Press minimum button to set the value of sweep to minimum.

5. Press the maximum button to set the value of sweep to maximum.

6. Set a value for dwell from the spin box.

7. Press apply button to save value of dwell time.

8. Press the up button to start the scan to the upward direction.

9. Press the down button to start the scan to the downward direction.

10. Press the up continue button to continue the scan to the upward direction.

11. Press the down continue button to continue the scan to the downward direction.

12. Press cancel button to cancel the settings.

13. Press abort button to abort and go to Fig1.

1 2

3

6

8

 10

12

5

7

9

11

13

4

 78

DScan:

1. Enter a value for the start frequency.

2. Select a valid range of frequency from the combo box. Possible values are KHz, MHz

and GHz.

3. Press apply button to set changes in value of start frequency.

4. Enter a value for the stop frequency.

5. Press the apply button to set changes in value of stop frequency.

6. Set a value for mark frequency.

7. Press apply button to set value of mark frequency.

8. Set a value for centre frequency.

9. Press apply button to set value of Centre Frequency.

10. Enter a value for Span Frequency.

11. Press apply button to set changes in value of Span frequency.

12. Enter a value for BW (Band Width) Zoom Mode.

13. Press the apply button to set changes in value of BW Zoom Mode.

14. Set a value for Number of scans from the spin box.

15. Press apply button to set value of Number of Scans.

16. Press Low button to set the speed of scan to minimum value.

17. Press Normal button to set the speed of scan to moderate speed.

18. Click the High button to set the speed of scan to high.

19. Select value for the Ref Level from the spin box.

20. Press apply button to set value of the Ref Level.

21. Press the Down button to start the Ref Level backwards.

 79

Fig 7: DScan

22. Press the Up button to start increasing the value of Ref Level upwards.

23. Press the Minimum button to set the Ref Level to minimum value.

24. Press the Maximum button to set the Ref Level to maximum value.

25. Select the Time for the Scan from the spin box.

26. Press the apply button to set the Time of scan.

27. Press the Minimum button to set the value of Time of scan to minimum.

28. Press the Maximum button to set the value of Time of scan to maximum.

1

2

3

4

6

8

10

5

7

9

11

13

15

18

17

20

22

24

26

29

28
31

35

36

12
14

16

19

21

23

25

27

30

32

33 34

 80

29. Press the Default button to set the value of Time of scan to default, which was set as

default from the manufacturer.

30. Select the Channel from combo box.

31. Press apply button to set the channel.

32. Press MFTNSP to set MFTNSP.

33. Press MFTASP to set MFTASP.

34. Press the Start button to start the DScan.

35. Press the Stop button to stop the running DScan.

36. Press Quit button to exit this window and return to Fig1 which is the main window.

Attenuation:

Fig 8: Attenuation

1. Select value for auto mode of Attenuation from the combo box, possible values are

ON and OFF.

2. Press apply button to set the value of Auto mode.

3. Turn the value of State ON or OFF from the combo box.

4. Press the apply button to set the value of state.

5. Press Quit button to exit the window and return to main menu Fig1.

1

3

2

4

5

 81

Squelch:

Fig 9: Squelch

1. Turn the value of State ON or OFF from the combo box.

2. Press apply button to set the value of State.

3. Select the value of Threshold from the spin box.

4. Press the apply button to set the value of Threshold.

5. Press Minimum button to set the value of Threshold to Minimum.

6. Press Maximum button to set the value of Threshold to Maximum.

7. Press Quit button to exit the window and return to main menu Fig1.

Tone:

1. Turn the value of Tone ON or OFF from the combo box.

Fig 10: Tone

1 2

4

6

7

5

3

1

3

5

2

4

6

7

 82

2. Press the On/Off button to make the Tone Value toggle.

3. Select Tone Value from the spin box.

4. Press apply button to set the value of Tone.

5. Click Minimum button to set the value of Tone to Minimum.

6. Click Maximum button to set the value of Tone to Maximum.

7. Click Quit button to exit this window and go to main window Fig1.

Gain:

1. Select the Gain Control Mode from the combo box.

2. Click the apply button to set the Gain Control Mode.

3. Select the Gain Control Value from the spin box.

4. Click apply button to set the Gain Control Value.

5. Click Minimum button to set the value of Gain Control to minimum.

6. Click Maximum button to set the value of Gain Control to maximum.

7. Click Quit button to exit this window and go to main window Fig1.

Fig 11: Gain

1 2

4

6

7

3

5

 83

Common Controls:

Fig 12: Common Controls

1. Select the Offset to On or OFF mode.

2. Click the apply button to set the Offset.

3. Select the Band Width from the combo box.

4. Click apply button to set the Band Width.

5. Click the Minimum button to send the band width to minimum.

6. Click the Maximum button to send the band width to maximum.

7. Click the Down button to set the band width level down by one step.

8. Click the Up button to set the band width level up by one step.

9. Select the value of Volume from the spin box.

1

3

5

7

9

11

13

15

17

2

4

6

8

10

12

14

16

19

20

18

 84

10. Press apply button to set the value of volume to the receiver.

11. Press Minimum button to set the minimum value of the volume.

12. Press Maximum button to set the maximum value of the volume.

13. Select the value of Modulation from the combo box.

14. Press the apply button to set the type of Modulation.

15. Select the Level from the combo box.

16. Press the apply button to set the Level.

17. Click Quit button to exit this window and go to main window Fig1.

Memory View:

1. Press OK button display the memory contents.

2. Press apply button to go to Fig13 which will enable user to edit the memory locations.

3. Press Quit button to go to main menu Fig1.

4. Press Refresh button to display the changed memory contents.

Fig 13: Memory View

4 3 2 1

 85

Memory Contents:

Fig 14: Memory Contents

1. Select Memory from the spin box.

2. Enter a value for the frequency in the text box.

3. Select the frequency from the combo box.

4. Enter a value for the Squelch in the text box.

5. Select Modulation from the combo box.

6. Select Band Width from the combo box.

7. Enter a value for Antenna number in the text box e.g. for antenna1 give (@1) in text

box, and for antenna2 enter (@2).

8. Select a value of Attenuator from the spin box.

9. Set Attenuator Mode to ON or OFF from combo box.

10. Set Squelch Function from the combo box.

1

3

4

5

6

7

8

9

10

11

12

13

14
15

16

2

 86

11. Set AFC from the combo box.

12. Enable or disable the Set/Reset option by selecting ON or OFF from the combo box.

13. Click the Quit button to go to Fig13.

14. Press apply button to apply changes but the window will not disappear.

15. Press OK button to first save the changes and then window will disappear and control

will be shifted to Fig13.

16. Press Delete button to delete a memory location.

Sound:

1. Click on the Configure button to go to Fig16 which will ask user to provide IP address

and port number to connect with receiver.

2. Click the Connect button to establish the connection.

3. Press Quit button to exit the application.

4. Press Play button to play the audio.

5. Press stop button to stop the audio.

 Fig 15: Sound

4

1

2 3

5

 87

Sound Connection Settings:

Fig 16: Sound Connection Settings

1. Enter IP address of the receiver.

2. Enter port number of the receiver.

3. Press OK to accept settings and return to Fig15.

4. Press Cancel to remove the settings and return to Fig15.

1

2

3

4

 88

APPENDIX C

Deployment Manual

 89

Deployment Manual

System will be deployed in following steps

1. Install the Gtkmm2.4 in the computer

2. Unzip the folder Receiver.tar

3. Create a folder named receiver in /home directory

4. Copy the unzipped files in /home/receiver directory

5. Open the terminal

6. Change your working directory to /home/receiver

7. Type in terminal the command:

“./myapp”

8. Type in command “./Sound” to start the sound module.

 90

APPENDIX D

Symbols and Abbreviations

 91

Symbols and Abbreviations

R&S: Rohde and Schwarz

TCP: Transmission Control Protocol

IP: Internet Protocol

UDP: User Datagram Protocol

CMOS: Complementary Metal Oxide Semiconductor

RAM: Random Access Memory

PPP: Point to Point Protocol

LAN: Local Area Network

SCPI: Standard Commands for Programmable Instruments

IEEE: Institute of Electrical and Electronics Engineers

GUI: Graphical User Interface

FScan: Frequency Scan

MScan: Memory Scan

Dscan: Digital Scan

CW: Compact Wave

IFPAN: Intermediate Frequency Panorama

IPC: Inter Process Cmmunication

 92

APPENDIX E

Bibliography

 93

References

[1] Rohde & Schwarz “R&S ESMB user manual”
 Published by Rohde & Schwarz

[2]Rohde & Schwarz “R&S ESMB Command Set”
 Published by Rohde & Schwarz

[3] “White Box Testing,” https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-

practices/white-box/259-BSI.html

[4] Thomas Raishe, “Black Box Testing” Courses for CEN4010-SE 2002, Computer

Science and Engineering Department, Florida Atlantic University.
http://www.cse.fau.edu/~maria/COURSES/CEN4010-SE/C13/black.html

